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The Philadelphia-negative myeloproliferative neoplasms (MPNs)
are a group of hematopoietic stem-cell disorders, including es-
sential thrombocythemia (ET), polycythemia vera (PV) and pri-
mary myelofibrosis (PMF). The excessive production in myeloid,
erythroid or megakaryocytic cell lines characterizes the three
classical MPNs. Furthermore, inflammation is thought to be a
driver of MPNs and becomes a reason for developing other can-
cers in MPN patients. However, MPN patients may become alive
for several years with a high risk of thrombosis, cardiovascu-
lar complications and chronic inflammatory diseases. Although
many pathogenetic working mechanisms of MPNs are discovered,
many of the therapeutic tools are still unexplored.

In this thesis, a series of mechanism-based mathematical mod-
els contribute to building further knowledge about the pathogen-
esis of MPNs. Inspired by the bio-medical literature, we address
various research questions related to MPNs. In addition to the
pathogenesis of MPNs, we propose a novel mathematical model
describing the coupled mechanisms of thrombopoiesis and ery-
thropoiesis.
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Abstract

The Philadelphia-negative myeloproliferative neoplasms (MPNs) are a group of hematopoi-

etic stem-cell disorders, including essential thrombocythemia (ET), polycythemia vera

(PV) and primary myelofibrosis (PMF). The excessive production in myeloid, erythroid

or megakaryocytic cell lines characterizes the three classical MPNs. Furthermore, in-

flammation is thought to be a driver of MPNs and becomes a reason for developing other

cancers in MPN patients. However, MPN patients may become alive for several years

with a high risk of thrombosis, cardiovascular complications and chronic inflammatory

diseases. Although many pathogenetic working mechanisms of MPNs are discovered,

many of the therapeutic tools are still unexplored.

In this thesis, a series of mechanism-based mathematical models contribute to build-

ing further knowledge about the pathogenesis of MPNs. Inspired by the bio-medical

literature, we address various research questions related to MPNs. In addition to the

pathogenesis of MPNs, we propose a novel mathematical model describing the coupled

mechanisms of thrombopoiesis and erythropoiesis.

The first mechanism-based Cancitis model describes the coupling between chronic

inflammation and the development of MPNs. We perform a thorough mathematical

investigation of the model and find the crucial parameters for the progression of the

disease. Thereby we identify that the inflammatory stimuli and a few grouped parame-

ters involved in the hematopoietic stem cell (HSC) dynamics are mainly responsible for

governing the behavior of the model. Based on the Cancitis model, we further develop

a range of mathematical models in the presented work.

A second model is a novel mathematical model proposed for PV dynamics. We

zoom in on the excessive production of red blood cells and erythropoietin (EPO) feed-

backs on healthy and malignant cells. A mathematical analysis of the model highlights

HSC fitness and suggests that HSC dynamics govern disease progression. The model is

capable of reproducing clinically observed dynamics before and during treatment.

A third novel mathematical model is proposed for ET dynamics where the exces-

sive production of platelets is addressed. In addition, thrombopoietin (TPO) feedbacks

mediates healthy and malignant cell lineage. The overall analysis reflects that targeted

HSC therapy can control disease progression.
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Finally, we develop a mathematical model combining the dynamics of erythro-

cytes and platelets. In contrast to previous models, this model does not contain ma-

lignant cells. It is known that erythrocytes and platelets share the same precursor

megakaryocyte-erythroid progenitor (MEP). The purpose of the model is the investi-

gation of the coupled mechanisms between erythrocytes and platelets. The model is

validated and calibrated for various clinical experiments such as phlebotomy, body’s

reaction to EPO and TPO regimens.
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CHAPTER 1

Introduction

Mathematical modelling is a fast-growing research tool for exploring complex biolog-
ical mechanisms. The potentials of mathematical models in medical research are sig-
nificant to simulate medical outcomes. In vivo, clinical trials may be substituted with
in vitro or in silico experiments combined with a mathematical model, hypothesized
various physiological interventions for patients. The study of hematology using mathe-
matical models has been continued for the past half-century leading to quality progress
of forecasting optimal treatments. Moreover, mathematical oncology has gained much
importance in recent years. Stepping forward, this thesis is devoted to mathematical
modelling of hematological processes and focused on the development of blood can-
cer particularly, myeloproliferative neoplasms (MPNs). This thesis contains a series of
mathematical models primarily concerned with hematopoiesis processes and the patho-
physiology of blood disorders. The work may serve to the research in the pathogenesis,
diagnosis and prognosis of MPN patients.

1.1 Biological Background

Hematopoiesis
Hematopoietic stem cells (HSCs) are multipotent cells that produce all blood cells
required by the human body. Once an HSC differentiates, it undergoes a series of
differentiation to become a mature cell. Such a process occurs in the bone marrow
niche and is called hematopoiesis. In healthy individuals, approximately 1012 blood
cells are produced every day in order to maintain the steady state levels of the pe-
ripheral blood. HSCs are capable of regenerating themselves, termed as self-renewal,
meaning one HSC divides into two HSCs. In addition, one HSC may produce two
daughters/progenitor cells, and it may differentiate into one HSC and one daughter
cell. Hematopoietic stem cell niche is a particular environment where necessary signals
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from the body carry out cells’ differentiation. These differentiated cells are subdivided
into myeloid and lymphoid groups of cells. The myeloid cells include red blood cells
(erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes), whereas
T-cells, Natural killing cells and B-cells are included in the lymphoid group of cells.
Specific associated growth hormone factors to different cell lineages are responsible for
determining a cell type’s fate when it differentiates from a stem cell. They stimulate
growth, cell reproduction, and cell regeneration. For example, in some cases, such as
bone marrow failure, the liver and spleen perform the hematopoietic function to increase
these organs’ size. Such a condition is called extramedullary hematopoiesis [70; 99].

Erythropoiesis
The process of production of red blood cells (erythrocytes) from a stem cell is called
erythropoiesis. In the process of erythrocyte maturation, a cell undergoes several stages
in the bone marrow. This stepwise differentiation includes a common myeloid progen-
itor, unipotent stem cell, proerythroblast, erythroblast, polychromatophilic, orthochro-
matic, and reticulocytes. A reticulocyte is an immature red blood cell that is finally
released into the blood and becomes erythrocyte after a day. The average life span of
the erythrocyte is about 120 days.

The hormone growth factor erythropoietin (EPO) is mainly responsible for stim-
ulating early erythroid progenitor cells. The kidneys secrete EPO in response to low
oxygen levels in the blood. Such a process usually occurs within the red bone mar-
row. In some diseases, this process can occur by the spleen or liver and is called ex-
tramedullary erythropoiesis. The erythropoietin regulates the erythropoiesis through a
feedback loop; thus, the production and destruction of red blood cells are maintained in
healthy states. Hence, low erythrocytes number leads to an elevated level of EPO. This
growth hormone factor requires JAK2, a non-receptor tyrosine kinase for signal trans-
duction. JAK2 is implicated in signaling by members of the type II cytokine receptor
family, e.g., interferon receptors, the single-chain receptors, e.g., EPO-R. It means that
the loss of function of the erythropoietin receptor or JAK2 may disrupt erythropoiesis
[70; 99].

Thrombopoiesis
The process of production of thrombocytes/platelets from a stem cell is called throm-
bopoiesis. It starts with the differentiation of common myeloid progenitor into the
high proliferative potential colony-forming unit megakaryocyte regulated by various
cytokines. The next differentiation series include a formation of burst forming unit,
megakaryocytic colony-forming units, megakaryoblasts, megakaryocytes, which then
shed into thousands of platelets. The expected life span of platelets is about seven days.
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The glycoprotein hormone thrombopoietin (TPO) is mainly responsible for reg-
ulating megakaryopoiesis (the production of megakaryocytes) but, the formation of
platelets is known to be independent of TPO. This protein is a ligand for MPL (myelo-
proliferative leukemia). TPO is produced by the liver and is cleared by platelets. Thus,
the decreased platelet mass subsequently decreases the degradation of TPO; hence,
there is more TPO to stimulate thrombopoiesis. Therefore, it may conclude that plasma
TPO concentration is inversely proportional to the platelet [70; 99].

Granulopoiesis
The production of granulocytes is referred to as granulopoiesis. The first stage involves
the transformation of a common myeloid progenitor to a promyelocyte. This cell gives
rise to a unique myelocyte, which can be classified as an eosinophil, basophil, or neu-
trophil progenitor.

The glycoprotein, granulocyte colony-stimulating factor (G-CSF) is the key to driv-
ing granulocytic development. In addition, G-CSF stimulates the survival, differen-
tiation, and function of neutrophil precursors and mature neutrophils. The protein is
produced by endothelium and immune cells like macrophages [70; 99].

In table 1.1, the reference range for hematological parameters are given [99],

Table 1.1 Reference range for hematological parameters in healthy humans

Category Reference range [99]
Hematocrit 37% - 52%
Red blood cells 4.2 - 6.1 ×1012 / L
White blood cells 4.8 - 10.8 ×109 /L
Platelets 150 - 400 ×109 /L
EPO 6 - 16 IU/L
TPO 81.25 - 237.7 pg/ml

1.2 Pathogenesis of MPNs and its types
MPNs are a group of hematopoietic stem-cell disorders, including essential thrombo-
cythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [22; 45].
Since MPNs are a slowly developed disease, most patients remain alive with MPNs
for several years. Although there is a high risk of thrombosis [6] with cardiovascu-
lar complications and an increased risk to develop autoimmune and chronic inflamma-
tory diseases, including 40% increased risk of acute myelogenous leukemia [44; 64].
Clonal studies have been conducted in patients with ET where JAK2V617F, CALR (cal-
reticulin) and MPL (myeloproliferative leukaemia protein) mutations are identified as
clonal markers. JAK2 gene is responsible for producing blood cells. CALR gene plays
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an important role in immune system function, and the MPL gene is involved in throm-
bopoietin signal transduction and megakaryocytic differentiation. The three classical
Philadelphia-negative myeloproliferative neoplasms are characterized by clonal expan-
sion of hematopoietic progenitors, independence from cytokines and overproduction of
mature erythroid and myeloid progeny.

Essential Thrombocythemia
ET is characterized by excessively produced megakaryocytes in the bone marrow re-
sulting in the excessed amount of platelets in the blood. This condition may cause
dizziness and headaches however, the worst is the increased risk of blood clots. The
mutation JAK2V617F is identified in 50% cases of ET [44; 64]. Recently, mutations
in CALR gene is found higher in patients with ET [69; 101]. Different clinical features
of ET are explored after CALR mutations during in vivo experiments. For example,
the mutant allele burden is lower in JAK2-mutated ET than in CALR-mutated ET, ET
patients with CALR display higher platelet count, lower leukocyte count, and longer sur-
vival as compared to JAK2 patients. ET may transform to the advanced myelofibrosis
stage, associated with the allele burden in both ET types.

In addition, TPO related MPL mutations are found in 1-3% cases [14; 89] of ET.
Despite a high number of platelets, ET patients show significantly increased TPO serum
levels than normal subjects. The feedback loop between TPO and megakaryocyte/platelet
is affected, resulting in reduced consumption and subsequent increase of TPO serum
levels in ET [51; 69; 98]. However, many novel mechanisms relating to increased TPO
levels and abnormal platelet production in ET are yet to be revealed.

ET patients have an excellent chance of living an average life span with proper mon-
itoring and necessary treatment. However, for people older than 60, having a history of
thrombosis or platelet counts greater than 1500× 109/L are high-risk patients [12]. In
2008, the WHO (World Health Organization) classified the diagnostic criteria for ET
patients. According to WHO, a diagnosis must meet all four significant criteria or the
first three primary and minor criteria (See Table 1.2).
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Major Criteria Minor Criteria

Platelet count ≥ 450× 109/L

Bone marrow biopsy specimen showing
proliferation mainly of the megakary-
ocytic lineage with increased number of
enlarged, mature megakaryocytes. No
significant increase of left-shift of neu-
trophil granulopoiesis or erythropoiesis

Not meeting WHO criteria for BCR-
ABL1+ CML, PV, PMF, myelodysplastic
syndromes, or other myeloid neoplasms

Presence of JAK2V617F, CALR, or MPL

mutations

Presence of a clonal marker or absence of
evidence for reactive thrombocytosis

Table 1.2 Diagnostic criteria for ET according to WHO [10]

Polycythemia Vera
PV is characterized by the overabundance of red blood cells in the blood and elevated
hemoglobin levels and hematocrit. In PV, the bone marrow becomes hypercellular and
dominates by erythroid lineage; therefore, patients with PV are at a high risk of throm-
botic complications. A subgroup of patients also suffers from elevated white blood cells
and platelet count. The other PV characteristics include the presence of the JAK2V617F
found in 95% of patients and a low level of EPO serum in the blood. The level of
EPO serum helps in distinguishing between primary polycythemia and secondary poly-
cythemia. In patients with PV, increased erythrocytes result in suppression of EPO
levels. Although EPO therapy has been used in many diseases such as anemia, renal
failure, etc., it is not yet been initiated for treatment in PV.

In [116], median survival for PV patients is recorded as 18.9 years depending on
age and sex. Patients older than 60 years or having a previous thrombosis history are
taken at high risk. In rare cases, while progressing to PMF, polycythemia vera may lead
to other blood diseases, including acute myeloid leukemia (AML), if white blood cell
counts are greater than 11 × 109/L. According to WHO, PV diagnosis is required to
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meet all three significant criteria or the first two primary criteria and the minor criterion
(See Table 1.3).

Table 1.3 Diagnostic criteria for PV according to WHO [10]

Major Criteria Minor Criteria
Hb > 16.5g/dL in men, > 16.0g/dL in
women, or Hct > 49% in men, > 48% in
women, or increased red cell mass geater
than 25% above mean normal predicted
value

Bone marrow biopsy showing hypercellu-
larity for age with trilineage growth (pan-
myelosis), including prominent erythroid,
granulocytic, and megakaryocytic prolif-
eration

Presence of JAK2V617F mutation or
JAK2 exon 12 mutation

Subnormal EPO serum level

Primary Myelofibrosis
Primary myelofibrosis (PMF) is a rare disease that occurs in approximately 1 in 500,000
people worldwide. PMF is characterized by bone marrow failure. The hematopoietic
compartment is replaced with collagen fibers, and the bone marrow is unable to provide
enough normal blood cells required by the human body. Approximately 90% of patients
with PMF carry JAK2, CALR or MPL mutations. These mutations are not directly linked
to PMF because the patients diagnosed with PMF have a history of ET or PV. Patients
with PMF have a high score of transformation to (AML).

PMF patients may not show any symptoms at the early stage, but later fibrosis leads
to a reduced amount of erythrocytes, leukocytes, and platelets. Due to bone marrow
failure, other organs such as the spleen or liver may begin to produce blood cells. Such
a process is called extramedullary hematopoiesis, leading to an enlarged spleen or an
enlarged liver. Primary myelofibrosis is often diagnosed in people aged 50 to 80 years.
According to WHO, diagnosis is required to meet all three significant criteria or at least
one minor criterion confirmed in two consecutive determinations (See Table 1.4).
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Table 1.4 Diagnostic criteria for PMF according to WHO [10]

Major Criteria Minor Criteria

Proliferation and atypia of megakary-
ocytes accompanied by either reticulin
and/or collagen fibrosis grades 2 or 3 on a
scale of 0 to 3

Not meeting WHO criteria for ET,
PV, BCR-ABL1+ CML, myelodysplastic
syndromes, or other myeloid neoplasm

Presence of JAK2, CALR or MPL muta-
tion or in the absence of these mutations,
presence of another clonal marker or ab-
sence of reactive myelofibrosis

Anemia not attributed to a comorbid con-
dition

Leukocytosis ≥ 11× 109/L

Palpable splenomegaly

LDH increased to above upper normal
limit of institutional reference range

Leukoerythroblastosis

Inflammation, an instigator of MPNs
Inflammation is triggered by inflammatory cytokines secreted from immune cells. In-
flammation is a protective reaction in response to an injury, repairing damaged tissue
during wound healing. The acute inflammatory response is an instantaneous response
to injury. However, dysregulation of this process may result in chronic inflammation,
as exemplified by MPNs. Generally, patients’ chronic inflammatory state ends up in
the overproduction of inflammatory cytokines by both the neoplastic clones and im-
mune cells. Chronic inflammation is also a risk factor for developing atherosclerosis
and thrombosis in patients with chronic inflammatory diseases. Similar mechanisms
are operative in all types of MPNs destabilizing hematopoietic homeostasis [48]. The
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JAK2V617F mutation leads to an alteration in the signaling of hematopoietic cells im-
portant in inflammation with evidence of elevated platelets and leukocytes, alteration
in inflammatory cytokine levels, and reactivity to these cytokines [53; 92; 93]. In the
association between inflammation and C-reactive protein (CRP), the elevated CRP level
is observed in patients with ET and PV [13].

In brief, MPNs are associated with a chronic inflammatory state denoted as the
”human inflammation model” with ”inflamed bone marrow,” ”inflamed stem cell niche,”
and ”inflamed circulation” [45]. Inflammation is partly responsible for the pathogenesis
of MPNs. Therefore, it represents an important therapeutic target.

Treatment Strategies
Treatment for blood cancer depends on several factors. In clinics, the patient’s over-
all health and type of blood cancer are determined to initiate the therapies. Similarly,
the treatment of MPNs depends on the presence of symptoms. In general, the treat-
ment aims to correct the abnormal blood counts after recognizing the type of MPNs.
Chemotherapy is one of the standard forms of treatment for MPNs. It uses drugs to kill
malignant blood cells in the body. It may be taken in a pill form or may be administered
as IV (intravenous). In contrast to chemotherapy, radiation therapy uses high-energy
X-rays to kill malignant cells. It may also be used to prepare for a stem cell transplant.
A stem cell transplant is a procedure to replace the diseased bone marrow with healthy
bone marrow where a patient may receive stem cells from healthy donors. Besides,
several clinical experiences explore that stem cells are a proven candidate for therapies.
Many drugs like interferon-alpha (IFN) arrest the progression of the disease targeting
stem cells.

Specific treatments are applied depending on the type of MPNs. Phlebotomy is
a first-line therapy specifically for patients with PV. It is useful to remove excess red
blood cells from the body. For patients suffering from blood clotting, chemotherapy is
used instead of phlebotomy utilizing the drug hydroxyurea. It limits the bone marrow’s
ability to produce blood cells in the body. Low-dose aspirin is an alternative medicine
for PV patients unless contraindicated by significant bleeding [35; 109].

Moreover, platelet apheresis is often preferred for patients with ET, where platelets
are removed from the blood using a particular machine [17]. Immune therapy works by
using treatments that boost the immune system to recognize and attack malignant cells.
IFN is thought to be one of the treatments that can be taken as immune therapy and
reduce blood cell production. Furthermore, targeted therapies are used in the treatment
of some cases of MPNs. They can block or regress the production of malignant cells
by focusing on particular characteristics unique to MPN cells. One type of targeted
therapy that may be used to treat MPNs is ruxolitinib, a drug that targets, for instance,
the JAK2V617F and other associated mutations [88]. It is often observed that PMF
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patients have anemia that can be treated with blood transfusions. In addition, there are
a variety of ways to treat anemia, for example, the hormone erythropoietin [52].

Finally, the concept of chronic inflammation as a severe driver of disease progres-
sion in MPNs opens the avenue for clinical trials. Since IFN is expected to normalize
the bone marrow and ruxolitinib activates the anti-inflammatory cytokines. Therefore,
combining IFN and ruxolitinib therapies within MPNs is among the foremost promising
new treatment strategies for patients with MPNs [16; 44; 45; 46; 47].

1.3 Short Review of Existing Mathe-
matical Models of Hematopoietic
System and Hematological Diseases

This section presents a review of the existing mathematical models regarding hematopoiesis
and hematology. Since the blood and bone marrow sampling is easily accessible, the
hematopoietic system and its diseases have been studied extensively, and different types
of mathematical models have been developed. Many strategies are elaborated to get the
appropriate answers to some problems, such as regulating red blood cells, the impact of
cycle disorders on various pathologies such as anemia or leukemia, or optimal therapeu-
tic strategies about blood diseases. In the following, we overview a few mathematical
models of the hematopoietic system and their applications.

Compartmental models are popular to describe the time evolution of the different
hematopoietic cell types. In this type of model, each cell type is identified with one com-
partment, and its dynamics are described by one ordinary differential equation (ODE).
In [73], a two-compartment model investigated quiescent and mitotic stem cells with
constant delay in aplastic anemia and periodic hematopoiesis. With a more compli-
cated version, this model has been studied in [4] and [94]. The model given in [73]
has been extended to account for the dynamics of stem cells, erythrocytes, platelets
and leukocytes in [26; 95]. The extended model has been used to investigate oscilla-
tion for parameter ranges observed in periodic chronic myeloid leukemia, cyclical neu-
tropenia and thrombocytopenia. Also, there are few mathematical models describing
erythropoiesis, thrombopoiesis, or granulopoiesis independently. Many authors have
formulated mathematical models describing the regulation and formation of red blood
cells and their related regulated mechanisms, specifically EPO. Some of these models
are based on hematological diseases [9; 11; 15; 27; 39; 87], and the others investi-
gate the mechanisms in healthy human beings such as blood donation, erythropoiesis
stimulating agents, etc. [38; 118]. In [67], a mathematical model of thrombopoiesis
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is presented to understand the origin of cyclic thrombocytopenia, whereas in [107],
an age-structured model with both normal and pathological platelet production is de-
veloped. Both models involve the hormone growth factor, TPO, for the regulation of
platelets.

Furthermore, compartment models have been used as a tool to study the dynamics
of cancer cell populations. In [81], an ODE model described the dynamics of chronic
myeloid leukemia. The model from [81] is extended in [68] including the differentia-
tion of progenitor cells into stem cells and in [61] describing T-cell dynamics to study
the impact of immune response on CML treatment using delay differential equations.
Mathematical models have been proposed describing the control networks for regu-
lating the stem cell lineage [58; 59; 127]. The mathematical model presented in [66]
shows that therapy targeting stem cell pool may eliminate tumor stem cells. In [110],
a mathematical model of cancer stem cell dynamics is proposed, and the different sce-
narios of cancer initiation and possible treatment strategies have been discussed. The
mathematical model given in [112] is useful for investigating the impact of cytokine de-
pendence and independence of acute myeloid leukemic cells supported by patient data.
A few modeling studies of myeloid malignancies were investigated in [43; 129] with
MPNs as a particular example.

Cancitis Model
The Cancitis model is given special attention in this review since it becomes the founda-
tion of this thesis. It was proposed in [7] (See Appendix A for details), where Andersen
et al. aimed at building a mathematical model incorporating chronic inflammation as
the trigger and driver of MPNs. The model consisted of a system of nonlinear ordinary
differential equations describing the proliferation from stem cells to mature cells and
healthy stem cells’ mutations to become malignant stem cells. The model coupled the
cell dynamics with an inflammatory response by introducing inflammatory feedback
into the system. The model was used to describe interactions between macrophages,
inflammatory and anti-inflammatory cytokines. The authors hypothesized that chronic
inflammation is not triggered when the immune system is functioning properly. Hence,
the model supported the concept of the “human inflammation model” [45] for MPNs
development. Furthermore, the reduced Cancitis model consisting of two-dimensional
equations was discussed in [86] (See Appendix B for details), including the effect of T-
cells explicitly. The authors introduced a reproduction ratio of stem cells and concluded
that the body might manage the initial stage of blood cancer when the self-renewal rate
of malignant cells is not high. However, it fails to handle it if inflammation occurs.

Subsequently, a detailed mathematical analysis of the Cancitis model [7] is per-
formed in [102], where Sajid et al. explore the interesting results showing the intricate
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coupling between inflammation and MPNs. The classification of steady states is ex-
plicitly done in terms of inflammatory stimuli. Sajid et al. introduced a reproduction
ratio similar in [86] and, besides, a ratio of inhibition of the hematopoietic relative to
malignant stem cells is found. Moreover, it is demonstrated that by increasing inflam-
matory stimuli, a healthy state is transformed into a malignant state and reduces disease
load for a co-existing steady state. The model provides an overview of the possible dy-
namics that may inform clinical practice, such as using inflammatory inhibitors during
treatment.

Another reduction of the Cancitis model is presented in [8], where a two-dimensional
model represents the JAK2V617F allele burden and white blood cell count as variables.
The model suggests the treatment initiation at the early phase of the disease. The ratio of
self-renewal of the hematopoietic and malignant stem cells is indicated as an important
diagnostic marker. A further reduction to a one-dimensional model depends upon the
allele burden suggested that exogenous inflammation develops blood cancer when ma-
lignant stem cells regenerate more than hematopoietic stem cells. Apart from a system
of non-linear ODEs, the authors of [7] presented a data-driven analysis for the allele
burden dynamics and argued early intervention strategy with interferon-α treatment.
The empirical modeling approach to describe the behavior of the data was considered
[90] (See Appendix C for details).

1.4 Overview of Thesis
The questions that form the basis of this thesis result from combining information from
many publications. Besides Chapter 1 and Chapter 5 each of the chapters constitutes a
stand-alone scientific contribution. In this section, we present a brief summary of our
results. Note, to avoid unnecessary repetition, the description of parameters is not given
in this section. We refer the reader to see the definition of parameters in their related
chapters. In each mathematical model, HSC denotes the hematopoietic stem cells and
MSC denotes the malignant stem cells.

Chapter 1 contains introductory and concluding remarks.
Chapter 2 consists of the published research [102]. In Chapter 2, we analyse Canci-

tis model [7] mathematically and numerically. MPNs are commonly known as inflam-
matory diseases, and it is believed that chronic inflammation triggers MPNs progres-
sion. Also, a number of evidences indicate that hematopoietic stem cell is the MPN-
initiating cell and MPN is found to derive by the outgrowth of a single stem cell. Based
on these perceptions, the first two research question addressed in Chapter 2 are,

• When is it suitable to give anti-inflammatory agents in clinical practice?

• What are the key features of the stem cells, contributed in the progression of
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MPNs?
The Cancitis model includes one lineage of healthy cells and one lineage of malig-

nant cells. We retain the possibility that a stem cell may self renew, die, or differentiate
into a mature cell. A mature cell does not differentiate but dies. Moreover, the debris
of dead cells is common for both lineages, and the model is coupled with the inflam-
matory system. The model incorporates a possible mode of interaction between healthy
and malignant cells such as niche feedback inhibiting factors. Thus, the Cancitis model
consists of six ordinary non-linear differential equations, the number of HSC (x0), the
number of MSC (y0), the number of healthy mature cells (HMC-x1), the number of ma-
lignant mature cells (MMC-y1), the debris of dead cells (a) and the immune response
i.e. the inflammatory level (s).

We conduct a mathematical investigation of the Cancitis model and establish the
criteria for existence of physiological steady states. These steady states include a trivial
steady state, a healthy steady state without malignancy, a full-blown diseased steady
state and a co-existence steady state where both healthy and malignant cells exist. We
explore the coupling between MPN progression and increased inflammation. Further-
more, a stability analysis enables us to have a range of parameters for which the treat-
ment becomes successful and hematopoietic state becomes stable. The model has been
investigated for various choices of parameter values. In figure 1.4.1 (Figure 2 in [102]),
clusters of five important parameters are considered to investigate the number of steady
states and their stability, C = cxx

cyy
,R = ζH2

ζL2
= αx

αy
and I where,

αx =
dx0 + ax

rx
and αy =

dy0 + ay
ry

. (1.4.1)

We may interpret that R denotes the fitness of stem cells. R represents if malignant
stem cells have better fitness than hematopoietic stem cells, the situation becomes
worse. C interprets the inhibition of hematopoietic relative to malignant cells. Gen-
erally, in blood cancer, cyy ≤ cxx is assumed since malignant cells are insensitive to
environmental effects. The parameter I represents the external inflammatory effects
and is assumed to depend on external factors such as smoking.

In Fig. 1.4.1, we can observe that for R > 1, the hematopoietic and co-existing
steady states are either unstable or do not exist (See Fig. 1.4.1a-1.4.1b). However,
for R < 1, several possibilities of obtaining the unique stable hematopoietic or co-
existing steady states emerge in a specific parameter regime. The bi-stability of the
hematopoietic and malignant steady states is also illustrated for a range of parameter
values. Moreover, Fig. 1.4.1a and Fig. 1.4.1b illustrate that for R > 1, reducing in-
flammatory stimuli may worsen the situation since it vanishes the hematopoietic steady
state. In contrast, when hematopoietic stem cells have better fitness than malignant
stem cells, i.e.,R < 1, increasing inflammation does not have adverse effects (See Fig.
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1.4.1f).
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Fig. 1.4.1 Admissibility and stability of the steady states depending on the parameters
I and C for different values of R. Crossing a solid curve implies a change in which
type of stable steady state exists i.e. trivial, malignant, hematopoietic or coexistence.
Crossing a dotted curves implies the same steady state is stable in both regions but the
number of steady states is changed. The stable steady states are written as subscript of
E and unstable steady states are written as superscript of E.

The Cancitis model generally focused on the progression of MPNs and not on any
specific type of MPNs. Motivated by the Cancitis model, we now narrow our research
towards types of MPNs. Chapter 3 and Chapter 4 consist of [103] and [104] (submitted
for publication). In these chapters, we address PV and important factors involved in
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the progression of PV. In Chapter 3, a system dynamic approach is used to simulate the
model outcome and dynamics, whereas in Chapter 4 a complete mathematical inves-
tigation is covered. These two different styles of chapters presenting the same model
help facilitate a wide range of readers. Following, we briefly describe the results of both
chapters.

As mentioned above, in detail, PV is characterized by the excessive production of
red blood cells, and EPO is primarily responsible for erythropoiesis. The other char-
acteristics of PV is a high load of the JAK2V617F allele burden [44; 45; 64] and low
EPO plasma levels [23]. Moreover, thrombosis is the most prevalent complication for
patients with PV [41] and the development of second cancer is the high risk factor. Sev-
eral authors hypothesize that origin of MPN, including all its types, is the hematopoietic
stem cells. Also, we have explored the importance of stem cell parameters in Chapter
2. The development of stem cell therapies for myeloid malignancies like PV and ET is
getting attention in recent years [57; 61; 72; 83; 91; 106; 123]. Furthermore, in clinical
trials, EPO is the popular erythropoiesis-stimulating agent used in several hematologi-
cal diseases such as anemia, PMF, etc. However, EPO therapy is not yet been initiated
in PV. In our mathematical model, it is possible to evaluate the influence of both EPO
and stem cell dynamics on the progression and regression of the disease. Thus, we post
a set of questions in [103] and [104],

• How do stem cells control erythropoiesis in the development of PV?

• Which parameters are crucial for the abnormal growth of erythrocytes in PV?

• Which mechanisms are mainly responsible for the development of disease?

• How does EPO associate with the JAK2V617F allele burden?
Concerning PV, we formulate a novel mathematical PV model. Based on the con-

cept of the Cancitis model, we consider one lineage of healthy cells and one lineage of
malignant cells. We specify that the stem cells may self renew and die but differentiate
only into the erythroid lineage. A mature red blood cell does not differentiate but dies.
Moreover, we include multiple EPO feedback on healthy and malignant cells. We con-
sider that EPO inhibits the death rate and stimulates the differentiation rate of mature
cells. In addition, EPO production is taken as a Hill function of mature cells. Thus,
the PV model consists of five ordinary non-linear differential equations, the number of
HSC (x0), the number of erythrocytes (RBC-xr), the number of MSC (y0), the number
of malignant erythrocytes (MMC-yr) and the concentration of EPO (E).

A thorough analytical and numerical investigation has been done for PV model.
The number of parameters is reduced from 23 to 15 due to dimensional analysis, and
the sensitivity analysis is performed to explore the relationship between the input pa-
rameters and the PV dynamics outcome. In addition, the trapping region TR of the
resulting dimensionless PV model is constructed for non-negative initial conditions.
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The interesting feature of the model is that the stem cell dynamics can be indepen-
dently analyzed as a two-dimensional system. The possible steady states of the stem
cell submodel depend on four parameters. The parameter px1 describes the inhibition
of Y0 on X0 (hematopoietic stem cell count), py1 describes the inhibition of X0 on Y0

(malignant stem cell count), whereas px2 and py2 are the degradation rates of X0 and Y0

respectively. Following proposition 1.4.1 (Proposition 1 in [104]) describes the possible
steady states of the two-dimensional stem cell submodel.
Proposition 1.4.1. Conditions allowing existence and stability of feasible steady states
of two-dimensional stem cell submodel are,

1. A trivial stem cell steady state, D0, always exists and is stable for px2 > 1 and
py2 > 1.

2. A feasible hematopoietic stem cell steady state, DH , exists and is unique if and
only if px2 < 1 with X̄0H = 1

px2
− 1. DH is stable for py1 > γ−1 and unstable for

py1 < γ−1.

3. A feasible malignant stem cell steady state, DL, exists and is unique if and only
if py2 < 1 with Ȳ0L = 1

py2
− 1. DL is stable for px1 > γ and unstable for px1 < γ.

4. A feasible co-existing stem cell steady state, DC , exists and is unique if px2 < 1

and py2 < 1 and either (a) or (b) is fulfilled, where

(a) px1 < γ and py1 < γ−1. In this case DC is stable.

(b) px1 > γ and py1 > γ−1. In this case DC is an unstable (saddle).

DC is only feasible, when DH and DL exist. The coordinates of DC are X̄0C =
X̄0H−px1Ȳ0L

1−px1py1 and Ȳ0C = Ȳ0L−py1X̄0H

1−px1py1 .
Proof. See Chapter 4 for details.

Interestingly, the dynamics of the PV model and the stem cell submodel are uniform.
(See corollary 1.4.1) (Corollary 1 in [104]).
Corollary 1.4.1. The existence of the steady states of the PV model is guaranteed by

the stem cell PV submodel given in proposition (1.4.1), i.e.,

• A trivial steady state S0 = (0, 0, 0, 0, 104) always exists.

• A feasible hematopoietic steady state SH = (X̄0H , 0, X̄rH , 0, ĒqH) exists if and

only if a feasible DH exists in the stem cell PV submodel.

• A feasible malignant steady state SL = (0, Ȳ0L, 0, ȲrL, ĒqL) exists if and only if

is a feasible DL exists in the stem cell PV submodel.

• A feasible co-existing steady state SC = (X̄0C , Ȳ0C , X̄rC , ȲrC , ĒqC) exists if and

only if a feasible DC exists in the stem cell PV submodel.
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The quasi steady state approximation for EPO concentration allows reduction of the
five-dimensional PV model into a four-dimensional system (the reduced PV model)
where both models have identical steady states.

Using the reduced PV model, we have performed a few in silico experiments by
perturbing parameters involved in stem cells, mature cells, and EPO for the prognosis of
a virtual subject. In Fig. 1.4.2 (Fig.7 in [104]), we perturb stem cells inhibiting factors
px1 and py1 for treatment. To obtain a co-existing steady state, we choose px1 = 1.3,
px2 = 0.25 py1 = 0.1 and py2 = 0.4 while all other parameters are fixed at their default
values (See details in Chapter 4).

In Figures 1.4.2a-1.4.2b the solution to the reduced PV model is projected on the
(X0, Y0) plane. In Figure 1.4.2a by simulating a drug increasing py1 and decreasing
px1, a co-existing steady state with high malignant cell count (X0, Y0) = (1.21, 1.38)

switches to a co-existing steady state with low malignant cell counts (X0, Y0) = (2.95, 0.47).
It takes approximately two years for this simulated treatment to reduce the disease load.
Thereafter, treatment is set on pause by resetting px1 and py1 at their previous val-
ues. During almost half a year, the trajectory moves significantly back towards the
co-existing steady state with high malignant cell counts (see Figure 1.4.2b).

Thus, perturbing inhibiting factors normalizes the HSC and RBC count (See Fig-
ure 1.4.2c, Figure 1.4.2d). In order to reduce the risk of blood clots, the RBC count
is recommended to be in a normal range. Furthermore, Figure 1.4.2e shows that the
concentration of EPO is increased, whereas Figure 1.4.2f illustrates that adjusting in-
hibiting factors reduces the JAK2V617F allele burden from 53% to 16%, which is an
excellent prognosis. In conclusion, it may suggest that future PV therapy should fo-
cus on targeted, personalized treatment addressing specific alterations within the bone
marrow niche.

In the model, we implement the idea of EPO therapy. We increase the parameters
(the factor affecting the production of EPO) and observe that the EPO concentration
and the number of mature cells are decreased. In the second case, when EPO dose is
given. It increases the mature cell count while the JAK2V617F allele burden remains
unchanged. Using EPO as a prognostic tool may reduce the risk of thrombosis in PV
patients, for the short time, it may not reduce the disease load, which eventually can
trigger the chances of relapse. Validation of the proposed model is attained by compar-
ing the model simulations to clinical data, which contains the number of erythrocytes
and measurement of the JAK2V617F allele burden. However, we do not have available
EPO data of PV patients.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.4.2 An example of the disease dynamics from the reduced PV model is shown. The filled grey
circle in panel (a) is obtained using px1 = 1.3, px2 = 0.25 py1 = 0.1 and py2 = 0.4. Decreasing px1
and increasing py1 in panel (a) shows that a patient is moved from a co-existing steady state (upper grey
circle) with high malignant cell count towards a co-existing steady state (lower black circle) with low
malignant cell count and normalized hematopoietic cell count at px1 = 0.1, px2 = 0.25 py1 = 0.35
and py2 = 0.4. In panel (b), setting back px1 and py1, the patient moves back toward the original co-
existing steady state (upper black circle) following the stipulated black curve. Panels (c), (d), (e) and (f)
demonstrate the dynamics during treatment period (grey) and dynamics after treatment. Red, blue, green
and cyan curves show malignant cells, hematopoietic cells, the concentration of EPO, and theJAK2V617F
allele burden respectively. Note, the time scale is converted into real time.

The encouraging results obtained by the PV model further motivate us to discover
the mechanism in patients with ET. As mentioned, ET is characterized by the exces-
sive production of platelets. The precursor of platelets are megakaryocytes, and each
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megakaryocyte sheds into thousand of platelets. The production of megakaryocytes is
called megakaryopoiesis, and TPO is principally responsible for this process. Since all
types of MPNs share common features, ET is also thought to be triggered by a stem
cell disorder like PV. Thus, it will be captivating to investigate the role of stem cell
dynamics and TPO in the ET model. Chapter 5 discusses a set of questions as follows,

• What is the role of stem cell dynamics in the development of ET?

• Which parameters are crucial for the progression, relapse and cure of the disease?

• By which mechanism does TPO concentration affect the pathogenesis of ET?
Concerning ET, we formulate a novel mathematical ET model. Based on the con-

cept of the previous two models, we consider one lineage of healthy cells and one
lineage of malignant cells. However, this model does not consist of symmetrical prop-
erties for both cell lineages like the Cancitis model and PV model. We specify that stem
cells may self renew and die but differentiate only into the megakaryocytic lineage. A
megakaryocyte may die or shed into platelets. Moreover, we include multiple TPO
feedback on healthy and malignant cells. We consider that TPO inhibits the death rate
of healthy megakaryocytes and malignant platelets. Furthermore, TPO stimulates the
differentiation rate of megakaryocytes and the self-renewal rate of stem cells in both lin-
eages. TPO is either eliminated naturally or degraded by platelets. Thus, the ET model
consists of seven ordinary non-linear ODEs, the number of HSC (x0), the number of
megakaryocytes (MEG-xm), the number of platelets (xp) the number of MSC (y0), the
number of malignant megakaryocytes (MMEG-ym), the number of malignant platelets
(MPLT-yp) and the concentration of TPO (T ).

We perform an analytical investigation of steady states and their stability wherever is
possible. However, a numerical investigation has been given much attention to describe
behavior of the system. We characterize the steady states and their stability. A set of bi-
furcation diagrams capture the interesting dynamics of the model. Various approaches
to numerical investigation reveal that stem cell parameters describe the possible topolo-
gies. For instance, Fig. 5.3.3 illustrates different types of stable and unstable steady
states when the death rates of stem cells dx0 and dy0 are varied.
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Fig. 1.4.3 The stability of the steady states, i.e. trivial, malignant, hematopoietic or coexistence, de-
pending on the parameters dx0 and dy0. The stable steady states are written as a subscript of D and
unstable steady states are written as a superscript of D.

The derived results by sensitivity analysis further support the importance of stem
cell parameters. We found that the self-renewal and death rates of the stem cells influ-
ence all the included variables. However, we may not ignore the significance of niche
inhibiting factors of the stem cells. We may obtain a stable or unstable co-existing
steady state by perturbing niche inhibiting parameters. The excellent fits of clinical
data during treatment are obtained by perturbing dx0 and dy0. For the available data be-
fore and during treatment, we identify a set of parameters for pre-treatment data-fit and
perturb dx0 and dy0 while fitting data of treatment period for the same subject. Apart
from data fitting, we conduct an in silico analysis of TPO in patients with ET. Our model
indicates that reducing TPO concentration may reduce the blood counts in bone mar-
row and bloodstream, but it might not reduce the disease load. In general, ET does not
shorten the life expectancy of a patient. However, patients having a history of throm-
bosis are considered to be at intermediate risk. TPO serum levels may be administered,
preventing the risk of thrombosis. The TPO mechanisms in the pathogenesis of ET are
yet to be revealed. In short, we need more clinical data containing TPO measurements
for ET patients to validate our results.

In previous chapters, we have performed a series of investigations for myeloid ma-
lignancies. The contributions further motivate us to extend our mathematical model and
study the combined dynamics of erythrocytes and platelets. However, in the first step,
we do not include malignant cells because the mathematical model setting requires cal-
ibration and validation for healthy individuals. Thus, a few set of interesting questions
arise for investigation,

• Which subsets of parameters are important for the independent mechanisms of
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erythropoiesis and thrombopoiesis?

• How do EPO and TPO affect different cell populations?

• Which parameters are sensitive for the model outcome?

• How does the study contribute to understand the clinically observed dynamics?
In Chapter 6, we propose a framework for a novel mathematical model [105] de-

scribing a coupled mechanism of erythropoiesis and thrombopoiesis to address the
questions mentioned above. The seven-dimensional mathematical model consists of
non-linear ODEs. The three ODEs describe the dynamics of HSC (x0), megakaryocyte-
erythroid progenitor (MEP-xc) and megakaryocytes (MEG-xm) in the bone marrow,
whereas four ODEs are considered for the erythrocytes (RBC-xr), platelets (PLT-xp),
EPO (E) and TPO (T ). Furthermore, we incorporate multiple feedback regulated by
EPO and TPO for the production of cell populations.

We assume that HSC differentiates into MEP cells where MEP cells have potential
to give rise to both erythroid and megakaryocytic cells and megakaryocytes shed into
platelets [32]. Reviewing literature discloses various physiological processes relating
EPO and TPO with different types of cells from where we capture a few necessary
mechanisms. For instance, TPO stimulates HSC by affecting the self-renewal of HSC,
EPO stimulates RBC differentiation and inhibits their death rate. Moreover, TPO stim-
ulates RBC and PLT count and PLT stimulates the degradation of TPO while TPO
inhibits the death rate of MEG and EPO inhibits megakaryopoiesis.

Interestingly, erythropoiesis and thrombopoiesis subsystems can be independently
analyzed apart from the full model. These subsystems are useful for estimating impor-
tant subsets of the full model parameters involved in the various clinical experiments.
In addition, the subsystems are prioritized in clinical trials where the physicians are in-
terested in observing hematological parameters specific to erythroid or megakaryocyte
lineage. However, the drawback of subsystems is that they are unable to represent
the coupled mechanisms between erythropoiesis and thrombopoiesis. The simplified
structures of subsystems allow us to perform mathematical investigations and find their
steady states. These subsystems have a unique positive steady state and stability condi-
tions of these steady states are stated.

A sensitivity analysis shown in Fig. 1.4.4 (Fig. S6 in [105]) identifies the sensitive
parameters for variables involved in the model. We choose a 10% variation in the
parameter values to observe the changes in cell count and concentration of EPO and
TPO. Fig. 1.4.4a shows -10% variation, whereas Fig. 1.4.4b shows +10% variation in
parameter values.

1. HSC parameters: The self-renewal rate rx, death rate dx0 and inhibiting factor
cxx involved in HSC do not affect erythrocytes and EPO. However, increasing
rx increases the other cell population (HSC, MEP, MEG) and decreases the TPO
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levels or vice versa. In contrast to rx, increasing dx0 and cxx reduces the HSC,
MEP, MEG and PLT count while increases the TPO level. Notice, HSC, MEP,
MEG and PLT count is equivalently increased or decreased.

2. MEP parameters: The differentiate rate ax, amplification factor Ax, a fraction
of MEP bx and death rate of MEP dxc are involved in MEP dynamics. Decreasing
Ax and bx shows a little increase in HSC and MEP count however, MEG and PLT
count is reduced by 10%, whereas the TPO levels are increased or vice versa. The
change in EPO level and RBC count is not noticeable compared to bx when Ax is
decreased. dxc is the least sensitive parameter involved in the MEP equation.

3. Subsystem 1 (Erythropoiesis): The production of RBC is affected by δxr1 and
δxr2 and the death rate of RBC is affected by ηxr1 and ηxr2. Moreover, EPO
production involves pE and k0 whereas, the degradation of EPO is denoted by
kE . The influence of parameters on HSC and MEP involved in subsystem 1 is
not notable. Decreasing δxr1 and ηxr2 decreases the RBC and PLT count while
EPO and TPO levels are increased or vice versa. Similarly, reducing δxr2 and ηxr1
increases the RBC and PLT count and decreasing the EPO and TPO levels or vice
versa. Reducing pE and increasing k0 and kE , increases the MEG and PLT count,
and reduces the RBC count, EPO and TPO levels or vice versa.

4. Subsystem 2 (Thrombopoiesis): The production of MEG involves δxm1 and
δxm2 and the death rate of MEG is affected by ηxm1 and ηxm2. PLT are produced
with the rate bxpaxp and dxp is the death rate of PLT. The production of TPO is
represented by pT , whereas kT1 and kT2 show the degradation of TPO. Decreas-
ing (increasing) δxm1, axp and kT2 increases (decreases) the HSC and MEP count,
whereas decreasing (increasing) δxm2, dxp and pT decreases (increases) the HSC
and MEP count. Decreasing δxm1 and ηxm2, and increasing δxm2 and ηxm1 de-
creases EPO levels and the number of MEG and PLT, while increases the RBC
count and TPO concentration or vice versa. Moreover, reducing bxp and axp, and
increasing dxp increases the number of MEG and RBC and TPO levels while the
PLT count and EPO levels are reduced. Furthermore, decreasing pT and increas-
ing kT1 and kT2 decreases the TPO levels and the number of MEG, PLT and RBC,
whereas increasing the EPO concentration.

For accurate results, we calculate the numerical values of variables involved in the
model after perturbing the parameter values by±10% and conclude that the parameters
involved in HSC dynamics are the most sensitive for HSC and MEP count. Notice,
HSC and MEP are increased and decreased simultaneously with equal percentage. The
parameters Ax and bxp vary MEG count by 8% and we may say that they are inversely
related to each other, i.e., if Ax increases the number, bxp decreases the MEG count.
Analyzing the PLT count, the parameters Ax and dxp differ PLT count by 8% and 6%
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respectively. Considering RBC count and EPO, we notice that pE , kE and k0 perturb
the variables by 5%. Note, kE and k0 have the same effect, i.e., either decreases or
increases the number of RBC and EPO levels, whereas pE has an opposite effect com-
pared to kE and k0. Finally, TPO concentration is sensitive toAx and pT and we observe
a 6% variation in TPO levels when these parameters are changed. However, Ax and pT
have inverse effects on TPO levels. If one induces the increase, the other decreases the
levels.

(a)

(b)

Fig. 1.4.4 Panels (a) and (b) show the effect when parameters are decreased and in-
creased by 10% respectively. For each parameter, seven columns are shown; blue, red,
mustard, purple, green, light blue and maroon correspond to the average of x0, xc, xm,
xp, xr, E and T . Parameters in red represent the subsystem 1 and parameters in blue
represent the subsystem 2.

Furthermore, we calibrate the model by fitting to various experimental data set. The
appropriate fitting of data is an appealing feature of the model. The model and its sub-
systems stipulate excellent results which adequately describe many critical situations
such as recovery of the blood cells after phlebotomy, body’s reaction to different ad-
ministration regimens of EPO and TPO. For the default values of parameters, we are
able to fit a few data sets for of phlebotomy. Furthermore, the subsystems are in ex-
cellent agreement with the data. These subsystems help us estimate parameters of the
full model in many situations where coupling between the two subsystems is of no in-
terest. For instance, the parameters ηxr1, pE and kE are estimated in subsystem 1, used
for data fitting in the full model in case where EPO dose stimulates the RBC count.
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Similarly, in another scenario, where TPO dose stimulates the platelet count, we use the
same parameters values from subsystem 2 for data fitting in the full model. However,
a drawback of these nested models is their inability to explain the coupled mechanisms
of full model. For example, in [50], the authors were interested in investigating PLT
count when EPO injection is given. In such situations, our full model may interpret the
outcomes of clinical trials.

Besides data fitting, we conduct several other in silico experiments for a virtual
subject. For example, the transfusion of red blood cells and platelets. These procedures
are primarily preferred for hematological diseases because such in vivo experiments are
critical for healthy individuals. Our model indicates that HSC remains unaffected after
blood transfusion and apheresis. During these treatments, the mechanism affecting HSC
are not yet well understood. Therefore, we might not interpret this effect accurately in
a physiological sense. In our model, we are able to investigate the synergy between
EPO and TPO and simulate the combined effect of EPO and TPO dose. The analysis
shows that HSC, MEP and RBC count are increased, whereas the MEG and PLT count
is first decreased, and then after a few days, the number of MEG and PLT is increased.
However, when the TPO dose is given alone, we have not seen this sudden drop in
MEG and PLT count. According to our perception, this sudden drop can be eliminated
by decreasing inhibiting effect of EPO on MEG.

In summary, the presented model has the novel feature of simulating and replicating
the coupled dynamics of erythropoiesis and thrombopoiesis. The adaptations necessary
to combine them are discussed in detail. We demonstrate how the proposed model
and its subsystems can develop clinically meaningful predictions regarding EPO and
TPO applications. The overall analysis strengthens the argument that our model is a
valid candidate in clinical settings for various experiments. As a future perspective, the
model can be extended for multiple hematological diseases where we may include the
different pathological aspects for the novel intervention strategies.

1.5 Concluding Remarks and Future
Perspectives

In this thesis, a series of mathematical models describing the physiology and pathol-
ogy of cells have been discussed with various feedback loops. We briefly explain the
similarities and differences between the models. In each proposed model, a mechanism-
based approach is employed however, only the essential mechanisms are captured. The
models consist of one HSC compartment with a common structure in all models, i.e.,
HSC may self-renew, die or differentiate into the progenitor cells. The niche feedback
inhibits HSC self-renewal and is implemented as Michaelis-Menten like expression.
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HSC differentiates into the mature blood cells, which are distinct in the models. For
instance, in Chapter 2 (Cancitis model), the mature blood cell type is not distinguished.
In Chapter 3 and Chapter 4 (PV model), red blood cells are specific. In Chapter 5(ET
model), platelets are considered, and in the last Chapter 6, combined dynamics of red
blood cells and platelets are introduced.

The Cancitis model, PV model and ET model, except the model proposed in Chap-
ter 6, contain malignant cell lineage where malignant stem cells have a similar structure
to HSC. Another common feature is considering the progenitor cells as intermediate
steps between stem cells and mature blood cells. Unlike the ET model, the Cancitis
model and PV model have a symmetrical structure of healthy and malignant cells. The
Cancitis model entails the debris of the dead cells and immune system influenced by
inflammatory stimuli. These mechanisms are not considered in the remaining mod-
els since the remaining models focus on the inclusion of principal growth factors for
mature blood cells. The Cancitis model, PV model and ET model revolve around the
importance of stem cell dynamics. The models reveal that HSCs contribute to the initi-
ation and pathogenesis of MPNs. Therefore an efficacious treatment should act on stem
cell level. In addition, EPO and TPO therapies may refer as preventive therapies for
thrombosis. However, they cannot reduce the disease load and reverse a malignant state
to a healthy state. Its possible explanation may be the inappropriate interpretation of
JAK2 allele burden. However, we need clinical data to advocate our results and draw
any conclusion. Above all, each model can regenerate clinically observed dynamics
and suggest novel intervention strategies. Finally, in Chapter 6, we integrate the healthy
hematopoiesis part of the PV and ET model. Based on existing clinical information, we
decide which mechanisms are essential to include. We calibrate the model by compar-
ing different simulation settings to existing experimental results from the literature.

A motivating application of the proposed model in Chapter 6 is to observe the evo-
lution from ET to PV. However, a shortage of time does not enable us to complete the
ongoing work in this thesis. TPO related MPL mutations are found in 1-3% cases of
ET [14; 89] and increased TPO serum levels are observed in many patients with ET
[51; 69; 98]. However, many novel mechanisms relating to high TPO levels and ab-
normal platelet production in ET are still hidden and waiting for uncovering. Similarly,
EPO serum levels help in distinguishing between primary polycythemia (PV) and sec-
ondary polycythemia. In patients with PV, increased erythrocytes result in suppression
of EPO levels. Although EPO therapy has been used in many diseases, it is not yet been
initiated for treatment in PV.

In clinical practice, the treatment of MPNs aims to correct the abnormal blood
counts, and in some cases, specific treatments are applied depending on the type of
MPNs. Phlebotomy is also considered as first-line therapy for PV to remove excess red
blood cells from the body. In [2] relations between hematocrit and EPO is investigated
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in normal adults and PV patients. The EPO concentration is increased each time after
phlebotomy is performed [3; 130]. Moreover, platelet apheresis is often preferred for
patients with ET, where platelets are removed from the blood [17]. PMF patients having
anemia can be treated with blood transfusions. In addition, there are a variety of ways
to treat anemia, for example, the EPO therapy [52].

Based on estimates of parameters for a typical healthy individual, the proposed
model, in Chapter 6, is used to explore the changes in some of these parameters neces-
sary to account for the dynamics of hematological diseases as done by several authors
[26; 39; 67; 73; 95]. The model may also be extended from the healthy subjects to
patients of MPNs by coupling the model to malignant cells using a similar approach by
[7; 110]. It may help physicians initiate therapy and observe patient’s hematological pa-
rameters during treatment. However, a few particular challenges need to be addressed.
For example, valid data of MPNs patients is required, including those who develop PV
from ET over time. The underlying pathological dynamics have to be modeled, such as
the feedback mechanisms of EPO and TPO in disease progression.

Many mathematical models are developed with the specific purpose of knowledge
discovery of biological systems. Alternatively, models can be used to test hypotheses,
estimate important parameters by fitting a model to data, or determine which variables
or interactions are the most essential to a biological process. Using mathematical meth-
ods, we can interpret and uncover many mechanisms. For instance, bifurcation analysis
and sensitivity analysis are two different methods used to describe how small changes in
an input parameter can cause a qualitative change in the system’s behavior. We can also
isolate parts of the mathematical system based on fast-slow dynamics (quasi steady state
assumption) and observe an impact on the qualitative behavior of the system. Given val-
ues for which such changes occur are expected to be within a realistic range, this can
indicate the reasons for heterogeneity in patients. If the model structure and behavior
reflect the biological system and produce reliable results, it is intended to improve the
model in collaboration with professionals in the field. Mathematical models also have
the advantage that a range of in silico experiments can be performed, which are not
possible or quite expensive in medical practice, even with animal experimentation.

Apart from advantages, we can not ignore the limitations and challenges of research
in this field. The major problem is achieving enough data that has measurements over
time. Determining the parameters on limited data results in uncertain parameter-values.
In order to retain simplicity, the modelers prefer to model the biological mechanisms
by considering the minimum range of important processes, which results in leaving out
many mechanisms. However, the modelers should aim not to produce blue-sky research
but be directed towards a definite goal.
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CHAPTER 2

Mathematical analysis of the Cancitis
model and the role of inflammation in
blood cancer progression
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Abstract: Recently, a tight coupling has been observed between inflammation and blood cancer such
as the Myeloproliferative Neoplasms (MPNs). A mechanism based six-dimensional model - the Canci-
tis model - describing the progression of blood cancer coupled to the inflammatory system is analyzed.
An analytical investigation provides criteria for the existence of physiological steady states, trivial,
hematopoietic, malignant and co-existing steady states. The classification of steady states is explicitly
done in terms of the inflammatory stimuli. Several parameters are crucial in determining the attract-
ing steady state(s). In particular, increasing inflammatory stimuli may transform a healthy state into
a malignant state under certain circumstances. In contrast for the co-existing steady state, increasing
inflammatory stimuli may reduce the malignant cell burden. The model provides an overview of the
possible dynamics which may inform clinical practice such as whether to use inflammatory inhibitors
during treatment.

Keywords: cancer; inflammation; mathematical modelling; steady states; stability

1. Introduction

Myeloproliferative Neoplasms (MPNs) is a group of hematopoietic stem cell disorders, including
essential thrombocytosis (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [1, 2]. The
pathogenesis of these neoplasms is yet to be fully discovered. For patients with MPNs, the mutation
JAK2V617F is found present in the most cases of ET (50%) and in 95% of the cases with PV and
PMF ultimately leading to acute myeloid leukemia (AML) [3,4]. This suggests a biological continuum
where the diseases evolve from early cancers (ET and PV) into the advanced myelofibrosis stage, with
an increasing load of JAK2V617F mutations from a low burden at ET and PV to a high load [2, 5].
MPNs imply an increased risk for the development of other cancers [1, 4].

