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The Philadelphia-negative myeloproliferative neoplasms (MPNs) is a group of
blood cancers which include the diseases essential thrombocythemia (ET),
polychytemia vera (PV) and primary myelofibrosis (PMF). The concept of in-
flammation driving a biologically continuum of disease makes MPNs apt for
investigations through mathematical modelling, with promise of improved pa-
tient prognosis and advancements in treatment.

In this thesis, we describe and analyse three mechanism-based mathematical
models. All three models are described using systems of ordinary differential
equations (ODE). This is done in an effort to gain insight into blood cancers in
general and about a cohort of patients enrolled in the clinical trial “DALIAH”
in particular. The patients considered here were all diagnosed with MPNs and
treated with pegylated interferon-α (IFN) over a five year period.

The first model was proposed by Andersen et al. (2017) and describes the
connection between chronic inflammation and the progression of MPN. A model
extension considering IFN-dose scheduling shows good agreement between
the dynamics of the mathematical model and the behaviour observed in data.

A novel mathematical model of the hematopoietic stem cells (HSC) is pro-
posed. Mathematical analysis of the model suggests a notion of HSC fitness,
found to determine long-term competition between HSC clones within the
bone-marrow microenvironment.

We combine the two models into a single model describing both HSC-mecha-
nisms, blood-cell production and the effect of chronic inflammation on MPN
progression. Based on our model-based investigations, we hypothesize that
production of blood-cells is inhibited for both healthy and malignant clones on
a short time-scale, while malignant stem cells are substantially inhibited on
longer time-scales.

Finally, we present a proof-of-concept of how mathematical modelling cal-
ibrated to patient-measurements at diagnosis can make predictions on the
level of individual patients. We hypothesize that, with sufficient collection of
patient-data and model-calibration, mathematical modelling could be an im-
portant prognostic tool in the clinic in the near future, allowing for improved
treatment of MPNs using IFN.
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Abstract

The Philadelphia-negative myeloproliferative neoplasms (MPNs) is a group of blood cancers
which include the diseases essential thrombocythemia (ET), polychytemia vera (PV) and pri-
mary myelofibrosis (PMF). Evidence suggests that ET, PV and PMF are closely connected and
represent different stages along a biological continuum. In recent years, chronic inflammation
has been found to be an important driver of cancers in general and of the Philadelphia-negative
MPNs in particular. The concept of inflammation driving a biologically continuum of disease
makes MPNs apt for investigations through mathematical modelling, with promise of improved
patient prognosis and advancements in treatment.

In this thesis, we describe and analyse three mechanism-based mathematical models. All
three models are described using systems of ordinary differential equations (ODE). This is done
in an effort to gain insight into blood cancers in general and about a cohort of patients enrolled
in the clinical trial “DALIAH” in particular (EudraCT number: 2011-001919-31). The patients
considered here were all diagnosed with MPNs and treated with pegylated interferon-α (IFN)
over a five year period.

The first model was proposed by Andersen et al. (2017) and describes the connection between
chronic inflammation and the progression of MPN. A model extension allows us to relate patient-
specific IFN-dose scheduling with patient data of leukocyte-counts, thrombocyte-counts and
measurements of the JAK2V 617F allele burden, showing good agreement between the dynamics
of the mathematical model and the behaviour observed in data.

A novel mathematical model of the hematopoietic stem cells (HSC) is proposed. Mathe-
matical analysis of the model suggests a notion of HSC fitness, found to determine long-term
competition between HSC clones within the bone-marrow microenvironment. A model reduction
is deemed appropriate, and HSC fitness is found to be principal in the behaviour of the reduced
model as well.

We combine the two models into a single model describing both HSC-mechanisms, blood-cell
production and the effect of chronic inflammation on MPN progression. This combined model
can be used to investigate and simulate a wide range of scenarios, allowing us to make novel
hypotheses about the behaviour of HSC and the entire hematopoietic system. In particular, we
are able to interpret the effect IFN-treatment has on MPN-diagnosed patients, by relating the
model to data of individual patients. For the IFN-treated MPN patients of the DALIAH trial, we
observed a difference in the time-scale of the response of blood-cell counts and of the JAK2V 617F

allele burden. Based on our model-based investigations, we hypothesize that this difference in
response is due to a two-fold effect of IFN: Production of blood-cells is inhibited for both healthy
and malignant clones on a short time-scale, while malignant stem cells are substantially inhibited
on longer time-scales.

Finally, we present a proof-of-concept of how mathematical modelling calibrated to patient-
measurements at diagnosis can make predictions on the level of individual patients. We hy-
pothesize that, with sufficient collection of patient-data and model-calibration, mathematical
modelling could be an important prognostic tool in the clinic in the near future, allowing for
improved treatment of MPNs using IFN.



Resumé (Abstract in danish)

De Philadelphia-negative myeloproliferative neoplasier (MPN) dækker over en gruppe af blod-
cancere der inkluderer sygdommene essentiel trombocytose (ET), polycytæmi vera (PV) og
primær myelofibrose (PMF). Forskning tyder p̊a at ET, PV og PMF er tæt forbundet og
repræsenterer forskellige stadier langs et biologisk kontinuum. I de seneste år er kronisk in-
flammation blevet foresl̊aet som afgørende for udviklingen af cancersygdomme generelt og for
Philadelphia-negative MPN i særdeleshed. Konceptet om at kronisk inflammation styrer et bi-
ologisk kontinuum af sygdomme gør MPN til en oplagt gruppe af sygdomme at undersøge ved
hjælp af matematisk modellering, med h̊ab om forbedret patientprognose og videreudvikling af
behandling.

I denne afhandling beskrives og analyseres tre mekanisme-baserede matematiske modeller.
Alle tre modeller beskrives ved brug af ordinære differentialligninger (ODE). Dette gøres i et
forsøg p̊a at opn̊a indsigt om blodcancere generelt og om en kohorte af patienter fra det kliniske
forsøg “DALIAH” specifikt (EudraCT ID: 2011-001919-31). Patienterne der her tages i betragt-
ning, blev alle diagnosticeret med MPN og blev behandlet med pegyleret interferon-α (IFN) over
en fem-̊arig periode.

Den første model blev oprindeligt beskrevet af Andersen et al. (2017) og beskriver forbindelsen
mellem kronisk inflammation og udviklingen af MPN. En modeludvidelse gives os muligheden for
at relatere patient-specifik timing af IFN-dosis til patient data for leukocyt-tal, thrombocyt-tal
samt målinger af JAK2V 617F allelbyrde, hvilket viser god overenstemmelse mellem dynamikken
af den matematiske model og opførslen der observeres i data.

En ny matematisk model af hematopoitiske stamceller (HSC) præsenteres. Matematisk ana-
lyse af modellen leder til et udtryk for HSC fitness, der er afgørende for den lang-sigtede konkur-
rence mellem HSC-kloner i knoglemarven. Det vurderes at en model reduktion er passende, og
HSC fitness viser sig ogs̊a at være afgørende for opførslen af den reducerede model.

Vi kombinerer de to modeller til en samlet model der beskriver b̊ade HSC-mekanismer, blod-
celle produktion og effekten af kronisk inflammation p̊a udviklingen af MPN. Denne kombinerede
model kan bruges til at undersøge og simulere en bred vifte af scenarier, hvilket gives os mulighed
for at komme med nye hypoteser om opførslen af HSC og hele det hematopoietiske system. Dette
gøres os i stand til at fortolke den effekt IFN-behandling har p̊a MPN-diagnosticerede patienter,
ved at relatere modellen til data for individuelle patienter. For de IFN-behandlede patienter fra
DALIAH observerede vi en forskel i tidsskalaerne for respons af blodcelletal og JAK2 allelbyrde.
Baseret p̊a vores model-baserede undersøgelser, vurderer vi at forskellen p̊a respons skyldes en to-
delt effekt af IFN: Produktionen af blodceller begrænses p̊a den korte tidsskala for b̊ade raske og
maligne celler, hvorimod de maligne stamceller bliver særligt begrænset p̊a længere tidsskalaer.

Afslutningsvis præsenterer vi et “proof-of-concept” for hvordan matematisk modellering kali-
breret med patient-målinger fra diagnosetidspunkt kan lede til forudsigelser for individuelle pa-
tienter. Vi vurderer at matematisk modellering, kombineret med tilpas indsamling af patient-
data og model-kalibration, kan blive et vigtigt værktøj for patient-prognoser i klinikken i den
nære fremtid, og vil give anledning til forbedret behandling af MPN ved brug af IFN.
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Introduction
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Chapter 1

Introductory remarks

1.1 Overview and introduction to the field

Mathematical modelling is becoming an increasingly important part of civilization. Whether
it is in the exploration of the big or the small, mathematical modelling is an all-encompassing
tool in strengthening our understanding about any system. Mathematical models can make the
invisible visible and make predictions about parts of the world that are otherwise inconceivably
complex. There is no clearer example of the significance of mathematical modelling in recent
memory than the incredible work done to mathematically model and predict the spread of the
novel Corona-virus COVID-19, spreading through the world at the time of writing. Rarely has
the importance and effectiveness of mathematical modelling been actively disseminated and used
to influence political decisions about public health on the scale that we currently see.

Biological systems are incredibly complex and observing a biological system without disturb-
ing its natural behaviour is a challenge. As vast quantitative measurements are becoming more
readily available, the use of mathematical modelling and data-driven tools are expanding at an
incredible rate. The interest in mathematical biology is clear, with new educations being in-
troduced, as well as journals and conferences on mathematical biology increasing in popularity.
It is therefore no surprise that the intersection between mathematics and the field of cancer
research is growing into a significant sub-field by itself. Daily, many lives are lost to cancer,
and as a consequence cancer research and prevention is one of the largest and most important
fields of research in the modern era. The important cross-disciplinary field of mathematical on-
cology, that is, the combination of mathematics and cancer research, entails the use of many
disciplines, both mathematical, medical and biological. From the mathematics of evolutionary
biology, to hypothesis-generating mechanism-based mathematical models of particular cancers,
mathematics provides many of the tools that can benefit cancer research. The increasing focus on
mathematical oncology is clear, from both review-articles on mathematical modelling in medical
journals (Altrock et al., 2015), to the recent creation of a “Mathematical Oncology”-subgroup
of the Society of Mathematical Biology (SMB). Mathematics is likely to play a role in future
treatment of different types of cancers, both solid tumours and hematologic cancers. Executable
mathematical models have already been used successfully to improve treatment of cancer pa-
tients (Clarke and Fisher, 2020), and personalized models of the cancer of an individual person
can help clinicians give patients the best possible treatment.

The work of this thesis positions itself within this field of mathematical oncology. Focusing
primarily on a particular group of hematologic malignancies, the myeloproliferative neoplasms
(MPNs), the work presented here represent a small fraction of the general mathematical work
on hematologic malignancies and cancer in general. No two cancers are the same, and neither
are any two patients. Thus, to attain meaningful results that can help patients, it is necessary to

3



Part I Introduction

restrict oneself to a particular cancer and consider patients on an individual level. This thesis, and
the considerations described herein, was initiated in an effort to relate mathematical modelling
to a particular patient cohort; the MPN-diagnosed patients treated in the “DALIAH” clinical
trial. As such, the overarching question of this work was simple: With a general mathematical
model of blood-cell production in the human body, is it possible, using the DALIAH trial data,
to gain insight about MPNs in general and the patients of the trial in particular? Investigating
this question led us from an empirical study of the data itself, through the formulation and
investigation of a mechanism-based model of hematopoietic stem cells and finally to relating
multiple proposed models to patient-data on the level of individual patients. Whether these
investigations tie together and provides an answer to the question sufficiently well is left to the
reader to decide. Regardless, we believe that the work presented in this thesis demonstrates that
mathematical modelling can indeed be an important tool in the treatment of MPNs. While the
road toward clinical use of mathematical models to guide treatment of MPN-diagnosed patients
is still long, this thesis describes our work toward that goal.

