RUC, September 2006

Quantum Chemistry & Spectroscopy.
Problem 8
For a classical rotating body, the magnitude of the angular momentum is given by J = I, where I is the moment of inertia with respect to the axis of rotation and  is the angular frequency. In the vector representation, the angular momentum is represented by a vector 
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 in the direction of the rotation axis with length |
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| = J.  The sign convention for 
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 is given by a right-hand rule. The rotational energy is given by E = IJ/2I.
The quantum mechanical description of a rigid linear rotor that may rotate freely in the three dimensions of space leads to quantization of the length J of the angular momentum vector, and of the projection Jz of the vector on an external axis of reference:  
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For a moment vector 
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 corresponding to the quantum number j there are 2j + 1 possible projections Jz, corresponding to the possible mj quantum numbers. This amounts to a quantization of space! But in the absence of external fields, the rotation energy is independent of mj: 
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The constant quantity 
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is often expressed in wavenumbers [cm-1] and is then called the rotational constant,
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. The multiplicity (degeneracy) gj of the j’th energy level is the number of rotational states with the same energy Ej, i.e., gj = 2j + 1.  At thermal equilibrium, the relative population nj/n0 of the j’th and the 0’th energy level is determined by the Boltzmann distribution:
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                               (1)
where kB is the Boltzmann constant [J/K] and T the thermodynamical temperature [K]. 
a. Compute the five lowest rotational energies Ej [kJ/mol, cm-1] for hydrogen iodide, HI, and the corresponding relative populations nj/n0 at 100 K, 298 K, and 1000 K. The molecule is considered as a rigid rotor. The moment of inertia for a rigid diatomic molecule A-B rotating around an axis through its centre of gravity perpendicular to its bond axis is I = R2, where  = mAmB/(mA + mB) and R is the bond length (R = 1.6 Å for HI).

b. Show by differentiation of (1) that the quantum number jmax corresponding to the most populated level is given by 
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   (rounded off to nearest integer value),
and determine jmax for HI at 100 K, 298 K, and 1000 K.
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