Recent research supports that MPNs can be regarded as chronic inflammatory diseases and MPNs
has been described as a ”human inflammation model”, which leads to premature atherosclerosis, clonal
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evolution and an increased risk of second cancers. [2, 3, 6]. This is based on evidence from clinical
observations, experiments and molecular studies [3].

Several insightful theoretical studies have been published on control dynamics of biological net-
works. Mathematical models have been proposed [7–9] describing the control networks for regulation
of stem cell lineage. Mathematical modelling of cancer is useful for understanding of cancer initia-
tion, progression [10, 11], to confirm or dismiss biological/medical hypotheses, and to study effects of
single or multi modality treatments in silico. The mathematical model presented in [12] shows that
successful therapy may eliminate tumour stem cells. A five-dimensional model given in [13] includes
active and quiescent stem cells, progenitor cells, mature cells and one immune compartment describ-
ing chronic myelogenous leukemia. In [14] a mathematical model of cancer stem cell dynamics is
proposed and the different scenarios of cancer initiation and possible treatments strategies have been
discussed. The mathematical model given in [15] is useful for investigating the impact of cytokine-
dependence of acute myeloid leukemic cells. In addition, the model allows distinguishing between
cytokine-dependent and cytokine-independent acute myeloid leukemia (AML) and both scenarios are
supported by patient data.

However, only a few mathematical models of MPNs exist. Some work includes investigation of the
origin of myeloid malignancies with MPNs as a particular example [16]. In [17], a two dimensional
model of MPNs is investigated without including the immune response dynamically. The Cancitis
model including chronic inflammation as the trigger and driver of MPNs was proposed in [5]. In
[5], T-cells are not explicitly considered whereas, in [18], the effect of these cells has been included
specifically. The analysis of a two dimensional mathematical model [18] is used to discuss in silico
effect of existing and novel treatments. The model presented here is identical to the model presented
in [5] except for the simpler functional form of the stem cells niche interaction used here and in [18].

In the present paper we conduct a thorough mathematical investigation of the Cancitis model and
explore the intricate coupling between inflammation and MPNs. We address the following questions
which have not been systematically investigated previously: Which steady states of the system are
feasible and which trajectories are attracted to the steady states? How do the number and stability of the
steady states change when varying the parameters, in particular, the exogenous inflammatory stimuli,
self-renewal and death rates of stem cells, and inhibitory strength of the stem cell niche interaction?
Which set of clustered parameters control the dynamics of the system? Does the analysis suggest
correlated parameters? The bio-medical applications of the model analysis are discussed, e.g. how the
inflammation influences the transition between healthy and diseased states. In addition, the analysis
predicts effects of ongoing and potential combination therapies.

2. The Cancitis model

The Cancitis model stated in [5] is illustrated in Figure 1, with the system of differential equations
shown in system (2.1). In this section the details of the model and the reasoning behind it is presented.

The model describes the proliferation of hematopoietic stem cells (HSC) into hematopoietic mature
cells (HMC) and likewise malignant stem cells (MSC) into malignant mature cells (MMC). Addition-
ally, the model considers the number of dead cells and the level of inflammation. The debris from the
dead cells stimulates the immune response, which in turn affects the self-renewal rate of both HSCs
and MSCs.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8268–8289.
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Figure 1. The boxes illustrate the compartments of the Cancitis model. The arrows represent
the rates of the flows between and out of these compartments. Red stipulated arrows represent
the effect of inflammation which is stimulated by exogenous inflammatory stimuli, I. Green
stipulated lines represent the bone marrow niches interaction with a ’crowding’ competition
between HSC and MSC. Stem cells (HSC and MSC) may self-renew, die or differentiate,
while mature cells die after a while (MMC, HMC). Dead cells (a) are engulfed by the immune
cells (s), that stimulate production of stem cells, increase risk of mutation and increase the
removal of dead cells (For more details, see main text).

The model consists of six ordinary differential equations one for each compartment; the number of
HSC (x0), the number of HMC (x1), the number of MSC (y0), the number of MMC (y1), the number
of dead cells (a), and the level of inflammation (s).
The equations are of the general form,

{
Change in amount of a
compartment per time

}
=

{
rate of production times
the producing source

}
−

{
rate of elimination times the
amount in the compartment

}
.

and read specifically,

ẋ0 = rx(φxs − αx)x0 − rmsx0, (2.1a)
ẋ1 = axAxx0 − dx1 x1, (2.1b)
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ẏ0 = ry(φys − αy)y0 + rmsx0, (2.1c)
ẏ1 = ayAyy0 − dy1y1, (2.1d)
ȧ = dx0x0 + dy0y0 + dx1x1 + dy1y1 − eaas, (2.1e)
ṡ = rsa − ess + I, (2.1f)

with

αx =
dx0 + ax

rx
and αy =

dy0 + ay

ry
. (2.2)

The expressions for the inhibitory niche feedback are chosen as Michaelis-Menten-like functions in
contrast to [5],

φx ≡ φx(x0, y0) =
1

1 + cxxx0 + cxyy0
, (2.3a)

φy ≡ φy(x0, y0) =
1

1 + cyxx0 + cyyy0
. (2.3b)

A stem cell can proliferate in three ways; symmetric self-renewal (resulting in two new stem cells),
asymmetric self-renewal (resulting in one stem cell and one progenitor cell) and symmetric differen-
tiation (resulting in two progenitor cells). The rate of self-renewal is denoted as rx and ry for HSC
and MSC respectively. The self-renewal of stem cells is known to be inhibited by self-regulating niche
feedback [19], resulting in decreased self-renewal when the level of stem cells in the bone marrow is
high. Adopting the approach taken in [12], [20] and [21], this is implemented by Michaelis-Menten-
like functions φx(x0, y0) and φy(x0, y0), shown in Eq (2.3b). Allowing the feedback to be different for
HSC and MSC, the constants cxx and cxy capture the effects of HSC and MSC on the self-renewal of
HSC, while cyx and cyy capture the corresponding effects on the self-renewal of MSC. Additionally, the
inflammatory level also affects the self-renewal [22, 23]. This leads a to self-renewal term per cell of
rxφxs and ryφys for HSC and MSC respectively. The parameter ci j describes the inhibitory strength of
the signalling bone marrow niche feedback from cell type j onto cell type i. It is generally assumed
that cyy ≤ cyx ≤ cxy ≤ cxx, since malignant cells are less sensitive to inhibitive niche feedback than
hematopoietic cells [22, 24].

In [25], a multi compartmental model is proposed relying on a single external feedback mechanism.
It is shown that the equilibrium level of mature cells depends only on the self-renewal parameters
for the HSC and it is independent of the other compartments. Therefore, the progenitor cells are
considered as intermediate steps between stem cells and mature cells, and are implicitly accounted
for by multiplication factors Ax and Ay for HSC and MSC respectively. The rate at which the HSC
reduces in transforming to HMC is denoted by ax while the similar rate for MSC transforming to
MMC is denoted by ay. As such, the HMC and MMC accordingly increase with rates axAx and ayAy

respectively. To account for the cell apoptosis, the four types of cells are removed with rates dx0 , dx1 ,
dy0 and dy1 , for the corresponding cell types.

Genetic mutations are by nature to be described as Poisson processes [26–29]. However, not all
mutations are malignant; only mutation which happens on a particular location of the DNA, i.e. at
specific amino acids causes a specific mutation, e.g. the JAK2V617F mutation. The probability for
hitting a specific location is about 1/30000. In [30] the average mutation probability is estimated to
0.0035 per year, which corresponds to a specific mutation probability of 0.0035/30000 = 1.210−7
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per year. Thus, the probability for one specific malignant mutation is about 10−7 per cell per year.
Moreover, the mutation is affected by the inflammation, s [31, 32], which is explicitly stated, and
resulting in the effective mutation rate rms. Assuming three sequential mutations are needed to generate
a specific malignant stem cell the resulting probability becomes much higher (10−25 per year per cell
if the mutations are assumed independent). This could be implemented in the otherwise deterministic
model but it would increase the computational cost, since it depends on both the probability of a single
cell mutation and the number of potential mutating cells at a given time, which itself is determined by
the preceding mutational history. To avoid such complications we initialize by having a single MSC
and none MMC, and put the mutation rate to zero. This is justified by the fact that the probability of a
single cell mutating is small compared to the self-renewal of the MSCs. Thus, the first mutation drives
the development leaving a later identical mutation insignificant to the dynamics, which is confirmed
by numerical simulations.

The number of dead cells has an up-regulatory effect on the immune response denoted rs. External
environmental factors also influence the inflammatory level. This is captured in the model by the
term I. Throughout we take I > 0, as a perfect sterile environment is an utopic idealization. This term
may vary over time due to environmental changes, but in our mathematical analysis we will consider I
as piecewise constant. The inflammation, s, is down-regulated naturally by the eliminating rate es.

Additionally, the change in the amount of dead cells per time is given by the death rate times the
number of cells minus the clearance by the immune system. As given in [33] clearance is described by
a second order equation −eaas since the engulfed immune cells have to meet the dead cells debris to
mediate endocytosis. Thus, clearance is bilinear in both a and s representing the activity of the immune
system, eliminating the dead cells with an elimination rate ea.

Initial conditions for the Cancitis model in equations are needed for the given system of differential
equations (2.1–2.3b) . Here, we mainly focus on the model after the first mutation, i.e. with y0(0) = 1,
y1(0) = 0, rm = 0, and the remaining variables as those in the healthy steady state (see below). All
other parameter values are assumed to be positive.

2.1. Steady states of the model

The stable steady states are attractors in the six dimensional phase space. This motivates systematic
study of the existence and location of steady states and how this is affected by perturbing parameter
values.

Motivated by the biology where the number of cells and concentrations are required to be non-
negative numbers, we will use the terminology that a steady state is admissible if and only if all the
components are non-negative, i.e. if and only if a steady state is in the non-negative octahedron.

Consider the system of Eqs (2.1–2.3b). For steady state solutions, ẋ0 = ẋ1 = ẏ0 = ẏ1 = ȧ = ṡ = 0,

(
s̄
αx
− (1 + cxx x̄0 + cxyȳ0)

)
x̄0 = 0, (2.4a)

(
s̄
αy
− (1 + cyx x̄0 + cyyȳ0)

)
ȳ0 = 0, (2.4b)

x̄1 =
axAx x̄0

dx1
, (2.4c)
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ȳ1 =
ayAyȳ0

dy1
, (2.4d)

dx0 x̄1 + dx1 x̄1 + dy0ȳ0 + dy1ȳ1 − eaās̄ = 0, (2.4e)

ā =
es

rs

(
s̄ − I

es

)
. (2.4f)

The values of x0, x1, y0, y1, a and s at steady state are denoted as x̄0, x̄1, ȳ0, ȳ1, ā and s̄ respectively.
The admissible steady states can be classified as,

• a trivial steady state if and only if x̄0 = ȳ0 = 0,
• a (purely) hematopoietic steady state if and only if ȳ0 = 0 and x̄0 > 0,
• a (purely) malignant steady state if and only if x̄0 = 0 and ȳ0 > 0, or
• a co-existing steady state if and only if x̄0 > 0 and ȳ0 > 0.

The admissibility of steady states necessitates certain inequalities to be fulfilled, which leads to restric-
tion on the parameters, e.g. from Eq (2.4f), non-negativity of ā requires s̄ ≥ I

es
. I is assumed to be

positive thus I
es
> 0. Hence

s̄ ≥ I
es
> 0, (2.5)

for any admissible steady state. Note that, x̄1 and ȳ1 are non-negative if and only if x̄0 and ȳ0 are
non-negative, respectively. Substituting expressions of x̄1 and ȳ1 in Eq (2.4e) gives,

eaās̄ = βx x̄0 + βyȳ0, (2.6)

where βx = axAx + dx0 and βy = ayAy + dy0. Thus, Eqs (2.4e–2.4f) and (2.6) result in a second order
equation in s̄ having the general solution,

s̄± =
I

2es

(
1 ± √

1 + ζ(βx x̄0 + βyȳ0)
)
, (2.7)

where ζ = 4rses
eaI2 > 0. s̄− is negative for positive x̄0 or ȳ0. In case, (x̄0, ȳ0) = (0, 0), Eq (2.7) leads to

s̄− = 0 contradicting s̄ > 0. Thus, s = s̄− is not biologically realizable and we therefore put s̄ = s̄+ in
the further analysis. Note that, for non-trivial steady states, s̄ > I

es
. In addition, non-negativity of x̄0

and ȳ0 implies non-negativity of x̄1, ȳ1, s̄ and ā.
Hence, the existence of admissible steady states x̄0, ȳ0, x̄1, ȳ1, s̄ and ā follows from Eqs (2.4a), (2.4b)
and (2.7).

Below we make a complete analysis of the existence of various steady states depending on how I
relates to the remaining parameters. This choice is due to the fact that the external inflammatory stimuli
I is of great interest in health care and to elucidate consequences of using inflammation inhibitors as
part of treatment.

Proposition 1. A trivial steady state E0 always exists,

E0 =

(
0, 0, 0, 0, 0,

I
es

)
. (2.8)
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Proof. Follow directly from Eqs (2.4e) and (2.5). �

Hematopoietic steady states may exist depending on the rest of the parameter values. As above
we chose the inflammatory stimuli I as the leading parameter and make a complete analysis of possible
hematopoietic steady states. The analysis of the existence of the hematopoietic steady states depends
crucially on the following lumped parameters,

IH = 2

√
esrsβx

eacxx
− rsβx

eacxxαx
, (2.9)

ζH1 = 2esαx − rsβx

eacxxαx
, (2.10)

ζH2 = esαx, (2.11)

ζH3 =
rsβx

eseacxx
, (2.12)

the last two always being positive.

Proposition 2. Two hematopoietic steady states EH± may exist in the following cases,

• If α2
x ≤ ζH3

4 then EH+ exists if and only if I > 0.
• If ζH3

4 < α2
x ≤ ζH3 then EH+ exists if and only if I ≥ IH.

• If ζH3 < α
2
x then EH+ exists if and only if I > ζH2.

• If α2
x ≤ ζH3

4 then EH− exists if and only if I ≤ ζH2.
• If ζH3

4 < α2
x ≤ ζH3 then EH− exists if and only if IH ≤ I ≤ ζH2.

• If ζH3 < α
2
x then EH− does not exist.

In case of existence, EH+ = (x̄0H+, x̄1H+, 0, 0, āH+, s̄H+) is given by x̄0H+ =
1

2escxxαx

(
I − ζH1 +

√
(ζH1 − I)2 − 4esαx(ζH2 − I)

)
, s̄H+ = αx(1 + cxx x̄0H+), āH+ =

βx x̄0H+

ea s̄H+
,

and x̄1H+ = axAx x̄0H+

dx1
whereas EH− = (x̄0H−, x̄0H−, 0, 0, āH−, s̄H−) is given by x̄0H− =

1
2escxxαx

(
I − ζH1 −

√
(ζH1 − I)2 − 4esαx(ζH2 − I)

)
, s̄H− = αx(1 + cxx x̄0H−), āH− =

βx x̄0H−
ea s̄H−

, and
x̄1H− = axAx x̄0H−

dx1
.

Proof. A hematopoietic steady state EH follows from Eqs (2.4a) and (2.7) with y0 = y1 = 0 as
possible positive solutions to

x̄2
0H +

1
escxxαx

(ζH1 − I)x̄0H +
1

esc2
xxαx

(ζH2 − I) = 0. (2.13)

For the solutions to (2.13) to be real,

(ζH1 − I)2 ≥ 4ζH2(ζH2 − I). (2.14)

In case I ≥ ζH2, (2.14) is always fulfilled. In case I < ζH2, (2.14) is equivalent to

I2 +
2rsβx

eacxxαx
I +

rsβx

eacxxαx

(
rsβx

eacxxαx
− 4esαx

)
≥ 0. (2.15)
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Solving for I we get,

I ≥ IH = γx

(
α2

x −
ζH3

4

)
, (2.16)

with

γx =

4esrsβx

eacxxα
2
x

rsβx
eacxxαx

+ 2
√

esrsβx
eacxx

> 0. (2.17)

From Eqs (2.14) and (2.16) it follows that the solutions to Eq (2.13) are real for I ≥ ζH2 or IH ≤ I <
ζH2 in case IH < ζH2.

Whenever the solutions to (2.13) are real, they are given by

x̄0H± :=
1

2escxxαx

(
I − ζH1 ±

√
(ζH1 − I)2 − 4esαx(ζH2 − I)

)
, (2.18)

which depends on the sign of the following five quantities,

ζH1 = 2
es

αx

(
α2

x −
ζH3

2

)
, (2.19)

IH = γx

(
α2

x −
ζH3

4

)
, (2.20)

∆12 = ζH1 − ζH2 =
es

αx

(
α2

x − ζH3

)
, (2.21)

∆H1 = ζH1 − IH =
es

αx +
√
ζH3

(
α2

x − ζH3

)
, and (2.22)

∆H2 = IH − ζH2 = − es

αx(αx +
√
ζH3)2

(
α2

x − ζH3

)2 ≤ 0, (2.23)

where the last one immediately implies that the criteria for real solutions of Eq (2.13) is I ≥ IH. If the
solutions, x̄0H±, are positive and real, then the formulas for the remaining variables easily follow from
Eqs (2.4a–2.4f).

To continue we first consider x̄0H+ and afterwards x̄0H−.
For α2

x ≤ ζH3
4 , it follows from Eqs (2.19)–(2.22) that ζH1 < 0, ζH1 < ζH2, IH ≤ 0, and ζH1 < IH. Thus,

x̄0H+ > 0 if and only if I > 0.
For ζH3

4 < α2
x ≤ ζH3

2 , it follows from Eqs (2.19)–(2.22) that ζH1 ≤ 0, ζH1 < ζH2, IH > 0, and ζH1 < IH.
Thus, x̄0H+ > 0 if and only if I > IH.
For ζH3

2 < α2
x ≤ ζH3 , it follows from Eqs (2.19)–(2.22) that ζH1 > 0, ζH1 ≤ ζH2, IH > 0, ζH1 < IH, and

IH ≤ ζH2. Thus, x̄0H+ > 0 if and only if I > IH.
For ζH3 < α2

x are ζH1 > 0 , it follows from Eqs (2.19)–(2.23) that ζH1 > ζH2, IH > 0, ζH1 > IH, and
IH ≤ ζH2. Thus, x̄0H+ > 0 if and only if I > ζH2.

Similar, x̄0H− is real if and only if I ≥ IH and ζH1 < I < ζH2.
For α2

x ≤ ζH3
4 , it follows from Eqs (2.19) and (2.20) that ζH1 < 0 < ζH2, and IH ≤ 0. Thus, x̄0H− > 0 if

and only if I < ζH2.
For ζH3

4 < α2
x ≤ ζH3

2 , it follows from Eqs (2.19), (2.20) and (2.23) that ζH1 ≤ 0 < ζH2, IH > 0, and
IH < ζH2. Thus, x̄0H− > 0 if and only if IH ≤ I < ζH2.
For ζH3

2 < α2
x ≤ ζH3 , it follows from Eqs (2.19)- (2.21) and (2.23) that 0 < ζH1 < ζH2, IH > 0, and
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IH < ζH2. Thus, x̄0H− > 0 if and only if IH ≤ I < ζH2.
For ζH3 < α2

x , it follows from Eqs (2.20) and (2.21) that ζH1 > ζH2 and IH > 0. Thus, x̄0H− > 0 if and
only if ζH1 < I < ζH2, which is a contradiction.

�

The conditions for the existence of the hematopoietic steady states are summarized in Table 1.

Table 1. Summarizing necessary and sufficient criteria for admissibility of EH. The first
column conditions how αx is related to ζH3, the middle column shows the existence conditions
for EH+ and the last column shows the existence conditions for EH± explicitly in terms of I.

For Only EH+ if Both EH+ and EH− if

α2
x <

ζH3
4 I > ζH2 I ≤ ζH2

ζH3
4 < α2

x < ζH3 I > ζH2 IH ≤ I ≤ ζH2

ζH3 < α
2
x I > ζH2 ∅

Malignant steady states may exist depending on the range of the parameters. As above we chose
the inflammatory stimuli I as our leading parameter and make a complete analysis of possible malig-
nant steady states. The analysis of the existence of the malignant steady states depends crucially on
the following lumped parameters,

IH = 2

√
esrsβy

eacyy
− rsβy

eacyyαy
, (2.24)

ζL1 = 2esαy −
rsβy

eacyyαy
, (2.25)

ζL2 = esαy, (2.26)

ζL3 =
rsβy

eseacyy
, (2.27)

the last two being positive.

Proposition 3. Two malignant steady states EL± may exist in the following cases,

• If α2
y ≤ ζL3

4 then EL+ exists if and only if I > 0.
• If ζL3

4 < α2
y ≤ ζL3 then EL+ exists if and only if I ≥ IL.

• If ζL3 < α
2
y then EL+ exists if and only if I > ζL2.

• If α2
y ≤ ζL3

4 then EL− exists if and only if I ≤ ζL2.
• If ζL3

4 < α2
y ≤ ζL3 then EL− exists if and only if IL ≤ I ≤ ζL2.

• If ζL3 < α
2
y then EL− does not exist.

In case of existence, EL+ = (0, 0, ȳ0L+, ȳ1L+, āL+, s̄L+) is given by ȳ0L+ =
1

2escyyαy

(
I − ζL1 +

√
(ζL1 − I)2 − 4esαy(ζL2 − I)

)
, s̄L+ = αy(1 + cyyȳ0L+), āL+ =

βyȳ0L+

ea s̄L+
,
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and ȳ1L+ =
axAxȳ0L+

dy1
whereas EL− = (0, 0, ȳ0L−, ȳ0L−, āL−, s̄L−) is given by ȳ0L− =

1
2escyyαy

(
I − ζL1 −

√
(ζL1 − I)2 − 4esαy(ζL2 − I)

)
, s̄L− = αy(1 + cyyȳ0L−), āL− =

βyȳ0L−
ea s̄L−

, and ȳ1L− =
axAxȳ0L−

dy1
.

Proof. Due to symmetry in indices x and y, the proof for the malignant case is equivalent to that for
the hematopoietic case except index H has to be substituted by L. �

The result is summarized in Table 2.

Table 2. Summarizing necessary and sufficient criteria for admissibility of EL. The first
column conditions how αy is related to ζL3, the middle column shows the existence conditions
for EL+ and the last column shows the existence conditions for EL± explicitly formulated in
terms of I.

For Only EL+ if Both EL+ and EL− if

α2
y <

ζL3
4 I > ζL2 I ≤ ζL2

ζL3
4 < α2

y < ζL3 I > ζL2 IL ≤ I ≤ ζL2

ζL3 < α
2
y I > ζL2 ∅

The existence of a co-existing steady state

EC = (x̄0C, x̄1C, ȳ0C, ȳ1C, āC, s̄C) ,

is far more cumbersome to deal with, since a wealth of sub-cases may arrive depending on various
inequality-relations between the parameters. To avoid many tedious but straight forward calculations
we limit ourself to the non-degenerate cases where ζC1 = αycyx−αxcxx , 0 and ζC2 = αycyy−αxcxy , 0.

From Eqs (2.4a and 2.4b), a linear relation between x̄0 and ȳ0 directly follows,

ζC1 x̄0C + ζC2ȳ0C − ζC3 = 0, (2.28)

where ζC3 = αx − αy. Thus, for the non-degenerate cases,

ȳ0C =
ζC1

ζC2

(
ζC3

ζC1
− x̄0C

)
, (2.29)

which geometrically corresponds to a straight line through
(
0, ζC3

ζC2

)
and

(
ζC3
ζC1
, 0

)
. Hence, two generic

cases arrive, for
(
0, ζC1

ζC2

)
corresponding to positive slope, ζC1

ζC2
< 0 corresponding to negative slope, ζC1

ζC2
>

0 . The first case defines a half line in the positive octahedron and in this case x̄0C ∈ (max{0, ζC3
ζC1
};∞)

and ȳ0C ∈ (max{0, ζC3
ζC2
};∞). The second case corresponds to either no admissible solution (if and only

if ζC3
ζC2

< 0 and ζC3
ζC1

< 0) or a line segment in the positive octahedron which requires that ζC3
ζC2

> 0 and
ζC3
ζC1

> 0 and in that case are x̄0C ∈ (0, ζC3
ζC1

) and ȳ0C ∈ (0, ζC3
ζC2

). From Eq (2.4a) and (2.29),

s̄C = m1 x̄0C + m0, (2.30)
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with m0 = αx(cxy
ζC3
ζC2

+ 1) and m1 = αx(cxx − cxy
ζC1
ζC2

). Before continuing, it is emphasized that ζ1, ζ2, ζ3,
m0, and m1 all are independent of I but may be positive, negative or in case of m0 and m1 zero. From
Eq (2.7) it follows that a real and positive s̄ exist for (x̄0C, ȳ0C) ∈ R+ × R+,

s̄C =
I

2es

1 +

√
1 +

ζ0

I2 (βx x̄0C + βyȳ0C)

 (2.31)

where ζ0 = 4rses
ea

> 0. Similarly, a negative real root exists. Substituting (2.29) into (2.31) give,

s̄C =
I

2es
+

√(
I

2es

)2

+
ζ0βyζC3

4e2
sζC2

+
ζ0

4e2
s

(
βx − βy

ζC3

ζC2

)
x̄0C. (2.32)

Combining Eq (2.30) and (2.32) results in,

n0 − I + n1 x̄0C =
√

I2 + n2 + n3 x̄0C, (2.33)

where n0 = 2esm0, n1 = 2esm1, n2 =
ζ0βyζC3

ζC2
and n3 = ζ0

(
βx − βy

ζC1
ζC2

)
.

Note that Eq (2.33) has no real solution if either of f (x) = n0 − I + n1x and g(x) = I2 + n2 + n3x are
negative. Thus, if both f (x) and g(x) are positive, Eq (2.33) is equivalent to,

n2
1x2 + (2n1(n0 − I) − n3) x +

(
n2

0 − n2 − 2n0I
)

= 0, (2.34)

which may have up to two real positive solutions. Hence, there can be at most two coexistence steady
states. More specifically,

x0C+ = −2n1(n0 − I) − n3

2n2
1

+

√(
2n1(n0 − I) − n3

2n2
1

)2

− n2
0 − n2 − 2n0I

n1
, (2.35)

is positive if and only if f (x0C+) > 0, g(x0C+) > 0, and

n2
0 − n2 − 2n0I

n1
< 0 or

2n1(n0 − I) − n3

n2
1

< 0. (2.36)

Similar,

x0C− = −2n1(n0 − I) − n3

2n2
1

−
√(

2n1(n0 − I) − n3

2n2
1

)2

− n2
0 − n2 − 2n0I

n1
, (2.37)

is positive if and only if f (x0C−) > 0, g(x0C−) > 0, and

2n1(n0 − I) − n3

2n2
1

>
n2

0 − n2 − 2n0I
n1

> 0 and
2n1(n0 − I) − n3

2n2
1

< 0. (2.38)

Note, some possibilities of equality signs in the inequalities are left out for simplification reasons.
Equality may occur on a set of measure zero which is unlikely for a noisy biological system and
including these possibilities makes the analysis much more messy. For practical purposes one may
first calculate the two (possibly complex) roots x of Eq (2.34) and afterwards examine whether these
are real and positive, whether f (x) > 0 and g(x) > 0, and whether the corresponding ȳ0C calculated
from Eq (2.29) is positive, thus the remaining component of EC will be positive too and the steady state
admissible.

Continuing analytically is possible but becomes somehow cumbersome and instead we point out
that for any choice of parameter values, there can be at most two coexistence steady states, their
existence and value depending on the admissibility of x0C+ (Eq (2.35)) and x0C− (Eq (2.37)).
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3. Stability and bifurcation analysis

In this section we analytically and numerically examine the stability properties of the various ad-
missible steady states of Eq (2.1) in terms of selected parameters.

3.1. Stability properties of the trivial steady state

The Jacobian of the trivial steady states E0 is a triangular matrix and four of the six eigenvalues,
−dx1,−dy1,−es and −Iea

es
, are negative but the two, rx

es
(I − esαx) and ry

es

(
I − esαy

)
, may be positive, neg-

ative, zero. Thus, by the Hartman-Grobman Theorem [34]

Lemma 1. E0 is asymptotically stable if I < es min{αx, αy}, whereas it is unstable if I > es min{αx, αy}.

At EH± the Jacobian for the hematopoietic states can be calculated (see Supplementary) and the
resulting sixth order characteristic equation shows that EH± are stable for

s̄H < αy(1 + cyx x̄0H). (3.1)

However, this is not the generic case, since αy < αx (and cyx ≤ cxx), which contradicts s̄H = αx(1 +

cxx x̄0H). Intensive numerical investigations shows that EH± are unstable.

The stability of EL is similar to that for the hematopoietic steady state except that it is stable if

s̄L < αx(1 + cxyȳ0L), (3.2)

which is fulfilled in the generic case, since αx < αy (and cxy ≤ cyy). This follows from s̄L = αy(1 +

cyyȳ0L). The Jacobian may be found in supplementary.

Lastly, consider the co-existing steady state. The Jacobian at EC may be found in supplementary.
However, it is hard to prove any result analytically and we therefore do the stability investigation
numerically the in next section.

3.1.1. Numerical Simulations and treatment scenarios

In this section, we focus on numerical results. The default values of parameters used in Figure 2 are
given in Table 3. The values are the same as given in [18].
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Table 3. Default parameter values and their lumped counterpart.

Parameter Value Unit Parameter Value Unit
rx 8.7 · 10−4 day−1 ry 1.3 · 10−3 day−1

ax 1.1 · 10−5 day−1 ay 1.1 · 10−5 day−1

Ax 4.7 · 1013 - Ay 4.7 · 1013 -
dx0 2 · 10−3 day−1 dy0 2 · 10−3 day−1

dx1 129 day−1 dy1 129 day−1

cxx 5.6 · 10−5 - cyx 5.2 · 10−5 -
cxy 5.4 · 10−5 - cyy 5.0 · 10−5 -
es 2 day−1 rs 3 · 10−4 day−1

ea 2 · 109 day−1 I 7 day
αx 2.31 - αy 1.54 -
βx 5.17 · 108 - βy 5.17 · 108 -
ζ0 1.2 · 10−12 - ζC1 −4.9 · 10−5 -
ζC2 7.4146 · 10−4 - ζC3 0.7646 -
n0 9.76 - n1 −0.51 -
n2 0.64 - n3 6.61 · 10−4 -
ζH1 8.65 - ζH2 4.62 -
ζL1 5.18 - ζL2 3.09 -
ζH3 0.69 - ζL3 0.7646 -

The model has been investigated for various choices of parameter values. In Figure 2, clusters of
five important parameters, C = cxx

cyy
, R =

ζH2
ζL2

= αx
αy

and I are considered to investigate the number of
steady states and their stability. In the default case R > 1 (Figure 2a), a trivial steady state always
exists, and for low inflammation, i.e., I < ζL2 it is stable otherwise it is unstable. For I > ζL2, a purely
malignant steady state becomes admissible. For values of I where the trivial and the malignant steady
states are admissible, the malignant steady state is stable whereas the trivial steady state is unstable. An
unstable hematopoietic steady state becomes admissible as I becomes larger than the threshold value
ζH2, and increasing I further causes emergence of a stable co-existing steady state while the malignant
steady state becomes unstable. Thus, for I > ζH2 and C sufficiently small, four steady states appear
namely the trivial, the hematopoietic, the malignant and the co-existing steady states where the co-
existing steady state is stable and the rest are unstable. This illustrates that the co-existing steady state
depends on I, C and R. Increasing C from a small, initial value makes the co-existing steady state
vanish and the malignant steady state becomes stable whereas the trivial and the hematopoietic steady
states remain unstable.

Secondly, consider the second case where R = 1 implying that ζH2 = ζL2 (Figure 2b). Increasing I
across this value generates an unstable hematopoietic steady state and a malignant steady state simul-
taneously. For C < 1 the malignant steady state is unstable, and a stable coexistence steady state is
created as I increase past ζH2. For C > 1 no coexistence steady state is created, instead the malignant
steady state is stable. Hence, for R = 1, decreasing Cmay change the topology from a stable malignant
steady state to a stable coexistence steady state i.e. improving the prognosis from disease escape to
disease equilibrium. The stable co-existing steady state bifurcates from the trivial steady state and re-
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mains stable until C = 1. As C exceeds 1, the co-existing steady state disappears, the malignant steady
state becomes stable and the trivial and the hematopoietic steady state become unstable.

4 5 6 7 8
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0.6
0.8
1

1.2
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2 4 6 8
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0.8

1

1.2

e

2 4 6 8
I

0.2

0.4

0.6

0.8

1

1.2

f

Figure 2. Admissibility and stability of the steady states depending on the parameters I and
C for different values of R. Crossing a solid curve implies a change in which type of stable
steady state exists i.e. trivial, malignant, hematopoietic or coexistence. Crossing a dotted
curves implies the same steady state is stable in both regions but the number of steady states
is changed. The stable steady states are written as subscript of E and unstable steady states
are written as superscript of E.

In the remaining panels, R < 1, which implies that a stable hematopoietic steady state is created as
the first transition to appear when increasing I from low values past the threshold value ζH2. Simultane-
ously, the trivial steady state becomes unstable. In Figure 2c where R = 0.97 the hematopoietic steady
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state remains stable for low values of C until I passes a threshold value where a stable coexistence
steady state is created leaving the hematopoietic steady state unstable.

For larger values of C there is no coexistence steady state. Instead, as I is increased, a region
of bistability appears with a stable hematopoietic steady state and a stable malignant steady state.
Increasing I further the hematopoietic steady state becomes unstable. Hence, to reduce disease load, in
the case of R < 1, and large values of C and I, it may be optimal treatment to reduce the C value prior
to reducing the inflammatory level to avoid being stuck in the bassin of attraction of the malignant
steady state.

In Figure 2d whereR = 0.93, the coexistence steady state no longer appears, the region of bistability
has shrunk and a hematopoietic stable steady state is more dominant.

In Figure 2e and f, R is decreased to 0.77 and 0.5 respectively, and the bistability region is no longer
visible. For I > ζH2 a hematopoietic steady state is the only stable steady state. Figure 2 indicates that
reducing C and R should be targets of intervention. A reduction of I may improve prognosis as well,
for example for parameter values as in 2c.

4. Discussion and conclusion

A mechanism-based model published in [5] - the Cancitis model - describing the interaction of
the hematopoietic cells, malignant cells and inflammation is analysed here. A thorough mathematical
investigation of the model is presented in this paper which did not appear previously. We conducted an
analytical analysis of the steady states and showed that four kinds of steady states may exist i.e. trivial,
hematopoietic, malignant and co-existing steady states. We characterized the stability of each of these
steady states and identified transitions conditions in the number of steady states and in their stability.
Trivial, hematopoietic, malignant and coexistence steady states all appear for some parameter values.
The steady states are highly relevant as all trajectories appear to approach a steady state after some time
- see Figure 3. The case of bistability is visualized in the bottom right panel of Figure 3, with the basin
of attraction shown in the (x0, y0)-plane using initial condition (x1, y1, a, s) = (4×1011, 4×1011, 600, 2).
The initial conditions for x0 and y0 are varied in a range 1− 105. The malignant steady state has a large
bassin of attraction (region (i)), while region (ii) marks the bassin of attraction for the hematopoietic
steady state.

The intuitive interpretation in most bio-medical literature attributes the main cause for cancer de-
velopment to the frequency of stem cell division. Another main cause is the regulatory feedback that
allows stem cells residing in niche to further divide into blood cell required in blood stream. Our in-
vestigation is in agreement with this perception and quantifies this intuitive concept. Furthermore, it
shows that stem cell population is important to target in treatment to prevent disease progression.

In [14] and [15] a model without immune interaction is presented. The authors discuss a fraction
similar to R and show that it is important for the dynamics of the system. It has been shown [15] that
the leukemic cell load can be temporarily reduced if the growth of HSC is larger than that of leukemic
cells for cytokine-dependent AML.
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Figure 3. The first three panels illustrate that when a unique, stable steady state exists,
it is globally attracting (based on a numerical argument). U(t) denotes the solution of the
six-dimensional model 2.1. In the top left panel, ||U(t)−EH ||

||U(0)−EH || is plotted against time for three
different initial conditions. It corresponds to the region where EH is stable with C = 0.8,
R = 0.97 and I = 6. ||U(t)−EH ||

||U(0)−EH || tending to zero for large time implies that U(t) is close to
EH for large time. The top right panel shows the stability of EL with C = 0.2, R = 1.5 and
I = 4. The bottom left panel shows the stability of EC with C = 0.1, R = 1.5 and I = 7.
The bottom right panel corresponds to bi-stability of EH and EL with C = 1.4, R = 0.97.
The solution to the 6D model is projected onto the x0 and y0 plane. Region (i) denotes the
set of initial conditions with trajectories converging to EL whereas region (ii) denotes that
trajectories converge to EH. Black circles show four steady states, E0, EH, EL and EC, where
filled circle shows stable steady states and empty circle shows unstable steady states.

It is generally assumed that cyy ≤ cxx since malignant cells might be less sensitive to environmental
crowding [22] and [24]. The ratio C of inhibition of the hematopoietic relative to malignant cells is
one of several important prognostic markers. For large values of I, bi-stable and mono-stable regions
depend upon C. It can be observed in Figure 2 that for small values of C, i.e., cyy ≥ cxx, either the
hematopoietic steady state is stable or the co-existing steady state is stable which can be interpreted
as a good prognosis. However, large values of C may lead to a worse situation, e.g. in one case, the
malignant steady state is stable or there exists bi-stability of the hematopoietic and the malignant steady
states (see Figure 2c). In addition to the ratio of inhibitive niche feedback, the ratio R is also important
to consider, since it determines how robust the hematopoietic condition may be and how disastrously a
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potential blood cancer disease will develop. Thus for R > 1 we have a more serious situation than for
R < 1 showing that if this reproduction ratio exceeds the threshold R0 = 1, it is more disastrous than if
it is below R0.

The JAK2V617F allele burden is expected to increase due to the expansion of malignant cells. The
JAK2V617F allele burden is interpreted as the ratio of malignant cells to the total number of mature
cells. The model predicted JAK2V617F allele burden is shown in Figure 4 for the region where EC

is stable. Perturbation of a parameter may improve or impair prognosis when the coexistence point is
the stable attractor. The top panel of Figure 4, shows that decreasing C and R improve prognosis by
lowering the allele burden. Contrarily, increasing I, causes a decay in allele burden. This suggests that
inflammatory inhibitors could counteract treatments in this case. In other cases, increasing I typically
leads to a worse prognosis, considering Figure 2.

The model presented here may inform clinical practice to make group specific treatment protocols
with particular focus on the inflammatory components which may accelerate or dampen the disease
progression. Interventions should address decreasing C and R and potentially I but the latter depends
on the remaining parameter values as adverse effects may be observed.
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Figure 4. Allele burden (the ratio of ȳ1c to the total number of x̄1c and ȳ1c) at the steady state
for the region where the co-existing steady state is stable. On the top, left and right panels
show that by increasing C and R, allele burden also increases. On the contrary, increasing I
reduces the allele burden. In the top panel R = 1.5 and I = 7, in the top right, C = 0.1 and
I = 7 and in the bottom panel, R = 1.5 and C = 0.1.
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Supplementary

Stability analysis of Steady states:

At EH± the Jacobian of the purely hematopoietic steady state becomes,

JEH =



a11 0 a13 0 0 a16

a21 a22 0 0 0 0
0 0 a33 0 0 0
0 0 a43 a44 0 0

a51 a52 a53 a54 a55 a56

0 0 0 0 a65 a66



(S.1)

where
a11 = rx

(
s̄H

(1+cxx x̄0H)2 − αx

)
,

a13 = − rxcxy s̄H x̄0H

(1+cxx x̄0H)2 ,
a16 = rx x̄0H

(1+cxx x̄0H) ,
a21 = axAx,
a22 = −dx1,
a33 = ry

(
s̄H

1+cyx x̄0H
− αy

)
,

a43 = ayAy,
a44 = −dy1,
a51 = dx0,
a52 = dx1,
a53 = dy0,
a54 = dy1,
a55 = −ea s̄H,
a56 = −eaāH,
a65 = rs,
a66 = −es,
and rest of the elements of JEH are zero.

At EL± the Jacobian of the purely malignant steady state.

JEL =



a11 0 0 0 0 0
a21 a22 0 0 0 0
a31 0 a33 0 0 a36

0 0 a43 a44 0 0
a51 a52 a53 a54 a55 a56

0 0 0 0 a65 a66



(S.2)
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where
a11 = rx

(
s̄L

1+cxyȳ0L
− αx

)
,

a21 = axAx,
a22 = −dx1,
a31 = − rycyx s̄Lȳ0L

(1+cyyȳ0L)2 ,

a33 = ry

(
s̄L

(1+cyyȳ0L)2 − αy

)
,

a36 =
ryȳ0L

1+cyyȳ0L
.

a43 = ayAy.
a44 = −dy1.
a51 = dx0.
a52 = dx1.
a53 = dy0.
a54 = dy1.
a55 = −ea s̄L.
a56 = −eaāL.
a65 = rs.
a66 = −es

and rest of the elements of array are zero.

At EC± the Jacobian of the co-existing steady state becomes,

JEC =



a11 0 a13 0 0 a16

a21 a22 0 0 0 0
a31 0 a33 0 0 a36

0 0 a43 a44 0 0
a51 a52 a53 a54 a55 a56

0 0 0 0 a65 a66



(S.3)

where
a11 = rx

(
s̄C

(1+cxx x̄0C+cxyȳ0C)2 − αx

)
,

a13 = − rxcxy s̄C x̄0C

(1+cxx x̄0C+cxyȳ0C)2 ,
a16 = rx x̄0C

(1+cxx x̄0C+cxyȳ0C) ,
a21 = axAx,
a22 = −dx1,
a31 = − rycyx s̄C ȳ0C

(1+cyx x̄0C+cyyȳ0C)2 ,

a33 = ry

(
s̄C

(1+cyx x̄0C+cyyȳ0C)2 − αy

)
,

a36 =
ryȳ0C

(1+cyx x̄0C+cyyȳ0C) ,
a43 = ayAy,
a44 = −dy1,
a51 = dx0,
a52 = dx1,
a53 = dy0,
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a54 = dy1,
a55 = −ea s̄C,
a56 = −eaāC,
a65 = rs,
a66 = −es

and rest of the elements of the JEC are zero.
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Abstract

Blood production is a tightly regulated process, and disturbances
can pose a severe risk to human health. Polycythemia vera (PV) is
an example of such a disorder characterized by excessive production
of erythrocytes and the presence of the JAK2V617F mutation. A 5D
PV model with competing healthy and malignant cells, including ery-
thropoietin (EPO), is proposed and analyzed. The production of EPO
is governed by the number of erythrocytes, while EPO influences the
proliferation and death rate of erythrocytes. Stem cell dynamics can
be independently analyzed as a two-dimensional system. A numerical
analysis shows that steady states and their stability of the 2D stem
cell PV submodel are in agreement with the PV model. Combining
the model with data of PV patients, we demonstrate the model’s
prognostic significance. It follows that an efficient treatment must
target stem cell properties such as the bone marrow microenvironment
and stem cell death rates.

1 Introduction

Blood formation known as hematopoiesis is a complex and tightly regulated
process. Different types of blood cells are produced in the bone marrow from
hematopoietic stem cells (HSCs). A hematopoietic stem cell can divide into two
HSCs, and it can produce one stem cell and one progenitor cell or produce two
progenitor cells. The progenitor cells then differentiate in a chain of steps and
produce different types of mature blood cells, mainly red blood cells, white blood
cells and platelets.

In the present work, we will focus on the red blood cells (erythrocytes) and the
growth factors that contribute to red blood cells’ production. In the bone marrow,
stem cells differentiate into various progenitor cells, and finally, reticulocytes are
released into the bloodstream, which matures into erythrocytes within about
three days. The whole process is called erythropoiesis. Figure 1 illustrates the
development of erythrocytes from stem cells. In healthy individuals, the life
span of an erythrocyte is 120 days, and then the erythrocytes are engulfed by
macrophages in the spleen (Rodak et al., 2008; Litchman et al., 2006). This
process is controlled by the growth hormone EPO. A high concentration of EPO
increases the number of BFU-Es recruited into CFU-E and ultimately leads to an
increased production rate of erythrocytes ( Adamson, 1974; Granziero et al., 2001;
Iiyama et al., 2006; Jelkmann, 2013; Krantz, 1991; Silva et al., 1996). The kidneys
secrete EPO into the blood with a half-life of 6 hours (Mahaffy et al., 1998).

The homeostasis of erythropoiesis requires an appropriate balance between
the rate of erythrocyte production and erythrocyte destruction. EPO is thought
to control the number of mature cells in the blood by interrupting the apoptotic
mechanism (Granziero et al., 2001; Jelkmann, 2013; Silva et al., 1996; Testa, 2004;
Weitzman et al., 2000).
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Figure 1: Different stages are involved in the development of erythrocytes
(erythropoiesis). EPO increases the differentiation from BFU-E to CFU-E,
whereas it inhibits the death rate of erythrocytes.

PV is a hematological disease and a subcategory of myeloproliferative neo-
plasms (MPNs) (Campbell and Green, 2006; Hasselbalch, 2012; Hasselbalch, 2013).
The characteristics of PV are excessive production of erythrocytes, the presence
of the JAK2V617F mutation and low EPO plasma levels in the blood (Carneskog
et al., 1998). The JAK2 gene is responsible for producing proteins that control
cell growth and production. The mutation JAK2V617F is a disruption of the
JAK2 gene and occurs in 95% of patients with PV. Possible PV development is
a transformation to acute myeloid leukemia (AML) with an increasing load of
JAK2V617F mutations (Hasselbalch, 2012; Kristinsson et al., 2010; Hasselbalch,
2013). EPO also plays an important role in the progression of PV. In 2016, the
World Health Organization (WHO) declared that subnormal serum EPO levels
are considered a secondary criterion in the diagnosis of PV.

In system dynamics (SD), several models describe the behavior of the non-
linear dynamic structures present in the human body (Abdel-Hamid, 2002; Hos-
seinichimeh et al., 2015; Hsieh et al., 1990; Karanfil and Barlas, 2008; Lee et al.,
2016; Mehrjerdi, 2013). In (Rogers et al., 2018), a SD model of erythropoiesis
was developed and calibrated in renal patients with anemia by establishing a
personalized EPO dosage to stabilize hemoglobin levels. In (Senturk et al. 2020)
a biomedical model was introduced to study the effects of recombinant human
erythropoietin (rHuEPO) as a doping agent. None of the previous work has
addressed these issues, including multiple EPO feedback on healthy and malignant
cells, the importance of stem cell dynamics in controlling erythropoiesis, and the
importance of stem cell parameters for efficient treatments in PV.

In this paper, we present and investigate a PV model that considers the
competition between healthy and malignant cells and the EPO feedback on both
cell lines. In section 2, we formulate the model and explain the physiological
relevance of the parameters. In addition, we simplify the model using dimensional
analysis. In section 3 we identify the physiological steady states determined by the
stem cell dynamics. Furthermore, we perform sensitivity analysis and identify the
sensitive parameters for cancer development. Finally, in silico treatment strategies
targeting stem cell dynamics are shown. In section 4 final remarks, including
model trajectories, are given in comparison to data for PV patients treated with
interferon-α (IFN).
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2 Description of the PV (Polycythemia vera)

models

2.1 PV model

The SD PV model describes the proliferation of hematopoietic stem cells (HSC)
to erythrocytes (RBC) and malignant stem cells (MSC) carrying the JAK2V617F
mutation to malignant mature cells (MMC). In addition, the model takes into
account that EPO stimulates the production of RBCs. A stock-flow diagram for
the PV model appears in Figure 2. There are five variables (stocks) that describe
the number of HSCs (x0), the number of RBCs (xr), the number of MSCs (y0),
the number of MMCs (yr), and the concentration of EPO (E). The PV model is
inspired by mathematical models in (Andersen et al., 2017; Ottesen et al., 2019;
Colijn and Mackey, 2005 ) and reads

dx0

dt
= (rxφx − dx0 − ax)x0, (1a)

dy0

dt
= (ryφy − dy0 − ay)y0, (1b)

dxr
dt

= axAx(E)x0 − dxr(E)xr, (1c)

dyr
dt

= ayAy(E)y0 − dyr(E)yr, (1d)

dE

dt
= f(xr, yr) − kE. (1e)

with

φx =
1

1 + cxxx0 + cxyy0
and φy =

1

1 + cyxx0 + cyyy0
. (2)

Hence, the general form of the equations is,

d(Stock)

dt
= Inflow −Outflow
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Figure 2: Black arrows represent flows, blue arrows show relationship between variables
and boxes denote stock variables.

The self-renewal rate for HSC and MSC are denoted as rx and ry, re-
spectively. Since the self-renewal of stem cells is inhibited by niche feedback
(Walkley et al., 2007), the production of stem cells in the bone marrow
decreases when the amount of stem cells exceeds the normal level. We
implement this inhibition by Michaelis-Menten-like functions φx(x0, y0) and
φy(x0, y0), which is also adopted in (Dingli and Michor, 2006; Stiehl et
al., 2015; Walenda et al., 2014). Feedback strengths cxx and cxy show
an inhibitory effect on the self-renewal of HSC similarly, cyx and cyy cap-
ture the corresponding effects on the self-renewal of MSC. We assume
cyy ≤ cyx ≤ cxy ≤ cxx, since malignant cells are less sensitive to stem cell
microenvironment as compared to hematopoietic cells (Kim et al., 2008;
Rovida et al., 2014).

HSC differentiates towards RBC with rate ax while the similar rate for
MSC differentiation towards MMC is denoted by ay. The progenitor cells
are not considered explicitly however, they are implicitly accounted for by
multiplication factors Ax and Ay such that the resulting production rates of
HSC and MSC become axAx and ayAy respectively. For further details see
(Andersen et al., 2017).

Since EPO stimulates the production of mature red cells (Adamson,
1974; Granziero et al., 2001; Iiyama et al., 2006; Jelkmann, 2013; Krantz,
1991; Silva et al., 1996) we choose to write the EPO-dependent amplification
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factors,

Ax(E) = δx
E

1 + αxE
, (3)

Ay(E) = δy
E

1 + αyE
, (4)

where δx and δy are positive constants and αx and αy, are non-negative
constants.

To account for the death rates, the stem cells are removed with rates
dx0 and dy0 . Furthermore, EPO has been shown to inhibit erythrocytes
apoptosis (Granziero et al., 2001; Jelkmann, 2013; Silva et al., 1996; Testa,
2004; Weitzman et al., 2000). Thus, an increase in EPO leads to a decrease
in the apoptosis rate of erythrocytes. Assuming dxr(E) and dyr(E) are
decreasing functions of E, we choose

dxr(E) = ηx
1

1 + βxE
, (5)

dyr(E) = ηy
1

1 + βyE
, (6)

where ηx, ηy, βx and βy are non-negative constants.
The negative feedback function f(xr, yr) is a monotone decreasing func-

tion of xr and yr (Belair et al., 1995; Bradford et al., 1997), it is assumed to
have the form,

f(xr, yr) =
p

1 + k0(xr + yr)m
,

which is a Hill function in xr + yr with Hill constants p, k0 and m. Hence,
an increase in the number of xr and yr decreases the production of EPO.
For simplicity, we consider m = 1 in the subsequent analysis.

The default parameter values are summarized in table 1, and an illustra-
tion of the PV model, including stem cells, RBC counts, and EPO based on
the default values is shown in Figure 3.
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Parameter Explanation Value Unit Reference
rx Self-renewal rate of HSC 5 · 10−3 day−1 Dingli and Michor, 2006
ry Self-renewal rate of MSC 1.15 · 10−2 day−1 *
ax Differentiation rate of HSC 3.58 · 10−5 day−1 *
ay Differentiation rate of MSC 3.58 · 10−5 day−1 *
dx0 Death rate of HSC 2 · 10−3 day−1 Andersen et al., 2017

Ottesen et al., 2019
dy0 Death rate of MSC 2 · 10−3 day−1 Andersen et al., 2017

Ottesen et al., 2019
cxx Inhibition by HSC on HSC 5.6 · 10−5 - Ottesen et al., 2019
cyx Inhibition by HSC on MSC 5.2 · 10−5 - Ottesen et al., 2019
cxy Inhibition by MSC on HSC 5.4 · 10−5 - Ottesen et al., 2019
cyy Inhibition by MSC on MSC 5.0 · 10−5 - Ottesen et al., 2019
p Production rate of EPO 1.56 · 104 day−1 Belair et al., 1995
k0 Factor affecting production of EPO 8.9 · 10−11 - *
αx Factor affecting production of RBC 5 · 10−3 - *
αy Factor affecting production of MMC 5 · 10−3 - Assumed
βx Factor affecting removal of RBC 9 · 10−3 - *
βy Factor affecting removal of MMC 9 · 10−3 - Assumed
δx Stimulation rate of RBC 3 · 109 - *
δy Stimulation rate of MMC 3 · 1010 - Assumed
ηx Death rate of RBC 8 · 10−3 day−1 Belair et al., 1995

Colijn and Mackey, 2005
ηy Death rate of MMC 8 · 10−3 day−1 Assumed
k Degradation rate of EPO 2.8 day−1 Belair et al., 1995

Table 1: Default parameter values of the PV model. ∗Calculated using steady state
equations.
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Figure 3: A typical PV model based on the development of stem cells, RBC counts and
EPO in case of a JAK2V617F positive myeloid neoplasm for default parameters. Red
curves are malignant cells, blue shows healthy hematopoietic cells and black denotes the
sum of the cells. Initial conditions are (x0, y0, xr, yr, E) = (2.6 · 104, 1, 4.8 · 1012, 0, 13.1)
at t = 0. Time is plotted on the x-axis. The left panel shows the growth of malignant
stem cell count and the middle panel shows the evolution of mature malignant cell count.
Hematopoietic stem cells are higher in number as compared to malignant cells in the early
years. However, after some years, the malignant stem cells overcome the hematopoietic
stem cells leading to the extinction of the healthy cell population. The right panel shows
that the concentration of EPO decreases over time.
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2.2 Dimensionless PV model

We non-dimensionalize and scale the model, transforming the variables and
parameters such that simplified equations are obtained. Another advantage
is that the parameters cluster together thus the resulting number of governing
parameters becomes minimal. We non-dimensionalize the equations of the
system (1) using the following scales,

x0 = x̂0X0, y0 = ŷ0Y0, xr = x̂rXr, yr = ŷrYr, E = êEq, t = t̂τ

where small letters with hat are scaling constants, capital letters on the right
side are dimensionless variables and τ is dimensionless time.

dX0

dτ
= ζx

(
1

1 +X0 + px1Y0

− px2

)
X0, (7a)

dY0

dτ
= ζy

(
1

1 + py1X0 + Y0

− py2

)
Y0, (7b)

dXr

dτ
=

(
Eq

1 + qx1Eq
X0 −

qx2

1 + qx3Eq
Xr

)
, (7c)

dYr
dτ

=

(
Eq

1 + qy1E1

Y0 −
qy2

1 + qy3Eq
Yr

)
, (7d)

dEq
dτ

=
1

ε

(
104

1 + re1Xr + re2Yr
− Eq

)
. (7e)

The selection for scaling constants and the grouped parameters is given
in table (2). Note, the dimensionless PV model given in equations (7a)-(7e)
involves 15 parameters and the actual values of dimensionless parameters
are given in table 3 computed using the values in table 1.

x̂0 = cxx
−1 ŷ0 = c−1yy

x̂r = paxδx(104rxcxx)−1 ŷr = payδy(104rxcyy)−1

ê = p(104k)−1 t̂ = k(rx)−1

px1 = cxy(cyy)−1 px2 = (dx0 + ax)rx
−1

py1 = cyx(cxx)−1 py2 = (dy0 + ay)ry
−1

qx1 = αxp(104k)−1 qy1 = αyp(104k)−1

qx2 = ηxk(rx)−1 qy2 = ηyk(rx)−1

qx3 = βxp(104)−1 qy3 = βyp(104)−1

re1 = k0paxδx(104rxcxx)−1 re2 = k0payδy(104rxcyy)−1

ζx = k ζy = kry(rx)−1

ε = rx(k2)−1

Table 2: Definition of variables and parameters of the dimensionless PV
model.
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Parameter Explanation Value
px1 Inhibition by MSC on HSC 1.08
px2 Death rate of HSC 0.40
py1 Inhibition by HSC on MSC 0.93
py2 Death rate of MSC 0.17
qx1 Factor affecting production of RBC 0.002
qx2 Death rate of RBC 4.48
qx3 Factor affecting removal of RBC 0.005
qy1 Factor affecting production of MMC 0.002
qy2 Death rate of MMC 4.48
qy3 Factor affecting removal of MMC 0.005
re1 Factor affecting production of EPO 53.07
re2 Factor affecting production of EPO 594
ζx Factor affecting self-renewal and death rates of HSC 2.80
ζy Factor affecting self-renewal and death rates of MSC 6.44
ε Factor affecting production and degradation of EPO 6.37 ·10−4

Table 3: Default dimensionless (no unit) parameter values of the dimension-
less PV model.

The stem cell dynamic in equations (7a) and (7b) is independent of the
remaining model thus, we refer it to the stem cell PV submodel.

3 Results

Below we present the numerical investigation for the dimensionless PV
model and the stem cell PV submodel, including steady states of the model,
sensitivity analysis, and an in silico approach for treatment.

