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Abstract

En historisk introduktion til ikke-standardanalyse.

Det vises, hvordan Eulers oprindelige analytiske beviser, som
for en moderne matematiker virker uigennemskuelige og logisk
tvivlisomme, bdde er elegante og logisk strigente, ndr de for-
muleres ved hjelp af uendelig store tal og infinitesimaler.
Endvidere vises det, at distributionsteori og teorien for di-
vergente rakker bliver simple og elegante, ndr de udvikles i

ikke-standardanalyse.




D. Laugwitz

Rise, Fa;l and Resurrection of Infinitesimals1

Let me begln ‘'with a few personal reminiscences. When, almost
three decades ago, I gave my first talks on the new theory of
infinitesimals and 1nf1n1tely large numbers invented by C. Schmie-
den,’ two remarks from the part1c1pants 1mpressed me. |

The first one came from physicists who stated that nothing at all
was new to them: They claimed to have always calculated in that
way. And, another one made by a mathemat1c1an- The (so called)
installation of rigour in mathematics succeeded in sweeping in-
finitesimals under the table - and now you come and let these
little insects creep up again through wormholes to the top of
the table! | |
Actually, these worms always had, in the shape of differentials,
lived as disguised outcasts of the community of mathematical sub-
jects not only in physics but also in differential geometry.
Having worked in differential geometry at the time when Schmie-
deh"s ideas came’ into my sight I could happily hail his infini-
tesimals. And, having had some training in 20th century physics,
I even hailed his ;nfinltely large numbers as a tool to give an.
intuitive meaning to such things like Dirac's delta funetion

and dipoles. A delta function has infinitesimal values outside
some infinitesimal region, and becomes 1nf1n1tely 1arge in some
region inside, such that its integral has a certain finite value,
" say 1. If we accept the existence of some infinitely large numb-

ber f and admit all ‘rational operations for it, then

t(x) = %———92—-2'
' 1+07x
I J! . might describe a delta function, and its

derivative looks like a dipole.




Other reminiscences go back to my childhood. I suppose I was

a boy of about 12 when our mathematics teacher asked what a
circle and its tangent have in common. My spontaneous answer
was: Nothing. A point was "nothing" to me. If they had anything
in common, this something must have some extension, very small,
practically invisible of course. My teacher, whom I remember
quite well, did not subdue this curious aberration of my

mind. Moreover, at about the same time he even encouraged an-
other glimpse of the infinitesimal which must have occured to
everybody who does not simply believe in textbooks: 1Is 0.9...
really equal to 1?2 Shouldn't it be less than 1? Actually, the
usual "proofs" at that level are far from convincing, and ob-
jections like those ascribed to Zeno of Elea should come to
the mind of everyone who is not infected by the 19th century

dogma of the real numbers.

Indeed it is a historical fact that the first appearance of
infinitesimals was in pre-Euclidean times, and I shall dwell
for a few minutes on that mathematics of the "Stone Age" before
entering the consideration of the well known rise of the infi-
nitesimals at Leibniz' time and the summit of their success
during the lifetime of Euler in the 18th century.

Infinitesimals in Greek mathematics entered, no one will be
surprised, through geometry, namely in the shape of contact
angles or hornlike angles. An angle is the space between two
curves in a plane which meet at a point P, and in case these
curves touch each other at P they enclose a contact angle.
It is natural to call an angle o smaller than the angle 8
at P, if B embraces a in a sufficiently small- neighbour-
hood of P. Then the angle between a circle and its tangent
at P will be smaller than any straight angle with the tangent

as one of its legs, and the angle of the

half circle will be smaller than the right

P angle. (Euclid III,16)

Addition of angles is defined in the natural way, by adding

the arcs which are cut out by the legson circles of respective

radii. It follows that na < B for a finite
K//”—Q\QJ straight angle g and a contact or horn angle a
- and any finite natural number n.
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The property of Eudoxos~-Archimedes is not

valid for angles. There are not many traces
of horn angles in Euclid, and he successful-

ly eliminates these contact angles which

A‘V R

have been of no use in geometry since then.
“4ﬁ The first half of Euclid III, 16 says that
no straight line can be drawn in the space
between a’ circular arc and its tangent.
Contact angles'are avoided. I cite the trans-
‘ lation of Sir Thomas L. Heathzof Euclid Book
III, Proposition 16: The stiaight line drawn at“right angles to
the diameter of a circle from its extrgmity will fall outside
the circle, and into the space between the straight line and the
circumference another straight line cannot be interposed;
further the angle of the semicircle is greater, and the remain-

ing angle less, than any acute rectilineal angle.

Nevertheless, the horn-like angles played some role in philoéo—
phical discussions on the foundations of mathematics through

to the 17th century. Wallis emphasized that the contact angles
are not magnitudes 6r quantities, whereas Leibniz stressed

their character as examples of infinitesimal quantities in ma-

3
thematics.’