1.2 Related publications

Through my Ph.D. I have been part of the Cancitis group at Roskilde University, Denmark.
Current and future publications by the group are related and relevant to the topics discussed in
this thesis. I participated in the work and preparation of the following publications during my
Ph.D.-studies:

Pedersen, R. K., Andersen, M., Knudsen, T. A., Sajid, Z., Gudmand-Hoeyer, J., Dam, M.
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Andersen, M., Sajid, Z., Pedersen, R. K., Gudmand-Hoeyer, J., Ellervik, C., Skov, V.,
Kjær, L., Pallisgaard, N., Kruse, T. A., Thomassen, M., Troelsen, J., Hasselbalch, H. C.,
and Ottesen, J. T. (2017). Mathematical modelling as a proof of concept for MPNs as a
human inflammation model for cancer development. PLOS ONE, 12(8)

For additional publications by the Cancitis group, see dirac.ruc.dk/cancitis.

1.3 Outline of thesis and reading guide

Most of the details of the publications mentioned above are described in this thesis. To distinguish
between sections that describe novel work and work that have previously been presented, we here
provide an overview of the thesis.

The thesis has been structured such that three main “stories” are told: The first describes the
application of the Cancitis model to data, the second goes through the formulation and analysis
of a novel model of HSC, while the third and final story combines the two models and applies the
combined model to the same data. To explain the background behind these stories, an overview
of the biology of blood-production in the human body is given, as well as a brief overview of
previous work on mathematical modelling of blood cancers.

Because of the cross-discipline nature of the work, this thesis does not follow the classic
structure of describing theory and methodology separate from results and discussion. Instead
the thesis has been structured such that information is presented when they are deemed useful
to the reader.

The outline of the thesis is as follows:

Part II describes blood-production and Myeloproliferative Neoplasms (MPNs) without ex-
plicitly considering the primary mathematical models that are the focus of this thesis. An
overview of blood cancers, MPNs, hematopoietic stem cells and the drug Interferon-α is
given in chapter 2, to provide the most significant parts of the biological background on
which the present work is based. The data-material from the DALIAH trial is described
in section 3, and the empirical analysis from (Pedersen et al., 2020) is summarized.

In part III, focus is on mathematical modelling of MPNs. First, previous work on math-
ematical modelling of blood cancers is discussed in section 4, followed by the formulation
of the Cancitis model in section 5, including some of the most important results that the
model gives rise to. This includes a short review of some of the results of Ottesen et al.
(2019). The work of Ottesen et al. (2020) is described in detail in section 6. The work
consists of a comparison and fitting of the Cancitis model to the data from the DALIAH
trial, in which model parameters are perturbed in accordance with the real data from
patient-specific treatment protocols.

Part IV presents a novel model of HSC and its background. First, important related work
on modelling HSC dynamics is presented in section 7. The novel model is then presented
in section 8. The analysis of the model described in (Pedersen et al., nd1) and (Pedersen
et al., nd2) is summarized, and the model reduction of (Pedersen et al., nd2) is described
in section 9.

The focus of part V is to combine the HSC model with the Cancitis model and investigate
the resulting combined model. The formulation of the combined model is given in section
10, along with some immediate results. In section 11 the model is compared to the data
from the DALIAH trial in a way similar to how the Cancitis model was compared to the
data in section 6. The entirety of part V is novel, and has not yet been published.
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Finally, in part VI we discuss and comment on the results and investigations described
throughout the thesis. This includes both comments on specific findings of some parts as
well as a zoomed-out discussion of the work as a whole.

The three stories mentioned above provides three separate ways that this thesis can be read:

Application of the Cancitis model to data: After the biological background of section 2,
and the presentation of the data-material in section 3, the reader can skip to the Cancitis
model and the application to data in sections 5 and 6 respectively.

The novel HSC model: Section 2.2 gives a background about the biology of HSC. This leads
into the mathematical background, model-formulation, -analysis and -reduction described
in part IV.

A combined model and its application: While the entire thesis builds around this story,
reading parts II and V should be sufficient to understand how the combined model relates
to the data of the DALIAH trial and MPN in general.

1.4 Overview of supplementary material
Full text of three scientific articles are included in supplementary material A at the end of this
thesis. Two of these were not yet published at the time of writing, and we refer to them as
(Pedersen et al., nd1) and (Pedersen et al., nd2). The final article, (Pedersen et al., 2020), is
included for completeness sake. Similarly, two posters are included, in supplementary material
B In addition to the supplementary publications, a large number of figures of data from indi-
vidual patients and model fits to the data play an important role in this thesis. To reduce the
number of pages that this thesis contains, these are only available electronically. Select exam-
ples are presented and discussed throughout the thesis, but we refer the reader to the electronic
supplementary whenever available.

On both the pages rasmuspedersen.com/phd and dirac.ruc.dk/~rakrpe/phd links to the
electronic supplementary can be found.

Feel free to contact mail@rasmuspedersen.com if any problems arise with accessing the
supplementary material.

The online supplementary material consists of PDF-files and ZIP-archives with images in
PNG-format. Each ZIP-archive also contains a readme.txt textfile, explaining the figures in the
archive. The supplementary files are:

Electronic Supplementary Material 1 Supplementary material of (Pedersen et al., 2020).

Detailed methodology and patient-specific fits. Discussed and referred to in section 3.
PDF-file.

Electronic Supplementary Material 2 Supplementary material of (Ottesen et al., 2020).

Detailed methodology and patient-specific fits. Discussed and referred to in section 6.
PDF-file.

Electronic Supplementary Material 3 Additional fits of the Cancitis model to data.

Further investigations that were not discussed in (Ottesen et al., 2020). Discussed and
referred to in section 6. ZIP-archive of PNG-files.

Electronic Supplementary Material 4 Fits of the Combined Cancitis-Niche model to data.

Discussed and referred to in section 11. ZIP-archive of PNG-files.

Electronic Supplementary Material 5 Virtual patient simulations, Combined Cancitis-Niche
model.

Discussed and referred to in section 11.5. ZIP-archive of PNG-files.
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Myeloproliferative Neoplasms
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Chapter 2

Biological background

This thesis describes the development, analysis and application of three mathematical models
related to the hematopoietic (blood-cell-producing) system of the human body. A common goal
for the development of the models was to understand and describe the behaviour of cancers of the
blood. While the models presented later do not necessarily relate to any particular blood cancer,
special focus was given to the long-term effects observed in slowly developing blood cancers and in
particular the group of Myeloproliferative Neoplasms (MPNs). In this section, we briefly describe
some of the background about blood cancers and MPNs that sets the stage for the remainder of
the work described in this thesis. Focus of this thesis is on mathematical modelling rather than
cell biology or clinical practice, and hence this section should be considered an introduction to
hematopoietic malignancies instead of a thorough review of the intricacies of malignancies.

2.1 General introduction to MPNs and related blood can-
cers

The production of blood cells in the human body, commonly referred to as hematopoiesis, is
a complex and intricate system of cells of different cell-lines and in all stages of cell-maturity.
A branching tree of cell-types have at one end terminally differentiated mature cells such as
e.g. thrombocytes, leukocytes or erythrocytes, and at the other end a common root of pluri-
potent hematopoietic stem cells (HSC). HSC exist within the bone-marrow microenvironment and
maintain a steady production of differentiated progenitor cells without exhaustion of HSC counts
under normal circumstances. Cell-division of HSC can give rise to mutations that can ultimately
lead to the emergence of a malignant stem cell clone and in turn hematologic malignancy. Further
details about HSC and the bone-marrow microenvironment necessary to maintain hematopoiesis
is discussed in section 2.2 below.

Acute myeloid leukemia (AML), is the most common myeloid leukemia (Estey and Döhner,
2006), and is believed to agree with the cancer stem cell hypothesis, that is, the hypothesis
that a population of malignant or leukemic stem cells are the root cause of disease (Dick, 2008;
Tan et al., 2006). Similarly, chronic myeloid leukemia (CML) also derives from malignant stem
cells. CML is included in the group of myeloproliferative neoplasms (MPNs), and arises from a
stem cell clone acquiring the Philadelphia-chromosome expressing the BCR-ABL gene (Goldman
and Melo, 2003; Holyoake and Vetrie, 2017). To distinguish other MPNs from CML, the term
Philadelphia-negative MPN is used to refer to diseases where the Philadelphia-chromosome is
not found. Common for MPNs is an excessive production of mature blood-cells, included in
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the diagnostic criteria (Arber et al., 2016). In this thesis, focus is given to the Philadelphia-
negative MPNs, in particular the blood cancers essential thrombocythemia (ET), polycythemia
vera (PV) and primary myelofibrosis (PMF), which were the investigated in the “DALIAH”
clinical trial described in section 3. A diagnosis of prefibrotic myelofibrosis (prePMF) is also
considered in the trial, however, for our purposes we consider PMF and prePMF the same
group. Patients diagnosed with ET and PV are at risk of major thrombosis (Tefferi and Elliott,
2007). In addition, MPN patients have been found to be at higher risk of secondary cancers,
both hematologic and nonhematologic (Frederiksen et al., 2011). A meta-analysis of literature
on incidence rates determined estimates of 1.03, 0.84 and 0.47 per 100, 000 for ET, PV and
PMF respectively (Titmarsh et al., 2014), suggesting that the Philadelphia-negative MPNs are
rare compared to other cancers. However, a recent Danish study has shown that the MPNs
are significantly under-diagnosed in the population, and accordingly a large number of people
are at constant risk of suffering potentially life-threatening blood clots (Cordua et al., 2019).
It is therefore appropriate that the Philadelphia-negative MPNs recently has been the focus of
a special issue of the journal “Cancers”, in which our own work was included (Ottesen et al.,
2020). In the 2016 revision of the WHO classification of MPNs, the presence of the JAK2V 617F

mutation is considered a major criteria for the diagnosis of both ET, PV and PMF (Arber et al.,
2016). Other criteria of relevance for this work is the increased thrombocyte count characteristic
to ET and the minor criteria of increased leukocyte counts for PMF. As a measure of the stage
of disease, the JAK2V 617F allele burden is typically considered. The allele burden is given by
the number of alleles with mutation divided by the total number of alleles. For heterozygous cell
where the JAK2V 617F mutation appears only on one allele, the allele burden cannot be above
50%. However, homozygosity of the JAK2V 617F mutation can arise, leading the JAK2V 617F

allele burdens that are above 50%. Allele burdens above 50% are hence indicative of cells with
homozygous JAK2V 617F mutations. For newly diagnosed patients, Larsen et al. (2007) found
that ET patients had a median JAK2V 617F allele burden of 7%, PV patients a median of 33% and
PMF patients had a median of 67%. Note that while presence of the JAK2V 617F mutation is a
criteria for ET, the presence of the CALR and MPL mutations are also sufficient for ET diagnosis.
In fact, while almost all PV patient were positive for the JAK2V 617F mutation, only about half of
ET patients have been found positive (Larsen et al., 2007). A concept of a biological continuum of
disease that ET, PV and PMF are part of, date as far back as the 1950’s (Dameshek, 1951), and
modern gene expression profiling supports this concept (Skov et al., 2010). Hence, the increasing
JAK2V 617F allele burden from ET through PV to PMF suggests that the JAK2V 617F allele
burden could be used to identify where along the continuum the patients are. While the ranges
of JAK2V 617F allele burdens can vary much between individual patients, the concept of ET to PV
to PMF being characterized by increasing JAK2V 617F allele burden is a fundamental assumption
throughout this thesis. In a general population study, 0.1% of the population were found positive
for the JAK2V 617F mutation, of which the majority later developed MPN-symptoms (Nielsen
et al., 2014). This could suggest that the early stages of MPN-development is symptom-free and
that a slow increase in the JAK2V 617F allele burden can be used as a measure of the disease,
even in the early stages before symptoms arise. Understanding how the disease develops in this
early stages is hence important for clinical decisions. For brevity, we write JAK2 allele burden
when referring to the JAK2V 617F allele burden for the remainder of this thesis.
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Chapter 2. Biological background

2.2 Hematopoietic stem cells and the bone-marrow mi-
croenvironment

HSC maintain hematopoiesis and mutations of HSC are believed the root cause for most hema-
tologic malignancies, including MPNs. Wilson and Trumpp (2006) gives a thorough review of
the nature of HSC and the HSC niches within the bone-marrow microenvironment. The text in
this section is based on this work, unless otherwise noted.