3.1 Steady states analysis

In this section, we identify the unstable and stable steady states. Since a
non-negative number of cells and concentrations is of physiological interest,
the feasible steady states can be classified as follows,

• a trivial steady state always exists S0 = (0, 0, 0, 0, Eq),

• a hematopoietic steady state exists if and only if the malignant cell
count is zero, whereas the hematopoietic cell count is positive SH =
(X0, 0, Xr, 0, Eq),

• a malignant steady state exists if and only if the hematopoietic cell
count is zero, whereas the malignant cell count is positive SL =
(0, Y0, 0, Yr, Eq),

• a co-existing steady state exists if and only if both hematopoietic and
malignant cell count is positive SC = (X0, Y0, Xr, Yr, Eq).
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In Figure 4, we identify the various steady states of the stem cell PV
submodel. We use MATLAB to perform simulations and numerical analysis.
The possible steady states depend on the inhibiting strengths px1 and py1

and the death rates px2 and py2. Figure 4a illustrates that the trivial steady
state is stable for px2 and py2 greater than 1. At this point, we observe two
scenarios. Decreasing px2 below 1, the stable hematopoietic steady state
emerges and the trivial steady state becomes unstable as illustrated in Figure
4b. This state is hematopoietic corresponds to the healthy state. Instead of
px2, if we decrease py2 below 1, the stable malignant steady state is shown
while the trivial steady state becomes unstable as illustrated in Figure 4c.
Hence, this investigation reveals the importance of death rates px2 and py2

to obtain stable hematopoietic and malignant steady states.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4: The stem cell PV submodel illustrates that the trajectories for different
initial conditions ultimately approach the stable steady states. Full circles are stable
steady states and open circles are unstable steady states. Green, blue, red and magenta
correspond to trivial, hematopoietic, malignant and co-existing steady states respectively.
The trajectories are shown as black dotted lines. The panels are as follows, (a) px2 = 1.1,
py2 = 1.1, (b) px2 = 0.40, py2 = 1.1, (c) px2 = 1.1, py2 = 0.17, (d) default values (e)
px1 = 0.20, py1 = 0.93, (f) px1 = 0.20, py1 = 4.0, (g) px1 = 1.08, py1 = 6.0.

Next, we examine the impact of parameters involved in the hematopoi-
etic and malignant stem cell niche. For the default parameter values, the
inhibitory effect on the hematopoietic stem cells by the malignant stem
cells dominates (px1 > py1). In this case, the malignant steady state is
stable, whereas the trivial and hematopoietic steady states are unstable
(See Figure 4d). Decreasing px1 from the default value, a co-existing steady
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state appears at px1 = 0.2 and takes over the stability of malignant steady
state (See Figure 4e). At this stage, we can re-establish the hematopoietic
steady state by perturbing parameters in favor of a healthy cell population.
For example, fix px1 = 0.2 and increase py1, the co-existing steady state
approaches the unstable hematopoietic steady state. When a co-existing
steady state merges with the hematopoietic steady state, the hematopoietic
steady state becomes stable as illustrated in Figure 4f. The special case
of bistability obtained by increasing py1 from the default value to py1 = 6
gives both stable malignant and hematopoietic steady states whereas the
co-existing steady state is unstable. The stable co-existing steady state is
obtained when two cell populations are equally fit. This state can persist
for several years, especially in slowly developing diseases like PV without
major blood function impairment. However, the transformation to a ma-
lignant or hematopoietic steady state is possible from a stable co-existing
steady state. Therefore, the right treatment approach is essential to achieve
favorable outcomes in a co-existing state. In case of bi-stability of healthy
and malignant cells, the impact of the initial number of cells determines the
fate of cell populations. For example, some initial values converge to the
hematopoietic steady state while the others converge to the malignant steady
state. We may also observe the transient time towards the hematopoietic
and malignant states. Furthermore, the regions exhibiting bistability can
be potentially targeted during the treatment to delay or prevent disease
progression. For instance, in our model, increasing the inhibiting factor
of malignant stem cells, i.e., py1 increases the basin of attraction for the
hematopoietic steady state. Hence, this investigation reveals the importance
of inhibiting factors for stem cells of both types concerning the successful
therapy of the disease.

We can understand the dynamics of the PV model through the stem cell
PV submodel. Figure 5 illustrates a few cases where a unique steady state is
stable. It shows that all trajectories in the dimensionless PV model approach
a steady state determined by the stem cell PV submodel for various initial
conditions. We convert the time scale to real time for the remaining figures.

60



12

(a) (b) (c)

Figure 5: Panels (a), (b) and (c) illustrate a unique stable steady state is attracting.
Z(t) denotes the solution of the dimensionless PV model where time is converted to real
time. SH , SL and SC correspond to the hematopoietic, malignant and co-existing steady

states. In panel (a) ||Z(t)−SH ||
||Z(0)−SH || is plotted against time for five sets of initial conditions

for the stem cells, corresponding to Figure 4f. Since ||Z(t)−SH ||
||Z(0)−SH || approaches zero for large

time, Z(t) approaches SH . Similarly panels (b) and (c) correspond to Figure 4d and
Figure 4e showing stability of SL and SC respectively.

3.2 Sensitivity Analysis

Sensitivity analysis of the dimensionless PV model is performed to explore the
relationship between the input parameters and the PV dynamics outcome.
In clinical trials and practice, the total cell count and the JAK2V617F
allele burden are measured in blood samples from PV patients therefore,
we consider these two criteria for sensitivity analysis. For px1 = 0.2 and all
other parameters are fixed at their default values (See Table 3) leads to a
stable co-existing steady state. We choose 10% variation in the values of the
parameters and calculate the total count of erythrocytes as Xr + Yr and the
JAK2V617F allele burden as Yr

Xr+Yr
at steady state. First, we consider the

parameters involved in the stem cell PV submodel. Figure 6 illustrates that
px1, py1, px2 and py2 are sensitive parameters for the mature cell count and
the JAK2V617F allele burden. Hence, perturbing these four parameters
involved in the stem cell dynamics are important for the evolution of PV.
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(a)

px1px2py1py2qx1qx2qx3qy1qy2qy3 re1 re2 x y
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(b)
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1.1

Figure 6: Panels (a) and (b) show the effect when parameters are decreased (below 1)
and increased (above) by 10%, respectively. For each parameter two columns are shown;
the first (blue) shows the effect on the total number of erythrocytes, Xr + Yr and the
second (maroon) shows the effect on the JAK2V617F allele burden, Yr

Xr+Yr
.

Next, we observe that the death rates of mature cells qx2 and qy2 are also
sensitive for cell count and allele burden. Finally, re2 a factor affecting the
production of EPO, is also a sensitive parameter to the erythrocyte count.
Concluding, this investigation shows that stem cell dynamics govern the PV
progression.

3.3 In silico treatment strategies

IFN is known to induce hematological remission in various hematological
diseases like polycythemia vera, essential thrombocytosis, etc. (Kildajian
et al., 2006; Samuelsson et al., 2006; Stauffer et al., 2013; Lindgren et al.,
2018). Despite its use in clinical practice, the mechanisms by which IFN
affects hematopoietic stem and progenitor cells in blood cancer is still under
discussion.

In (Lu et al., 2010) the authors reported the increased death rate in
hematopoietic stem and progenitor cells in vitro after IFN therapy. Similarly,
(Mullally et al., 2013) states that IFN reduces the JAK2V617F allele burden
by targeting malignant stem cells. In addition, the increased death rate
in erythroid progenitor cells is noticed after IFN treatment, resulting in
normalized red blood cell count. In contrast to previous studies, it is reported
in (King et al., 2015) that IFN arrests the disease progression by increasing
cell division and differentiation with no evidence of affecting the death rate
of the stem cells.

Several clinical experiences explore that cancer development during
different treatment phases occur in patients, e.g., complete recovery, relapse,
or entering a co-existing state where malignant and hematopoietic cells
co-exist. Since stem cell dynamics govern the entire system we focus on
the parameters involved in stem cell dynamics. First, we take the death
rate of the malignant stem cell as our treatment parameter. In Figure 7 we
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assume that a virtual patient is in a co-existing state. Simulating a drug by
increasing the death rate of malignant stem cells py2 by a factor 2, a high
malignant cell count co-existing steady state (white area) switches to a low
malignant cell count co-existing steady state (grey area). Figures 7a and
7b show that a high value of py2 normalizes the hematopoietic stem cells
count as well as the erythrocyte count, hence reducing the JAK2V617F
allele burden. In addition, the EPO level is increased as shown in Figure 7d.
Figure 7 is taken as an example of IFN therapy.
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(c)

0 0.1 0.2
0.00

50.00

100.00

(d)

0 0.1 0.2
0.00

5.00

10.00

Figure 7: An example of in silico treatment by increasing the death rate of malignant
stem cells. Blue, red, cyan and green correspond to the healthy cells, malignant cells, the
JAK2V617F allele burden and EPO respectively. Panels (a), (b), (c) and (d) demonstrate
dynamics before treatment and after treatment (grey area). A co-existing state of low
hematopoietic cells and high malignant cells (px1 = 0.2 from Figure 4e) before treatment,
switches to co-existing state with high level of hematopoietic cells and low level of
malignant cells by increasing py2 from 0.17 to 0.34 and keep all other fixed at default
values.

The bone marrow niche regulates the proliferative capacity of stem cells
and blood cancer is associated with the bone marrow niche (Santar et al.,
2015). It is an ongoing discussion how hematopoietic and malignant stem
cells compete in the bone marrow niche. The microenvironment controls
such competition in the niches, which may be affected by therapies. In a
second scenario (considering a virtual subject being in a co-existing state),
we take the treatment parameter py1, which captures the inhibitory effect for
malignant stem cells. Before perturbing py1, a co-existing steady state exists
with high malignant and low hematopoietic cell count. Increasing py1 by a
factor three, a co-existing steady state moves towards another co-existing
state (shown in the grey area) where the malignant cell count is lower and
the hematopoietic cell level is higher as shown in Figure 7. In addition, the
JAK2V617F allele burden is reduced from 86 % to approximately 50 %, and
the EPO level is increased. Hence, the microenvironment for stem cells may
be a good target for therapies.
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Figure 8: An example of in silico treatment targets inhibitory effect for malignant stem
cells. Blue, red, cyan and green correspond to the healthy cells, malignant cells, the
JAK2V617F allele burden and EPO respectively. Panels (a), (b), (c) and (d) demonstrate
dynamics before treatment and after treatment (grey area). A co-existing state of low
hematopoietic cells and high malignant cells (px1 = 0.2 from Figure 4e) before treatment,
switches to a co-existing state of high hematopoietic cells and low malignant cells by
increasing py1 from 0.93 to 2.79 and keep all other fixed at default values.

4 Discussion and conclusions

In this work, a PV model is proposed and analyzed that incorporates both
hematopoietic and malignant cells. In addition, the interaction of EPO with
healthy and malignant mature red blood cells is considered. A dimensional
analysis reduced the number of parameters from 23 to 15. A 2D stem cell
PV submodel facilitates the observation of model dynamics. The existence
and stability of all steady states (trivial, hematopoietic, malignant, co-
existing) in the stem cell PV submodel are visualized in Figure 4. It is
further emphasized that the dynamics of the PV model and the stem cell
PV submodel are similar. Finally, the sensitivity analysis identifies the most
effective parameters for disease progression. We conclude that it is important
to target the stem cells during treatment to prevent the development of the
disease as the main contribution of the overall analysis. This investigation
aligns with the view that the development of blood cancer is linked to stem
cell division and the regulatory feedback mechanism in the niche. Figure 7 is
an example of controlling the division of malignant stem cells by increasing
their death rate py2. Figure 8 is an example of regulating the feedback
mechanism in the niche by increasing the inhibitory effect on malignant
stem cells py1. The comparison of both figures shows that the death rate of
malignant stem cells may be a good candidate to consider during treatment,
as a small perturbation of the parameter leads to rapid remission.

Figure 9 compares the PV model trajectories with data from PV patients
receiving IFN treatment. Figure 9a and Figure 9b are good examples of
fitting the data for total erythrocyte count to a disease and treatment
course. Figure 9c illustrates data fitting to both erythrocyte count and the
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JAK2V617F allele burden during treatment for the same parameter set.
Comparison of simulation of the PV model with patient data shows that
the proposed model can reproduce both pre-treatment and treatment data
and is consistent with the dynamics observed in clinics.
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Figure 9: Three PV patients treated with IFN are compared with the PV model. The
data for the total number of erythrocytes (Xr + Yr) are displayed as filled circles for the
periods without treatment (before the 6th year) and as stars during treatment (after the
6th year) in the two leftmost panels. In the rightmost panel data of a third patient during
treatment is displayed. The asterisks represent the total number of erythrocytes, whereas
the boxes represent the JAK2V617F allele burden Yr

Xr+Yr
. The model predictions are

shown as full curves for the erythrocyte count and as dashed curves for the JAK2V617F
allele burden decay. The data shown in the first two panels are from (Michiels et al.,
2014). The data shown in the last panel is from the clinical trial “DALIAH” (EudraCT
number: 2011-001919-31).

In summary, the presented model has the novel feature of incorporating
both healthy and malignant cells with different feedback mechanisms de-
pending on both EPO and erythrocytes. The stem cell submodel pinpoints
the governing parameters as well as suggesting novel treatment strategies.
Furthermore, the model indicates that PV is a stem cell-driven disease. It
is supported by the idea that a small population of stem cells, sharing self-
renewal and differentiation properties, balancing homeostasis, and allowing
cancer growth was first introduced in (Makino et al., 1959) and has been
given more attention in recent years. Therefore, it stands to reason that
treatments focusing on the elimination of malignant stem cells reduce disease
load and improve outcomes for patients. A stem cell transplant, or a bone
marrow transplant, is an example of such a promising treatment for blood
cancer where the malignant cells are replaced with the healthy stem cells,
preventing a relapse. As an alternative to stem cell transplant, a few drugs
have been used that selectively target malignant stem cells and induce their
apoptosis rate (Lu et al., 2010; Mullally et al., 2013). Another medical
perspective is that malignant stem cells interact with stem cell niches and
outcompete hematopoietic stem cells. Our model simulations interpret that

65



17

targeting the death rate and the inhibitory factor of malignant stem cells
helps in disease regression. The PV model is able to explain various existing
treatments and suggest novel intervention strategies.
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Glossary

AML Acute Myeloid Leukemia, a cancer of the myeloid blood cells.

EPO A hormone release into the blood stream by the kidney and stimulates
red blood cells.

Erythrocytes Red blood cells.

Erythropoeisis The process of making erythrocytes in the bone marrow.

HSC Hematopoietic stem cell, develop into different type of blood cells.

Hydroxyurea therapy A medication used in sickle-cell disease.

IFN Interferon α, a medication used for an auto immune disorder and for
some cancers.

JAK2 gene The JAK2 gene is responsible for making a protein that pro-
motes production of blood cells from the hematopoietic cells.

JAK2V617F A somatic mutation in the JAK2 gene which is responsible
for overproduction of blood cells in PV.

MPNs Myeloproliferative Neoplasms, characterized by the uncontrolled
growth of blood cells.

PV Polycythemia vera, characterized by the excessive production of red
blood cells.

RBC Red blood cells.
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Abstract

Hematological diseases are pathological conditions primarily affect-
ing the blood production or blood-producing organs. Polycythemia
vera (PV) is an example of such disease characterized by clonal stem-
cell proliferation of erythrocytes and the presence of the JAK2 V617F
mutation. A five-dimensional PV model incorporating healthy and
malignant cells with multiple erythropoietin (EPO) feedbacks is pro-
posed, analyzed and validated. The governing parameters are identi-
fied and their impact on the dynamic especially during treatments is
described. A complete classification of steady states and their stability
is obtained, showing that a two-dimensional stem cell PV submodel
is in one-to-one correspondence with the PV model. Finally, the
model can reproduce clinically observed dynamics reflecting existing
treatments and suggest novel intervention strategies. It follows that
an effective therapy should target stem cell properties such as the
stem cell competition in the micro-environment. The model shows
that a therapy increasing EPO is unfavorable since the total mature
cell count is increased in response to EPO dose. However, decreas-
ing the EPO concentration decreases the total cell count preventing
thrombotic complications.

Keywords: Polycythemia vera, mathematical modelling, EPO, dimensionless
model, steady states, stability, erythrocytes

1 Introduction

Hematopoiesis is the formation of blood cells required by the human body. Different
types of blood cells are derived from the hematopoietic stem cells (HSCs), located
in the bone marrow. A subset of these cells differentiates and classifies into mature
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blood cells, mainly red blood cells (erythrocytes), white blood cells (leukocytes)
and platelets.

In the present work we focus on erythrocytes. Erythrocytes are produced
from stem cells in the bone marrow. A stem cell differentiates into myeloid-
erythroid progenitor cells (MEP), and then to early progenitors stage committed
to the erythroid lineage, i.e., burst-forming unit erythroid (BFU-E) and colony-
forming unit erythroid (CFU-E). The later stages are pro-erythroblast, basophilic
erythroblast, polychromatic erythroblast, orthochromatic erythroblast, and finally,
reticulocytes. The reticulocytes mature into erythrocytes in about 1 to 3 days
[48]. This full process of producing erythrocytes is called erythropoiesis. In
healthy individuals, erythrocytes are enveloped by macrophages in the spleen
after 120 days [48, 35]. This process is controlled by the growth hormone factor
EPO. EPO is released to the bloodstream by the kidneys with a half-life of 6
hours [38]. The hormone EPO stimulates the production of new red blood cells.
Furthermore, a high EPO concentration may accelerate the differentiation of BFU-
E recruited into CFU-E, increasing the number of erythrocytes in the bloodstream
[2, 24, 28, 29, 33, 52]. In general, an appropriate balance is necessary between
the rate of cell production and destruction in maintaining normal homeostasis.
It is believed that EPO inhibits the cell death to control the number of cells
[24, 29, 52, 54, 59].

Polycythemia vera (PV), a subcategory of myeloproliferative neoplasms (MPNs),
is a clonal disorder of hematopoiesis thought to originate from hematopoietic
stem cells [11, 26, 27]. Characteristics of PV are the excessive production of
erythrocytes, presence of the driver mutation JAK2 V617F and low production of
erythropoietin (EPO) [12]. Patients older than 60 years or having a history of
thrombosis are at high risk. The prospective fatal complication in PV includes
the disease transformation into myelofibrosis or acute myeloid leukemia [6, 27]
due to the JAK2 V617F allele burden which is found in 95% of patients with PV
[26, 34]. The subnormal serum EPO levels are a part of PV diagnostic criteria
declared by the World Health Organisation in 2016. Hydroxyurea (HU) is a
widely used drug against PV. In [30], the increased EPO concentration in plasma
after initiation of HU has been addressed. However, the mechanism behind the
increased plasma EPO concentration is unknown. One possibility is that HU
decreases the erythroid cells. The authors concluded that the measurement of
EPO serum should be carried out before initiation of treatment if the diagnostic
or prognostic procedures includes EPO.

In the present paper, we introduce and investigate a mathematical model
of PV that incorporates the competition between healthy and malignant cells
(characterized by the JAK2 V617F mutation) and EPO feedbacks on both cell lines.
We conduct a thorough mathematical investigation and address the following
questions: Which physiological steady states does the model allow, and how
do these vary as parameter values are perturbed? Which group of parameters
controls the dynamics of the system and how? What is the role of stem cell
dynamics concerning the dynamics of the entire system? In particular, how does
the competition of stem cells impact the full system dynamics? Which parameters
can usefully be targeted in interventions?
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A few mathematical models of erythropoiesis exist in the literature. In
[47], the focus was primarily observing the dose-response relationship between
bone marrow and spleen micro-environments for erythropoiesis building on work
described in [37, 60, 61]. In [9], the model consisted of two partial differential
equations, describing the cells in the bone marrow and erythrocytes in the blood.
Belair et al. [9] described the physiological processes leading to the production
of erythrocytes. This model was modified and analyzed by different authors
and fitted to experimental data for phlebotomy [39, 40]. Mahaffy et al. [39, 40]
concluded that both models provided an insight into disease state centered around
stem cells. Further, the death rate of progenitor cells depending on EPO was
added with a moving boundary condition for erythrocytes [3]. This work captured
the dynamics involved in periodic hematological diseases. The author showed that
growth factor (EPO) and destabilization of the feedback loop from red blood cells
to EPO may be responsible for such oscillations. In [14] and [16], the mechanism
of self-renewal of progenitor cells was included in the erythropoiesis model. Both
models were used to simulate anemia and parametrized with mice data. A detailed
model was presented in [20] concerning the differentiation series from a stem cell
to an erythrocyte. The authors accounted for a mechanism triggering the active
destruction of young red blood cells called neocytolysis. The model simulated
blood donation and administration of erythropoiesis stimulating agents. The
same group of authors did parameter estimation with patients’ data through a
mathematical model of erythropoiesis [21]. The model given in [7] was based on
work [14] where the authors considered growth factor EPO dynamics, and feedback
control functions describing immature cell self-renewal and differentiation. One
of the mathematical model presented in [8] incorporated iron and evaluated the
effects of inflammation and neocytolysis. In [55], a three compartment model was
applied to blood loss dynamics in healthy subjects having a negative feedback
mechanism for erythropoiesis. Recently, the same group of authors extended the
model to optimize personalized phlebotomy schedules for patients with PV [36].

The pioneering work of erythropoiesis [9, 38, 39, 40] dynamics laid the ground
for hematological disease modelling. A few modelling studies of myeloid malig-
nancies were investigated in [25, 62]. The Cancitis model included inflammatory
factor dynamically as the driver and trigger of MPNs [6, 50]. The reduction of
the Cancitis model is given in [5, 45] where [45] included the effect of T-cells and
[5] represented the model in terms of JAK2 V617F and white blood cell count. In
the next section, we present our novel mathematical PV model.

2 The PV Model

In the PV model, the hematopoietic stem cells (HSC) proliferate into healthy
erythrocytes (RBC) and malignant stem cells (MSC) proliferate into mature
malignant cells (MMC). In addition, different feedbacks between erythrocytes and
EPO are considered. The malignant cells are characterized by the JAK2 V617F
mutation. Here, we do not explicitly model the first mutational hit but consider
expanding or suppressing existing populations of malignant cells.
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The PV model consists of five ordinary non-linear differential equations, the
number of HSC (x0), the number of RBC (xr), the number of MSC (y0), the
number of MMC (yr) and the concentration of EPO (E). The conceptual model
is illustrated in Figure 1. The PV model is inspired by mathematical models given
in [6, 13] and reads

dx0

dt
= (rxφx − dx0 − ax)x0, (1a)

dy0

dt
= (ryφy − dy0 − ay)y0, (1b)

dxr
dt

= axAx(E)x0 − dxr(E)xr, (1c)

dyr
dt

= ayAy(E)y0 − dyr(E)yr, (1d)

dE

dt
= f(xr, yr)− kE. (1e)

with

φx =
1

1 + cxxx0 + cxyy0
and φy =

1

1 + cyxx0 + cyyy0
. (2)

The rate of self-renewal is denoted as rx and ry for HSC and MSC respectively.
It is believed that the self-renewal is inhibited by regulatory niche feedback
[57], this inhibition is implemented here through Michaelis-Menten-like functions
φx(x0, y0) and φy(x0, y0) [17, 53, 56]. Feedback constants cxx and cxy represents
the inhibitory effect on the self-renewal of HSC, while the corresponding effect on
the self-renewal of MSC is captured by cyx and cyy. The stem cells die with rates
dx0 and dy0 .

The parameter ax denotes the rate at which the HSC differentiates into RBC,
while ay represents the rate for MSC transforming to MMC. The progenitor cells
are considered stages between stem cells and mature cells and are accounted
for by amplification factors Ax and Ay for HSC and MSC, respectively. These
amplification factors are dependent on EPO as EPO is thought to stimulate the
production of mature red cells [2, 24, 28, 29, 33, 52],

Ax(E) = δx
E

1 + αxE
, (3)

Ay(E) = δy
E

1 + αyE
, (4)

where δx and δy are positive constants and αx and αy, are positive constants.
It is hypothesized that an increase in the growth factor concentration EPO

leads to a decrease in the apoptosis rate [24, 29, 52, 54, 59]. Therefore, we assume
that dxr(E) and dyr(E) are decreasing function of E s.t limE→∞ dxr(E) = 0 and
limE→∞ dyr(E) = 0, by choosing

dxr(E) = ηx
1

1 + βxE
, (5)
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dyr(E) = ηy
1

1 + βyE
, (6)

where ηx, ηy, βx and βy are non-negative constants. For E = 0, dxr = ηx and
dyr = ηy.

Figure 1: The boxes illustrate the compartments of the PV model. The full arrows
represent the rates of the flows between and out of these compartments. Black stipulated
lines (labeled φx and φy, respectively) represent the interaction between bone marrow
niches and stem cells. Stem cells (HSC and MSC) may self renew (rx and ry), die (dx0 and
dy0) or differentiate (ax, ay), while mature cells (RBC, MMC) are produced (with rates
axAx(E) and ayAy(E) due to multiplication by the progenitor cells). Mature cells do
not differentiate but die with rates dxr(E) and dyr(E). EPO stimulates the proliferation
rates and inhibits the death rates of both RBC and MMC, while the amount of mature
cells inhibits the production of EPO. Black dotted lines present the interaction of EPO
with the remaining model.

We assume a negative feedback function f(xr, yr) depending on xr and yr for
EPO production. This function is a monotone decreasing in xr and yr and of the
form of Hill function [9, 10],

f(xr, yr) =
p

1 + k0(xr + yr)m
,
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where p, k0 and m are Hill constants. We consider m = 1 in the subsequent
analysis.

2.1 Parameter Estimation

The differential equations system (1) has 5 variables and 23 parameters, which are
assumed to be positive. Here we identify the parameter values for typical steady
state of the variables. Some of the parameter values are taken from the literature
to make a first educated guess. Some of them can be found by using steady-state
conditions, whereas the rest are assumed.

In the stable hematopoietic steady state the numbers of stem cells are ap-
proximately 104 to 106 [13, 17, 25, 41, 53] and the number of erythrocytes is
1011 to 1013 [18, 48]. Moreover, the steady state value of EPO is within (6− 16)
[U/L] [20, 39, 48]. Thus, based on literature, we choose hematopoietic steady
state values to be (x̄0, ȳ0, x̄r, ȳr, Ē) = (2.6 · 104, 0, 4.8 · 1012, 0, 13.1) for the normal
healthy individual.

Hematopoietic stem cells divide approximately once per year [1, 19]. We
take rx = 5 · 10−3 per day as [17]. In addition, elimination from the stem cell
compartment is approximately 0.002 cells per day, dx0 = 2 ·10−3 per day [6, 17, 45,
50]. Malignant stem cells have an advantage as compared with hematopoietic stem
cells that their self renewal rate is higher thus, ry > rx. For simplicity we assume
dy0 = dx0 and ay = ax [6, 19, 45, 50] since otherwise is not known. We consider
that rx > dx0 + ax thereby equation (1a) in steady state gives ax = 3.58 · 10−5.
Since malignant cells are less sensitive to micro-environment niche feedback as
compared to hematopoietic cells [31, 49], we assume cyy ≤ cyx ≤ cxy ≤ cxx. The
values are taken from [45, 50].

The life span of RBC for healthy humans is about 120 days [9, 13, 20, 38], we
choose the removal rate from the erythrocyte compartment dependent on EPO to
be dxr(Ē) = 1/120 per day. We choose ηx = 8 · 10−3 per day such that for Ē = 0,
dxr(0) ≈ ηx. Using dxr(Ē) and Ē in equation (5), βx = 9 · 10−3 is obtained.

In addition, equation (1c) at steady state gives, Ax(Ē) = 3 · 109. We choose
δx = 8.6 · 108 such that the model is in a steady state at t = 0. With the help of
equation (3), αx = 5 · 10−3. In contrast, parameters for malignant red blood cells
are not considered in existing literature. Therefore, we choose ηy = ηx, βy = βx,
αy = αx for simplicity. To give the advantage to MMC, we choose amplification
factor δy = 3 · 1010 which is greater than δx.

For EPO, we need to estimate the degradation rate k of EPO and Hill function
parameters, p and k0. In [20, 38, 40], the half life of EPO is reported about 4 to 24
hours and in [7, 9, 20, 38, 39] the decay constant of EPO varies between 2 and 7 per

day thus, we suppose that the half-life of EPO is 6 hours, k = ln(2)
T1/2
≈ 2.8 day−1.

The parameter p = 1.56 · 104 is estimated in [9, 39], thereby equation (1e) in
steady state gives k0 = 8.9 · 10−11. See details in Appendix (A).

The default parameter values are summarized in table 1 and a typical PV
model outcome is shown in Figure 2.
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Parameter Value Unit Explanation

rx 5 · 10−3 day−1 Self-renewal rate of HSC
ry 1.15 · 10−2 day−1 Self-renewal rate of MSC
ax 3.58 · 10−5 day−1 Differentiation rate of HSC
ay 3.58 · 10−5 day−1 Differentiation rate of MSC
dx0 2 · 10−3 day−1 Death rate of HSC
dy0 2 · 10−3 day−1 Death rate of MSC
cxx 5.6 · 10−5 - Inhibition by HSC on HSC
cyx 5.2 · 10−5 - Inhibition by HSC on MSC
cxy 5.4 · 10−5 - Inhibition by HSC on MSC
cyy 5.0 · 10−5 - Inhibition by MSC on MSC
p 1.56 · 104 day−1 Production rate of EPO
k0 8.9 · 10−11 - Factor affecting production of EPO
αx 5 · 10−3 - Factor affecting production of RBC
αy 5 · 10−3 - Factor affecting production of MMC
βx 9 · 10−3 - Factor affecting production of MMC
βy 9 · 10−3 - Factor affecting removal of MMC
δx 3 · 109 - Stimulation rate of RBC
δy 3 · 1010 - Stimulation rate of MMC
ηx 8 · 10−3 day−1 Death rate of RBC
ηy 8 · 10−3 day−1 Death rate of MMC
k 2.8 day−1 Degradation rate of EPO

Table 1: Default parameter values of the PV model.

Figure 2: A PV model shows the progression of disease with initial conditions,
(x0, y0, xr, yr, E) = (2.6 · 104, 1, 4.8 · 1012, 0, 13.1) at t = 0.. Red curves denote ma-
lignant cells, blue are healthy hematopoietic cells and black curves are sum of the cells.
Time is plotted on the x-axis. The left panel shows the evolution of malignant stem cells
count and the middle panel shows the evolution of mature malignant cell count. In the
early phase, HSCs are large in number than MSCs. However, after some years, when
disease evolves, MSCs become dominant leading to the destruction of HSCs. The right
panel shows the degradation of EPO over time.
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3 Dimensional Analysis

A dimensionless form of the PV model is obtained by clustered parameters and
scaling the variables of the model to facilitate the analysis. We non-dimensionalise
the equations of system (1) using the following scales,

x0 = x̃0X0, y0 = ỹ0Y0, xr = x̃rXr, yr = ỹrYr, E = ẽEq, t = t̃τ
where small letters with tilde are scaling constants, capital letters are dimensionless
variables and τ is dimensionless time. (See details in Appendix B). The new
system of equations consists of 15 parameters. The dimensionless PV model is as
follows,

dX0

dτ
= ζx

(
1

1 +X0 + px1Y0
− px2

)
X0, (7a)

dY0

dτ
= ζy

(
1

1 + py1X0 + Y0
− py2

)
Y0, (7b)

dXr

dτ
=

Eq
1 + qx1Eq

X0 −
qx2

1 + qx3Eq
Xr, (7c)

dYr
dτ

=
Eq

1 + qy1Eq
Y0 −

qy2

1 + qy3Eq
Yr, (7d)

ε
dEq
dτ

=
104

1 + re1Xr + re2Yr
− Eq. (7e)

where, ε = rx
k2 , ζx = k, ζy = k

ry
rx
, px1 =

cxy
cyy
, px2 = dx0+ax

rx
, py1 =

cyx
cxx
, py2 =

dy0+ay
ry

, qx1 = αxp
104k

, qx2 = ηxk
rx
, qx3 = βxp

104k
, qy1 =

αyp
104k

, qy2 =
ηyk
rx
, qy3 =

βyp
104k

, re1 =
k0paxδx
104rxcxx

, re2 =
k0payδy
104rxcyy

. Default values of the dimensionless PV model are com-

puted from the default parameter values of the PV model.
By singular perturbation theory, the equation (7e) involve small epsilon terms

ε = 6.37 · 10−4 that may be taken in the limit of vanishing left hand sides and
thereby we obtain the PV reduced model. Using the values in table 1, the values
of dimensionless parameters are computed in table 2.

The stem cell dynamics given by equations (7a) and (7b) is referred to the stem
cell PV submodel, since the stem cell dynamics is independent of the remaining
system.
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Parameter Value Explanation
px1 1.08 Inhibition by MSC on HSC
px2 0.40 Death rate of HSC
py1 0.93 Inhibition by HSC on MSC
py2 0.17 Death rate of MSC
qx1 0.002 Factor affecting production of RBC
qx2 4.48 Death rate of RBC
qx3 0.005 Factor affecting removal of RBC
qy1 0.002 Factor affecting production of MMC
qy2 4.48 Death rate of MMC
qy3 0.005 Factor affecting removal of MMC
re1 53.07 Factor affecting production of EPO
re2 594 Factor affecting production of EPO
ζx 2.80 Factor affecting self-renewal and death rates of HSC
ζy 6.44 Factor affecting self-renewal and death rates of MSC
ε 6.37× 10−4 Factor affecting self-renewal and death rates of MSC

Table 2: Default dimensionless parameter values of the dimensionless PV
model.

3.1 Positivity and Boundedness of Solutions

Consider the dimensionless PV model (7) for non negative initial conditions. The
system (7) is Lipschitz continuous in (R+ ∪ {0})5, since all expressions on the
right hand side have continuous partial derivatives in the domain which guarantee
local existence and uniqueness of the solution to the system (7) [42].

In the following, we demonstrate the positivity of solutions. From equation
(7a), if dX0(τ0)

dτ = 0 for any τ = τ0, then X0(τ) = 0 for all τ ≥ τ0. Similar argument

holds for Y0(τ). From equation (7c), it is easily observed that dXr
dτ ≥ 0 for Xr = 0.

Similar reasoning applies for equation (7d) and (7e). Hence the flow will remain
in the non-negative octant.

A trapping region TR exists, having the property that trajectories initially
inside TR can not escape it. Let TR = [0,MX0 ]× [0,MY0 ]× [0,MXr ]× [0,MYr ]×
[0,MEq ], where M denotes a trapping boundary for the corresponding variables.
In the following we will find such trapping boundary.

First, consider equation (7a),

dX0

dτ
= ζx

(
1

1 +X0 + px1Y0
− px2

)
X0,

≤ ζx
(

1

X0
− px2

)
X0.

Thus, a trapping region bound for X0 may be defined, MX0 ≡ 1
px2

such that,
dX0
dτ < 0 for X0 >

1
px2

. Similar argument can be constructed for equation (7b)

with upper bound MY0 ≡ 1
py2

.
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Next consider equation (7e),

ε
dEq
dτ

=
104

1 + re1Xr + re2Yr
− Eq,

≤ 104 − Eq.

Thus,
dEq
dτ

< 0 for Eq > 104 ≡MEq .

Finally, consider equations (7c)

dXr

dτ
=

Eq
1 + qx1Eq

X0 −
qx2

1 + qx3Eq
Xr,

≤MEqMX0 −
qx2

1 + qx3MEq

Xr.

Thus,
dXr

dτ
< 0 for Xr >

MEqMX0(1 + qx3MEq)

qx2
≡MXr ,

and similarly for (7d)

dYr
dτ

< 0 for Yr >
MEqMY0(1 + qy3MEq)

qy2
≡MYr .

Hence, there exists a forward invariant trapping region TR such that the solutions
starting outside TR are attracted into the region. Hence, the trajectories exist
globally in forward time [42].

4 Analysis of the Stem Cell PV Submodel

4.1 Existence and Stability Criteria of the Steady States

First, we make a complete analysis of the existence of various steady states and
state their stability conditions regarding the stem cell PV submodel. Afterward,
we use this information for the dimensionless PV model.

The steady states (X̄0, Ȳ0) for the stem cell PV submodel, Eqs (7a) and (7b)
fulfil,

ζx

(
1

1 + X̄0 + px1Ȳ0
− px2

)
X̄0 = 0, (8a)

ζy

(
1

1 + py1X̄0 + Ȳ0
− py2

)
Ȳ0 = 0. (8b)

Since the number of cells and concentrations are required to be non-negative,
the feasible steady states can be classified w.r.t their stem cells as
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• a trivial stem cell steady state, D0, if and only if X̄0 = Ȳ0 = 0,

• a hematopoietic stem cell steady state, DH , if and only if (X̄0, Ȳ0) = (X̄0H , 0)
with X̄0H > 0,

• a malignant stem cell steady state, DL, if and only if (X̄0, Ȳ0) = (0, Ȳ0L)
with Ȳ0L > 0 ,

• a co-existing stem cell steady state, DC , if and only if (X̄0, Ȳ0) = (X̄0C , Ȳ0C)
with X̄0C > 0 and Ȳ0C > 0.

The possible steady states depend on the stem cell parameters. The parameter
px1 describes the inhibition of Y0 on X0, py1 describes the inhibition of X0 on Y0

whereas px2 and py2 are the degradation rates of X0 and Y0 respectively.

We limit ourselves to studying px2 6= 1 and py2 6= 1 and define γ =
1

px2
−1

1
py2
−1

.

Proposition 1. Conditions allowing existence and stability of feasible steady
states are,

1. A trivial stem cell steady state, D0, always exists and is stable for
px2 > 1 and py2 > 1 and unstable for px2 < 1 and py2 < 1.

2. A feasible hematopoietic stem cell steady state, DH , exists and is
unique if and only if px2 < 1 with X̄0H = 1

px2
− 1. DH is stable for

py1 > γ−1 and unstable for py1 < γ−1.

3. A feasible malignant stem cell steady state, DL, exists and is unique
if and only if py2 < 1 with Ȳ0L = 1

py2
− 1. DL is stable for px1 > γ and

unstable for px1 < γ.

4. A feasible co-existing stem cell steady state, DC , exists and is unique
if px2 < 1 and py2 < 1 and either (a) or (b) is fulfilled, where

(a) px1 < γ and py1 < γ−1. In this case DC is stable.

(b) px1 > γ and py1 > γ−1. In this case DC is unstable (a saddle).

DC is only feasible, when DH and DL exist. The coordinates of DC are

X̄0C = X̄0H−px1Ȳ0L
1−px1py1

and Ȳ0C =
Ȳ0L−py1X̄0H

1−px1py1
.

Proof. A trivial stem cell steady state D0 always exists. For stability, we
compute the Jacobian of the stem cell PV submodel,

J =


ζx

(
1+px1Y0

(1+X0+px1Y0)2 − px2

)
− ζxpx1X0

(1+X0+px1Y0)2

− ζypy1Y0

(1+py1X0+Y0)2 ζy

(
1+py1X0

(1+py1X0+Y0)2 − py2

)

 (9a)

The determinant of the Jacobian JD0 at D0 is,

det(JD0) = ζxζy(1− px2)(1− py2).
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det(JD0) is positive either if px2 < 1 and py2 < 1 or if px2 > 1 and py2 > 1, and it
is negative if either px2 > 1 or py2 > 1.

The trace of the Jacobian JD0 at D0,

tr(JD0) = ζx(1− px2) + ζy(1− py2),

is negative if px2 > 1 and py2 > 1. Hence, D0 is a stable steady state for px2 > 1
an py2 > 1 and unstable for px2 < 1 an py2 < 1.

A hematopoietic stem cell steady state, DH , follows from equation (8a),

X̄0H =
1

px2
− 1, (10)

Hence, X̄0H is unique and feasible if and only if px2 < 1. Let h1 = ζxpx2(1− px2)

and h2 =
ζypy2

(
1

px2
−1

)

1+py1

(
1

px2
−1

)(γ−1 − py1). Thus, h1 > 0 for px2 < 1 and h2 < 0 for

py1 > γ−1 while h2 > 0 for py1 < γ−1. Hence, the determinant of the Jacobian
JDH

at DH is, det(JDH
) = −h1h2, is positive for py1 > γ−1 and negative for

py1 < γ−1. Likewise, the trace of the Jacobian JDH
at DH is, tr(JDH

) = −h1 +h2

which is negative for h2 < 0. Hence, DH is stable for py1 > γ−1 and unstable for
py1 < γ−1.

A malignant stem cell steady state, DL, follows from equations (8b),

Ȳ0L =
1

py2
− 1. (11)

Hence Ȳ0L is unique and feasible if and only if py2 < 1. Let l1 = ζypy2(1 − py2)

and l2 =
ζxpx2

(
1

py2
−1

)

1+px1

(
1

py2
−1

)(γ − px1). Thus, l1 > 0 for py2 < 1 and l2 < 0 for px1 > γ

while l2 > 0 for px1 < γ. Hence, the determinant of the Jacobian JDL
at DL

is, det(JDL
) = −l1l2, is positive for px1 > γ and negative for px1 < γ. Likewise,

the trace of the Jacobian JDL
at DL is, tr(JDL

) = −l1 + l2 which is negative for
l2 < 0. Hence, DL is stable for px1 > γ and unstable for px1 < γ.

A co-existing stem cell steady state DC , follows from the equations (8a)
and (8b),

X̄0C + px1Ȳ0C =
1

px2
− 1, (12a)

py1X̄0C + Ȳ0C =
1

py2
− 1. (12b)

The left hand side is positive for feasible DC and the right hand sides equals DH

and DL, respectively. Hence, feasible DH and DL are necessary for feasible DC .
In case px1py1 6= 1 there is at most one co-existing steady state i.e.,

X̄0C =
X̄0H − px1Ȳ0L

1− px1py1
(13a)

Ȳ0C =
Ȳ0L − py1X̄0H

1− px1py1
, (13b)
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or equivalently

X̄0C =

1
py2
− 1

1− px1py1
(γ − px1) , (14a)

Ȳ0C =

1
px2
− 1

1− px1py1

(
γ−1 − py1

)
. (14b)

X̄0C and Ȳ0C are feasible either for px2 < 1, py2 < 1 px1 < γ and py1 < γ−1 or for
px2 < 1, py2 < 1, px1 > γ and py1 > γ−1.

The entries of the Jacobian at DC by using the expressions for steady states,
1

1+X̄0C+px1Ȳ0C
= px2 and 1

1+py1X̄0C+Ȳ0C
= py2,

JDC(1,1)(X̄0C , Ȳ0C) = −ζxp2
x2X̄0C , (15a)

JDC(1,2)(X̄0C , Ȳ0C) = −ζxpx1p
2
x2X̄0C , (15b)

JDC(2,1)(X̄0C , Ȳ0C) = −ζypy1p
2
y2Ȳ0C , (15c)

JDC(2,2)(X̄0C , Ȳ0C) = −ζyp2
y2Ȳ0C . (15d)

Thus, the trace of the Jacobian becomes,

tr(JDC
) = −ζxp2

x2X̄0C − ζyp2
y2Ȳ0C ,

which is always negative, since all the parameters are positive.
The determinant of the Jacobian,

det(JDC
) = ζxp

2
x2ζyp

2
y2X̄0C Ȳ0C(1− px1py1),

is positive if and only if px1py1 < 1 and DC is stable, if px1py1 > 1, DC is a saddle
steady state.

Note that py1 < γ−1 and px1 < γ implies px1py1 < 1 whereas py1 > γ−1 and
px1 > γ implies px1py1 > 1. Note, in case px1py1 = 1,

py1

px2
= 1

py2
and a line of

equilibria exists. However, this degenerated case will not be considered.

In Figure 3, all the possible topologies from Proposition (1) are displayed for
positive px1, py1, px2 and py2 except px2 =6= 1 and py2 6= 1.
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Figure 3: Phase plane diagrams of the stem cell PV submodel illustrate the various
cases in proposition 1. Full circles are stable steady states and open circles are unstable
steady states. Green, blue, red and black colors correspond to trivial, hematopoietic,
malignant and co-existing steady states respectively. Stable and unstable manifolds are
shown where a saddle co-existing steady state exists (panel (f)). The panels are as follows,
(a) px2 > 1 and py2 > 1, (b) px2 < 1, py2 > 1 and py1 > γ−1, (c) px2 > 1, py2 < 1 and
px1 > γ, (d) px2 < 1, py2 < 1, px1 > γ and py1 < γ−1, (e) px2 < 1, py2 < 1, px1 < γ and
py1 > γ−1 (f) px2 < 1, py2 < 1, px1 > γ and py1 > γ−1 (g) px2 < 1, py2 < 1, px1 < γ and
py1 < γ−1.

The analysis can be extended from a local analysis to a global analysis as
done in another two-dimensional model [5] relying on the Poincaré-Bendixson
theorem. Hence, for criteria corresponding to Figure 3f, bistability appears.

87



15

In all other panels, the unique, locally stable steady state is attracting
solutions with initial condition.

4.2 Bifurcation Analysis

In this section, we illustrate that the model trajectories tend to a stable
malignant state DL, to a stable healthy state DH , or to a stable co-existing
steady state DC , as t → ∞ depending on inhibiting factors px1 and py1

and death rates of the stem cells px2 and py2. The parameters px1, px2, py1

and py2 become the bifurcation parameters, where γ serves as a threshold
between healthy and malignant states. px1 and py1 denote the inhibiting
strengths and, px2 and py2 are the death rates for the stem cells. Bifurcation
diagrams are constructed relying on Proposition (1) and topologies shown
in Figure 3.

In Figure 4, px2 and py2 are used as bifurcation parameters with fixed
values of px1 and py1. In Figure 4(i), we let px1 > γ and py1 < γ−1 therefore,
the co-existing steady state does not exist. An important transition line
is px2 = py2 separating malignant and healthy cases. In region e, the
hematopoietic steady state is stable, and the malignant steady state is
unstable, revealing the importance of death rates.

In Figure 4(ii), px1 is decreased by 50% and fixed. This allows for a
region with topology (g) i.e. a stable co-existing steady state appears. A
similar figure may appear by increasing the value of py1.

In another scenario shown in Figure 4(iii), px1 is increased compared to
panel (i), where bi-stability (f) appears satisfying px1 > γ and py1 > γ−1. In
this region, the co-existing steady state is a saddle fixed point (see Figure
3f). A similar figure emerges by decreasing py1.

88



16

(i) (ii) (iii)

Figure 4: A bifurcation diagram for different values of px1, px2, py1 and py2. Various
regions are denoted by letters referring to topologies in Figure 3. In panel (i), px1 and py1

are fixed at default values. Figure (ii) and (iii) are similar to (i) but with decrease and
increase in px1 by 50% compared to the default value, respectively. Crossing a solid curve
implies a change in type of stable steady state. Crossing a dotted curve indicates the
identical stable steady state in both regions, but the number of steady states is changed.
The letters (a), (b), (c), (d), (e), (f) and (g) refer to the sub-figures of Figure 3.

The competitive effect of hematopoietic and malignant stem cell niche
parameters px1 and py1 are now investigated in greater detail. Particularly,
we investigate the hypothetical treatment affecting the relative stem cell
competition px1

py1
by setting

px1 = (1− σ)γ, (16a)

py1 = σγ−1, (16b)

where σ ∈ [0, 1]. Hence, for small σ, px1 >> py1 and for σ close to 1
py1 >> px1.

Equation (16) is substituted in equation (13)

X̄0C =
X̄0H − (1− σ)γȲ0L

1− σ(1− σ)
, (17a)

Ȳ0C =
Ȳ0L − σγ−1X̄0H

1− σ(1− σ)
. (17b)

The co-existing steady state goes continuously from DL for σ = 0 to DH

for σ = 1. Hence, intervention solely addressing px1

py1
is sufficient to revert a

stable DL situation, to DC being stable and finally reach a stable DH thus,
leading to cure (See Figure 5).
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Figure 5: The left panel shows a one-parameter curve that connects the malignant
steady state to the hematopoietic steady state given by the equation (17) by changing
the value of px1

py1
. In the right panel, the corresponding bifurcation diagram is shown with

stability regions denoted by letters referring to Figure 3 whereas the stipulated line is the
one-parameter curve given by equation (16).

5 Steady states of the Dimensionless PV Model

After a complete classification of the topologies for the stem cell PV submodel,
we return to study the dimensionless PV model. The steady states (X̄0, Ȳ0,
X̄r, Ȳr, Ēq) for Eqs (7) fulfil,

ζx

(
1

1 + X̄0 + px1Ȳ0

− px2

)
X̄0 = 0, (18a)

ζy

(
1

1 + py1X̄0 + Ȳ0

− py2

)
Ȳ0 = 0, (18b)

X̄r =
Ēq(1 + qx3Ēq)

qx2(1 + qx1Ēq)
X̄0, (18c)

Ȳr =
Ēq(1 + qy3Ēq)

qy2(1 + qy1Ēq)
Ȳ0, (18d)

Ēq =
104

1 + re1X̄r + re2Ȳr
. (18e)

Corollary 1. The existence of the steady states of the PV model given in
equation (7) is guaranteed by the stem cell PV submodel given in proposition
(1), i.e.,

• A trivial steady state S0 = (0, 0, 0, 0, 104) always exists.

• A feasible hematopoietic steady state SH = (X̄0H , 0, X̄rH , 0, ĒqH)
exists if and only if a feasible DH exists in the stem cell PV submodel.

• A feasible malignant steady state SL = (0, Ȳ0L, 0, ȲrL, ĒqL) exists
if and only if is a feasible DL exists in the stem cell PV submodel.
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• A feasible co-existing steady state SC = (X̄0C , Ȳ0C , X̄rC , ȲrC , ĒqC)
exists if and only if a feasible DC exists in the stem cell PV submodel.

See Appendix (C) for proof.

6 The Reduced PV Model

From the dimensionless form, it follows that ε in equation (7e) of order
10−4 may be considered as smaller than compared to 1. Thus, we may use
a quasi steady state approximation for the concentration of EPO. Thus,
we substitute the expression of Ēq into the remaining equations (7a-7d)
providing the reduced PV model,

dX0

dτ
= ζx

(
1

1 +X0 + px1Y0

− px2

)
X0, (19a)

dY0

dτ
= ζy

(
1

1 + py1X0 + Y0

− py2

)
Y0, (19b)

dXr

dτ
=

Ēq
1 + qx1Ēq

X0 −
qx2

1 + qx3Ēq
Xr, (19c)

dYr
dτ

=
Ēq

1 + qy1Ēq
Y0 −

qy2

1 + qy3Ēq
Yr. (19d)

with

Ēq =
104

1 + re1Xr + re2Yr
(20)

The quasi steady state approximation shows an excellent agreement with
the PV model during disease progression as illustrated in Figure 6.

Figure 6: Comparison of the reduced PV model (stipulated curves) and the PV model
(full curves) for default parameter values. Red curves are malignant cells, blue shows
healthy hematopoietic cells, cyan denotes the sum of the cells and, the right panel shows
the concentration of EPO. All variables are converted into variables with units.

The dimensionless PV model and the reduced PV model have identical
steady states. The stability of the steady states in the reduced PV model
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(19) is analytically tractable and addressed in the following, showing a
complete agreement with the stem cell PV submodel. We consider px2 6= 1
and py2 6= 1.

Proposition 2. R0 = (0, 0, 0, 0) is a stable steady state for px2 > 1 and
py2 > 1 py2 > 1 whereas it is unstable for px2 < 1 and py2 < 1.

Proof. The Jacobian of the trivial steady states R0 (see Appendix D) is a
triangular matrix and two of the four eigenvalues, −qy2

(1+104qy1)
and −qx2

(1+104qx1)
are

negative but the remaining two ζx(1− px2) and ζy(1− py2) may be positive,
negative or zero. Hence, R0 is stable for px2 > 1 and py2 > 1 and unstable
for px2 < 1 and py2 < 1.

Proposition 3. When a feasible hematopoietic steady state
RH = (X̄0H , 0, X̄rH , 0) exists, it is stable for py1 > γ−1 and unstable for
py1 < γ−1.

Proof. At RH , the Jacobian for the hematopoietic steady state can be
calculated. Three of the four eigenvalues, ζxpx2(px2− 1), −qy2

re1X̄rH+1
1+re1X̄rH+104qy1

and A33

(1+re1X̄rH+104qx1)2(1+re1X̄rH+104qx3)2 where A33 < 0 (see Appendix D) are

always negative for px2 < 1 whereas the last
1

py2
−1

1
px2
−1
− py1 = γ−1 − py1 may

be positive, negative or zero depending on whether py1 is less than, greater
than or equal to γ−1. Hence, RH is stable for py1 > γ−1 and unstable for
py1 < γ−1.

Proposition 4. When a feasible malignant steady state RL = (0, Ȳ0L, 0, ȲrL)
exists, it is stable for px1 > γ and unstable for px1 < γ.

Proof. The Jacobian for the malignant steady state RL is a triangular
matrix. Three of the four eigenvalues, ζypy2(py2− 1), −qx2

re2ȲrL+1
1+re2ȲrL+104qx1

and
A44

(1+re2ȲrL+104qy1)2(1+re2ȲrL+104qy3)2 where A44 < 0 (see Appendix D) are always

negative for py2 < 1 however the last
1

px2
−1

1
py2
−1
− px1 = γ − px1 may be positive,

negative or zero depending on whether px1 is less than, greater than or equal
to γ. Hence, RL is stable for px1 > γ and unstable for px1 < γ.

Proposition 5. When a feasible co-existing steady state RC exists, it is
stable for px1 < γ and py1 < γ−1 and unstable for px1 > γ and py1 > γ−1.

Proof. The Jacobian for the co-existing steady state can be calculated (See
Appendix D). Two of the four eigenvalues are always negative but the other
two may be positive, negative or zero. It is shown that RC is stable for
px1 < γ and py1 < γ−1 and unstable for px1 > γ and py1 > γ−1.

In conclusion, the existence and stability of the steady states in the
reduced PV model is a one-to-one correspondence with those of the stem
cell PV submodel.
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7 Results

This section demonstrates various in silico treatments and the role of pa-
rameters in the prognosis of a virtual patient using the dimensionless PV
model.

In Silico Analysis of Stem Cells

The bone marrow niche influences the biological behavior of hematopoietic
stem cells via different signaling cascades and maintains normal hematopoiesis.
More efforts have been put into understanding the regulatory mechanisms
of niche, which ensures hematopoietic homeostasis by controlling the self-
renewal and differentiation of HSCs. The development of therapies targeting
the interaction of the stem cells with a niche for myeloid malignancies like
PV is getting attention in recent years [31, 46, 51, 58]. Here, we perturb stem
cells inhibiting factors px1 and py1 for treatment. To obtain a co-existing
steady state, we choose px1 = 1.3, px2 = 0.25 py1 = 0.1 and py2 = 0.4 while
all other parameters are fixed at their default values.

In Figures 7a-7b the solution of the PV model is projected on the (X0, Y0)
plane. The parameters involved in the stem cell PV submodel affect the
dynamics of erythrocytes and EPO (see Figures 7c, 7d, 7e). In Figure 7a
by simulating a drug increasing py1 and decreasing px1, a co-existing steady
state with high malignant cell count (X0, Y0) = (1.21, 1.38) switches to a co-
existing steady state with low malignant cell counts (X0, Y0) = (2.95, 0.47).
It takes approximately two years for this simulated treatment to reduce the
disease load. Thereafter, treatment is set on pause by resetting px1 and py1

at their previous values. During almost half a year, the trajectory moves
significantly back towards the co-existing steady state with high malignant
cell counts (see Figure 7b).

Thrombosis is the most prevalent complication for patients with PV [23].
Therefore, it is important to control the excessive production of erythrocytes
to reduce the risk of blood clots. It is achieved by perturbing inhibiting
factors resulting in the normalized number of hematopoietic stem cells and
erythrocytes (Figures 7c and 7d).

The other characteristics of PV is a high load of the JAK2V617F allele
burden [26, 27, 34] and low EPO plasma levels [12]. Figure 7e shows that
the concentration of EPO is increased by changing inhibiting factors in favor
of hematopoietic stem cells. In addition, Figure 7f illustrates that adjusting
inhibiting factors reduces the JAK2V617F allele burden from 53% to 16%,
which is favorable. In conclusion, it may suggest that future PV therapy
should focus on targeted treatments, which can affect the bone marrow
micro-environment.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: An example of the disease dynamics from the PV model is shown. The filled
grey circle in panel (a) is obtained using px1 = 1.3, px2 = 0.25, py1 = 0.1 and py2 = 0.4.
Decreasing px1 and increasing py1 in panel (a) shows that a patient is moved from a
co-existing steady state (upper grey circle) with high malignant cell count towards a
co-existing steady state (lower black circle) with low malignant cell count and normalized
hematopoietic cell count at px1 = 0.1, px2 = 0.25 py1 = 0.35 and py2 = 0.4. In panel
(b), setting back px1 and py1 to their original values, the patient moves back toward
the original co-existing steady state (upper black circle) following the stipulated black
curve. Panels (c), (d), (e) and (f) demonstrate the dynamics during the treatment period
(grey) and dynamics after treatment. Red, blue, green and cyan curves show malignant
cells, hematopoietic cells, the concentration of EPO, and theJAK2 V617F allele burden
respectively. Note, the time scale is converted into real time.
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In clinical practice, the JAK2V617F allele burden, Yr
Xr+Yr

, is measured and
is expected to increase due to the expansion of malignant cells for untreated
PV. Many authors advocate that the potential influencing therapeutic
choices should target the bone marrow niche since the bone marrow niche
homeostasis is disrupted, which promotes the survival of malignant stem
cells [15, 44]. Figure 8 shows that perturbation of inhibiting factors, px1

and py1, may improve or worsen prognosis by affecting the allele burden
whenever the co-existence steady state is stable. The left panel of Figure 8
shows that decreasing px1 improves prognosis by reducing the JAK2V617F
allele burden. Similarly, the right panel of Figure 8 shows that increasing
the py1 value reduces the co-existence steady state allele burden.
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Figure 8: Allele burden at the steady state for a parameter regime where the co-existing
steady state is stable. The left panel shows that by increasing px1, the allele burden also
increases, whereas the right panel shows that increasing py1 decreases the allele burden.
In the left panel, py1 = 0.1 and in the right panel px1 = 1.3 whereas px2 = 0.25 and
py2 = 0.4 in both panels.