The decline of infinitesiméls took place well before the times
of Eudoxos and Euclid. It was closely connected-to the disco-
veries of irrationality and of aifficulties with the concept
of continuity. To cut a long story short and put it in modern
language: The intermediate value theorem for continuous func-
tions is violated over nonarchimedean fields. Consider the
characteristic function of the infinitesimals, £(x) = 1 if
x is infinitesimal or zero, and f(x) = O everywhere else.
You may define continuity in any way you like, this function
will be continuous at every X, of the nonarchimedean field.
Take the .e-é-property: To each € >0 there exists a §6>0,
possibly infinitesimal, such that | £(x) - f(xo)|<e whenever

gx—x0|<6 . Or take Cauchy's definition of continuity: Whenever



X=X is infinitesimal, then f(x)-f(xo) is again infinitesimal.
Anyway, our function gives a counterexample to the intermediate
value theorem., This is a very serious objection against any
kind of analysis using infinitesimals, and this very objection
has been repeatéd over and over again until recent times. An
equivalent formulation is: There are bounded sets, e. g. the
set of infinitesimals, which have no least upper bound or ﬁo
greatest lower bound. The nonarchimedean fields lack a proper-
ty which in the sense of Dedekind is a characteristic of the
continuum. No wonder that Leibniz who initiated the most suc-
cessful period of the use of infinitesimals felt that the con-

tinuum was a labyrinth!

The followers of Aristotle deny that the continuum is a set of
points. In this sense no.. ordered field F, archimedean or non-
archimedean, can be a biunique image of the continuum, or,
there are always more points in the continuum than any given
set. The points whose coordinates are members of F do not
exhaust the linear continuum. Now mathematicians of the 20th
century seem to be unable to deal with anything but sets, like
modern musicians are not able to play or even compose in the
style of the old Greeks. Later in this talk I shall show you
how to circumvent the difficulties of the continuum to arrive

at safe grounds for infintesimal mathematics.

The Greeks avoided the difficulties of the infinitesimal (and
to some extent, the infinite) by the trick of Eudoxos. The exi-
stence of infinitesimals, e.g. in the shape of horn angles,
could not be denied - such a denial was left to a prominent ma-
thematician of the late 19th century who seriously announced
that he could prove the impossibility of infinitesimals; his
name was Georg Cantor.

If infinitesimals were unnecessary for the first four books of
Euclid, they should be eliminated from the conceptual basis

of mathematics.

That was done by Eudoxos at the beginning of Book V.

Following Heath, the essential definitions in Euclid's Book V

read:




Definition 4. Magnitudes are said to have a ratio to one

another which are capable, when multiplied, to exceed one

another.

Note that this deflnltlon does not say that entities which do
not enjoy this property are "excluded from the realm of

magnitudes!

pefinition 5. Magnitudes are said to be in the same ratio,
the first to the second and the third to the fourth, when,
of any equimultiples whatever be taken of the first and
third, and any equimultiples whatever of the second and
" fourth, the former equimultiples alike exceed, are alike
equal to, or alike fall short of, the latter equimultiples

respectively taken in corresponding order.

In modern terminology, having the same ratio is an equivalence
relation in the set of ordered pairs of magnitudes. Two pairs
(a,b) and (a',b') are equivalent if both a-a' and b-b' are
infinitesimal. The concept of an infinitesimal is sqccessfully
eliminated if only ratios. of magnitudes and not the magnitudes

per se are considered.

The ground for the rise of infinitesimals in the 17th century
had. been prepared by many mathematicians including Cavalieri

and Pascal. In his first considerations Newton used infinite-
simals,which he rejected later in favour of limiting procedures.
Let me concentrate our attention to the work and ideas of Leib-
niz. His calculus of infinitesimals in the shape of differen-
tials is well known: All of the rational.operations can be ap-
plied to differentials dx, dy, and in the final result of a
calculation infinitesimal terms of a sum can be dropped when
‘added to a finite magnitude. If y = x2 then dy = (x+dx)

= 2x-dx + dx2 or %% = 2x + dx = 2x. Here the equality sign
is open to criticism which was certainly one of the roots of
the decline of infinitesimal mathematics: How can dx which

is a denominator on the left hand side of the equation be even-
tually be zero on the rlght hand side? The bishop Berkeley
quite convincingly made this vanishing of something which was

assumed to be different from zero an object of his mockery;



though directed against Newton's fluxions his criticism also

applies to Leibniz and his followers, saying that "by virtue
of a twofold mistake you arrive, though not at a science,

yet at the truth", because errors were compensating for each
other. "In every other science men prove their conclusions

by their principles, and not their principles by their con-
clusions." This is a heavy attack against the more or less
"pragmatical use of-infinitesimals to-establish results ‘the
truth of which can be ascertained by correct methods like
that of the Ancients, notably Archimedes. "He who can digest
a second or third fluxion... need not, methinks, be squeamish
about any point in Divinity." And, since the derivative re-
garded as the ratio of the evanescent increments dy and dx,
what are these rates of change? They are nothing but "the ghosts

of departed quantities"” 5,

It is an easy task for 20th century mathematicians to find a
way out of the dilemma: The equality sign is used in two dif-

ferent meanings. If we write A~B when A - B is infinite-

’

simal
dy _ (x+dx)2-x?