Stem cells are traditionally classified by their capability of multi-potent differentiation and
self-renewal. Multi-potent differentiation allows similar stem cell to give rise to different cell-
lines, while self-renewing division allows the stem cells to multiply and hence maintain cell-
counts, even when stem cells are lost due to differentiation. The hematopoietic stem cells are, as
the name suggests, the stem cells that maintain the hematopoietic system. Although it can be
difficult to define distinct cell-types explicitly, a number of cell-sorting assays exist to identify and
distinguish HSC. We assume the classification of “HSC” to be well-defined for the purposes of this
thesis. After differentiation, the resulting cell is committed toward a particular cell-line. While
there exists a hypothesis of de-differentiation where a cell returns to a less committed state
(Jilkine and Gutenkunst, 2014), it will not be considered in this thesis and all differentiated
HSC will be referred to as progenitors. Progenitors can differentiate into later-stage cell-types
which ultimately, after multiple steps of progenitors, give rise to the mature cells that make
up the blood. Progenitors are also capable of self-renewal, however, only to a limited degree
(Oguro et al., 2013). Hence, without newly differentiated HSC, a population of progenitors
will eventually die out. As mature cells undergo apoptosis (programmed cell-death), a steady
production of mature cells is necessary. Hence a steady output of progenitors must be maintained
by the HSC population.

The potential of HSC has been demonstrated by transplanting a single HSC into lethally
irradiated mice (i.e. mice that had undergone irradiation such that the entire HSC population
was eradicated, which leads to death of the mouse due to the lack of blood-production.). In such
experiments, the single HSC is capable of reconstituting the entire hematopoietic system in the
long term, saving the mouse.

A concept of asymmetric division exists in which HSC division leads to two distinct cells, one
which is a progenitor cell and one which maintains stemness. How frequently this occurs for HSC
is unclear, and while it has been observed in vitro, it is possible that it does not occur naturally
in vivo. Wilson and Trumpp (2006) also hypothesizes that purely environmental differentiation
can occur where a HSC spontaneously differentiates due to environmental changes. Hence HSC
are hypothesized to divide, either symmetrically, resulting in two progenitors or two HSC, or
asymmetrically resulting in one of each, but individual HSC are also hypothesized to differentiate
directly into a single progenitor cells.

While HSC can be found throughout the body (e.g. in the bloodstream or in the spleen), they
are primarily found within the bone-marrow microenvironment (BM). While direct observation
of the BM is difficult in vivo, HSC are typically found in the vicinity of certain cellular groupings,
and a concept exists of particular BM niches. Defining what cells constitute these niches is not
trivial and is under great debate (Pinho and Frenette, 2019). Indeed multiple types of niches
are hypothesized to exist, such as a niche for long-term storage of HSC and a separate niche
for actively dividing HSC. Differences in niches could explain the environmental differentiation
mentioned above. A significant proportion of HSC are dormant or quiescent for extended periods
of time, referred to as the G0 phase of the cell-cycle. Particular BM niches are believed to
contribute to this maintenance of long-term cellular quiescence of HSC. For simplicity, we limit
the definition of BM niche to refer to just this quiescence-inducing type of niche for the rest of
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this thesis, and hence distinct from BM niches with different cellular composition and purposes,
such as the vascular niches.

Long-term quiescence of HSC is considered critical for maintaining blood-production. Feedback-
signalling is believed to allow for activation of quiescent HSC which can regulate the production
of progenitors and hence the subsequent production of different mature cells. Such feedback
could occur due to e.g. blood-loss or disease giving rise to a scarcity of immune cells such as
T-cells that requires replenishing. Hence a vast and complex system of signalling is involved
in ensuring a life-long production of blood-cells that is robust to external changes, and a large
reservoir of quiescent HSC plays an important role in this system. One possible evolutionary
benefit of HSC quiescence could be that it implies less dependence on single cells and hence
increase the chance that a single erroneous division or mutation has significant impact on the
survival of the organism. In addition, it is possible that there are some undetermined cellular
differences between HSC before division and the resulting post-division HSC, and that quies-
cence and cellular maintenance through the BM niches is necessary to revert the HSC back to
the original state that allowed for self-renewing division. This hypothesis explains the lack of
self-renewal of HSC observed in cell-culture; outside the body, HSC do not expand in numbers
(Kumar and Geiger, 2017). Such ex vivo expansion of HSC would be very beneficial for use in
e.g. stem cell transplantation, and methods and protocols for inducing HSC expansion without
the BM niche remains an important field of reseach (Zhang and Gao, 2016).

As discussed in section 2.1 above, rare mutations can occur during HSC division. The cell-
biological details of such mutations are insignificant for our present purposes, and will not be dis-
cussed in this thesis. Instead cells are considered mutated when their cell-properties are distinct
from the pre-mutation population of HSC. Mutations can influence a myriad of cell-properties,
leading to to subpopulations of HSC that behave differently or react to signalling in a different
way. To distinguish between a subpopulation of mutated cells, HSC clone is used throughout
this thesis to refer to a population of HSC that are functionally similar. Some mutations lead
to a HSC clone that outcompete the healthy wild-type (unmutated) HSC population. This can
give rise to clonal hematopoiesis of indeterminate potential (CHIP), which is characterized by a
highly homogeneous population of HSC. While not necessarily a health risk by itself, if the clone
is similar to wild-type HSC, subsequent mutations is believed to be a risk-factor for individu-
als in which CHIP has been identified (Steensma et al., 2015; Jaiswal and Ebert, 2019). Many
hematologic malignancies are believed to arise from mutations in HSC, in agreement with the
cancer stem cell hypothesis, a commonly accepted theory of cancer development (Reya et al.,
2001). While some malignancies are hypothesized to arise from mutations of progenitors, either
by themselves or supplementary to HSC mutations, (Dingli and Pacheco, 2010), these will not be
considered in this thesis. A mutated clone that lead to hematologic malignancy is referred to as
a malignant or leukemic stem cell clone. A range of different defects of the malignant stem cells
lead to the symptoms observed in the given malignancies. For some hematologic malignancies,
specific mutations have been identified to give rise to the malignant stem cells that are the root
of the diseases. The JAK2V 617F mutation is indicative of MPNs, and a clone of JAK2 mutated
malignant stem cells are believed to be at fault for the harmful increase in blood-cell production
observed in MPNs. Malignant stem cell clones have been found to engraft in the BM at sites
where healthy HSC are typically found (Ishikawa et al., 2007), suggesting that the malignant cells
interact with the same BM niches as the wild-type cells. Mathematical modelling work suggests
that the decreasing population-size of healthy HSC observed in AML-patients can be explained
by the malignant clone having a high affinity niche-interaction compared to the healthy clone,
and possibly even an ability to cause the healthy clone to dislodge from the BM niche (Wang
et al., 2017). The binding of malignant stem cells with the BM niches lead to a hypothesis for
why treatment of hematologic malignancies can be difficult: If the niches induce quiescence of

12



Chapter 2. Biological background

malignant cells as they do for wild-type HSC, this could explain how malignant cells persist after
chemotherapy that targets actively cycling cells (Ishikawa et al., 2007).

2.3 Interferon-α

While it is not entirely clear which kinds of signalling is involved in the activation of quiescent
HSC and their return to cycling, interferon-α (IFN) is known to play a significant role. IFN
induces cell-cycling for both quiescent HSC and early stage progenitor cells (Trumpp et al., 2010).
For this reason, it has been suggested that treatment with IFN can be beneficial to awaken the
dormant HSC e.g. to allow for clearing of malignant HSC that have entered quiescence. Based
on this idea, Trumpp et al. (2010) suggests CML patients could benefit from treatment in which
IFN is used to activate malignant HSC follwed by subsequent eradication the active cells using
Imatinib, a popular and successful drug for CML treatment. Combination therapy in which both
IFN and Imatinib is used concurrently has already shown great promise for successful treatment
of CML patients (Talpaz et al., 2015; Simonsson et al., 2011), and the concept of IFN-induced
activation of quiescent HSC thus provides an explanation for this success.

Various forms of IFN are used to treat patients diagnosed with MPN. In particular, pegylated
interferon alfa-2a (Pegasys) and pegylated interferon alfa-2b (PegIntron) is the focus of the
present work. In general, we refer to all types of interferon-α as simply IFN throughout this
thesis and assume their effect to be similar enough to be considered identical.

Treatment with IFN has been associated with a significant decrease in risk of thrombosis
(Stauffer Larsen et al., 2013), and even induce “minimal residual disease” (MRD) in some pa-
tients, classified as a sustained decrease of risk-factors for the patient (Hasselbalch, 2011). This
suggests that IFN can be beneficial in the long term for MPN-patients and perhaps even be part
of a possible cure (Hasselbalch and Holmström, 2018). IFN has been found to lead to a sus-
tained decrease of the JAK2 allele burden in a subset of patients, even bringing it to undetectable
low level (Quintás-Cardama et al., 2013). The reduction of the JAK2 allele burden is achieved
through long-term/chronic treatment with IFN, however, induced cell-cycling of both wild-type
and JAK2V 617F mutated HSC has been found to be induced both in short- and long-term ad-
ministration of IFN (Austin et al., 2020). In addition, Austin et al. (2020) found that long-term
(eight weeks) treatment with IFN reduced leukocyte-counts significantly in mice, as well as re-
duced the enlarged spleen commonly observed for JAK2V 617F positive mice and humans. While
many of the effects of IFN were found to apply to both wild-type and JAK2 mutated HSC, IFN
has been found to preferentially target mutated cells (Mullally et al., 2013). Activation of HSC
has been shown to cause DNA damage of the HSC in mice (Walter et al., 2015), suggesting
that the additional activation of JAK2 mutated HSC could lead to additional accumulation of
DNA damage for the malignant clone compared to the wild-type HSC. This provides a hypothet-
ical explanation for why mono-therapy with IFN is sufficient for successful treatment of some
MPN-diagnosed patients.

The high risk of thrombotic events associated with untreated MPNs and the evidence that
IFN can induce long-term benefits is suggestive of the idea of early treatment with IFN, to reduce
the MPN-related risks and halt the disease progression already in the early stages (Hasselbalch
and Bjørn, 2015).

There is an urgent unmet need for insight about how the blood system changes from early
pre-MPN-diagnosis stages with low JAK2 allele burden to later stages related to high risk of
thrombosis. Additionally, it is of great importance to understand and identify quantitatively
how IFN works, so future treatment methodologies with improved patient prognosis can be
developed. It is from these purposes that the mathematical work detailed in this thesis takes
form.
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Chapter 3

The DALIAH trial

In this section, we describe the data material considered throughout the thesis, as well as the
clinical trial “DALIAH” from which it arose. As the design and details of the trial are not the
focus of this work, we only briefly discuss some of the relevant details. In our published work,
Pedersen et al. (2020), the data was analysed. The analysis was based on an empirical modelling
approach, rather than a mechanism-based approach. These preliminary investigations about the
data on its own are relevant for the mathematical modelling presented later in this thesis.