In Silico Analysis of Erythrocytes

Several treatments aim to lower the number of erythrocytes to prevent blood
clots and other complications in patients with PV. Figure 9 shows that
increasing the qy1-value has a positive effect on the mature cell dynamics.
The JAK2V617F allele burden at steady state is reduced to 9% (stipulated
curves) from 53% (full curves). In general, the influence of IFN on EPO is still
poorly understood, but we may observe in Figure 9 that the concentration
of EPO is increased by increasing qy1.

Phlebotomy is applied as first-line therapy to PV patients with a dose of
aspirin. It normalizes the erythrocyte count and decreases the thrombotic
complications. In [43], the case of a PV patient is studied where the onset
of the disease is controlled by phlebotomy alone. In our model, we perform
phlebotomy by removing 10% mature cells count as illustrated in Figure 10.
It is shown that phlebotomy increases the EPO concentration and decreases
the mature cell count for a short period. After two months, the cell count
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and EPO level return to the baseline value without altering JAK2V617F
allele burden.

Figure 9: An example of in silico treatment by decreasing the differentiation rate of
malignant mature cells. Blue, red, cyan and green represent the healthy cells, malignant
cells, the JAK2 V617F allele burden and EPO respectively. For a co-existing steady state
we set px1 = 1.3, px2 = 0.25, py1 = 0.1, py2 = 0.4. Before treatment a co-existing state
containing low hematopoietic cells and high malignant cells switches to a co-existing state
consists of high hematopoietic cells and low malignant cells by increasing qy1 from 0.002
to 0.6. Note, the time scale is converted to real time.

Figure 10: An example of in silico treatment by phlebotomy. Blue, red, cyan and
green represent the healthy cells, malignant cells, the JAK2V617F allele burden and
EPO respectively. For a co-existing steady state we set px1 = 1.3, px2 = 0.25, py1 = 0.1,
py2 = 0.4. After phlebotomy at day ten, the mature cells and the EPO level returns to
the baseline value in two months. The JAK2V617F allele burden remains unchanged.
Note, the time scale is converted to real time.

In Silico Analysis of EPO

In clinical trials, EPO is the famous erythropoiesis-stimulating agent stim-
ulating erythrocytes. EPO dose is used in several hematological diseases
such as anemia, PMF, etc. However, any medication regarding EPO has not
yet been initiated in PV. We perform a few in silico trials to observe the
effect of EPO concentration on the mature cell count and the JAK2V617F
allele burden. Figure 11 illustrates that by increasing re2 decreases the EPO
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concentration and the number of total mature cells. In contrast, initiating
EPO therapy by injecting EPO dose increases the mature cell count as
illustrated in Figure 12 whereas the JAK2V617F allele burden remains
unchanged.

Figure 11: The total erythrocyte count (X̄rC + ȲrC) and EPO concentration E at the
steady state for a parameter regime where the co-existing steady state is stable (px1 = 0.2).
The figure shows decrease in X̄rC + ȲrC and E by increasing re2.

Figure 12: An example of in silico EPO therapy. Blue, red, cyan and green represent the
healthy cells, malignant cells, the JAK2 V617F allele burden and EPO respectively. For a
co-existing steady state we set px1 = 1.3, px2 = 0.25, py1 = 0.1, py2 = 0.4. EPO dose is
given at day one, which increases the healthy and malignant red blood cells whereas the
JAK2 V617F remains unchanged. Note, the time scale is converted to real time.

Fitting of Data

The model trajectories compared to three data sets of individual PV patients
receiving IFN treatment are illustrated in Figure 13. Comparing simulation
results to patient data validates the proposed model and shows its capability
to reproduce data before and after treatment. We identify a set of parameters
for three subjects and report values in tables 3, 4 and 5. The remaining
parameters are fixed at their default values.
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Figure 13: The three panels correspond to patients having PV and treated with IFN are
compared to the PV model. In the left two panels, data for the total erythrocyte counts
(Xr + Yr) are shown in green diamonds before six years without treatments whereas,
after six years, data for cell count are shown in dark grey stars curve during treatment.
In the rightmost panel, stars represent the total erythrocyte counts, whereas squares
denote the JAK2 V617F allele burden Yr

Xr+Yr
data from a patient during treatment. Model

predictions are shown as full curves for erythrocyte counts (black untreated and blue
treated) and for the JAK2 V617F allele burden (maroon). The data shown in the first two
panels is from [43]. The data shown in the last panel is from the clinical trial “DALIAH”
(EudraCT number: 2011-001919-31).

Before treatment After treatment
Parameter Value Parameter Value
ry 9 · 10−3 ry 9 · 10−3

ay 3.7 · 10−4 ay 3.7 · 10−4

dx0 2 · 10−3 dx0 3 · 10−4

dy0 2 · 10−3 dy0 7 · 10−3

δx 2.07 · 108 δx 2.4 · 108

δy 2.19 · 108 δy 5 · 107

ηx 8.57 · 10−4 ηx 8.57 · 10−4

ηy 3.2 · 10−3 ηy 3.2 · 10−3

k0 5.22 · 10−11 k0 5.22 · 10−11

Table 3: Parameter values for the left panel in Figure 13. The parameters
in red are calibrated by fitting data during treatment.
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Before treatment After treatment
Parameter Value Parameter Value
ry 1.2 · 10−2 ry 1.2 · 10−2

ay 8 · 10−5 ay 8 · 10−5

dx0 2 · 10−3 dx0 3 · 10−4

dy0 2.4 · 10−3 dy0 7 · 10−3

δx 2.07 · 108 δx 3.3 · 108

δy 2.19 · 108 δy 2 · 108

ηx 8.57 · 10−4 ηx 8.57 · 10−4

ηy 3.2 · 10−3 ηy 3.2 · 10−3

k0 5.22 · 10−11 k0 5.22 · 10−11

Table 4: Parameter values for the middle Figure 13. The parameters in red
are calibrated while fitting data during treatment.

Parameter Value Parameter Value
ry 1 · 10−3 ay 1 · 10−4

dx0 6 · 10−4 dy0 2 · 10−3

k0 5.22 · 10−11 p 3 · 105

δx 2.1 · 108 δy 2 · 108

ηx 2.6 · 10−3 ηy 1.5 · 10−3

Table 5: Parameter values deviated from the default for the right Figure 13.
All other values are set at their default.

8 Discussion and Conclusions

In this article, a PV model integrating both hematopoietic and malignant
cells with multiple EPO feedback is analyzed. A thorough mathematical
investigation of the model is presented. The number of parameters is reduced
from 23 to 15 as a result of dimensional analysis. Stem cell dynamics can
be investigated from a two-dimensional stem cell PV submodel, and four
kinds of steady states may exist, i.e., trivial, hematopoietic, malignant and
co-existing steady states. The existence and stability of all steady states
in the stem cell PV submodel are identified, analyzed and visualized in a
phase plane Figure 3. With a quasi steady state approximation, the PV
model consisting of a system of non-linear ordinary differential equation is
approximated by a four dimensional system, the reduced PV model. Finally,
it is demonstrated that the steady states of the stem cell PV submodel and
the steady states of the reduced PV model are in correspondence. Thus,
stem cell properties determine the qualitative outcome of the PV model.
Other authors have previously supported the crucial importance of stem
cell dynamics for the behavior of full system. In [41], a compartmental
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model is proposed and it is shown that a feasible and stable steady state is
obtained by modulating the self-renewal rate of HSC. Another important
work [13] indicates that differentiation and apoptosis rates related to the
stem cell compartment are essential parameters to simulate patient data.
The parameter changes in the stem cell and leukocyte compartments are
sufficient to destabilize the steady state.

In biomedical literature, the irregular stem cell division and the bone
marrow niche’s regulatory feedback are drivers for blood cancer development
which are incorporated in our model. According to these perceptions, our
investigation shows that the stem cell population is a good candidate for
therapy to prevent disease progression. The death rates, px2 and py2 are
related to the fitness of stem cell type whereas px1 and py1 describes niche
feedback. Decreasing px1 and increasing py1 may turn a stable full blown
malignant steady state into a stable hematopoietic steady state, as illustrated
in Figure 5 and Figure 7. The similar concept is discussed in [50] where the
relation between niche feedback, stem cell fitness and inflammatory stimuli
is well explored for a good prognosis. Moreover, stem cell therapy is useful
to normalize the blood count and EPO level in the blood.

Besides stem cell therapy, many clinical experts focus on reducing the
erythrocyte count in the peripheral blood, preventing thromboembolic events.
Phlebotomy is a standard therapy implemented in PV patients for removing
an excessive amount of blood cells. Some investigations address that inter-
vention with interferon-α (IFN) increases the differentiation of progenitor
cells in the myeloid cell line [32]. We implement a similar idea where we
reduce the differentiation of mature malignant cells by increasing qy1 in
Figure 9. It increases the healthy cell count and decreases the malignant cell
count in the blood, and the JAK2V617F allele burden is reduced. Before
any drug therapy, phlebotomy is initiated when the patient is diagnosed with
PV. It reduces the chances of thrombotic events for a short time. Figure
10 shows the reduction in mature cell count after phlebotomy, whereas the
EPO concentration is increased.

It is an interesting discussion whether EPO should be taken into account
as a diagnostic or prognostic tool in PV patients. We perform simulations to
investigate the effect of EPO dose on the mature cells and the JAK2V617F
allele burden (See Figure 12). Our model reveals that EPO dose might
increase the mature cell count with no effect on JAK2V617F. However,
decreasing EPO concentration decreases the total erythrocyte count and
stop the risk of thrombosis. In the case of available data of EPO for PV
patients, the proposed model can be validated, and we may acquire a better
knowledge of EPO mechanism in PV patients.
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Appendix

A Parameter Estimation

The steady state of the full model (1) has the following form, where bars
indicate steady state values

(rxφx − dx0 − ax)x̄0 = 0, (A.1a)

axAx(Ē)x0 − dxr(Ē)x̄r = 0, (A.1b)
p

1 + k0x̄r
− kĒ = 0, (A.1c)

with ȳ0 = ȳr = 0 and

φx =
1

1 + cxxx̄0

, (A.2)

Ax(Ē) = δx
Ē

1 + αxĒ
, (A.3)

dxr(Ē) = ηx
1

1 + βxĒ
. (A.4)

Based on literature, we choose hematopoietic steady state values such as
(x̄0, ȳ0, x̄r, ȳr, Ē) = (2.6 · 104, 0, 4.52 · 1012, 0, 13.9).

Hematopoietic stem cells divide approximately once per year [1, 19]. We
let rx = 5 · 10−3 per day [17]. In addition, elimination from the stem cell
compartment is approximately 0.002 cells per day, dx0 = 2 · 10−3 per day
[17, 45, 6, 50]. cxx = 5.6 · 10−5 is taken from [45, 50] based on reasoning
that hematopoietic cells are more sensitive to inhibitive niche feedback than
malignant cells. From equation (A.1a),

ax = rxφx − dx0,

gives ax = 3.58 · 10−5.
Since the life span of RBC for healthy humans is about 120 days [9, 13,

38, 20], we choose the removal rate dependent on EPO from the erythrocyte
compartment to be, dxr(Ē) = 1/120 per day. We choose ηx = 8 · 10−3 per
day such that for Ē = 0, dxr(0) ≈ ηx. Thereafter, from equation (A.4),

βx =
1

Ē

(
ηx

dxr(Ē)
− 1

)
.

Thus, βx = 9 · 10−3 is obtained.
From equation (A.1b),

Ax(Ē) =
dxr(Ē)

ax

x̄r
x̄0
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gives Ax(Ē) = 3 · 109. We make a first guess for δx = 8.6 · 108. With the
help of equation (A.3),

αx =
1

Ē

(
δxĒ

Ax(Ē)
− 1

)

providing αx = 5 · 10−3.
In [20, 38, 40], the half life of EPO is reported to be about 4 to 24 hours

and in [7, 9, 20, 38, 39] the decay constant of EPO varies between 2 and 7
per day. Thus, we suppose that the half-life of EPO to be 6 hours as default
value, k = ln(2)

T1/2
≈ 2.8day−1. The parameter p = 1.56 · 104 is estimated in

[39, 9], thereby from equation (A.1c),

k0 =
1

x̄r

( p

kĒ
− 1
)

we obtain k0 = 8.9 · 10−11.

B Dimensional analysis

Formulating differential equations in dimensionless form may reduce the
number of free parameters by collecting the original parameters into clusters
of parameters. All variable in system (1) are scaled by a constant having
the unit of the variable and denoted with same symbol as the variables but
with a tilde above. Thus, we non-dimensionalise the equations of system (1)
using following scales,

x0 = x̃0X0, y0 = ỹ0Y0, xr = x̃rXr, yr = ỹrYr, E = ẽEq, t = t̃τ

where small letters with tilde are scaling constants, capital letters are di-
mensionless variables and τ is dimensionless time. Hence, system (1) in
dimensionless variables reads,

dX0

dτ
=

t̃

x̃0

(
rx

1 + cxxx̃0X0 + cxyỹ0Y0

− dx0 − ax
)
x̃0X0, (B.1a)

dY0

dτ
=

t̃

ỹ0

(
ry

1 + cyxx̃0X0 + cyyỹ0Y0

− dy0 − ay
)
ỹ0Y0, (B.1b)

dXr

dτ
=

t̃

x̃r

(
axδ1ẽEq

1 + α1ẽEq
x̃0X0 −

η1

1 + β1ẽEq
x̃rXr

)
, (B.1c)

dYr
dτ

=
t̃

ỹr

(
ayδ2ẽEq

1 + α2ẽEq
ỹ0Y0 −

η2

1 + β2ẽEq
ỹrYr

)
, (B.1d)

dEq
dτ

=
t̃

ẽ

(
p

(1 + k0(x̃rXr + ỹrYr)
− kẽEq

)
. (B.1e)
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i.e.

dX0

dτ
= rxt̃

(
1

1 + cxxx̃0X0 + cxyỹ0Y0

− dx0 + ax
rx

)
X0, (B.2a)

dY0

dτ
= ry t̃

(
1

1 + cyxx̃0X0 + cyyỹ0Y0

− dy0 + ay
ry

)
Y0, (B.2b)

dXr

dτ
= t̃

axδ1ẽEq
x̃r(1 + α1ẽEq)

x̃0X0 − t̃
η1

1 + β1ẽEq
Xr, (B.2c)

dYr
dτ

= t̃
ayδ2ẽEq

ỹr(1 + α2ẽEq)
ỹ0Y0 − t̃

η2

1 + β2ẽEq
Yr, (B.2d)

dEq
dτ

= t̃
p

ẽ(1 + k0(x̃rXr + ỹrYr))
− t̃kEq. (B.2e)

We may choose

x̃0 =
1

cxx
≈ 104, (B.3a)

ỹ0 =
1

cyy
≈ 104, (B.3b)

x̃r =
paxδ1

104rxcxx
≈ 1011, (B.3c)

ỹr =
payδ2

104rxcyy
≈ 1012, (B.3d)

ẽ =
p

104k
≈ 101, (B.3e)

t̃ =
k

rx
≈ 103. (B.3f)

and the system (B.2) becomes

dX0

dτ
= k

(
1

1 +X0 + cxy
cyy
Y0

− dx0 + ax
rx

)
X0, (B.4a)

dY0

dτ
= k

ry
rx

(
1

1 + cyx
cxx
X0 + Y0

− dy0 + ay
ry

)
Y0, (B.4b)

dXr

dτ
=

Eq
1 + α1p

104k
Eq
X0 −

η1k

rx

1

1 + β1p
104k

Eq
Xr, (B.4c)

dYr
dτ

=
Eq

1 + α2p
104k

Eq
Y0 −

η2k

rx

1

1 + β2p
104k

Eq
Yr, (B.4d)

ε
dEq
dτ

=
1

10−4
(

1 + k0

(
paxδ1

104rxcxx
Xr + payδ2

104rxcyy
Yr

)) − Eq . (B.4e)

Set ε = rx
k2 ≈ 10−4, ζx = k ≈ 1, ζy = k ry

rx
≈ 1, px1 = cxy

cyy
≈ 1, px2 = dx0+ax

rx
≈

10−1, py1 = cyx
cxx
≈ 10−1, py2 = dy0+ay

ry
≈ 10−1, qx1 = αxp

104k
≈ 10−3, qx2 =
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ηxk
rx
≈ 1, qx3 = βxp

104k
≈ 10−3, qy1 = αyp

104k
≈ 10−3, qy2 = ηyk

rx
≈ 1, qy3 = βyp

104k
≈

10−3, re1 = k0paxδx
104rxcxx

≈ 102, re2 = k0payδy
104rxcyy

≈ 103, gives

dX0

dτ
= ζx

(
1

1 +X0 + px1Y0

− px2

)
X0, (B.5a)

dY0

dτ
= ζy

(
1

1 + py1X0 + Y0

− py2

)
Y0, (B.5b)

dXr

dτ
=

(
Eq

1 + qx1Eq
X0 −

qx2

1 + qx3Eq
Xr

)
, (B.5c)

dYr
dτ

=

(
Eq

1 + qy1E1

Y0 −
qy2

1 + qy3Eq
Yr

)
, (B.5d)

ε
dEq
dτ

=

(
104

1 + re1Xr + re2Yr
− Eq

)
. (B.5e)

C Existence of steady states of the full model

Consider the system of Eqs (B.5). Expressions for steady state solutions are,

ζx

(
1

1 + X̄0 + px1Ȳ0

− px2

)
X̄0 = 0, (C.1a)

ζy

(
1

1 + py1X̄0 + Ȳ0

− py2

)
Ȳ0 = 0, (C.1b)

X̄r =
Ēq(1 + qx3Ēq)

qx2(1 + qx1Ēq)
X̄0, (C.1c)

Ȳr =
Ēq(1 + qy3Ēq)

qy2(1 + qy1Ēq)
Ȳ0, (C.1d)

Ēq =

(
104

1 + re1X̄r + re2Ȳr

)
. (C.1e)

Following, we will show that the existence of feasible steady states of
the full model is guaranteed by steady states of the stem cell submodel. We
consider px2 6= 1 and py2 6= 1.

A trivial steady state exists always i.e. S0 = (0, 0, 0, 0, 104).

For hematopoietic steady state, SH = (X̄0H , 0, X̄rH , 0, ĒqH), substi-
tute equation (C.1e) in equation (C.1c),
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qx2r
2
e1X̄

3
rH + qx2re1(104qx1 + 2)X̄2

rH + (−104re1X̄0H + qx2(1 + 104qx1))X̄rH − 104(104qx3 + 1)X̄0H = 0.
(C.2)

Since the coefficients with the first two terms i.e. qx2r
2
e1 and qx2re1(104qx1+

2) are always positive whereas the last term −104(104qx3 + 1)X̄0H remains
always negative for positive X̄0H i.e. px2 < 1. Thus, by using Descartes’ rule
of sign, there exists exactly one positive root of equation (C.2) i.e. X̄rH+

thus, a unique ĒqH also exists. Hence, a feasible SH exists if and only if DH

exists in the stem cell submodel.

For malignant steady state, SL = (0, Ȳ0L, 0, ȲrL, ĒqL), substitute equa-
tion (C.1e) in equation (C.1d),

qy2r
2
e2Ȳ

3
rL + qy2re2(104qy1 + 2)Ȳ 2

rL + (−104re2Ȳ0L + qy2(1 + 104qx1))ȲrL − 104(104qy3 + 1)Ȳ0L = 0
(C.3)

Since the first two terms remain positive whereas the last term remains
negative for positive Ȳ0L i.e. py2 < 1. Thus, by using Descartes’ rule of sign,
there exists exactly one positive root of equation (C.3) i.e. ȲrL+ thus, a
unique ĒqL also exists. Hence, a feasible SL exists if and only if DL exists
in the stem cell submodel.

For co-existing steady state SC = (X̄0C , Ȳ0C , X̄rC , ȲrC , ĒqC), substi-
tuting expressions (C.1c) and (C.1d) in (C.1e),

ε4Ē
4
q + ε3Ē

3
q + ε2Ē

2
q − ε1Ē1

q − ε0Ē0
q = 0. (C.4)

where ε4 = qx3qy1qy2re1X̄0C + qx1qx2qy3re2Ȳ0C ,
ε3 = (qx1qy1qy2 + re2(qx1 + qy3)Ȳ0C)qx2 + (qx3 + qy1)qy2re1X̄0C ,
ε2 = (((1− 104qy1)qx1 + qy1)qy2 + re2Ȳ0C)qx2 + qy2re1X̄0C ,
ε1 = 104qx2qy2(qx1 + qy1 − 10−4) and ε0 = qx2qy2104. For positive X̄0C and
Ȳ0C , coefficients ε4 and ε3 are always positive and ε0 remains negative. The
coefficients ε2 is negative for

104 >
1

qx1qy1

(
re1X̄0C

qx2

+
re2Ȳ0C

qy2

+ qx1 + qy1

)

positive for

104 <
1

qx1qy1

(
re1X̄0C

qx2

+
re2Ȳ0C

qy2

+ qx1 + qy1

)
.

and zero for

104 =
1

qx1qy1

(
re1X̄0C

qx2

+
re2Ȳ0C

qy2

+ qx1 + qy1

)
.
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The coefficient ε1 is negative for qx1 + qy1 > 10−4, positive for qx1 + qy1 <
10−4 and zero for qx1 + qy1 = 10−4.

Cases ε4 ε3 ε2 ε1 ε0 Roots
1st + + + + - 1 pos real root
2nd + + - - - 1 pos real root
3rd + + + - - 1 pos real root
4th + + - + - 3 or 1 pos real roots
5th + + -/+ 0 - 1 pos real roots
6th + + 0 +/- - 1 pos real roots

Table 6: Descartes Rule of sign

Let us analyse the 4th case, where ε1 > 0 and ε2 < 0.

ε2 = 10−4
(
re1X̄0C

qx2
+ re2Ȳ0C

qy2

)
+ 10−4(qx1 + qy1) − qx1qy1. Since qx1 ≥ 0,

qy1 ≥ 0 and qx1 + qy1 < 10−4, we may say, qx1 < 10−4 and qy1 < 10−4, thus,

ε2 >
(

10−4
(
re1X̄0C

qx2
+ re2Ȳ0C

qy2

)
+ 10−4(qx1 + qy1)− 10−4qy1

)
or

ε2 >
(

10−4
(
re1X̄0C

qx2
+ re2Ȳ0C

qy2

)
+ 10−4qx1

)
which is always positive. It ex-

cludes the possibility of three positive roots. Hence, there exists a unique
positive root of Ēq. From equations (C.1c) and (C.1d), we obtain a unique
(X̄rC , ȲrC). Hence, a feasible SC exists if and only if DC exists in the stem
cell submodel.

-100 -50 0 50
-1

-0.5

0

0.5

1 108

Figure C.1: Graph for polynomial equation (C.4) related to Case 3, for
px1 = 0.2 and py1 = 2 (co-existing steady state does not exist for default
values of px1 and py1). Roots are denoted by filled black circles.
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D Stability of the reduced model:

In this section, we evaluate the Jacobian at various steady states.
At R0 the Jacobian of a trivial steady state is

JR0 =




a11 0 0 0
0 a22 0 0
a31 0 a33 0
0 a42 0 a44


 (D.1)

where
a11 = ζx (1− px2),
a22 = ζy (1− py2),

a31 = 104

1+104qx1
,

a33 = − qx2

1+104qx1
,

a42 = 104

1+104qy1
,

a44 = − qy2

1+104qy1
.

At RH the Jacobian of the hematopoietic steady state is

JRH
=




a11 a12 0 0
0 a22 0 0
a31 0 a33 a34

0 a42 0 a44


 (D.2)

where
a11 = ζxpx2 (px2 − 1),
a12 = ζxpx1px2 (px2 − 1),

a22 = ζy

(
1(

py1

(
1

px2
−1

)
+1

) − py2

)
,

a31 = 104

1+re1X̄rH+104qx1
,

a33 = A33

(1+re1X̄rH+104qx1)2(1+re1X̄rH+104qx3)2 ,

a34 = 1012re2A34

(1+re1X̄rH+104qx1)2(1+re1X̄rH+104qx3)2 ,

a42 = 104

1+re1X̄rH+104qy1
,

a44 = − qy2(1+re1X̄rH)

1+re1X̄rH+104qy1
.

A33 =
(
−qx2r

4
e1X̄

4
rH − 2 · 104

(
qx2(qx3 + qx1 + 1

5·103 )X̄rH + X̄0H

2

)
r3
e1X̄

2
rH

)
+

(
−108

((
q2
x1 + (4qx3 + 3

5·103 )qx1 + qx3

2·103 + 3
5·107

)
qx2X̄rH + 2qx3X̄0H + X̄0H

5·103

)
r2
e1X̄rH

)
+

(
−2 · 1011re1

(
qx3 + 1

104

) (
(qx1 + 1

5·103 )(qx1 + 1
104 )qx2X̄rH +

(qx3+ 1
104 )X̄0H

2

))
+

(
−1012qx2

(
qx3 + 1

104

) (
qx1 + 1

104

)2)
.
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A34 =
r2
e1qx2qx3X̄

3
rH

108 + re1

5·103

(
qx2qx3(qx1 + 1

104 ) + re1

2·104 X̄0H

)
X̄2

rH+

+
(
qx3

(
re1X̄0H

5·103 + qx2(qx1 + 1
104 )2

)
+ re1X̄0H

5·107

)
X̄rH + (qx3 + 1

104 )2X̄0H .

At RL the Jacobian of the malignant steady state is

JRL
=




a11 0 0 0
a21 a22 0 0
a31 0 a33 0
0 a42 a43 a44


 (D.3)

where

a11 = ζx

(
1(

px1

(
1

py2
−1

)
+1

) − px2

)
,

a21 = ζypy2py1 (py2 − 1),
a22 = ζypy2 (py2 − 1),

a31 = 104

1+re2ȲrL+104qx1
,

a33 = − qx2(1+re2ȲrL)

1+re2ȲrL+104qx1
,

a42 = 104

1+re2ȲrL+104qy1
,

a43 = 1012re1A43

(1+re2ȲrL+104qy1)2(1+re2ȲrL+104qy3)2 ,

a44 = A44

(1+re2ȲrL+104qy1)2(1+re2ȲrL+104qy3)2 ,

A43 =
r2
e2qy2qy3Ȳ

3
rL

108 + re2

5·103

(
qy2qy3(qy1 + 1

104 ) + re2

2·104 Ȳ0L

)
Ȳ 2
rL+

+
(
qy3

(
re2Ȳ0L

5·103 + qy2(qy1 + 1
104 )2

)
+ re2Ȳ0L

5·107

)
ȲrL + (qy3 + 1

104 )2Ȳ0L.

A44 =
(
−qy2r

4
e2Ȳ

4
rL − 2 · 104

(
qy2(qy3 + qy1 + 1

5·103 )ȲrL + Ȳ0L

2

)
r3
e2Ȳ

2
rL

)
+

(
−108

((
q2
y1 + (4qy3 + 3

5·103 )qy1 +
qy3

2·103 + 3
5·107

)
qy2ȲrL + 2qy3Ȳ0L + Ȳ0L

5·103

)
r2
e2ȲrL

)
+

(
−2 · 1011re2

(
qy3 + 1

104

) (
(qy1 + 1

5·103 )(qy1 + 1
104 )qy2ȲrL +

(qy3+ 1
104 )Ȳ0L

2

))
+

(
−1012qy2

(
qy3 + 1

104

) (
qy1 + 1

104

)2)
.

At RC the Jacobian of the co-existing steady state.

JRC
=




a11 a12 0 0
a21 a22 0 0
a31 0 a33 a34

0 a42 a43 a44


 (D.4)

where
a11 = ζx

(
px1Ȳ0C+1

(X̄0C+px1Ȳ0C+1)2 − px2

)
= −ζxp2

x2X̄0C ,

a12 = −ζxpx1
X̄0C

(X̄0C+px1Ȳ0C+1)2 = −ζxpx1p
2
x2X̄0C ,

a21 = −ζypy1
Ȳ0C

(py1X̄0C+Ȳ0C+1)2 = −ζypy1p
2
y2Ȳ0C ,

a22 = ζy

(
py1X̄0C+1

(py1X̄0C+Ȳ0C+1)2 − py2

)
= −ζyp2

y2Ȳ0C ,
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a31 = 104

(1+re1X̄rC+re2ȲrC)
(

104qx1
1+re1X̄rC+re2ȲrC

+1
) ,

a33 = − 104re1X̄0C

(1+re1X̄rC+re2YrC)2
(

104qx1
1+re1X̄rC+re2ȲrC

+1
)+ 108qx1re1X̄0C

(1+re1X̄rC+re2YrC)3
(

104qx1
1+re1X̄rC+re2ȲrC

+1
)2

− 104qx2qx3re1X̄rC

(1+re1X̄rC+re2YrC)2
(

104qx3
1+re1X̄rC+re2ȲrC

+1
)2− qx2

104p7
(1+re1X̄rC+re2YrC )

+1

a42 = 104

(1+re1X̄rC+re2ȲrC)

(
104qy1

1+re1X̄rC+re2ȲrC
+1

) ,

a34 = − 104re2X̄0C

(1+re1X̄rC+re2YrC)2
(

104qx1
1+re1X̄rC+re2ȲrC

+1
)+ 108qx1re2X̄0C

(1+re1X̄rC+re2YrC)3
(

104qx1
1+re1X̄rC+re2ȲrC

+1
)2

− 104qx2qx3re2X̄rC

(1+re1X̄rC+re2YrC)2
(

104qx3
1+re1X̄rC+re2ȲrC

+1
)2

a42 = 104

(1+re1X̄rC+re2ȲrC)

(
104qy1

1+re1X̄rC+re2ȲrC
+1

) ,

a43 = − 104re1Ȳ0C

(1+re1X̄rC+re2YrC)2

(
104qy1

1+re1X̄rC+re2ȲrC
+1

)+ 108qy1re1Ȳ0C

(1+re1X̄rC+re2YrC)3

(
104qy1

1+re1X̄rC+re2ȲrC
+1

)2

− 104qy2qy3re1ȲrC

(1+re1X̄rC+re2YrC)2

(
104qy3

1+re1X̄rC+re2ȲrC
+1

)2

a44 = − 104re2Ȳ0C

(1+re1X̄rC+re2YrC)2

(
104qy1

1+re1X̄rC+re2ȲrC
+1

)+ 108qy1re2Ȳ0C

(1+re1X̄rC+re2YrC)3

(
104qy1

1+re1X̄rC+re2ȲrC
+1

)2

− 104qy2qy3re2ȲrC

(1+re1X̄rC+re2YrC)2

(
104qy3

1+re1X̄rC+re2ȲrC
+1

)2− qy2

104qy3
(1+re1X̄rC+re2YrC )

+1
.

The elements of array given above are negative except a31.
The characteristic polynomial at JRC

is,

(λ2
C−(a11+a22)λC+a11a22−a21a12)(λ2

C−(a33+a44)λC+a33a44−a34a43) = 0

The eigenvalues are,

λ±1,2 =
1

2

(
a11 + a22 ±

√
(a11 − a22)2 − 4(a11a22 − a21a12

)

and

λ±3,4 =
1

2

(
a33 + a44 ±

√
(a33 − a44)2 − 4(a33a44 − a34a43

)

Let us investigate the type of eigenvalues. In case a11a22 > a21a12 and
a33a44 > a34a43, all four eigenvalues are negative and RC is stable.

a11a22 > a21a12 ⇐⇒ px1py1 < 1

and a33a44 − a34a43 = A1A2

A3
is positive

where
A1 = 1020

(
re1X̄rC + re2ȲrC + 1

)
,

A2 = 1
1012 (a1 (a2 + a3 + a4) qy2) (a6 + a7),
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A3 = (re1X̄rC + re2ȲrC + 104qy3 + 1)2(re1X̄rC + re2ȲrC + 104qy1 + 1)2(re1X̄rC +
re2ȲrC + 104qx3 + 1)2(re1X̄rC + re2ȲrC + 104qx1 + 1)2,

a1 =
(re1 X̄rC+re2 ȲrC+104 qy1+1)

2
qy2

108 ,

a2 =
r3
e1X̄

3
rC

104 + X̄2
rC

(
qy3 + 2qx3 + 3

104 + 3re2ȲrC

104

)
r2
e1,

a3 = 3X̄rC

(
r2
e2Ȳ

2
rC

104 + ȲrC
(
qy3 + qx3 + 1

5·103

)
re2 +

(2·104 qx3+2)(qy3+ 3
2·104 )

3

)
re1,

a4 = (2re2ȲrC + 2 · 104qx3 + 2)
(

r2
e2Ȳ

2
rC

2·104 + ȲrC
(
qy3 + 1

104

)
re2 +

qy3

2 + 1
2·104

)
,

a5 = Ȳ0C

(
re1X̄rC

104 + re2ȲrC

104 + qy3 + 1
104

)2

re2

(
re1X̄rC + re2ȲrC + 104qx3 + 1

)
,

a6 =
(

re1X̄rC

104 + re2ȲrC

104 + qx1 + 1
104

)2

qx2,

a7 =
qy2re1X̄0C(re1X̄rC+re2ȲrC+104qy1+1)

2
(re1X̄rC+re2ȲrC+104qx3+1)

2
(

re1X̄rC
104 +

re2ȲrC
104 +qy3+ 1

104

)

1012 .

Hence, RC is stable for px1py1 < 1 i.e. px1 < γ and py1 < γ−1.
In conclusion, the stability of the steady states in the reduced model is

one-to-one correspondence with those of the stem cell submodel.
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elling of asymmetric cell division in hematopoietic stem cells–regulation
of self-renewal is essential for efficient repopulation, Stem Cells Dev,
18(3) (2009), 377-85.

[42] Meiss JD. 2007. Differential Dynamical Systems.

[43] Michiels JJ, Schroyens W, Lindemans J, Kate FWJT, Lam KH, De
Raeve H. 2014. The Erythrocyte count on top of bone marrow histology
discriminates Essential Thrombocythemia and Polycythemia Vera in
JAK2V617F mutated prefibrotic Myeloproliferative Neoplasm with no
or minor splenomegaly. Journal of Haematology and Thromboembolic
Diseases, 2:4.

[44] Mullally A, Poveromo L, Schneider RK, Al- Shahrour F, Lane SW,
Ebert BL. 2012. Distinct roles for long-term hematopoietic stem cells
and erythroid precursor cells in a murine model of Jak2V617F-mediated
polycythemia vera. Blood, 120(1): 166-172.

[45] Ottesen JT, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Bangsgaard KO,
Skov V, Kjær L, Knudsen TA, Pallisgaard N, Kruse TA, Thomassen M,
Troelsen J, Hasselbalch HC, Andersen M. 2019. Bridging blood cancers
and inflammation: The reduced Cancitis model. Journal of Theoretical
Biology 465: 90-108.

[46] Pinho S, Frenette PS. 2019 Haematopoietic stem cell activity and
interactions with the niche. Molecular Cell Biology. Volume 20.

114



42

[47] Pantel, K, Loeffler M, Bungart B, Wichmann HE. 1990. A mathematical
model of erythropoiesis in mice and rats. Part 4: Differences between
bone marrow and spleen Cell Proliferation, July 1990, 23(4):283-297.

[48] Rodak BF, Fritsma GA, Doig K. 2008. Hematology: Clinical principles
and applications.

[49] Rovida E, Marzi I, Cipolleschi MG, Sbarba PD. 2014. One more stem cell
niche: how the sensitivity of chronic myeloid leukemia cells to imatinib
mesylate is modulated within a “hypoxic” environment, Hypoxia, 1-10.

[50] Sajid Z, Andersen M, Ottesen JT. 2019. Mathematical analysis of the
Cancitis model and the role of inflammation in blood cancer progression.
MBE, 16(6): 8268–8289.

[51] Santar CG, Desmond R, Feng X, Bat T, Chen J, Heuston E, Mizukawa
B, Mulloy JC, Bodine DM, Larochelle A, Dunbar CE. 2015. Functional
Niche Competition Between Normal Hematopoietic Stem and Progenitor
Cells and Myeloid Leukemia Cells. Stem Cells, 33(12): 3635-42.

[52] Silva M, Grillot D, Benito, Richard C, Nunez G, Fernandez- Luna
J. 1996. Erythropoietin can promote erythroid progenotor survival by
repressing apoptosis through bcl-1 and bcl-2. Blood 88, 1576-1582.

[53] Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. 2015. Cell division
patterns in acute myeloid leukemia stem-like cells determine clinical
course: A model to predict patient survival. Cancer Research. 75(6):940-
949.

[54] Testa U. 2004. Apoptotic mechanism in the control of erythropoeisis.
Leukemia 18, 7: 1176-1199.

[55] Tetschke M, Lilienthal P, Pottgiesser T, Fischer T, Schalk E, Sager S.
2018. Mathematical Modeling of RBC Count Dynamics after Blood
Loss. Processes 6, 157.

[56] Walenda T, Stiehl T, Braun H, Frobel J, Ho AH, Schroeder T, Goecke
TW, Rath B, Germing U, Marciniak-Czochra A, Wagner W. 2014 Feed-
back signals in Myelodysplastic Syndromes: Increased Self-Renewal of
the Malignant Clone Suppresses Normal Hematopoiesis. PLoS Compu-
tational Biology, 10(4).

[57] Walkley C, Shea J, Sims N, Purton L, Orkin S. 2007. Rb regulates
interactions between hematopoietic stem cells and their bone marrow
micro-environment, Cell, 129: 1081-95.

115



43

[58] Wan PX, Wang BW, Wang ZC. 2015 Importance of the stem cell
microenvironment for ophthalmological cell-based therapy. World J
Stem Cells 7(2): 448-460.

[59] Weitzman JB, Fiette L, Matsuo K, Yaniv M. 2000. JunD protects cells
from p53- dependent senescence and apoptosis. Mol Cell 6, 5: 1109-1119.

[60] Wichmann HE, Loeffler M, Pantel K, Wulff HH. 1989. A mathematical
model of erythropoiesis in mice and rats. Part 2. Stimulated erythro-
poiesis. Cell Tissue Kinetics 22:31–49.

[61] Wulff H, Wichmann HE, Pantel K, Loeffler M. 1989. A mathematical
model of erythropoiesis in mice and rats. Part 3: suppressed erythro-
poiesis. Cell Tissue Kinetics 22:51–61.

[62] Zhang J, Fleischman AG, Wodarz D. 2017. Determining the role of
inflammation in the selection of JAK2 mutant cells in myeloproliferative
neoplasms. J. Theor. Biol., 425: 43–52.

[63] Zauli G, Vitale M, Falcieri E, Gibellini D, Bassini A, Celeghini C,
Columbaro M, Capitani S. 1997. In vitro senescence and apoptotic cell
death of human megakaryocytes. Blood 90, 2234-2243.

116



CHAPTER 5

Mathematical model of pathological dy-
namics of thrombopoiesis with multiple
TPO feedbacks

5.1 Introduction
In this chapter, we present a mechanism-based mathematical model of essential throm-
bocythemia (ET). ET is characterized by the excessive production of platelets. There
are several arguments behind the pathophysiological dynamics of platelets in ET pa-
tients. One of them is that the thrombopoietin (TPO) serum levels are significantly
increased compared with normal subjects despite a high number of platelets. TPO is
the principal growth hormone that regulates megakaryocyte and platelet development.
It stimulates the differentiation and maturation of megakaryocytes, inhibits their death
rate, and stimulates the release of platelets via fragmentation of megakaryocytes. Re-
cent studies show that TPO receptors increase the self-renewal of hematopoietic stem
cells, especially under stress and inflammation. [32]. TPO is internalized, degraded and
removed from the peripheral blood primarily by platelets [70; 99]. The relation between
TPO and platelets is not yet been investigated in ET patients.

In case of pathological conditions, TPO is reported to have a significant effect. In
[66; 113], TPO is investigated as a stimulating agent of megakaryocytes, which ulti-
mately increases platelet production in thrombocytopenia. It may hypothesize that the
feedback loop between TPO and megakaryocytes is disturbed in patients with ET [98].
An inadequate binding of TPO to its defective receptor may increase TPO serum levels
in ET compared to a healthy individual [51; 69]. Hence, the increased TPO levels might
be the consequence of an abnormal platelet population and disease progression in ET.
Moreover, a few pieces of evidence show that TPO stimulates blast colony formation
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in samples from approximately 50% of patients with acute myeloid leukemia (AML)
[82], and enhanced proliferation of a megakaryocytic leukemic cell line [84]. It is also
investigated that TPO induces cell cycle activation and may protect AML blasts from
programmed cell death [114]. However, there are some contradiction, for instance, in
[37], the argument that TPO affects tumor cells is not supported [37].

We develop a novel mathematical model based on the following biologically moti-
vated assumption,

Assumptions:

1. A1: TPO stimulates both healthy and malignant megakaryocyte.

2. A2: TPO inhibits the death rate of healthy megakaryocytes and malignant platelets.

3. A3: TPO stimulates the self-renewal of hematopoietic and malignant stem cells.

4. A4: TPO is degraded by the platelet receptors, in addition to natural degradation.
The other included biological assumptions are already described in previous chap-

ters, for example, niche feedback etc.
Like the previous models, the ET model incorporates the competition between healthy

and malignant stem cells with multiple TPO feedback on both cell lines. In contrast to
Cancitis and ET models, this novel model consists of three cell types, i.e., stem cells,
megakaryocytes and platelets. Moreover, the model contains asymmetrical structure,
i.e., TPO affects on healthy and malignant cells through different mechanisms. We
have investigated a set of interesting questions: Which parameters govern the dynamics
of the system? How does TPO involve in the progression of ET? How does the stem cell
dynamic control the disease onset? What are the possible novel intervention strategies
for ET patients? Which parameters can be targeted for a good prognosis of disease?

5.2 ET model
In this section, we present our novel mathematical ET model. In the ET model, the
hematopoietic stem cells (HSC) proliferate into healthy megakaryocytes (MEG) and
malignant stem cells (MSC) proliferate into malignant megakaryocytes (MMEG). MEG
further differentiates into platelets (PLT), whereas MMEG differentiates into malignant
platelets (MPLT). In addition, the multiple feedback of TPO with the rest of the dynam-
ics is considered.

ET model consists of seven ordinary non-linear differential equations, the number
of HSC (x0), the number of MEG (xm), the number of platelets (xp) the number of MSC
(y0), the number of MMEG (ym), the number of MPLT (yp) and the concentration of
TPO (T ). The conceptual model is illustrated in Fig. 5.2.1. The ET model is inspired
by mathematical models given in [7; 67] and reads
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dx0

dt
= (rxTφx − dx0 − ax)x0, (5.2.1a)

dy0

dt
= (ryTφy − dy0 − ay)y0, (5.2.1b)

dxm
dt

= axAx(T )x0 − bxpxm − dxm(T )xm, (5.2.1c)

dym
dt

= ayAy(T )y0 − bypym − dymym, (5.2.1d)

dxp
dt

= axpbxpxm − dxpxp, (5.2.1e)

dyp
dt

= aypbypym − dyp(T )yp, (5.2.1f)

dT

dt
= p− k1T − k2xpT, (5.2.1g)

The rate of self-renewal is denoted as rx and ry for HSC and MSC respectively.
It is believed that the self-renewal is inhibited by regulatory niche feedback [122], this
inhibition is implemented here through Michaelis-Menten-like functions φx(x0, y0) and
φy(x0, y0) [66; 111; 121]. The inhibitory effect on the self-renewal of HSC is captured
by feedback constants cxx and cxy, while the corresponding effect on the self-renewal
of MSC is captured by cyx and cyy. Thus, we define

φx =
1

1 + cxxx0 + cxyy0

, φy =
1

1 + cyxx0 + cyyy0

, (5.2.2)

Further, we assume that TPO stimulates the self-renewal of the stem cells (assumption
3). The stem cells die with rates dx0 and dy0 .

The parameter ax denotes the rate at which the HSC differentiates into MEG, while
ay represents the rate for MSC transforming to MMEG. The progenitor cells are consid-
ered stages between stem cells and mature cells and are accounted for by amplification
factors Ax and Ay for HSC and MSC, respectively. Considering assumption 1, we
take these amplification factors dependent on TPO as TPO is thought to stimulate the
production of megakaryocytes

Ax(T ) = δx1
T

1 + δx2T
, Ay(T ) = δy1

T

1 + δy2T
, (5.2.3)

The parameters axpbxp and aypbyp denotes the production of platelets from megakary-
ocytes. It is hypothesized that an increase in the growth factor concentration TPO leads
to a decrease in the apoptosis rate of MEG and MPLT. Therefore, according to assump-
tion 2, we assume that dxm(T ) and dyp(T ) are decreasing function of T , by choosing
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dxm(T ) = ηx1
1

1 + ηx2T
, dyp(T ) = ηy1

1

1 + ηy2T
. (5.2.4)

The death rate of PLT is denoted by dxp. The parameters p is the baseline production
for TPO, whereas k1 denotes the natural degradation of TPO. Considering assumption
4, we take the parameter k2 eliminating TPO through platelet receptors.

Fig. 5.2.1 The boxes illustrate the compartments of the ET model. Solid arrows represent the rates
of the flows between and out of these compartments.The boxes illustrate the compartments of the PV
model. The full arrows represent the rates of the flows between and out of these compartments. Black
stipulated lines (φx and φy , respectively) represent the interaction between bone marrow niches and stem
cells. Stem cells (HSC and MSC) may self renew (rx and ry), die (dx0 and dy0) or differentiate (ax, ay),
and megakaryocytes (xm, ym) are produced (with rates axAx(T ) and ayAy(T )). The megakaryocytes
may die with rates dxm and dym or shed into platelets xp and yp with rate axpbxp and aypbyp. Platelets
die with rates dxp and dyp(T ). T stimulates the proliferation rates of megakaryocytes and inhibits the
death rate of xm. Black dotted lines present the interaction of TPO with the remaining model. TPO is
produced with rate p and degraded with rate k1 in addition, xp stimulates the degradation of TPO with
k2. TPO stimulates the self-renewal of stem cells while inhibiting dyp.

The default parameter values are summarized in table 5.1 and a typical ET model is
shown in Figure 5.2.2.
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Table 5.1 Default parameter values of the ET model.

Parameter Value Unit Explanation

rx 8.7 · 10−4 day−1 Self-renewal rate of HSC
ry 1.3 · 10−3 day−1 Self-renewal rate of MSC
ax 1.1 · 10−5 day−1 Differentiation rate of HSC
ay 1.1 · 10−5 day−1 Differentiation rate of MSC
dx0 2 · 10−3 day−1 Death rate of HSC
dy0

2 · 10−3 day−1 Death rate of MSC
cxx 5.6 · 10−5 - Inhibition by HSC on HSC
cyx 5.2 · 10−5 - Inhibition by HSC on MSC
cxy 5.4 · 10−5 - Inhibition by HSC on MSC
cyy 5.0 · 10−5 - Inhibition by MSC on MSC
δx1 9 · 104 - Factor stimulating production of MEG
δx2 1 · 10−2 - Factor affecting production of MEG
ηx1 2 · 10−2 - Factor affecting removal of HMEG
ηx2 9.4 · 10−3 - Factor affecting removal of MEG
dxp 1.15 · 10−1 day−1 Death rate of PLT
bxp 1 · 10−1 day−1 Differentiation rate of PLT
axp 3 · 103 - Number of fragmented PLT per MEG
δy1 9 · 104 - Factor stimulating production of MMEG
δy2 1 · 10−1 - Factor affecting production of MMEG
ηy1 1 · 10−1 - Factor affecting removal of MPLT
ηy2 9.9 · 10−3 - Factor affecting removal of MPLT
dym 5 · 10−2 day−1 Death rate of MMEG
byp 5 · 10−2 day−1 Differentiation rate of MPLT
ayp 8 · 102 - Number of fragmented MPLT per MMEG
p 300 day−1 Production rate of TPO
k1 0.4 day−1 Degradation rate of TPO
k2 10−11 day−1 Degradation rate of TPO by platelets
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Fig. 5.2.2 An ET model shows the progression of the disease with initial conditions,
(x0, y0, xm, ym, xp, yp, T ) = (6.68 · 105, 1, 1.48 · 108, 0, 2.97 · 1011, 0, 88.81) at t = 0. Red curves
denote malignant cells, blue are healthy hematopoietic cells and black curves are the sum of the cells.
Time is plotted on the x-axis. In the above-left panel, the evolution of malignant stem cell count is
shown, whereas in the above-right panel, the development of mature malignant megakaryocyte cell count
is shown. The below-left panel shows the evolution of malignant platelet count. In the early phase,
healthy cells are large in number than malignant cells. However, after some years, when disease evolves,
malignant cells become dominant, leading to the destruction of healthy cells. The below right panel
shows the increase in TPO concentration over time.

5.3 Results
This section presents an analytical investigation of the model. Furthermore, we perform
sensitivity analysis and produce a set of bifurcation diagrams. ET model is validated
using clinical data. The section also suggests a few in silico trials showing novel inter-
vention strategies.

5.3.1 Existence of steady states
Based on physiology, we consider the number of cells and concentrations to be non-
negative. The parameters are assumed to be positive. The steady states (x̄0, ȳ0, x̄m, ȳm,
x̄p, ȳp, T̄ ) for system of Eqs 5.2.1 fulfil,
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(rxφxT̄ − dx0 − ax)x̄0 =0, (5.3.1a)

(ryφyT̄ − dy0 − ay)ȳ0 =0, (5.3.1b)

x̄m =
axAx(T̄ )

bxp + dxm(T̄ )
x̄0, (5.3.1c)

ȳm =
ayAy(T̄ )

byp + dym
ȳ0, (5.3.1d)

x̄p =
axpbxp
dxp

x̄m, (5.3.1e)

ȳp =
aypbyp
dyp(T̄ )

ȳm, (5.3.1f)

T̄ =
p

k1 + k2x̄p
, (5.3.1g)

The admissible steady states can be classified as,

• a hematopoietic steady state is defined when ȳ0 = ȳm = ȳp = 0.

• a malignant steady state is defined when x̄0 = x̄m = x̄p = 0.

• a co-existing steady state is defined when x̄0 > 0, ȳ0 > 0, x̄m > 0, ȳm > 0,
x̄p > 0, ȳp > 0.

Proposition 5.3.1. A trivial steady state D0 always exists,

D0 =

(
0, 0, 0, 0, 0, 0,

p

k1

)
(5.3.2)

Proof. Substituting x̄0 = ȳ0 = 0 in Eqs. (5.3.1a-5.3.1g), T̄ = p
k1

and the remaining
variables at trivial steady state are zero.
Proposition 5.3.2. For T̄H > dx0+ax

rx
, a unique hematopoietic steady state DH exists if

and only if ax+dx0
rx

< p
k1

.
Proof. From Eq. 5.3.1,

x̄0H =
1

cxx

(
rxT̄H

dx0 + ax
− 1

)
, (5.3.3a)

x̄mH =
axAx(T̄H)

bxp + dxm(T̄H)
x̄0H , (5.3.3b)

x̄pH =
axpbxp
dxp

x̄mH , (5.3.3c)

T̄H =
p

k1 + k2x̄pH
. (5.3.3d)
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The admissibility of steady state necessitates the following inequality to be fulfilled,

T̄H >
dx0 + ax

rx
.

Substitute Eq. 5.3.3d in Eq. 5.3.3c, and use the resulting expression and Eq. 5.3.3a
in Eq. 5.3.3b, we obtain a fourth order polynomial equation in x̄mH ,

ε0H x̄
4
mH + ε1H x̄

3
mH + ε2H x̄

2
mH + ε3H x̄mH + ε4H = 0 (5.3.4)

where
ε0H = (k2axpbxp)

3cxx(ax + dx0)(ηx1 + bxp),
ε1H = b2

xpcxx((3k1 + p(ηx2 + δx2))bxp + ηx1(pδx2 + 3k1))(k2axp)
2(ax + dx0)dxp,

ε2H = cxx((3k
2
1+2p(ηx2+δx2)k1+p2ηx2δx2)bxp+(2(pδx2+3

2
k1))ηx1k1)(ax+dx0)bxpk2axpd

2
xp+

pδx1ax(bxpk2axp)
2(ax + dx0)dxp,

ε3H = (δx2p+ k1)cxx((ηx2p+ k1)bxp + ηx1k1)(ax + dx0)k1d
3
xp + 2axp((ax + dx0)k1 +

pηx2rx(
ax+dx0
rx
− 1))δx1bxpk2axpd

2
xp,

ε4H = −(−(ax + dx0)k1 + prx)(ηx2p+ k1)axpδx1d
3
xp.

ε0H , ε1H and ε2H are always positive whereas ε3H and ε4H can be positive or negative.
Using Descartes rule of sign, some of the cases are given in Table. 5.2.

Table 5.2 Descartes Rule of sign

Cases ε0H ε1H ε2H ε3H ε4H Roots

1st + + + + - 1 pos real root

2nd + + + - - 1 pos real root

3rd + + + + + No pos real root

4th + + + - + 0 or 2 pos real roots

Consider the 1st and 2nd cases where ε4H < 0 guarantees a unique positive real root.
ε4H < 0 implies ax+dx0

rx
< p

k1
.

Consider 4th case where ε3H < 0 and ε4H > 0. ε3H < 0 if and only if dx0+ax
rx

>
axp2δx1bxpk2axp

cxxdxpk21((ηx1+bxp)k1+p((ηx2+δx2)bxp+ηx1δx2))+pbxp(cxxδx2dxpηx2p+2axaxpδx1k2)k1+p2ηx2δx1axk2axpbxp

and ε4H > 0 if and only if ax+dx0
rx

> p
k1

. It extends the possibility of two positive roots.
Hence, there exists a unique positive root of x̄mH if and only if ax+dx0

rx
< p

k1
. Given a

unique positive x̄mH , we can obtain unique x̄0H , x̄pH and T̄H .
Proposition 5.3.3. For T̄L >

dy0+ay
ry

, a unique malignant steady state exists if and only
if dy0+ay

ry
< p

k1
.
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Proof. From Eq. 5.3.1,

ȳ0L =
1

cyy

(
ryT̄L

dy0 + ay
− 1

)
, (5.3.5a)

ȳmL =
ayAy(T̄L)

byp + dym
ȳ0L, (5.3.5b)

ȳpL =
aypbyp
dyp(T̄L)

ȳmL, (5.3.5c)

T̄L =
p

k1

. (5.3.5d)

The admissibility of steady state necessitates,

T̄L >
dy0 + ay

ry
.

Substituting Eq. 5.3.5d into Eq. 5.3.5a we obtain,

ȳ0L =
1

cyy

(
ry

p
k1

dy0 + ay
− 1

)
. (5.3.6)

Using the expression for ȳ0L and value of T̄L in Eq. 5.3.5b and Eq. 5.3.5c, we obtain

ȳmL =
payδy1ȳ0L

k1(byp + dym)(1 + δy2
p
k1

)
, (5.3.7)

and

ȳpL =
aypbypȳmL

ηy1
1+ηy2

p
k1

(5.3.8)

Hence, a unique malignant state exists if and only if dy0+ay
ry

< p
k1

.
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A co-existing steady state follows from Eq. 5.3.1.

x̄0C +
cxy
cxx

ȳ0C =
1

cxx

(
rxT̄C

dx0 + ax
− 1

)
, (5.3.9a)

cyx
cyy

x̄0C + ȳ0C =
1

cyy

(
ryT̄C

dy0 + ay
− 1

)
(5.3.9b)

x̄mC =
axAx(T̄C)

bxp + dxm(T̄C)
x̄0C , (5.3.9c)

ȳmC =
ayAy(T̄C)

byp + dym
ȳ0C , (5.3.9d)

x̄pC =
axpbxp
dxp

x̄mC , (5.3.9e)

ȳpC =
aypbyp
dyp(T̄C)

ȳmC , (5.3.9f)

T̄C =
p

k1 + k2x̄pC
, (5.3.9g)

Solving Eq. 5.3.9a and Eq. 5.3.9b simultaneously we obtain,

x̄0C =
1

cxxcyy − cxycyx

(
cyy

(
rxT̄C

dx0 + ax
− 1

)
− cxy

(
ryT̄C

dy0 + ay
− 1

))
(5.3.10)

ȳ0C =
1

cxxcyy − cxycyx

(
cxx

(
ryT̄C

dy0 + ay
− 1

)
− cyx

(
rxT̄C

dx0 + ax
− 1

))
(5.3.11)

where cxxcyy 6= cxycyx.
Isolate xpC from Eq. 5.3.9g and substitute into Eq. 5.3.9e,

x̄mC
=

dxp
k2axpbxp

(
p

T̄C
− k1

)
(5.3.12)

Using Eq. 5.3.10 and Eq. 5.3.12 in Eq. 5.3.9c,

ε0C T̄
4
C + ε1C T̄

3
C + ε2C T̄

2
C + ε3C T̄C + ε4C = 0, (5.3.13)

where
ε0C = δx1axpaxk2ηx2(cxyry(ax + dx0)− cyyrx(ay + dy0))bxp,

ε1C = −(ηx2δx2k1(ay+dy0)(ax+dx0)(cxxcyy−cxycyx)dxp+δx1axpax(((ayηx2+dy0ηx2−
ry)cxy − cyyηx2(ay + dy0))ax + dx0(ayηx2 + dy0ηx2 − ry)cxy − cyy(ay + dy0)(dx0ηx2 −
rx))k2)bxp,
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ε2C = (ay+dy0)(ax+dx0)(cxxcyy−cxycyx)(((ηx2p−k1)δx2−ηx2k1)bxp−ηx1δxk1)dxp−
bxpδx1axk2axp(cxy − cyy)),

ε3C = (ay +dy0)(ax+dx0)(cxxcyy− cxycyx)((δx2p+ηx2p−k1)bxp+ηx1(δx2p−k1))dxp

ε4C = dxpp(ay + dy0)(ax + dx0)(cxxcyy − cxycyx)(ηx1 + bxp).