then
dx dx
and B is an infinitesimal, then A+B ®A, and we invent a
new name. A 1is called the standard part of A+B. In our modern
terminology the mapping A+B » A 1is a homomorphism of the ring

of finite (plus infinitesimal) numbers onto the field of real

= 2x + dx ~ 2x. If A is a real number

numbers. The sign ~ indicates an equivalence relation. The
use of equivalence relations in mathematics became generally
accepted only after the work of Frege6(1884). This concept, as
used today, is definitely a child of set theory. The lack of
this concept, or to put it in other words, the lack of diffe-
rent notations for equality (=) and equality up to an infinite-
simal (=) was certainly one of the reasons for the decline of
infinitesimal mathematics starting in the second half of the

18th century.

The Bernoulli brothers in Basle were the first to accept, de-
velop, and propagate the new Calculus, the summit of which
was certainly attained in the work of Leonhard Euler (1707-

1783), a pupil of John Bernoulli.



It is not easy to find a proper foundation of the infinite-
simal concept in Leibniz' writings. In many cases he gives
Ap0pu1ar éxplanations which are far from being lucid. It is
only in letters to mathematicians when he expresses him-
self clearly as to our way of thinking. There is a famous
letter of February 2, 1702 to Varignon in which Leibniz in-
dicates how the Calculus of infinitesimals and infinities
" should be considered as a special case of his general Prin-
ciple of Continuity: The laws of the very large finite should
remain valid for the infinite, and the laws of the very small
finite hold for the infinitely small. 1

In a modern interpretation we shall use this principle of
Leibniz as a foundation of our version of Nonstandard Analysis.

Euler was very reluctant to explain his basic concepts.
I claim that his actual use of infinitely small and infinite-
ly large numbers obtains a correct sense if looked at in the

light of Leibniz' principle.

Let me give a few éxamples from Euler's work. In his Introduc-
tion to the analysis of the infinite, published in 1748, he
develops a 'theory of the elementary functions starting from

his expreséion for the exponential function,
e(x) = (1 + 5"

where g is a fixed infinitely large number (for which Euler
at that time still writes i, which was later, even by himself,
the generally adopted notation for ¢=1. Thus I prefer q.) As a

consequence of the general principle we may write
2 3

X\ 0 _ X a(a-1) X a(a-1) (9-2) X"
(1 + Q) =1+ Q.Q + 57 > + 3 3 +
q @ Q
X
(1) +...+—Q—Q
. x2 x3 xQ E xk
1 + X+ 5 +7=+ ... + == = .
2! 3! Q! x=o k!

Are we really entitled to draw all of these conclusions to

which Euler jumps, always writing = instead of our =, by




simply remarking that

801 o oq -y g, 8062 L g - Lo -2 .,
2 Q 3 9] Q
9 Q
etc?
The first equality is clear from the principle, and we can ea-

sily follow him with

@y . Ao et ez anke1) 1

k gk o % Q -0 k!

(2) ’ e
2 k-1 1 1

= - -2 _ k-1, 1
= O -9 ... 0 o)k TRl

as long as k is a finite natural number. For, an expression S

is an infinitesimal if for each finite ¢ > O we have |sl<e .
Let S be a sum of finitely many terms, S = So + ... + SN’ 1
each of which is infinitesimal, i.e. |sj| <ﬁ§T for each
finite e >0, then |S]| <e . We may conclude that, for each
finite N N . .
N k
Sy () - lgp = L JHINE iﬁ - 11 x5 o,

But does this hold for the infinitely large 9 in place of N?
Or, more generally, is it true that

N N

jio.ak - jZO P
for finite N implies that the same holds for all infinitely
large N? Certainly not; let a, = % ’ bk =0 and N = q-1.
Then the first sum is 1(this is an expression for the definite
integral f dx) and the second one is O and not infinitely
close to ° 1. But in this particular case } a, 1is not con-
vergent, and it can easily be seen that our implication is
correct if both series converge. And this is true in Euler's

deduction under consideration.