The DALIAH trial (EudraCT number: 2011-001919-31) was a prospective randomized open-
label phase III clinical trial comparing Pegylated r-IFNα (IFN) monotherapy with Hydroxyurea
monotherapy in MPN patients. While two types of IFN were considered (Interferon alfa-2a
“Pegasys” and Interferon alfa-2b “PegIntron”), we do not distinguish between these in the present
work, but rather assume the effect of treatment to be identical. Patients were followed for five
years with blood samples taken at regular pre-determined intervals. Focus for the study presented
by Pedersen et al. (2020) was the observations of the JAK2 allele burden for the patients receiving
IFN monotherapy. Such measurements were made at inclusion (baseline) and approximately 4,
8, 12, 18, 24, 36, 48 and 60 months following inclusion. Blood-cell counts of e.g. thrombocytes
and leukocytes were measured on a more frequent basis. While about 200 patients were enrolled
in the study, some patients dropped out due to toxicity, death or other reasons, and hence full 60
month data for all patients was not available. Additionally, a low number of patients had periods
where IFN was substituted or used in combination with Hydroxyurea. For these patients, only
initial periods of treatment with only IFN was included in this study. With some additional
minor exclusions of data from certain patient, due to e.g. clear errors in the data-material, the
total data-set consisted of 63 patients. Of these patients, 17 patient were diagnosed with ET,
35 patients were diagnosed with PV, 6 patients with primary myelofibrosis and finally 5 patients
with prefibrotic myelofibrosis. Throughout this thesis, anonymized IDs are used, allowing for
comparison of patients between the different studies described. The numbering was based on the
original number of patients before the various exclusion criteria, and hence while some patients
have IDs above 63, only the 63 patients described were considered.

3.1 Presentation of data

At inclusion into the study, blood samples were taken, allowing for a baseline-measurement before
initiation of treatment. The distribution of these baseline measurements for all 63 patients are
shown in figure 3.1, separated by diagnosis. Patients diagnosed with primary myelofibrosis or
prefibrotic myelofibrosis were combined under the label “PMF”. Two-sample t-tests reveal that
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ET patients had baseline thrombocyte counts and JAK2 allele burden that were statistically
significantly different from the baseline values of the other diagnoses, PV and PMF (See caption
of figure 3.1 for details). Note that a heightened thrombocyte count is a diagnostic criteria for
ET, but not for PV and PMF diagnosis (Arber et al., 2016).

Figure 3.1: Distribution of the JAK2 allele burden, thrombocyte and
leukocyte count at baseline, separated by diagnosis. Black dots depict
outliers. Two-sample t-test were carried out to compare the baseline values.
The baseline values of the JAK2 allele burden for ET patient were significantly
different from PV patients and PMF patients with p-values of 7.3 · 10−5 and
1.3 · 10−4 respectively. Comparing the baseline count of thrombocytes for ET
patients and PV patients gave a p-value of 0.013, while comparing ET and PMF
gave a p-value of 0.044. Finally, the p-value of leukocytes baseline counts for
ET compared to PV were 0.05, while all other comparisons gave p-values above
0.1.

In figure 3.2 the baseline data is depicted. The linear fit shown in the figure suggests that a
linear relation between JAK2 allele burden and thrombocytes cannot be assumed (r2 = 0.13).
The same is the case for thrombocytes and leukocytes (r2 = 0.006). A weak positive correlation
between the JAK2 allele burden and the leukocytes counts is however observed (r2 = 0.26). We
note however, that visual inspection of the treatment-responses of individual patients suggests
that thrombocyte and leukocyte-counts have similar kinetics in response to IFN treatment, and
that decreasing JAK2 allele burden is also typically associated with decreasing blood-cell counts.
Hypotheses about how differences in disease level (as assessed by the JAK2 allele burden) can
relate to blood-cell counts, in particular thrombocyte-counts is discussed later in section 11.

For most patients, IFN had a strong immediate effect on the blood-cell counts, leading to
a fast decline. Simultaneously, IFN also induced a decline of the JAK2 allele burden, however
for most patients this appeared to occur more slowly. Figure 3.3 illustrates a typical patient
response. The figure also depicts the average daily IFN dose for the particular patient. For some
patients, significant changes in dose-size and timing were made, dependent on certain criteria.
One exemplary criteria for dose escalation was the lack of a reduction in the blood-cell counts,
specifically thrombocyte-counts that were not below 400 · 103(μL)−1 within the first 4 months.
Further details about these criteria are detailed in the supplementary of (Pedersen et al., 2020),
available as Electronic Supplementary Material 1. In the mathematical modelling presented later,
the doses were averaged such that the daily average dose was used, rather than the wide range
of different doses and timings possible. As an example, a weekly dose of 45μg was simplified as a
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(a) (b) (c)

Figure 3.2: Plots of baseline data, with linear fits. All plots display the
first data-point for each patient, with asterisks ∗ displaying patients that were
diagnosed with ET, circles © showing patients diagnosed with PV and squares
� depicting patients with primary or prefibrotic myelofibrosis. A best fit of
a linear function is shown in each plot. The linear fit of JAK2 allele burden
to thrombocytes shown in panel (a) had r2 = 0.13. For the relation between
JAK2 allele burden and leukocytes, panel (b), r2 = 0.26. Finally, the linear fit
between thrombocytes and leukocytes shown in panel (c) had r2 = 0.006.

daily dose of 6.43μg. Initially blood-cell counts were measured after two weeks, four weeks and
eight weeks, before the frequency was reduced to every eight to 13 weeks. With a minimum of
eight weeks between measurements, we assume the difference between high-frequency low-dose
and low-frequency high-dose to be insignificant, and hence that our simplification is appropriate
on the time-scale considered. Typically IFN doses were given once a week, allowing for eight
cycles of treatment between all measurements except in the initial eight weeks.

3.2 Empirical modelling of JAK2V 617F dynamics

Our initial work with the DALIAH trial data consisted of an empirical study of the dynamics
of the JAK2 allele burden during standard-of-care IFN monotherapy. The results are described
in (Pedersen et al., 2020), on which this section is based. For all details, we refer the reader
to the published article and the corresponding supplementary material, available as Electronic
Supplementary Material 1. The response of the blood-cell counts or the changes in IFN dosing
were not considered.

A small set of data from five untreated MPN-patients were also considered in the study. These
patients were all previously treated for MPN and the data were obtained in an extended period
before treatment was re-initiated. The exact details are available in the article (Pedersen et al.,
2020). Although the data-set was limited, (in particular, two patient had very few measurements
taken, and were only used for validation), it provided a rough estimate for the general behaviour
of the JAK2 allele burden in untreated patients. By pooling data together into a single data-set
and fitting a functional expression for exponential growth to the data, an estimate of the growth
was determined as J(t) = J(0)e0.49t where J is the JAK2 allele burden, and t is the time in years.
This corresponds to a period of doubling of approximately 1.4 years. This growth estimate is
included in figures 3.4 and 3.5 as a dotted black line. As the JAK2 allele burden is a measure
of the ratio of alleles with the mutation to total number of alleles, JAK2 allele burdens greater
than 100% is meaningless. Because of this, and since our estimate of the growth was determined
for patients with allele burdens < 50%, we only consider the expression to be valid for low JAK2
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Figure 3.3: Illustration of the immediate decay in blood-cell-counts
of IFN treated patients. In the top two panels, data for thrombocyte and
leukocyte counts are shown as grey asterisks ∗, along with the healthy intervals
defined as between 145 ·103 and 390 ·103 for thrombocytes and 4 ·103 to 11 ·103
for leukocytes (in cells per microliter). Note that a single “pre-baseline” mea-
surement was available for this patient. Both cell-counts show a quick decrease,
reaching the lower part of the interval within one year of treatment. In con-
trast, the JAK2 allele burden displayed in the bottom left panel shows a slower
decrease, remaining above 50% for almost two years. The average daily IFN
dose is depicted in the bottom right panel. For this particular patient (Patient
“P075”), the dose was not changed, but the timing was varied, from 45 μg once
a week to every 14 days, every 21 days, and briefly to once every 28 days.
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allele burdens.
Investigating the treatment-data of the IFN-treated patients, we found that some patients

had a response to treatment such that the JAK2 allele burden decayed exponentially during
treatment, while the JAK2 allele burden showed an initial increase before decaying exponentially
in other patients. A smaller group of patients had responses that were neither of the two response-
types. To obtain estimates of responses on a patient-specific levels, we fitted a function of
exponential decay to data from each of the patients. Similarly, a function of bi-exponential
decay was also fitted to the patient-data. The bi-exponential decay was formulated such that
continuity of the slope at t = 0 is ensured, with an initial slope related to the growth-expression
described above. For this reason, we used the functional form:

Jb(t) = J0 ·
(
β2 + c2 + ν

c2
· e−β2t − β2 + ν

c2
· e−(β2+c2)t

)
(3.1)

where ν is the growth-rate before treatment is initiated, J0 is the JAK2 allele burden at treatment
initiation (baseline measurement) and β and c the fitting parameters. This form ensures positivity
of β and c. From the growth-expression above, ν = 0.49 was used.

Considering the distribution of the parameters fitted in the patient-specific responses, we
determined a population-level set of parameters that describe a significant proportion of the
patient-responses to a satisfying degree. When choices relevant to the determination of the
population-level response has to be made, the conservative estimate was chosen, that is, the
estimate with the slowest decay, to avoid over-estimating the effect of treatment. We refer the
reader to the supplementary material of (Pedersen et al., 2020) for further details, available as
Electronic Supplementary Material 1. The resulting population-level responses for IFN-treatment
were estimated as

Jm(t) = J0e
−0.46t (3.2)

for patients exhibiting a mono-exponential response, and

Jb(t) = J0
(
1.32e−0.74t − 0.32e−4.61t

)
(3.3)

for the bi-exponential response-type. The population-level growth and the two population-level
responses are illustrated in figure 3.4, together with exemplary data.

Having both an estimate of the development of the JAK2 allele burden for MPN-patients
during IFN mono-therapy and without therapy, we were able to consider the consequences of
initializing treatment at different points of disease progression as well as that of halting treatment.
Figure 3.5 displays the growth of the JAK2 allele burden starting at 1%, as well as the estimated
patient responses if treatment was initiated 7, 8 and 9 years later respectively. Both the mono-
exponential response of equation (3.2) and the bi-exponential response of equation (3.3) are
shown. The figure illustrates how postponing treatment can lead to a longer course of therapy
than when it is initiated early. Additionally, it illustrates how the patients for which the JAK2
allele burden develops following the bi-exponential response show only little sign of improvement
in the first half-year of treatment, but after about a year of treatment has a decreased JAK2
allele burden compared to patients with a mono-exponential response. While the response of the
individual patient can differ greatly from the population-level responses, the results suggest that
the potential for successful treatment with IFN can be difficult to determine if one only considers
measurement of the JAK2 allele burden taken within the first year of treatment.
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Figure 3.4: Patient-data example with population-level expression. The
left-hand panel shows the mono-exponential decay of equation (3.2) shown in
green, with exemplary patient-data shown as grey ∗ (Patient “P016”), while
the right-hand panel shows the bi-exponential expression of equation (3.3) with
exemplary patient-data shown as grey ∗ (Patient “P028”). In both panels,
the JAK2 growth expression is depicted as a dotted black line, time-shifted
to coincide with the baseline measurement. Note that the depicted curves are
population-level expressions and not fitted to the particular patient-data. The
patients chosen are however particularly exemplary of the given response types.

