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Abstract.

This paper provides an algorithm for the conversion
of the index of an elliptic first-order aifferential operator
A on the torus YxS1 into the index of a canonically
associated elliptic pseudo-differential operator Q on Y.
It is supposed that Y 1is a closed smooth manifold and that
A "splits" into %E + B, where {Bt} is a family of
self-adjoint elliptic operators on Y satisfying the
periodicity condition B1 =g BO g—1 for some unitary
automorphism g. Then it will be shown that the operator Q
(the "desuspension" of A) can be written down explicitly
in the form Q = P+ - g P_ where P+ are projections onto
the space of Cauchy data. Applicati;ns are given for the %
calculation of the index of the general linear conjugation
problem ("cutting and pasting” of elliptic operators) and
the intimate interrelations between the related procedures
of algebraic topology, spectral theory and functional analysis

are explained. Generalisations in various directions are

indicated.
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Abstract; ' : ' : ~
)
This paper provides an algorithm for the conversion .

of the index of an elliptic first-order differential operator:

' into the index of a candnically

A on the torus - YxS
associated élliptic-pSeudo-differential operator Q on Y. ‘
It is supposed that Y is a closed smooth manifold and that

" : ” _a__ | ’ '
A splits ;nto_.aﬁ + Bt’ ’
self-adjoint elliptic operators on Y satisfying the

where '{Bt} is a family of

periédicity condition B1 = g.Bo g-1- for some unitary

automorphism‘g. Theh-it will be shown that the opératorv Q
(the "desuspension" of A) can be written down expliCitly ‘

in the form Q =P_ - g P_ where P, are projections onto

" the spacé of Cauchy data. Applications are given for the

calculation of the index of the general linear conjugation

prbblem ("cutting and pasting” of elliptic operators) and:

the intimate intérrelations between the related procedures

of algebraic topology, spectral theory and functional analysis

are explained. Generalisations in various directions are

'indicated.

Introduction.  -. ’
{
This paper'isfan effort to provide the necessary

algorithmicvmachinery for the study of the behaviour of

- the ‘index of elliptic operators under cerféin, not necessarily

continuous deformations{ Let A be an elliptic first order




~ differential operator acting on sections of the trivial
bundle ¢NxX over a closed smooth Riemannian n-manifold
X, 1i.e.
a:c”(x; Ny 5 cPxpel)
" where A has in local coordinates thé foim
n Ly N
R T
i=1 i
with complex NxN-matrices AO, A1,.,, An such that

the homogeneous first order polynomial (the "symbol")

N ... N
ZAi(x)gi : C - C

o(A) (x,£&):
belongs to GL(N,¢) for each § € T*X, &+ 0

It is well known that for such an A the spaces

ker A := { ul Au = 0}

and

coker A §= Cm(Xin)/Image A
have a finite dimension, cf. Treves [ﬂ35 chapter II],
- eand one defines‘ H |
index A := dim ker A - dim cokér A.
The index depends only on the symbol and is a topological
invariant, i.e. remains unchanged under continuous deformations
of the operator.

Given a smooth closed submanifold Y of codimension

1 which divides X into two parts X_, X,

TN

Xy

fig.1
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on the space

and a map

g. - Y - l.U(N)I'

we consider a new operator (made .up by "linear conjugation")

a9 g - Cixiehg

w, N
C (X;¢)g :={ ut u, := u!X, is smooth:

‘and u, =g u_ on Y}.

In [ 13 1, [ 114 ] it was noted that the "glued“ operator

e‘Agvls well deflned on the symbol level if the symmetry

condition

g(y) 0B (v,8) g7 (y) = o) (y,5) (%)

is satisfied for-all y € Y ahd £ € (T*X)y, £+0.

For 81mp11c1ty we assume that - A spllts near_ Y,
i.e. (cf. the termlnology 1ntroduced by Gllkey and Smith in
[191) A"takes the form
3;
. ot _ .
in a neighbourhood N of Y in X with N+ = NNX_,

A(t,y) = + B(y)

where t is the normal coordinate and B an elliptic
self-adjoint operator on Y. Condition (*) is ‘then
equivalent to.'

i

goB) g ' = ().

Let {Bt}t€I be a family of elliptic self-adjoint
operators on Y connécting

' B t= B anq B1-£= g Bg ',

By (y) := £(t) g(y) B(y) g (v) + (1-£(£)) B(y) |



whére f is a smooth function equal o near o and
equal 1 né;f 1. Then weﬁéan define the?gperator a“
explicitly by

a9 = a on X ~ N_

" and

a9(t,y) %E + B_(y) on N_.
Since

Ay = g@du)iy
for any u € Cm(X;CN)g,_ i£ follows that

N ad . cm(x;cN)g - C°°(X;€N)g ;
- and one checks easily the ellipticity of a9.
.The aim of this paper is to develop an algorithm for

the calculation of

u(g,A) := index A9 - index A
in terms of the geometry of Y énd g and of the behaviour

of og(A) near Y.

L
3z '

this is just the classical linear conjugation problem

If A is the Cauchy-Riemann operator

("Riemann-Hilbert problem") solved by Hilbert and F.Noether,
see [26]. The general linear conjugation problem was investi-
gated in [13], [14] in a broader context in an effort to
derive a recurrence formula for the index of elliptic opera-
tors on manifolds with a given decomposition in simpler

parts e.g. via Morse theory. The machinery used there was
based on the analytical theory of elliptic transmission
problems and mixed boundary value problems. It turned out

to be too delicate to lead to explicit formulas. Here however,

we are able to derive explicit analytical and topological

formulas for wu(qg,a).



- .

Our main result is the following

0.1. THEOREM. Let P, sy, eYy - H

\
P +

be the progectlons onto. the _Spaces" of Cauchy data

P

H, := {u,1¥ 1 u, e‘c“(x - ana A(u+)'=‘0}.

t+

Then 'P+ -g P is a Fredholm operator,_ in'fact-ah_eiliptic

Pan e N - O N e T T T T R

pseudo dlfferentlal operator of order zero on Y and:

e N e e N - \\ IS

u(g,A) = index (P+ -g P_).. | (*x*)

To prove the theorem we first reduce the problem to

-the study of an elliptic operator over the torus Yxs1y
‘'second to the study of the associated family of operators

over Y, parametrized by 'S1h_ Finally we construct one

singie operator over Y 'with the same index as the

original operator over YxS1: The main part of the paper>

is devoted to the development of the for that necessary

“method of_"desﬁspension" of splitting elliptic symbols.

In some sense our method is' complementary to'the approach
given by Atiyah, Patodi and Singer in [4 ]. In order to
provide information about the function n(a), assoqiated to

a self-adjoint ellibtic-operatof B on Y, they had to
find a manifold X+ with ,3X+ =Y 'and an elliptic operator
A oh} X extending :%E + B. Whereas their'approach4can'

be thought of as "suspension", we are treating the epposite
direction, namely how to go down from an elliptic operator

on a n-manifold to an elliptic operator on a (n-i)-manifold.




The paper is o¥ganized as follows. §1 describes
the geometry of families of self-adjoint elliptic operators
in terms of the speéfral flow. Th%t invariant Qés intro-
duced by Atiyah, Patodi and Singer in [ 4 ] very briefly.
Here tﬁe definition and the investigation of the spectral
flow will be worked out in more detail. It turns out that,
roughly speaking, the difference element of any elliptic
first order differential operator.on the torus S1xY,
i.e. an element of the-group K(T(S1xY)), can be obtained
as the difference element of an associated family of
self-adjoint elliptic differential operators ofrfirst

order on Y parametrized by 81; i.e. an element of

the group' K—1(S1xTY). Since T(S1xY) = S1XRXY,
both groups are isomorphic. As a corollary we -obtain - - ——-

an independent proof of the spectral formula

index({—gg

T+ Bt}) = sf{Bt} (*x*x)

which was already noted by Atiyah, Patodi and Singer

[ 4] in the much more complex setting of the signature
theorem and global elliptic boundary problems. Expressing
the index of an operator over a n-manifold by the spectral
flow of a family of operators over a (n-1)-manifold,

(***) constitutes the first step in our program of
desuspension. Unfortunately, a purely analytical proof of

(***) is not yet known.
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N

§2 establishes a symbolid calculus for the

spectral projections P, (B) of an elliptic self- ’

'adjoint operator B of non-negative order. Analytical

conditions are given for the vanishing of the'stable

-symbol class of. B.

§3 Qenefaliiés‘a situation.which is well known
and quiﬁé essential for calculations with singular
integrals, namely commufativity modulo compact operators.
que precisely,'let S bé the difference between two
qomplementary orthogonal projections P+ and P_ - in
ahcomplex Hilbert spacé, both with infinite dimépsional

range. Following a suggestion by Bojarski [ 9 ] we

consider the space GL, of automorphisms of H which

S

'commute with S modulo compact operétors andvWé show

that GLg is homotopically equivalent to the space

Ffed(H) ‘of Fredholm operators in H and, accordingly,

a.minimal classifying space for K-theory. |
§4 then establishes the second steé of the

desuspension: ‘the spectrallflow of a family ‘{Bt}

of self-adjoint elliptic first order differential

- operators over Y, parametrized by I with the

periodicity condition B1

sented as the index of an associated single elliptic

=g BO g_1, will be repre-

i

pseudodifferential operator on Y:

sf{B,} = index (P _(B ) - g P_(B)). (****)




That procedure has very much in common with the c¢lassical

boundary integral method and other projection methods

of the énéiysis of elliptic boundary value problems.

This is explained in §5.

both sided spaces
the soluﬁions of
tic operator over
divides = X into
In fact, then the
pxojectionS'onto

with the Calderon

generally without

There we
Ht(A) of the Cauchy

Au = 0 on X, where

X which splits near

X, .

Let A take the
spectral projections
H+(A). However,

projections which are

they

describe the
data on Y 6f
A 1is an ellip-
Y and Y
form 9_ + B.
ot

Pi(B) are
are not identical

defined more

the assumption of self-adjointness.

We have avoided the notion of Calderon projections

“'sinice thHey require much harder'analysis”fhah'Eﬁé’éféﬁéﬁféry

~ functional analysis which is sufficient for the definition

of our spectral projections. It should be noted that the

range of

a finite

Our

pairs of

dimensional space.

these two different projections differs only by

approach is based on the theory of Fredholm

subspaces as introduced by Kato [24, IV.4].

Some relations with classical results about the unique

continuation property of elliptic operators and their

formal adjoints are investigated.

The main part of §5 is devoted to the

study of classical transmis~ion problems like the




B I

e

‘extended to the'mdre-general situations of:

\ . . )

problem of linear .conjugation and its geﬁeraliza—

'tion,:the‘cuﬁtiqg and pasting'of.splitting.elliptic

symbol$a Exploiting the local index formula by‘Seeley

[31] we show that the integer u(g,A) is. a.spectral
invariant and in fact (by (***), the first step of

”‘desuspension)’equal,to 'Sf{Bt}f where {B.} is

t
a family of~s¢lf¥adjoint-elliptic first order diffe-

rential operators on Y connecting
I : o ’ ’ o
Bo = B and By i=gBg

~and A splité into > + B near Y. Then the ‘second

t ‘ ' ’
step of'désuspénsiOn completes the proof of Theorem 0.1.

\

"~ §6 gives some indications of how,our_results can be

i

o (A) splitting elliptic Sjmbols.where'the'ﬁart B Qh‘

Y  is not neceSsarily'self—adjoint[

(B) arbitrary clutching'functions 'g: EIY > EIY-

which need not. induce the identity in the basis Y,

but an arbitrary diffepmorphism _f:YAe Y, i.e.
ahalytically speakihg a theory of Carleman singular °

integral operators with a shift in the Eernel, and

.topologically speaking a’ theory of elliptic symbols

over the mapping torus (Yxs1)£. The details of these’
generalizations will be worked out by the.éecond

author in a separate_publication.
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SeVEraI’EXémples with explicit calculations are —~~

given at the end of each paragraph.
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1. Periodic Families of Self-Adjbint Elliptic Operators.

Let V{Bt}£€I*be a family‘of elliptic séif-adjoiht-
differentialloperators (of‘positive order r) over a closed
Riemaﬁnian manifold f acting onvthe smooth sections of

a Herﬁitian vector bundle E over Y. We always éssumé'
that the coefficients of the opératbrs are smooth and depend

smoothly on the parameter t. Recall that elliptic self-

adjoint operators of positive order have a discrete spectrum

.of finite multiplicity {)\j}.€ 7 . Moreover there exists no

]
essential spectrum, and the eigthectors span the whole
L2E as shown in [27, chapter XI, theorem 14].

Now we assume that Bd and 'B have the same Spectrum.

1

Note. that the eigenvalues change continuously when we vary

the operator continuously, cf. Lemma 1.4. Roughly speakinq,

}

teT ‘1s the dlfferenc¢

the spectral flow of the family {

B
N e N S N t

between the number of eigenvalues which chénge the sign from.

- to..+ on I and the number of eigenvalﬁeé which change

the sign'from + to - . To put it more precisely: _First,'

- we deform the family {Bt}tEI into a new family {B.} .
such that O is an eigenvalue of gf‘ only for a finite number

of t. Then we define a function & on I with thé.properties
£(Q9) = 0, and z(tf increésés by 1 every time.an eigenvalue
A<0 changés to one z 0 and decreases by 1 when the revéerse
haépens. Then the spectral flow of the family is equai to ’
2(1). We denbtg it by _gf{B } | (See also definition 1.11)?

"t tel”
In fact, it is not difficult to see that the definition

is indepehdant'of the chosen deformation and that the spectral

-

t
{
l- e ——



s
|

X
- flow is a homotopy invariant of the family.)Wefwill

put this in a slightly different form than [4 1,

a form most useful for explicit calculations.

1.1. THEOREM. (a) Let EX1(Y;E) be_the space of

Al

7 elliptic self-ajoint operators of p051t1ve order over

A T e e e T e TN e P TN e N e

the Riemannian manifold Y in sections of the Hermltlan

e N N NP N i L

_bundle E, and let B:I - Eﬁl(Y,E) be a family of
e e N e

N N TN - N e e e N e e

ogera&orfﬁzbere the coeff1c1eg§§ndegwﬁd smoothly on the

TN e ™ e e NPV S PP Ny

parameter + € I. Then the graph of the spectrum of B

P e S et e e e e e e P e et 4T e AT e T

can be parametrlzed ‘hear the 0-line through a finite set

s o * T e T e e P S o T T
-

of contlnuous functlons jl < 32 L ..., jk : I » R.