But have not writers, even in famous books on the history of
mathematics, invariably told us that Euler knew little or noth-
ing about convergence? Actually, this is a fairy tale which
has nothing in common with truth even if repeated dozens of
times. The concept of convergence was a triviality to Euler
which he did not care to mention. As early as in 1734, in a



paper on harmonic series? he even géve a necessary and suffi-
cient condition for convérgence: fak is convergent if and

only if ng a, is infinitesimal for all infinitely large N.
Unfortunately Euler did not mention that in his famous text-
bo' oks, leaving his method of infinitesimals open to attacks.
Here we see one reason for the beginning mistrust in and de-

cline of infinitesimals.

Let me give you a few more examples of Euler's method? If

y = (1 + %f} represents ex, then x. should ;epresént

log y. Now we obtain x = 9(y1/9?1),‘and since the 'thh
root of .y will have @ values it follows that ‘there are in-
finitely many values of the logarithm which can be calculated,
thus ending a long standing controverse between Leibniz und

. John Bernoulli; everything will be clear if we consider, for

the sake of briefness, y = 1,"-¢r Y1/Q = cos E%E + i.sin ng
' . S 2 : : ’
log 1mx = g[1- LM - FE_,,;2m _G__ 4
=4 2 4 Q 93 '

=21 9]

where F and G are finite. We -conclude that for every fini-
‘te m " '
log 1 ~ x s~ 2mm-i,

and by taking "standard parts" we obtéin log 1 = 2m7n-1i .

This is a beautiful direct approach to the problem:

The logarithm is obtained by solving an algebraic equation

of degree Q. There are no tiresome detours through the com-
plex plane! I should mention that Enler deduces his famous
formuia eiz'= cos 2 + i-sinz Which was used here again in

an algebraical way, as well as the series for cos and sin.

As another application of his method of polynomials of infinite
degree I shall repeat Euler's deduction of the logarithmic se-
ries. Let y = 1 + h and take the binomial theorem to obtain



- 10 -

2

log(1+h) xal(1 + ) /%= 11 = g+ § (M/%pk
k=1
“ho g MAU/T 2 p(/ESD(1/822) 3,
ch oo Yme 2, (1-e) (1=w/2) 3 _ (1-w) (1-u/2) (1=w/3) 4, _
2 3 4
where = 1 k
wa w 0 L S -

Now this series is convergent for  |h| <1, having the majoriz-
ing series Zlhll, and the same applieg to ghe series obtained
by dropping theinfinitesimal w's, h - %w + %— -+ ... . Since

finite partial sums of both series are infinitely close to
each other we may apply our earlier reasoning to obtain the
well known series development of the logarithmic function. |

These examples may suffice to show you that Euler's use of in-
finitesimals goes far beyond the technique of Leibniz who needed
only dx and its powers dxz, dx3, etc. With Euler, any expli-
cit expression containing infinitely large or infinitesimal
numbers makes sense if it does for ordinary numbers in place

of them.

Moreover, the order properties of numbers follow from Leibniz' prin-

ciple though Euler does not mention it.

People have tried to translate Euler's proofs into the language
of limits. This is always possible, but almost any proof will
lose its flavour and elegance. In most cases you are easily
mislead and find a wrong translation. But do not blame Euler
for your own clumsiness! As an example let us consider the
exponential series (1). Replace @ by the variable n for a
natural number, aiming at n+ o ., Equation (2) and (3) will
be translated into

? n xk
lim [ (L) =
k=0 k k

N k
-1
n-+o n k=0

|><

] =0

~

and, when we let N + » we finally have the desired result

k
X
E-!— B

lim (1 + %)n =
O

n->w k

fl ~18



Of course, I made a mistake typical for beginners, by letting
first- n + = and then N + «», But Euler is not responsible for

my mistakes.

‘I suppose that many readers interpreted Euler's proof in the

sense of limits, and when applying similar ways of reasoniné
in'othér cases and getting false results, denounced the infinite-
simal method as unreliable, Actuaily the method was not fool-
'proof. It was ‘a powerful tool in the hands of the master bﬁt
useless and éven-dangerous when taken up by minor or unexperienced

novices.

Thus, when more and more people entered a study of higher ma-
thematics,'and the average level of their I. Q. presumably
‘went down, the trust in the methodus inveniendi of infinitesi-
mal mathematics was boﬁna to decline. There were, up to the
1850's,some more of less isolated ingenious uses of the method,
‘notably by Cauchy, and the language of infinitesimals was still
‘alive, é, g. with Rigmann,,and:generally in physics and diffe-
rential geometry. Bué’it was felt to lack rigour and was dis-
‘lodged by the apparenﬁly rigourbus method of limits. Still, it
" remains an intérestiﬂg fact‘that.CauChy actually felt free to
ﬁse infinitesimal reasoning,ibesides being one of the promoters
of the é-d-techniques; At least in the work of such-prominent
mathematicians there was not an instantaneous fall of infinite-

simals but rather a decline.