Identifying roots analytically is somehow cumbersome however, we may say that a
positive root of T̄C leads to obtain the values of x̄0C , x̄pC , x̄mC ȳ0C , ȳmC and ȳpC . In
addition, the necessary condition to obtain admissible DC is that positive x̄0C and ȳ0C

exist.

5.3.2 Stability analysis
In this section, we examine the stability properties of the various steady states of ET.
The Jacobian, J , of Eq. 5.2.1 is computed. Thus, for the steady states, the eigenvalues
of the linearized system are obtained analytically and otherwise numerically. Avoid to
introduce many mathematical notations, we use aij for all Jacobian matrices.

The Jacobian of system of Eq. 5.2.1 is

J =




a11 a12 0 0 0 0 a17

a21 a22 0 0 0 0 a27

a31 0 a33 0 0 0 a37

0 a42 0 a44 0 0 a47

0 0 a53 0 a55 0 0

0 0 0 a64 0 a66 a67

0 0 0 0 a75 0 a77




(5.3.14)

where
a11 = rx(1+cxy ȳ0)

(1+cxxx̄0+cxy ȳ0)2
T̄ − ax − dx0,

a12 = − rxcxy
(1+cxxx̄0+cxy ȳ0)2

x̄0T̄ ,
a17 = rx

1+cxxx̄0+cxy ȳ0
x̄0,

a21 = − rycyx
(1+cxxx̄0+cxy ȳ0)2

ȳ0T̄ ,

a22 = ry(1+cyxx̄0)

(1+cyxx̄0+cyy ȳ0)2
T̄ − ay − dy0,

a27 = ry
1+cyxx̄0+cyy ȳ0

ȳ0,
a31 = axδx1

1+δx2T̄
T̄ ,

a33 = −bxp − ηx1
1+ηx2T̄

,
a37 = axδx1

(1+δx2T̄ )2
x̄0 + ηx1ηx2

(1+ηx2T̄ )2
x̄m,

a42 = ayδy1
1+δy2T̄

T̄ ,
a44 = −byp − dym,
a47 = ayδy1

(1+δy2T̄ )2
ȳ0,
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a53 = axpbxp,
a55 = −dxp,
a64 = aypbyp,
a66 = − ηy1

1+ηy2T̄
,

a67 = ηy1ηy2
(1+ηy2T̄ )2

ȳm,
a75 = −k2T̄ ,
a77 = −k1 − k2x̄p.

The Jacobian at D0 is,

JD0 =




a11 0 0 0 0 0 0

0 a22 0 0 0 0 0

a31 0 a33 0 0 0 0

0 a42 0 a44 0 0 0

0 0 a53 0 a55 0 0

0 0 0 a64 0 a66 0

0 0 0 0 a75 0 a77




(5.3.15)

where
a11 = p

k1
rx − ax − dx0,

a22 = p
k1
ry − ay − dy0,

a31 = p
k1

(
axδx1

1+δx2
p
k1

)
,

a33 = −bxp − ηx1
1+ηx2

p
k1

,

a42 = p
k1

(
ayδy1

1+δy2
p
k1

)
,

a44 = −byp − dym,
a53 = axpbxp,
a55 = −dxp,
a64 = aypbyp,
a66 = − ηy1

1+ηy2
p
k1

,

a75 = −pk2
k1

,
a77 = −k1.

Since JD0 is a triangular matrix thus, eigenvalues are a11, a22, a33, a44, a55, a66 and
a77. Five of the seven eigenvalues are negative but the remaining a11 and a22 may be
positive negative or zero. Hence, D0 is stable for ax+dx0

rx
> p

k1
and ay+dy0

ry
> p

k1
.

The Jacobian at DH is,
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JDH
=




a11 a12 0 0 0 0 a17

0 a22 0 0 0 0 0

a31 0 a33 0 0 0 a37

0 a42 0 a44 0 0 0

0 0 a53 0 a55 0 0

0 0 0 a64 0 a66 0

0 0 0 0 a75 0 a77




(5.3.16)

a11 = rx
(1+cxxx̄0)2

T̄ − ax − dx0,
a12 = − rxcxy

(1+cxxx̄0)2
x̄0T̄ ,

a17 = rx
1+cxxx̄0

x̄0,
a22 = ry

1+cyxx̄0
T̄ − ay − dy0,

a31 = axδx1
1+δx2T̄

T̄ ,
a33 = −bxp − ηx1

1+ηx2T̄
,

a37 = axδx1
(1+δx2T̄ )2

x̄0 + ηx1ηx2
(1+ηx2T̄ )2

x̄m,
a42 = ayδy1

1+δy2T̄
T̄ ,

a44 = −byp − dym,
a53 = axpbxp,
a55 = −dxp,
a64 = aypbyp,
a66 = − ηy1

1+ηy2T̄
,

a75 = −k2T̄ ,
a77 = −k1 − k2x̄p.

The Jacobian at DL is,

JDL
=




a11 0 0 0 0 0 0

a21 a22 0 0 0 0 a27

a31 0 a33 0 0 0 0

0 a42 0 a44 0 0 a47

0 0 a53 0 a55 0 0

0 0 0 a64 0 a66 a67

0 0 0 0 a75 0 a77




(5.3.17)

where
a11 = rx

1+cxy ȳ0
T̄ − ax − dx0,

a21 = − rycyx
(1+cxy ȳ0)2

ȳ0T̄ ,
a22 = ry

(1+cyy ȳ0)2
T̄ − ay − dy0,

a27 = ry
1+cyy ȳ0

ȳ0,
a31 = axδx1

1+δx2T̄
T̄ ,
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a33 = −bxp − ηx1
1+ηx2T̄

,
a42 = ayδy1

1+δy2T̄
T̄ ,

a44 = −byp − dym,
a47 = ayδy1

(1+δy2T̄ )2
ȳ0,

a53 = axpbxp,
a55 = −dxp,
a64 = aypbyp,
a66 = − ηy1

1+ηy2T̄
,

a67 = ηy1ηy2
(1+ηy2T̄ )2

ȳm,
a75 = −k2T̄ ,
a77 = −k1 − k2x̄p.

The Jacobian at DC is similar to J , except x̄0 and ȳ0 are replaced by x̄0C and ȳ0C

respectively. Calculating eigenvalues analytically for the Jacobian JDH
, JDL

and JDC

is complicated. Therefore, we will find the stability of various steady state numerically.
We perform a lot of simulations through MATLAB for all parameters to observe

the existing possible topologies. Fig. 5.3.1 illustrates the stability of steady states and
shows that trajectories with different sets of initial conditions converge to the steady
states. We vary the self-renewal rate of stem cells and the niche inhibiting factors. In
each given case, a steady state is unique. The solution of the model is projected on
(x0, y0) plane.

Fig. 5.3.1a illustrates that the trivial steady state is stable at rx = 10−7 and ry =

10−7 when there is no other steady state. At this point, we increase rx resulting in the
stable hematopoietic steady state at rx = 10−5 thus, the trivial steady state becomes
unstable shown in Fig. 5.3.1b. This state corresponds to a healthy state. Instead of rx, if
we increase ry, the stable malignant steady state appears at ry = 10−5 while the trivial
steady state becomes unstable illustrated in Fig 5.3.1c. This state corresponds to a full
blown malignant state. Hence, this investigation reveals that the self-renewal rates rx
and ry may be crucial to obtain stable hematopoietic and malignant steady states.

For the default values of parameters where rx < ry, the malignant steady state is
stable, whereas the trivial and hematopoietic steady states are unstable (See Fig 5.3.1d).
Subsequently, increasing rx and decreasing ry, the hematopoietic steady state becomes
stable and the malignant steady state becomes unstable at rx = 10−4 and ry = 10−5

(See Fig. 5.3.1e).
Consider the impact of inhibiting factors of stem cells when all parameters are at

their default values. Increasing cyy, a co-existing steady state appears at cyy = 10−4

and takes over the stability of malignant steady state (See Fig. 5.3.1f). Alternatively,
decreasing cxx, the special case of bistability is obtained at cxx = 3 · 10−5 where both
malignant and hematopoietic steady states are stable and the co-existing steady state is
unstable (See Fig. 5.3.1g).
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Hence, this investigation reveals the importance of stem cell parameters in order to
obtain various steady states.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5.3.1 The figure illustrates the trajectories for different initial conditions ultimately approach the
stable steady states of the ET model. The solution of the model is projected on (x0, y0) plane. Full
circles are stable steady states and open circles are unstable steady states. Green, blue, red and magenta
correspond to trivial, hematopoietic, malignant and co-existing steady states respectively. x-axis denotes
the number of hematopoietic stem cells whereas y-axis denotes the number of malignant stem cells. The
trajectories are shown as black dotted lines. The panels are as follows, (a) rx = 10−7, ry = 10−7, (b)
rx = 10−5, ry = 10−7, (c) rx = 10−7, ry = 10−5, (d) Default values, (e) rx = 1 · 10−4, ry = 1 · 10−5,
(f) cyy = 10−4, (g) cxx = 3 · 10−5. Note, in panel (g) the trajectories attract towards x0 for very low
values of y0.

5.3.3 Sensitivity Analysis
In this section, we perform a sensitivity analysis to explore the relationship between
the input parameters and the outcome of the model. We take cyy = 10−4 while other
parameters are fixed at there default values leading to a stable co-existing steady state.
We choose a 10% variation in parameter values.

First, we focus on the parameters involved in stem cell dynamics. Fig. 5.3.2 shows
that by decreasing (increasing), rx, dy0, cyy and cyx decreases (increases) the number
of healthy cells (x0, xm, xp) while increases (decreases) the concentration of TPO and
the number of malignant cells (y0, ym, yp). In contrast, decreasing (increasing) ry,
dx0, cxx and cxy decreases (increases) the number of malignant, whereas the number of
malignant cells and TPO concentration are increased (decreased).

Next, we observe the parameters involved in the TPO dynamics. Decreasing the
TPO natural degradation rate k1 increases the number of malignant cells (y0, ym, yp)
and the concentration of TPO, whereas reducing platelet dependent TPO degradation
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rate k2 increases the number of healthy cells (x0, xm, xp), however it does not affect
the TPO level. Finally, we observe that decreasing baseline production rate p decrease
all types of cell count and the concentration of TPO or vice versa. It is mentioned
that TPO parameters are less sensitive compared to stem cell parameters. In brief, this
investigation shows that stem cell dynamics play a major role in the progression of ET.
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(a)

(b)

(c)

(d)

Fig. 5.3.2 Panels (a), (b), (c) and (d) show the change in HSC, MEG, PLT and TPO when parameters
are decreased and increased by 10%. Blue, red and green denote healthy cell, malignant cells and TPO
concentration respectively. The bars equal to 1 corresponds to the outcome for the default parameter
values. Top panels correspond to decreasing a parameter by 10%, panel below corresponds to increasing
a parameter by 10%.

In Table 5.3, we collect the most sensitive parameters (rx, ry, dx0, dy0) for a co-
existing steady state values where cyy = 10−4. Table 5.3 summarizes the minimum and
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maximum variation in the values of x̄0C , ȳ0C , x̄mC , ȳmC , x̄pC , ȳpC and T̄C in percentage
when parameters are perturbed by ±10%. We have calculated numerical values by
perturbing all parameters. However, we found that the self-renewal rates and death
rates vary the steady state values most.

Table 5.3 The table shows the effect of the most sensitive parameters on co-existing steady state values.
The first column shows the parameters varied by±10% affecting the values given in the second row. The
remaining percentages in the table show how much a corresponding value is varied.

x̄0C ȳ0C x̄mC ȳmC x̄pC ȳpC T̄C

3.55 · 105 6.07 · 105 1.01 · 106 5.56 · 107 2.01 · 1011 4.96 · 1010 123.98

−10% rx −40% −28% −27% +29%

−10% dx0 +35% +20% +21% −15%

−10% ry −35% −36% −40%

−10% dy0 +61% +64% +85%

+10% rx +32% +19% +19% −14%

+10% dx0 −35% −15% −24% +25%

+10% ry +53% +55% +73%

+10% dy0 −32% −33% −37%

5.3.4 Numerical Analysis and Treatment Scenarios
This section discusses the treatment scenarios for different choices of parameters. For
this purpose, we generate a variety of figures to characterize the steady states and their
stability. In Fig. 5.3.3, we show the combination of parameters, which produces the
interesting dynamics of the ET model. We explain the sub-figures of Fig. 5.3.3 subse-
quently.

• Fig. 5.3.3a illustrates the stability regions where the self-renewal rates of HSC rx

and MSC ry are varied. In the right panel of Fig. 5.3.3a, denoted byDT , the trivial
steady state exists and is stable for small values of rx and ry. The left panel of Fig.
5.3.3a illustrates the stability regions when rx and ry are increased. Suppose a
virtual subject is in the stability regionDT,L

H , where the hematopoietic steady state
is stable and both trivial and malignant steady states are unstable. Increasing ry
changes a topology from a stable hematopoietic to a stable malignant steady state.
A virtual subject approaches the stability regionDT,H

L , where the stable malignant
and the unstable hematopoietic and trivial steady states exist. It suggests that the
stem cell self-renewal rate is the important parameters for good prognosis.

• Fig. 5.3.3b illustrates the stability regions where a range of values of dx0 and dy0

is taken. Suppose a virtual subject is in the region DT,L
H . At this point, increasing

the death rate dx0 of HSC or decreasing the death rate dy0 of MSC moves a virtual
subject in region DH,T

L , corresponding to a worse situation. For larger values of
dx0, the hematopoietic steady state disappears whereas the malignant steady state
is stable and the trivial steady state is unstable, DT

L . However, DT
H represents that
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for larger values of dy0, the malignant steady state vanishes and the hematopoietic
steady state becomes stable, corresponding to a recovery of the disease. For large
set of values for dx0 and dy0, the trivial steady state exists and is stable, i.e., DT .

• Fig. 5.3.3c illustrates the stability regions obtained by varying inhibiting fac-
tors cxx and cyx. The parameter cxx denotes the inhibiting strength of x0 for x0

whereas cyx denotes the inhibiting strength of x0 for y0. For high values of cyx
and low values of cxx, we observe the bi-stability region DT,C

H,L where both the
hematopoietic and malignant steady states are stable and the co-existing and triv-
ial steady states are unstable. However, an increase in cxx makes the hematopoi-
etic steady state unstable, whereas the co-existing steady state disappears DT,H

L .

• Similarly, in Fig. 5.3.3d, for large values of cxy, where the malignant steady state
is stable, and the hematopoietic and trivial steady states are unstable, denoted by
DT,H
L . In region DT,H,L

C , for large values of cyy and a range of low values of
cxy, the co-existing steady state is stable and the remaining three steady states
are unstable. Thus, the niche inhibiting factors may improve the diagnosis and
reduce the disease load.

(a)

(b) (c) (d)

Fig. 5.3.3 The stability of the steady states, i.e. trivial, malignant, hematopoietic or coexistence, de-
pending on the parameters involved in the stem cell dynamic. Panels (a), (b), (c) and (d) show a range of
values for different pairs of parameters. The right panel (a) is zoomed in the left figure. The stable steady
states are written as a subscript of D and unstable steady states are written as a superscript of D. All other
parameter values are fixed at their default.
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Data Fitting
A few data sets are available from a cohort of ET patients enrolled in the clinical trial
“DALIAH”. Moreover, the data given in [79] represents an ET patient. The model
trajectories compared to the available data of patients receiving interferon-α (IFN) are
illustrated in Figure 5.3.4. In the model, we include the effect of IFN on stem cells. The
simulation results compared to patient data validate our proposed model. We report
deviated values from the default in tables 5.4 and 5.5.

In Fig. 5.3.4(a-c), we perturb the death rates of stem cells, dx0 and dy0 for data
fitting. The values used for dx0 and dy0 correspond to region DT,L

H (Fig. 5.3.3b), where
the hematopoietic steady state is stable and the malignant steady state is unstable. In
addition, we identify a set of parameters given in Table. 5.4 for an ET patient that
describes an excellent fitting of data before and after treatment (See Fig. 5.3.4d).

(a) (b) (c) (d)

Fig. 5.3.4 The panels corresponding to ET patients treated with IFN are compared to the ET model.
Data for the total platelet count (xp + yp) shown in green diamonds is before treatment whereas, data for
platelet count are shown in dark grey stars curve during treatment. Model predictions are shown as full
curves for platelet count (black treated and blue untreated). The data shown in panels (a), (b) and (c) are
from the clinical trial “DALIAH”. The data shown in th panel (d) is extracted from [79].

Table 5.4 Parameter values for Figure 5.3.4d. The parameters in red are perturbed while
fitting data during treatment.

Before treatment After treatment

Parameter Value Parameter Value

rx 5 · 10−4 rx 3 · 10−2

ry 7.2 · 10−4 ry 7.2 · 10−4

ay 3.8 · 10−4 ay 3.8 · 10−4

dx0 2 · 10−3 dx0 8 · 10−4

dy0 2 · 10−3 dy0 2 · 10−1
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Table 5.5 Parameter values for the Figure 5.3.4(a-c).

Parameter Value Parameter Value

Fi. 5.3.4a dx0 2 · 10−3 dy0 1 · 10−2

Fi. 5.3.4b dx0 3 · 10−3 dy0 1 · 10−2

Fi. 5.3.4c dx0 1 · 10−3 dy0 1 · 10−2

In Silico Trials
The TPO receptor is usually used to increase the platelet count in immune thrombocy-
topenia. Importantly, TPO related MPL mutations are found in 1-3% ET cases [14; 89].
According to a few investigations, the feedback loop between TPO and megakaryocyte
is affected, resulting in a subsequent increase of TPO serum levels in ET [51; 69; 98].
Also, thrombotic complications are often found in patients with ET. In order to pre-
vent these complications, the typical drugs aim at reducing the platelet count. However,
many novel mechanisms relating to high TPO levels and abnormal platelet production
in ET are undiscovered in existing literature. Fig. 5.3.5 illustrates an in silico trial where
TPO production is half of the default value. We observe that reducing TPO concentra-
tion reduces the total number of stem cells, megakaryocytes and platelets. These results
offer to use TPO related drugs in ET patients for a short time preventing thrombotic
complications. In contrast, the JAK2V617F allele burden is increased, which is critical
for ET patients. However, we need clinical data to validate the results.
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Fig. 5.3.5 An insilico TPO analysis. For a co-existing steady state, we set cyy = 10−3. After one year,
set p = 150 (half of the default value) for treatment. The total cell count of stem cells, megakaryocytes
and platelets is denoted by full black curve in the above panel, the JAK2V617F is represented by dashed
black curve and the concentration of TPO is represented in dotted black curve (below panel). The initial
values are (x̄0C , x̄mC , x̄pC , ȳ0C , ȳmC , ȳpC , T̄C) = (3.56 · 105, 1.01 · 108, 2.02 · 1011, 6.02 · 105, 5.52 ·
107, 4.91 · 107, 123.57).

5.4 Conclusion
In this chapter, we propose a novel mathematical model describing the development of
ET. The mechanism-based model incorporates both healthy and malignant cells with
multiple feedback mediated by TPO. We have done an analytical investigation of the
model wherever possible. The steady states and their stability are characterized using
different stem cell parameters. Furthermore, a sensitivity analysis is performed to iden-
tify the sensitive parameters for the model’s outcome. We have explored that the stem
cell parameters are more sensitive to disease progression than the remaining parame-
ters. Furthermore, we generate various bifurcation figures and found that set of stem
cell parameters produce the most interesting dynamics of the model. Some of these
figures are included in this chapter (See Fig. 5.3.3).

Several bio-medical literature theories have been proposed, associating blood cancer
development with stem cell properties. ET is also thought to be a clonal disorder with
origin in hematopoietic stem cells. In clinical practice, blood cancer therapy such as
IFN reduces disease load by affecting the hematopoietic stem cells. The authors have
reported that IFN increases the death rate of hematopoietic stem and progenitor cells
[72]. IFN is also hypothesized to reduce the JAK2V617F allele burden by targeting
malignant stem cells [83]. Besides medical evidence, several authors have explored
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the importance of stem cells for various hematological diseases through mathematical
modelling [36; 66; 73; 95; 102; 103; 104; 110; 111]. Our results are in agreement with
the perception that stem cell is a good candidate to prevent ET progression. Moreover,
TPO therapy might be useful for reducing platelet count in the peripheral blood in order
to avoid thrombotic complications. However, it can not switch from a malignant state
to a healthy state.

139



CHAPTER 6
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Mathematical modelling of erythropoiesis and
thrombopoiesis with multiple EPO and TPO

feedbacks

Zamra Sajid, Morten Andersen and Johnny T. Ottesen

Abstract

We propose a seven-dimensional mathematical model of erythro-
poiesis and thrombopoiesis. A key feature of the model is different cell
populations incorporating several feedback loops that are mediated
by erythropoietin (EPO) and thrombopoietin (TPO). The shared
megakaryocyte-erythroid progenitor cell is an encouraging feature to
investigate the coupled mechanism between erythroid and megakary-
ocyte lineage. The study contributes to understand the impact of
various clinical investigations on these coupled dynamics. The sub-
systems of erythropoiesis and thrombopoiesis can be decoupled from
the full model. These self-supporting subsystems are useful to investi-
gate the independent mechanisms of erythrocytes and platelets. The
model and its subsystems stipulate excellent results which adequately
describe many critical situations such as recovery of the blood cells
after phlebotomy, body’s reaction to different administration regimens
of EPO and TPO. We estimate the parameters from clinical data
and identify the subset of parameters responsible for various clinical
experiments. Furthermore, the subsystems are employed to evaluate
parameters for the full model. In case where the coupling is required
between erythropoiesis and thrombopoiesis, these subsystems cannot
estimate the parameters and explain the full dynamics.

Keywords: mathematical modelling, EPO stimulating agents, TPO stimu-
lants, megakaryocyte-erythroid progenitor, erythropoiesis, thrombopoiesis

1 Introduction

Hematopoietic stem cells (HSCs) are multipotent cells that produce blood cells
required by the human body. Once an HSC differentiates, it undergoes a series
of differentiation ultimately resulting in a large number of mature cells. This a
process occurs in the bone marrow niche and is called hematopoiesis. In healthy
individuals, approximately 1012 blood cells are produced every day to maintain
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the steady state levels of the peripheral blood [1]. HSCs can regenerate themselves,
often termed as self-renewal, meaning one HSC divide into two HSCs. In addition,
one HSC may produce two daughters/progenitor cells, and it may differentiate
into one HSC and one daughter cell. The hematopoietic stem cell niche is a
particular environment where signals from the body carry out the differentiation
of the required cell type. These differentiated cells are subdivided further into
different categories of cells. For example, the myeloid cells include red blood
cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes).
Specific associated growth factors to distinct cell lineage are responsible for
stimulating cell production and regeneration. Here, we focus on two cell types,
red blood cells and megakaryocytes. Megakaryocytes (precursor of platelets) and
erythrocytes differentiate from a shared precursor, the megakaryocyte-erythroid
progenitor [16, 82], in response to glycoprotein hormones.

The erythropoietin (EPO) regulates the number of erythrocytes through a
feedback loop. The kidneys secrete EPO in response to low oxygen levels in the
blood. The EPO concentration increases the differentiation of late progenitor
erythroid cells while it interrupts erythrocytes’ apoptotic mechanism to balance
their amount in the blood. Thus, the production and destruction of erythrocytes
are maintained in healthy states by the level of EPO [2, 25, 33, 39, 71, 78, 83].
It means that the loss of function of the erythropoietin receptor may disrupt
the production of erythrocytes. The erythrocyte life span is approximately 120
days in healthy individuals after macrophages envelop erythrocytes in the spleen
[45, 66].

The principal hormone that regulates megakaryocyte and platelet development
is thrombopoietin (TPO), produced by the liver. TPO stimulates the prolifera-
tion and differentiation of megakaryocyte precursors, promotes megakaryocyte
maturation, decreases its apoptosis and stimulates the release of platelets via
fragmentation of the mature megakaryocytes [17, 41]. TPO is presumed to be
removed primarily from blood circulation by platelets. The half-life of TPO is
estimated between 20 and 25 hours in [69] using data from [28]. However, in [40],
the maximum half-life of TPO is given as 45 minutes. Furthermore, one mature
megakaryocyte can give rise to between 1000 and 3000 platelets. The average
platelet count for a normal human being is 290× 109/L of blood. Platelets have a
life span of about 8 to 10 days.

The recent studies shed new light on alternative routes by which hematopoi-
etic stem cells are differentiated into megakaryocytes. The studies suggest
megakaryocyte-biased hematopoietic stem cells exist and can be triggered by extra-
cellular signals such as TPO, which may differentiate directly into a megakaryocyte
[57]. Also, TPO is thought to be responsible for the proliferation of megakaryocyte,
and to some extent, erythroid cell lineage [68]. However, megakaryocyte lineage
grew in the absence of EPO, which is consistent with the role of EPO in erythroid
maturation. The TPO receptor gives a distinct separation as a marker between
common myeloid and megakaryocyte/erythroid progenitors. In addition, it has
also been shown that the TPO receptors increase the self-renewal of hematopoietic
stem cells, especially under stress and inflammation [19].
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1.1 Literature review of mathematical models

The blood and bone marrow sampling is easily accessible therefore, the hematopoi-
etic system and its diseases have been studied extensively, and different math-
ematical models have been developed. Compartmental models are popular to
describe the time evolution of the different hematopoietic cell types. In this type
of model, each cell type is identified with one compartment, and its dynamics is
described by one ordinary differential equation (ODE).

Several authors used compartmental models to investigate hematopoietic
mechanisms such as phlebotomy or blood donation, erythropoiesis-stimulating
agents (ESAs), etc., in healthy human beings. Some of the mathematical models
described the regulation and formation of red blood cells and their supported
mechanisms, such as EPO [10, 49, 77]. Among pioneers in mathematical modeling
of hematopoiesis, an age-structured model for erythropoiesis following phlebotomy
on normal human subjects is presented and experimental data on phlebotomized
subjects are used to fit the parameters in the model [50]. In [23], the mathemati-
cal model consisted of different cell populations is presented to predict certain
situations such as the recovery of the red blood cell mass after blood donation, the
body’s reaction to different ESAs, as EPO. The same group of authors presented
the model which reflected hemoglobin dynamics in hemodialysis patients and
predicted the hemoglobin response to ESAs therapy. In [77], a three-compartment
model with a negative feedback mechanism for erythropoiesis was presented and
physiological properties with the application of the RBC regeneration after a
blood donation were captured. Afterward, the model was extended to identify
optimal and individualized phlebotomy schedules in PV patients in [46].

A number of mathematical models are based on hematological diseases,
[3, 7, 8, 15, 60]. In [48], a two-compartment model investigated quiescent and mi-
totic stem cells with constant delay in aplastic anemia and periodic hematopoiesis.
The extended model has been used to investigate oscillation for parameter ranges
observed in periodic chronic myeloid leukemia, cyclical neutropenia and thrombo-
cytopenia [14, 48, 64]. In [42], a mathematical model of platelet, megakaryocyte,
and TPO dynamics is presented. It contributes to the understanding of the
origin of cyclic thrombocytopenia. In [69] an age-structured model with both
normal and pathological platelet production is developed incorporating TPO. The
authors numerically reproduce the human response to an injection of TPO. In
[64], a mechanism based mathematical model of hematopoiesis is presented to
investigate the platelet oscillations observed in cyclical thrombocytopenia. In
[70], the authors presented a mathematical model describing the erythropoietic
lineage under chemotherapy and EPO applications. Furthermore, compartment
models have been used as a tool to study the dynamics of cancer cell populations
[5, 6, 18, 22, 27, 59, 67, 76, 86].

1.2 Present study

Our attempt at modeling erythropoiesis and thrombopoiesis is not the first at-
tempt. Many mathematical models exist in the literature, but none describes the
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interacting mechanisms between erythrocytes and platelets with their correspond-
ing growth factors EPO and TPO in healthy individuals. We aim to present a
framework for developing a model regulating both erythrocyte and platelet produc-
tion, which takes into account hematopoietic stem cells, megakaryocyte erythroid
progenitor cell (MEP), erythrocytes (RBC), megakaryocytes (MEG) and platelets
(PLT) with multi feedback from EPO and TPO on their dynamics. A non-linear
ODE system captures the essential features via its compartment structure. We
expect that such a mathematical model may be used in a clinical context to
achieve personalized treatments. After formulating the important assumptions on
the physiological process, we develop and analyze our novel mathematical model.

Assumptions on different mechanisms

1. Niche feedback to HSCs: HSCs self-renewal is inhibited by niche regu-
latory feedback [79] .

2. TPO feedback to HSCs: TPO stimulates HSCs by increasing the self-
renewal [19] .

3. TPO feedback to MEG: TPO stimulates the production of MEG [26,
36, 38] while it inhibits the death rate of MEG [26, 51, 52, 85].

4. TPO feedback to RBC: The production of erythrocytes is stimulated by
TPO [81].

5. TPO removal mechanism: The degradation of TPO occurs mainly by
the platelet receptors. We further assume another clearance rate of TPO
independent of platelet receptors [40, 43, 26].

6. Production of RBC and PLT: MEP differentiates into erythrocytes and
megakaryocytes [16, 82]. The megakaryocyte is further fragmented into
platelets. Generally, one megakaryocyte can produce between 1000 to 3000
platelets. It takes 5 to 7 days to mature megakaryocytes and shed platelets
[17, 41].

7. EPO feedback to MEG: The production of MEG is inhibited by EPO
[58].

8. EPO feedback to RBC: The production of erythrocytes is stimulated
by EPO [2, 25, 33, 34, 39, 71] while the death rate is inhibited by EPO
[25, 34, 71, 78, 83].

The proposed model captures the essential physiological processes for regula-
tion of erythrocytes and platelets. We highlight the contemporary notion related
to the effect of TPO on the self-renewal of HSC. The model’s novel feature is
the complex coupling of different mechanisms. In silico analysis provides insight
into the link between erythropoiesis and thrombopoiesis by modulating EPO and
TPO. The model will be shown to be in agreement with different categories of
clinical data such as phlebotomy, ESAs, thrombopoietin stimulants, etc. Moreover,
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subsystems of erythropoiesis and thrombopoiesis can be decoupled from the full
system and may be compared to the experimental data. We observe a satisfied
qualitative behavior of the model throughout the simulations. Based on estimates
of parameters for a typical healthy individual, the presented model can be used
to explore the changes in some of these parameters necessary to account for the
dynamics of hematological diseases as done by several authors [14, 24, 42, 64].
The proposed model may also be extended from the healthy subjects to patients
of MPNs by coupling the model to malignant cells using the similar approach by
[5, 76]. It may help physicians to initiate therapy and observe patient’s hemato-
logical parameters during treatment. However, a few particular challenges need
to be addressed. For example, valid data of MPNs patients is required, including
those who develop PV from ET over time. The underlying pathological dynamics
have to be modeled, such as the feedback mechanisms of EPO and TPO in disease
progression.

The presented paper is organized as; we derive the mathematical model in
section 2. Next, in section 3, we present a brief mathematical analysis of the
decoupled subsystems and the sensitivity analysis of the full model. In addition,
we use data of healthy subjects from various clinical experiments as a benchmark
for the model. Finally, the concluding remarks are given in section 4.
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Figure 1: The boxes illustrate the variables of the conceptual model. Solid arrows
represent the rates of the flows between and out of these compartments. Red and blue
lines represent the mechanisms in subsystems 1 and 2 respectively. HSC (x0) may self
renew (rx), die (dx0) or differentiate (ax). The stipulated line shows the inhibiting niche
feedback φx on rx. MEP (xc) is produced with rate axAx, may die (dxc) or differentiate
into MEG (xm) and RBC (xr) with fractions bx and 1− bx respectively. The production
(pE) of EPO (E) is inhibited by RBC and EPO is degraded with rate kE . EPO stimulates
the proliferation (Axr) and inhibits the death rate (dxr) of RBC. MEG differentiates into
platelets xp with rate axpbxp. MEG and PLT die with rates dxm and dxp respectively.
TPO (T ) stimulates the proliferation (Axm) and inhibits the death rate (dxm) of MEG
while xp stimulates the degradation of TPO kT2. TPO is produced with baseline rate pT
and degradation mechanism is described by the elimination rate kT1. TPO stimulates
the self-renewal of HSC and production of RBC whereas EPO inhibits the production of
MEG. The two dotted boxes emphasize the two subsystems 1 and 2 describing the red
blood cell - EPO subsystem and the platelet-megakaryocyte-TPO subsystem.

2 Mathematical model for erythropoiesis and

thrombopoiesis

Based on the above assumptions, the model equations can be formulated. The
resulting seven-dimensional compartment model consists of non-linear ordinary
differential equations: the number of hematopoietic stem cells (x0), the number
of megakaryocyte-erythroid progenitors (xc), the number of erythrocytes (xr),
the concentration of EPO (E), the number of megakaryocytes (xm), the number
of platelets (xp) and the concentration of TPO (T ). The conceptul model is
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illustrated in Fig. 1. The resulting equations are,

dx0

dt
= (rxTφx(x0)− dx0 − ax)x0, (1a)

dxc
dt

= axAxx0 − bxxc − (1− bx)xc − dxcxc, (1b)

dxm
dt

=
bx

1 + kmE
Axm(T )xc − (bxp + dxm(T ))xm, (1c)

dxp
dt

= axpbxpxm − dxpxp, (1d)

dxr
dt

= (1− bx)Axr(E)Txc − dxr(E)xr, (1e)

dE

dt
=

pE
1 + k0xr

− kEE, (1f)

dT

dt
= pT − (kT1 + kT2xp)T. (1g)

rx and dx0 represents self-renewal and death rates for HSC. Based on assump-
tion 1, we take inhibiting niche feedback on self-renewal of HSC,

φx =
1

1 + cxxx0
. (2)

x0 differentiates into xc at the rate ax. The progenitor cells between HSCs and
MEP are implicitly considered by the multiplication factor Ax such that the
resulting production rates of HSC become axAx. Using assumption 6, the fraction
of megakaryocytes and erythrocytes is denoted by bx and 1− bx. Moreover, dxc
represents the death rate of xc.

Using assumption 7, km is the factor by which EPO inhibits the production of
xm whereas, by assumption 3, TPO stimulates the production of xm and inhibiting
the death rate of xm given as,

Axm(T ) =
δxm1

1 + δxm2T
T, (3)

dxm(T ) =
ηxm1

1 + ηxm2T
. (4)

The fraction of xm fragmented into xp at the rate bxp, axp is the number of
fragmented platelets and dxp denotes the death rate of xp.

Considering assumption 8, EPO stimulates the production of erythrocytes
while inhibiting their death rates as,

Axr(E) =
δxr1

1 + δxr2E
E, (5)

dxr(E) =
ηxr1

1 + ηxr2E
. (6)
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The production of EPO, pE is dependent on the number of erythrocytes xr.
Hence, a high number of xr leads to a low level of EPO. EPO is degraded at
the rate kE . TPO is produced at the rate pT and degraded at the rate kT1 and
by platelets at kT2xp (assumption 5). Finally, by assumptions 2 and 4, TPO
stimulates HSC and RBC given in Eqs. 1a and 1e.

The default values of parameters and variables at steady state are given in
Table 1.

Name Value Unit Explanation Reference
x̄0 1.19 · 104 cells/kg Normal HSC number [48, 18, 27, 53]
x̄c 1.34 · 103 cells/kg Normal MEP number -
x̄m 1.89 · 107 cells/kg Normal MEG number -
x̄p 1.99 · 1011 cells/kg Normal PLT number [40]
x̄r 5.21 · 1012 cells/kg Normal RBC number [20, 66]
Ē 6.87 U/L EPO level [49, 66]
T̄ 120.38 pg/ml TPO level [73]

Parameter Value Unit Explanation Reference
rx 5 · 10−3 day−1 Self-renewal rate of HSC [18]
ax 3.58 · 10−5 day−1 Differentiation rate of HSC -
dx0 2 · 10−3 day−1 Death rate of HSC [5, 59, 67]
cxx 2.48 · 10−3 - Inhibiting effect on HSC -
Ax 3.65 · 103 - Multiplication factor for progenitor cells -
dxc 1.7 · 10−1 day−1 Death rate of MEP -
bx 2.6 · 10−1 day−1 Fraction of MEG -
km 50 - Factor affecting production of MEG -
bxp 3.5 · 10−1 - Fraction MEG shedding PLT -
axp 3 · 103 - MEG fragmented into PLT [41, 17]
dxp 1 · 10−1 day−1 Death rate of PLT [66]
pE 1.56 · 104 day−1 Production rate of EPO -
k0 5 · 10−10 - Factor affecting production of EPO -
kE 2.8 day−1 Degradation rate of EPO [7, 10]
pT 180 day−1 Production rate of TPO -
kT1 5 · 10−1 - Random loss of TPO -
kT2 5 · 10−12 day−1 Degradation rate of TPO by PLT -
δxr1 3.06 · 106, - Stimulation rate of RBC -
δxr2 2.94 - Factor affecting production of RBC -
ηxr1 1 · 10−1 - Factor affecting death rate of RBC -
ηxr2 5 · 10−1 - Factor affecting death rate of RBC -
δxm1 1 · 106 - Factor stimulating production of MEG -
δxm2 1 · 10−1 - Factor affecting production of MEG -
ηxm1 3 · 10−1 - Factor affecting death rate of MEG -
ηxm2 9.4 · 10−3 - Factor affecting death rate of MEG -
Axr(Ē) 3.25 · 105 - Stimulation rate of RBC -
dxr(Ē) 8.3 · 10−3 day−1 Death rate of RBC [10, 48]
Axm(T̄ ) 9.91 · 105 - Stimulation rate of MEG -
dxm(T̄ ) 1.46 · 10−1 day−1 Death rate of MEG [41, 17]

Table 1: List of the variables at steady state and parameters values

3 Results

This section provides various results related to subsystems of the model shown in
Fig. 1, sensitivity analysis and the model calibration.
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3.1 Analysis of Subsystems

Interestingly, erythropoiesis and thrombopoiesis subsystems can be independently
analyzed from the full model. These subsystems are useful for estimating the
important subsets of the full model parameters involved in the various clinical
experiments. In addition, the subsystems are prioritized in clinical trials where
the physicians are interested in observing hematological parameters specific to
erythroid or megakaryocyte lineage. However, the drawback of the subsystems is
that they are unable to represent the coupled mechanisms between erythropoiesis
and thrombopoiesis.

Subsystems from the system of equations 1 can be decoupled and written
in the form of two independent systems. As shown in Fig. 1, we introduce the
subsystem 1,

dxr
dt

= Axr(E)− dxr(E)xr, (7a)

dE

dt
=

pE
1 + k0xr

− kEE, (7b)

and the subsystem 2,

dxm
dt

= Axm(T )− (bxp + dxm(T ))xm, (8a)

dxp
dt

= axpbxpxm − dxpxp, (8b)

dT

dt
= pT − (kT1 + kT2xp)T. (8c)

We identify the subsystems’ steady states and their stability.

• The unique steady state of the subsystem 1 is denoted by S1 = (x̄r, Ēr).
Let, JS1 be the Jacobian at S1. The determinant det(JS1) is positive and
trace tr(JS1) is negative, hence S1 is always stable. The classification of the
eigenvalues is given in Supplementary S1.

• The unique steady state of the subsystem 2 is denoted by S2 = (x̄m, x̄p, T̄p).
The Jacobian JS2 can be calculated at S2. By Routh Hurwitz criteria, S2

is stable for P0P1 > P2 and unstable for P0P1 < P2 where,
P0 = ηxm1

1+ηxm2T̄p
+ bxp + dxp + kT2x̄p + kT1,

P1 =
(

ηxm1

1+ηxm2T̄p
+ bxp

)
(dxp + kT2x̄p + kT1) + dxp(kT2x̄p + kT1),

P2 = dxp

(
ηxm1

1+ηxm2T̄p
+ bxp

)
(kT2x̄p + kT1) + ...

(
δxm1

(1+δxm2T̄p)2
+ ηxm1ηxm2

(1+ηxm2T̄p)2
x̄m

)
axpbxpkT2T̄p.

(See Supplementary S1 for details).
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3.2 Sensitivity Analysis

After briefly describing the subsystems, we return to the full model. In clinical
trials and practice, total cell counts are usually measured in blood samples.
Therefore, we perform a sensitivity analysis to identify the sensitive parameters
for the production of erythrocytes and platelets. We choose 10% variation in
the default values given in Table 1 to observe the difference in the steady state
values of RBC and PLT. (Detailed sensitivity analysis for all variables are given
in Supplementary 3.2).

Fig. 2a shows that perturbing ax, Ax and bx change the number of platelets.
However, the RBC count does not change more than the PLT count.

Fig. 2b illustrates the effect of parameters related to subsystem 1. By decreas-
ing (increasing) δxr1 and ηxr2, reduces (higher) the number of both erythrocytes
and platelets, whereas decreasing (increasing) δxr2 and ηxr1 increases (decrease)
the RBC and PLT count. This is interpreted as decreasing those parameters that
reduce the number of erythrocytes resulted in high EPO levels. Hence, it reduces
the production of megakaryocytes, followed by platelets (See Supplementary 3.2
for EPO levels). Furthermore, a high amount of RBC and a low number of PLT
are obtained when variation in parameters increases the concentration of EPO
(−10% in kE , +10% in pE and −10% in k0) or vice versa. The parameters involved
in the dynamics of EPO are more sensitive compared to others that appear in Fig
2b.

Fig 2c illustrates the effect of parameters included in subsystem 2. By de-
creasing δxm1, ηxm2, bxp and axp decrease the average platelet count and increase
the RBC count. In contrast, the average platelet count becomes high and the
RBC count becomes low when δxm2, ηxm1 and dxp are decreased. Thus, these
parameters impose an opposite effect on RBC and PLT count. In addition, the
number of both erythrocytes and platelets is increased in response to high TPO
levels, i.e, +10% in pT , −10% in kT1 and kT2. (See Supplementary 3.2 for TPO
levels).
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(a)

(b)

(c)

Figure 2: The top panels in (a), (b) and (c) show the relative effect in the
number of RBC and PLT when parameters are decreased by 10%, whereas
the bottom panels (a), (b) and (c) show the effect when parameters are
increased by 10%. The values equal to 1 corresponds to the outcome for the
default parameter values.

3.3 Calibration of the model

This section presents the calibration of the model using various data sets of
healthy subjects. The hematological parameters can be easily measured in the
clinic therefore, we focus on the erythrocyte and platelet count and concentration
of EPO and TPO in the following simulations.

151



12

3.4 Phlebotomy

The process of drawing blood is known as phlebotomy. The reference range of
total blood volume is 5 liters in a human where 450-550 ml is withdrawn when
phlebotomy is performed. The clinical trial in [63] shows that the recovery of total
hemoglobin in 29 healthy adults (male, 30 ± 10 years, 181 ± 7 cm, 76.6± 11.2 kg)
takes at most two months. The erythrocytes are assumed to be at steady state
when the procedure is performed. Data from [63] is shown in Fig. 3, where the
hemoglobin is converted into the number of erythrocytes using mean MCV (mean
corpuscular volume) value. (See Supplementary S3 for details). Fig. 3 shows
simulations for a standard blood donation of 550 ml. The simulation starts in the
steady state, and a half-liter of the blood (including erythrocytes and platelets)
is removed due to blood donation at day seven. It shows that the erythrocytes
count returns to the baseline within 60 days after blood donation. These results
coincide with the findings given in [63].

Figure 3: Data of erythrocytes (black circles) measurements over time for
six subjects after phlebotomy at day seven [63]. The model curves are
represented in blue. A half-liter of the total blood is drawn and erythrocytes
reach their steady state level within 60 days after a few days. For the first
panel we use, δxr1 = 3.15 · 106. The middle and the bottom panels are
obtained by the default values of the parameters.

Fig. 4 illustrates how the system responds to phlebotomy and drives back to
the original state. We expect that erythrocytes and platelets are removed during
phlebotomy. However, we can not find any evidence about EPO and TPO. Fig.
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4 shows a minimal increase and decrease in the MEP and megakaryocyte count
respectively. In addition, TPO and EPO concentrations are insignificant higher
in response to the reduced erythrocyte and platelet count.

Figure 4: Model simulation during phlebotomy.

3.5 Erythropoiesis stimulating agents (ESAs).

In clinical trials, ESAs are adopted in stimulating the bone marrow to produce
red blood cells. EPO is the famous erythropoiesis stimulating agents well known
from doping. In healthy adults with normal hematocrit, injections of EPO around
60 IU kg−1 one to three times per week for 4–14 weeks increases the hematocrit
[47]. Epoetin alpha is recombinant human erythropoietin (rHuEpo) and is nearly
identical to EPO. In [13], changes in reticulocytes, hemoglobin and red blood cells
are observed after subcutaneous dose (SC) of epoetin alpha.

Fig. 5 illustrates the administration of EPO dose and its effect on the
erythrocyte dynamic. We compare the model output to the pharmacodynamics
data of the study [75]. In this study SC dose of epoetin alpha is given three times
weekly. However, the data for EPO is available only for the last 24 hours. The
estimated parameters are taken from subsystem 1 (See Table S1 in Supplementary
S1) except δxr1. We adjust δxr1 to achieve steady state value for erythrocytes.
The estimated δxr1 for Fig. 5 is approximately equal to its default value. The
estimated parameter values are given in Table 2. All other parameters are set at
their default values.
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Figure 5: A data set generated from 37 patients is given in [75] after SC
dose of epoetin alpha that is given 3 times weekly. The panel shows data
(black circles) fitting for erythrocytes (geometric mean is given) and EPO
(EPO data is available only for the last day of dose). The model simulations
are illustrated in blue. The estimated parameter values are given in Table 2.

Parameter Values Parameters Values Parameters Values

δxr1 1.09 · 106 ηxr1 2 · 10−1 pE 5 · 104

kE 1.1

Table 2: Estimated parameter values for Fig.5

Fig. 6 illustrates data fitting for platelets and EPO where EPO is given
intravenously (IV). The data points are taken from [30], and the platelet count
rise is claimed after EPO dose. The measurement of platelet count is missing
before EPO dose, and the last two data points show the increase in platelet count
after 24 hours regardless of error bars. Thus, it is hard to say whether the number
of platelets is increased or not after an IV dose of EPO. The authors observed an
increase in TXB2 serum levels in response to EPO dose that may cause platelet
activation. These markers may be useful for estimation of thromboembolic risk
during EPO therapy. In Table. 3, we report deviated values from the default
values.
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Figure 6: Data (black circles) of platelets and erythrocytes after IV dose
of epoetin alpha [30], which enhances formation of red blood cells and also
affects thrombopoiesis and platelet function. EPO is recorded before dose,
however number of platelets are recorded after dose. The data for erythrocyte
count is not available but rise in count is stated in [30]. The panels show
data fitting for EPO and platelets. Black circles and blue curves denote
data and model simulations respectively. The estimated parameter values
are given in Table 3.

Parameter Value Parameter Value Parameter Value

dx0 4.5 · 10−2 ax 2.51 · 10−5 cxx 1.49 · 10−2

bx 10−1 axp 1 · 103 dxp 2.5 · 10−1

kT2 8 · 10−12 δxm1 1.1 · 107 δxm2 1
δxr1 2.7 · 1011 ηxr1 2.2 · 10−3

Table 3: Estimated parameter values for Fig.6

Despite its use in healthy individuals, EPO therapy is used in many diseases
such as anemia. EPO injections are used in anemia when a patient suffers from
very low red blood cell counts.

3.6 Thrombopoietin stimulants

TPO is the primary physiological hormone that regulates megakaryocyte and
platelet development. Another fact is that TPO enables HSC maintenance as well.
The thrombopoietin receptor TPO-RAs is the platelet growth factor commonly
used to increase the platelet count in immune thrombocytopenia [4, 84]. In [32],
the recombinant human thrombopoietin (rhTPO) is experimented to regulate
megakaryopoiesis and erythropoiesis in severe aplastic anemia patients hence, the
need for blood transfusion is reduced.

In [28], one week after SC injection of thrombopoietic recombinant (1 µg
kg−1), megakaryopoiesis becomes double, leading to doubling of platelets on day
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12. All values return to baseline after four weeks. Fig. 7 illustrates the data
fitting for platelet count and TPO levels taken from [28]. The platelet count is
increased for a few days and then returned to the initial value within 30 days
while TPO level reaches its steady state within 5 days.

Another novel thrombopoietin receptor ligand AMG 531, is investigated
through a single IV or SC injection in healthy subjects [80]. AMG 531 is a
thrombopoiesis-stimulating protein. Since it is known to stimulate production of
megakaryocytes in the same way as TPO, we suppose that the same TPO dose is
induced as in [28] and observe the effect on platelet count in Fig. 8. The estimated
parameters are taken from subsystem 2 (Table S1). All other parameters are set
at their default values except ηxr1 = 2.2 · 10−2.

Figure 7: In silico analysis of subcutaneous injection of TPO or PEG-
rHuMGDF (3µg/kg). Data (black circles) of platelets and TPO is given
[28]. The model simulations are denoted by blue versus time. The panel
shows data fitting for platelets and TPO. The estimated values are given in
Table S1.
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Figure 8: Data of platelet count is given after IV and SC injection of AMG
531 [80]. The black circles represent intravenous dose whereas red circles
show subcutaneous dose of TPO receptor AMG 531.

4 Discussion and Conclusions

In this article, a mathematical model incorporating erythrocytes and platelets
with multiple EPO and TPO feedbacks is proposed. Moreover, the interacting
mechanisms of erythropoiesis and thrombopoiesis are considered. All the biological
mechanisms can not be taken into account for our model, however, the essential
physiological properties have been captured. The model consists of three ODEs
(HSC, MEP and MEG) describing the bone marrow dynamics, and four ODEs
of RBC, PLT, EPO and TPO for blood dynamics. Interestingly, the subsystems
of erythropoiesis and thrombopoiesis can be decoupled from the full model. The
simplified structures of subsystems allow us to perform mathematical investigations
and find their steady states. Each of these subsystems has a unique positive steady
state and stability conditions of these steady states are covered in supplementary
S1.

Sensitivity analysis identifies the sensitive and insensitive parameters for the
model variables. Fig. 2 given in section 3.2 describes the effect of 10% variation
of parameters on the number of erythrocytes and platelets, and Fig. S6 given in
supplementary S2 illustrates the effect of 10% variation of parameters on the full
system. Now we summarize the results from sensitivity analysis shown in Fig. 2.
The influence of varying the parameters involved in HSC and MEP (ax, Ax and
bx) is less on the RBC count than on the PLT count. Considering the effect of
the parameters included in subsystem 1 (erythropoiesis) on the full model, we
can observe that the parameters involved in EPO dynamics are more sensitive
as compared to other parameters of subsystem 1. Increasing EPO concentration
(-10% kE , +10% pE and -10% k0) increases the RBC count and decreases the PLT
count or vice versa. Considering the effect of parameters contained in subsystem
2 (thrombopoiesis) on the full model, the number of both RBC and PLT count is
increased in response to high TPO levels by perturbing +10% pT , -10% kT1 and
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-10% kT2. However, the remaining parameters (δxm1, δxm2, ηxm1, ηxm2, axp, bxp
and dxp) impose opposite effects on the RBC and PLT count, i.e., if RBC count
is decreased, the PLT count is increased or vice versa.

Furthermore, we calibrate the model by fitting to various experimental data
sets. The appropriate fitting of data is an appealing feature of the model. Fig. 3
illustrates that for the default values of parameters, we are able to fit phlebotomy
data for four subjects. In contrast, a little change is required in δxr1 for adjusting
the initial values for two data sets. Furthermore, the subsystems are in excellent
agreement with the data. These subsystems help us in estimating parameters of
the full model in many situations where the coupling between the two subsystems
is of no interest. For instance, Fig. S3 illustrates the effect of EPO therapy on
erythrocytes in subsystem 1. The estimated values of ηxr1, pE and kE are used
for data fitting in the full model (See Fig. 5). Similarly, Fig. S4 and Fig. S5
illustrate the data fitting in subsystem 2 where TPO dose stimulates the platelet
count. We use these estimated parameter values for data fitting in the full model
(See Fig. 7 and Fig. 8). However, a drawback of these nested models is their
inability to capture the coupled mechanisms of full model. For example, in [30],
the authors were interested in investigating PLT count when EPO injection is
given (See Fig. 6). In such situations, our full model is useful to interpret the
outcomes of clinical trials.

Besides data fitting, we conduct several other in silico experiments for a
virtual subject (See supplementary section S4). For example, Fig. S7 and Fig.
S8 show the transfusion of red blood cells and platelets. These procedures are
primarily preferred for hematological diseases because such in vivo experiments are
critical for healthy individuals. Fig. S7 illustrates that red blood cell transfusion
stimulates the megakaryocytes and platelets and, ultimately, increase in platelet
count increases the TPO degradation rate. Furthermore, Fig. S8 represents
that transfusing platelets increase TPO degradation, resulting in the reduced
MEP, MEG and RBC count, however, the EPO concentration is increased due
to low number of erythrocytes. Similarly, plateletpheresis imposes the opposite
effects on the dynamics of model (See Fig. S9). Note, our model indicates that
HSC remains unaffected with these procedures. The mechanism affecting HSC
during blood transfusion and apheresis are not yet well understood. Therefore, we
might not interpret this effect accurately in a physiological sense. The academic
community has extensively explored the independent reactions of EPO and TPO
dose. However, little research [61, 62] has been carried out to investigate the
synergy between EPO and TPO. We simulate this combined effect of EPO and
TPO dose in Fig. S10. The analysis shows that HSC, MEP and RBC count are
increased, whereas, the MEG and PLT count is first decreased, and then after a
few days, the number of MEG and PLT is increased. However, when the TPO
dose is given alone, we have not seen this sudden drop in MEG and PLT count.
According to our perception, this sudden drop can be eliminated by decreasing
km that reduces the inhibiting strength of EPO to MEG.

In summary, the presented model has the novel feature of simulating and
replicating the coupled dynamics of erythropoiesis and thrombopoiesis. The
adaptations necessary to combine them are discussed in detail. We demonstrate
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how the proposed model and its subsystems can develop clinically meaningful
predictions regarding EPO and TPO applications. The overall analysis strengthens
the argument that our model is a valid candidate in clinical settings for various
experiments. As a future perspective, the model can be extended for multiple
hematological diseases where we may include the different pathological aspects
for the novel intervention strategies.
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Supplementary Materials

S1 Analysis of subsystems

S1.1 Erythropoiesis subsystem: Subsystem 1

The subsystem 1 reads,

dxr
dt

= Axr(E)− dxr(E)xr, (S1a)

dE

dt
=

pE
1 + k0xr

− kEE, (S1b)

Steady states

Consider the system of Eqs (S1). Expressions for steady state solutions are,

x̄r =
δxr1Ēr(1 + ηxr2Ēr)

ηxr1(1 + δxr2Ēr)
, (S2)

Ēr =
pE

kE(1 + k0x̄r)
. (S3)

Substituting expression for Ēr in Eq. S2,

k0kEδxr1ηxr2E
3 + kE(k0δxr1 + δxr2ηxr1)E2 + ηxr1(−pEδxr2 + kE)E − pEηxr1 = 0,

(S4)
Since the coefficients in the first two terms i.e. k0kEδxr1ηxr2 and kE(k0δxr1 +
δxr2ηxr1) are positive whereas the last term −pEηxr1 is negative. Thus, by using
Descartes’ rule of sign, there exists exactly one positive root of Eq. S4, such that
Er+ = Er. Using Eq. S3, we get

x̄r =
1

k0

(
pE
kEĒr

− 1

)
. (S5)

Hence, a unique steady state is denoted by S1 = (x̄r, Ēr).

Stability

The stability of the steady states of subsystem 1 is easily characterized. The
Jacobian matrix of the subsystem 1 at S1 is,

JS1 =

[
− ηxr1

1+ηxr2Ēr

δxr1
(1+δxr2Ēr)2

+ ηxr1ηxr2
(1+ηxr2Ēr)2

x̄r

− pEk0
(k0x̄r+1)2

−kE

]
(S6a)

The determinant of the Jacobian at (x̄r, Ēr) is,
det(JS1) = kEηxr1

1+ηxr2Ēr

δxr1
(1+δxr2Ēr)2

+ ηxr1ηxr2
(1+ηxr2Ēr)2

pEk0
(k0x̄r+1)2

x̄r is always positive.
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The trace of the Jacobian,

tr(JS1) = −kE −
ηxr1

1 + ηxr2Ēr

is always negative. Therefore, no further condition is necessary to guarantee
stability of the steady state.

We further find the eigenvalues of the system

λ1,2 = − tr(J)±
√
tr2 − 4det

2
.

For tr2 < 4det, the obtained eigenvalues are pair of complex conjugates,
whereas tr2 > 4det gives negative real eigenvalues. Fig. S1 is an example showing
the trajectories attract towards a stable steady state.

Figure S1: In the left panel, kE = 3 gives two negative real eigenvalues.
Decreasing kE up to kE = 10−4 transforms the real eigenvalues into complex
eigenvalues with negative real parts. The resulting trajectories are shown in
the right panel.