T

have the same spectrum, we get

l N i NP L g

0y T

Moreover, if BO and B

- T3 M Jxag

for some integer o Wthh is the same for_ each k.

e N APV = e e o Ay T T

That o will be called the spectral flow sf{B.} of

A R . N s et e s

the family {Bt}.

(b) The spectral flow is a C. homotopy 1nvar1ant of

e e s 3 e T T e o e P S T
perlodlc (i.e. Bl = BO) famllles of elllptlc self ad301ntA

operators of p051tlve order, i. €. it doesn t change under

N N . N e PR S S B T T T e et e

c” ~deformations of the coefficients of the operators 1n—

P i O e N T T, S

volved.

P O o, NN

x)
For the definition of the spectral flow it is not

necessary to suppose the periodicity Al = AO of

the operators but only of the spectrum : spec Al = spec A

0*



- 13 -

'

The situation may be illustrated by the following
picture -

A

Sy

|
(-]
[\
o
~
-

where e.qg. jl(l)f =

J5 (1) = j4(0)‘ eto.,lhenoe- sf{Bt} =

Theorem 1.1 could- be proved dlrectly by exp101t1ng ‘
the perturbatlon theory of the spectrum of closeqd, not
necessarlly bounded operators as presented in [24, chap-
ter IV]. HoweVer, the topological meaning of the spec—
tral flow will be more transparent if instead we work
with self-adjoint (bounded) operators in Hllbert space .

first and carry over the arguments to operators of
positive order lateri |

Following [ 4] and [ 5]'we‘§ive a short introduc;
tion into'the topoloéy of the space of self-adjoint

Fredholm operators in- Hilbert space.




5]

Let H be a separable infinite-dimensional complex
Hilbert space and let F denote the space Fred(H) of
all Fredholm operators on’:H, i.e. bounded linear- opera-
tors with finite‘dimensional kernel and cokernel. Then

any A € F has:én index defined by

index A : = dim ker A -:-dim coker A.
The space F equipped with the operator norm, decomposes
into 7 conneéted éomponenﬁs which are distinguished by
the index. More generally for any continuous family -
{Ap}pEP of Fredholm operators parametrized by a compact
topological space P we can define & homotopy invariant,

the indéx bundle

|
|
.
index {a } cp € K(P) o
‘where K(P) 1Is the Grotheridieck group of compléX vector =~
bundles over P. The Atiyah-Janich theorem states that

the index bundle defines a bijection

(p,F1 - K(P)
where [ , ] denotes the homotopy classes of mappings.
Hence the homotopy type of the space F is completely
identified: it is a classifying space for the functor K.

(For all that cf. [12]).

It turns out that one can develop an analogous
A
theory for the space F of self-adjoint Fredholm operators,
not bhased on the index which wvaniches on F hut on the

spectral flow. We recall



in

w

~
3

-1

1.2. PRbPOSITION ([ 5, theorem Bl). (a) The space

e ES T
A A A
F has three components F , F and F, characterlzed
/W\ TN e T + - Mt TSN
. A . : ;
A€ F} < A is essentlally p051t1ve (negat;ve),_i.e.

A-k i§ﬁ99§}t§ye (negatlve) for some

cempact gperator k
. A ’
A€EF, = A¢F_.

_ A A
(b) -The components F+ and F_ - are contractlble.

e P e e T e N e SN - e N TN e, N

(c) Deflne a map

N

by a551gn1ng to each A € F, the path from +id to’

‘,\_'\

-id on F° glven hx

o i
/ ‘
~cos mt + iA siumt, 0 §t s 1.

: A
Then o 1s a homotopy equlvalence, and SO F: is

N et NN e e PN T i e Nt T e s
a cla551fy1ng space for the functor K_l;
T e TN e e e TN e, e ‘
Note. - kK 1(P)  denotes the Grothendieck group
~ of 'vector bundles over the suspension f
SP: = (P x I)/identifying Px{1}

with a sihgle/point and " Px{0}
with another sihgle point.
Hence we have the following isomorphisms

~ ~ ~

o
(P) =.[P,F,]1 = {[P,QF] = [SP,F] = K(SP) ¥ [P,GL(=)] = [P,U{

where U(x) = lim U(n) (cf. [23, I.3.14 and II.3.191]).

n—cc

(=) T,




p— 16_.

PROOF. The complete proof can be found in [ 5].
Here we restrict to the outlines of the proof. We present
onlybthose arguments in detail (and in 4slightly different
way) which are illuminétiﬁg the methods of spectral defor-

mation which are important for the calculation of the

spectral flow and other spectral invariants. >
Since
t - A : = tA+ (I-t)ia , teI
At - A :
is a path in F+ connecting any A1 = A€ F+ with
A A
A, = id, it follows that F+ (and similarily F_) is
contractible.

The determination of tﬁe homotopy type of the space
2* will be carried out step by step through the following
- ~~lemmata, which lead to -a homotopy equivalence - £¥~~»» U (o). -
Since all classes of veétor bundles over the suspension SP
of S are generated through clutching over P of trivial
bundles it follows
[P,?*] = [P,U(w)] = K(SP) =: k1 (p).
Applying the Atiyah-Janich theorem we get .
K (SP) = [sP,F] £ [P,QF]

where QF is the space of loops in F which begin at

the identity and end in -id. o

Recall that a continuous map f£:X-»Y 1is called
a xggkhhpmctqu‘gqgiyglaggg if, for every point X € X,

£e ¢ T (X,x)) - w (Y,f(x)) , n Z0

CW-complex a weak homotopy eguivalence is actually a homo-

is bijective. For spaces having the homotopy type of a
l
_
topy equivalence. In [25] Milnor shows that a suitable

|



.5"1

.fj,

convexity property.ensures that a space has the:homotopy
tYpe of 'a CW-complex. In particularAthis gives the follo-

wing

1.3. LEMMA. A weak homotopy equivalence between open
W\. e . :

subsets of a Banach sgace or deformatlon retracts of such

AN TN Tt e e e I I e B e W N

sets is a homotopy" equlvalence. !
N P N W

N\/\/\/W o e N e

The next lemma shows (and gives a prec1se meanlng

to) the contlnulty of a flnlte system of elgenvalues.

1.4. LEMMA. Let A be a self-adjoint bounded llnel

operator in a'Hilbert space-'H and let a  be a p051t1ve

o —

real number such that the 1ntersect10n

i s e B e it N i i) s N

spec A N ]—a, al

e e TN o,

gvnglsts onl X of a flnrte System of elgf\values

- _ £ < < < .
a < AkA .Ak+l S... < 0 ~ AO Ne.. N A < a

(all elgenvalues repeated accordlng to thelr multlpllc1ty)
NN e e
Then for all operators A' sufﬁiciently”close“to A the

1ntersectlon'

spec A' N ]-a, al
q8n51sts also of the same number of elgenvalues

TN L .-

- g B S S
a < i kS A kel Seee A m <@

and one has

N

1A, - A1 ¢ A - A
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PROOF. We first decompose A into the difference

A= A of two non-negative operators ~(see [21, §321).

A+ - has the eigenvalues AO,...,

Xm and A_ has the
‘Since ||A, - Al <A - A

k,to., -)\_lc
it suffices to consider the case when A 1is non-negative.
We recall briefly that then the jth eigenvalue Xj

can be characterized by the minimum-maximum principle

(cf. [17, §271) through

Aj = sup{UA(vl,.., vj) I Vyrees vj € H}
where
UAﬂvl,.., vj) : = inf{<Aw,w> | liwll = 1 and
w € span(vl,.., vj)l}.

Now, for each choice of v ’ vj and for each

17"
€ > o we choose a vector w with fwi = 1, orthogonal

to Vyrees vj such that

<Aw,wW> - UA(vl,.., vj) < €.
It follows that

UA.(vl,.., vj) f <A'w,w>

<Aw,w> + <(A'-A)w,w>

WA

U, (v vj) + A=A+ €,

ll"l
hence

< 1
UA'(Vl"" vj) = UA(vl,.., vj) + Na-A'Qi.

In the same way we get
Up(Vyreey v) S Uy (vy,,,, v.) + UA-A" ,
< - J A i 7

which proves the lemma. o




w

»

NOTE. The minimum-maximum properties of eigenvalues
were derived and employed to study the effect which a

change of an opefator has on its eigénvalﬂes'first by

Weyl (1912) and more widely later by Courant for inte-

gral equations of the second kind (“eSséntia;ly positive

‘operators" in our terminology) and several vibration

problems of mathematical phygics,(see [16,. ch. III and
VI]. |

The continuity'of élfinite éystem of eigenvalues
can be obtained for all closed not necessarily'bouna%d-

norAsélf4adjoint operators as shown in - [24, IV.3.5].

‘In the case ofAsélf-adjoint elliptic opérators of posi=

tive order over a closed maﬁifdld we get the continuity
of the eigeﬂvalues immédiately from lemma 1.4. As usual
operatofs of order «r cankbe'reauced to operatprs of.order
0. by the substitution'. | |

B v (vl.+B2)—‘l/2oB= ﬁ

More precisely, let '{Xj, e.}

j j‘e-z 'be a spectral decom-

" position of the Hilbert space of square Lebesgue-integrable
sections in a hermitian vector bundle E generated by B,

i.e. the"{lj} are ‘the eigenvalues of

r 2
B : HE - L'E,

where H'E is the rth Sobolev space, With the\corresponding
eigenfunctions {ej} _spanning the whole .L2E. Then
i 2,1/2 | '
AL/ (1 + A% ; T '
- Dy/ 9T e

is a spectral decomposition of L2E generated by 8

“with all eigenvalues bounded by fl. Hence the continuity

of .the eigenvalues of .'B carries over to the eigenvalues

of B.
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The following lemma is of independent interest:

1.5. LEMMA. The topological non-trivial component
A - - A P T o . -

" Fy, of the space F of boundedrself—adjoint Fredholm
e e B T D

operators can be deformed into the space ~
A A 4
F(o) := {A € F | spec(A) is a finite subset

of [-1,1] and the essential spectrum

o (A) is equal té {-1,1}?.

ess
whe;e
O.eg @) = {dec 1 aA-1)id & F}.
A
PROOF. Let A € F,. We deform first A into

A
an operator A€ Fe with

e e - Hnfeo L B)t = k- e e e
ess ‘

through the linear homotopy
1

At := ({1-t) + tiinf cess(A)!) A.

Then we choose a symmetric deformation retraction ry
of the real axis onto the closed interval [-1,1].

Then the map A - rl(i) yields a deformation re-

A}
traction of F_  onto .
A A
Fy :={a€e Fy, b A =1 Ao (A) = {1,-1}}.

Next we introduce the spaces
A

A
F(m) := {A € F, | spec(d) n 1-1,1[ = {A Ak}, kS€m}

17"
for arbitrary m 2 1.
A
Let B € F(m), spec(B) n ]-1,1[ = {Kl,--,Am}-




‘vz

{e.}

We choose ‘an € > o such that

< ' < 5 ’ :
-l +exA § --. A, S 1 - e

1

- Let ht be a deformation of the interval [-1,1] ‘which

shrinks' [-1, -1 + €/2] oanto {-1} and [1 - €/2, 1]

onto {l} énd which is the identity on {—l+é,'l—e],

'Then_'h£i induceslé deformation ;* 4 ;* given by

Ae hl'>(A) with the following properties:

(1) ' ht(B) = B xfor all t € [0,1].

(ii) For any'compaétv X C'g* ‘there.exists an intééer n
- such that hl(X) ; g(n).  In féct, if, uAl'—AAﬁl‘. < e/2

then hl(Al), hl(Aé) lie' in the -same space F(n) because

their eigenvalues differ less than ¢€/2 by lemma 1.4{'
f i : ' A ‘A
This proves that the inclusion maps F (m) < Fy -

induce bijections . : v h )
s . A R LA .
M (F(m),B) ~ m (F,,B)

for all k - 0, for any choice of the "base point"

A : .
B € F(m), and for m sufficiently large.
' A A
Since F(w) =-1im F(m) lemma 1.5 follows by
m-»e ' ’ :

lemma - 1.3. o
_ § A o : .
For A € F(«) we have an orthonormal basis

5 ez of H such that

o k-1 . m
A = R - . . . D.
= Ip Ipy ~ + IrgPj
j:mfﬁ 00 j

where

= .
Py + H - spgn{ej}

are the orthogonal projections.
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Let V:= span{ek, em}, then we have

Gkl

id on v*
- exp(imAd) =
'?(e_iﬂxj)pj on V .
j=k
Tﬁis operator is an element of the topological non-trivial
subgroup
'ﬁ(@)i= {u fU unitary and id-U haé finite rank}
of the contractible group UH) of all unitary operators,

and we get:

1.6. LEMMA, ?QQAEEQL

A
—exp im : F(®) - U(x)

given by
A - -exp imA

is a homotopy equivalence.

e I e NI N P
The proof is not very difficult but laborious.

All details can be found in [ 5].

Since TU(») is homotopy equivalent to the space

U(w):= inj 1lim U(n) (see {28]} lemma 1.6 completes the

proof of proposition 1.2.

A
1.7. DEFINITION. Let A : P - F, be a family ofself-

adjoint Fredholm operators parametrized over abcompact

topological space P. The analytical index of the family
AN NN NN

is the homotopy class of this map - interpreted by pro-

position 1.2 as an element of the group K-l(P):

; -1
a=index A := [aoAl ¢ ¥ T (P)




K

~

" Thus we defined an element a-index A €& X(S

_23_

NOTE. . We can describe a-index A explicitly in terms

of vector bundles. Let A be deformed through the above

explained homotopies into a continuous mapping
g: P - U(n).

Then we have.

| 1

a-index@) = [Px@n,g]£= [Egi (S

x- P x @n],
where
E? i= I x P x C/~

1

is a vector bundle over S' x P which is defined by the

" identification

(1, p, é) ~ (0, p,‘ge) ’ p € P, e € Cn.:_

1 x P) whose

restriction to {0} x P is trivial and so can be regarded

~as an element of the group

K ~(P) = K ( (st x P) /P) .