In the second half of the 19th century we conceive a decisive

~ change in the attitude to the fundamental concepts of analysis
culminating in the dogma that ever&thiné in analysis had to be
founded on set theory. A function, which was an "analytical ex-
pression" in Euler's mathematics) became a subset of the Car-
tesian product of two sets. Euler's concept was intentional

and open, the form of the "analytical expression" could vary
with the concrete problems which were under consideration.

The new concept is extensional and closed, there "is" a fixed
and invariable set of functions once the ranges of definition

and of values are given.

There were some attempts to revive infinitesimals around 1900,
in connection with nonarchimedean geometry considered by Vero-




nese and others. The discussions in the volumes of Jahres-
bericht der DMV of that time are most instructive to read,
and they explain why a resurrection of infinitesimal analysis
was bound to fail. I feel that necessary conditions for such

a revival would have been:

a) The times of intentional definitions are over. Use sets if
you want to be listened to by your contemporaries!

b) Find a suitable concept to replace Euler's "analytical ex-
pression", and give a precise meaning to Leibniz' Principle

in terms of 20th century mathematics!

c) Prove important lemmas like the intermediate value theorem
and the 1l.u.b. and g.l.b. properties for classes of func-
tions and sets which actually occur in analysis! That is,

find a good restriction of the concepts of set and function

which cover the classical ground and are wide enough to include

newer applications like distributions.

We know by now several approaches to Nonstandard Analysis, a
word which was coined by A. Robinson in his first paper on the
subject matter in 19619 (Incidentally, I do not like this

name; our intention is to be closer to the Leibniz-Euler Cal-
culus from which point of view the analysis of the late 19th
century looks rather non-standard.) I shall now sketch the
approach which was initiated by Schmieden and myself in a paper
of 1958.10

Guided by Euler's methods and Leibniz' principle the approach
starts by extending the usual number field. We adjoin a new
"number" @, and everything that is valid in the "usual" theory
for all sufficiently large natural numbers n is postulated to
hold in the extended theory for & .in place of n. Let us

look at a few examples:

Since for all sufficiently large n, n > 1010, we obtain

a > 1010, and, in the same way, & >ng for each fixed natural
number n,: @ is an infinitely large number. The following are

proved immediately:

R
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O
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A prépise formulation of Leibniz' Principle will be obvious
to you: Take any sentence form A(n), that is a formula con—'
stituted by finitely many of the symbols of the "usual” theory,
~aﬁd n a symbol for a natural number variable. Then A(Q) is
.a true theorem in the new theory if, for all sufficiently large
' nétural numbers n, fhe sentences A{(n) are true theorems in
the usual theory. In a precise sense, the formulas A(-) can
‘be considered as theAequivaleht in modern terms of Euler's
. "analytical expressions". In some sense, we have now realized

'f‘condition (b).

Let a(n), b(n)} ... be sequences of ordinary numbers. Then,if
A(n) : a(h).= b(n), for all sufficiently large natural n,

then A(a) : a(qf) = b(q) is true in the new theory. The new
objects obtained by this equivalence relation in the set of ‘se-

| queﬁCes of ordinary numbers will be calied omega -numbers. If

the ordinary numbers come from an ordered field like @ or R
then the omega numbers have the definingrproperties of an ordered
fiela.‘E.g.,

c(R) = a(a) v c(f) < d(e) v c(a) > d(e)

and

o) LV \/ c(o)-d(a) =1 .
d

c(Q)

These theorems state that the omega numbers are linearly ordered,
and that every number which is different from O can serve

as a denominator. You will observe that the logical symbols are
included in our alphabet o which lists the symbols
of the basic "usual” theory. Though trained mathematicians
'usually may formulate and understand theorems in a more or

less .informal manner a "fool-proof" statement should, at least

. in principle, be given in this formalized way. One méy specu-
~late and suppose that Leibniz had no objections against such

"a formalization.



What about our postulate (c)? The set of infinitesimal omega
numbers is certainly bounded, without having a least upper
bound. But this set is defined by a word which cannot be formu-
lated in the alphabet of the basic theory. It is quite natural
to restrict sets and functions of the omega theory to those
which can be defined in an internal way, using only this al-
phabet. For instance, the interval [0,2] is internal: If

for all sufficiently large n, O < x(n) < n,

then O < x(Q) < 2. More generally,if a sequence of sets S(n)
of ordinary numbers is given, then the internal set S(Q)

will have x(Q) as an element if for all sufficiently large
n, x(n) eS(n). It is elementary to show that this definition
is independent of the particular choice of the representing
sequences x(n), S(n). The method of proving theorems on in-
ternal sets is straightforward, fool-proof, and consequently
tiresome. For instance, each non-empty internal set S(Q) of
real omega numbers which is bounded from above has a least

upper bound b(Q):