S1.2 Thrombopoiesis subsystem: Subsystem 2

The subsystem 2 reads,

dxm
dt

= Axm(T )− (bxp + dxm(T ))xm, (S7a)

dxp
dt

= axpbxpxm − dxpxp, (S7b)

dT

dt
= pT − (kT1 + kT2xp)T. (S7c)

Steady states

Consider the system of Eqs (S7). Expressions for steady state solutions are,

x̄m =

δxm1T̄p
1+δxm2T̄p

bxp + ηxm1

1+ηxm2T̄p

, (S8)
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x̄p =
axpbxp
dxp

x̄m, (S9)

T̄ =
pT

(kT1 + kT2x̄p)
. (S10)

Substitute expression for x̄p and T̄p in Eq. S8,

ε3x
3
m + ε2x

2
m + ε1xm + ε0 = 0 (S11)

where,
ε3 = b2xp(bxp + ηxm1)a2

xpk
2
T2,

ε2 = axpkT2(((δxm2 + ηxm2)pT + 2kT1)bxp + ηxm1(pT δxm2 + 2kT1))bxpdxp,
ε1 = ((ηxm2pT + kT1)bxp(pT δxm2 + kT1) + kT1ηxm1(pT δxm2 + kT1))d2

xp...
−axpkT2δxm1pT bxpdxp,

ε0 = −δxm1pT (ηxm2pT + kT1)d2
xp.

Since ε3 and ε2 are positive, whereas ε0 is negative. Thus, by using Descartes’
rule of sign there exists exactly one positive root of Eq. S11 such that, x̄m+ = x̄m.
Using x̄m, we get x̄p and T̄p.

Hence, a unique steady state is denoted by S2 = (x̄m, x̄p, T̄p).

Stability

The Jacobian matrix of the subsystem 2 at S2 is,

JS2 =



− ηxm1

1+ηxm2T̄p
− bxp 0 δxm1

(1+δxm2T̄p)2
+ ηxm1ηxm2

(1+ηxm2T̄p)2
x̄m

axpbxp −dxp 0
0 −kT2T̄p −kT2x̄p − kT1


 (S12a)

The characteristic polynomial equation is

λ3 + P0λ
2 + P1λ+ P2 = 0

where,

P0 = ηxm1

1+ηxm2T̄p
+ bxp + dxp + kT2x̄p + kT1,

P1 =
(

ηxm1

1+ηxm2T̄p
+ bxp

)
(dxp + kT2x̄p + kT1) + dxp(kT2x̄p + kT1) and

P2 = dxp

(
ηxm1

1+ηxm2T̄p
+ bxp

)
(kT2x̄p + kT1) +

(
δxm1

(1+δxm2T̄p)2
+ ηxm1ηxm2

(1+ηxm2T̄p)2
x̄m

)
axpbxpkT2T̄p

By Routh Hurwitz criteria, all roots lie in the left half plane for P0 > 0,
P2 > 0 and P0P1 > P2. P0 and P2 are always positive for positive values of
parameters. However, a steady state may be unstable when P0P1 is less than
P2. Following are a few examples where the trajectories attract towards a
stable steady state. We perform a series of simulations with physiologically
acceptable parameter values, but none of the results provide us an unstable
steady state.
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Figure S2: In the left panel, pT = 30 gives three negative real eigenvalues.
Increasing pT provides a negative real and a pair of complex eigenvalues
with negative real parts. In the right panel pT = 4 · 105.

Numerical Results for Subsystems

In this section, we estimate the model parameters of the subsystems for the
experimental data extracted from [75] and [28].

In [75], epoetin alpha is given subcutaneously three times weekly for
four weeks to 37 healthy males. The geometric mean of RBC is shown
over time however, the data for EPO is available only for the last day (See
Fig.S3). In [28], the subcutaneous dose of PEG-rHuMGDF is given to 12
healthy volunteers, and a rise in platelet count and megakaryocyte mass is
observed. PEG-rHuMGDF and rHuTPO are two thrombopoietic growth
factors and are thought to increase platelets’ concentrations equivalently
[56]. Due to lack of data, we use PEG-rHuMGDF data for TPO in our
simulations (See Fig.S4). The estimated parameter values are given in Table.
S1. Fig. S5 shows the effect of AMG 531 (SC and IV) dose on the platelet
and megakaryocyte count. AMG 531 is a TPO receptor ligand and has the
equivalent ability, like TPO, to bind to Mpl and activate the JAK-STAT
pathway.
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Figure S3: A data set generated from 37 patients is given in [75]. Subcuta-
neous dose of epoetin alpha is given 3 times weekly. The left figure shows
data fitting for erythrocytes (geometric mean is given), the middle figure
shows data fitting for EPO (EPO data is available only for the last day of
dose) and the right figure shows EPO curves for 30 days.

Figure S4: In silico analysis of subcutaneous injection of TPO or PEG-
rHuMGDF (3µg/kg). Data points are taken from [28]. The panels show
TPO effect on megakaryocytes, platelets and TPO.

Figure S5: Data points are taken from [80]. The panel shows data fitting for
platelets when TPO is induced. The black circles represent intravenous dose
whereas red circles show subcutaneous dose of TPO receptor AMG 531. All
parameter values are similar to Fig. S4 except kT1.
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Parameter Value Parameter Value

δxr1 2.7 · 1011 δxr2 2.94
Subsystem 1 ηxr1 2 · 10−1 ηxr2 5 · 10−1

pE 5 · 104 k0 5 · 10−10

kE 1.1

bxp 1.5 · 10−1 axp 1 · 103

dxp 1.5 · 10−1 pT 30
Subsystem 2 kT1 2.9 · 10−1 kT2 3 · 10−14

Fig. S4 δxm1 4 · 105 δxm2 1 · 10−5

ηxm1 2 · 10−1 ηxm2 9.4 · 10−3

Fig. S5 kT1 4 · 10−1

Table S1: Estimated parameter values for Figs. S3, S4, S5

S2 Sensitivity Analysis

We perform a sensitivity analysis to identify the sensitive parameters for the
variables involved in the model (See Fig. S6). We choose a 10% variation in
the default values given in Table 1 to observe the difference in the cell count
and concentration of EPO and TPO.
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(a)

(b)

Figure S6: Panels (a) and (b) show the effect when parameters are decreased
and increased by 10% respectively. For each parameters, seven columns are
shown; blue, red, mustard, purple, green, light blue and maroon correspond
to the average of x0, xc, xm, xp, xr, E and T . Parameters in red represent
the subsystem 1 and parameters in blue represent the subsystem 2.

S3 Hematological parameters:

The average blood volume in an adult is 4 to 6 liters: women have 4 to
5 liters, and men 5 to 6 liters. This blood volume represents about 8%
of total body weight. Blood has a pH between 7.35 and 7.45, and it is
composed of 55% plasma (the fluid portion) and 45% formed elements or
cells. Of the 45% cellular components, approximately 44% of the cells are
red blood cells, whereas only 1% are white blood cells and platelets. Plasma
is composed of about 91.5% water and 8.5% solutes (kind of proteins). The
proportion of blood occupied by red blood cells measured using hematocrit
is called erythrocytes volume percentage (EVP). It is usually expressed as a
percentage of the total blood volume. The reference range of hematological
parameters for healthy individuals is given in table S2.

Hemoglobin (Hb) consists of a heme group (iron-containing oxygen-
transport metalloprotein in the red blood cells). Additionally, a pair of
globin chains carry oxygen to the rest of the body. In humans, hemoglobin
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is typically used to evaluate red blood cell mass. Hematocrit (Ht) is defined
as the volume percentage of red blood cells, and measurements depend upon
the red blood cells’ size. There are other Ht names, such as packed cell
volume (PCV) or erythrocyte volume fraction (EVF).

Since red blood cells are approximately 33% hemoglobin, the Hb con-
centration of whole blood is typically about one-third of the Ht. In vitro
hemolysis, a Ht can be estimated from Hb measurement such as

Ht =
Hg

3
(S13)

Mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH)
and mean corpuscular haemoglobin concentration (MCHC) is termed as
red blood cell indices. MCV is the size of red blood cells and expressed
as femtoliters (1015 fl). The average values for MCV are 87 ± 7 fl. MCH
quantifies the amount of hemoglobin per red blood cell. The normal values
for MCH are 29±2 picograms (pg) per cell. MCHC correlates the hemoglobin
with the volume of a cell. It is expressed as g/dl of red blood cells or as a
percentage value. The normal values for MCHC are 34 ± 2 g/dl. In [63],
a minimal difference is observed in MCH measurements for all subjects.
In addition, MCV is measured before, and after phlebotomy in [35], the
standard deviation from the mean is 88.4±0.8 fl. Hence, it is concluded that
the arithmetic mean of MCH and MCV values can be used in the following
formulas.

NumberofErythrocytes =
Ht

MCV
× 1012 (S14a)

NumberofErythrocytes =
Hg

MCH
× 1012 (S14b)

Category Reference range

Red blood cells (RBCs) 4.2 to 5.4 ×1012 /L (females), 4.7 to 6.1 ×1012 / L (males)
Hematocrit (Hct) 37% to 47% (females), 42% to 52% (males)
White blood cells (WBCs) 4.8 to 10.8 ×109 /L
Platelets (PLTs) 150 to 400 ×109 /L
EPO 6-16 IU/L
Tpo 81.25-237.7 pg/ml

Table S2: Reference range for hematological parameters

S4 Simulations

We use default parameter values for all the simulations below.
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S4.1 Transfusion of red blood cells

The transfusion of red blood cells is performed in order to achieve a rapid
increase in the supply of oxygen to the tissues when the concentration of
hemoglobin (Hb) is low and the oxygen carrying capacity is reduced. The
critical patients suffering from an iron deficiency or anemia are also advised
for red blood cell transfusion. The procedure is also associated with the
increased risk of thrombotic events but the underlying mechanisms are poorly
understood. Some of the research shed light on the platelet activation and
aggregation after red blood cell transfusion in healthy and ill individuals
[72]. However, its effect on the megakaryopoiesis and hematopoietic stem
cells are yet to be revealed.

Fig. S7 illustrates the outcome of the model when 10% erythrocytes
are induced at a steady state. The concentration of EPO and TPO is
decreased. Due to a decrease in TPO levels, megakaryocytes and platelets
count are increased but still in the reference range. However, the red blood
cell transfusion shows no effect on HSC count therefore, we do not include
the figure for HSC.

Figure S7: In silico analysis of 1 unit (9%-10%) of RBC transfusion.

S4.2 Platelet transfusion and Plateletpheresis

Platelet transfusion is the process of transfusing platelets to persons having
platelet levels less than 10×109/L. Such therapy is mainly applied to patients
with thrombocytopenia. It is also hypothesized that transfusing platelets
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decreases TPO concentration, which eventually supports the evidence of
TPO clearance through platelets [55, 21]. In [21], it is investigated that
platelet count and TPO concentration are inversely correlated. After the
transfusion, the number of platelets is increased immediately and then
started to decrease. Conversely, TPO levels are reduced significantly but
then returned to steady state level in almost three days.

In Figure S8, we show in silico analysis of platelet transfusion. We
notice that platelet transfusion results in decreasing the concentration of
TPO. In addition, we can observe the dynamics of erythropoiesis. The
number of erythrocytes is reduced, and as a result, the concentration of
EPO is increased while MEP count decreases slightly. We exclude a figure
illustrating HSC count since HSC count is almost constant.

Figure S8: In silico analysis of platelet transfusion. 10% platelets are
transfused.

Plateletpheresis is the process used in blood donation separating the
platelets and returning the rest of the blood to the donor. It may also be
used to treat patients with thrombocytosis. Plateletpheresis is performed
in four MPN patients with extreme thrombocytosis and platelet counts are
decreased within 1 to 3 sessions without any adverse effects [11]. Fig. S9
illustrates that removing platelets increases the number of erythrocytes. It
is associated to the risk of thrombosis if the elevation is too high.
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Figure S9: In silico analysis of plateletpheresis. 10% platelets are removed.

S4.3 Combination of EPO and TPO dose

Several clinical experiments are held to investigate the effects of EPO and
TPO alone or in combination with each other on the stimulation of erythroid-
megakaryocyte progenitors and HSC [37, 54, 61, 62, 74]. We are able to
perform such experiments in our model. In Fig. S10, we inject EPO and TPO
at the same time. We suppose EPO (100 U/l) and TPO (1000 pg/ml) dose
equivalent to clinical trials performed in [75] and [28]. Fig. S10 illustrates
that the combination of EPO and TPO dose stimulates HSC and MEP,
resulting in erythrocyte production. In contrast, megakaryocyte and platelet
count first decrease, and within 5 to 10 days, they become higher than the
previous level.
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Figure S10: Combination of EPO and TPO dose.
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Abstract

The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem
cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most
recently, chronic inflammation has been described as an important factor for the develop-
ment and progression of MPNs in the biological continuum from early cancer stage to the
advancedmyelofibrosis stage, the MPNs being described as ªAHuman Inflammation Model
for Cancer Developmentª. This novel concept has been built upon clinical, experimental,
genomic, immunological and not least epidemiological studies. Only a few studies have
described the development of MPNs by mathematical models, and none have addressed
the role of inflammation for clonal evolution and disease progression. Herein, we aim at
using mathematical modelling to substantiate the concept of chronic inflammation as an
important trigger and driver of MPNs.The basics of the model describe the proliferation from
stem cells to mature cells includingmutations of healthy stem cells to becomemalignant
stem cells. We include a simple inflammatory coupling coping with cell death and affecting
the basic model beneath. First, we describe the system without feedbacks or regulatory
interactions. Next, we introduce inflammatory feedback into the system. Finally, we include
other feedbacks and regulatory interactions forming the inflammatory-MPNmodel.

Using mathematical modeling, we add further proof to the concept that chronic inflamma-
tion may be both a trigger of clonal evolution and an important driving force for MPN disease
progression. Our findings support intervention at the earliest stage of cancer development
to target the malignant clone and dampen concomitant inflammation.
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Introduction
The classic chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) include
essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF),
which are acquired stem cell neoplasms [1]. Most patients live with their MPNs for decades
although with a huge morbidity burden due to a high risk of thrombosis with cardiovascular
complications and a massive comorbidity burden as well due to an increased propensity to
develop autoimmune and chronic inflammatory diseases [2±4], including a 40% increased risk
of second cancers [5,6]±not only after the MPN-diagnosis but also prior to the MPN-diagnosis
[7]. Several years prior to the MPN-diagnosis these patients also have an increased risk of car-
diovascular, autoimmune and inflammatory diseases [8,9]. Furthermore, the MPNs have an
inherent risk of transformation to acute myelogenous leukemia (AML) and myelodysplastic
syndrome (MDS) [10].

During the last decade major breakthroughs have occurred in the understanding of the
pathogenesis of the MPNs, the most important being the identification of the somatic
clonal markers±JAK2, MPL and CALR [11±18]. The findings of several other mutations
already at the time of MPN-diagnosis, with the emergence of additional mutations in the
advanced transforming stages of MPNs [17,18], all support the concept of a biological con-
tinuum from the early cancer stages (ET/PV) to the advanced cancer stages (myelofibrosis
or AML) [1,19,20]. Chronic inflammation is the common link between common diseases
such as atherosclerosis, the metabolic syndrome, type II diabetes mellitus and cancer, in
which the JAK-STAT- signalling and the NF-kB pathways are activated and have major
roles in disease progression [21±28]. These pathways are activated in MPNs as well. Most
recently, the MPNs have been described as ªInflammatory Diseases ª[4] and ªA Human
Inflammation Model For Cancer Developmentº[29] reflecting chronic inflammation to
be a major driving force for clonal evolution and disease progression in MPNs [30±39].
This novel concept is built upon a platform, which has combined data from studies in sev-
eral research fields and disciplines within MPNsÐclinical [3±9,29±53], experimental [54±
63], genomic [64±70], immunological [71±74] and not least epidemiological studies [3,5±
7,75±77].

Another research fieldÐmathematical modelling of cancer developmentÐhas not been
applied to a similar extent within MPNs until very recently [78,79] and not in the context of
investigating the concept of MPNs as ªA Human Inflammation Model for Cancer Develop-
mentº. Mathematical modelling of cancer development has provided new insights regarding
cancer initiation and progression [80±89]. In this context, mathematical modelling has a
huge potential to support or disprove understanding of research data on pathogenetic fac-
tors of significance for cancer development but also in regard to providing supportive evi-
dence for a drug to be used in cancer therapy and accordingly a novel tool in evidence-
based medicine [90±92]. Mathematical modelling of chronic inflammation as the trigger
and driver of MPNs has never been investigated. Although the concept of MPNs as ªinflam-
matory diseasesº is being increasingly recognized, additional proof of this novel concept by
mathematical modelling might be of utmost importance not only for our understanding of
the pathogenesis of these neoplasms, but also in regard to diagnosis and treatment. Herein,
we for the first time by mathematical modelling add further proof of the concept that MPNs
may be both triggered and driven by chronic inflammation. We discuss the perspectives of
our findings, which might implicate intervention at the earliest stage of cancer development
(ET, PV) to target the malignant clone and dampen concomitant inflammation when the
tumor burden is minimal, and accordingly, the outcome of treatment is logically most
favorable.

Mathematical modeling in myeloproliferative cancer
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Methods
The system describes the proliferation from stem cells to mature cells including mutations of
healthy stem cells to become malignant stem cells. We include regulatory interactions (e.g.
niche growth effects) and inflammation coping with cell death, inflammatory cytokines, and
neutrophils. In order to design an inflammatory MPNmodel, we build on the coupled dynam-
ics of inflammation and cancer progression as depicted in Fig 1.

The model
Most previous studies attempting to model the role of inflammation and immune deregulation
in cancer progression consider solid tumors and couple the T-cell and natural killer (NK) cell
dynamics to a logistic growth of a tumor. They mainly describe quite simplified versions of the
adaptive immune response without explicitly considering the underlying cancer growth
dynamics [93±98]. In contrast to all these models, our model is the first which couples the
principles underlying actual cell dynamics to a basal inflammatory response. This response is
seen for a normal infection, where the amount of dead cells provokes the immune response
and stimulates the renewal of stem cells. Despite this complex coupling, the model is kept as
simple as possible still allowing the relevant quantities to be described. Thus, the goal is to
describe an important coupling between MPN development and the inflammatory response at

Fig 1. The conceptual model. Light gray boxes (symbolized x0, x1, y0, and y1) illustrate the compartments of
the basic model, and the black arrows the rates of the flows between these compartments. Here x0 denotes
the number of HSC, x1 that of HMS, y0 that of MPN SC, and y1 the number of MPNMC. The light blue
compartment (symbolized a) contains all dead cells and the light orange compartment (symbolized s) the
inflammatory level, i.e. the immune response. Blue arrows from these represent related rates of flows. Red
stipulated arrows going from the inflammatory compartment represent effects of the cytokines (or neutrophils
when eliminating dead cells) modulating rates of the basic model. Two additional rates (depending on x0 and
y0) appearing as red stipulated arrows represent the bonemarrow niches symbiosis with the stem cells
modulating the self-renewal rates. Note, stem cells leaving their respective compartments enter the
correspondingmature cell-pools as multiplied by the progenitor amplification factor (A).

https://doi.org/10.1371/journal.pone.0183620.g001
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a quantitatively conceptual level. Hence, the complicated mathematical question of model
identifiability and accurate parameter estimation will be addressed elsewhere. Nevertheless, we
include some model calibration and validation after presenting the model to justify and dem-
onstrate the strength of the model.

Basically, our model consists of four pools of cells; the hematopoietic stem cells (HSC), the
hematopoietic mature cells (HMC), the MPN-mutated stem cells (MPN SC) and the MPN
mature cells (MPNMC). The number of these cells are denoted x0, x1, y0, and y1 respectively,
where x refers to normal hematopoietic cells and y to MPN hematopoietic cells, while index 0
refers to stem cells and index 1 to mature cells. A single stem cell (SC) may proliferate in three
ways; symmetric self-renewal (having two stem cells as offspring), asymmetric self-renewal
(turning into one stem cell and one progenitor cell), and symmetric differentiation (giving rise
to two progenitor cells). The progenitor cells cannot be ignored, however, we consider the pro-
genitor cells simply as intermedia multiplication steps describing the way stem cells generate
mature cells. In the model, the generations or continuum of progenitor cells will be implicitly
accounted for as each stem cell will generate a number of mature cells by an amplification fac-
tor, A (= 2k if there are k generations of progenitor cells). Feedbacks from or to progenitor cells
are ignored or integrated into the other included feedbacks.

The present focus is on the ensemble of each cell type and not the individual cells; thus the
governing laws will be for the pools of cells, in science denoted compartments [99]. Mathemat-
ically, the dynamics will be described by non-linear ordinary differential equations respecting
conservation laws. The HSC self-renews with rate rx and the malignant MPN SC self-renews
with rate ry. Furthermore, HSC may be transformed by cell division by a rate ax whereas the
MPN SC does so with a rate ay. The mature cells are multiply generated, i.e. the HMC are gen-
erated with a rate ax�Ax and the MPNMC with a rate ay�Ay. Finally, all cell types may die; stem
cells with a lower rate and mature cells with a higher rate. The turnover (or mortality) rates are
dx0, dx1, dy0, and dy1 for the HSC, HMC, MPN SC, and MPNMC, respectively. Except for the
mutation part and the multiplication factor, this duplicates the structure of the model pro-
posed by Dingli and Michor (they silently used A = 1) [92].

A small probability rm describes the mutation of HSC into MPN SC. In that case, rm is not
the probability of a single mutation but possibly a serial sequence of mutations turning the
HSC into a cancer cell capable of self-renewal, by definition an MPN SC, where a mutation is
expected to be described by a Poisson process [100]. The probability for one mutation is about
10−7 per year per cell [101]. However, not all mutations are malignant; only mutations which
happen on particular locations (i.e. at specific nucleic acids) of the DNA cause MPN relevant
mutations. Inflammation increases the risk of mutations, including smoking, exposure to
ultraviolet light or certain chemicals [49,50,101±104]. It is this small probability which violates
a possible deterministic description with a simple mutation rate. Except for the mutation part,
the model will be deterministic and continuous. In most of our work, we studied the develop-
ment right after the first malignant mutation has occurred (denoted the first insult). In these
cases, the simulations start with one malignant stem cell. Meanwhile, the number of all other
cells are in a healthy steady state with the mutation rate put to zero. The approach is justified
by the fact that including a non-zero mutation rate did not affect the outcome of the model.

The equations are all of the general form,

Change in amount of a

compartment per time

( )

¼
rate of generation times

the generating source

( )

�
rate of elimination times the amount

in the compartment considered

( )

resulting in specific systems of ordinary differential equations as given in S1 Appendix.
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Whenever cells die the debris have to be engulfed by phagocytic cells, e.g. neutrophils and
macrophages while a hierarchic cascade of pro- and anti-inflammatory cytokines are released
[96±98,110]. Following the parsimonious principle, we let the dead cells (a) up-regulate the
amount of phagocytic cells (s) with rate constant rs per dead cell while they are eliminated with
a rate es. In addition, endotoxins, smoking and other environmental factors may add to the
inflammatory response; thus we add such a term (characterized by the lightning symbol in Fig
1). Since MPNs develop on time-scale years and inflammatory immune processes are fast (on
time-scale hours-days), we assume that the amount of phagocytic cells is balanced by the cyto-
kines levels in a fixed ratio. Thus, the cytokine level is proportional to the phagocytic level why
the inflammatory compartment (s) represents both (up to a possible proportionality constant
which may be incorporated into the rate constants). Meanwhile, the amount of dead cells is
down-regulated as a second order elimination process, -ea�a�s, with rate constant ea. Dead cells
are produced by d0�x0+dy0�y0+dx1�x1+dy1�y1 per time denoted the turnover, which is assessed
by the plasma concentration of lactic dehydrogenase (LDH). It is well-known that the inflam-
matory level affects the mutation rate [104] and the self-renewal rates [105]. For simplicity, we
take these to be proportional with the inflammatory level (of course saturation may occur) but
since the level (a) settles at constant levels so does the inflammatory level (s), which may be
thought of as the amount of inflammatory cytokines which have been shown to be increased
in patients with MPNs and several in a step-wise manner from controls over the early cancer
stages (ET, PV) to the advanced cancer stage±myelofibrosis (PMF) (S1 Appendix) [40±46].
Thus, it turns out that various specific cytokines (IL-1β, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-
12) and C-reactive protein (CRP)Ða conventional biomarker of inflammationÐare linearly
correlated with the inflammatory level (s). These cytokines have been chosen for validation of
our model since elevated levels of several of these cytokines have been associated with an infe-
rior survival [44]. Likewise, elevated levels of CRP have been shown to be associated with
shortened leukemia-free survival in patients with myelofibrosis [42]. Of note, the inflamma-
tory cytokine IL-8 have been reported to be of particular interest in the context of MPN patho-
genesis [57±60]. These extra pools of cells are depicted in Fig 1 along with the rates governing
the dynamics. This establishes the coupled inflammatory-MPN model. The full system of
mathematical equations, representing the model is described in Table B in S1 Appendix
including default parameter values.

Model calibration, validation, and results
The model is inspired by Dingli and Michor, and therefore the parameter values are based
upon their values [92]. However, we have adjusted them to obtain more appropriate saturation
levels in agreement with data (see Fig 2 and the reported values in Table C in S1 Appendix).
First, the model is calibrated to the situation of no MPN cancer cells (y0i = 0 and y1i = 0). In
this situation, we expect a stable steady state such that the number of HSC is approximately
104 and that of HMC is approximately 1010. These choices are compromises between reported
values for the number of HSC [78, 86, 88, 89, 92].

From the steady state condition we have the number of dead cells to be
ax ¼

dx0
x0þdx1

x1

eas
� 103. We further expect rx>dx0 + ax and dx0�dx1. When allowing for

MPN development the healthy state becomes unstable when perturbed by the malignant
stem cells. Thus, we expect ry >rx.

In the final stage the in silico patient will have vanishing hematopoietic cells and the MPN
cells will approach a stable steady state with a higher amount of MPN cells than normal
hematopoietic cells in the healthy steady state. This is accomplished by choosing all the c-
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values equal in order to keep the model as simple as possible and the number of parameters as
few as possible. Likewise, the parsimonious principle suggests dy0 = dx0, ay = ax and Ay = Ax.

The JAK2V617F allele burden has been reported to have median values of 7% (95% CL
2±15%; range 1±39%), 33% (95% CL 20±40%; range 1±92%) and 67% (95% CL 52±95%; range
37±99%) in ET, PV and PMF patients, respectively [19]. It follows that the model output per-
fectly resamples these dynamic changes in the JAK2V617F mutational load (Fig 3). Additional
details are given in the S1 Appendix section.

All these attempts in calibrating the model may simultaneously be considered as validation
since they performed successfully. However, the model may be validated further by predicting
affected cytokine levels from the inflammatory level. As indicators of the inflammatory level,
we refer to those cytokines, which are considered most important in the context of MPNs: IL-
1β, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12 and the inflammation biomarker CRP which all
turned out to be linearly correlated with the inflammatory level (s).

For the specific cytokines (Ci) tabulated in the S1 Appendix, we have `Normal',`PV',and
`PMF'median values (mij, where index i specifies the cytokine and index j refers to `Normal',
`PV'and `PMF'states) for each. Then we find ki1 and ki2 such thatmij = ki1 sj+ki2 where sj is the
value of s at year tj. Similarly, LDH values were demonstrated to be correlated and compared
to the total rate of dying cellsDI = dx0x0 + dx1x1 + dy0y0 + dy1y1. The results are summarized

Fig 2. Model calibration. A) Plateaus to the left show the amount of hematopoietic stem cells x0 (upper
plateau) and that for MPN stem cells y0 (lower plateau) whereas the plateaus to the right show the amount of
hematopoietic stem cells x0(lower plateau) andMPNmature cells y0 (upper plateau). B) Plateaus to the left
show the amount of hematopoietic mature cells x1 (upper plateau) and that for MPNmature cells y1 (lower
plateau) whereas the plateaus to the right show the amount of hematopoietic mature cells x1 (lower plateau)
andMPNmature cells y1 (upper plateau). The yellow and purple boxes show our data used for calibrating
(and validating) themodel with further details in S1 Appendix. Yellow boxes show our ªnoMPN cancer
valuesº, and purple boxes show our ªfull blownºMPN values in the advancedmyelofibrosis stage. Yellow
positionmarker shows the number of hematopoietic stem cells as used by Dingli & Michor [92], and black
positionmarkers show the number of cells as used by Gentry et al. [86].

https://doi.org/10.1371/journal.pone.0183620.g002
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in Fig 4 which shows that the model predicts data very well. Only IL-6 seems to be less well
predicted.

Disallowing potential mutations and having no MPN-stem cells initially forces the model
system into a steady state where solutions are all constant after a possible initial transient
event. Introducing a mutation probability introduces a fatal malignant state; the higher the
mutation probability is the faster the malignant state develops. A typical scenario is shown in
Fig 3A along with a curve of the allele burden development (Fig 3B). The Figure depicts both

Fig 3. Left: Typical development in stem cells (top panel A) andmature cells (bottom panel B). Healthy
hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells
(stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem
cell mutates without repairingmechanisms, a slowly increasing exponential growth starts. At a certain stage,
the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline.
Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an
exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an
approximately exponential increase in the MPN stem cells, and the development is closely followed by the
matureMPN cells.Right: B)The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV,
and PMF, respectively) defined as the ratio of MPNmature cells to the total number of mature cells.

https://doi.org/10.1371/journal.pone.0183620.g003

Fig 4. Model validation.Cytokines A) IL-1β, B) IL-1RA, C) IL-2R, D) IL-6, E) IL-8, F) IL-10, G) IL-12 and H)
C-reactive proteins (CRP) are approximatively linearly correlatedwith the inflammatory level s. For the
specific cytokines, we have from left to right `Normal', `PV',and `PMF'median values (yellow columns) for
comparison based on the predicted inflammatory level s (full blue curve) as a function of time after the first
insult. I) Similarly, LDH is correlatedwith and compared to the total rate of dying cellsDI = dx0x0 + dx1x1 +
dy0y0 + dy1y1.

https://doi.org/10.1371/journal.pone.0183620.g004
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modeling of the development of MPN from normal HSC and the early MPN diseases stages
(ET/PV) to the advanced myelofibrosis stage.

Having a continuous mutation rate, it will take 24 years for the disease to develop to an
allele burden of 7% (e.g. ET) and after additional four years the allele burden reaches 33% (e.g.
transformation of ET to PV) to become 67% (e.g. transformation of PV to post-PVmyelofi-
brosis) at year 36 after the first stem cell mutation. Disallowing mutations in the model and
initially including a single malignant stem cell and no malignant mature cells shifts the allele
burden curve by one year to the left on the time axis.

Thus, the mutation of an HSC to MPN SC triggers the disease. Once an MPN stem cell is
established the disease can progress without further mutations.

The baseline inflammatory load (stimulus) is arbitrarily set to 7 pg/ml per day during nor-
mal circumstances. It is an exogenous stimulation of the immune system, which leads to an
inflammatory level of 3.61 pg/ml, increasing to 3.66 pg/ml in MPNs. This corresponds to a
baseline of 700 dead cells (in the hematopoietic steady state) before MPN develops remarkably.
A doubling of the baseline inflammatory level is directly affecting the inflammation load (cyto-
kine level) and thereby affecting the rest of the system as dictated by the model equations. In
Fig 5 is depicted that shortening the exposure time of inflammation load is associated with
deceleration of disease progression.

Discussion
Chronic inflammation is characterized by persistently activated immune cells, DNA damage,
tissue destruction, remodeling and fibrosis [106]. In patients with MPNs, these processes are
exemplified by the advanced myelofibrosis stage [4, 29], which accordingly might be consid-
ered to develop as the consequence of chronic inflammation in the bone marrow±ªthe
inflamed bone marrowº and ªthe wound that won't healº [4, 29,107,108]. Herein, we for the
first time use mathematical modelling to substantiate the concept that MPN progression is
facilitated by chronic inflammation and that ET and PV are linked through increasing
JAK2V617F allele burden [19] which is destined to happen as time increases without interfer-
ence. Importantly, we were able to create the inflammation-MPN model based upon current
knowledge on the interactions between inflammatory cytokines, hematopoietic stem cells and
progenitors, and the bone marrow microenvironment [31±33,35±37,105]. By mathematical
modelling of all these interactions, our integrated inflammation-MPNmodel was created. The
model was validated from current data on circulating inflammatory cytokines in MPNs
[40,44±46], thereby substantiating inflammation to be a highly potent stimulus for clonal evo-
lution and cancer progression in MPNs. In the context that elevated CRP levels have been
shown to be associated with shortened leukemia-free survival in myelofibrosis [42], it is of
interest that our model was excellently validated by data on CRP levels in the different MPN
disease stages as well.

Mathematical modelling has been used to describe the impact of chronic inflammation and
immune deregulation in aging [109] and several diseases, including type 1 diabetes mellitus
[110], rheumatoid arthritis [96] and colitis-associated colon cancer [111]. Based upon the
known association between respiratory infections and chronic inflammation, Herald described
a general model of inflammation [97]. In this model, a system of nonlinear ordinary differen-
tial equations was used to describe interactions between macrophages, inflammatory and anti-
inflammatory cytokines and bacteria. Though initiated by bacteria as the stimulus to trigger
chronic inflammation, their study focused on chronic inflammation in the absence of patho-
gens as well [97]. Of note, even small changes in parameters of importance for inflammatory
cytokine production and macrophage sensitivity to cytokines resulted in dramatically different
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model behaviors [97]. According to this model chronic inflammation is not triggered when
the immune system is functioning properly. However, in patients with a dysfunction of the
immune system positive feedback of the inflammatory cytokine network is prone to induce
chronic inflammation. Furthermore, if the macrophage population is more sensitive to inflam-
matory cytokines small perturbations initiated by the inflammation stimulus will also lead to
chronic inflammation [97]. In this context, it is intriguing to consider if the inherited genetic
predisposition to acquire the JAK2V617F-mutation due to the haplotype 46/1 [112±117],
which also confers an increased risk of (other) inflammatory diseases (e.g. Crohns' disease)
[118,119] and /or acquired genetic instability due to sustained chronic inflammation (chronic
inflammatory diseases or toxin exposure (e.g. smoking) might further increase the risk of
developing MPNÐa hypothesis originally proposed by Hermouet et al [33,35]. Importantly,
the hypersensitivity of clonal MPN-cells to exogenous and endogenous growth factors and
inflammatory cytokines might also more easily lead to a chronic inflammatory state±similar to
the increased sensitivity of the macrophage population leading to chronic inflammation in the

Fig 5. Investigation of increased inflammatory load at various onsets and durations. Blue curve is default
parameters corresponding to Fig 3, red dotted is a doubling of inflammatory load, full red curve is a doubling of
inflammatory load in year 0±20, then back to default level, black dotted curve is inflammatory doubling from year 10,
the full black is inflammatory doubling year 10±30.Upper: Increasing inflammatory load has a boosting effect on
MPNMC (A) as well as on HMC (B). Lower:Displaying the results in terms of the clinically available quantity, total
blood cell count, also shows a boosted effect with increasing inflammatory load (C). The allele burden of JAK2
mutated blood cells similarly shows that increased inflammation increases disease development (D). There is a clear
effect of MPN promotion with increasing inflammatory load, earlier onset, and exposure time. Lowering inflammatory
loadmakes disease progression less rapid. Maintaining a doubling (red dotted curve) shifts the allele burden curve to
the left by two years. Shortening the exposure time of inflammatory load weakens the disease progression. The
inflammation has a fast impact on the total number of blood cells, which typically changes by 25%within the first year
after doubling or reducing the inflammatory load by 50%.

https://doi.org/10.1371/journal.pone.0183620.g005
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Herald model and also implemented in the Hermouet model, implying an enhanced myelo-
monocytic response to cytokine stimulation [33,35].

In the Herald model and the model described by Nielsen et al in regard to type 1 diabetes
mellitus, the macrophages constituted an important compartment [97,110]. The monocyte-
macrophage cell lineage is of major importance in the context of inflammation and cancer
development. In our MPN-inflammation model bone marrow macrophages are also of utmost
importanceÐboth in regard to release of inflammatory cytokines, but also in regard to the
development of myelofibrosis. Thus, in MPNs the monocyte-macrophage cellÐtogether with
the megakaryocyte (MK) cell lineageÐare considered to be responsible for the development of
myelofibrosis by the release of a number of growth factors and inflammatory cytokines that
stimulate fibroblast proliferation [36,120,121]. The ªHerald Modelº is in several aspects equiv-
alent to our model when considering substituting ªbacteriaºin the ªHerald Modelº by any nox-
ious inflammatory stimulus. In fact, we implement yet another cell lineageÐthe MKsÐas the
source of a continuous release of products that stimulate the vicious inflammation circle,
implying ultimately the development of cancerÐthe MPNs. As previously outlined, our math-
ematical modelling of the concept of chronic inflammation in MPNs is also supported by the
elegant model described by Hermouet and co-workers [33,35], in which the JAK2 46/1 haplo-
type was proposed as a marker of inappropriate myelomonocytic response to cytokine stimula-
tion, leading to increased risk of inflammation, myeloid neoplasms, and impaired defense
against infection [33]. Indeed, the Hermouet model for chronic inflammation [33,35] fits
exceedingly well with the Herald model of general inflammation [97] and our mathematical
modelling of MPNs as ªA Human Inflammation Mode for Cancer Development [29±32]. In
this regard, chronic inflammation and immune deregulation in MPNs might act as a trigger
for later development of AML and MDS in line with the known association of inflammatory
signaling and cancer [24±27]. The above models are additionally supported by the hypothetical
model by Takizawa et al. (2010) [122], describing how chronic inflammatory processes might
impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, including
MPNs. By inducing high proliferation of most HSCs, chronic inflammation might give rise to
both exhaustion of the HSC pool and an even greater risk to accumulate genetic alterations in
HSCs. Furthermore, by inflammatory stimuli from the bone marrow microenvironment these
genetically altered HSCs might be rescued or ªcancer cell nicheº for later development of a
hematological cancer [122].

The perspectives of our study are several. In the context that myelomonocytic cells (granu-
locytes, macrophages, monocytes) and MKs are all deeply involved in cancer development and
progression [123,124], chronic inflammation is associated with premature atherosclerosis
(atherothrombosis) [21±23, 29,30], in which both platelets and monocytes are highly impor-
tant (monocytes a link between atherosclerosis and cancer [28]) and platelets are intimately
involved in the metastatic process in cancer [124]Ðand likely in MPNs as well [125]Ðthe ave-
nue is opened for studying all these aspects by using mathematical modelling of current
knowledge of the impact of chronic inflammation and immune deregulation in patients with
MPNs. Ultimately, mathematical modelling may also be able to substantiate which agents to
be used in MPNs in order to induce ªminimal residual diseaseº[125±129] and the importance
of early intervention with agents that directly target both the malignant clone (interferon-
alpha2) [126±129] and the inflammatory process (JAK1-2 inhibition with e.g. ruxolitinib)
[130].

In conclusion, we have for the first time applied mathematical modelling as a tool to
deliver the proof of concept that chronic inflammation is closely linked to the development of
the MPNsÐmyeloproliferative cancers which today are considered to be ªchronic inflamma-
tory diseasesº, in which chronic inflammation may be a driving force for clonal expansion and
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ultimately the development of AML [4, 29±32,39]. Studies are ongoing to elucidate the above
perspectives by mathematical modelling. In this regard, mathematical modelling of resolution
of inflammation may be highly important [98] and useful to support the decision-making
which agents to use in the future for patients with MPNs in order to induce minimal residual
disease and hopefully cure.
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a b s t r a c t 

A novel mechanism-based model - the Cancitis model - describing the interaction of blood cancer and 

the inflammatory system is proposed, analyzed and validated. The immune response is divided into two 

components, one where the elimination rate of malignant stem cells is independent of the level of the 

blood cancer and one where the elimination rate depends on the level of the blood cancer. A dimen- 

sional analysis shows that the full 6-dimensional system of nonlinear ordinary differential equations may 

be reduced to a 2-dimensional system - the reduced Cancitis model - using Fenichel theory. The original 

18 parameters appear in the reduced model in 8 groups of parameters. The reduced model is analyzed. 

Especially the steady states and their dependence on the exogenous inflammatory stimuli are analyzed. 

A semi-analytic investigation reveals the stability properties of the steady states. Finally, positivity of the 

system and the existence of an attracting trapping region in the positive octahedron guaranteeing global 

existence and uniqueness of solutions are proved. The possible topologies of the dynamical system are 

completely determined as having a Janus structure, where two qualitatively different topologies appear 

for different sets of parameters. To classify this Janus structure we propose a novel concept in blood can- 

cer - a reproduction ratio R . It determines the topological structure depending on whether it is larger 

or smaller than a threshold value. Furthermore, it follows that inflammation, affected by the exogenous 

inflammatory stimulation, may determine the onset and development of blood cancers. The body may 

manage initial blood cancer as long as the self-renewal rate is not too high, but fails to manage it if an 

inflammation appears. Thus, inflammation may trigger and drive blood cancers. Finally, the mathemat- 

ical analysis suggests novel treatment strategies and it is used to discuss the in silico effect of existing 

treatment, e.g. interferon- α or T-cell therapy, and the impact of malignant cells becoming resistant. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Formation of blood cells, hematopoiesis, takes place in the bone 

marrow by cell division of hematopoietic stem cells (HSCs). Mu- 

tations of HSCs may lead to cancerous stem cells causing blood 

cancers, which ultimatively suppress production of healthy blood 

cells ( Chen et al., 2011; Dingli et al., 2007 ). The myeloproliferative 

neoplasms (MPNs) are disorders emanating from the bone mar- 

row and predominantly consist of chronic myelogeneous leukemia 

(CML), essential thrombocythemia (ET), polycythemia vera (PV), 

and primary myelofibrosis (PMF) ( Campbell and Green, 2006 ). De- 

spite similarities, common theoretical considerations can be ap- 

plied, since the diseases share clonal hematopoiesis as a hallmark 

∗ Corresponding author. 

E-mail address: Johnny@ruc.dk (J.T. Ottesen). 

and are strongly influenced by - and coupled with - the inflamma- 

tory response of the immune system ( Desterke et al., 2015 ). 

In this article we develop a model of the system underlying the 

blood cancer diseases coupled to the inflammatory response sys- 

tem. The model presented in Andersen et al. (2017) is used as a 

starting point and only what is truly important for the purpose of 

the model is included. 

Most cancers are developed somewhat similarly in the early 

avascular phase before tumor size plays a role ( Wilkie, 2013; 

Wodarz and Komarova, 2014 ). Thus, the present model may be 

adapted for early cancer more generally despite it being devel- 

oped specifically for blood cancers. Some blood cancers are cur- 

able, while others, such as MPNs, are more challenging ( Abdel- 

Wahab et al., 2010; Spivak, 2017 ). Thus, special attention will be 

on MPNs although the risk of getting MPNs is relatively low. 

In Andersen et al. (2017) , a novel and mechanism-based model 

of blood cancers coupled to the inflammatory response of the 

https://doi.org/10.1016/j.jtbi.2019.01.001 

0022-5193/© 2019 Elsevier Ltd. All rights reserved. 
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immune system was proposed. The model is to our knowledge the 

first of its kind and furthermore generic in the sense that it de- 

scribes blood cancer in general. Shortly after, Komarova et. al. pub- 

lished a simplified approach to discuss the role of inflammation in 

MPNs ( Zhang et al., 2017 ). They included stem cell dynamics and 

bone marrow niche feedback, but describe the inflammation as a 

fixed parameter independent of the actual cancer development, i.e. 

independent of the immune response to the cancer cells. This ap- 

proach is somewhat similar to the 2-dimensional approach taken 

in Flå et al. (2015) , where a simple model of stem cell dynamics 

including bone marrow niche feedback, but without including in- 

flammation, was investigated. 

In Andersen et al. (2017) , T-cells were not explicitly considered, 

but in the present study we include the effect of these cells. Accu- 

mulated evidence has indicated that the immune system may rec- 

ognize and eliminate malignant cells ( Parish, 2003; Smyth et al., 

2001 ) acting as a control mechanism for maintaining homeostasis. 

This effect is called immune surveillance, a concept attributed to 

Thomas and MacFarlane in the late 1950s although a similar idea 

was promoted by Ehrlich already in 1909. Today it is refined into 

the concept of immunoediting ( Ribatti, 2017 ). 

An early mathematical model describing interaction of tumor 

cells and effector cells (killer cells) for BCL1 lymphoma was pre- 

sented by Kuznetsov and Knott (2001) continuing the work from 

Kuznetsov and Makalin (1994) and was based on a logistic growth 

equation to describe the intrinsic dynamics. 

Several models of the role of inflammation in general cancer 

progression have since been studied. Most of these modeling at- 

tempts consider solid tumors and couples the T-cell and natural 

killer (NK) cell dynamics to a logistic growth description of tumors. 

The models in ( Arciero et al., 2004; Baker et al., 2013; Bangsgaard 

et al., 2017; Bangsgaard and Ottesen, 2017; Borges et al., 2014; 

Cosentino and Bates, 2012; De Pillis et al., 2005; Dunster et al., 

2014; Hanson et al., 0 0 0 0; Herald, 2010; Katak, 2014; Kirschner 

and Panette, 1998; Moore and Li, 2004; Nanda et al., 2007; Nielsen, 

0 0 0 0; Nielsen et al., 2013; Pillis et al., 2006; Pillis and Radunskaya, 

2003; Saleem and Agrawal, 2012; Sarkar and Banerjee, 2005 ) are 

simplified models describing how solid cancers may stimulate the 

T-cell dynamics, while the cancer dynamics are decoupled from 

the rest of the system, simply described as logistic growth or sim- 

ilar. The works by Kuznetsov and Knott (2001) , Zhang et al. (2017) , 

Moore and Li (2004) and Nanda et al. (2007) and the excel- 

lent books by Wodarz and Komarova (2014) and Komarova and 

Wodarz (2014) point toward the direction taken in the present pa- 

per. 

Clapp et al. (2015) consider a 5D model including active and 

quiescent stem cells, progenitor cells, mature cells and one im- 

mune compartment to describe chronic myelogenous leukemia. 

The active stem cell pool is based on the logistic growth equa- 

tion omitting interactions with the normal hematopoietic cells. 

Recently Besse et al. (2018) investigate a simplified version of 

this model. Simultaneously Talkington A and Durrett (2018) com- 

pared four models of acute lymphocytic leukemia, namely those 

by Kuznetsov and Makalin (1994) , Kirschner and Panette (1998) , 

Dong et al. (2014) , and Moore and Li (2004) . The purpose was 

to study modified T-cells engineered to recognize CD19 surface 

marker clinically, resulting in partial success in virtual treatment 

of the disease. All four models predict a positive effect of the 

treatment. Historically, a few important models addressing ty- 

rosine kinase inhibitors (TKI), e.g. imatinib, in treating chronic 

myelogenous leukemia have appeared. Michor et al. (2005) ex- 

plained incomplete eradication of CML under TKI treatment by 

resistance. Komarova and Wodarz (2007) incorporated quiescent 

stem cells and the development of resistance to treatment. Us- 

ing an agent-based model, Roeder et al. (2006) describe com- 

petition between leukemic stem cells and normal hematopoi- 

etic stem cells and included the effect of TKIs on the competi- 

tion. Long-term effect of the immune response was modeled by 

Kim et al. (2008) by adding an unspecific immune component to 

the model by Michor et al. (2005) . 

Recently, Brady et al. suggested an inflammatory model cou- 

pled to the autonomic regulation of the cardiovascular system for 

healthy subjects exposed to intravenous injection of lipopolysac- 

charide (LPS) to stimulate an inflammatory response. Simultane- 

ously, Bangsgaard and Ottesen (2017) suggested a detailed inflam- 

matory response model coupled to the Hypothalamic–Pituitary–

Adrenal axis allowing an exogeneous stimuli. This so-called ITIS 

model contains eight time-dependent variables: Endotoxin, phago- 

cytic cells, pro- and anti-inflammatory cytokines (a broad category 

of signaling molecules consisting of small proteins): TNF- α, IL-10, 

TGF- β , CRH, ACTH and cortisol. The ITIS model is capable of re- 

producing available data and has served as an inspiration in the 

present work, but in a suitable simplified form. 

The outline of the paper is as follows. In Section 2 the model 

is presented and in Section 2.1 it is expanded by explicitly in- 

cluding a description of the interaction with immune response ef- 

fector cells such as T-cells. The model is put on a dimensionless 

form and based on a separation of time scales, a two-dimensional 

model - the reduced Cancitis model - is suggested in Section 3 . 

The reduced Cancitis model is analyzed in Section 4 . Admissible 

steady states are derived and in Section 4.1 their stability proper- 

ties are examined depending on the external inflammatory stim- 

uli. A complete analysis of the topology of the dynamical system 

is presented, showing a Janus topology 1 An attracting trapping re- 

gion is constructed in Section 4.2 establishing global existence and 

uniqueness of solutions. A treatment plan by T-cell gene therapy 

appear in Section 4.3 along with a description of how the phase 

plane varies with increasing external inflammatory stimuli. Special 

focus is on the role of the level of external inflammatory stimuli 

and its effect on existence and stability of healthy and unhealthy 

steady states of the model. The various findings are discussed and 

conclusions made in Section 5 . Finally, some cumbersome deriva- 

tions related to the steady states are presented in Appendix A and 

Appendix B . 

2. The model 

As in the previous model presented in Andersen et al. (2017) , 

focus will be on ensembles of each cell type and not the individual 

cells. Hence, the governing laws will be for the pools of cells, com- 

monly denoted compartments. The compartments encompass the 

healthy hematopoietic stem cells in the bone marrow, the healthy 

hematopoietic mature cells in the blood, the malignant stem cells 

in the bone marrow, the malignant mature cells in blood, the 

pool of dead cells and the resulting debris not yet cleared, and a 

variable describing the immune system activity level, which cor- 

relates with the associated cytokines related to the disease. In 

what follows we will denote healthy hematopoietic cells shortly 

as hematopoietic cells in contrast to e.g. malignant cells. As we are 

aiming for an integrated mechanism-based model for blood can- 

cers, competition between cell types is crucial. The function of the 

immune system to handle dead cells constitutes an effective f eed- 

back mechanism regulating the stem cell reproduction whereas the 

specific T-cell response fights the cancer cells. The aggregated im- 

mune response is known to correlate with the disease state of the 

blood cancer. Mathematically the dynamics is described by non- 

linear ordinary differential equations respecting conservation laws 

as illustrated in Fig. 1 . 

1 Named after the ancient Greek God Janus having two faces meaning that two 

different topologies exists. 
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Fig. 1. The conceptual model corresponding to Eq. (1). Light gray boxes (symbolized x 0 , x 1 , y 0 , and y 1 for the hematopoietic stem cells (HSC), the hematopoietic mature 

cells (HMC), the leukemic stem cells (LSC), and the leukemic mature cells (LMC), respectively) illustrate the compartments of the basic model and the black arrows the rates 

of the flows between these compartments. Stem cells differentiating into progenitor cells reduce the amount of these with rates a x and a y and enter the corresponding 

mature cell-pools as these rates are multiplied by progenitor application factors ( A x and A y , respectively, and symbolized by �-symbols). All cells may undergo apoptosis 

and their death rates are indicated by black arrows labeled with a d index and the corresponding variable. A normal hematopoietic stem cell may mutate into a malignant 

stem cell with an effective probability r m indicated by a black arrow. The light blue compartment (symbolized a ) contains all dead cells and the light orange compartment 

(symbolized s ) the inflammatory level, i.e. the immune response. Blue arrows from these represent related rates of flow: e a is the second order elimination rate of debris, 

e s is the elimination rate of the inflammatory activity, and r s is the rate by which dead cells stimulate the inflammatory response. Red stipulated arrows (marked by ( s )) 

going from the inflammatory compartment represent effects of the cytokines (or neutrophils when eliminating dead cells) modulating the rates of the basic model. The 

green stipulated lines represent the bone marrow niche inhibition (depending on x 0 and y 0 , see text) modulating the self-renewal rates, r x and r y . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Using symbols as in Fig. 1 and letting dot denote the time 

derivative, the mathematical equations are, 

˙ x 0 = (r x φx (x 0 , y 0 ) s − d x 0 − a x ) x 0 − r m 

sx 0 (1a) 

˙ x 1 = a x A x x 0 − d x 1 x 1 (1b) 

˙ y 0 = (r y φy (x 0 , y 0 ) s − d y 0 − a y ) y 0 + r m 

sx 0 (1c) 

˙ y 1 = a y A y y 0 − d y 1 y 1 (1d) 

˙ a = d x 0 x 0 + d y 0 y 0 + d x 1 x 1 + d y 1 y 1 − e a as (1e) 

˙ s = r s a − e s s + I (1f) 

The time dependent variables x 0 , x 1 , y 0 , y 1 , a , and s denote 

the amount of (healthy) hematopoietic stem cells (HSC), (healthy) 

hematopoietic mature cells (HMC), malignant stem cells (LSC), ma- 

lignant mature cells (LMC), dead cells, and the cytokine level, 

an abstract quantity describing the activity level of the immune 

system, respectively. Whenever cells undergo apoptosis, the de- 

bris has to be engulfed by phagocytic cells, e.g. neutrophils and 

macrophages, which are regulated by the release of a hierarchic 

cascade of pro- and anti-inflammatory cytokines ( Dunster et al., 

2014; Herald, 2010; Kirschner and Panette, 1998 ). Following the 

parsimonious principle, we let the dead cells ( a ) up-regulate the 

amount of phagocytic cells ( s ) with rate constant r s , while they 

are eliminated with a rate e s . In addition, endotoxins, smoking 

and other environmental factors may add to the inflammatory re- 

sponse; thus we add a term (characterized by the lightning sym- 

bol in Fig. 1 ). Since MPNs develop on a time-scale of years and 

inflammatory immune processes are on a time-scale of hours-days 

( Bangsgaard et al., 2017; Cavaillon, 1994; Chow et al., 2005; Clodi 

et al., 2008 ), we may assume a QSSA, implying that the ratio of 

the amount of phagocytic cells and the cytokines are fixed. Thus, 

the cytokine level is proportional to the phagocytic level and the 

inflammatory compartment ( s ) represents both. 

The dynamics of the hematopoietic stem cells ( x 0 ) are governed 

by the self-renewal rate r x , the death rate d x 0 , and the division into 

progenitor cells with rate a x . The inhibiting niche feedback in the 

bone marrow, represented by the function φx , controls cell division 

in a healthy individual and allows for competition between healthy 

and cancerous stem cells when both are present (see below). Fur- 

thermore, inflammation stimulates self-renewal and is assumed to 

be proportional with the cytokine level. This reflects the fact that 

an increase in hematopoietic cell death instigates the birth of extra 

cells. Finally, the stem cells may mutate with a mutation rate r m 

, 

which is believed to increase with inflammation ( Andersen et al., 

2017; Brianna M. Craver et al., 2018; Desterke et al., 2015; Hassel- 

balch, 2012; 2014; Hasselbalch and Bjoern, 2015; Hermouet et al., 

2015; Koschmieder et al., 2016; Voit, 2013; Wilkie, 2013; Wodarz 

and Komarova, 2014; Zhang et al., 2017 ). 

The dynamics of the malignant stem cells ( y 0 ) are governed 

similarly and we use the same symbols with an y -index instead of 

an x -index to denote the corresponding rates. The only difference 

is that mutation of hematopoietic stem cells add to the number of 

malignant cells and is proportional to the number of hematopoi- 

etic stem cells. In addition, we will later allow the death rate d y 0 
to be y 0 -dependent. 

If no mutations occur, stem cells divide either into two stem 

cells of the same type as the mother cell, into two progenitor cells, 

or divide into one of each. Progenitor cells differentiate further into 
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new and gradually more and more mature progenitor cells in a 

number of generations ( k ) to ultimately divide into fully matured 

cells (i.e. cells which do not divide further). The progenitor cells 

are not explicitly considered in the model. However, a stem cell di- 

viding into two progenitor cells, so-called symmetric division, will 

at the end give rise to A = 2 k mature cells, which we denote as the 

multiplication factor. Hence, the change in hematopoietic mature 

cells per time becomes a x A x times the amount of hematopoietic 

stem cells, where we denote A x the multiplication factor for the 

hematopoietic cells, which in general is larger than 2 k . Simultane- 

ously, hematopoietic mature cells undergo apoptosis with a con- 

stant rate d x 1 . 

Again, the change in malignant mature cells per time is similar 

to that of the hematopoietic mature cells, but with index y instead 

of x . 

The change in the amount of dead cells per time is given by the 

death rates times the number of cells in the aforementioned com- 

partments minus the clearing by the immune system. This clear- 

ing is taken to be a second order equation in the number of dead 

cells and the of amount of cytokines, representing the activity of 

the immune system, eliminating the dead cells with an elimina- 

tion rate e a . 

The stimulation of the immune system is proportional to the 

amount of dead cells with rate r s whereas the elimination is taken 

to be proportional to the amount of cytokines with rate e s . We 

emphasize that the immune system is stimulated by an increased 

number of cancer cells by this feedback mechanism. In addition we 

include the possibility of an exogene stimulation of the immune 

system I ( t ), where we indicate that this stimulation may change 

over time t . This exogene stimulation may be taken as anything 

provoking the immune system, e.g. infections, smoking or pollu- 

tion. In many mathematical considerations, we will take the in- 

flammatory load I to be piecewise constant to allow for analytical 

results. 