Recall the ring homomérphism_("Chern character")

ch : K(@P): ». 8V ™ (p;g) = & Hzi(p;Q)
: . ,i=o0

defined by '
ch([E)-[F)) = ch(E) - ch(F)

where
- no X, 12
ch(E) = 7} e = n+cy + -é-(cl - 2c2)+...

i=1

is expressed as a polynomial in the Chern classes of the

vector bundle E of fibre dimension n, cf. [23, V.3].

' As explained there we may extehd ch by a homomorphism,

\\
also called Chern character ;
L i P o]

ch : K1) - u°99(p:g).
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~Let o Einl(P) ;beirepresented by

e =[P x €, gl
with a continuous map -
g : P - U(n)
or more genérally
a = [E,h]
where E 1is a vector bundle over P
and h an automorphism of E. Then
ch(a) = ch(E") - ch(s! x E)
defines an element in H*'(Sl x P) which
actually belongs to |
even

H (1 x P, {0,1} x P) = H " (p)

(by Thom isomorphism).

If P = Sl all bundles are trivial, i.e. every
o € K_l(Sl) has the form
o =1[st xc, &1, xe z.

Hence we get
ch o = k.

This proves the following

1.8. LEMMA. The Chern character for P = §
R NI I N, T e oy =

T e T

an isomorphism

with

hal

deg(g) = (ch [gDIs

;or all continuous maps

g : Sl - Uf{(n)

is

o




e

1 ]

vi
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' where deg(g) is the winding QEmR??.Qf g, which is

L

h o

o - ldn—l

with h : 8" » U(1) = 8* and then'taking

TN NN

|

deg (qg) mapping degree (h),

tSl] € Hl(Sl)_ igAFQe fundamental class -and

e Vs i e et T T N

(gl = = [Sl\x Cn,'g]'= (91 - [S x S1 x an.

1.9. COROLLARY. We have a commutatlve dlagram of
/\-’WW

isomorphisms :
N g A . l \
’ : -exp im
a-index I deg W
kT (st z Z
ch '

More precisely,

N TN

‘let ‘A, ‘be a famlly of self ad101nt Fredholm ogeratorsA

o~ t P N N e S S
Eerametrlzed by t € Sl - 'Then we have -
e TN . g T ) R l
deg(-exp im A )tES = ch a-index {Atytesl (s 1.

Without proof we'give the following generalization of
lemma 1.8 to. arbitrary smooth manifolds as parametsr space

(c£.[371):
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1.10. LEMMA. kgﬁ, p —EE,S,EEQSEEAEEElf°1d

P N s N

E a smooth vector bundle over P and h : E =» E
- Ea e WA

B L S NI

an automorphlsm. Then:

N s s e e N

chlE,h] = J ch () € & B 'R
k=1 . k=1
with
e k-1 m _
chk(h) - X 1 ( 2 'i_ll_ (kml)) tr w2k 1
(271) k! “m=0 m+1
whero

Corollary 1.9 gives two different characterizations
of the integer valued homotoﬁy invariant of a continuous

a topological definition by the winding number of a conti-
M e NP
nuous map
g : Sl - Uf(n)
obtained from A by deformations, and a dlfferentaal
definition by the Chern character of the analytical index.
Rather surprisingly, it turns out that there exists also

a spectral definition of this homotopy invariant:
N

1.11. DEFINITION. Let
Fa¥ " as

A
1
A s - F o)

be a continuous map, then the graph cf the spectrum of
TN N st e e T S

T e T e

A is given by a flnlte monotone sequence of continuous

N A R R

functions
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-1 S5, S S5 S, 50T s (-1,
l.€e. } ‘ v '
Cspec B = {3 (t), 3 (t),..,’” (t)}, te 1.

Here we have parametrlzed the circle Sl by t € I.

Let 2 be the integer such that for all k

T

W= ey (O

"where we define ,

"

I S 3 T e T 3

and

B N

' The number- & is. called the spe ectral flow of the

. family A.

: 1.12, PROPOSITION The spectral flow deflnes an

e N N e

isomorphism. i o - BT o
. ' A
_ sf : 7w (F) - T

PROOF. First we show that the spectral flow

is é_homotopY'invariant of the familiés. Let A= (B, }

and B = {Bt} be two perlodlc families parametrlzed by -
e t € I which can be deformed into each other,v i(e..there
exists ‘a two-paramster family {Ft,u}t,uGI such that
‘Ft,G = At ' Ft,l.= Bt ' and FO,u =-Fl’u for each‘u.
LetA C = {-CS}S€I be the boundary of {Ft,u}f e.g.
0. s Sl
g s i)
C =
s 1 €5.€3)4
3/4 £s &1




T ————
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Then

sf¢c = sfA - sfB

" and C can be deformed into a constant family. -

L?t {Gt,u}t,uel be}such a two-garameter family w;?h
S0 7 S S¢,1 ¢ CSou T C1u |
let m be the spectral flow of the family {Go,u}uEI,

and let jk(t,u) be the sequence of functions parametri-=
zing the spectrum. Then .

Jk(oro) = (0,1) = Jk_m(lll) = l] (1,0),

Jk-m
hencer sf C = 0.
Now it is clear that the spectral flow defines a

homomorphism

sf : 7w

__We show . that it is in fact an -isomorphism. We construct -

a periodic family with spectral flow equal to

1 : Let {ek}kEE be an orthonormal basis of H.
. Take
At = [y - po) + @D,
k=1 ‘

where p, is the orthogonal projection onto span{ek}
and hence

spec A, = {-1, 2t-1, 1} , t € 1I. o




¢,

1Y)
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1.13. COROLLARY. Let A : S~ - F, be a cgontinuous

S

favi}y Then-

1

sf A = deg(~exp imA). = ch(a-index A) [S7].

PROOF. The last equation was obtained in corollary

1.9. By proposition 1.12 it follows that sfla) and

deg(-exp imA) coincide up to sigﬁ. Consider agéin the

"test" family

oo

Ay =k£l(pk-- P_j) f (2ﬁ - Lp, , teI

from the proof above. Then we get

.
[

ey : | k # o

(e,) = }A for

--exp }ﬂ A Kk

t

g
Ve

_e1W(2t—})ek

which is homotopically eéuivalént to the map
.g’: Sl - U(1) |
with o
g (t) A=‘ -ei“(Zt;l).
Since
deg g = deg ei2mt = 1

the sign is clarified. o

_Without proof we give the following generalization,

see  [37]: : / . : )



1.14. PROPOSITION. Let {Ap}pEP be a family of

self-adjoint Fredholm operators parametrized over p

in a compact space P. Denote e by sf A the 51ngular

TN e e Nt N et e e R L S

1- cochaln glven on any 51ngular l—gimp}gg

pAASE S
1

f : 8 - P

byxthg formula

SE A [f] : = sf{a...}. 1.

f(t) tes

Then we have in H (P;®)

sf A = chl(a—index A).

NOTE. Proposition 1.12. proves theorem 1.1 by
the reduction argument given in the note after lemma 1.4.

It turns out that the spectral flow of a famlly of

self- ad301nt elllptlc operators doesn t change when we
change the Hermitian or Riemannian structure. This is

due to the fact that the corresponding L2—spaces are egui-
valent or, more precisely, that all finite dimensional

0 oo 3
eigenspaces are subspaces of C -sections.

Before we proceed further with the spectral analysis
of periodic families of self-adijoint elliptic differen-
tial operators it might be appropriate to comment upon

the situation.




¢

L8

‘%

In principlej there are two main directions'in
spectralwanalysis. One:directionvof‘research is re-
stricted to positive self-adjoint operators:-like VKT
of Riemannian geometry,ysee [20]+)f$his direction_ofc
research~exploits the.extreme'asymmetry‘of the spectrum.'
The second direction focuses on the éEXEEEEEXA£E§9%£
of the spectrum of self adjOlnt not. necessarily p051t1ve

operators. From the p01nt of view of geometry the second

approach is more flekible since natural operators such
~as the Signature operator take the form. of self adjOlnt

1operators near any submanifold of codimen51on 1 with

the spectrum on both’Sides.ofﬁthe real line, c.f.[3 1,04 1.

In fact there ex1sts a whole theory on measuring the

4

'asymmetry of the spectrum of one single self adjOlnt

operator, the so—called ' n-functiony'and; n—lnvariant",

'.see [191a[36].

'The spectral' flow measures only the change of the

'spectral asymmetry ofja‘family of seif—adjoint operators

and is<thus less intricate than the.n-function. It is
related to‘the n= function by several formulas .

(cff (4, p.90 and 93]).

lﬁ The significancehof‘the spectral flow is indicated-
by proposition 1;12 namely that the vanishing of the
spectral flow is a necessary and suff1c1ent criterion
for the p0351ble deformation of a periodic family of
self—adJOint Fredholm operators (or eliiptic operators)

into the constant‘family.

+) See. also Duistermaat,J. & Guillemin ,V., The spectrum of‘posifive
elllptic operators and periodic bicharacteristics Invent. Math. 29

(1975), 39- 79.
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. Now we want to proceed with'the topologicél<SEudyf
of self—adjoint elliptic operators. Recall that the
homotopy class of an elliptic opérat6f B over a
closed ﬁanifbidg v depends only on the homotopy class

5 ‘Foriany such symbol the

7 oflité ieading:symbol o
usual thedry'of elliptic stbols constructs a "symbol
class" [OB] which is an element of K(TY) -and which
leads to the computation of the-index of B by the
"topological index" homomqrphism K(TY) ~» Z (see e.g.
[12]).

If B is a self-adjoint elliptic operator over Y

its homotopy class depends again only on the homotopy

class of its leading symbol, i.e. B can be deformed

into another selffqdjpipt_elliptic;opexatox B' through
a smooth 1-parameter family {Bt} of self-adjoint
elliptic operators if and only if Og can be deformed

into in the class of self-adjoint and (for each

O
non-zero cotangent vector) invertible symbols.

This is ©® standard exercise. However, the usual symbol .
class in K(TY) 1is vanishing. In [4, §3] it was found out

that the characteristic element of a self-adjoint

elliptic operator lies in the group Kdl(TY).

1.15. DEFINITION. (a) Let- B be g\self—adjoigﬁ

P SO N T

. * P S .
elliptic cperator aciing on the C -sections of a
R e - e o L

Hermitian vector bundle E over a ~losed Cw—manifold

Y gnd let




i

L

E: €Y ETY ~ O
y yAl_y ’ n v

be the principal symbol of B. We consider the

OB(Y:T]) - E

family
cos tid + i sin t oA(y+n) 0 <+ < g

oy (y,m) = o ~ for

elt id | T <t <27

of elliptic symbols over Y parametrlzed by a point

T gt i = TN T e ety e e e T

t on the 01rcle Sl. ThlS gives an automorphlsm of

..... v\— et e ™ e T e T TN PN R NI}

the bundle T7w*E where
/\/_\—/-\-/\.A

P

kit E Sl.x Sy - Y

(SY = TY is the sphere bundle of

T e et Tt N et e,

.55

( cotangent vectors) and hence defines an e%eqent

e

[0 ] € K(S x TY). Its restrlctlon to {0} x TY

B T NN .

is trivial and so [0 ] can be regarded as an element
P e e

/\,—\_,\,\/\.—_.\ e S T LN

of- K (TY) S It w1ll be called the stable szmbol

¢lass of B. (Compare §2 and [ 4, p.80] for an

‘alternative characterization of [G] involving

a sStandard "stability“ argument) .

~(b) ForlaAfemlly B = {Bp}p€P with a compact

parameter space P we obtain similarily a 2-paraneter

family of elliptic symbols 3; ¢ over Y parametrized
' . T
1

by .p€P and te€S and hence an element in K-l(P x TY),

the stable symbol class [o

B] of the family B.

)



1.16. LEMMA. Let B = {Biliegl bg a family of

st order operators acting
T Ll e et L 0 s ot e T e

T T e

elliptic self-adjoint fir

on sections of a Hermitian bundle- E over a closed

e T e g P T ™

P e S

manifold Y and let

~ _ 3 -
B : = {'at + Bt}tESl

be the associated first order elliptic operator over

N S e e

the "torus" Sl x Y acting on sections u(t,y) of

S

the vector bundle (p*E (E lifted to Sl x Y bg_Eﬁg'

canonical projection 9). Then we have

K1(st x 1v) 3 [, = log] € x(T(s’ x ¥)).

PROOF. Clearly B is elliptic . but, in general,

not self—édjoint'since its formal adjoint is

ke T N R o - o
B = {'é— + Bt}tESl

Since the tension space of Sl x Y 1is diffeomorphic

to the product Sl x R x TY we get a natural isomorphism

K(T(sl x Y)) K(S™ x R x TY) K (87 x TY).

Now we consider

og(t,y,;T,n) = -it + g, (yyn)(
t

where te€st, yev, (t,n) € T(s' » ¥) with

l’f!z + {nl2 = 1.
Since Bt is of first order and hence Og homogeneous

t
in 1 wWe can rewrite
. - _4 ; n_
O"B"(tIYITln) = i(t + llnlUBt(Y:!nl))

. o n_
= i(cosr + 151n:ropt(y,'n!))
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<
~

by substituting,.T = cos r for o < r Aﬂ;

" As usual we join -i. with the identity and so

~we get a homotopy between the clutching isomorphism

it + oy (y,m) ; test, tes', (y,n) € sv
t o :

which defines the symbol class [(og] of the
operator »E ‘and the clutching isomorphism

. o : ‘ < S
cos r + isinr o, (y,n) 0 S r S

for

By

ir o : .
e o 'TrSr\<21r’,

’

1

_.where . r € S©, t € Sl, (y,n) € SY, which defines

1

the stable symbol class [0

B] of tﬁe }amily . B. "

Since glueing by homotopic isomorphisms gives the same

classes in K-theory the lemmma is proveé. o

As usual in index theory we want to relate the

analytical index which is obtained globally, namely from

the space of "solutions", with the symbol class which

is obtained locally, namely froﬁ tﬁe “éoefficients“.df
the differential eqﬁations involved.. In the case of
one,éingle elliptic operator B over a closed manifoid Y
this relation is -given by the Atiyah-Singer indéx theorem

(c.f. [12])

a-index B t-index [dB]
where

[‘ker Bl - [coker B].€ K (point)

a-index B
and

~t-index : K(TY) - K(point) ==




the topological index given by an embedding j : Y 4‘@“,
the excision of a tubular neighborhood N of Jj(Y) and
the Bott periodicity K(TTRM = K (®R®™) < K(point).