[(s(e) = ¢>Jv[ V /\

m(Q) x(8)

wkb\(/ﬂ) {x/(\ﬂ) X(Q) e S(Q) = x(0)

x(Q) € S(Q) = x(Q) m(ﬁ)] =>

A

b(Q)}/\{Y(Q) <b(Q) =>

A

z\(/Q) zZ(Q) e S(R) A y(RQ) <z(9)}‘l

Actually, if you repiace @ by n, then the sentence is true
for ordinary real numbers and every natural n. You should not
feel shocked by the lengthy and tiresome formal statement of
the l.u.b. property. We are used to avoid it by stating it in
plain English: A set is empty, or, if it has an upper bound m,
then there even exists an upper bound b, such that for each y
smaller than b there exists some member 2z of the set which
exceeds y. In teaching mathematics we draw some picture like
that

and we do this appealing to a certain correspondence between
real numbers and the supposed geometry of the linear conti-

nuum.



Actually, as éoon_as you have gof some experience with proving
theorems in the extended theory, you may easily proceed in a

similar way.

Of course, non-internal sets, or external sets, make sense,
like the set of all infinitesimals {x(Q) | x(2) ~ 0}. Only

it is impossible to define them in the "usual" alphabet; =~ is
a new, external symbol..Internal sets have,-in some sense, '
the same pioperties as standard sets; external sets enjoy dif-
ferent properties, and it is from them that we can expect re-
sults which extend the given theory. '

The situation is quite similar with functions. The example of

a delta function which I gave at the beginning of this talk is

internal, it belongs to a sequence fn(x) = —2__~  in

, 2 2
the basic theory. The intermediate value m(1+X°n) G heorem
follows easily if the £, are continuous in the basic theory.
Instead of proving this I prefer to show you how this theorem

for ordinary (!) continuous real functions follows in our in-

finitesimal framework.

. . : 7N
Let f be some real function defined on the read‘iﬁterval [O0,1].

There is a canonical extension to all omega numbers

S\ xQ of
this interval: If Y, = f(xn) for almost all na?ugﬁ& n, then
y, = f(xg). As soon as you have said yes to LeiQniz' Principle
you mus* accept this. Now consider an infinitesimal subdivision N.d,
w = 1/9, of the interval, the natural omega iﬁtegers N runn-
ing from O to &. Now suppose that £(0) < O < f£(1). Then
there will exist a smallest element M of the sét(é% all na-
tural numbers N such that f(Nw) > O. This setfié internal
and not empty, since it contains Q. From M > O and the de-
f(Ma) . If £ is
continuous then f(x) =~ f(x') whenever x x x'. Let x, be
the standard part of Mw, that is the uniquely determined real

A

fining property we have that f(M-1)w) < O,

number infinitely close to Mw, and incidentally to (M-1)g.
Now f(xo) has to be O since it is a real number infinitely
close to f(Mw) > O and f((M-1)w)<0. This proves the inter-

mediate value theorem.



What about Leibniz' origihal use of infinitesimals in the
shape of differentials dx? A dx may be an infinitesimal,
and the differential dy of y = f(x) will be dy = f(x+dx)-£f(x).
If for a given x all differential quotients %§ happen to
have the same standard part, then this real number will be
called the derivative f'(x). Recall that the notion of a
derivative entered the scene about a century after the inven-
tions of Leibniz, but let us jump to this concept immediately
for the sake of convenience. Please do not write dy = f'(x)dx,
a bad habit which led to many confusions in the past and even-
tually discredited infinitesimals. Actually, if f£'(x) exists,
then a true and useful formula will be dy = f'(x)dx + o-dx,
where o0 1s an infinitesimal, which méy depend on x and dx,
o = o(x,dx). The essential formulas of differential calculus

are proved in a straightforward manner.

b
A definite integral [ f(x)dx is the standard part of a
a B

M
sum f(x_)dx where a = X <X,<...<X_ <X €...<X,, = b
z ( m) m’ o m m+1 M '
m=1
A A . , . . .
and dx_ = x_ - X is infinitesimal for all m, and
m m m-1
X X < X_ .
m-1 = "m="m

Of course, we have to assume for integrability that this real
number depends only on f, a, b but not on the particular in-
finitesimal subdivision produced by the im's. The proof that
any continuous f 1is integrable is simpler here than in the
conventional setting since the concept of equicontinuity is

avoided.

Incidentally, since the notations introduced by Leibniz have
been used through the centuries, even though his fundamental
concepts were not always accepted, the introduction of infi-
nitesimals does not really change anything in Calculus. But
now the notation regains its original sense and is not a mere

symbolism.

Finally, let me mention two types of methods whose formulation

and application would be not elegant in the analysis of limits;
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the first one is the method of divergent series, the second
one the representation of "generalized functions" or distri- =

butions by internal functions.