Finally, the bone marrow niche feedback functions are in gen- 

eral decreasing functions of the individual stem cell types. We 

choose 

φx = φx (x 0 , y 0 ) = 

1 

1 + c xx x 0 + c xy y 0 
(2a) 

φy = φy (x 0 , y 0 ) = 

1 

1 + c yx x 0 + c yy y 0 
, (2b) 

where c ij describes the inhibitory strength of the signaling bone 

marrow niche feedback from cell type j onto cell type i . It is gener- 

ally assumed that c yy ≤ c yx < c xy ≤ c xx , since leukemic cells are less 

sensitive to inhibitive niche feedback than healthy hematopoietic 

cells. Similar to Flå et al. (2015) , our investigations show no qual- 

itative difference in observed model output when using various 

functional forms of the negative feedback. 

Motivated by the biology where numbers of cells and concen- 

trations are required to be non-negative numbers, we will use the 

terminology that a steady state is admissible if and only if all com- 

ponents are non-negative i.e. if and only if the steady state is in 

the non-negative octahedron. We denote a steady state as appro- 

priate if and only if it does not require a degenerated set of pa- 

rameters, i.e. a set of parameters where an equality constrain is 

imposed on the parameters whereas inequalities constrains are al- 

lowed. The reason is that such a set of parameters are not robust 

to perturbations and thus biologically unlikely to exist. However, 

non-appropriate steady states may still be of interest since they 

divide possible situations of interest like e.g. bifurcation points do. 

In most considerations, we take the mutation rate to be zero to 

ease the analytical analysis. Hence, we start our system in a steady 

state related to none malignant cells and introduce a single ma- 

lignant stem cell initially. Thus the initial condition will be that of 

a (healthy) hematopoietic steady state except one malignant stem 

cell is added to that state. 

The model stated in Eqs. (1) and (2) is presented in 

( Andersen et al., 2017 ) and will be analyzed in detail else- 

where. For later use it is sufficient to know that two admissi- 

ble hematopoietic steady states (defined as one having y 0 = 0 , but 

x 0 � = 0) may exist depending on the level of exogenous inflamma- 

tory stimuli I , 

E H± = (x 0 H±, x 1 H±, y 0 H±, y 1 H±, a H±, s H±) , (3) 

where x 0 H± = 

s H±−αx 

αx c xx 
, x 1 H± = 

a x A x 
d x 1 

x 0 H±, y 0 H± = 0 , y 1 H± = 0 , a H± = 

e s s H±−I 
r s 

, and s H± = 

1 
2 

(
ζH 1 

±
√ 

ζ 2 
H 1 

− 4 ζH 2 

)
, with ζH 1 

= 

I 
e s 

+ 

ζH 2 
αx 

, 

ζH 2 
= 

βx r s 
e a e s c xx 

, αx = 

a x + d x 0 
r x 

, and βx = a x A x + d x 0 . These steady state 

coordinates will be used for turning the model into proper dimen- 

sionless form. 

2.1. Model extension: Including the T-cell response 

Whenever cells die, the debris have to be engulfed by phago- 

cytic cells, e.g. neutrophils and macrophages and a hierarchic cas- 

cade of pro- and anti-inflammatory cytokines are released. Apop- 

tosis is mediated by the immune system and is included in the 

Cancitis model. The immune response may be split into two parts 

namely the innate immune response and the adaptive immune re- 

sponse ( McComb et al., 2013 ). The innate immune response pro- 

vides an immediately but non-specific response. The innate re- 

sponse consists of granulocytes, dendrites, macrophages and nat- 

ural killer cells. 

The adaptive immune response is activated by the innate im- 

mune response. Thus a delay is introduced from exposure to max- 

imal response and this delay may be up to 7 days ( McComb et al., 

2013 ). The adaptive immune response includes B-cells and T-cells 

also denoted lymphocytes. We include naive T-cells and effector 

T-cells, since these have an important role in inhibiting the devel- 

opment of cancer ( Murphy and Travers, 2012 ). Effector T-cells are 

responsible for a direct defense, where they induce death to the 

malignant cells. Naive T-cells are activated by antigen presenting 

cells (APC). A QSSA suggests itself, since we are interested in the 

time-scale of years and the time-scale of the adaptive immune re- 

sponse is of order of days. 

The presence of foreign antigens in the body may be sensed 

by the naive T-cells ( T n ). This will start a cascade of up-regulating 

cells and molecules in the immune system, among these effector 

T-cells ( T e ), e.g CD8 + T-cells, and NK-cells. These specifically attack 

and destroy the identified foreign cells (necrosis). The process from 

identification to attack happens on a time-scale of a week, how- 

ever, the effector cells have memories to recognize the identified 

cells afterwards. This process is known as immune surveillance. 

Inspired by Moore and Li (2004) and Nanda et al. (2007) , we let 

the naive T-cells identify the cancer cells (we let temporarily y de- 

note the number of such, which in our case will be y 0 or y 1 ). These 

T-cells are transformed into effector cells proportional to the prod- 

uct of the number of naive T-cells and cancer cells with rate, k n . 

Naive T-cells may produce αn effector cells per transforming naive 

T-cell. A linear elimination of naive T-cells appear simultaneously 

with rate ηk n . The naive T-cells are produced at a constant rate p n , 

whereas effector cells are eliminated proportional to T e with rate 

γ e . Thus, 

˙ T n = p n − k n T n (y + η) (4) 

and 

˙ T e = αn k n T n y − γe T e . (5) 

The pool of effector cells ( T e ) eliminate the cancer cells as a second 

order reaction with rate γ y . Letting ’growth’ denote the aforemen- 

tioned dynamics of cancer cells without explicitly including the 
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T-cells, i.e. the right hand side of Eq. (1c) or (1d) , the governing 

equation of malignant cells become 

˙ y = growth − γy T e y. (6) 

The fast T-cell response compared to the slow timescale of MPNs 

development justify a QSSA, thus 

T e ≈ αn p n 

γe 

y 

y + η
(7) 

and 

˙ y = growth − γy αn p n 

γe 

y 2 

η + y 
≈ growth − ˜ d y y 

2 , (8) 

with 

˜ d y = 

γy αn p n 
γe η

and where the approximation holds if y �η. 

Hence, using the approximation in Eq. (8) the death rate d y in the 

’growth’ part may be substituted by 

d y → 

ˆ d y + 

˜ d y 
η y 

η + y 
≈ ˆ d y + 

˜ d y · y (9) 

for y �η where ˆ d y = d y . Thus, the constant mortality rate is 

changed by adding a death rate which is linear in y . In fact, this 

may be considered as a general approximation of a possible y - 

dependent death rate by its first order Taylor expansion. We em- 

phasize that this expression is desirable, since it is still simple, but 

includes an important effect for non-vanishing values of y . A rea- 

sonable choice is to take ˆ d y = d y 0 and 

˜ d y ∼ 10 −6 day −1 as default 

values. These estimates are based on requiring the two elimina- 

tion terms to be of the same order and equal to that for normal 

hematopoietic stem cells, which is approximately 0.002 cell per 

day ( Andersen et al., 2017; Dingli and Michor, 2006 ). 

Hence, the leukemic model in Eq. (1) still holds with d y 0 sub- 

stituted by ˆ d y 0 + 

˜ d y 0 ·y 0 where we assume that the most impor- 

tant effect is on the stem cell compartment, which drives the can- 

cer development. The previous analytical results obtained are cor- 

rupted by the extension allowing the death rate to be y 0 depen- 

dent. We therefore seek a suitable model reduction (obtained in 

Eq. (10)) allowing a more thorough analysis. 

2.2. Model validation 

In the stable hematopoietic steady state, the numbers of stem 

cells and mature cells are taken to be approximately 10 4 and 

4 · 10 10 , respectively, which are compromises between reported val- 

ues ( Dingli and Michor, 2006; Gentry and Jackson, 2013; Haeno 

et al., 20 09a; 20 09b; Stiehl et al., 2015; 2016 ). In the final stage 

of full blown cancer, the number of hematopoietic cells is vanish- 

ing and the cancer cells will approach a stable steady state with a 

higher amount of cells than in the healthy steady state. The abso- 

lute values are more uncertain but we have aimed for 10 5 cancer 

stem cells and 10 13 mature cancer cells as reported in Dingli and 

Michor (2006) . In clinical practice JAK2V617 allele burden and the 

total cell count in the blood are usually measured. Whereas the 

total cell count is x 1 + y 1 , the JAK2V617 allele burden is taken as 
y 1 

x 1 + y 1 . 
The JAK2V617 allele burden has been reported to have median 

values of 7% (95% CI 2–15% and range 1–39%), 33% (95% CI 20–40% 

and range 1–92%), and 67% (95% CI 52–95% and range 37–99%) in 

ET, PV and PMF patients, respectively ( Larsen et al., 2007 ). 

The model is calibrated to resample this dynamic in the 

JAK2V617F allele burden, which gives predictions, t ET , t PV , and t PMF 

for when ET, PV and PMF appear, respectively. For illustrations of 

cell counts and allele burden see Fig. 2 Cytokines as IL-1 β , IL-1RA, 

IL-2R, IL-6, IL-8, IL-10, and IL-12 are considered to be specific in- 

dicators of the inflammatory level during MPN, whereas C-reactive 

Fig. 2. Left: Typical development in stem cells (top left) and mature cells (bottom left). Healthy hematopoietic cells (full green curves) dominate in the early phase where 

the malignant cells (stipulated red curves) are few in number. The total number of cells is also shown (dotted black curves). When a stem cell mutates and escapes repairing 

mechanisms, it approximately starts a slowly increasing exponential growth (at t = 0 ). At a certain stage, the malignant cells become dominant and the healthy hematopoietic 

cells begin to show a visible decline. Finally, the competition between the cell types results in a takeover by the malignant cells, leading to an approximately exponential 

decline in the amount of normal hematopoietic cells and ultimately their extinction. The development is closely followed by the mature cells. Right: The corresponding allele 

burden (7%, 33% and 67% corresponding to ET, PV and PMF, respectively, shown as blue columns) defined as the ratio of MPN mature cells to the total number of mature 

cells. The full green curve illustrates the continuous model prediction. Default parameter values from Tables 1 and 2 have been used. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Model validation. Cytokines from upper left to lower right; IL-1 β , IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12 as well as the plasma concentration of C-reactive protein (CRP) 

are approximatively linearly correlated with the inflammatory level s , whereas lactic dehydrogenase (LDH) is linearly correlated with and compared to the total amount of 

dying cells per time D = d x 0 x 0 + d x 1 x 1 + d y 0 y 0 + d y 1 y 1 . On each subplot data are shown (red dots encircled by black) at predicted times for ET, PV and PMF (left to right), 

estimated from the allele burden in Fig. 2 . On each subplot, model predictions are shown (full green curve). Default parameter values from Tables 1 and 2 have been used. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Default parameter values ( r m = 0 ) from Andersen et al. (2017) . 

Parameter Value Unit Parameter Value Unit 

r x 8 . 7 · 10 −4 day −1 r y 1 . 3 · 10 −3 day −1 

a x 1 . 1 · 10 −5 day −1 a y 1 . 1 · 10 −5 day −1 

A x 4.7 · 10 13 – A y 4.7 · 10 13 –

d x 0 2 · 10 −3 day −1 d y 0 2 · 10 −3 day −1 

d x 1 129 day −1 d y 1 129 day −1 

c xx 5 . 6 · 10 −5 – c yx 5 . 2 · 10 −5 –

c xy 5 . 4 · 10 −5 – c yy 5 . 0 · 10 −5 –

e s 2 day −1 r s 3 · 10 −4 day −1 

e a 2 · 10 9 day −1 I 7 day −1 

Table 2 

Default dimensionless parameter values ( r m = 0 ). 

Parameter Value Parameter Value 

R 1.49 J (baseline) 0.76 

D 0 1.00 D 1 0.10 

C x 0.93 C y 1.08 

B x 0.06 B y 0.07 

protein (CRP) is a general inflammation biomarker. All these have 

been shown to correlate with MPN states ET, PV and PMF. ( Tefferi 

et al., 2011; Vaidya et al., 2012 ) Thus we assume linear correlations 

between each of these and the inflammatory level s . In addition, 

LDH values, which express the total rate of dying cells per time 

( D = d x 0 x 0 + d x 1 x 1 + d y 0 y 0 + d y 1 y 1 ) were demonstrated to be corre- 

lated to the MPN states ET, PV and PMF ( Larsen et al., 2007 ). 

The model outputs are compared to the data in Fig. 3 . using 

the estimated instances t ET , t PV , and t PMF for ET, PV and PMF, re- 

spectively. The model predictions are in a remarkable accordance 

with the data. 

3. The reduced Cancitis model 

The extended model is brought into dimensionless form by 

scaling the variables of the model. A time scale separation argu- 

ment is used to obtain a reduced model, corresponding to setting 

the time derivative of x 1 , y 1 , a , and s to zero. The four dependent 

variables may then be solved in terms of x 0 and y 0 . As this ap- 

proach is well known and straightforward, the derivation is shown 

in Appendix A . Analyzing the resulting Eqs. (10) in terms of the 

scaled hematopoeitic stem cells, X 0 , and the scaled cancerous stem 

cells, Y 0 , is the focus of the rest of the paper. 

X 0 
′ = 

( 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + X 0 + C y Y 0 
− 1 

) 

X 0 (10a) 

Y 0 
′ = 

( 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 

) 

Y 0 (10b) 

where J = 

I 
2 e s 

r x 
d x 0 + a x 

, R = 

r y 
r x 

, D 0 = 

ˆ d y 0 + a y 
d x 0 + a x 

, D 1 = 

˜ d y 0 
c yy 

1 
d x 0 + a x 

, C x = 

c yx 

c xx 
, 

C y = 

c xy 

c yy 
, 2 B x = b x 0 + b x 1 ≈ b x 1 = 

a x A x 
c xx 

r s 
e s e a 

r x 
d x 0 + a x 

∼ 10 −1 , and 2 B y = 

b y 0 + b y 1 ≈ b y 1 = 

a y A y 
c yy 

r s 
e s e a 

r x 
d x 0 + a x 

∼ 10 −1 . Notice, the ratio between 

B x and B y is the ratio between the rate by which the corresponding 

mature cells are produced normalized by their self-inhibitory fac- 

tor (carrying capacity). The default dimensionless parameter values 

are listed in Table 2 . Note, the reduced model involves 8 parame- 

ters where D 1 describe the strength of the Y 0 dependent elimina- 

tion term in dimensionless form. The numerator in Eq. (10) corre- 

sponds to the scaled cytokine level and the denominators express 

the stem cell niche interactions allowing for different competitive 

advantages of hematopoietic and cancerous cells. The death rate of 

hematopoietic stem cells has been normalized to 1, whereas a dif- 

ferent rate is allowed for cancer stem cells ( D 0 ) as well as an extra 
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Fig. 4. Comparison of the reduced model (stipulated curves) and the full model (full curves) for dimensionless values D 1 = 0 . 1 , 0 . 5 , 1 , 5 . Green curves show hematopoietic 

stem cell counts and red curves show malignant stem cell counts versus time in years. All quantities are in dimensional variables. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

degradation term ( D 1 Y 0 ) corresponding to the T-cell response. We 

emphasize the local existence and uniqueness of solutions in the 

non-negative octahedron. Subsequently, we will focus on the im- 

pact of the dimensionless inflammatory stimuli J . 

Fig. 4 illustrates that the reduced Cancitis model agrees excel- 

lently with the full model for various values of D 1 . As seen, an 

increase in the Y 0 -dependent death rate, corresponding to how 

aggressively the effector cells eliminate the malignant stem cells, 

conjures a bearable co-existing state. Higher values of D 1 yields 

a lower burden of malignant cells. This is in accordance with the 

concept of immune surveillance (as illustrated in Fig. 4 for D 1 = 5 ), 

( Ribatti, 2017 ). If resistance appears, i.e. the malignant cells be- 

come immune to the effector cells, it agrees with the concept of 

immunoediting ( Ribatti, 2017 ); In the first phase, malignant cells 

are killed (not pictured in Fig. 4 ), in the second phase, a pseudo- 

equilibrium between immune and malignant cells appears (as for 

D 1 = 5 in Fig. 4 ), and finally the third phase - the escape phase 

- develops, where the co-existing pseudo-steady state disappears 

due to an absence of a sufficient immune response. In the escape 

phase, the disease ultimately gives symptoms and it may become 

clinically detected (as for D 1 = 0 . 1 in Fig. 4 ). The absence of a 

sufficient immune response is believed to be caused by a down- 

regulation or loss of an expression of malignant antigens, an up- 

regulated resistance of malignant cells, an increased expression of 

pro-survival genes, or the development of an immunosuppressive 

malignant cell microenvironment. ( Ribatti, 2017 ). 

4. Analysis and results 

We study the effect of the dimensionless inflammatory load J 

on the possible steady states and their stability for the reduced 

Cancitis model in Eq. (10). Thus, we start by investigating the exis- 

tence of steady states. By definition 

• A trivial steady state is defined as having X 0 = Y 0 = 0 . 
• A (purely) hematopoietic steady state is defined as having Y 0 = 

0 , but X 0 > 0. 
• A (purely) leukemic steady state is defined as having X 0 = 0 , 

but Y 0 > 0. 
• A co-existing steady state is defined as having X 0 > 0 and Y 0 > 0. 

Note, non-negativity of X 0 and Y 0 implies non-negativity of the 

derived variables X 1 , Y 1 , A , and S + given by Eq. (A.9). Straight for- 

ward, but tedious computations (see Appendix B ) give analytical 

results for the steady states, which are summarized as, 

• An admissible trivial steady state always exists, 

F 0 = (0 , 0) . (11) 

• Admissible hematopoietic steady states , F H = (X 0 H , 0) are solu- 

tions to 

J + 

√ 

J 2 + 2 B x X 0 H 

1 + X 0 H 

− 1 = 0 , (12) 

with X 0 H > 0. For certain combinations of parameter values two 

solutions may exist, 

X 0 H± = J + B x − 1 ±
√ 

( J + B x − 1 ) 
2 + 2 J − 1 . (13) 

For F H ± to be admissible all components have to be real and 

non-negative and X 0 have to be positive. This gives rise to some 

restrictions given as inequalities in the level of exogenous in- 

flammatory stimuli. 
• For B x < 

1 
2 no admissible hematopoitic steady state exists 

for J ≤ 1 
2 . A bifurcation happens at J = 

1 
2 such that for J > 

1 
2 

a unique, admissible hematopoetic steady state, X 0 H+ , exists 

with X 0 H+ (J) → 0 for J → 

1 
2 and X 0 H+ (J) being an increasing 

function. 

Note, both the existence and the value of X 0 H+ only depends on 

the two parameters J and B x . Remarkably, increasing the dimen- 

sionless rate B x ≈ r s 
c xx e s e a 

, by which the normal cells stimulate 

the dead cell pool, leads to an increase in the amount of normal 

cells X 0 H+ at the hematopoietic steady state value. 
• Admissible purely leukemic steady states , F L = (0 , Y 0 L ) , are the 

solutions of 

R 

J + 

√ 

J 2 + 2 B y Y 0 L 

1 + Y 0 L 
− D 0 − D 1 Y 0 = 0 , (14) 

with Y 0 L > 0. 
• For J > 

1 
2 

D 0 
R a unique, admissible leukemic steady state ex- 

ists. Then Y 0 L ( J ) is increasing in J . 

• For B y < 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
, and J < 

1 
2 

D 0 
R no leukemic steady 

states exist. 

• For default parameter values, B y < 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
and in- 

creasing inflammatory stimuli passing the critical value 

J crit = 

1 
2 

D 0 
R , a leukemic steady state is created. This happens 

as Y 0 ( J ) increases from 0 with increasing J . 

Note, both the existence and the value of a leukemic steady 

state only depends on the four parameters J, 
D 0 
R , 

D 1 
R , and B y . 
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• Co-existing steady states , F C = (X 0 C , Y 0 C ) , may exist, being the 

solutions of 

J + 

√ 

J 2 + 2 B x X 0 C + 2 B y Y 0 C = 1 + X 0 C + C y Y 0 C (15) 

and 

J + 

√ 

J 2 + 2 B x X 0 C + 2 B y Y 0 C = (1 + C x X 0 C + Y 0 C ) 
(

D 0 

R 

+ 

D 1 

R 

Y 0 C 

)
, 

(16) 

where X 0 C > 0 and Y 0 C > 0. X 0 C can be computed directly, if Y 0 C 
is known, 

X 0 C = 

( 1 + Y 0 C ) 
(

D 0 
R 

+ 

D 1 
R 

Y 0 C 
)

− C y Y 0 C 

1 − C x 
(

D 0 
R 

+ 

D 1 
R 

Y 0 C 
) . (17) 

Candidates for Y 0 C are solutions to a fourth order polynomial 

with intricate expressions for the coefficients not easily investi- 

gated analytically. The co-existing steady state is not created by 

a bifurcation through (0,0) as no solution to (15) and (16) ex- 

ists for ( X 0 C , Y 0 C ) approaching this point. Instead the co-existing 

steady state bifurcates from either the hematopoietic or the 

leukemic steady state, depending on the stability properties of 

these. 

4.1. Stability considerations 

In this section, we examine the stability properties of the var- 

ious admissible steady states of the reduced model. The stability 

of the steady states are equivalent to the stability of the linearized 

equations near the steady state, if the steady state is hyperbolic, 

i.e. if no eigenvalue of the matrix of the linearized system has real 

part equal to zero. The Jacobian, J , of Eq. (10) is computed analyt- 

ically at most of the steady states, see below. Thus, for these steady 

states, the eigenvalues of the linearized system are easily obtained 

analytically and otherwise numerically. If all eigenvalues have neg- 

ative real part, the steady state is stable and attracts neighbouring 

solutions, while if at least one eigenvalue has positive real part, the 

steady state is unstable. For the trivial steady state, the leukemic 

steady state and the hematopoietic steady state, J is calculated 

analytically and becomes triangular, thus the eigenvalues can be 

directly read off from the diagonal. 

In this section, we focus on cases that may be investigated an- 

alytically and in accordance with the default parameters we there- 

fore assume, 

B x < 

1 

2 

, and B y < 

1 

2 

D 0 

R 

(
D 0 

R 

+ 

D 1 

R 

)
, (18) 

which were also used in the previous section for clear statements 

on existence of a hematopoietic and a leukemic steady state, re- 

spectively. In the following, we investigate the stability of the 

steady states. 

First, consider the trivial steady state . At F 0 the Jacobian for the 

trivial steady states becomes, 

J 0 = 2 

[
J − 1 

2 
0 

0 R 

(
J − D 0 

2 R 

) ]
. (19a) 

with eigenvalues λ1 = J − 1 
2 and λ2 = J − D 0 

2 R . Evidently, the two 

eigenvalues are negative if and only if J < min { 1 2 , 
D 0 
2 R } . Compared 

to the previous section this implies that the trivial steady state is 

stable only if there are no leukemic or hematopoietic steady states. 

Secondly, consider the hematopoietic steady state and the cor- 

responding Jacobian, J H , with the form 

J H = 

[
λH1 J H (1 , 2) 

0 λH2 

]
, (20a) 

where 

J H (1 , 2) = X 0 H+ 
B y ( 1 + X 0 H+ ) − C y 

√ 

J 2 + 2 B x X 0 H+ 
(

J + 

√ 

J 2 + 2 B x X 0 H+ 
)

√ 

J 2 + 2 B x X 0 H+ ( 1 + X 0 H+ ) 
2 

. 

(21) 

The Jacobian is an upper triangular matrix with vanishing entry 

(2,1), i.e. J H (2 , 1) = 0 , and the eigenvalues are given by the diago- 

nal entries. The first eigenvalue λH1 = J H (1 , 1) has corresponding 

eigenvector pointing along the X 0 - axis. The expression of λH 1 can 

be formulated 

λH1 = 

X 0 H+ 

( 1 + X 0 H+ ) 
√ 

J 2 + 2 B x X 0 H+ 

(
−
√ 

( J + B x − 1 ) 
2 + 2 J − 1 

)
. 

(22) 

Whenever the hematopoietic steady state is admissible, X 0 H+ > 

0 corresponding to J > 

1 
2 , the eigenvalue is negative, λH 1 < 0. Thus, 

if the dynamics is restricted to the X 0 -axis then X 0 H+ is stable. This 

is a desirable property of the model as it illustrates that homeosta- 

sis is maintained prior to a mutation providing a malignant stem 

cell. 

The other eigenvalue is 

λH2 = R 

(
1 + X 0 H+ 

1 + C x X 0 H+ 
− D 0 

R 

)
. (23) 

As X 0 H+ does neither depend on C x nor 
D 0 
R a direct inspection of 

Eq. (23) yields that increasing C x or 
D 0 
R has a stabilizing effect. 

Since X 0 H+ increases from 0, as J increases from 

1 
2 , the 

hematopoietic steady state bifurcating from the trivial steady state 

is stable if 
D 0 
R > 1 and unstable if 

D 0 
R < 1 for J in a neighborhood of 

and larger than 

1 
2 . Note, if C x ≥ 1 then 

1+ X 0 H+ 
1+ C x X 0 H+ 

≤ 1 . Hence, if 
D 0 
R > 

1 and C x ≥ 1, which corresponds to the malignant cells are inhib- 

ited more than the hematopoietic cells by the niche feedback, then 

the hematopoietic steady state is stable for arbitrarily large X 0 H+ . 
For C x < 

R 
D 0 

< 1 , the stable hematopoietic steady state will turn un- 

stable for sufficiently large J , since λH 2 approaches C −1 
x − D 0 

R > 0 as 

X 0 H+ increases unboundedly with J . Rewriting λH2 = 0 by use of 

Eq. (12) one arrives at the criterion 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 = 0 (24) 

at Y 0 = 0 corresponding to the coexisting steady state being ex- 

tended to the Y 0 axis (see expression (16) ). This means that the 

hematopoietic steady state changes stability when it crosses a 

branch of the co-existing steady state on the X 0 -axis and is un- 

stable for large values of X 0 H+ corresponding to large values of J . 

The criterion λH2 = 0 is easily solved for a critical X 0 H+ -value, X c , 

X c = 

D 0 
R 

− 1 

1 − D 0 
R 

C x 
. (25) 

As X 0 H+ is an invertible function of J , Eq. (25) may be expressed as 

a threshold value of J , 

J c = 

X 

2 
c + 2(1 − B x ) X c + 1 

2(1 + X c ) 
. (26) 

Thirdly, consider the purely leukemic steady state , and the cor- 

responding Jacobian, J L , 

J L = 

[
λL 1 0 

J L (2 , 1) λL 2 

]
, (27a) 
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Fig. 5. Phase plane diagram for the hematopoietic cells ( X 0 ) and the leukemic cells ( Y 0 ). The cases corresponding to analytical results of the trivial, hematopoietic and 

leukemic steady states and their stability are shown. J increases from top row to bottom row illustrating the sequence of bifurcations for increasing J in the two cases D 0 
R 

> 1 

and D 0 
R 

< 1 . Full circles are stable steady states, open circles are unstable steady states. The black dotted line is the boundary of the analytical trapping region, the red curve 

is nullcline of ˙ Y 0 , and the green stipulated curve is the nullcline of ˙ X 0 . In the left column the hematopoietic steady state is stable independently of the presence of a leukemic 

steady state whereas in the right column, the leukemic steady state is stable. We emphasize that the trapping region generally depends on D 0 and J as well as R, B x , B y , C x , 

and C y . On some subplots the dotted black line lies outside the visible rage. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

with 

J L (2 , 1) = RY 0 L 

B x ( 1 + Y 0 L ) − C x 
√ 

J 2 + 2 B y Y 0 L 

(
J + 

√ 

J 2 + 2 B y Y 0 L 

)
√ 

J 2 + 2 B y Y 0 L ( 1 + Y 0 L ) 
2 

. 

(28) 

The Jacobian is a lower triangular matrix. Since entry (1,2) vanish, 

J L (1 , 2) = 0 , the Y 0 -axis is the eigenvector direction for the eigen- 

value λ2 = J L (2 , 2) evaluated at the leukemic steady state. Using 

the restrictions on B y from inequality (18) we get 

λL 2 = Y 0 L 

( 

RB y √ 

J 2 + 2 B y Y 0 L ( 1 + Y 0 L ) 
− R 

J + 

√ 

J 2 + 2 B y Y 0 L 

( 1 + Y 0 L ) 
2 

− D 1 

) 

≤ −D 1 Y 
2 

0 L , (29) 

so the leukemic steady state is stable along the direction of the 

Y 0 -axis. The other eigenvalue is 

λL 1 = 

(
D 0 

R 

+ 

D 1 

R 

Y 0 L 

)
1 + Y 0 L 

1 + C y Y 0 L 
− 1 . (30) 

As Y 0 L increases from 0 as J increases from 

1 
2 

D 0 
R , then λL 1 < 0 

if 
D 0 
R < 1 and λL 1 > 0 if 

D 0 
R > 1 , for J values near 1 

2 
D 0 
R . Increas- 

ing C y has a stabilizing effect by decreasing λL 1 . Contrary to the 

hematopoietic case, an initial negative λL 1 will inevitably become 

positive for increasing J , after which Y 0 L increases unboundedly 

causing the first term in Eq. (30) to become larger than one. 

The analytical results for existence and stability of the trivial, 

hematopoietic and leukemic steady states are summarised in Fig. 5 . 

Lastly, consider the co-existing steady state . The admissible co- 

existing steady states are calculated numerically as a function of 

J and so is the Jacobian and its eigenvalues using the parameter 

values in Table 2 for the remaining parameters when nothing else 

is specified. The results are summarized in Fig. 8 and admissible 

co-existing steady states are stable for J > 3.636 approximately. The 

model implies that the ratio between R and the cell death rate 

D 0 is important. If the ratio between D 0 and R is less than one, 

the leukemic steady state is stable when created and occurs be- 

fore the unstable hematopoietic steady state occurs for J increasing 

until the co-existing steady state may take over the stability and 

bifurcate from the leukemic steady state. This is not to say that 

an increase in the inflammatory load cures the in silico patient or 

that it reduces the impact of the disease. Instead the co-existing 

steady state level of the malignant cells saturates approximately 

at the level as the level of malignant cells at the full leukemic 

steady state at the bifurcation point. Thus the tumor burden is 

not decreased, but is only prevented from increasing significantly. 

See Figs. 6 and 8 . This model based hypothesis may seem a little 

counter-intuitive and deserves clinical testing. Conversely, if the ra- 

tio between D 0 and R is larger than one, the hematopoietic steady 

state is born stable and occurs before the unstable leukemic steady 

state occurs for J increasing until the co-existing steady state may 

take over the stability of - and bifurcate from - the hematopoi- 

etic steady state, see Fig. 7 . Hence we emphasize that the dynam- 
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Fig. 6. Illustration of the dynamics in a ( X 0 , Y 0 )-phase plane. Each row corresponds to D 1 = 0 . 1 , 1 , 10 , respectively, whereas each column corresponds to J = 0 . 60 , 0 . 76 , 0 . 90 , 

respectively. Red curves are Y 0 null clines (includes the X 0 -axis) and blue stipulated curves are X 0 null clines (includes the Y 0 -axis). Open circles represent unstable steady 

states whereas full circles represent stable steady states. The black circle is the trivial steady state, the green circle the hematopoietic steady state, the red the purely 

leukemic steady state, and cyan the co-existing steady state. The attracting trapping region is indicated on each palette by the coordinate axis and a black dotted line, which 

increases with J but has slope -1 (the black dotted line may fall outside the visible range on some subplots). The flows are indicated by the normalized slope field with 

arrows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ics of the system is rather different depending on whether the ra- 

tio between D 0 and R is less than or greater than one. Thus in- 

creasing the ratio D 0 to R or increasing the ratio of D 1 to R , as 

illustrated in Fig. 7 , represent very appealing candidates for treat- 

ment. Eq. (B.11) is equivalent to Eq. (B.18) with X 0 = 0 , thus the 

leukemic steady state and the co-existing steady state equals for 

X 0 = 0 . By the implicit function theorem it follows that for Y 0 ≥ Y 0 L 
the derivative of X 0 = X 0 (Y 0 ) with respect to Y 0 is positive corre- 

sponding to an increasing steady state trajectory in J . 

The possible topologies are summarized in Figs. 6 and 7 . The 

corresponding bifurcation diagram are depicted in Fig. 8 . Continu- 

ous animations for varying J for different fixed values of D 0 and D 1 

may be found at http://dirac.ruc.dk/cancitis/ together with an ani- 

mated bifurcation diagram (see Section 4.3 for further discussions). 

We refer to the topology of the dynamical system as Janus topol- 

ogy, since it has two faces, i.e. two different topologies for different 

set of parameters. 

4.2. Existence af an attracting trapping region for the reduced 

Cancitis model 

A trapping region is a compact set with the property that or- 

bits starting in the trapping region cannot escape the region. An 

attracting trapping region is a trapping region which is attracting, 

i.e. orbits starting outside the trapping region will enter the trap- 

ping region (in finite time). An attracting trapping region is a suit- 

able feature for a biological system, since it guaranties some basic 

well-behavior of the system such as boundedness of solutions and 

global existence in time ( Robinson, 1999 ). 

An attracting trapping region exists in the non-negative octa- 

hedron for the reduced Cancitis model in Eq. (10) (will be shown 

below). As a consequence the steady states lies in this trapping re- 

gion. 

For some parameter values, X ′ 0 < 0 and Y ′ 0 < 0 for any X 0 and 

Y 0 . The idea is to show that X ′ 0 < 0 and Y ′ 0 < 0 , for large X 0 + Y 0 for 

all parameter values. 

Let 

K = max { J, 
√ 

2 B x , 
√ 

2 B y } and L = min { 1 , C x , C y } . (31) 

Thus, J 2 , 2 B x , 2 B y < K 

2 and 1, C x , C y > L , which implies 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + X 0 + C y Y 0 
− 1 < 

K 

L 

1 + 

√ 

1 + X 0 + Y 0 

1 + X 0 + Y 0 
− 1 , (32) 

and 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 

< R 

K 

L 

1 + 

√ 

1 + X 0 + Y 0 

1 + X 0 + Y 0 
− D 0 (33) 

Consider therefore (for α > 0) 

α
1 + 

√ 

1 + X 0 + Y 0 

1 + X 0 + Y 0 
− 1 , (34) 
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Fig. 7. Illustration of the dynamics in the ( X 0 , Y 0 ) phase plane. Each row corresponds to D 0 = 1 , 1 . 52 , 1 . 8 , respectively, whereas each column corresponds to J = 

0 . 60 , 0 . 76 , 0 . 90 , respectively. R is set to its default value 1.49. Red curves are Y 0 nullclines (and include the X 0 -axis) and green stipulated curves are X 0 nullclines (and 

include the Y 0 -axis). Open circles represent unstable steady states whereas full circles represent stable steady states. The black circle is the trivial steady state, the green cir- 

cle the hematopoietic steady state, the red circle the purely leukemic steady state, and the cyan circle the co-existing steady state. The attracting trapping region is indicated 

on each palette (surrounded by the coordinate axis and a black dotted line, which may fall outside the visible rage). The trapping region decreases with D 0 and increases 

with J , but has slope -1. The flows are indicated by the normalized slope field with arrows. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

and introduce 

z = 

√ 

1 + X 0 + Y 0 . (35) 

As X 0 and Y 0 are non negative, the minimal, allowed value of z is 

1. Expression (34) is negative if and only if 

z 2 − αz − α > 0 . (36) 

For any α > 0 there is exactly one positive solution to z 2 − αz −
α = 0 , being 1 

2 

(
α + 

√ 

α2 + 4 α
)

. Any larger z value fulfills (36) and 

since z ≥ 1 is required we get 

z crit = max 

{ 

1 

2 

(
α + 

√ 

α2 + 4 α
)
, 1 

} 

. (37) 

Solving for X 0 + Y 0 this implies that the bound M is 

M = z 2 crit − 1 , (38) 

i.e. for X 0 + Y 0 > M are X ′ 0 < 0 and Y ′ 0 < 0 . Note that we may chose 

α = 

max { 1 , R 
D 0 

} · max { J, √ 

2 B x , 
√ 

2 B y } 
min { 1 , C x , C y } . (39) 

Thus, M ≥ 0 and the triangle defined by the X 0 -axis, the Y 0 -axis 

and the line X 0 + Y 0 = M thus define an attractive trapping region 

for Eq. (10). We emphasize that M generally depends on D 0 and J 

as well as R, B x , B y , C x , and C y . 

4.3. Phase plane analysis and treatments 

In the present work, we mainly focus on analyzing the impact 

of the inflammatory stimuli J , modifying the T-cell independent 

death rate D 0 , and modifying the T-cell response represented by D 1 

rather than a complete analysis of real treatments. However, sev- 

eral treatment scenarios are possible, e.g. T-cell therapy. Interferon- 

α treatment among other things stimulates the immune system, 

whereby the effect of the effector T-cells become strengthened. 

The reduced model has been investigated numerically for var- 

ious choices of parameters. The default parameters, as given in 

Table 2 , have been used when nothing else is stated. 

First consider the default case 
D 0 
R < 1 as illustrated in 

Fig. 6 showing the phase plane for various J and D 1 . A trivial steady 

state F 0 is found to always exist, and, for sufficiently low inflamma- 

tory stimuli J , it is stable. For J greater than 

D 0 
2 R , a purely leukemic 

steady state F L becomes admissible and the leukemic cells increase 

in numbers with increasing J . For choices of J where only F L and 

F 0 are admissible, the leukemic steady state is found to be stable, 

whereas the trivial state is unstable. It is worth emphasizing that 

the purely leukemic steady states in general only depend on the 

four clusters of parameters 
D 0 
R , 

D 1 
R , 

JR 
D 1 

, B y , and J . 

For J greater than 

1 
2 , an unstable hematopoietic steady state, 

F H+ , becomes admissible. In absence of mutations, i.e. no malig- 

nant cells present, the hematopoietic steady state appears stable. 

Being a saddle point with stable manifold along the X 0 -axis and 

the unstable manifold having a nonvanishing Y 0 -component, a per- 
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Fig. 8. Left column shows the bifurcation diagrams for the case D 0 
R 

> 1 and the right column shows the corresponding for D 0 
R 

< 1 (the default case). The bifurcation diagrams 

showing the appearance and stability of the admissible steady states depending on the bifurcation parameter J . The top panel shows X 0 , the middle panel shows Y 0 , and the 

lower panel shows the J -trajectory of the admissible steady states in a ( X 0 , Y 0 ) phase plane having the range on the axis as in the other figures above. Green curves are the 

hematopoietic steady states, red curves are the purely leukemic steady states, and cyan curves are the co-existing steady states. At the origin a trivial steady state always 

exists. It is stable for some values of J and unstable for others thus it is not shown on the figure. Dotted curves mean that the corresponding steady state is unstable, while 

full curves indicate that the corresponding steady state is stable. For the left column J ∈ [0; 4], while for the right column J ∈ [0; 10]. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

turbation with malignant cells may cause the state to be repelling 

away from the hematopoietic steady state. As was shown analyt- 

ically, F H+ only depends on the two parameters J and B x and for 

fixed B x , X 0 H+ increases with J . 

As shown in Fig. 6 , an admissible co-existence steady state, F C 
may exist, which is dependent on both J and D 1 . While it has 

been found to exist for sufficiently high J , regardless of realis- 

tic values of D 1 , the existence of F C does require very large val- 

ues of J for D 1 ≤ 0.1. For default parameter values (e.g. D 1 = 0 . 1 ), 

the co-existing steady state occurs for J larger than J c given by 

Eq. (26) . The co-existing steady state is stable and bifurcates from 

the leukemic steady state which loses its stability and becomes 

unstable. For increasing J, F C moves away from F L with increas- 

ing X 0 . For D 1 around 1 or greater, the co-existence steady state 

might represent a possible preferable situation to the full-blown 

leukemic state F L . For large choices of D 1 , such as D 1 = 10 shown 

in Fig. 6 , F C is in close proximity of F H+ for most realistic choices of 

J , leading to a co-existence steady state, which can be interpreted 

as having a small number of leukemic cells, which are held back 

from increasing due to a strong T-cell response. In the case where 

the co-existence steady state exists, it is found numerically to be 

stable, while the leukemic steady state F L becomes unstable when- 

ever the co-existing steady state becomes admissible. Thus, for any 

situation where a co-existence steady state is admissible, the sys- 

tem will move towards this state. 

Increasing B y , D 0 or D 1 and decreasing R cause the leukemic 

steady state to appear at higher values of J while increasing B x 
causes the hematopoietic steady state to occur for lower values 

of J . Thus, the model identifies important parameters for potential 

protection to prevent a leukemic outbreak. 

Next, consider the case 
D 0 
R > 1 in contrast to the default case. 

Phase plane portraits are shown in Fig. 7 for various J and D 0 . The 

situation is analogous to the default case except the order in which 

the hematopoietic steady state and the leukemic steady state oc- 

cur are interchanged along with their stability properties. Thus the 

hematopoietic steady state bifurcates from the trivial steady state 

221



102 J.T. Ottesen, R.K. Pedersen and Z. Sajid et al. / Journal of Theoretical Biology 465 (2019) 90–108 

Fig. 9. An in silico treatment of a virtual patient having ( D 1 , J ) = (1,0.9). The treat- 

ment combines gene therapy, by increasing D 1 to 10, and an anti-inflammatory 

treatment, by lowering J from 0.9 to 0.76. Hereby the virtual patient is moved from 

a co-existing steady state (upper cyan dot) with high malignant cell counts, ( X 0 , 

Y 0 ) = (0.27,0.55) corresponding to ( D 1 , J ) = (1,0.9), toward a co-existing steady state 

(lower cyan dot) with low malignant cell count and normalized hematopoietic cell 

count, ( X 0 , Y 0 ) = (0.51,0.05) corresponding to ( D 1 , J ) = (10,0.76). This treatment path 

(stipulated black curve) do not follow the displayed slope field. Thereafter treat- 

ment is put on pause and the virtual patient follows the flow back toward the orig- 

inal co-existing steady state (full black curve), ( X 0 , Y 0 ) = (0.27,0.55). Full red lines 

show the Y 0 nullcline and the stipulated green lines show the X 0 nullcline. The 

open circles illustrate the unstable steady states (black for the trivial, red for the 

leukemic, and green for the normal hematopoietic steady state). The black dotted 

lines bound the region, which represents the total leukocyte count considered to be 

normal. Above the upper boundary the risk of thrombosis is considered high and 

below the lower boundary the immune system is considered to be dysfunctional. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

and takes over the stability for increasing J shown in the second 

and third row of Fig. 7 . For larger J -values, the leukemic steady 

state bifurcates from the trivial one as an unstable steady state and 

it remains unstable for larger J . For even larger values of J , the co- 

existing steady state bifurcates from the hematopoietic steady state 

and it takes over the stability leaving the hematopoietic steady 

state unstable. For increasing J , it slowly moves away from the 

hematopoietic steady state. Compared to the default case, 
D 0 
R < 1 , 

this is not necessarily lethal, since X 0 C stays relatively close to X 0 H 

and Y 0 C � Y 0 L . 

Returning to the case 
D 0 
R < 1 , a scenario of an in silico treat- 

ment of a virtual patient having ( D 1 , J ) = (1,0.9) is illustrated in 

Fig. 9 . The treatment combines a strengthened T-cell effect (in- 

terferon or T-cell therapy) by increasing D 1 to 10 and an anti- 

inflammatory treatment, which lowers J from 0.9 to 0.76. Thus, 

the virtual patient is moved from a co-existing steady state with 

high malignant cell counts, ( X 0 , Y 0 ) = (0.27,0.55) towards a co- 

existing steady state with low malignant cell counts and normal- 

ized hematopoietic cell counts, ( X 0 , Y 0 ) = (0.51,0.05). This treat- 

ment path (stipulated curve) does not follow the displayed slope 

field shown, corresponding to ( D 1 , J ) = (1,0.9). It takes approxi- 

mately 5 years for the treatment to lower Y 0 to 15%, but almost 

20 years to increase X 0 to near normal amount. The total cell 

Fig. 10. Effects of resistance of malignant stem cells to T-cell elimination. The dot- 

ted lines show the cancer development toward the co-existing steady state in ab- 

sence of resistance whereas the full lines show the development when resistance 

develops. Green curves represent the hematopoietic stem cell counts ( X 0 ) and the 

red curves represent the malignant stem cell counts ( Y 0 ). Parameters are as for 

Fig. 4 but with D 1 = 10 . Black dotted line shows the inhibiting factor 1 
1+ U 8 over 

time, reducing the population death due to resistance. All quantities are shown in 

dimensionless units except time which is in years. See Section 5 for further discus- 

sion. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

count ( X 0 + Y 0 ) is fairly well controlled during this treatment pro- 

cess, which is essential to prevent high risk of thrombosis. There- 

after treatment is put on pause and the virtual patient follows 

the flow back toward the original co-existing steady state, ( X 0 , 

Y 0 ) = (0.27,0.55). It takes about 20 years for Y 0 to pass 0.5 cor- 

responding to 10% below the original amount. The time interval 

of treatment and relapse are both quite large and it is likely that 

the malignant cells develop resistance during such time span. On 

the other hand, these time scales are comparable to clinical expe- 

riences. 

To explicitly include resistance in the model, we assume that 

the exposure, 

U = 

∫ t 

0 

Y 0 (t ) dt , (40) 

of malignant stem cells drives the development of resistance. Fur- 

thermore, we assume that resistance inhibits the Y 0 -dependent 

death rate D 1 by a decreasing Hill-function in the exposure, as it is 

associated with a reduced T-cell elimination of the malignant cells. 

Thus, the death rate, D 1 , in Eq. (10b) is substituted by, 

D 1 

1 + U 

8 
. (41) 

We note that, as exposure increases, the effective death rate in 

Eq. (41) decreases, leading to an increase in Y 0 , which further in- 

creases exposure and so on. Initially, the development will be like 

that seen for the co-existing steady state (as shown in Fig. 4 for 

D 1 = 5 ), but as the exposure increases, resistance develops and the 

dynamic starts to deviate from that without resistance. Thus, af- 

ter approaching the co-existing steady state for a while the cancer 

development begins to increase approximately as an exponential- 

function (for the second time) before finally reaching the satura- 

tion level, corresponding to full blown cancer, as seen in Fig. 10 . 

Meanwhile, the hematopoietic cells show a reciprocal develop- 

ment. Overall, the co-existing stable steady state is approached 

in the first phase of the development, while resistance devel- 

ops. When resistance becomes influential, around year 30, the co- 

existing steady state disappears and in the next phase the full 

blown cancer develops. Thus, the developed resistance destroys the 
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effect of the therapy over time. We have chosen the Hill power to 

be 8 in Eq. (41) . Choosing it larger does not change the numerical 

output significantly and choosing it smaller makes the dormancy 

state, i.e. the temporary plateau between year 25 and 40 in Fig. 10 , 

shorter and resistance will start a bit earlier. For U = 1 , expres- 

sion (41) takes the saturation value 1 
2 D 1 . This half saturation value 

corresponds approximately to year 42 at Fig. 10 . 

A specific finding deserves to be emphasized: A dimensionless 

stem cell reproduction ratio R exists, which determines how ro- 

bust the hematopoietic condition may be and how disastrously 

a potential blood cancer disease will develop. This is similar to 

the concept of a reproduction number in epidemiology describing 

whenever an epidemic outbreak may occur. In our case, the repro- 

duction ratio consists of a combination of six physiological param- 

eters from the dimensional form of the full model. Inspired by the 

different topologies discussed above, we define the reproduction 

ratio as the inverse of 
D 0 
R , 

R = 

(
D 0 

R 

)−1 

= 

(
r y 

ˆ d y 0 + a y 

)
(

r x 

d x 0 + a x 

) (42) 

Thus for, R > 1 we have a more serious situation than for R < 1 , 

showing that if the reproduction ratio exceeds the threshold, R 0 = 

1 it is more disastrous than if it is below R 0 . Physiologically, the 

reproduction ratio R tells us that the situation is worse if malig- 

nant stem cells have a better fitness than the hematopoietic stem 

cells. The intuitive interpretation in most bio-medical literature at- 

tributes the main cause for cancer development to the frequency 

of stem cell division. Our fitness concept, the ratio between the 

self-renewal rate and the sum of the death rate and the prolifer- 

ation rate, is far more nuanced, but is in agreement with the lit- 

erature and thus confirming our results. To force the model from 

a regime of highly disastrously development into a regime of less 

disastrously development we may simply focus on how to ma- 

nipulate the reproduction ratio, R , for the specific system under 

consideration to become less than the threshold value of R . The 

threshold concept depends on six parameters, which offer inde- 

pendent manipulation possibilities. Alternatively, one may consider 

the fitness of hematopoietic cells as a given fitness threshold value 

for a specific system. Thus the development of a given mutation is 

determined by the fitness value of that mutation compared to that 

of the hematopoietic cells. 

In addition to the primary reproduction ratio R , a secondary 

reproduction number, S, important for the dynamics of the system 

as it appears in most analytical expressions (see Appendix B ), is, 

S = 

(
D 1 

R 

)−1 

= 

(
r y c yy 

y 0 

)
(

r x 

d x 0 + a x 

) . (43) 

This secondary reproduction number, S, describes the T-cell 

dependent fitness of the malignant stem cells relative to the 

afore defined fitness of the hematopoietic stem cells, whereas 

the primary reproduction ratio, R , compares the T-cell indepen- 

dent fitness of malignant stem cells to that of hematopoietic stem 

cells. 

Increasing the inflammatory stimuli J accelerates and drives the 

blood cancer in general. Vice versa, the blood cancer itself induces 

an inflammatory response, and thus the coupled system introduces 

a negative spiral with respect to the disease development. For fur- 

ther details on this see ( Andersen et al., 2017 ). 

5. Discussion and conclusion 

A novel mechanism-based model - the Cancitis model - describ- 

ing the interaction of blood cancer and the inflammatory system is 

proposed. The immune response is divided into two components, 

one where the elimination rate of malignant stem cells is indepen- 

dent of the size of the cancer ( Y 0 -independent death rate) and one 

where the elimination rate depends on the size of the cancer ( Y 0 - 

dependent death rate). The model confirms that inflammation may 

accelerate and drive a cancer beyond the fact that the presence of 

a cancer induces an inflammatory response. A dimensional analysis 

shows that the full 6-dimensional system of nonlinear ordinary dif- 

ferential equation may be reduced to a 2-dimensional system - the 

reduced Cancitis model. In terms of Fenichel theory this is known 

as the reduced model or the slow manifold approximation. This is 

a very good approximation and is appropriate for MPNs in partic- 

ular, since these diseases develop slowly. The original parameters 

appear in the reduced model in clusters, showing the important 

grouping of parameters. The reduced model allows for a highly an- 

alytical investigation of steady states and their dependence espe- 

cially on the inflammatory stimuli J , the Y 0 -independent death rate 

( D 0 ) and the Y 0 -dependent death rate ( D 1 ). A semi-analytic inves- 

tigation reveals the stability properties of the steady states. Finally, 

we prove positivity of the system and the existence of an attract- 

ing trapping region in the positive octahedron guaranteeing global 

existence and uniqueness of solutions. For the reduced Cancitis 

model, the possible topologies are completely described as having 

a Janus structure, where two qualitatively different topologies ap- 

pear for different sets of parameters given by R . In the important 

work by Stiehl and Marciniak-Czochra (2012) , a model without im- 

mune interaction is presented. The authors discuss a fraction simi- 

lar to R given in Eq. (42) and shows that it is important for the dy- 

namics of the system. However, this model involved explicitly the 

hierarchy of progenitor cells, whereby a lot of unknown parame- 

ters are introduced, thus their results appear as a more qualitative 

analysis involving all these parameters. The relative simplicity of 

our model, due to the parsimonious principle and the model re- 

duction, make it possible to state sharp criteria involving R , which 

along with another threshold S given in Eq. (43) deliver a complete 

topological analysis of the possible dynamics. 

For the default parameters, a trivial steady state F 0 always exist. 

Starting by no stimulation J of the inflammatory system, only the 

trivial steady state is stable. Increasing J will turn this trivial steady 

state into an unstable steady state while a leukemic steady state 

appears. If J is increased further, an unstable hematopoietic steady 

state occurs. In absence of mutations, i.e. no malignant cells, the 

hematopoietic steady state is stable. Being a saddle point, a per- 

turbation of the hematopoietic steady state with malignant cells 

may cause the state to be repelling away from the hematopoietic 

steady state. At the bifurcation, the purely leukemic steady state 

takes over the stability turning the trivial steady state into an un- 

stable state. Both the hematopoietic steady state and the leukemic 

steady state start at the trivial steady state and move away from 

it with increasing values of J . A co-existing steady state bifurcates 

from the leukemic one for even higher values of J and simultane- 

ously the leukemic steady state loses its stability. For increasing 

values of J , the co-existing steady state moves towards higher X 0 - 

values and with only a minor increase in Y 0 . Increasing D 1 also de- 

creases Y 0 , thus representing an attractive disease condition com- 

pared to full blown blood cancer. 

We emphasize that the choice of default parameter values for 

C x and C y make the highest order coefficient in Eq. (B.23) , given in 

expression (B.24) , relatively small, since C x C y ≈ 1. As a consequence, 

not only the roots of Eq. (B.23) , but also the number of real roots 

become sensitive to these parameter values. Thus some caution is 

needed; A considerable change in parameters may not only change 
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the stability properties, but also the number of possible co-existing 

steady states. The outbreak of blood cancer in general is commonly 

considered to occur when the ratio of the self-renewal rates, R , ex- 

ceeds a threshold value, frequently taken to be one. However, the 

model implies that the ratio between R and the cell death rates D 0 

and D 1 should rather be considered. In fact, the analysis motivates 

the definition of a primary and a secondary reproduction ratio, R 

and S, respectively, crucially for topology of the dynamics of the 

system. If R is larger than one, the leukemic steady state appears 

first and the hematopoietic steady state later for increasing J . The 

leukemic steady state is stable until the co-existing steady state 

may take over. If instead, R is less than one, the hematopoietic 

steady state appears first and the leukemic steady state later with 

respect to increasing J . Thus the hematopoietic steady state is sta- 

ble until the co-existing steady state takes over while the leukemic 

steady state remains unstable. Inflammation is presumably another 

important quantity for the onset and development of blood can- 

cer, greatly influenced by the inflammatory stimulation J ( Andersen 

et al., 2017; Brianna M. Craver et al., 2018; Desterke et al., 2015; 

Hasselbalch, 2012; 2014; Hasselbalch and Bjoern, 2015; Hermouet 

et al., 2015; Koschmieder et al., 2016; Wodarz and Komarova, 

2014; Zhang et al., 2017 ). This suggests that the body may manage 

initial leukemia as long as the self-renewal rate is not too high, 

but fails to manage it if an inflammation appears. These findings 

suggest combining treatment with anti-inflammatory treatment. 

Thus inflammation may trigger and drive blood cancers including 

MPNs. 

It is interesting that decreasing the inflammatory stimuli for 

R > 1 may not be a good first step in treatment of such patients. 

Instead D 1 should be increased first and subsequently the inflam- 

matory stimuli may be reduced. However, for R < 1 the inflam- 

matory stimuli may be reduced simultaneously with increasing 

D 0 . 

We note that, increasing the inflammatory stimuli ( I ) increases 

J = 

I 
2 e s s 

= I (r x /e s ) 
d x 0 + a x = 

I 
e s 

r x 
d x 0 + a x . An increase in the rate r x increases 

the amount of hematopoietic stem cells, which quickly increases 

the amount of mature hematopoietic cells, thus leading to an in- 

direct increase in the amount of dead cells (for unchanged val- 

ues of d x 0 and a x ). An increase in the amount of dead cells stim- 

ulates the inflammation, whereas e s eliminates the debris of the 

dead cells. Thus increasing the fraction r x / e s eventually increases 

the inflammation. This may suggest that drugs helping the inflam- 

matory response in eliminating the debris more effectively may 

decrease J . However, the denominator d x 0 + a x denotes the rate at 

which hematopoietic stem cells are reduced, due to apoptosis and 

proliferation into progenitor cells. Hence, an increase in either d x 0 
or a x will decrease J . The reason why is that a decrease in x 0 in 

the long term leads to a decrease in x 1 and thus a decrease in 

the amount of dead cells, a , whereby the inflammatory response 

become less stimulated. Hence, treatment affecting the stem cells 

by increasing the natural death rate d x 0 may decrease the inflam- 

matory response and thereby help reduce the cancer. In combina- 

tion, the competition between self-renewal rate r x and the elimi- 

nation of hematopoietic stem cells d x 0 + a x is reflected in the ratio 
r x 

d x 0 + a x . Likewise, the competition between the inflammatory load 

I and the elimination rate of debris by the immune response e s 
is reflected in the ratio I 

e s 
. Thus increasing these ratios increase J . 

This is surprising, since intuitively one would guess that treatment 

should primarily affect the malignant stem cells and leave the nor- 

mal hematopoietic stem cell as unaffected as possible. Of course, 

affecting the amount of normal hematopoietic stem cells has other 

impacts apart from just affecting J , due to the direct competition 

between the cell types. Increased J also affect the self-renewal rate 

for the malignant stem cells. Since the stem cell self-renewal is 

proportional to J in both cases, the malignant cells benefit most, 

due to an expected higher baseline self-renewal rate of the ma- 

lignant stem cells r y than for the normal hematopoietic stem cells 

r x . 