In the langquage of characteristic classes this becomes:
t-indexlog] = (-1)" (o chlogl v T(¥)) V]

where it is supposed that Y is oriented, [Y] € H (Y)
the fundamental cycle of the orientation, n the dimension
of Y, T(Y) € H*(Y) the Todd class of Y, «ch the Chern

HEVeR (v.0) and o : HEVER(TY;Q) - H*(Y)

character K(TY) comp comp

the Thom isomorphiém.

More generally, a family B = {Bp}pEP of elliptic
operators parametrized by a compact space P has a

"topologlcal 1ndex in K (P) which is computed from .

the symbol class [0 ] by a homomorphism

B
t-index : K{P x TY) - K(P).

This is explained in [ 6].

Of course one has to make the appropriate changes
in the definition in order to get a meaningful topological

index for families of self-adjoint elliptic operators.

be a family of

1.17. DEFINITION. Let B = {Bp}pEP

self-adjoint elliptic operators over a closed manifold Y,
parametrized by a compact space P with stable symbol
Class.

r~ -1 1

[GB] € K (P x TY) ¢ K(8™ x P x TY).
Applying the topological index we get an element in
K(Sl x P) which lies in fact in K(Sl x P/P) iy K_l(P).

Hence we have a (stablcoe) |0pn10q1va1 index
R S




>

1.18. PROPOSITION. Let B = {B }

be a family

~ EP e e T g g

of self-adjoint elliptic operators over a closed manlfold
et e N N P R i R

NN £ T e et N T A S e

Y parametrlzed by a compact space P and let

P e T W N N \/‘-—’ T et i W"\/\. el

a-index B € K (P) be its analytical 1ndex (which is
. /\/\—"'\"\/’

ezt T e ‘_r"\M_Nv\_,.\

defined as in 1.7). Then we have

F 2 NGOG L NGV et T Mgt Moty

a-index B = t-index [gB].

PROOF. The proposition foLIows from the corresponding

index theorem for-families of elliptic operators

(cf. [6,£h.3.1])

by factorization.

1.19. THEOREM. Let {B_} .1 be' a family of self- ad101nt

e\ t t€S e e ™ et ot

elllptlc operators of flrst order over a closed Rlemannlan

P

manlfold Y parametrlzed by ,t € S1 - Then

SN LWL N

sf B = index B
~ . 1
wnere B = {-gp + B} is the elliptic operator on Y xS

naturallx assoc1ated to the famlly
PROOF. By corollary 1.13 "we have
sf B = (ch a-index B) [Sl],
where [Sl]'is the fundamental cycle of‘Sl in standard orienta-

-1,.1

tion and - a-index B € K ~ (S~ x Y) the analytical index of

B which equals its topological index by proposition 1.18,

" hence

sf B % -(ch t-index [EB])tSl];
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'Recall now the "double" character of [gB] ='[0§]

by lemma 1.16 and consider the corresponding diagram

- . , t-index -
k' 1st < 1y > k" 1sl)y  cn
A g -
b | ' . B
kst x R x Tv) = r(r(s! x y)) tTindex
The diagram is commutative (check the commutativify
. . d
for the family {-i i a}a ¢ Sl )
hence.
(ch t-index [EB}) [Sl] = t-index [cg]

which proves the theorem by the index theorem applied to -
the single operator B. O

- T T ' ) 1.20. COROLLARY. QQgg;\EQgAgssu/Eu/ons of the

M e N

proceeding theorem we get the followiggzzgggloglcal

P e N N N

formula for the spectral flow:
R I T i

P o N

st B = (-7

ISY ch[og] T(Y),

where dim Y = n-1.

T T aWal

We close this chapter by a series of examples.
Some of them were already mentioned earlier in some

proofs.

1.21. EXAMPLES. (a) Let H be a complex separable

Hilbert space and let P+, P_  be complementary projec-
tions, i.e. P+ + P_ = id with both having infinite
dimensional range. Then for any real a and e € image P_

the operator



' {é1k2nx}

P+ -P_ + a Pg

A

-belongs to"F*.Hére. Pe ’denotes the projection:of H

onto span{e}. The spectrum of P .-P_ +'ape consists
of thelessentiél.speqtrum {fl,'l} and the eigénvaluej
A =-1+a of multiplicity 1.’

- (b) The spectrum of the family -

B, = {p, - P_+ ZtPe}téi

is given by the graph ?\'
' AN

and hence .Sf:Bé’=.1." This'family was already considered

in the proof of'proposition 1.12. Taking pU.'instéad

‘of p_, ‘where U is a subspaceé of image (p_) of dimension

N we get the same graph and a specfral flbw'équal N by-

jmultiplicity argunient.

(c) Now consider the family B = {B_} .1l

_ t- te€s
= -4 P
of ordinary differential opérators over the circle ~Sl,

1

parametrized by t € S° = I/{0,1}. We have a spectral

4

decoméosition of H : = L2(Sl)_ by the system

1
/

xep ©f eigenfﬁnctions with corresponding eigen-

values {k#t} i.e. the spectrum of B is given by

k€EZ '
the féllowing graph




\ 4

fig. 4

and hence sf B = 1.

Note that the reduction

-%

B = B' : = (14B%)  o'B

. A .

leads to an operator B' € F, , which is in fact an
A .
element of F, and which can be deformed further

into the family by of (a) where P P_ are the

" projections onto span%éiZﬁkx} with k > 0 and

k € 0 and e is the constant function equal 1

(k=0). A further analysis of this example is given in
2.4 (a).

(d) Let ¥ be the bundle over the torus §% x st

which is obtained from the bundle I «x Sl x € Dby iden-

tifying
(1, %, z) -~ (0, x, e “%2) ¢ X € Sl, z € C.
Consider the operator
_ 9 _ .3
A = 5 i T + t
acting on the space
C*E ¥ {fec™(1xsT) | £(1,%) = e 12"¥ £(0,%) for all

xest = I/{0,1}}



RS
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Then we have

[o,] = [OB]'
where B is the family of ordinary differential
operators of (c) and hence by theorem 1.19 (see also’
example 5.2 (b))

index A = sf B =41.



2. Elliptic self-adjoint symbols and spectral projections.

Let B be an elliptic self-adjoint operator of
non-negative order acting on the smooth sections of
a Hermitian bundle E over a smooth Riémannian mani-

fold B. We are going to define an involution S
(i.e. S2 = id) on thé Hilbert space L2(Y;E) which

takes the form P - P_ where P P_  are complemen-

+I
tary érthogonal (pseudodifferential) projections

. k2 . _ _
(i.e. P+ = P+ = PlL ’ P+ + P_ = id, P+P_ =0 = P_P+).

It turns out that S is a self-adjoint elliptic operator
of order zero and its symbol gives the same class in

K1 (Ty) as the symbol of B.

2.1. DEFINITION. First we define the bounded operator

(of order zero)
A
-1
B:=(id+B2) ‘o0 B.

As noted in the remark after lemma 1.4 it has a discrete

spectrum of the form

2y

A 1+ A5%.
{ 5/ ) JEZ

where {Aj}jez

contained in the interval [-1,1], and only {il} may

are the eigenvalues of B. This set is

be points of the essential spectrum. Then we can find

and orthonormal basis {ej} of L2(Y;E) consisting

J€Z

=

Fh

Lo -
R

unctions of B (which are also the eigenfunctions

O

gen

)

A
B

O
th

It
>
®

Bej , J €2,



We denote with P+ the projections of L™ (Y;E)
onto the span{ei}j 2 o respectively. It is well
known from spectral theory (cf. e.g. [24, ITI. 6.5])

that P, have the integral representation'

. _/\. -
P, = m=J (B-NT"a

where (see figLS )

I'+ : ='{(l+e:)eit -1} , T_ : = {(l-e)eit‘—l}

and € " chosen so small that
: A
[e,0[ n spec(B) = @

v

P, are called the spectral projections of B.

2.2, LEMMA. Let B be an elliptic self-adjoint
h /\/\"\/-v\_/\_/\m/‘\.-/\

Nt

operator of _non- negatlve order. Then 1ts spectral

L el S I e St Ca SRR g

projections P
e N TN +

are pseudodifferential 1 _operators of
e N e N N T e

St e,

9£§SF zZero and their pr1n01pal symbols P, (y,n)

TN e TN et e

are

;Esﬁgrthogonal pgpjectlons onto _the dlrect sum of the

elgenspaces of the homomorphlsm



- 44 -

o, (B) (y,n) = E, » E,, YEY, .n€Sy,

corresponding to the positive A(resp.nnegatlve)

eigenvalues. Here o. (B) denotes the pr1nc1pal

L I i

S

R NP

symbol of B.

N e

The follow1ng equalltles hold:

A e i ™ s 0 TN e PO e

2

P,+P_ = id, (P, - P_)° =idq, -
. 2 . .
p, * p. = 1id, (p, - p.) = id,
A
P, — P = 0p(B).

PROOF. We start with the construction of
A
the resolvent of B - A for
A
A € C ~ spec(B).

In local coordlnates (U K) we have a well deflnud

full symbol

o(B - ) ~ ) G_j(B - )
j2o
where
A A
OO(B - ) = oL(B) - A
and N
A
o_j(B -A) = O_j(B) for j =21

By the standard formal procedure given e.g. in
[33,ch.1] or [35,ch.2] we construct a symbol of

the parametrix
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If f is a section of E with support in

U we write for y € U

, S ' A
Pf(y) = f ax f _e*¥" ply,n,N) £(n)an.
r, ® :

Since

- )
e gl § = N I AR

N

R
c flell 1
we can interchange the order of integration and we obtain

2mi

. . A .
(B, £) (y) = J _ e == [ o(y,n,A) ar} £(n) dn.
L) oo S L P d) ‘

+

Hence P, is a pseudodifferential operator and its full

symbol‘is given by the integral in {...}. More pre-

cisely,\the full symbol 3+ of P, is of the form

° 3

0.~

+

o

v

J
.mMhere

- ~ iy e = 1 ( | ‘
- i Q_J (Y;n) s = Pl IP D_J (Y;T\;M dﬂ-

+
It is standard that the g4j are-homogeneous of

order -j if the symbols oy (8 -2) are such.

The principal symbol of P, 1is given by
-1
- p,(y,n) = = E%T S (GL(ﬁ) - A) ax
+ r

, +
and it is obvious that it is a projection onto the suitable

subspace of L?(Y;E).
A
For the principal symbol 8 of B one finds

A : :
G = (OL(B)?)-% o o, (B).
)




So we have
32 = id and 3p = p+3.
From that we get

A .
c=p, -~ PpP_-. O

2.3. LEMMA. Let B be as above an elllptlc

e A e e e e e e T TN

self-adjoint operator of non-negative order. If the.

M/‘\/\_/\/\—/ e e et ™ e ™ et v e e i P N N e -

principal symbol p (or pP_ ) of its spectral pro;ec—
e e T + A

e ™ s et ™ e N P e et T

tion P+ (or P_) vanlshes then B 1s half bounded

e o aarm bt T N L SN

as operator in L2(Y;E).

NOTE. - For an operator B of order zero the
conclusion is in fact that the essential spectrum of
B lies on one half line of R only, i.e. B is
essentially positive (or essentially negative).
This is the case if and only if the principal symbol
of B 1is positive (or negative).

PROOF. Let the principal symbol P, of the
pseudodifferential operator P, vanish. Then P+
is a pseudodifferential operator of order -1 and
hence compact as operator in L2. As a projection
it has only the eigenvalues {0,1]. Since P is

+

compact the multiplicity of the eigenvalue 1 has

+An ha Find+An AncsAa 14+ miied hAawva £in
LA AL e B -& ‘-L e e ’ AN LA de A LLE A D A N A -

range. This proves that B has only a finite number
of positive eigenvalues and hence

<Bu,u> £ max A, <u,u>
j€Z
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for all u_€'L2(Y;E).;

If pP_ vanishés wé have simiiarily only

a finite number of negative eigenvalues and we get

<Bu,h> 2 min A, <u,u>. @
JEZ
-Lemmé 2.3 shows that pi provides a "measure"
for the épectral asymmetry of B) More.éenerally;
let _Ei denote the bundles over SY which‘consist
‘of the ranges of p_ énd ‘p_ ;Whaﬁks_happeniﬂg if
'the bundles E+ ~and E_ are pull backs from vector

bundles F,_, F_ over Y by the projection

mT: SY "Y,
E, : = imaéé p, = m*(F)¥
This is the case wheh'_pi' ére functions Qf
y € Y alone. Then the situation is.mo;e complicatéd
than in lemma 2.3. However We find
B = p,Bp, +p_Bp +(p;Bp + p_Bp.),
where the last term ' '
p, Bp_ + p_'Bp,
is'an operétor of order -1.

Hence'up to compact oéerétors'the‘operator B,
is fhen a direct sum of half-bounded (egsentia;ly
positive or essentially negativei operatofs

| (§IF+ 'b‘) © -

B ~ ) : C (Y;E) » C (Y;E)

v 0 - BIF
with E o' F,_ & F_ . ’



~So we see that ‘B is non-trivial from our _
topological point of view if p; .defines as its

image a vector bundle over- SY which is not a lifting

from Y. Then B has infinitely many eigenvalues on .

both sides of 0 and it can not be réduced to the
sum of half-bounded (essentially positive or eséentially

negative) operators.

NOTE. - 1In general the range bundle E+ of

P, is a vector bundle only over a connected component
of 8Y since the dimension of the range of p, may

change when we pass to another component.

We want now to give a topological formulation of

our results:

The bundle E, defines an element of the

group K (SY). Neglecting the above discussed topolo-

”gicaily trivial case we gét in fact an element of

the group
K (SY) /T*K (Y) = K L (Tv).
This last isomorphism can be derived (cf. [ 4, §3]

from the Gysin sequence
K* (TY) > K* (Y) = K*(BY)

G v
K* (SY)

and it follows that the element B[E+] is equal to

the stable symbol class defined in section 1.