Figure 3.5: Summarizing figure of the population-level responses for
MPN-patients recieving IFN monotherapy. The untreated growth is
shown as a dotted black line, starting from a JAK2 allele burden of 1% at
time t = 0, not shown. The two IFN monotherapy population-level responses,
mono- and bi-exponential, are shown in dashed and full lines respectively. The
three colors depict treatment initiatized at different points of disease, namely 7,
8 and 9 years after an JAK2 allele burden of 1%, shown in green, red and blue
respectively. The figure is similar to Figure 4 of (Pedersen et al., 2020).
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3.3 Summarizing discussion

The findings described above represent a first estimate for the dynamics of the JAK2 allele
burden in IFN-treated patients. Longitudinal studies such as the DALIAH trial are rare, and
hence similar descriptions of the JAK2 allele burden kinetics are typically based on data with
very few measurements of the same patients. Any prediction about a “good response” or the
expected time-course of treatment has clinical importance, even a coarse estimate as the one
described above. There are however a few short-comings of our approach that we briefly state
here. The models described above (exponential growth, exponential decay and bi-exponential
decay) were all chosen ad-hoc based on visual inspection of data. The models provide statistically
reasonable descriptions about the dynamics of JAK2 allele burden measurements, but fails to
provide any explanation or reasoning behind the dynamics observed. Thus they elucidate the
question of “how” the JAK2 allele burden develops but not the question of “why” it develops in
the way it does. Developing more sophisticated and complex mechanism-based models can be
a method for answering such questions. Such models is the focus of the rest of this thesis. The
way IFN-treatment is considered in the presented approach is oversimplified. All patients from
the DALIAH trial randomized for IFN were receiving standard-of-care with IFN. However, as
described above, standard-of-care allows for changes in dosage of IFN, and hence patients did
not receive the same dose of IFN throughout the entire study. These changes and the conditions
required for a change were standardized and included in the formal description of the DALIAH
trial. Because of these changes to IFN-dose, the statistical models described above do not directly
describe the response of the JAK2 allele burden dynamics to a given dose of IFN, but rather
describe the response to “IFN-monotherapy standard-of-care”. Hence the effects observed could
be caused by changes in treatment-timing and dosing (in agreement with the standard-of-care)
rather than solely due a biological response to the drug. As the exact details of timing and dosing
was recorded in great detail, a more sophisticated study of the JAK2 allele burden dynamics
ought to consider the dosing and resulting concentration of the drug within the body. Our choice
of how to do this is discussed in section 6.1.

While it was possible to describe the dynamics of the JAK2 allele burden on a population
level for a group of the patients, the individual patients showed different types of responses.
Differences in patients responses are normal for many disease. In particular, Lewin et al. (2020)
considers solid oropharyngeal cancer tumors, and illustrates four different types of response to
therapy: “fast responders” with an immediate decay in tumor size, “poor responders” showing
sustained tumor size, “plateaued response” where the tumor size decays toward a particular non-
zero level and “pseudo progression” where the tumor initially increases in size, before decreasing
to a size smaller than the original tumor size. Each of these types of responses also appear
in the JAK2 allele burden for some of the patients in the DALIAH trial. These are shown in
figure 3.6. While the causes for these responses in MPN patients are unclear, the existence of
different types of patient responses suggests that a grouping of patients based on response-types
is possible. Such grouping could perhaps reveal genetic differences between patients, and could
possibly lead to improved stratification and precision of diagnoses.
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Figure 3.6: Different types of response for DALIAH patients. Four
exemplary patient of the DALIAH trial that show responses in the JAK2 allele
burden similar to the types considered by Lewin et al. (2020). Top left depicts
a fast respond (Patient “P184”), top right a poor responder (Patient “P106”),
bottom left a plateaued response (Patient “P140”) and bottom right depicts a
response of the pseudo progression type, showing an initial increase in JAK2
allele burden (Patient “P113”). Note that all four patients experienced blood-
cell counts that decreased and stayed within the healthy interval (not shown
here), and hence treatment improved patient outcome in all four cases.
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Chapter 4

Brief review of mathematical
models of blood cancers

Using mathematics to understand and interpret biological systems has lead to important findings
in the past (Mackey and Maini, 2015) and the field of mathematical biology shows great promise
for the future. Mathematical modelling of cancer provides a tool for not only understanding
the malignancies, but also for improving treatment of patients and hence potentially save lives.
The field of mathematical oncology entails many different disciplines such as e.g. optimization of
treatment protocols (Poleszczuk and Enderling, 2018; Enderling et al., 2018; Jarrett et al., 2020),
modelling the spatial composition of a tumour (Lewin et al., 2020), modelling the evolution of a
tumour (Gerlee and Anderson, 2015) or models of evolutionary dynamics of cancer cells (Gatenby
and Brown, 2020). An overview of many of these disciplines and suggestions for the path forward
for research was described in great detail in the 2019 Mathematical Oncology Roadmap (Rockne
et al., 2019).

In this section, we describe some of the important work within the field of mathematical
modelling of blood cancers. The scientific literature on this topic is vast, and hence we only
highlight some of the work that is particularly relevant in regards to this thesis. Although a
significant part of the work described below relates to blood cancers different from MPNs, the
structure of the hematopoietic system suggests that findings about other blood cancers can be
relevant for MPNs as well.

In a recent review, Clapp and Levy gave an overview of mathematical models of blood cancers
and lymphoma (Clapp and Levy, 2015). For a review of more general cancer modelling, Altrock
et al. (2015) provides a thorough review of mathematical models of different cancers, touching on
e.g. solid tumors, scheduling of treatment-doses and game theoretical considerations. Similarly,
the mathematical oncology roadmap mentioned above also provides a detailed review of the state
of the art of mathematical oncology (Rockne et al., 2019).

Mathematical modelling of blood cancers traces its roots back to at least the 70’s with the
seminal work of (Mackey, 1978). The proposed model consists of a system of delay differential
equations describing the HSC in either the resting G0 phase or a proliferating phase. Through
the years, the simple model and related model extensions have shown great versatility, with
applicability in relation to e.g. periodic CML (Colijn and Mackey, 2005b), cyclic neutropenia
(Colijn and Mackey, 2005a) and characterizing the kinetics of HSC numerically (Mackey, 2001).
Dale and Mackey (2015) discuss the significance that this particular mathematical model has
had within the research of cyclic neutropenia and in regards to building bridges between clinical
and mathematical understanding.
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A stochastic model of hematopoiesis and the mechanisms of HSC was proposed by (Abkowitz
et al., 1996). In the model, stochastic processes of HSC were simulated and found to agree with
experimental data of the production of progenitors for different HSC clones in cats. The model
was later applied to show that HSC numbers were similar for both mice and cats and argue that,
by extension, similar counts of HSC are expected in the human hematopoietic system (Abkowitz
et al., 2002). In later work, the authors estimated the replication rate of HSC using the same
model (Catlin et al., 2011). While these results are not directly related to blood cancers, they
provide invaluable insight into the mechanisms and processes within the human hematopoietic
system in a disease-free setting and give oft-cited numerical estimates for the rates of HSC-related
processes.

The hierarchical structure of the blood system, with several distinct levels of cell-maturity,
lends itself to mathematical models in which the distinct levels of differentiation are considered
separately. This can lead to simple frameworks which allows for both estimating cell counts and
properties based on the limited experimental data available, and even for comparison between
different mammals (Dingli and Pacheco, 2010). Michor et al. (2005) proposes a mathematical
model of CML in which four levels of maturity of blood cells are described by a system of ODEs;
Stem cells, progenitor cells, differentiated cells and terminally differentiated cells. Stem cells
are modelled to self-renew, while more mature cells have just an influx from the previous step
of maturity and a rate of apoptosis. By modelling malignant cells in a similar way, the model
displays a biphasic decline of BCR-ABL disease burden during treatment, one of the primary
features of treatment of CML with the drug Imatinib. In addition, Michor et al. (2005) are
able to both capture the effect of treatment discontinuation and to investigate how cellular
resistance to therapy can influence the treatment outcome. A refined model is proposed by
Dingli and Michor (2006), in which just two levels of maturity are considered; HSC and mature
(terminally differentiated) cells. From this simple model it is possible to determine that therapy
targeting mature cells cannot lead to long-lasting cure, and neither can therapy which decreases
the production of malignant mature cells. Rather, therapy must inhibit replication or increase
the apoptosis-rate of malignant stem cells, or as aptly put by the authors in the title of the
article: “Successful therapy must eradicate cancer stem cells” (Dingli and Michor, 2006). While
this conclusion appears simple, the mathematical model of (Dingli and Michor, 2006) provides
a supporting argument for certain types of treatment and against other forms of therapy or
treatment of symptoms. Considering cellular quiescence of HSC as well as immune system
feedback, Clapp et al. (2015) introduces a similar model of the response to Imatinib in CML
patients. The added complexity allows Clapp et al. (2015) to model a phenomenon of oscillating
disease burden resulting from sustained treatment with Imatinib. These oscillations can be
modelled and interpreted on the level of individual patients. The investigations of the model and
comparison to data suggests that carefully timed immunotherapy in combination with Imatinib,
can help patients avoid relapse.

Other approaches of mathematical modelling have also been considered to describe the dy-
namics of CML, in particular during Imatinib treatment. Roeder et al. (2006) presents an agent-
based model in which healthy and malignant stem cells switch between two states; actively
cycling and in the G0 cell-phase, dependent on their cellular microenvironment. The actively
proliferating cells give rise to mature cells following an amplification in numbers as progenitors.
The model has previously been used to investigate clonal competition (Roeder et al., 2005). In
the CML setting, the model is used to investigate the specific effect Imatinib has on malignant
stem cells, suggesting that complete cure of the malignancy could be attained through Imatinib
therapy. By also modelling the effects of IFN treatment in the model, Glauche et al. (2012)
are able to consider combination therapy which suggests that IFN-induced stem cell activation
can be beneficial for Imatinib-treated CML patients. Apart from other important findings, the
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model has also been reformulated as both a system of deterministic difference equations (Kim
et al., 2008b) and as a PDE model (Kim et al., 2008a). Further simplifications were proposed
and analysed by (Besse et al., 2017), suggesting that optimal treatment in the long term might
be different from optimal treatment in the short term. Hence the model suggested by Roeder
et al. (2006) continues to have great importance on the field of mathematical modelling of blood
cancer, in particular in relation to CML and treatment with Imatinib.

Stiehl et al. (2014) demonstrates how a mathematical model can be related to clinical data of
stem cell transplantation and suggests that increased doses of transplanted cells can be beneficial
for some patients. Using the model, a lower bound of the size of the dose required for successful
transplantation can be computed on the level of individual patients. The model, originally
proposed by the same authors in (Marciniak-Czochra et al., 2009), describes the different levels
of maturity, where cells replicate on a faster time-scale the more differentiated and mature they
are. Feedback signalling from the blood-cells affects the rate of self-renewal along all steps of
maturity, which can regulate the increasing cell-numbers to obtain a stable production of blood
with slowly dividing HSC at the root of the system. In later work, the model was extended
to consider the healthy HSC clone and the leukemic clone separately, allowing for more direct
investigation of how the resulting cell-lines interact and respond to feedback-signalling (Stiehl and
Marciniak-Czochra, 2012). Using the model to identify and estimate the properties of leukemic
stem cells on a patient-specific basis revealed that both frequent self-renewal and proliferation
leads to poor patient outcome (Stiehl et al., 2015). This was found to not only predict patient
survival but also to determine if the malignancy has worsened following relapse. By investigating
a modified model where malignant cells do not respond to cytokine feedback, Stiehl et al. (2018)
were able to distinguish between two hypothetical sub-types of AML. Fitting both a version of
the model with cytokine-dependence and a version without to patient-specific data, the authors
found that overall patient survival was poorer when only one model agreed with data. In a recent
paper, an extended model was applied to the challenge of risk-stratification of patients. The
model was used to predict patient survival and disease-free survival accurately, demonstrating
that mathematical models can be beneficial in the clinical assessment of patient prognosis (Stiehl
et al., 2020).