The specific inclusion of the T-cells in the immune response 

has its roots in gene therapy and interferon- α treatment. In gene 

therapy a patients own T-cells are modified outside the body and 

re-injected to fight the cancer. As shown, it is in principle a very 

effective instrument, but in practice it has limited function, since 

cancer cells almost always develop resistance, by modifying the 

recognizable surface receptors used by the naive T-cells to iden- 

tify the cancer cells. Without being recognized by naive T-cells, the 

effector cells will not attack the cancer cells making this defence 

weak. Interestingly, even if resistance did not occur, the model pre- 

dicts that T-cell therapy does not cure the patient, but only keeps 

the cancer in an iron grip at the co-existing steady state secur- 

ing limited growth of cancer for a while. When resistance occurs 

the grip loosens and a fatal growth begins despite continued T-cell 

therapy as illustrated on Fig. 10 . The fact is that increasing D 1 by a 

T-cell therapy may turn a full blown leukemic (stable) steady state 

into a co-existing (stable) steady state or even for high dose ther- 

apy into a healthy (stable) hematopoietic steady state temporarily 

as illustrated in Fig. 7 . It takes some years (e.g. 5 years) as illus- 

trated in Fig. 9 . However, without changing the parameters per- 

manently (e.g. D 1 ) the cancer recurs either because the cancerous 

stem cells are not completely eradicated or as soon as a new mu- 

tation (surviving repair mechanisms) appears. For a supplementary 

discussion reaching the same conclusion see ( Michor et al., 2006 ). 

However, for the case of all cancerous stem cells to be completely 

eliminated 20 years of treatment may be needed. In fact, due to 

the detection limit, one can never be sure that the cancer is com- 

pletely eradicated. A detection limit of 1% of 10 10 mature cells (or 

10 4 stem cells) corresponds to 10 8 mature cells (or 100 stem cells). 

Thus, to guarantee an eradication the malignant stem cells requires 

a detection limit lower than 0.01%. However, T-cell therapy may be 

suitable in combination with other treatment. 

In the groundbreaking work by Kuznetsov and Knott (2001) and 

Kuznetsov and Makalin (1994) , the intrinsic dynamics of the cells 

themselves was not considered, but was simply taken as logistic 

growths independent of the other cell types. In contrast to this, 

we describe the common dynamics of all cell types based on the 

underlying biological mechanisms. We include the effect of can- 

cerous cells on normal cells and vice versa, their interaction with 

the dead cells, the dead cells interaction with the immune system, 

the interaction of the immune system with the replication of (liv- 

ing) cells, and specifically the interaction between cancerous cells 

and the adaptive immune system, mediated by T-cells and other 

killer cells. In this way the presented model deviates from the 

general models in ( Arciero et al., 2004; Baker et al., 2013; Borges 

et al., 2014; Cosentino and Bates, 2012; De Pillis et al., 2005; Dun- 

ster et al., 2014; Hanson et al., 0 0 0 0; Herald, 2010; Katak, 2014; 

Kirschner and Panette, 1998; Moore and Li, 2004; Nanda et al., 

20 07; Nielsen, 0 0 0 0; Nielsen et al., 2013; Pillis et al., 2006; Pil- 

lis and Radunskaya, 2003; Saleem and Agrawal, 2012; Sarkar and 

Banerjee, 2005 ). Thus co-existing states are explicitly shown to 

be possible as it is shown how such states depends on the im- 

portant parameters, i.e. inflammatory load and the two relevant 

death rates. It is shown that in case resistance is considered, this 

co-existing state is merely a dormancy state and ultimately de- 

velops into the full blown cancer state. It is interesting that our 

mechanism-based multi-cell model confirms previous conclusion 

that immunotherapy does not completely eradicate malignant cells 

predicted by Kuznetsov and Knott (2001) . This is an important sub- 

ject as pointed out by Dingli and Michor (2006) . 

Besides having a strengthening effect on the effector cells, 

interferon- α also affects other parts of the cancer-immune system 

in a constructive synergistic way, which may make the treatment 

even more effective. A full discussion of how various treatments 
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affect blood cancer and treatment optimization will be addressed 

in subsequent papers. 

Appendix A. Dimensionless form of six dimensional model 

Formulating equations on dimensionless form may reduce the 

number of free parameters by grouping the original parameters 

into clusters of parameters, the dimensionless parameters. Simul- 

taneously the dimensionless form may suggest a model reduction 

using Fenichel theory from geometric singular perturbation theory 

( Kuehn, 2015 ). 

All variables in Eqs. (1) and (2) are scaled by a constant hav- 

ing the unit of the variable, if any, and it is denoted with same 

symbol as the variable, but with a bar above. Likewise, the corre- 

sponding dimensionless variable is denoted with the correspond- 

ing capital letter and with index as the original symbol. Thus we 

put x 0 = x 0 X 0 , x 1 = x 1 X 1 , y 0 = y 0 Y 0 , y 1 = y 1 Y 1 , a = a A, s = s S, and 

t = t T , with X 0 , X 1 , Y 0 , Y 1 , A, S , and T , the dimensionless variables 

and x 0 , x 1 , y 0 , y 1 , a , s , and t the scaling constants carrying the di- 

mensions. Hence the extended model of the differential system in 

(1) and (2) in the new dimensionless variables reads, 

X 0 
′ = t 

(
s r x 

S 

1 + (c xx x 0 X 0 + c xy y 0 Y 0 ) 
− d x 0 − a x 

)
X 0 (A.1a) 

X 1 
′ = t 

(
x 0 
x 1 

a x A x X 0 − d x 1 X 1 

)
(A.1b) 

Y 0 
′ = t 

(
s r y 

S 

1 + (c yx x 0 X 0 + c yy y 0 Y 0 ) 
− d y 0 (Y 0 ) − a y 

)
Y 0 (A.1c) 

Y 1 
′ = t 

(
y 0 
y 1 

a y A y Y 0 − d y 1 Y 1 

)
(A.1d) 

A 

′ = t 

(
d x 0 

x 0 
a 

X 0 + d y 0 (Y 0 ) 
y 0 
a 

Y 0 + d x 1 
x 1 
a 

X 1 + d y 1 
y 1 
a 

Y 1 − e a s AS 

)
(A.1e) 

S ′ = t 

(
r s 

a 

s 
A − e s S + 

I 

s 

)
(A.1f) 

putting the mutation rate r m 

to zero and where d y 0 (Y 0 ) = 

ˆ d y 0 + 

˜ d y 0 y 0 · Y 0 . Here prime denote the derivative with respect to the di- 

mensionless time variable T . To simplify the hematopoietic steady 

state E H+ in Eq. (3) , as much as we can, we choose 

s = 

d x 0 + a x 

r x 
∼ 1 (A.2a) 

a = 

e s 

r s 
s ∼ 10 

4 (A.2b) 

x 0 = 

1 

c xx 
∼ 10 

4 (A.2c) 

x 1 = 

a x A x 

c xx d x 1 
∼ 10 

11 (A.2d) 

y 0 = 

1 

c yy 
∼ 10 

4 (A.2e) 

y 1 = 

a y A y 

c yy d y 1 
∼ 10 

11 (A.2f) 

t = 

1 

d x 0 + a x 
∼ 10 

3 day (A.2g) 

where the order is stated after the ∼ symbol based on the default 

parameter values in Table 1 . These values are in accordance with 

those reported in the literature where they are estimated to obtain 

observed cell counts, see ( Gentry and Jackson, 2013; Haeno et al., 

2009a; Stiehl et al., 2015 ). In addition, we have used 700 as a nor- 

mal number of dead cells. For further details see ( Andersen et al., 

2017 ). Hence, system (A.1) becomes 

X 0 
′ = 

( 

S 

1 + (X 0 + 

c xy 

c yy 
Y 0 ) 

− 1 

) 

X 0 (A.3) 

Y 0 
′ = 

(
r y 

r x 

S 

1 + ( 
c yx 

c xx 
X 0 + Y 0 ) 

− d y 0 (Y 0 ) + a y 

d x 0 + a x 

)
Y 0 (A.4) 

ε1 X 1 
′ = ( X 0 − X 1 ) (A.5) 

ε1 Y 1 
′ = 

d y 1 
d x 1 

( Y 0 − Y 1 ) (A.6) 

ε2 S 
′ = 

(
A − S + 

I 

e s s 

)
(A.7) 

ε2 ε3 A 

′ = ( b x 0 X 0 + b y 0 (Y 0 ) Y 0 + b x 1 X 1 + b y 1 Y 1 − AS ) (A.8) 

where ε1 = 

r x 
d x 1 

s ∼ 10 −5 , ε2 = 

r x 
e s 

s ∼ 10 −3 ε3 = 

e s 
e a s 

∼ 10 −10 , 

b x 0 = d x 0 
x 0 t 
s a 

d x 0 + a x 
e a 

∼ 10 −13 , b x 1 = d x 1 
x 1 t 
s a 

d x 0 + a x 
e a 

∼ 10 −1 , b y 0 = 

( ̂  d y 0 + 

˜ d y 0 y 0 ) 
y 0 t 
s a 

d x 0 + a x 
e a 

∼ 10 −13 , and b y 1 = d y 1 
y 1 t 
s a 

d x 0 + a x 
e a 

∼ 10 −1 . 

In addition 

d y 1 
d x 1 

∼ 1 , 
c xy 

c yy 
∼ 1 , 

r y 
r x 

∼ 1 , 
d y 0 + a y 
d x 0 + a x 

∼ 1 , and 

1 
e s s 

∼ 1 −1 . 

We emphasize that the dimensionless variable X 0 , X 1 , Y 0 , Y 1 , S 

and A are all of the same order, since each are normalized by their 

‘maximal carying capacity’. 

A1. The reduced extended model - the reduced Cancitis model 

The system is initially close to the unstable hematopoietic 

steady state and the development of MPNs is slow, thus we are 

interested in the reduced system. A naive QSSA may be performed 

but since several time scales are involved one should be careful. 

By Fenichel theory the Eqs. (A .3 –A .8) involving small epsilon terms 

may be studied in the limit of vanishing left hand sides, whereby 

we obtain the reduced Cancitis model, i.e. the slow manifold ap- 

proximation. Thus from Eq. (A .5 –A .6) we obtain the algebraic rela- 

tions, 

X 1 = X 0 , (A.9a) 

Y 1 = Y 0 . (A.9b) 

Using this in Eq. (A.8) gives 

ε4 A 

′ = ( 2 B x X 0 + 2 B y Y 0 − AS ) (A.10a) 

with ε4 = ε2 ε3 ∼ 10 −13 , 2 B x = b x 0 + b x 1 ≈ b x 1 ∼ 10 −1 , and 2 B y = 

b y 0 + b y 1 ≈ b y 1 ∼ 10 −1 . Thus we will consider B y to be independent 

of Y 0 in what follows. 

Thus, from Eq. (A.7) and (A.10a) , 

S = J ±
√ 

J 2 + 2 B x X 0 + 2 B y Y 0 ≡ S ± (A.11) 

where only S + is non-negative allowing us to disregard the possi- 

bility of S = S − in what follows and thus by substituting S + from 

Eq. (A.11) into the right hand side of Eq. (A.7) and putting this 

equal to zero we get, 

A = 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 (A.12) 

which is always non-negative and where J = 

I 
2 e s s 

. 
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Hence, the reduced Cancitis model becomes a closed system in 

X 0 and Y 0 , 

X 0 
′ = 

( 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + X 0 + C y Y 0 
− 1 

) 

X 0 (A.13a) 

Y 0 
′ = 

( 

R 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 

1 + C x X 0 + Y 0 
− D 0 − D 1 Y 0 

) 

Y 0 (A.13b) 

where R = 

r y 
r x 

, D 0 = 

ˆ d y 0 + a y 
d x 0 + a x 

, D 1 = 

˜ d y 0 y 0 
d x 0 + a x 

, C x = 

c yx 

c xx 
, and C y = 

c xy 

c yy 
. The 

default dimensionless parameter values are listed in Table 2 and 

we note that all values are of order one. Note, the reduced model 

involves 8 parameters (including J ) where D 1 describe the strength 

of the Y 0 dependent elimination term in dimensionless form. We 

emphasize the local existence and uniqueness of solution in the 

non-negative octahedron. Subsequently we will focus on the im- 

pact of the dimensionless inflammatory stimuli J . 

Appendix B. Derivations of admissible Steady states 

From Eq. (10a) the hematopoietic steady state F H = (X 0 , 0) ex- 

ist if and only if 

J + 

√ 

J 2 + 2 B x X 0 = 1 + X 0 , (B.1) 

i.e. if and only if √ 

J 2 + 2 B x X 0 = X 0 + 1 − J. (B.2) 

Disregarding the possibility of double roots a solution exist if and 

only if J < X 0 + 1 (which have to be checked subsequently) given 

by, 

X 

2 
0 − 2(J + B x − 1) X 0 − (2 J − 1) = 0 , (B.3) 

i.e. 

X 0 = (J + B x − 1) ±
√ 

(J + B x − 1) 2 + (2 J − 1) (B.4a) 

= (J + B x − 1) ±
√ 

(J + B x ) 2 − 2 B x . (B.4b) 

These roots are real if and only if J ≥ −B x + 

√ 

2 B x , a trivial 

statement for B x > 2 or J > 

1 
2 , which is not the case for the default 

parameters. 

Putting J H, 1 = 

1 
2 and J H, 2 = 1 − B x we may rewrite Eq. (B.3) as, 

X 

2 
0 − 2(J − J 2 ) X 0 − 2(J − J 1 ) = 0 , (B.5a) 

Applying Descartes’ rule of signs gives that X 0+ > 0 if and only 

if J > min { J 1 , J 2 } ( = 

1 
2 for default parameter values) and X 0 − > 0 if 

and only if J 2 < J < J 1 , requiring B x > 

1 
2 (which is not the default 

case). 

The earlier condition J < X 0 + 1 may be examined and is equiv- 

alent to requiring, 

∓
√ 

(J + B x ) 2 − 2 B x < B x , (B.6a) 

which is trivially fulfilled for X 0+ . For X 0 −, this gives 

J < J 0 ≡ −B x + 

√ 

B 

2 
x + 2 B x , (B.7) 

since J is restricted to be positive for physiological reasons. 

Hence, F H+ is admissible if and only if J > min { J 1 , J 2 } ( = 

1 
2 for 

default parameter values) while F H− is admissible if and only if 

−B x + 

√ 

2 B x < J < −B x + 

√ 

B 

2 
x + 2 B x (B.8a) 

and 

1 − B x < J < 

1 

2 

(B.9a) 

i.e. if and only if 

−B x + 

√ 

2 B x < J < 

1 

2 

and B x > 

1 

2 

, (B.10a) 

which is not in accordance with the default parameter values, 

meaning that in realistic cases only F H+ may be admissible. 

The Purely leukemic steady states are the solutions of 

g(Y 0 , J) = 0 with 

g(Y 0 , J) = R 

J + 

√ 

J 2 + 2 B y Y 0 

1 + Y 0 
− D 0 − D 1 Y 0 , (B.11) 

where g is increasing with J . Inserting Y 0 = 0 give 

J crit = 

1 

2 

D 0 

R 

. (B.12) 

As g ( y, J ) is increasing in J, g (0, J ) > 0 for J > J crit . For any fixed J, g ( y, 

J ) < 0 for y sufficiently large. Since g is continuous, the intermediate 

value theorem ensures that for any fixed J > J crit there exists a y 

satisfying g(y, J) = 0 i.e. a solution exists to (B.11) . 

Solutions of (B.11) are roots in the fourth order polynomial 

α1 Y 
4 

0 + α2 Y 
3 

0 + α3 Y 
2 

0 + α4 Y 0 + α5 = 0 , (B.13) 

with the constraint (
D 0 

R 

+ 

D 1 

R 

Y 0 

)
(Y 0 + 1) > J, (B.14) 

where 

α1 = 

(
D 1 

R 

)2 

(B.15a) 

α2 = 2 

D 1 

R 

(
D 1 

R 

+ 

D 0 

R 

)
(B.15b) 

α3 = 

(
D 0 

R 

)2 

+ 

(
D 1 

R 

)2 

+ 2 

D 1 

R 

(
2 

D 0 

R 

− J 

)
(B.15c) 

α4 = 2 

((
D 0 

R 

− J 

)(
D 0 

R 

+ 

D 1 

R 

)
− B y 

)
(B.15d) 

α5 = 

D 0 

R 

(
D 0 

R 

− 2 J 

)
. (B.15e) 

Note that α1 > 0, α2 > 0. For large J, α3 , α4 , α5 are all negative 

so by Descartes’ rule of sign there is exactly one positive root to 

the polynomial in this case showing that a leukemic steady state 

is inevitable for large inflammatory stimuli J . 

Consider now B y < 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
. The coefficients α3 , α4 , α5 

change sign once with increasing J . The root J L , 5 of α5 ( J ) being 
1 
2 

D 0 
R , is smaller than the root J L , 4 of α4 ( J ), which again is smaller 

than the root J L , 3 of α3 ( J ). This implies that as α5 crosses zero a 

unique leukemic steady state is generated and it persists for any 

larger J values as there is exactly one sign change in the coef- 

ficients of the polynomial for any J > 

1 
2 

D 0 
R . Solving α5 = 0 gives 

(B.12) . Thus the leukemic steady state emerges at Y 0 = 0 for J = J crit . 

For B y > 

1 
2 

D 0 
R 

(
D 0 
R + 

D 1 
R 

)
, then α3 remains positive for J > J L , 4 

while α4 and α5 behave like in the previous case. Contrary to the 

previous case there exists a J between J L , 4 and J L , 5 such that α4 < 0 

and α5 > 0. Hence, there are two sign changes in the coefficients of 

the polynomial, which indicate 0 or 2 roots. As J is increased such 

that α5 < 0 there is one sign change in the coefficients for all larger 

values of J . 

The criterion α5 > 0 thus guarantees a unique, positive root to 

(B.13) . Since at least one solution to (B.11) exists in this case, the 

root of the polynomial must satisfy (B.11) . 

As the polynomial on the left hand side of (B.13) is decreasing 

in J and the unique root for J > 

1 
2 

D 0 
R occurs with a positive slope, 
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an increase in J must increase the value of the root i.e. Y 0 L ( J ) is 

increasing for any J > 

1 
2 

D 0 
R . 

Notice, putting g = 0 in Eq. (B.11) is equivalent to Eq. (B.18) with 

X 0 = 0 . Thus the leukemic steady state and the co-existing steady 

state are equal for X 0 = 0 . By implicit function theorem it follows 

that for Y 0 ≥ Y 0 L the derivative of X 0 = X 0 (Y 0 ) with respect to Y 0 is 

positive corresponding to an increasing steady state trajectory in J . 

From Eq. (10) co-existing steady states F C = (X 0 , Y 0 ) having 

positive components exist if and only if 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 = 1 + X 0 + C y Y 0 (B.16) 

and 

J + 

√ 

J 2 + 2 B x X 0 + 2 B y Y 0 = (1 + C x X 0 + Y 0 ) 
(

D 0 

R 

+ 

D 1 

R 

Y 0 

)
. (B.17) 

Assuming solutions exist the equations are equivalent to, 

1 + X 0 + C y Y 0 = 

(
D 0 

R 

+ 

D 1 

R 

Y 0 

)
(1 + C x X 0 + Y 0 ) (B.18) 

and √ 

J 2 + 2 B x X 0 + 2 B y Y 0 = 1 + X 0 + C y Y 0 − J. (B.19) 

Disregarding the possibility of double roots a solution exist if and 

only if 

1 + X 0 + C y Y 0 > J, (B.20) 

and 

(1 + C x X 0 + Y 0 ) 
(

D 0 

R 

+ 

D 1 

R 

Y 0 

)
> J, (B.21) 

which have to be checked subsequently. 

Isolating X 0 in (B.18) 

X 0 = 

( 1 + Y 0 ) 
(

D 0 
R 

+ 

D 1 
R 

Y 0 
)

− C y Y 0 − 1 

1 − C x 
(

D 0 
R 

+ 

D 1 
R 

Y 0 
) (B.22) 

for non-vanishing denominator and substituting it into (B.19) gives 

the fourth order polynomium in Y 0 , 

η0 Y 
4 

0 + η1 (J − J C, 1 ) Y 
3 

0 + η2 (J − J C, 2 ) Y 
2 

0 

+ η3 (J − J C, 3 ) Y 0 + η4 (J − J C, 4 ) = 0 . (B.23) 

where 

η0 = −
(

D 1 

R 

)2 

(C x C y − 1) 2 (B.24) 

η1 = −2 

D 1 

R 

(
C x 

D 1 

R 

− C 2 x C y 
D 1 

R 

)
(B.25) 

η2 = 

(
(4 

D 0 D 1 

R 

2 
C y + 2 

D 

2 
1 

R 

2 
) C 2 x 

+(−2 

D 

2 
1 

R 

2 
− 2 

D 1 

R 

C y − 4 

D 0 D 1 

R 

2 
) C x + 2 

D 1 

R 

)
(B.26) 

η3 = 

(
(2 C y 

D 

2 
0 

R 

2 
+ 4 

D 0 D 1 

R 

2 
) C 2 x + (−2 C y 

D 0 

R 

− 2 

D 

2 
0 

R 

2 
− 4 

D 0 D 1 

R 

2 
) C x 

+(−2 

D 1 

R 

) C x + 2 

(
D 0 

R 

+ 

D 1 

R 

))
(B.27) 

η4 = 

(
(2 

D 

2 
0 

R 

2 
) C 2 x + (−2 

D 

2 
0 

R 

2 
− 2 

D 0 

R 

) C x + 2 

D 0 

R 

)
(B.28) 

and 

J C, 1 = 

1 

η1 

((
−2 C 2 y 

(
D 0 

R 

)
+ B y 

(
D 1 

R 

)
− 2 C y 

(
D 1 

R 

))
C 2 x 

+ 

(
2 

(
D 1 

R 

)
+ 2(2 D 0 + D 1 ) 

C y 

R 

− B x 
D 1 

R 

)
C x + 

2 

R 

(D 0 + D 1 ) 
)

(B.29) 

J C, 2 = 

1 

η2 

(
(C 2 y 

(
D 0 

R 

)2 

+ 2 

D 0 D 1 

R 

2 
(2 C y − B y ) + 

D 

2 
1 

R 

2 
) C 2 x 

+ 

(
D 

2 
1 

R 

2 
(B x − 2) − 2 C y 

D 

2 
0 

R 

2 
− D 1 

R 

(C y B x − 2 B y ) 

)
C x 

)

+ 

1 

η2 

(
D 0 D 1 

R 

2 
(2 B x −4 C y −4) C x −D 1 

R 

B x + 4 

D 0 D 1 

R 

2 
+ 

1 

R 

2 
(D 

2 
0 + D 

2 
1 ) 

)
(B.30) 

J C, 3 = 

1 

η3 

(
D 

2 
0 

R 2 
(2 C y − B y ) + 2 

D 0 D 1 

R 2 

)
C 2 x 

+ 

(
D 0 

R 
(−B x C y + 2 B y ) −

D 

2 
0 

R 2 
(−B x + 2 C y + 2) − D 0 D 1 

R 2 
(−2 B x + 4) 

)
C x 

− 1 

η3 

((
D 1 

R 
B x 

)
C x −

(
D 0 

R 
+ 

D 1 

R 

)
B x + B x C y −B y + 2 

D 0 

R 2 
(D 0 + D 1 ) 

)
, 

(B.31) 

J C, 4 = 

1 

η4 

(
D 

2 
0 

R 2 
C 2 x −

(
2 

D 

2 
0 

R 2 
+ 

D 0 

R 
B x − B x 

D 

2 
0 

R 2 

)
C x − D 0 

R 
B x + B x + 

D 

2 
0 

R 2 

)
. 

(B.32) 

For default values of parameters, Eq. (B.23) becomes 

8 . 72 · 10 

−6 Y 4 0 − 3 . 68 · 10 

−3 (J + 0 . 61) Y 3 0 

+4 . 39 · 10 

−2 ( J + 1 . 06) Y 2 0 + ( J − 0 . 71) Y 0 − 4( J − 0 . 27) = 0 . 

(B.33) 

From the default parameters it follows that 

J C , 2 < J C , 1 < 0 < J C , 4 < J C , 3 < J and by Descartes’ rule of sign there 

exists one or three positive and real root if and only if J > J C 4 . From 

numeric considerations it follows that the number of positive 

Y 0 -roots are three. However, two of these cause X 0 to be negative 

in accordance with Eq. (B.20 –B.21) . Thus exactly one co-existing 

steady state exist. 
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Abstract
Treatment with PEGylated interferon-alpha2 (IFN) of patients with essential throm-
bocythemia and polycythemia vera induces major molecular remissions with a re-
duction in the JAK2V617F allele burden to undetectable levels in a subset of patients. 
A favorable response to IFN has been argued to depend upon the tumor burden, 
implying that institution of treatment with IFN should be as early as possible after the 
diagnosis. However, evidence for this statement is not available. We present a thor-
ough analysis of unique serial JAK2V617F measurements in 66 IFN-treated patients 
and in 6 untreated patients. Without IFN treatment, the JAK2V617F allele burden 
increased exponentially with a period of doubling of 1.4 year. During monotherapy 
with IFN, the JAK2V617F allele burden decreased mono- or bi-exponentially for 33 
responders of which 28 patients satisfied both descriptions. Bi-exponential descrip-
tion improved the fits in 19 cases being associated with late JAK2V617F responses. 
The decay of the JAK2V617F allele burden during IFN treatment was estimated to 
have half-lives of 1.6  year for the monoexponential response and 1.0  year in the 
long term for the bi-exponential response. In conclusion, through data-driven analy-
sis of the JAK2V617F allele burden, we provide novel information regarding the 
JAK2V617F kinetics during IFN-treatment, arguing for early intervention.
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1 |  INTRODUCTION

The classic Philadelphia chromosome-negative chronic my-
eloproliferative neoplasms (MPNs) encompass essential 
thrombocythemia (ET), polycythemia vera (PV), and pri-
mary myelofibrosis (PMF), including early prefibrotic my-
elofibrosis. These neoplasms arise due to an acquired stem 
cell insult with ensuing clonal myeloproliferation in the bio-
logical continuum from the early cancer stages (ET and PV) 
to the advanced myelofibrosis stage1 and ultimately leukemic 
transformation.2,3

Molecular markers for MPNs include JAK2V617F, 
CALR -and MPL-mutations. These mutations are the so-
called driver mutations whereas additional mutations 
(e.g., ASXL1, TET2) are frequently recorded in the more 
advanced disease stages with severe myelofibrosis.4-12 
The JAK2V617F mutation associates with laboratory (he-
moglobin level, leukocyte count, platelet count, CD34+ 
count, serum lactic dehydrogenase, and in vivo granulo-
cyte and platelet activation) and clinical (pruritus, throm-
bosis, spleen size) outcomes8,13-25 and prognosis.13,17 
Accordingly, a new concept of these diseases as a biolog-
ical continuum from ET over PV to PMF has emerged, 
implying the JAK2V617F mutational load to reflect the 
tumor burden as assessed by a rising leukocyte count 
and increasing splenomegaly during disease progression 
toward myelofibrotic and leukemic transformation.26 
However, this hypothesis on the biological continuum is 
still being debated.

Interferon-alpha2 (IFN) has been used in the treatment 
of MPNs for about 30 years and several studies have con-
vincingly demonstrated that this agent is safe and highly 
efficacious in normalizing elevated cell counts.27-52 Indeed, 
prolonged treatment (about 5 years) may be followed by poly-
clonal hematopoiesis, normalization of the bone marrow and 
low-burden JAK2V617F in a subset of patients, even being 
sustained for 2-3 years after discontinuation of IFN.36,48

These highly encouraging results have been the focus 
of increasing interest, since we may enter a new era with 
“Minimal Residual Disease” (MRD) as a novel treatment 
goal.36,44,48

Early treatment to reduce or eradicate the malignant 
clone is of paramount importance for achievement of MRD 
or cure in all cancers. However, in MPNs a “watch and 

wait” strategy is used in “low-risk” patients allowing the 
malignant clone to expand with the inherent risk of increas-
ing genomic instability, sub-clone formation, resistance 
to treatment and disease progression from the early can-
cer stages (ET and PV) to the advanced metastatic cancer 
stage—myelofibrosis with bone marrow failure and ulti-
mately leukemic transformation.

In recent years, the “watch and wait” strategy has been chal-
lenged by reports demonstrating the potential of IFN to induce 
MRD in an increasing number of patients.36,44,48 Furthermore, 
these studies also indicate that early treatment with IFN in-
creases the chance of sustained hematological and molecular 
remissions. However, evidence for this statement is lacking.

As noted above, changes in the JAK2V617F allele burden 
before and during IFN-treatment have been studied exten-
sively, whereas the time-scale kinetics of these changes still 
remain to be identified and described in detail.

In this study, we predict the JAK2V617F kinetics 
during IFN-treatment through data-driven analysis of serial 
JAK2V617F measurements in MPN patients receiving cy-
toreductive treatment with IFN only and patients being ob-
served without cytoreduction. Evidence for tumor burden 
reduction through early intervention with IFN is provided, 
thereby challenging the “watch and wait” strategy commonly 
applied to low-risk MPN patients.

2 |  METHODS

2.1 | Study design

2.1.1 | Prospective study

Data were obtained from two different study populations. 
JAK2V617F observations during PEGylated r-IFNα (IFN) 
monotherapy were obtained from 120 patients enrolled in the 
DALIAH trial (#EudraCT 2011-001919-31), which is an on-
going Danish multicenter prospective randomized open-label 
phase III clinical trial comparing IFN with hydroxyurea in MPN 
patients. Enrollment began in February 2012 and was com-
pleted in July 2015. Patients are followed for five years. The 
DALIAH trial was approved by the Danish Regional Science 
Ethics Committee and by the Danish Medicines Agency.

The clinical characteristics of the patients used in later 
analysis is shown in Table 1.

K E Y W O R D S

early treatment, essential thrombocythemia, interferon-alpha2, JAK2V617F kinetics, myeloproliferative 
neoplasms, polycythemia vera, primary myelofibrosis
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2.1.2 | Retrospective study

We retrospectively obtained information on JAK2V617F 
kinetics in six untreated (i.e., no cytoreductive therapy) 
MPN patients followed at the outpatient clinic at the 
Department of Haematology, Zealand University Hospital, 
Denmark. Four patients had previously received cytore-
ductive therapy with either r-IFNα-2a (Pegasys®) or 
r-IFNα-2b (PegIntron®) (n = 2) or monotherapy with both 
HU and r-IFNα-2a (n = 2) according to standard care, but 
had discontinued therapy due to intolerability (r-IFNα-2a: 
n  =  2, HU: n  =  2) and/or hematologic response in con-
cert with a low JAK2V617F allele burden (r-IFNα-2a: 
n = 1, r-IFNα-2b: n = 1). Patient (A) discontinued treat-
ment due to JAK2V617F < 1% for more than 1 year after 
r-IFNα-2b exposure and patient C discontinued r-IFNα-2a 
due to complete hematologic response in concert with a 
low JAK2V617F allele burden (6%). Two patients had not 
received any prior cytoreductive treatment. At the time of 
inclusion in the study all untreated patients had been off 

cytoreductive treatment for at least 0.5  months (median: 
1.2 month; range 0.5-5.3 months).

Patients were evaluated for enrollment when attending 
regular appointments between 1st of May 2018 and 15th of 
December 2018.

Written informed consent was provided from all patients 
according to the Declaration of Helsinki.

The clinical characteristics of the patients in the retrospec-
tive study are shown in Table 2.

2.2 | MPN diagnosis and eligibility

Eligibility criteria were age  ≥  18  years and a diagnosis of 
JAK2V617F positive Philadelphia chromosome negative 
MPN according the World Health Organization criteria.53 
Patients from the DALIAH trial were all newly diagnosed 
or previously phlebotomized only, and all had evidence 
of active disease at enrolment. Active disease was defined 
by a requirement for phlebotomy, WBC  >  10  ×  109/L or 

Characteristics

ET PV Pre-MF PMF Total

(n = 15) (n = 39) (n = 5) (n = 7) (n = 66)

IFN type (IFNα-2a/
IFNα-2b)

10/5 21/18 3/2 2/5 36/30

Age (y) 53 (43-64) 64 (52-69) 62 (59-65) 64 (51-65) 62 (51-67)

Gender, male 6 (40) 20 (51) 3 (60) 6 (86) 35 (53)

History of major 
thrombotic event

0 (0) 12 (31) 1 (20) 2 (29) 15 (23)

JAK2V617F allele 
burden (%)

15 (10-21) 44 (22-62) 35 (19-40) 51 (50-88) 37 (19-51)

Haematocrit (vol%) 44 (39-47) 55 (48-59) 45 (41-45) 49 (37-51) 49 (45-55)

Haemoglobin 
(mmol/L)

9.0 
(8.3-9.7)

11.4 (10.0-
12.3)

9.2 
(8.6-9.5)

9.6 
(7.2-10.2)

9.9 
(9.1-11.8)

Platelets (×109/L) 730 
(626-887)

538 
(343-670)

681 
(667-776)

460 
(351-611)

611 
(413-739)

White blood cells 
(× 109/L)

8.9 
(7.6-11.9)

9.9 
(8.4-13.2)

9.2 
(8.6-9.5)

10.8 
(5.5-17.4)

9.7 
(8.2-12.9)

Plasma lactate 
dehydrogenase 
(U/L)

193 
(164-210)

229 
(199-304)

281 
(181-342)

367 
(284-643)

222 
(189-308)

Splenomegaly 
(≥13 cm by US)

2/9 (22) 11/26 (42) 1/4 (25) 7/7 (100) 21/46 (46)

Disease-related 
symptomsa

8 (53) 24 (62) 1 (20) 3 (43) 36 (55)

Phlebotomy before 
enrolment

2 (13) 35 (90) 1 (20) 4 (57) 42 (64)

Low-risk diseaseb 10 (67) 13 (33) 1 (20) 3 (43) 27 (41)

Note: Data are median (IQR) and n (%)
aConstitutional symptoms, microvascular disturbances and pruritus 
bAge ≤ 60 y of age, platelets ≤ 1500 (×109/L) and no prior major thrombosis 

T A B L E  1  Prospective study. Baseline 
demographics and clinical characteristics 
of JAK2V617F positive patients from the 
DALIAH trial randomized to IFN. Only 
patients with four or more measurements of 
the JAK2V617F allele burden are included
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platelets  >  400  ×  109/L in the absence of infection or in-
flammation, hypermetabolic symptoms ie weight loss > 10% 
within 6 months, night sweats, low-grade fever for more than 
2  weeks without signs of infection, pruritus, splenomegaly 
with symptoms, or previous thrombosis.

Eligible patients from the outpatient clinic studied retro-
spectively off cytoreductive treatment have been described 
above.

2.3 | Intervention

DALIAH patients received monotherapy with either 
IFNα-2a or r-IFNα-2b subcutaneously once weekly at a start-
ing dose of 45 and 35 µg, respectively. Dose escalation was 
performed in a stepwise manner at pre-defined time points 
in the absence of a complete hematological response (i.e., 
WBC > 10 × 109/L or platelets > 400 × 109/L) after 4 and 
12 months and in the absence of a partial or complete molec-
ular response according to the 2009 European LeukaemiaNet 
(ELN) criteria54 after 8 and 18 months. However, the IFN 
dose was de-escalated by the treating physician to the high-
est tolerable dose in the event of drug-related toxicity. 
Toxicity was graded according to the Common Terminology 
Criteria for Adverse Events (CTCAE) version 4.0 and IFN 
was discontinued in the event of grade 4 events or recurrent 
grade 3 events (See Supplementary Material E).

2.4 | Molecular diagnosis and JAK2V617F

The JAK2V617F allele burden was accessed by a highly 
sensitive quantitative real-time polymerase chain reaction 
(qPCR) on DNA from peripheral blood,55 which has been as-
sessed as the European Reference Assay.56 In the DALIAH-
trial, JAK2V617F measurements were performed every three 

months the first year, once every six months the second year, 
and yearly thereafter until the end of the study. For patients 
followed in the outpatient clinic, the JAK2V617F allele bur-
den was assessed according to the physician’s decision. All 
patients with four or more JAK2V617F samples were eligible 
for data-driven analysis.

2.5 | JAK2V617F allele burden development 
in untreated patients

Due to the expanding nature of malignant cells, the 
JAK2V617F allele burden in untreated patients is expected to 
increase exponentially. Hence, it is reasonable to assume that 
an exponentially increasing function can be fitted to data and 
an exponential growth-rate for specific patients can be found.

To generalize from multiple patient-specific growth-
rates, we calculated the mean of the growth-rates, resulting 
in an expression of the growth on a population level. The ex-
pression describes the expected growth of the JAK2V617F 
allele burden in a larger population across multiple orders 
of magnitude, even if the estimate is made on a small sam-
ple of the population. Since the JAK2V617F allele burden 
varies at diagnosis, we shifted data in time such that the 
individual patient-specific fits coalesced with the popula-
tion-level growth-curve at the mean time of these observa-
tions. Data were then pooled into a single data-set, and the 
exponential growth was estimated, see Table S5. All growth 
rates were found with MATLAB R2018a, using the least 
square fitting method fit included in the curve fit toolbox.

Of the six patients available for this analysis, one was ex-
cluded since all measurements were ≥90%, and thus above 
the point at which the growth is expected to be exponential. 
Note that this patient is the single post-PV MF patient shown 
in Table 2. For two of the remaining patients, a low number of 
JAK2V617F measurements were available, due to which these 

Characteristics

ET PV Post-PV MF Total

(n = 1) (n = 4) (n = 1) (n = 6)

Age (y) 68 66 (59-70) 75 68 (59-75)

Gender, male 0 (0) 4 (80) 1 (100) 5 (83)

History of major thrombohe-
morrhagic event

0 (0) 3 (75) 0 (0) 3 (50)

Prior cytoreductive therapy 1 (100) 2 (50) 1 (100) 4 (67)

Hydroxyurea 1 (100) 0 (0) 1 (100) 2 (33)

r-IFNα-2a 1 (100) 1 (100) 1 (100) 3 (50)

r-IFNα-2b 0 (0) 1 (100) 0 (0) 1 (17)

Time off cytoreductive ther-
apy before first JAK2V617F 
measurement (months)

0.5 1.2 (0.6-1.8) 5.3 1.2 (0.5-5.3)

JAK2V617F allele (%) 6 6 (0.7-27) 93 8.5 (0.7-96)

T A B L E  2  Retrospective study. 
Baseline demographics and clinical 
characteristics of JAK2V617F patients 
from the outpatient clinic at the time of first 
JAK2V617F measurement
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were excluded in the initial part of the analysis. This leaves 
three remaining patients, referred to as patient A, B, and C.

2.6 | JAK2V617F allele burden development 
during IFN monotherapy

To describe the JAK2V617F development in IFN treated pa-
tients, two simple descriptive models were fitted to the time 
series measurements. The first model is that of a monoexpo-
nential decay, i.e., of the form Ae−αt (with A and α being posi-
tive constants and t the time from treatment onset), while the 
second model features a bi-exponential decay Be−βt  −  Ce−γt 
(With B, C, β and γ being positive constants and t the time from 
treatment onset) with the requirement that the slope at treat-
ment onset is equal to the slope found for the monoexponential 
growth. This reduces the number of independent parameters 
from four to three. The bi-exponential model can be considered 
an extension of the mono-exponential model with the bi-expo-
nential model describing a similar response but allowing for an 
initial JAK2V617F increase before the decay starts.

Since the bi-exponential model has three parameters, pa-
tients with three or less JAK2V617F measurements were ex-
cluded. This reduced the number of datasets available from 
120 to 66. We identified how well the models fit data by the 
adjusted R2-value, as described in supplementary material A. 
Thus, fits with an adjusted R2-value below a threshold of 0.6 
were excluded from further analysis. The analysis for each of 
the two models was done independently.

3 |  RESULTS

3.1 | JAK2V617F allele burden development 
in untreated patients

Raw data used to estimate the JAK2V617F allele burden devel-
opment in untreated patients are depicted in Figures S72-S76.

Three patients (A, B and C) received IFN treatment up to 
the date of the initial measurement.

After IFN discontinuation, there was an initial delayed 
response in the JAK2V617F allele burden of approxi-
mately 200  days. Only data after the initial delayed re-
sponse were used to determine the growth-rates. Data are 
illustrated in Figure 1 as well as the least-square fits of 
mono-exponential growth to the data, with 95% predic-
tion intervals.

An exponential growth-rate implies a constant period 
of doubling. The periods of doubling found for patients A, 
B, and C are shown in Table S5, along with confidence 
intervals.

By pooling the data together, a new fit was made, 
yielding a general expression for the growth at population 
level. The resulting population level expression is shown in 
Figure 2 along with the pooled data and data for the two ad-
ditional datasets which had only few JAK2V617F measure-
ments. The additional datasets were timeshifted such that 
the mean of the JAK2V617F allele burden coalesced with 
the growth curve at the mean day of the dataset. While the 
two additional patients were not included in the fitting pro-
cedure, the data did not falsify the population level growth 
of the pooled data.

The period of doubling of the pooled data was found 
as 1.4  years (CI: 1.2 to 1.7  years). This implies that the 
allele burden grows from 0.01% to 1% in 9.3 years, while 
the growth from 1% to 33% takes 7.1  years. Therefore, 
detecting the JAK2V617F allele burden ≤ 1% allows for 
a much longer time-window for detection and early thera-
peutic intervention before symptoms arise.

3.2 | JAK2V617F allele burden development 
during IFN monotherapy

All 66 eligible data-sets are depicted in the Figure S6 through 
S71.

F I G U R E  1  JAK2V617F allele burden 
development in untreated patients. Serial 
measurements for patients A, B and C with 
least-square fits of exponential growth 
with 95% prediction intervals. Fits were 
based only on data after the initial delayed 
response
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Patient-specific parameters for the fits, the goodness of 
the fits, and which model was the better descriptor are shown 
in Supplementary Material A.

To generalize the JAK2V617F kinetics, a threshold for 
the goodness-of-fit was chosen and estimates for the pop-
ulation-level parameters were found, see Supplementary 
Material B.

Fits of 28 patients were deemed satisfactory for both re-
sponse types (i.e., both mono- and bi-exponential). For 14 of 
these patients, the bi-exponential response was found to be 
the better fit for the patient data. Note that the goodness-of-fit 
measure chosen takes the complexity of the models into ac-
count, and as such the simpler monoexponential response was 
preferred when the models yielded almost identical results. 
Five additional patients had satisfactory fits for the bi-expo-
nential response type but not for the monoexponential. Thus, 
the bi-exponential model was the best fit for 19 patients.

The datasets for the remaining 33 patients either featured 
responses not following any of the models or had no decay 
in the JAK2V617F allele burden and are hence considered 
nonresponders in the context of molecular response.

The monoexponential model using the population decay-rate 
is shown in Figure 3, along with patient-data for the patients for 
whom the goodness-of-fits were above the threshold.

The population decay rates found for the monoexponential 
model corresponded to a half-life of 575 days, or 1.6 years. 
(95% CI of the decay rates yields half-lives between 0.8 and 
11.6 years).

For the monoexponential decay, the development was the 
same across all orders of magnitude, allowing for a single 
representative figure, Figure 3. Although the bi-exponential 
model features an initial growth depending on the starting 
level, it has a long-term behavior which is approximately 
monoexponential. This long-term behavior corresponds to a 
half-life of 1 year (CI: 0.2-4.3 years).

3.3 | Comparison of JAK2V617F allele 
burden development during early and late IFN 
monotherapy

In silico treatment schemes can be considered using the 
population level models and the growth rates found. Figure 4  
displays the increase and decrease in JAK2V617F allele bur-
den, with initiation of IFN treatment 7, 8 and 9 years after the 
allele burden reached 1%. The figure shows both the mono-
exponential response as well as the bi-exponential response 
at population level.

F I G U R E  2  Exponential growth of the JAK2V617F allele burden. The top displays the exponential growth fit of the pooled data, while 
the bottom displays the relative residuals scaled with the size of allele burden. +-marks indicate the two patients with very few JAK2V617F 
measurements. The initial delayed response is included as dots. Each subject is depicted with a specific color. Two standard deviations around the 
mean of the scaled residuals are shown
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The figure suggests that the initial 6  months of IFN 
treatment are associated with minor or no decrease in the 
JAK2V617F allele burden for the bi-exponential response. 
However, after a year, the JAK2V617F allele burden decreases 
faster than for the monoexponential response. As such, the ef-
ficacy of the treatment in decreasing the JAK2V617FV allele 
burden may be difficult to determine within the first year.

From a specific baseline JAK2V617F allele burden, the 
population-level responses can be used to estimate the dura-
tion of treatment necessary to achieve a JAK2V617F allele 

burden of 1%. In Figure 5 the duration of treatment neces-
sary is illustrated, when treatment is initiated at a given 
JAK2V617F allele burden.

The monoexponential response features a longer treat-
ment period necessary than the bi-exponential response, 
when the initial JAK2V617F allele burden is greater than a 
few percent. As such, even if a patient has an initial increase 
in JAK2V617F allele burden as is the case for the bi-exponen-
tial response, 1% will be reached faster than if the response 
was monoexponential.

F I G U R E  3  Population-level decay rate. The population-level decay rate of the mono-exponential model is shown in black, with data for the 
29 patients with the best goodness-of-fits. Note that data were shifted in time such that the mean of the JAK2V617F allele burden coincides with the 
main curve at the mean day of measurement

F I G U R E  4  Prediction of JAK2V617F 
development during IFN treatment. 
JAK2V617F development over time 
estimated by either the mono-exponential or 
bi-exponential response (full lines: Mono-
exponential, dotted lines: bi-exponential), 
with simulated treatment starting at 7, 8 and 
9 y after 1% was reached

236



8 |   PEDERSEN Et al.

Figure 5 also includes a rough estimate of the total med-
ical expenses to IFN treatment (approximately $500 USD/
month) based on the JAK2V617F allele burden at treatment 
onset. While relapse after treatment is still possible, the fig-
ure illustrates that the total cost of IFN treatment increases 
with the JAK2V617F allele burden at treatment onset due 
to the need for longer treatment duration to reach a specific 
JAK2V617F target value.

3.4 | Time span of the JAK2V617F allele 
burden development

The growth of the JAK2V617F allele burden from 0.01% 
to 1% was found to span almost a decade, while further 
growth to 33% required approximately 7 years. If patients 
are screened for the JAK2V617F mutation on a regular 
basis, eg once every 10 years, a detection limit of 1% might 
miss the disease onset, since the JAK2V617F allele burden 
would exceed 33% before the next screening. Conversely, 
a detection limit of 0.01% could be expected to identify an 
allele burden below 1% during the 9.3-year period, or it may 
grow to 1.4% 10 years after an allele burden of 0.01%. This 
also emphasizes the importance of methods to quantify the 
JAK2V617F allele burden down to low levels, in particular 
below 1%.

Although exponential growth may not be expected 
for low numbers of cells, extrapolating back to the time 
at which the initial mutation appeared (i.e., an allele bur-
den corresponding to a single cell) yields a conservative 
estimate of the time span of the development before symp-
toms arise and MPN is diagnosed. The JAK2V617F al-
lele burden for patients diagnosed with PV has previously 
been estimated as 33% (CI: 20-40).57 We assume that the 

JAK2V617F allele burden in the peripheral blood and of 
the stem cells are similar. The total number of stem cells 
has been estimated to be between 11 200 and 22 400 cells,58 
which is of order 104. As such, an estimate of the allele 
burden at initial mutation is 10−4, ie one out of 104. This 
implies a total time from initial mutation to allele burden of 
33% of around 16.5 years (CI: 14.2-19.5 years). This esti-
mate of the timespan of MPN development is in agreement 
with the literature.59

Figure 6 shows the extrapolation from an allele burden 
of 33% backwards in time, with the growth-rate found. The 
estimate is highly dependent on the total number of stem 
cells. If another estimate of the number of stem cells is 

F I G U R E  5  Estimated cost of IFN 
treatment. Years of treatment necessary to 
reach a JAK2V617F allele burden of 1%, 
if treatment is initiated at the allele burden 
shown on the first axis. The approximate 
monetary cost of IFN treatment (estimated 
price: $500 USD/month) is also included

F I G U R E  6  Backwards extrapolation to onset of initial mutation. 
The growth rate (and confidence intervals in dotted black) extrapolated 
back in time from 33%. The dashed lines mark the limits of 10−3.5, 
10−4 and 10−5 as discussed in the text, in red, blue and yellow, 
respectively. Note the logarithmic y-axis
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used, the period before 33% is reached can be found from 
the graph, as well as the confidence intervals. Estimating 
a lower stem cell count of 300060 leads to an allele burden 
of 10−3.5 at initial mutation, and the time of development 
would be approximately 14 years. Similarly, estimating a 
stem cell count between 50 000 and 200 000 as in a most 
recent paper61 leads to an initial allele burden around 10−5, 
and consequently a timespan of 21 years for the develop-
ment of MPNs.

4 |  DISCUSSION

In recent years, the interest of using IFN in the treatment 
of MPNs has increased due to studies reporting long-term 
treatment with IFN to be associated with MRD in a sub-
set of patients as defined by sustained complete hemato-
logical remissions in concert with induction of low-burden 
JAK2V617F and normalization of the bone marrow.36,44,48 
Even in the IFN era of 2019 where several safety and ef-
ficacy studies have enrolled > 1000 patients during the last 
30 years, the MPN scientific community still recommends 
patients with low risk disease to be observed without any 
cytoreductive treatment. Using this “watch and wait” strat-
egy translation of common knowledge on cancer biology 
to MPNs is neglected, implying progression of any can-
cer without treatment. Early treatment with IFN has been 
claimed to be a prerequisite for obtaining remarkable re-
sults to prohibit clonal evolution before subclones and ad-
ditive mutations evolve.38,40,41,62-67

The present study delivers novel information regard-
ing the JAK2V617F kinetics during IFN-treatment based 
upon unique serial JAK2V617F measurements from the 
DALIAH trial. Through this description of the JAK2V617F 
kinetics, predictions about the development of disease for 
specific patients can be made. In untreated patients (i.e., 
without cytoreductive treatment), the JAK2V617F allele 
burden was demonstrated to grow exponentially with dou-
bling time of 1.4 years (CI: 1.2 to 1.7 years). During IFN 
treatment, the JAK2V617F development followed either a 
monoexponential or a bi-exponential decay for a signifi-
cant proportion of patients, with both models describing 
the development to a satisfactory extent for 28 patients. In a 
total of 33 patients, the bi-exponential response was found 
to be the better descriptor of the development when adjust-
ing for model complexity.

The individual JAK2V617F developments were com-
bined into two models of the development on a population 
level. The population-level model of the monoexponential 
decay showed a half-life of the JAK2V617F allele burden of 
1.6 years (CI: 0.8 to 11.6 years), while the long-term behavior 
of the bi-exponential decay displayed a half-life of 1 year (CI: 
0.2-4.3 years).

We emphasize that since these population-level models 
are based on a subset of patients who respond well to treat-
ment, the models do not necessarily generalize to all pa-
tients. Determining the development for the poor responders 
 remains an open problem as well as determining why there is 
a difference in the treatment response.

Analysis of the population-level responses suggests that 
treatment schemes should extend longer than one year, as 
the efficacy of IFN treatment on the JAK2V617F allele bur-
den cannot be determined after just one year. By comparing 
early and late treatment modalities, our results suggest that 
treatment outcome will improve if IFN therapy is initiated 
early, or will in any case lead to early identification of pa-
tient response type. Additionally, some patients had a sig-
nificantly slower response to treatment compared to other 
patients. For these slow-responders, our results show, that 
treatment should be initiated as early as possible, since a 
“watch and wait” strategy increases the time needed to ob-
tain responses drastically for each day spent watching and 
waiting.

We and others have argued against the “watch and wait” 
strategy in low-risk patients.38,40,41,62-67 Our study empha-
sizes the urgent need to rethink this approach and set new 
standards for treatment of patients with MPNs, imply-
ing normalization of cell counts in all patients using IFN 
from the time of diagnosis. In addition to the rationales 
provided by the results in our present study, several oth-
ers are supportive of the early-IFN-intervention concept. 
Thus, cancer biology in general dictates that any cancer 
steadily evolves over time with expansion of the malignant 
clone, increasing genomic instability, subclone formation 
and ultimately metastasis. Fortunately, MPNs are slowly 
growing neoplasms which have several transitional stages 
in the biological continuum from the earliest cancer stages 
(eg JAK2V617F and CALR mutations in the background 
population as clonal hematopoiesis of indeterminate po-
tential (CHIP)) to ET, PV, and the advanced cancer stage 
with myelofibrosis, bone marrow failure, and huge sple-
nomegaly before terminal leukemic transformation. During 
this MPN-biological continuum, the JAK2V617F mutation 
will steadily increase in those individuals who develop 
overt MPN in concert with an increase in the chronic in-
flammatory load that drives the malignant clone and likely 
fuels the development of additional mutations as well.64-67  
Thus, in this context, it is tempting to suggest that the total 
number of mutated cells present at any given time may 
be the driver of additive mutations. Indeed, the sum of 
the JAK2V617F allele burden over a period of time may 
provide a measure for the risk of additive mutations as it 
correlates with the number of mutated cells in the given 
the period. As shown in Supplementary Material C, this 
measure—as assessed by the JAK2V617F allele bur-
den—increases exponentially with the time spent without 
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treatment. Although speculative, this suggests that, after 
enough time has passed above a certain threshold, the po-
tential risk of additive mutations may have the same expo-
nential growth-rate (and thus the same period of doubling) 
as the growth of the JAK2V617F allele burden before treat-
ment is initiated. As such, although the exact risk cannot be 
determined, postponing treatment by 1.4 years will double 
the risk of an additive mutation. Further data-driven math-
ematical studies on this potential association are needed, 
including results from next generation sequencing in IFN-
treated JAK2V617F positive MPN-cohorts.

Treatment with IFN is associated with drop-out rates of 
20%-30% and in some studies even up to 40% due to toxic 
side effects.37-43 It has been speculated whether intolerance 
to IFN is also dependent upon disease stage, implying more 
toxic side effects in the advanced myelofibrosis stage and less 
so in the early disease stages. If so, evidence for exponential 
growth with doubling time of 1.4 years further undermines 
the “watch and wait" strategy and adds to the rationales of 
early treatment with IFN.

Our results deliver important information about treatment 
duration with IFN to obtain deep molecular remissions and 
long-lasting sustained remissions after drug discontinuation. 
The mathematical models presented serve as a novel plat-
form for predicting IFN response in individual patients. More 
advanced mechanism-based mathematical models are fore-
seen to allow for improved prediction and insight into IFN 
response.

Our study dictates that institution of IFN at the earliest 
time point possible may have important socio-economic 
implications as well. By minimizing the risk of compli-
cations (thrombosis, hemorrhages or cancer), a huge eco-
nomic burden due to hospitalizations is likely markedly 
reduced. Importantly, costs concerning rehabilitation after 
these complications are reduced as well. Another import-
ant consequence of early treatment with IFN is the outlook 
to achieve MRD and at this time point the possibility of 
discontinuation of IFN for several years (up to 3-5 years) 
when the patient is feeling healthy with normal cell counts. 
Of note, our study also suggests that early treatment with 
IFN is cost-effective, implying a shorter treatment period 
with IFN if treatment is instituted at the earliest time point 
possible.

Although our data are supportive of early intervention 
with IFN it is important to underscore that our data do not 
deliver the clinical proof for this early intervention recom-
mendation. This proof can only be delivered by the demon-
stration of reduction in clinically relevant end-points such 
as thrombotic events, rate of transformation to myelofibro-
sis and acute leukemia. Indeed, the demonstration of these 
hard end-points would require long-term follow up of large 
cohorts of patients treated with IFN and a well-designed 
control group. This study has never been reported and will 

likely never be reported in these orphan diseases, where 
randomized studies are so difficult to conduct - in particu-
lar with follow-up times of decades rather than for instance 
5 years, when taking into account that leukemic transfor-
mation in general is a late event, developing in the advanced 
myelofibrosis stage of MPNs. Importantly, the randomized 
Proud/Continuation-PV Phase III Trials showed RopegIFN 
(Besremi®) to be associated with a clear benefit over con-
trol (ie hydroxyurea) in achieving significant higher main-
tenance rates of complete hematological remission (CHR) 
over the course of treatment and in showing a significant 
lower risk of losing CHR. Since CHR can be considered as 
surrogate for risk of thrombosis, RopegIFN may be an opti-
mal treatment modality for managing risk of thrombosis.70

Our study has some limitations. Firstly, our estimate 
of the development of the JAK2V617F allele burden was 
based specifically on the data from three patients only (A, 
B, and C) and longitudinal JAK2V617F allele burden mea-
surements in more patients might have substantiated and 
strengthened our findings of an exponentially growing pat-
tern, which has not previously been described mathemat-
ically. Secondly, we did not include serial measurements 
of the JAK2V617F allele burden after discontinuation of 
hydroxyurea. Unfortunately, we have not such data in our 
cohort of patients. However, based upon current knowl-
edge on the kinetics of the leukocyte and platelet counts 
after a few days off hydroxyurea treatment, displaying 
rapid increases in the cell counts to pretreatment levels, it 
is reasonable to assume that the JAK2V617F allele burden 
might similarly increase after hydroxyurea discontinua-
tion. An increase in the JAK2V617F allele burden when 
treatment with hydroxyurea is terminated has been previ-
ously demonstrated.71

Third, although the findings in our study are supportive 
of early treatment with IFN, it does not deliver the defi-
nite proof, which would require a study, showing that early 
IFN-treatment from the time of diagnosis influences hard 
clinical end-points, such as risk of thrombosis and major 
bleeding, transformation to myelofibrosis and acute my-
eloid leukemia and ultimately survival. Hopefully, our 
DALIAH trial, from which our data in the present study 
have been retrieved, may provide such data within the next 
10-20 years.

In conclusion, data-driven analysis is a novel tool for pro-
viding further evidence for the concept of early intervention 
with IFN in MPNs. Our observations also emphasize that 
starting treatment early allows for identification of patient 
responses. Understanding the kinetics of the JAK2V617F 
allele burden is highly valuable in guiding future clinical 
decisions about IFN-treatment of the individual patient. In 
this context, our findings substantiate and put in perspec-
tive the urgent need of personalized medicine with IFN in 
MPN-patients.
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