This proves the following




2.4. PROPOSITION The stable symbol class
Ll g W NP

I R Pl

[G,1 € g1 (TY)

of an elliptic self- ad301nt operator B'vof_non-negative

e N N e M T T T N e N

order vanlshes 1f and only 1f the _operator decomposes

TN N T eu———

'1nto the sum of half -bounded (essentlally p031t1ve or

™ e e e ™ e ™ e e ”_,.‘\‘___‘V__’___’,\.““,\"‘,.r_

essentlally negatlve) operators ThlS 1s the case 1f

4 Nt Ty e et T T T Tl e e T e et e

et

the pr1nc1pal ﬂymbol p+ of the sEectral prolection
B - T

..... N

P, of B depends (modulo deformations within%the

class of 1dempotent symbols) only of y € Y.A If in

,,,,, - e

the contrary [GBJ + 0, then we. have

\\\\\
AR UL TR} L

dim image P, = ® . = dim image P_ .

2.5. EXAMPLES. (al“fLet'us consider again the
'operator ,
d o ] SR |
—l&':_c»(s ) - C (S ), . .
‘cf. above 1.21(d). It provides the simplest example

of an operator which is non-trivial from our point of
view.
The operator has

ijx}

Brey cw

as spectral decomposition. "The corresponding spectral.

projections'are constructed in [ 27,ch. XVI]. The symbol
5 : =
of 152 is ,
1 1

oly,m) =n, Yy €S , ne€s(s )y
Apparently we have

'S(sl),'—” s’ x s,
i.e. the cotangent sphere bundle consists of two .

connected components. It turns out that the bundle E,




_50_

is equal to the trivial line bundle over one copy of

- 8 and zero over the other:
I 1

E, o (s x €) v (s”

+ +. x {0}).

So it is not a true vectorvbundle and in any case
it is not a lifting from Sl; |
Now we have 7
klsh)y  zoeuw
since
k¥ (TsT) = k¥ (st x [-1,11/81 x {-1,1}) = kx5t x s1).

We want to construct the stable symbol!class of the

operatof ‘—i%; . Following the formulas of section 1
we define the suspenéion of the symbol of —i%;

cost + i n sint O0$t&w

g(y,ﬂ,t) 2 =

ett TSES T
4
Hence we find
E: = Sl « st o« [-1,1] x € o, st x st « [-1,1] x c.
gG(Y;ﬂ:’é)
t y n ‘ Sl x SSl
For n = -1 the suspension o (y, -1, t) has vanishing

degree, hence we have a trivial clutching at one end.

So we may assume

o(y, -1,t) = id.
However, for n = 1 we have
Sy, 1,8) = et

which proves that E is a non-trivial bundle over

ST™ x 8 x 8. The difference class

(8] - st x s x st x @]



is an element of K(Sl X Sl x'Sl) equal O for

t.= 0. So this gives an element of _K_l(sl x sl).

Moreover; we can describe also the Chern charactér
of this eleﬁenﬁ. For this we define é_doﬁnection on
E by the formulé'
| D(t, y, m) : = d+1(n) idt
where ;r is a smooth real function eqﬁal 1. near 1~
and equal 0 near =-1. (We choose su¢h an r in order
to évoid»singularities'aé the ends). Then we have

| ch(D) = L dr A dt,

2T s :
BE-{e) itvgives in- Hl(sl x Sl; R) an element defined by

N\

the form [drj.

(b). .The most importanﬁ exémple of a non—-trivial
self—adjoinf operétor is the EQEEQQEXJEEQEEEEE§VQR§;EEQE'
- It is.describedjin all details in [ 3, §41. We recall
only the definition’of |
| | B : QtY) > Q(Y)
where R(Y) is the graded algébra of all differential
forms on a (2k-1)fdimensiona1'manifold Y. One.defines

Bo : ' (—1)k+q+l

(e x d - dx)o
where =* is the Hodge oberatof"and @ is either a
2g-form (then we take ¢ - 1) or-a-(2q—1)-form
(then we take € = -1).
‘The operator B - préserves the'parity of ‘the forms
and commutes.with |
on 1T x o,

SO



B = Bevr ® ded

and BV is isomorphic to BOdd.

The operator —i%; from example 2.5(a)~ is in

ev . 1

fact the operator B on S.

It is proved in [ 4, §4] that the stable symbol

class [o. (B®Y)] of Be? is a generator of K—l(TY).

L

To stress the dependance alone of the principal symbol

we write here o (Bev)] instead of [o ] which
L Bev

was the notation used in section 1. More precisely,

K—l(TY) is a module over K(Y) and I[o (Bev)] is

L

a module generator after tensoring with the rationals.
A detailed discussion of these symbols is done

in [19] from a slightlydifferent point of view.




'3. A minimal classifying space for K-theory.

In the preceding sections we met ope}ators of
the form
s = P, - P_

where P+,P_ are projections on infinite dimensional
subspaces H  H_ of a Hilbert space H. The'remarkable fact

is that 'S belongs to thé topologically non-trivial compo-
A o A . ;

nent F, of the space F of self-adjoint Fredholm opera-

tors whereas 'P+ and P_, are each on its own topological—

ly uninteresting. From classical operator theory it's

‘elementary (cf. [Zilxlthat in fact each element in
,2* éan be written in such a Way or more'génefally as
the_difference bet&eeh two positive operators. Sihce \
by pro?ositioﬁ 1.2 -?*\ is'é'élaSSifying space for

the Functor K © -one can find a representation for

each.element.in X (P) by a family bf such elementafy
differences parametrized by the compact space P.

In 1.21(b) we have seen an'example for such a family
Qith non-vanishing spectral flow.

Now we want to“dévelop a theory of operators which

can be written as such differences or ?5 unitary

v

"perturbétions“ P+ - g P_' of such differences. This

leads us:out of .the category of self-adjoint Fredholm
opérators back to Fredholm operators with non-vanishing
“index and to  characterizing ~ a family. {Bt}tesl

of self-adjoint Fredholm operators parametrized by

t € Sl by one single Fredholm operator of the form



P, - g P_. This method of "desuspension" provides
an additional link between the geometry of ;* and
K-theory. The following'coﬁmuﬁative‘diagram illu-
minates the relation betweenh "desuspension" and the

technically less advanced method of "suspension".

which ié'given by the map

A
ez Fy = QF
of proposition 1.2:
éuspension TT2 (F)
A s 4
ﬂi(F*) , : Il-  periodicity
\->
desuspension To (F)

Before explaining this in detail (in §4 and with

- applications to partial differéential equations in~

§5 along the line indicated in 1.21(d)) we give now
a systematic treatment of the class of operators which

are candidates for the "desuspension”.

Let H be a complex separable Hilbert space with
complementary projections P and Q, 1i.e.
* 2 x 2 .
p=P =P, Q=0 =Q°, P+ 0Q=1id,

PQ = 0 = QP,

We assume that the images PH and QH are both
infinite dimensional. Let B(H), K(H) and GL(H)
denote the algebra of bounded operators on H,
the ideal of compact operators and the group of

invertible operators respectively.



.
Recall the characterization of the space F(H)
of Fredholm operators'by
B € F(H) o dim ker B < «
andvaim coker B < «

o 3 R € B(H) BR-id, RB-id € K(H),

The operator R is called a‘parametfixifor B.

From a topological point of view the space
F(H) is very interesting since it is, as mentioﬁed
above, a classifying space for‘the functorf K. |
‘Mqreover manyvinteger=valued invariants of topology,
differential geometfy.andﬂaigebraic geometry as the
Euler chéracteristic, £he Hi:zebruéh signature;
the‘afithmétric genus, sdmé fixed point numberé'can
be written down eXplicitly as the index-bf certain
elliptic differential operators canonically agsociéted
to the geometricvproblems (éee [12,'ch;III]). How-
éver, fof_many concrete,top¢logiqa1 calculatioﬁg the.
sp;ce F(H) 1is toé lafge and not compreﬁénsible.
It contains the group GL(H) which of coﬁfse ié_
nice for calculations but topologiéaliy uninteresting
bedause it is‘contractible b§ Kuiper{s theérem
(see | ler.é]). So, keeping in mind the above
representation of Fredholm operatorsvbyvthe
. invertibie elements in the Calkin algebra B(H)/K.(H)
one will .search a candidate for another representation
of the space. F (H) 'ampng the topological subgroups of

GL (H) .



- This leads us to a definition given by
Bojaréki [ 9] in the context of the analysis of
Cauchy data for elliptic partial differential equa-
tions which looks quite different from the problem
of studying K—theory and the g@ometry of Fredholm
operators. (The inherent relations between these

two contexts will be explained below in §5).

3.1. DEFINITION. Let P, O be complementary

projections onto a Hilbert spacé H. Then S : = P-Q
is an involution, i.e. 82 = Id with S = Id on PH
and S = -Id on QH. We define some spaces of

essentially S-commutative operators:
e e W NP MM/\WM

N g T

Bg : = {B€B(H | BS - SB € K(H)} ] e
and
GLg : = GL(H) n Bg.

From the definition it is clear that BS is
closed under addition and also under composition since
(BCS - SBC) - (BSC - BSC) € K(H)
if
Cs - sC, SB - BS € K(H).
Since P and. Q are orthogonal projections we
get further
B*S - SB* € K(H) if BS - SB € K(H).
Since the ideal K(H) 1is closed in B(H) it
follows that BS is complete and hence a C*-algebra.

It is obvious that GLS is a topological group.




T P et

3.2. LEMMA. For”each B € B "we have also

P e P NI N P e WY

commutativity with P and Q modulo compact operators,

AN~ e T N SR s,

o~

i.e.
Pa Ve s s

PB - BP , OB - BQO € K(H).

PROOF. We have

$B - BS. = (P-Q)B - B(P-Q)

(P-Q)B (P+Q) - (P+Q)B(P-Q)

2(PBQ - PBP)

2 (PBQ (P+Q) = (P+Q)QBP)

2(PB -.BP) and similarly.

2(BQ - B). ©

The follow1ng propos1tlon was observed already

" by Bogarskl (L.c.):

3;3;’PROPOSITION. Let P, Q, S he as_above.

- Then ‘we have for each g € GL

\/\-'\/\ S

Pg-Q. gP-Q, P-Qg, P-gQ € F(H) .

PROOF. We show e.g. that ‘P - Qg_l’is a parametrix

for P - gQ. In fact

(P - gQ) (P - Qg_l) - i@ = P-g Qg;l'—P -Q
and .
oY o0 = (e -1 f

gQg -0 = (gQ - Qg9)g € K(H).

Similarly one fiﬁds the parametrices for the other

operators. o
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Note that prbpositiOn 3.3 “doesn't remain true
for‘arbitrary g € GL(H). Take for g e.g. the
involution which interéhahges the images PH and
QH. Then the space
' . ker P-gQ = OH .

is of infinite dimension.

The kernel and cokernel of the Fredholm opera-

tors of proposition 3.3 are given by "twisting" the

complementary subspaces PH and PQ. by the auto-

morphism g. More precisely we have

3.4. LEMMA. For P, Q, S §§A§QQX§,§E§

g € GLS we have

PRSI W e

o “ker P-g0 = {u € H I Pu=g 0 ul
=~ {w € QHI g w € PH}
and -
coker P-gQ = {u € QH! g* u € PH},
hence
index P-gQ ='tr‘(gfng - P).

PROOF. The first equality is obvious.
The determination of coker P-gQ follows from

coker P-gQ = ker P-Qg*. o

NCTE. If gy 1is unitary one gets

coker P-gQ = {u € QH ! g_lu € PH}

{u€ PH | gu € QH}.




o

From propésition 3.3 and lemma 3.4 it follows

that GLS has an interesting topological structure:

3.5. THEOREM, Let P, Q be complementary projec-
WW\/\A

e N

tlons and S =P - Q as above. Then the topologlcal

T g s P IR B e I o U LN —— e

group GLS 1s homotoplcally equivalent to the space

et N TN /—M,,’\_/—-\ e e AT e T e e TNt TN TN e

F(H) of Fredholm operators in H (1n fact to
(L"\/\,,M\-,.,f\._/ R e e TN,

F(QH)) . In particular it is ‘a_classifying space

for the functor K.

PROOF. We consider the surjectioﬁ of Banach spaces
T : BS - AB(QH).
given by

TB i = QB Q.

For each g €-GLé ~ the operator Tqg  is a Fredholm
operatqr (on the space' QH) since Qg Q is a para-
metrix for Tg = QgQ.‘ Let

| T' : GLg - F(QH)
be the restriction’of T onto GL

t

S
T' is surjective, foo: Let F  be a Fredholm

operator on QH. We choose an isomorphism h of PQ®
ker F " onto PHe'coker F. Let D be the orthogonal
complement of ker F in OQH. ' Then

h & FID: PH ® ker'_F & D > PH ® coker F & image~F
defines an.isomorphism from H -onto 'H which commutes
with P - Q, hence |

‘h $vFI§ é GLS

and



T(h®FID) = F

More precisely, we get
-1

T “(F) N GLy = {hl h is an isomorphism of PH @ ker F
onto Ph @& .coker F}.
This last space is$ homeomorphic to GL(H). So we
know that
T' GLS -» F(QH)

is-a fibration with fibre GL(H).

We are now going to show that this is a principal
fibre bundle.
Recall the theorem of Bartle and Graves (see e.qg.
[ 7, p.861) which states that each surjective continuous

linear operator from one Fréchet space onto another

" Fréchet space possesses a right (not necessarily linear)
continuous inverse. Hence we have a continuous map

R : B(@QmIl - BS

such that
| TR = 1id | B(QH).
Now let g € GLS. Then Tg has a neiéhbourhood
U in F(QH) such that there exists a map
r : U -» GL

S
with the property

Tr = 1idlU.
Take c.g

rF : = g - R Tg + RF
if WTg - FIi is small.




This proves the existence of local sections and

hence that T' : GLS -» F(QH) is-a prihcipal fibre

'rbundlé with the long exact homotopy sequence (see e;g.
(34, §171) . . o
-.*‘ﬂj(QL(H)) - ﬂj(QLS) - ﬂj(F(QH)) *Vﬂj_;(GL(H)) 2.
'Since tﬁé fibfe GL(H). is,cbntfactible by Kuiper's
theorem we obtain that £he ?rojection T' 1is:a week .
'Ahoﬁotopy éqgivalence and SO by;lemma 1.3 a hombtopy

.equivalence. O

3.6. COROLLARY. The homotopy groups of GL. . are
D T i e et .

5 ~=

m.(GL,) =4 - . for .
ER 0 7 j oad .

o { v/ j even
. PROOF. By the prece _ding theorem thié ié‘an immediate
éon;equehde of the wéil known fact (Atiyah-Janich and
Bott‘isomorphy) that
z o j even
ENG = k(s = k@) = {  for .