Mathematical modelling has been used to investigate how resistance to different therapies
can be avoided through combination therapy, for different malignancies, such as e.g. CML (Ko-
marova and Wodarz, 2005) or chronic lymphocytic leukemia (Komarova et al., 2014). Modelling
resistance of CML therapy, Komarova and Wodarz (2007) finds that for treatment that fails due
to drug-resistance, the resistant clone must have appeared prior to treatment initiation. The
model suggests that failure of single-drug treatment is independent of quiescence. However, by
considering combination therapy consisting of cell activation followed by clearing of cells, Ko-
marova and Wodarz (2007) find that it can be an indication of an increased tendency to enter
quiescence if a population of stem cells survive such combination therapy.

HSC quiescence is considered in many different ways in the literature. Examples include
a resting phase before further proliferation (Mackey, 1978), a stochastic cell-change (Komarova
and Wodarz, 2007) or a microenvironmental effect on HSC processes (Roeder et al., 2006). Other
authors consider HSC-specific bone-marrow niches that induce quiescence of HSC (Becker et al.,
2019; Stiehl et al., 2020; Ashcroft et al., 2017). This notion highlights the significance of the
properties of leukemic stem cells in relapse of patients with AML (Stiehl et al., 2020). In section
7 we discuss further details of these models of interaction between HSC and the bone-marrow
niches, as the formulations and findings directly relate to the novel niche model presented in part
IV of this thesis.

Mathematical models have been developed to investigate how mutations of HSC arise and
lead to different malignancies. Traulsen et al. (2010) show that even though the malignant stem
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cells that give rise to CML do not have a fitness advantage compared to healthy HSC, mutational
differences could provide an advantage for their progeny. This, and other related work, provides
a hypothesis for why some malignancies such as CML could arise solely due to neutral drift of
a mutated HSC population even without a competitive advantage of the malignant stem cells
(Traulsen et al., 2013).

Competition between healthy and malignant HSC clones has been investigated by different
authors. In particular, Park et al. (2019) propose and investigate a mathematical model of
interacting clones with a common feedback mechanism and delayed production of mature cells.
The model is applied to scenarios of bone marrow transplantation, allowing the authors to
investigate how the outcome of the transplant depends on clonal composition, in particular for
patients with CHIP. Importantly, (Park et al., 2019) find that competition between the clones,
modelled by Lotka-Volterra competition of HSC, is a key factor in determining the outcome of
transplantation.

Understanding how the interaction between HSC within the bone-marrow induces clonal
competition is important, as competition has consequences for the entire hematopoietic system,
both preceding and during disease. Hence, successful treatment of patients with hematologic
malignancies requires insight about clonal competition of HSC, and thorough investigation of
HSC dynamics is necessary.
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The Cancitis model

In this chapter, we present a mathematical model of MPN, referred to as the “Cancitis model”.
Although analysis of the Cancitis model is not the focus of this thesis, its formulation and some
of the results of the model analysis forms the base for the modelling work discussed in later
chapters. The model was initially presented in (Andersen et al., 2017). A model extension was
described in (Ottesen et al., 2019) along with a reduced form of the model. We here present the
latter form, but refer the reader to (Andersen et al., 2017) for the biological details about the
model formulation.

5.1 Presentation of the Cancitis model and overview of
previous results.

The “Cancitis model” is a mechanism-based mathematical model of the full hematopoietic sys-
tem, described through a six dimensional system of ordinary differential equations (ODEs). It
aims to connect the self-renewing nature of HSC with the mature blood-cell count and feedback
from the blood to the production of HSC. The base biological hypothesis is that increased blood
cell counts result in an increased level of debris from cells that have undergone apoptosis. This
triggers an immune response to remove the debris and upregulates the HSC self-renewal. The
positive feedback on HSC production is assumed to be limited by an unspecified mechanism, pos-
sibly due to physical constraint on the bone-marrow microenvironment. This provides multiple
possible interpretations of how malignant stem cells can grow in greater numbers than healthy
HSC and thus a possible understanding for the rise of MPN or other hematologic malignancies.

The model describes the healthy HSC x0, the healthy mature cells x1, the malignant stem
cells y0, the mature cells arising from the malignant stem cells y1, as well as the current debris
of mature cells that have undergone apoptosis a and an abstract quantity of the immune system
activity level s.
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The model equations are:

ẋ0 = (rxφx(x0, y0)s− dx0
− ax)x0 − rmsx0 (5.1a)

ẋ1 = axAxx0 − dx1
x1 (5.1b)

ẏ0 =
(
ryφy(x0, y0)s− d̂y0

− d̃y0
y0 − ay

)
y0 + rmsx0 (5.1c)

ẏ1 = ayAyy0 − dy1
y1 (5.1d)

ȧ = dx0
x0 + dx1

x1 +
(
d̂y0

+ d̃y0
y0

)
y0 + dy1

y1 − eaas (5.1e)

ṡ = rsa− ess+ I (5.1f)

where ˙ denotes the time-derivative. The functions φx(x0, y0) and φy(x0, y0) are defined as:

φx(x0, y0) =
1

1 + cxxx0 + cxyy0
(5.2)

φy(x0, y0) =
1

1 + cyxx0 + cyyy0
(5.3)

An illustrative compartment diagram is shown in figure 5.1, and an exemplary simulation is
shown in figure 5.2.

Default parameters given by Andersen et al. (2017) and Ottesen et al. (2019) were based on
estimates from the literature. For this thesis and for the work described in (Ottesen et al., 2020)
minor modifications were made. The updated default parameters are shown in table 5.1. This
entails a reduction of Ax, Ay, dx1

, d̂y1
and ea, resulting in a slower reaction to changes in the

mature cell compartments, without changing the overall behaviour of the model under simulation
of disease growth. The death-rate of mature cells of 1.29·10−2 corresponds to an average life-span
of mature cells of approximately 77.5 day, which is a slight overestimate compared to e.g. the
life-span of thrombocytes, which is around 8 to 12 days (Singh and Singh, 2018). In addition,
the growth rate and the differentiation rate of the leukemic clone was also changed slightly, such
that the disease development starting from a single mutated HSC leads to a growth of relative
frequency of malignant cells that resembles the JAK2 allele burden growth estimate discussed
in section 3 for a relative frequency below 33%. For higher relative frequency, the exponential
growth described in section 3 is assumed to overestimate the disease level.

While we do not discuss all details of the model, a few comments are warranted before
describing previous work on model analysis due to Andersen et al. (2017) and Ottesen et al.
(2019).

The renewal of HSC are due to the terms rxφx(x0, y0)sx0 and ryφy(x0, y0)sy0. The depen-
dence on s is due to the assumption that the immune response upregulates HSC self-renewal,
as discussed above.

HSC do not directly produce mature blood cells. An intricate system of hematopoitic
progenitor cells and other differentiated cells are intermediate steps between HSC and the
mature cells. These intermediate cells lead to a vast increase in numbers as they divide in
a self-renewing manner, albeit to a limited degree compared to the unlimited self-renewal
of HSC. In the Cancitis model, the increase in numbers are accounted for through an
amplification factor on the differentiation from HSC to mature cells, Ax and Ay. This was
briefly presented in the supplementary material of Bangsgaard et al. (nd), and a similar
argument is explored in detail in section 10.1.
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Figure 5.1: Compartment diagram of the Cancitis model. The healthy
cells counts, x0 and x1, are shown as blue boxes on the left-hand side, while
the malignant cells, y0 and y1, are depicted as red boxes on the right-hand side.
The grey box in the middle illustrate the dead cells, a, while the grey circle
illustrate the abstract notion of inflammatory level s. The arrows represents the
flows between compartments, with the small circle with the × symbol depicting
a multiplication factor. The red arrows from s depict how the inflammatory
level influences different rates in the system, while the green limiting arrows
connecting x0 and y0 illustrates the limit on self-renewal (rx and ry) due to the
expressions φx(x0, y0) and φy(x0, y0) from equation (5.2). The figure was based
on a figure from (Andersen et al., 2017).
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Figure 5.2: Exemplary simulation of the Cancitis model. The panels
depict the trajectories of the six variables of the Cancitis model, equations
(5.1), as well as the relative frequency of malignant mature cells, defined as

y1

x1+y1
, in a simulation with the default parameters shown in table 5.1. For the

simulation rm = 0 and with initial conditions defined as the healthy steady state
with a single malignant stem cell added. Blue lines depict healthy cells (x0 and
x1), red lines depict malignant cells (y0 and y1), while the dotted black lines
depict the corresponding sums of cells. The debris of dead cells, a, is shown
in the top-right panel, while the abstract inflammatory load is depicted in the
bottom-right panel.
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rx 8.7 · 10−4 day−1 ry 15 · 10−4 day−1 Ax 4.7 · 109 −

rm 0 day−1 dx0 2 · 10−3 day−1 Ay 4.7 · 109 −

d̃y0
2 · 10−9 day−1 d̂y0

2 · 10−3 day−1 cxx 5.6 · 10−5 −

ax 1.1 · 10−5 day−1 ay 0.52 · 10−5 day−1 cxy 5.4 · 10−5 −

dx1 1.29 · 10−2 day−1 dy1 1.29 · 10−2 day−1 cyx 5.2 · 10−5 −

ea 2 · 105 day−1 es 2 day−1 cyy 5.0 · 10−5 −

rs 3 · 10−4 day−1 I 7 day−1

Table 5.1: Default parameters of the Cancitis model. The parameters as
given in the supplementary material of (Ottesen et al., 2020). The values differ
slightly from those given in (Andersen et al., 2017) and (Ottesen et al., 2019),
see the text.

The Cancitis model allows for mutation of HSC into malignant stem cells, through the
term rmsx0. Little is known about the rate at which such mutations occur, rm. For the
purposes of this thesis, we maintain rm = 0, and instead include one malignant stem cell
for the initial conditions. This corresponds to a single mutational event of one HSC with
the resulting population of malignant cells tracing back to the mutation.

Apoptosis of malignant stem cells is modelled to have a second order term, −d̃y0
y20 . This

terms was not included by Andersen et al. (2017) and was introduced in (Ottesen et al.,
2019) based on considerations about immune surveillance through T-cell targeting of ma-

lignant cells. Hence, d̂y0 represent the naturally occurring apoptosis rate of malignant stem

cells, while d̃y0
describes a immune-system targeted death-rate.

The expression of φx and φy, equations (5.2), were defined as φx(x0, y0) =
1

1+(cxxx0+cxyy0)2

and φy similarly in (Andersen et al., 2017). Numerical investigation suggested that this
change had little to no effect on general model behaviour for parameters close to the default
values. It did, however, vastly simplify the mathematical analysis of the model.

Sajid et al. (2019) investigated that steady states of the Cancitis model, and determined
criteria for existence of different types of steady states. This includes a trivial steady state where
x∗0 = x∗1 = y∗0 = y∗1 = a∗ = 0 and s∗ = I

es
, a healthy steady state where y∗0 = y∗1 = 0 and all

other variables are positive, corresponding to a situation without disease, and a full-blown disease
steady state where x∗0 = x∗1 = 0 and all other variable are positive, related to a disease stage
where the healthy cells have been completely eradicated. Finally, under specific restrictions on
parameters, co-existences steady states also exists, in which all variables are positive. For further
details, see (Sajid et al., 2019).