The method of divérgent series was widely used by Euler. For
the sake of brevity, I give only very eésy examples which are

in the style of Euler.

. 2
Let be our fixed infinitely large number, and let E:=*2 %
which is certainly infinitely large. (Euler knew thatk=1
this is infinitely close to 1log @ + C where C = .577...,

but we shall not need this.) Let M be any infinitely large
‘number, and N a natural number, finite or infinite. Then

M+N N : b
. 1 z 1 1 ] dx
, s - ¥ — = log b
k=M+1 3 j=1 1+ I M g X |
— N
where b =1 + M

'in particular} if“ M = Q and M+ N =K _then
K 2 1, ¥ X ’
! ot ] 5 = E+logg = (E-log 2) + log K
= - Q
k=1 k=0+1 . ; .

5y 21
k=1 X

C + log K,

now using C as an abbreviation for E -log Q.

We conclude that, for any infinitely large M,

+ N . .
§M (k1
= K k=1

24

(log 2M + C) - (log M + C)

~-=

1
-2 Z —
K =1 2k.

loé 2

Consider the series which is usually called a rearrangement

of this series.of Leibniz,

1 1 1

:
S = (1+3-9 +(Frg-g) +ooot (qroy oy -
4M-1 M 2M-1
BRI S
k=1 k=1 k=M+1
1 2M-1

C + log(4M-1) - (C + log M) - 5 log

Q

M

~ log é%%l - % log 2 = % log 2




Actually, when taking a definite last term of an infinite
series into account, S is not a rearrangement of the se-
ries for log 2, but contains twice as much positive terms

as negative ones, this increasing the value to % log 2.

We come back to the internal function 6(x) = % ——i%—i '

with 6(x) ~ O for all (x| > B and some 83 0. Tx0

e.g. B==Z%: , and §(x) infinitely large for x very
e G R

close to O.
<+ oo : o .
] 8(x)f(x)dx ~ £(0) whenever f is a bounded real function

which is continuous at O. Of course, there are many internal

It is an easy exercise tdighow that

functions sharing this property which is essential for the
delta "distribution". Let A be any {nternal function such
that A(x) = l§l for all finite and infinitesimal x. Then

the second derivative A is a delta function. (Derivatives
of-an internal function fQ(x) are defined in a canonical man-

ner, via the sequence fn%x).)

This gives us a hint for the definition of "distributions":
Let F be any real function which is defined and continuous
for all real x, and f,g internal functions which are n=
times differentiable and f(x) = F(x) =» g(x) for all finite
and infinitesimal x. Then f(m) and g(m) are called equi-
valent in the distributional sense, it can be shown that the
equivalence classes are the distributions in the sense of

L. Schwartz. Thus, these distributions can be represented by
genuine functions, meeting the more intuitive expectations of

physicists and others.

Of particular interest, and quiteeasily to deal with, are di-

stributions of period 2n. If for some finite My for

real ak, bk and for all k
mo mo
la, | < , b | =
k = k? k = k2
then ao -
g(x) = — + z a, cos kx + by sin kx

is a real continuous function of period 2r. For any infinite M

and all omega-numbers X,

st




+ sin kx =~ g(x) .

a
e} a
2

"1

FM(x) = cos kx +‘b

k k

k=1

The series obtained by differentiation of Fy(X) represent
distributions. An example is

M +M .
2 cos kx = ! Z elkx
k=1 | T k=-M

9; : a delta function of period 27 . Actually, if f is any conti-.

’

_ 1 1
(4) GM(X) = 37 + T

nuous real function then

i
A L 4 ' R +7

M : :
[ oey(x) £(x) dx = 5= [ f£(x) ax + Z = [ £(x) cos kx dx=xf(0)
-7 - k=1 - '
L provided that the Fourier series of f converges to £(0)
; at x = 0. R ‘ -
" Note that the series cos kx diverges in the conventional

sense for every x. Nevertheless, the internal function Sy

prdvides a most useful tool in. analysis.

R In the distributional sense one may say that for all real
SR .. x¥2kn the "value" of 6M(x) is 0. Indeed Euler stated that

%4-cos X + cos 2x + cos 3x + ... = O
for x # 2km, a statement which was not accepted by his con-
‘temporaries. In a precise way we can now say that this series
vanishing outside some infinitesimal regions around x = 2km.
Geometrically, the graph of 6 behaves in a somewhat un-

------------ M .
expected manner. By using the sum of the geometrical series

P 1

: ' elkx one obtains Dirichlet's kernel function
K==M 1 sin(M-+%)x
(5) 6y (X) = 5=

sin %
whose graph looks like an infinitesimally fine saw enveloped

by the curves y = + S E— . By integrating (4) for |x|<m,x€R,

’ T 27 sin%

i . x M .