0 " 4 odd

3.7. EXAMPLE. Let H be a complex separablé Hilbert

space with an'orthQnormal basis {e 1} © and let

| _ 'k e m
P be the projection onto the space Qenerated by

ey}, and Q the complementary projection. Le£ g
k’'k >0 .

be the shift operator defined by

A S T




Then P - gQ 1is a Fredholm operator with

index. P - g0 = 1,
since
— ’ ek
(P - gQ)(ek): = if
' ®k+1
hence
ker Pg - Q = span{e0 +»e~l}

and

< 0

coker Pg - Q = {0}.




4. Spectral flow as the index of a single operator.

Let Y be a closed smooth Riemannian manifold and
E a smooth Hermitian vector buhdle over Y. ALet, |
| '{Bt}t c 1 bea smooth family of elliptic self-adjoint
B _ operators @f non-negative order acting on sections
of E. We make the followiné assumptions:

T | (I) All B, have the same prihcipalrsymboi G .

t o

(IT) Tﬁere exists a unitary automorphism g of the
bundle 'E (g induces the identity in the basis Y) such

that.

wherelv ' _
| (ggi(y) : é,g(y)(u(Y)),’u € c'E, y €Y,
defines g ze:o order operqﬁor which will be dénoted with
" the saﬁg letter g. ‘
Our aim 'is to construct one single elliptic : o
'pseudodifferential'operator on Y which depends iny
on Bo and ‘g and which gives the same topological
‘information (in its index) as the family {Bt}t.e I
(in its spectral £1low).
Firsf:we Qant to comment upon the assumptioﬂs
made above. Note that the space: ﬁzmo of all elliptic
self-adjoint operétors of.theAsaﬁe orger aétin§ on
sections of a fixed Hermitian bundle and having the same
principal symbol 30 is convex. This is an important
A

difference to the case of the space F of all self-

‘ adjoint Fredholm'operatorshwhich has the topological_
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: A
non-trivial connected component F, as seen above
‘ ’ ‘ : A
in § 1. Hence every true periodic family in EQQO

, o
could be deformed in the constant family. In order

to get a topologically meaningful Family it is
necessary to admit that 'Bl is different from BO'

Assumption (II) then admits to reconnect B, with

1
A
By = B, in the whole space F via
B -=g'lBg t € [0,1]
t+1 t VR ’
where {gt}tEI is a retraction of g =g_ to

id. = g; in the contractible group U(LZE) of all.
unitary operators on the Hilbert space L2E of square
Lebesgue integrable sections of E. Of course, it

is not granted that one can choose a retraction of the
‘operator g "to the identity within the subgroup of
invertible pseudodifferential operators or even in

the groué of automorphisms of the wvector bundle E.

In general the path { } will leave the convex

B
A t+1 teT

space EQZO . This explains why we can get a topological
o
non-trivial family by connecting Bo and Bl' It is

obvious that the spectral flow of the family {th}tEI
depends only on the first half of the path. Clearly

the choice of the retraction {gt} doesn't inflict on the
spectrum and hence has no influence at all on the

spectral flow. The situation may be illustrated by

the following picture: (For a more general discussion of
the geometry of ? compare [18] where it is shown that
in fact a certain subspace of involutions can serve as

classifying space for K_l):




Moreover it turns,out‘that the'spebtfal flow

il

of a smooth family of eliiptic self—adjoiﬂt opératbré

dépeﬂds only on the loé%ﬁion of the start and end |

Qperatéré B, and Bla 'So we can without lossnof.

| generality assﬁme Fhat éll'operétofs_bétwéen B, and

' -Bi have the same_principal'éfmbol'(assumption (I));
Finall§ it should be noticed thét we meet in our

ﬁain application, the general linear conjugation problem

(see §5), 6nly such familigs‘which)satisfy the assump-

tions (I) and (II).

We are going: to prove the following

4.1. THEOREM. Let {B .} be a smooth family of

t (e e W

g&l&gtic self:;@jbj:pt_opgJgatj__g_rggv;gﬁm;_nQn-jneggtiAveypr'der~

P R e )

a closed\mqp;ﬁg}d Y and having the same principal

PV NPT S T -

SX@?Ql.,GO'.Pet' g be‘an automorphism of E - such that



- 1
BI’ = g BO .
Let .{e-} be a spectral decomposition of the
N~ ]EZ. PRSP 2 on O His

Hilbert space ‘L2(Y;E), i.e. an orthonormal ba51s~

N M/\— L N T it
of L (Y) consisting of eigenfunctions e, of B,:
P ey I T T T e B R J 0

B, e, = Aj e..
0 3%

Let P, be the projections onto the subspaces
span {e. | X.'>,O}
J J ,
and
SN,

span {e. | A. < 0}.
pan {e, 3

Then P+ - gP_ -is an elliptic pseudodifferential

— - L e = e

operator of order zero over Y and we have

N T e N e TS et TNt et Sean P A i TN S o

sf {Bt}tEI = index P_ -gP_

PROOF. For simplicity we consider only families

of order zero: If {Bt}t€I is a family of order m
then the family ~
' . = : 2 —1/2
Bilier == {(ia + BY) 0B} 1

has the same spectral flow and the same principal symbol

over the cotangent sphere bundle SY as {Bt}t€I°

The operators P, were discussed in §2.

We assume that

dim image P, = ©o = dim image P_
because otherwise [gB ] = 0 by lemma 2.2, hence
o
both
sf (B ey = 0

and obviously index P, - gP_ = 0
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Now we set.

S: = P - P_

We show that the family {Bt}téI can .be deformed -
into the family ‘

'{Bt}teI- : = {(1-t)S + t(g Sg)}tEI
without changing the spectral flow.
, A . ' o .
Since EQQOO 1s convex we may assume that iBt}tEI,

has already the form

B, =. (1-t)By + tB; ', . t E‘I.
Note that the retraction of the orlglnal path {Bt}tEI
,onto the stralght line connectlng B -and B doesn't

O 1
change the spectral flow since it ‘is a homotopy 1nvar1ant
by prop051tlon 1.12. '
By lemma 2.2 we‘get for the principal symbol of S

o °s T GBo - %o )
hence the operator S belongs to the same convex space
A , ,

ERQOO . Let {QS}SEI' be the straight line connecting.
. Co ;= By with - C, : = s. Then the "parallel move"
o -1,
-.cs’t : = (1 t)cS + t(g Cq g) , s, t € Il
. defines a homotopy between the family {Bt}t€I (and its
w3 : : " ‘ : — -1 ’
invisible" closing {Bt+l}’ = {gt B, 9% }) and the
family {Bt}tEI (and ito invisible" closing
Byt = .{gt, S g.h.
Thus we have
sf {B, ¥ = sf {B }

t ter . t tEI



Since §O and §l have the same principal

éymbol there difference is an operator of order -1

and hence it is compact. This proves that-

H

g € GLS ’ '

i.e. Sg = gS € K(L°(Y;E)), since

§l - ﬁo = g_ng - s - g-l(Sg - gs).
So we can apply lemma 3.4 and we get for S
H = L2(Y;E)
index P -.gP_ = dim {w € P_H | gQE P H}

-dim {w € P,H | gw€ P_H}.

We determine the discrete spectrum of

& -1
B, = (1-t)s + t g "Sg

hy {-i, 1, 1-2t, 2t-1} from the elementary calculation

(* v v€P+H and gveP_ H
-V v€EP_H and gveP_H
Btv = if
‘(l-2t)v v€P+H and gve€P_H
(2t-1)v veP_H and gveP H

This gives the following graph of the spectrum of the
A

) ~ i
- family {Bt} 7 <
“
/ 2¢-71
fia. 7 . \\u/,
g t 7t
/-2t
“p
~7
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where U %

0’ 1
2t-1 and 1-2t with multiplicity mo'and ml, hence

are parametrizing the eigenvalues

sf {Bt}: =" my - my.

As 'seen above we have

dim ker(P+ -gP_)

‘my, = dim {vep_Hlgvep H}

~and

m = dim {v€P+HIgV€P_H}_

dim cokeg(P+_-gP;)
which proves the theorem. ©

4.2. EXAMPLE. Recall the example given in 1.21.(c)

consisting of the family

e
Bilier =171 g% * tleer

of ordinary differential operators acting on c® (st

‘with Sl =~ R/2ﬂZ. For uA€ACm(Sl). we have

| y = -3 Su o
?l(u)(g) = i g% + u
_ o mix d o dix oy
= ~ie i ( u) (x)
= (™ B e wx ,
O .
hence o - .
_ : [
_ -1
By =9 By 9
"where - :
1. -
g S - GL(C,1)
with .
g(xf ;= et %,

For B_ we find the spectral projections
’ ikx,

.P : = projection tho span{e K30 -
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_ e ikx
2 » = projection onto span{e™ "} _ o
{elkx}

since XK €2 a;e the eigenfunctions of Bo'

Since multiplication with g defines the
(positive) shift operator on L2(Sl) with respect to
the chosen Qrthonormal basis we are back in the

situation of example 3.7 and we obtain

ker(P+ - gP_) = {c(e'—ix +1) ' c € } )
and
~coker(P, - g P} = {0},
hence |
index (P —Vg P ) =1
in concordance with sf{B .} = 1.

Now We‘exéiéiﬂ‘é éééblogicéimfégﬁulé_foér;he inde#l
of the operator P+ - g P_. Its principal symbol o
on the cotangent sphere bundle SY is given by = -g p_
or in matrix form

rid 0

9]
I
=
2
3]

- E+(BE_,
0 g ,

where E, ® E_ 1is the decomposition of the bundle

T™*E , 7 : SY - Y, defined in section 2. This gives

BY Y. BY.
SY

(cf. [4, §61) a bundle

Yv .
L+ e

. = * *
)E : Ty (B) Ua T (E),

hence




(81 = tIe) - [rrpu(®)1,

where Tay and nzY are_theicorresponding projections:

onto Y and [3] denotes the symbol class .of thel

elliptic O-order oberétorx-P+ - gP_ which belongs to

R(TY) . = K(BY/SY) = K(JY~BY). .
: ';‘-' We want tcﬁdetermiﬁe the Chern character of this

1 -BY

" We are‘going to modify D1 such that 1t becomes sultable

- . element. So, let. D be ra connectlon on _w*  (E) .

+ for our calculations.

_First.we'chOOSe a connection Dz".on ﬁ*SY(E) of

- the form '

- D, = D, & D_ R
where “D+L‘is a connection on E, , and we join"DllSYA'

(moré precisely the pdil-back of 7D1 under the,embedding

¢ (B) = %, '(E))l with D.

, by the family

D) Jeep ¢ = {A-r(t)) D

1,t7tex + (e D 2heer

1
ﬁ”with'a smoothiﬁg fﬁnction"r.
Now we are able to construct a. suitable connectlon '

_on the one part of ZE lylng over one copy of BY

3

. o _(whlch we will denote by BY+). We put for n €.BY+
b, < L
' C 1 .
D4-: = .Dl(4!nl-2. .fcr  .§.. < inl & 3/4
D, - - 3/4 < inl g1

_— - On the other copy we must perfcrm one more modification.:

- We take the famiiy

>
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(b, )+ = {(-r() D, + r()(D, 8 go0D_og )
and define oﬁ ﬂ*BY (E) a connection D4' for
n € BY_. by )
( D1 . Int <« 1/2
Dy + = Dy,ainy-2 for 1/2 s Inl s 3/4
P3 41n1-3 3/4 < In) g1

Since these constructions are consistent with the iden-
e . .. . . )
tifications defining }E, the pair (D3, D4) defines™

a connection D on JE. On W*ZY(E) we fix the connec-

~s

tion D equal D over each copy of BY.

3 .
From the chosen form of D and % we can conclude

immediately

4.3, LEMMA. The Chern character
[ e N P gt

ch([]8) - Lty (@] = cn(®) - on®)

ig\g}ven by a form which vanishes outside of

—~—— B s Ve N

E_{ {nl n € BY, and 3/4 g Inl < 1}.

4.4. COROLLARY. Let P, be the spectr l,ErOJecttons

Ogﬂia,elllptlc self- adl/&pt Qperator of non- negatlve order

R, e Ny L

actlng on sectlons of a Hermltlan bundle E over a closed

~ -
A T e ™

Riemannian (n-1l)-manifold Y with characteristic bundle E_
e T e I N N e e e BN b

%) One has to reverse the sign of the normal derivative

on the second copy of the disc bundle when one glues
the two connections D3, Dg together. However,
this doesn't inflict wh tne whuern character.
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- of the operator P, -~ gP_. :
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aed let g be an automorphism of E. Then ¢
W [t :
S index P, - gP_ = '(-l)n [ chlE_,; 9] "*SY T(Y),

: \ » . ! SY A
where T(Y) the Todd class 0of Y and [E ,g] the diffe-
AN PN e N e - AN -

ence buné}g}ig K—l(SY)-.@Qf;gsg\gy\ﬁhe~natural identi-~

g et e Tl o W N TR g N

S T s e N N

fications (as in the note after definition 1.7) .
Y .'3’.,'”\~/\N\/-‘\_/\~_/WW

PROOF. After elementary ‘calculations we obtain
; _ :

‘.the following formula for the Chern character of the

symbol,claSs ,
[61 = [JE). - [r*gy (B) ]
: \
ch[8] =3 —t ey L a-r (0¥ ! ar A trw?*t

’ k=1 (2mi) k! L
+re) ¥ (e ¥ tr(w

)
2k)}

where _w'= g_ldg.

. By the preceding lemma these cohomology blaéses

- have compact support contained in ([3/4, 11 x sy,

hence dhh([éj) defines an element in 'Hodd(SY}R), in fact
{ . .

ch([81) = chlE_:gl.