The original proposal of the Cancitis model by Andersen et al. (2017) aimed to investigate the
role of inflammatory stimulus on the progression of MPN. The parameter I models an external
source of inflammation, assumed to depend on external factors such as e.g. disease unrelated to
MPN or from smoking. Inflammation is considered a hallmark of cancer in general (Colotta et al.,
2009), and in recent years it has been suggested that chronic inflammation plays an important
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role in advancing MPN-progression (Hasselbalch and Bjørn, 2015). Using the Cancitis model, it
was possible to illustrate the link between how inflammation and MPN, by simulating the effect of
increased inflammation. In figure 5.3 a simulated scenario is shown in which a sustained increase
of inflammation results in a higher count of mature blood cells. By considering an arbitrary
threshold over which the risk of thrombotic events is increased, e.g. 50% higher cell counts than
under disease-free circumstances, this illustrates how patient-risk is higher much earlier, even
when considering minor increases in inflammation. Figure 5.3 illustrates how patient outcome is
worsened significantly if the external inflammatory stimulus of the patient increase. Such increase
could corresponds to e.g. the onset of a smoking habit. In the scenario shown in figure 5.3, the
relative frequency of the malignant clone at year 5 is below 0.1%. If the relative frequency of
the malignant clone is considered indicative of the JAK2 allele burden, this would be below the
detection limit of most assays. As such, even if the disease has not yet reached a detectable level,
the increased inflammatory stimulus triggers faster progression of disease.

Figure 5.3: Increased inflammation cause complications to occur ear-
lier. At time t = 0, the healthy steady state is perturbed by adding a single
leukemic stem cells. The dotted curves display the progression of x1, y1 and
x1 + y1 under default parameters, in green, red and black respectively. The
full curves show a scenario where external inflammation I is increased by 10%
at year 5. This leads to increased cells counts, both healthy and leukemic. A
threshold of 50% above the healthy steady state count of x1 is shown as a dashed
magenta line. For comparison, the default scenario crosses this threshold around
year 25, while the scenario with increased inflammation crosses the threshold
earlier, around year 18.

Hypothetical treatment scenarios can be simulated with the Cancitis model. Figure 5.4 shows
a scenario where disease progression is reversed by simulated treatment perturbing the parameter
d̂y0 , resulting in a period with an increased death-rate of leukemic stem cells. In the figure, two
important measures of disease are illustrated: The mature cell counts and the relative frequency
of the leukemic clone. As discussed previously, increased counts of blood-cells is associated with
an increase risk of thrombosis and related event. The relative frequency y1

x1+y1
in the model is

interpreted as the JAK2 allele burden for MPN patients, and hence a clinical aim of treatment
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is reduction of this measure.

Figure 5.4: Increasing d̂y0 can reverse disease progression. A scenario
with disease progression is simulated, in which one HSC x0 is replaced by one
leukemic cell y0 at time t = 0. The resulting progression was shown in figure 5.2,
and is shown in dotted lines here. Between year 20 and year 22, hypothetical
treatment of a 4-fold increase of d̂y0

was simulated. At year 22, parameters
were returned to the default values. The grey background in the figure shows
the treatment-period. In the left panel, the full red curve shows the leukemic
mature cells y1, the green curve shows the healthy mature cells, x1. The sum of
mature cells is shown in black. In the right-hand panel, the relative frequency

y1

x1+y1
is shown in black, with the scenario without treatment shown in dotted

blue. The simulated treatment results in a significant decrease in leukemic cells
as well as in the relative frequency. Note that the decline in relative frequency
of leukemic cells appears to continue briefly after treatment cessation, before
increasing once again.

5.2 The reduced Cancitis model

In the mathematical analysis described in (Ottesen et al., 2019), the Cancitis model was investi-
gated in rigorous detail. Through considerations of time-scales, a slow manifold approximation
was identified, reducing the model to a two-dimensional ODE of scaled cell-counts of the healthy
and malignant HSC, X0 and Y0, with algebraic equations for the remaining variables. The model,
referred to as the reduced Cancitis model, is given as:

X ′
0 =

(
J +

√
J2 + 2BxX0 + 2ByX0

1 +X0 + CyY0
− 1

)
X0 (5.4a)

Y ′0 =

(
R
J +

√
J2 + 2BxX0 + 2ByY0

1 + CxX0 + Y0
−D0 −D1Y0

)
Y0 (5.4b)
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Parameter Definition Value Parameter Definition Value

R
ry
rx

1.49 J
I

2es

rx
dx0

+ ax
0.76

D0
d̂y0

+ ay
dx0

+ ax
1.00 D1

d̃y0

cyy

1

dx0
+ ax

0.10

Cx
cyx
cxx

0.93 Cy
cxy
cyy

1.08

Bx
axAx

2cxx

rs
esea

r2x

(dx0
+ ax)

2 0.06 By
ayAy

2cyy

rs
esea

r2x

(dx0
+ ax)

2 0.07

Table 5.2: Parameters of the reduced Cancitis model. The reduced pa-
rameters are given in terms of the parameter of the Cancitis model. The numer-
ical values used in (Ottesen et al., 2019) is also shown. Note that these values
are the numerical values presented in the article, which differ slightly from the
values given in table 5.1, as the default parameters of the Cancitis model were
modified slightly for this thesis.

where ′ denotes the derivative with respect to a scale time-variable defined in (Ottesen et al.,
2019). The reduced parameters of the reduced model are dimensionless compound parameters,
with dependence on the original parameters of the Cancitis model in equations (5.1). The
reduced parameters are shown in table 5.2. The reduced parameters J , D0 and D1 were focused
on in the analysis described in (Ottesen et al., 2019). As shown in table 5.2, J relates to the
external inflammatory stimulus, while the death-rates of the leukemic stem cells are found in
the expressions for D0 and D1. We identified the steady states of the reduced model and their
stability. In addition, a parameter-dependent value M was determined for which X0 + Y0 >
M implies that both X ′

0 < 0 and Y ′0 < 0, and as a result an attractive trapping region was
determined for non-negative initial conditions. Considering only steady states with non-negative
cell-counts, the reduced Cancitis model features a trivial steady state with vanishing cell-counts,
a hematopoietic steady state with X0 > 0 and Y0 = 0, a malignant steady state with X0 = 0
and Y0 > 0 and, under certain conditions of the parameters co-existence steady states with both
X0 > 0 and Y0 > 0 arise. Through numerical investigation, we determined that a maximum
of one co-existence steady state with non-negative cell-counts exists. The resulting structure
allowed us to consider the long-term effect of changes to inflammation (by perturbation of J), or
the effect of sustained T-cell therapy (by increasing D1). Since just two variables are considered,
phase-diagrams of X0 and Y0 can provide a full view of the model dynamics for a given set of
parameters. In figure 5.5 examples are shown for a range of values of J and D0.

The shown scenarios can be interpreted as the range of dynamics that arise under changes to
external inflammation I and changes to the death-rate of leukemic stem cells d̂y0

. In addition,
we found that the asymptotic dynamics of the system were effectively described through two
expressions, which we referred to as the primary and the secondary reproduction ratios, R and S
respectively. The local stabilities of the steady states were identified in (Ottesen et al., 2019), and
hence, the reduced Cancitis model provides an estimate of the asymptotic behaviour of the full
model. As such, when comparing patients responses to parameter perturbations, it is possible
to determine whether a long-term treatment is to be expected from the reduced model or if the
leukemic steady state remains stable and attracting as is the case without treatment.

As for the Cancitis model, hypothetical treatment can be simulated in the reduced Cancitis
model. Figure 5.6 shows the same simulated treatment scenario as figure 5.4, but simulating
the reduced model instead. The overall dynamics observed is very similar, as expected since
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Figure 5.5: Phase-diagrams of the reduced Cancitis model for different
values of J and D0. All panels display the dynamics of the reduced Cancitis
model for a given set of parameter. The variable X0 is along the first axes
while the variable Y0 is along the second axes. The rows of panels from top to
bottom have D0 = 1, 1.52, 1.8 respectively, while the columns from left to right
have J = 0.6, 0.76, 0.9. From the biological interpretation of the parameters,
left to right can be interpreted as increasing external inflammation, while top
to bottom can be interpreted as increasing the death-rate of malignant cells.
Circles depicts steady states, with the full circle showing the stable steady state
and open circles unstable steady state. The red circle shows the leukemic steady
state, the green the healthy steady state, the black circle the trivial steady state
and, when non-negative, the blue circle depicts a co-existence steady state.
Nullclines for X0 and Y0 are shown in stipulated green and full red respectively.
The trapping region for X0 + Y0 is shown as a dotted black line. Small blue
arrows depict the direction of flow. (Reprinted from (Ottesen et al., 2019).)
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the models are closely related. The reduced Cancitis model does however show a transient
response to parameter-perturbation, which is highlighted in figure 5.7. This difference is however
only significant because the quasi-steady-state approximation of mature cells implies that the
dynamics of mature cells in the reduced Cancitis model follows that of the stem cells. When
considering the relative frequency of malignant stem cells, the response of the Cancitis model
resembles the response of the reduced Cancitis model more closely.

Figure 5.6: Increasing D0 can reverse disease progression in the reduced
Cancitis model. The same scenarios as in figure 5.4 is here simulated for
the reduced Cancitis model. Between year 20 and year 22, the D0 parameter
was increased 3.99-fold, equivalent to a 4-fold increase of d̂y0 . In terms of the
primary reproduction ratio R, this is a change from R = 1.74 before treatment
to R = 0.44 during treatment. For a description of colors and line types, see the
caption of figure 5.4. Note that mature cell counts are calculated subsequently
from the solutions of equations (5.4) rather than independently considered in
the model. Following the cessation of treatment, both cell-counts and relative
frequency of leukemic cells begin to increase immediately.

5.3 Summarizing discussion

The Cancitis model describes a hypothetical link between blood production and the immune
system. While many different pathways play a role in feedback from the blood to the HSC,
the feedback considered in the Cancitis model is of a simplified form, assumed to represent
the most significant part. Considering the immune system abstractly, the relationship between
increased inflammation and the progression of MPN-disease could be investigated in the general
sense, in agreement with the notion of a connection between chronic inflammation and excessive
production of mature cells due to malignant stem cells.

The formulation of the Cancitis model is similar to the model of Dingli and Michor (2006).
The additional details about the debris of dead cells and the immune system feedback results
in a model that is comparable to previous work, but adds important details about the indirect
interaction of the healthy clone with the malignant clone.
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Figure 5.7: Transient change of the death-rate of leukemic cells has a
different effect in the reduced Cancitis model. The relative frequency
of malignant cells in the equivalent simulated treatment scenarios of figures 5.4
and 5.6 are shown together. The Cancitis model is shown in cyan, while the
black lines show the reduced Cancitis model. The dotted lines show the scenario
with no treatment. The immediate response in the reduced Cancitis model leads
results in a larger difference between the two models during treatment, which
decreases again after treatment cessation. Note however that in the Cancitis
model, an immediate response in the relative frequency of stem cells occurs,
similar to the one observed for the reduced Cancitis model. As such, the delayed
reaction of the mature cells is a particular feature missing because of the quasi-
steady-state approximation that gave rise to the reduced Cancitis model.
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Steps of cell maturity acting as intermediate between the stem cells and the mature cells
were not directly considered in the Cancitis model. Instead, a linear relation between the pro-
duction of progenitors and the subsequent production of mature cells was assumed. A simple
extension of the model could be considered where multiple intermediate stages of cell maturity
are explicitly modelled. However, if the difference between malignant and healthy progenitors
cells is insignificant, this has little effect on the system. In section 10.1, we argue for the validity
of this assumption, and show that it relates to the rate that progenitors differentiate.

A model reduction was presented in (Ottesen et al., 2019), leading to the reduced Cancitis
model, where only the stem cells are modelled dynamically. This allowed for identification and
classification of steady states, hence classifying the asymptotic dynamics of the model. Two
important conglomerations of parameters, the primary and secondary reproduction ratios, R
and S, were found to be the primary determinant of disease progression.

By considering a specific hypothetical treatment, it was possible to simulate how the Cancitis
model and its reduced counterpart behave during and after a particular biological change, namely
an increase in the death-rate of leukemic cells. Both models showed that such change could lead
to a substantial decrease in disease burden, both in terms of the mature cell-counts and in the
relative frequency of the malignant clone. As such, the models suggest that increasing the death-
rate could be one way to improve patient outcome. In particular, the dynamics of the relative
frequency observed in figures 5.4 and 5.6 appears visually to agree with the changes in the JAK2
allele burden observed for IFN-treated MPN patients in the DALIAH trial, see section 3.