S ' sign x - _ X 1 sin kx
A - &) = s g sylt)dt = oylx) = o7+ 3 k£1 K '

Perhaps you may find it not so satisfactory that the graphs of
internal functions representing distributions may show a pecu-
liar behaviour. But at least they are functions and not objects




|
|
N
O
1

of some complicated mathematical structure. The tools of
topological vector spaces are eliminated from the theory
of distributions which now can be treated in an elementary
way. Moreover, there are equivalent representations which

display the expected types of graphs.

Let us dwell for one more minute on the function oM! What

is the maximal value attained by it? We should expect it to

- . 1 . : v - . 1 _
7be approximately 5 . Since oy = GM' we obtain (M f 2)xo m

for the first X, > 0 with a maximum of' Oy* Letting

(M + %)t = s, we obtain

*o 1% sin s ds
oy (x) = [ T s,(t)at =~ [ = 5 T i
0] 0O sin M7
. sin A - s
Since B ~1 for 1r}\ = SNTT ~ 0,
1 sin s _
oy (%X,) = ;é =—ds = .59,

which exceeds the expected value .5 at the rate of about 18%.
This fact is known as the Gibbs phenomenon (1898), and had been
discovered as early as in 1848 by Wilbraham who used infinitesi-

. . .. 11
mal analysis in a manner similar to ours .

4
\
i
1
t
'
'
Nia

4
>

i




These few examples will suffice to draw some more general

conclusions. First of all, we gave little contributions to

the Leibnizian use of infinitesimals. Actually it turns out
that the Leibnizian notation was'designed in a manner which
needs no improvement. But we have seen that it is not only

a convenient notation: Quotients of differentials are not mere
symbols but numbers which are infinitely close to the value

of the derivative, and the chain rule g% = g; -%¥ appears as
an almost trivial equation. An integral is represented by

a sum, up to an infinitesimal error, and the rule for substi-
tutions of variables, fy dx = fy g% dt, is one more equation,
much easier to invent, to prove, and to remember than its equi-

valent in derivatives.

__Secondly, and much more in the spirit of Euler than Leibniz,
the use of divergent series has now been vindicated. Though
writers of 'rigourous' tektbooks rarely hesitate to write

down - {% they will insist elsewhere that divergent series

are meaningless. Many a teacher will confirm my impression that
critical students have difficulties in following the dogma of

convergence as a necessary requirement for mathematical existence.

Thirdly, the supply of functions which are accessible to ordi-
nary calculus and which are expressed as y = f(x) in finitely
many terms is considerably enlarged. I feel that this is a field

of fruitful exploitation.

Let me hention a fourth aspect: Fundamental concepts can be for-
mulated and handled easier. A function £ is continuous at a
(standard) point x iff f£f(x') ~ f(x) for all x' » x, and it
is uniformly continuous on a set iff f(x') ~ f(x") for all
(standard or nonstandard) x', x" of the set, x' ~ x".

It is an easy exercise to prove the uniform continuity of a.
function which is continuous af each standard x of a closed
real inverval. - The example which we considered for the phe-
nomenon of Gibbs can be exploited in a different way to investi-
gate concepts related to sequences of functions. Let Oy be as
in (6), M a natural number, finite or infinitely large. We
shall say that o¢(x) is the limit function of the series if
cM(x) ~ o(x) for every infinitely large M. Obviously, o(x) = %
sign x is the limit of our series for all standard x, -m <x <7
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The Gibbs phenomenon shows that there is no convergence for
some infinitesimal x! This throws a new light on a theorem
of Cauchy which was denounced as an error ever since N.H.Abel:

If a series oM(x) of functions converges everywhere (toujours)

on an interval [a,bl, each of the ¢ being continuous on

[a,b] for finite M, then the limit ?unction is again continuous.
~This is a true theorem if 'everywhere' means all (standard and
7non$tandard) numbers of the interval. This convergence 'every-
where' is a nice and intuitive equivalent for uniform conver-
gence, and much easier to formulate and to apply 2 '

I see some justification of the recent rivival of infinitesimals
in this fact, that it appears to serve as a better background
than the analysis of limits to concepts and methods of Leibniz,
Euler, Cauchy, and others. Please mind: A background in terms

of our century, which does not mean that it could be identified

with the framework of any earlier mathematics.

Many people view the relation of "old" and "new" infinitesimals
vice versa. Let me quote from the Presidential Address of the
International Congress at Vancouver 1974, In remembrance of

his friend Abraham Robinson, H.S.M.Coxeter said: "When I was a
boy, I was introduced to calculus the 'easy' way, using infinite-
simals. At college I was told to put away childish things and
become rigorous. How wonderful it is that the name 'infinitesi-

mal calculus' has been restored to respectability!"
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