It folloWs by the Atiyah-Singer index theorem

index P, - gP_ - (-1) [ chib] n*zY(T(Y))
: ‘ VY
= (-1)" . chl8] Mgy (TN
[3/4,11x8Y

(-1)" qu chiE_;g] m*o (T(¥)). o



5. The general linear conjugation problem.

Now we turn back to the situation described in
the introduction where we have a smooth ménifold X and
a smpothlsubﬁanifoldf Y which dividés X into two

parts X X _. We consider an operator

+I
Q0 [o0] .

A : C (X3E) -» C (X,;®m)
acting between sections of smooth vector bundles E and
F over X which splits neaf Y, i.e. which has over
a tubular neighborhood N of Y in X the form

. _
o (g +
pelst B)

where

p : E|IY » FIY

is a fixed bundle isomorphism and

B : C”(Y;EIY) - C (Y;EIY)
is a self-adjoint elliptic operator. (We fix a
Riemannian structure on Y and a Hermitian structure
on E and F which provide the means for the necessary
"parallel transport" of the tangent vectors and sections

over N).

5.1. DEFINITION. Let

g : EIY - E!Y

be an unitary automorphism of E|Y (inducing the

identity in the bhase space Y, i.e. mapping Ey onto
Ey for each y € Y) such that
g oag_ o g-l = 0o, (5.1)
B B

where Og denotes the pricipal symbol of B.
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' Then we have
gp 0 04 = op © 9g ‘ (5.2)
.wWwhere | .
: = and : = -1
9g = 9 9p P =P gop
the cofresponding automorphism_dn FiY.
We define the glued vector. bundles
E9 : = EIX_ v_EIX, and F9 : = FIX_ v_ FIX,.
’ s o9 T o e
Then the principal symbol Oa ' of A gives us a
new symbol , ‘
0, 9: m &%) > w9,
by |
0,9 (x,8)v i = o,(x,E)v; X€X,EE€T_X,veEd = E_.
A' r . A ’ 14 [4 ,xl .x' x
Here '
To: SX - X
denotes the canonical‘projection. Note that 'oAg . has
the same values as o, but it operates'on another bundle.

A
Now we take any operator A9 with the principal

g

- symbol O

and investigate the value of thé difference
u(g,A) : = index A9 - index a.

We call this The General Linear Conjugation Problem.
N\MVW\AAMWNM

*NOTE. - 1In our situation we can define a9 directly
by , ' : ' A X N N_
a9 . = on
plgg * Bt) N_

where
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and o ,
B, : = r(t) g 1Bg +(l-r(e)) B

with a smooth real function  r equal i near
i€ {o0,1}.

This problem was formulated by B. Bojarski in
lectures given (since 1976) in Bielefeld, Darmstadt, and
Tbilisi (cf.[9 1 and [10]. 1Its name is due to the strong
interconnections between this problem and the Classical
Riemann-Hilbert Problem which however might be more
subtle from the arnalytical voint of view since it deals
with conjugated pairs of "local" solutions on the both
halves (and hence with "serious" singularities over Y,
cf.[32]) whereas our General Linear Conjugation Problem
deals with "truely global" solutions of A9 though not
of A.

5.2. EXAMPLES. (a) The Classical Riemann-Hilbert

Problem. - ©Let X be the two-sphere
X ’.,.=_,_‘5.‘2f Coleb _
N vy : =8t ,
hence
X, = {z1 lz1 21}
Let g:Y -» €~ {0} bea C -map.

We are looking for functions ¢ on X~\Y such that

(1) 2= 0o on int(x,) ,

(I1) ¢, () =0,

(I1I) ¢,(z) : = 1lim ¢ (z,) exists for each 2z € Y
zZ, -z B

where 1z, denotes a sequence of points in

int(X,) approaching =z and ¢i belongs to
r?sh

(IV) 6,.(z) = gf(z) ¢_(z) for almost all =z € Y.
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This classical problem was posed by Hilbert

(in modified form already by Riemann) and sub-

sequenfly solved in whole generality by F.Noetner,

Vekua, Bojarski et al. (cf. [261).
The crucial step in all approaches to this problem is the
analysis, near the dividing contour Y, actually the reduc-

tion of the (differential) conjugation problem in two di-

mensions to an (integro-differential) problem over the con-

'tour Y, i. e. 1n one dlmen51on. In our simplest case one has.

‘ 'to c0nsider the spaces H,Z of the functions on. Y which

can appear as limits of functions holoﬁorphic in the outor‘

(inner) region. One gets (see also [30, §11).
' Kk

{ ) akzk} and H_ = { ] akz )
k2o k<o , _ ‘
and it turns out that the solutions ¢ are ih one-one
correspondenoe with the limit functions ‘
¢, €H, N gH_. -
Let
, deg g > o.
: 5 1. :
Then H, & gH_ span the whole L7 (S7) and

dim H, N g H = deg g.

Bojarski's starting point was the goal to understand
better the relations between the different,intéger
valued invariants and indices involved.

: o
(b) The"Heat Egquation'"on the Torus. -

. Now let X be the torus T? ‘which is parametrized as

T x sl/{o,l} x st
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2T

fig. 8

let

Y = {(0,x)} = st

and let E be the trivial complex line bundle over
T2. Let g be the automorphism of EIlY given by

g(x) : = et¥ ' X € Sl.

Then the bundle EY is defined by

B9 = 1 x ST x €/~ with (1,x,2)~(0,x,e T%z),
hence ,
(1289 = (£ e c”(Ixsh) | £(1,x) = e I¥ £(0,x) ).

T T 7T TT(YT dBesa't divide X into two parts. However, this
doesn't make principal problems for our theory since

the normal bundle of Y in X is trivial).

Let us analyze the situation of example 1.21 (d) further:

3 _ ;0
ot X

where r(t) 1is again a smoothing function equal i

a9 = +r) ey - c(r?:e9),

near i€{0,1} and

.- 9 _.9 ., @2 o 2
A : = NT lax : C (T7) » C (T7).

Over the whole of T2 the operator A splits into

3 .
'é—t- + B with

Obviously we have
index A = 0

and we derived earlier by theorem 1.19
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index A9 = sf{Bt} = 1,
where '
. . t
= _;9_
Bt : = isx + r(t) .

Then the spaces

H {eikx}

t,: span X Q )

ANV

n2gor « sh

consist of those elements in L2(Y).

which can be extended to bounded solutions ﬁ+ of
the equation
ou, ou,

5t - 3%

= 0
over the cylinder (R, x §'. 1In fact, one has a natural
.separation of variables, hence >

o -kt _ikx

u, (t,x) = z a, e e ¥,
>
k<o

Note that the spaée H coincides with the Space of

+

.eigenfunctions with non—hegative (negatiVe)”eigenvalues.
The kernel of the glued opefétor A9 is characteri-

zed again by those elements in- L2(Y)_ which belong to

H+ and to

gH_ = H_‘® constants ,

hence

dim ker a7

dim(H+ngH_) =1
Similarily, the range of AY is characterized by
H, ® g H = 1°(sh),
hence

diﬁ coker Ag'= 0.




Actually we find for the formal adjoint operator

(a9)*
: -1

ker (A9) * =~ ker a9 = H, N g_lH_ = {0},
hence onée more |

dim coker A9 = Q
and

index A% = index aY - index A = 1.

(cj The Signature Operator ovef S2m with

Coefficients in an Auxiliary Bundle. - Recall the

definition of the generalized signature operator DV

of a Hermitian bundle Vv "over a closed oriented
Riemannian manifold X of dimension 2m (cf [12, III.4.D]

or [27, 1Iv.9]):

. . et T
: = + ax :

-+
where - denote the *1-eigenspaces of the involution

iP(p—l)+m . QP S Qg , p 30,

Py
QS : = c(x; AP(TX) ® V)
d, (ugv) : = duv + P uaAvww, uwueaP, vecxwvm

and Vv the connection of V. If V is the trivial
complex line bundle we are back in the situation of
just the standard signature operator

' +

DX : QX - QX

and we obtain for the principal symbols

OD = 0, ® ldV
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Let Y bea closed submanifold dividing X into
X, and X_ . We supposé'thap the bundle V is
obtained by clutching the trivial bundles over the

two compbnenté.by a map

g:Y - UM,

i.e.
‘ Vex x@u X xF
+ g -
aﬁd SO
. .
- g
= A
o Py
where
A:= D y = Dx @ id = NDy.

Since the signature operator splits near Y
(c£.['3, p.63D%) \ o

. 'PX = pe° (3x+ Bo) :
‘where  Bo " is the boundary sigﬁature operator of examplé‘

2.5(b), we have the .following integers to look at:

(1) index A = N x index Dy = N - sign (X)

(2) index AY = index DV_

(3) . sf{Bt} index P_ - g P_

where '{B,} is a family of self-adjoint elliptic.

tel
operators connecting 'Bo and g_lBog and P, the

spectral projections of Bo'

x) : S . . :
1f we choose such a Riemannian metric on X which
is the product metric on Y x I = NW.
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From the definition .it follows

index Ag - index A

U (gIA)

= ‘index {%E + Bt} (operator on Y «x st

= sf{Bt} (by theorem 1.19)

= index P, -9 P (by theorem 4.1)

= [ chlE_;glT(Y) (by carsllary 4.4)
SY :

where E_  the characterstic bundle of B_, i.e. the

range bundle of the principal symbol of P_.

A simple exercise in K-theory shows

[E_;g] = [Gg 1 (¥ x cV; g
O

where the multiplication operates in

K_l(TY) R K_l(TY) > K(TY) = K—l(SY),

hence

u(g,a) = J ch(T, 1 ch [Y x cV;9] T(y)
sy o

Now let X be the 2m-sphere with the (2m-1)-sphere

Y dividing X into two discs X Then we have to

+°

evaluate the cup product

ch[G, 1 chlY x cN:gl T(v)

0 2m-1
on the fundamental cycle [TS™ ]

Since ‘
TS2m—1 N S2m-—l . Rzm—l
we get
-1 2m-1
K “(Tts™ 7)) = Z ®7.

Let o be a generator of the first component and

vy of the second. It was shown in [27, XV.7] that




Moreover we‘have' | -
T¥) =1
~apd
v x ;9] = ky
 if‘ k' is the.generalizéd‘"winding number" of g, i.e.
gl =k x |
~where x ié-;he geherator of

2m-1

sufficiently large. Since the Chern character maps

(o)), N

generators of the K-groups into generatofS'of the
cohomology we get in this example .
o wigm) = k2™
in concordance with- .
sign(SZm) % 0
. and- | _
| index D, = 2™t

as.shown in [27, xv.71.

‘ After‘these examg;es one should expéct that the
differegce: . J | - -
u(g,A) = index a9 - index:A
depends only on the principal s?mbol of B and on
the automorphism g, i.e. only on objecfé living on f.\
This.is thé case. However,'ﬁefore we prdvé our fofmula
for u(g,A) wé define one further concept which ;s

useful for our considerations.
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5.3. DEFINITION. Let Z be a Banach space and

H H closed subspaces of Z. We call (Hl'Hz)

1" 72
a Predholm pair of subspages of 2 if Hy + H, is
closed and

dim Hl n H2 <

and

dim (Z/Hl + Hz) < o

Then the index of the pair is defined by
A AN 7 .

index(Hl,Hz) : = dim HlﬂH2 - dlm(Z/Hl + H2).

This notion was introduced by Kato [ ,Iv.4.1]
in an éttempt to extend the stability pfoperties of
Fredholm operators from the‘case.of bounded operators
to the case of closed unbounded ones;
- There are many examples of Fredholm pa..u:s Of course
any Fredhoim operator
A :H -» H'

defines a Fredholm pair of subspaces Hl’HZ of HxH' by

Hy : = H x {0} and H, : = graph(a)

‘and one has

index A = 1index (Hl'HZ)'

Another example is provided by the trivial Fredholm pair
of eigenspaces

(image P+(B), image P_(B))
where Pi(B) are the spectral projections of an elliptic
self-adjoint operator B as in §2.

We will now describe a more important example:
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5.4. DEFINITION. Let A be an elliptic first

order operator over a closed manifold X which is

divided by Y into two parts. We define the

spaces of Cauchy data by

H, (A) : f‘{utry lu, €C (X,,EIX,)
and Au, = 0 on X,}
NOTE. - There exist naturally defined projec-

tions P, (A) of »Cw(Y; ElY) onto the .spaces H, (A)

which are pseudodifferential operators of O-th ordef.

Unfortunately, the proof of this fact is 1ong and

contains many technlcal dlfflcultles, Cf.[lS], K

[22, ch.II],[27, ch.XVII] -and [301.» In.aArecent paper

[ 8] Birman and Solomyak announced a new simpler proof

of these facts. But the details are not yet published;
It thfns;out that the principal symbols of the -

"Calderon projections™ Pi(A) are equal to p,.

the princibal.symnols of the spectral prdjections

ot

B self—adjoint. Hence the two; kinds of projections

P,(B), if A splits near Yy into <- + B with
differ only by'a compact operator. .

Bojafski'[ 9] noticed the following /

5.5. LEMMA. Let A be an elliptic first order

/V\‘-/\‘> P N N e e P
‘differential operator over a closed manifold X acting
P S N D e e N N, Lananeangn V0 W

on sections of a bundle E and let Y be a submanifold -
B N et P P L o W

.dividing X into two parts. Then the spaces of Cauchy

P N '\,.—‘\.,./ Vo £t T o W g 5 P WW S e o
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data H,(A) are Fredholm pairs of subspaces of
P - _ e T e i R T, W)

L2 (v; EIY).

PROOF. We consider the éllipticfoperator‘of

0-th order P, _(A) - P_(A). Since

o (p,(a) - B_(a))% = id
we get
index(P,(A) - P_(A)) = O.

Actually it suffices to know that the operator
P, (A) - P_(A) 1is elliptic, hence
dim ker (P+(A) - P_(Aa)) < =.
Then we obtain
dim H_(A) N H_(A) < o
and
dim(Lz(Y; EIY) / H (A) + H_(A)! < =
since
ker(P, () - P_(B)) = {f € C"(Y;E) | P,f = P_£f} v
{f € Cw(Y;E) { £ is orthogonal
to the space H, (A) + H_(A) in

LZ(Y; ElY)}. o
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EQEE; - A naturel and still'unsolved preblem by
Bojarski is whether'the two ‘indices o |
index A - and index(H+(A5, H_(A))
'ceincide. 'Recali that the unique continuatien pro—
' peity (UCP) holds for an elllptlc dlfferentlal
bpetator A if- there are no non~tr1v1al functlons
in the kernel of A w1th support contalned in a
true subset of X._ Many sufflclent condltlons for._A
' UCP are known, e.g. (cf. [11]) |
(a) dim X =1 (L'ip'schiti) ,
z(b)‘ real coeffieients and'order.of A .equal'2'and
,fibre-aimension of E equai 1 (Arbnszajn.and‘
.Cordesi; | o
(c) ‘analytie.eoeffieients (Hoimgren),"
o (d) no multlple characterlstlcs,.i e.‘nO'nultiple
n roots T E_C' of the pr1nc1pal symbol
OA(#, v + fw) for X € X and v, W E Ty X
 (Carleman), .
(e) A=2a. 0A modulo dlfferentlal opetators of

1 2

lower order, where the order of Al and A2

is equal 2 and the_flbre ‘dimension equal 1
(Mizohata) ,
(f) A = A@%l'o L; modulo differential operators of
_ dtder [3@/2] "where 'L is;of.otder .2 (Prottef).

If uUcCe holds for A we have

ker A = H (A) N H_(a).

' However, a famous counterexample by P1li§ [29]




shows that UCP doesn't hold for all elliptic

‘differential operators.

5.6. DEFINITION. We define the PRis spaées

ker, A : = {u € ker A | supp u < X, }

and the P1lis defect

li(A) s = dim.kertA.

From the definition it follows

dim ker A = ¢, (A) + dim H%(A)OH_(A) + 2 _(A)

hence
| index A = (L, (A) + dim H_(A)NH_(A) + 2_(2))
- (L, (A%) + aim H, (A¥)NH_(A*) + &_(A%)).
Now, if — T - - - -
L, (%) = ¢, (a)
and if

(B, (A) + H_(A)" = H_(a%) n H_(a%),
we can conclude
index A = index(H+(A), H_(A)).
However, it is by no means clear under which circumstances

UCP for A implies UCP for a* , cf. [11].

Nev ertheless we can use the Fredholm pair formalism
to investigate the invariant u(g,A). Without loss
of generality we may suppose that the collar neighbourhood
N of Y in X could be chosen in such a way that
NNsuppu = &

for all u € ker _a y ker 1¥* .
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jSincef'Ag  is obtéiﬁed from A only by deformation .
over 'N_ Qe can sﬁOw |
index A9 - index A = {aiﬁ-H+(A)nH_(Ag)
- dim H, (A)NH_(A)} - {dim.H+(A*?OH_(Ag*)
:;_dim.H+(A*)hH;(A*)} o
| andlﬁé obtain | | .
ug,m) = index(H, (A%, H_(A%) - index(H, (A),H_(a)).
.Sinceuj | | ‘ | |
i, %) = H_(a) )
one‘couldvbbtain‘under the assumptiOn
'_H_(Ag)'=ﬂgH;(Ai o o RERE
(for which we have no plan nor idea of prooffA

the nice formula

ulg,A) = tr(g P_(A) -'P_(A)q)

index (P, (A). - g P_(A))

ihdex(g+(B) - g é_(B)).

In thevfolloging.Wé.ppqve directly thé last.fofmula
sincé'the'concept éfiCaldefon'projectiOns is-hotfas'
eleméntary as the spectral projectionéland'since nqt
‘yetiall‘§£eps in tﬁe preceding argumentation. could
be.completely clarified. Morébvér, the final formulé
for u(g;A). is sufficient for all applications givén

t

in this paper.



~ 5.7. THEOREM. Let -A be a-first Ord?f\fl&iEEif

—~——— N ,\/\‘/\/\_A\_/\,

.operator actlng\between sectlons of Hermitian vector

P N S T e O e TRt N LD e B gy e Ty ¥ By e T g PPy

bundles E, F -over “a closed Riemannian manifold X

F e Sy -*‘\_/WM«"\--"\ R Tl WL N

whlch spllts 1nto

Pl n s . .
' i 7 9
A=po (3x+ B)

near a dividing submanifold Y, where "B is a
R e s AT = o A g

_________

self-adjoint elliptic operator over. Y §3§ P

o O SN

e I T e

a bundle 1somorphlsm, and let g be a‘:unltarz automor-

’\-'\.’-\_J—v\ g o T Nx Y I Y e

phlsm of E!Y compatible with B, i.e. satisfying the

- e . e - .
T ape T s JE N S T N g e T

condltlon

e N e

g.o GA(B) 0 g—l = 0. (B)

YEEE? GL(B) is the pr1nc1pal symbol of B.

1'&.4'\-\/\_\,«/ e il

Then we have
PP R N i T NP}

.. uf(g.,A) =,-s,f£B_tlf - o

where {B_} is a smooth famlly of elliptic self-adjoint

t PN e e e e

operators over Y connectlng

R i SO

Bo : =B ﬁ&ﬁ. Bl : =g B g.
PROOF; Recall the "local index theorem"
(cf£. [31] and [ 21])
index A = [ a(A)(x) dx
X
where o (A) is constructed from the full symbol of A.

By the explicit definition of a9 given above in the

note after definition 5.1 it is clear that

a(A) (x) = o(ad)(x) for x € X~N_ ,

hence

u(g,a) = index 29 - index A = [ a(a9) (x) dx - a(a) (x) dx.
N N

- —
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The first integral gives us the index of the operator

: o ’ ' .
oo (& -B) :c(st xy; EY) - (st

e
3t t ox Y F7)

where
' : )
E9 = I x ElY/~
with the identification

-— l . .
(1, vy, e) ~ (0, vy, 9 (yle) , yeyYy,h e¢€ Ey.

" The reason for that is that the full symbol of this ope-
rator is equal to the full symbol of aAY in each point .

of N_ (parametrized as I x Y). So weihave by theorem 1.19

‘J a(ad)y (x)ax = _index(%E - B
R B N t

t) = Sf{gt}f«

4

. The second integralvdoesnft contribute to u(g,A) " since.
it is equal to

. | _3__ i__ —_ ' ' = . ’
index ‘Bt - B) = sf{Bt B} = 0f o

5.8. COROLLARY. Let' A, B, and g be as in theorem 5.7

and let 'P+(B).'be the spectral projections of B. Then
NS x e = | ——— .

| - | o
u(g,A) = index(P+(B) - g P_(B)).

a2

PROOF . By theorem 4.1.

As mentioned above we could express our result in-
the language of the Calderén-projections P _(A), too.
Since the differences P,(B) - P, (A) are compact, we

obtain
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5.9. COROLLARY. Let A and g be as 1n theorem

Sy e e

5.7 and let P, _(A) be. .the Calderon DrOjeCthDS of A

et et

onto the spaces H, (A) of Cauchy data of the kernel of
e e TNt e e S N X N e TN e Nt TR e O o e e

A over Y. Then

u(g,A) = index(P_ _(A) = g P (A)).

In the rest of this paragraph we present several
applications of our final formula given in corollary 5.8. - 2
Our main purpose is to show how the integer u(g,A)

depends on the topology of Y, g, and B.

5.10. PROPOSITION. Let A, Y, and g be as in

e

theorem 5.7. If g determlnes a tor51on element 1n
D e i e NP .

i I — e
-1

K (YY) then

= e o (g, A) = 0.

PROOF. Let g determine a torsion element in

K-l(Y). Then there exists a natural number k such

that
g 0.. . .0
_ 0 g :
kg: = . . 1l k ElY -» k E|Y
o.. . g

is homotopically equivalent to the identity.

MOre precisely, we have a path in the space of unitary
automorphisms of k EIY Jjoining kg with the identity,
cf. [23,D-7§. Thus, we are able to deform the family

{k B} into a family {Ct} joining k B with itself



- - 93 -

without changing the spectral flow, hence

k sf{B } = sf{k By } = sf{C } =

‘since '{Ct} is contractible to the constant famlly. a

5.11. PROPOSITION. Let A, Y, and g be as in

L e et ‘\f\

theorem 5.7. Let- A admit local elli ic boundary
L P

W\—“AJ—\_/V -s,,/»/\./'\__‘ T~

conditions .on. Y, then

B N N g e RSN, W

"u(q,A) = 0.

PROOF. Since A splits near Y it admits local
elliptic_boundary‘tbnditions on  Y .(in the sense of
Shapifo—Lopatinski) if and nnly if p+} the printipai
symbol of the spectrai projection P+(B),-can be déforﬁed
into a projeétion ontn a bundle over SY which is a |
pull back of a bundle over Y (cf. [ 11, [121, [15],
130D |
\Since‘

P_(B) = id - P_(B)
the symbol of P, (B) -9 f_(B) then becomes a métrixv

function of yUE Y alone, hence gives the trivial element

of K(TY). o

NOTE. - Let : : ‘.
o, (vi8)} ¢ 7+ YEY, EE T, ¥
be a continuous family of projection symbol§'such that
P, (v,E) =P, (y,E) and p (y,E) = p,(y).
Then we can not expect that g leads to an automorphism

of the bundle




Je—

'V : = image Py
since in general
pP,9 ¥ g Py-
Thus we must change g continuously by'& continuous
family {gt} of automorphisms of
V, : = image P

t

leading to a 9; which commutes with Py -

5.12. PROPOSITION. Qet A, Y, B and g QEVEE

in theorem 5.7 and let the pr1nc1pal symbol of B

LA e NP O P N €N T et et N o I N Tt

determine a tor51on element 1n K (TY). Then:

PN T e TN s P T e e, S Sl B
u(g,A) = 0.

'PROOF. The assumptlon about B means that for
-some k, N the symbol
k o, {B) ® id : 7*(k EIY) @ € O

can be deformed into a symbol

v=%, - B

where 5+ are projections onto some bundles lifted

from Y. Thus we get the equalities

sfl{k Bt ® id}

= index(k P, (B) ® id - g k P_(B) ® id)

k sf{Bt}

= t-index [5_ ;7 gl
= 0
where
t-index : K_l(SY) -~ Z

denotes the homomorphism given by

[0l & [ chlo] =%

&y T(Y). o
5Y
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6.  Various extensions and generalizations.

+So far wé presented in fhié pabervall results
in detail only in tﬁeicésé when A splits near Y
‘into the form | o .
A =‘p(%E + B) , BIS¢lf-adjqiﬁt (*)
and g is a””uni;ary automorphism of EIY. Now we " i

will indicate how one can weaken these assumptions.:

-

)

6.1. Non self-adjoint B." It is easy to see that
.. we can take for B any elliptic operator of which the -

-prinqipal-symbol o] (B) has no eigenvalues on the

L
imaginary axis and is compatible with. g, i.e: - T
S o ' ' '
g o, (B) g = OL(B)_'

Without changing the_principal éymbol_(hence the  index
neither) we can deform such a more géneral opérator A
into our form (*): Take the family
'{B£}.:,= (5B + B*) + 5(1 - r(t)) (B - B¥)}.
'  Since OL(B)* commutes with g;:toé, when g 1is unitary,
we have
. —l
* = *

g o, (B +B* g op (B + B¥).
Thus we can deform A to an operator which on
N=IxY. = N_U N, takes the form

o ; ;
A = D(E‘L c,)

where

It was noted in [22, pP.192] that every elliptic first
order differential operator splits with B not
necessarily self-adjoint, see also [19, ch.II].

+)



/A
o=

2t

C, : =  for

N =
t

L Bl (2¢-1)

Hence in a smaller collar neighbourhood A has the

form (*).

In fact we don't need this deformation to the
self-adjoint case since one could define a spectral
flow for all families of opefators of whichh the principal
symbol has no eigenvalues ow the imaginary axis. We just
count the number of eigenvalues who_se real parts change

’ th'e‘—si'gn"when “t--1is gOITlg’ from O to~t. T - T T

6.2. Elliptic symbols over a mapping torus.

This observation is essential to the more general situation
when we consider instead of g a diffeomorphism

% . EIY - EIY
of the total spaces which is linear on the fibres though
. not inducing the identity but an arbitrary diffeomorphism
¢ 1in the base. In this case we can not reduce the problem
to a self-adjoint family. Then the spectral calculus is
getting more advanced. Instead of K-l(TY) we must work
with some éuitable K-groups over the mapping torus (YxI)w.
The details of this approach will appear in a separate

publication by the second author.




. o

(131, [14]) .
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6.3. Non-splitting éymbols. Using the rather

big. machinery of calculus of the Boutet-de-Monvel type

one can gét parts of the results of this péper for -

-operators- which do not nécessarily:split_near’vY

. Finally , we want to present the simplest example.

of the situation when g . is not an automorphism.

6.4. EXAMPLE. Once'again we»consider the.OPErator

Br= i o2 <sh s Tehl
Now we put : ‘ | ,
g(x;z)_;,;_‘(x +1 o, ez o (R%)

where é}E € and x ' is a real COordinéte'mod 27 .

We.have
g hx,z) = (x+7, e™* 2)
hence | |
| 'ﬂg_'l Bg(x, f£(x)) =.g-l B (xl+ m, e ¥f (x))
.I ) ll" 'X+,n. o . ‘
i B =g x o+ m, ciet e 0+ e £ ()
= (x, -i(-e™) £' (x) + £(x))
' N
"
1

= (x, -if'(x) + £(0)).

So, in fact we-obtain'thé-same,operator as in the“preVious

analyzed case (see 4.2)

ix

..g(X,_Z) Ty = (Xl.e z) I3

and we recall that the standard family- {Bt ='—i%§ + t}
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has a spectral flow equal to 1.

The only difference is the action. on the eigen-
ffunctiqns: Let g be defined as in (**) and set

ikx

uk(x) : = e
‘Then we have

o1 (x=m) eik(x—n)

)

ei(k+1)x e—i(k+1)ﬂ

(x, (g uk) (x)) (x,

)

= - (x,

= D g oo,

6.5. EXAMPLE. More generally one could compute
the operator g_lBg fqr an arbitrary first-order‘
elliptic differential operator as an exercise.

It turns out that- g_lBg has the same first order part
as B and only the zero order terms (which are bundle
morphisms) differ. So, even if g 1is not an automorphism,
we can join B with g_lBg with a family of the type
considered in this paper, although several technical

problems arise.
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