While the Cancitis model provides an important view into the dynamics of blood cancers
and allows for a possible explanation behind the treatment-responses seen in data (as discussed
in detail in the next section), some significant features of the hematopoietic system has been
omitted from the model for simplicity. The abstract notion of the immune system as solely
up-regulating the HSC production omits the role of immuno-surveillance, where malignant cells
are actively targeted by the immune system and cleared. Such effects were partly included in
the extension of the model presented in (Ottesen et al., 2019), through the term −d̃y0

y20 in
the differential equation for ẏ0. However, more detailed effects of the immune system could be
considered, especially since HSC also give rise to the cells of the immune system, and hence, an
intricate feedback between the production of e.g. T-cells and the self-renewal and differentiation
of HSC is expected. In the Cancitis model, any non-zero number of malignant stem cells will
eventually lead to full-blown malignancy, assuming they have an advantage over the healthy
clone, which in the reduced model were determined by the reproduction ratios R and S. Adding
details of the immune system modelling could lead to a system where sufficiently few malignant
cells could be completely eradicated.

The cell cycle of HSC play an important role in both hematopoiesis and malignancy, and has
been modelled extensively. As discussed in section 4, HSC can remain quiescent for extended
periods of time. No such dynamics of HSC are considered in the Cancitis model, and rather
all HSC are assumed to behave equally. As a result, the self-renewal rate, the death-rate and
the differentiation-rate are all “effective” rates, describing the average rate at which the related
processes occur, when all HSC are considered. This is assumed to have minimal effect when
considering the general behaviour of the entire system, as differences would average out. However,
if feedback or treatment were to interact with the HSC and their tendency to enter, remain or
exit quiescence, this could have an important effect on the model dynamics. In particular, this
is known to be the case of IFN, which is believed to stimulate quiescent HSC and induce them
to enter cell cycling. The lack of this feature of quiescence is a limitation of the Cancitis model
when considering IFN-treated patients from the DALIAH trial. However, it is unclear how big
the effect is, and whether the perturbing the effective parameters is in fact sufficient to capture
the dynamics expected to arise from activation of quiescent HSC.
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Modelling MPN-patient
responses with the Cancitis model

The Cancitis model defined in the previous chapter describes the hematopoietic system during
MPN development on a conceptual level. In this section the model is related directly to clinical
data from the DALIAH trial. The work was previously described in the supplementary material
of (Ottesen et al., 2020), available as Electronic Supplementary Material 2. This section describes
the work in more detail, and includes some additional results.

Throughout this section, the reduced Cancitis model is used, to reduce model complexity
when comparing the model with data. To maintain the simplicity of the reduced Cancitis model
but still have the biological interpretation of parameters, an equivalent formulation is used,
consisting of the algebraic expressions:

x1 =
axAx

dx1

x0 (6.1a)

y1 =
ayAy

dy1

y0 (6.1b)

a =
1

2

√(
I

rs

)2

+ 4
esκ

ears
− I

2rs
(6.1c)

s =
rs
es

a+
I

eS
(6.1d)

where κ = dx0x0 + dx1x1 +
(
d̂y0 + d̃y0

)
y0 + dy1y1. The differential equations of the reduced

Cancitis model can then be written as:

ẋ0 = (rxφx(x0, y0)s− dx0 − ax)x0 (6.2a)

ẏ0 =
(
ryφy(x0, y0)s− d̂y0 − d̃y0y0 − ay

)
y0 (6.2b)

For the rest of this section, “the Cancitis model” refers to this particular formulation of the
model.
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6.1 Response to IFN treatment in the Cancitis model

In section 3, we discussed how changes in IFN dosing and timing could influence the outcome
of treatment and hence must be considered in greater detail in more extensive modelling work.
Before the patient-data is related to the Cancitis model, we first describe how IFN is administered
and how the effect of changes in dosing is considered in the model.

The field of pharmacokinetics and pharmacodynamics is vast and there exists many different
methods for modelling the subcutaneous administration of IFN. We consider a simple model of
IFN uptake to avoid over-parametrization. As an initial assumption, the different timings (e.g.
“μg per week”, “μg per 21 days”, etc.) were simplified into simply an average daily dose, as
described in section 3. It is possible that there is a difference in the immediate effect when larger
doses are administered on a infrequent basis compared to frequent small doses. However, we
assume that these effects are insignificant in the long-term and that the subcutaneous admin-
istration leads to a slow absorption into the blood system, allowing for a simple model of the
blood-concentration of IFN. The uptake and clearance of IFN in the bloodstream is assumed to
occur with the same rate, τ , independently of the current dose. This leads to a simple expression
of IFN blood-concentration:

Ḃ = τ (D(t)−B(t)) (6.3)

where D(t) is the average dose at time t and B(t) is the blood concentration at the given time.
Inspired by previous work on pharmacokinetic modelling of IFN (Saito et al., 2012), we chose
τ = 1

7
μg
day . Note that D(t) is a stepsize constant function. Considering an interval t ∈ {t0, t1}

where D(t) is constant, D(t) = D0, the differential equation (6.3) has solution:

B(t) = D0 − (D0 −B(t0)) e
−τ ·t (6.4)

for t ∈ {t0, t1}. The function B(t) describes the total amount of IFN in the blood of the patient.
A continued daily dose of e.g. 5μg IFN, leads asymptotically to B(t) = 5. For this reason, the
unit μg is used for B(t) throughout this thesis to describe the equivalent IFN dose, even though
the actual concentration is dependent on the volume of the blood of the patient. The expression
in equation 6.4 allows for a very simple estimate of the blood concentration level. In figure 6.1
an example of B(t) for a particular patient is illustrated. The IFN dosing and timing, D(t) for
the given patient is shown in gray, while a step-wise calculation of B(t) using equation (6.4) is
shown in black.

The effect of the IFN concentration in the bloodstream is assumed to affect certain parameters
of the Cancitis model. To model this, we define the IFN-perturbed parameter, θ̌, of any given
parameter, θ, as:

θ̌(t) = (1 + νθB(t))θ (6.5)

where νθ determines the effect of IFN on the given parameter θ. Note that in general νθ ≥ −B(t)
must hold for all t, so θ̌(t) ≥ 0 is fulfilled. For simplicity, we require νθ ≥ 0 when fitting the
model to patient data, and hence only consider parameters that are increased by heightened
IFN blood-concentration. The relation between IFN blood-concentration and parameter value
is hence a simple linear relation, with θ̂ = θ for a blood-concentration of B(t) = 0.

6.2 Interpretation of JAK2V 617F allele burden in the Can-
citis model

As discussed in section 2.1, the JAK2 allele burden is an important measure for the disease
progression of MPN. While measurements of HSC give the most accurate description of a given
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Figure 6.1: Illustration of estimation of IFN blood-concentration The
figure shows the current daily IFN-dose for an exemplary DALIAH patient as
grey rectangles. The step-wise solution of the IFN blood-concentration, equa-
tion 6.4 B(t), is shown as a black line overlaid on the figure. This illustrates
how changes in IFN blood-concentration can be delayed compared to changes
in dosage. Throughout this thesis, similar patient-specific curves of B(t) are
shown along with figures of data, instead of the raw data for the dose-timing.

mutational burden, human studies must often rely on measurements of blood samples. Particu-
larly for the JAK2 mutation, a significant correlation between HSC and blood-cell measurements
has been shown (Takahashi et al., 2013) and hence for this particular disease burden, measure-
ments of blood samples provide a reliable estimate for the JAK2 allele burden of HSC. For the
DALIAH trial data, described in section 3, such blood sample measurements were made. Thus,
to compare the Cancitis model to the data from the DALIAH trial, we consider the mature
cell-counts. Considering the JAK2 allele burden a measure of the proportion of cells that arose
from mutated stem cells, we define:

Ccancitis(t) =
y1(t)

x1(t) + y1(t)
(6.6)

as the measure of JAK2 allele burden in the Cancitis model, i.e. simply the proportion that
mature malignant cells make out of all mature cells. This relative frequency of malignant cells
in a typical scenario of disease progression was included in figure 5.2.

6.3 Fitting procedure for JAK2V 617F allele burden

For the default parameters given in table 5.1, the Cancitis model agrees with the exponential
growth described in section 3. In the Cancitis model, the growth is achieved by replacing a single
healthy HSC with one malignant stem cell at time t0 = 0. The disease development was assumed
to be the same for all patients. This was necessitated by the lack of data available for patients
before treatment initiation. Hence the baseline measurement is the only measurement we used
to determine how far the patient is on the population-level curve of disease development. The
common disease development was simulated from a single malignant cell added initially until
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the JAK2 allele burden approached 100%. For each patient, the disease development curve
was time-shifted such that it agreed with the JAK2 allele burden at baseline. This provided
an estimate for the behaviour of the model leading up to the baseline measurement and of the
value of the model variables at treatment initiation. Note that this does however imply complete
agreement between the baseline JAK2 allele burden measurement and the model, and hence
assumes complete confidence in the baseline measurement. For most patients, this assumption
is found to be appropriate, however, for few patients the JAK2 allele burden at baseline is much
different from later measurement. In particular, patient “P089” initially had an JAK2 allele
burden of 19%, but all other measurements the first two years gave JAK2 allele burden above
60%. While this could be treatment induced, it appears unlikely.

Having determined the patient-specific variable states at treatment initiation, the model
was simulated for the period of time available in the DALIAH trial data for the given patient.
By considering perturbation of specific parameters in accordance to the IFN-response given in
equation (6.5), the treatment response could be simulated in the model as affecting different
parameters to different degrees, by varying the relevant ν parameters. Hence it was possible to
consider scenarios where a subset of parameters were perturbed while the remaining parameters
remained unchanged.

The model-error was defined as the difference between the JAK2 allele burden measurements
and the relative frequency of malignant mature cells in the model, equation (6.6), at the given
time:

Ejak,i = Ccancitis(ti, νθ)− Ji (6.7)

where Ji are the measurements of the JAK2 allele burden and time ti and Ccancitis(ti, νθ) are
given by evaluating equation (6.6) at time ti when solving with the specific value of ν, related to
parameters θ. The sum of squared errors,

∑n
i=1 E

2
jak,n, could then be minimized for the chosen

parameters. This was done using the MATLAB function fminsearch. Note that fminsearch does
not necessarily find the global minimum, but only a local minimum. Figure 6.2 illustrates exam-
ples where the parameter d̂y0

was perturbed, and patient-specific values for νd̂y0
were determined

to minimize model-error. Both patient data and the model simulation using the time-dependent
ˇ̂
dy0

(t) are depicted in the figure. For most patient, this resulted in good visual agreement be-
tween model and data. Model fits to data for all patients from the DALIAH trial considered are
shown in chapter B of Electronic Supplementary Material 2.

Since the degree of perturbation of the model-parameters depend on the IFN-dose, it was
possible to analyse the asymptotic behaviour of the model for any hypothetical dose using the
value, νopt, which minimized the sum of squared error. Hence, it could be determined which
steady states were locally stable for a given dose, D0, by setting B(t) = D0, calculating the
perturbed parameters θ̌ = (1 + νoptD0)θ and analysing the local stability of all steady states
for the resulting parameters. The stability information is shown in the bottom panel of figure
6.2. We show doses where the combination of dose and νopt resulted in a scenario where the
full-blown leukemic steady state was the only locally stable steady state in red, while doses for
which the only locally stable steady state is the healthy state are shown in green. There were no
cases with multiple locally stable steady state, nor examples of a co-existence steady state being
locally stable.

6.4 Results of fitting to available patient data

Since the Cancitis model was based on biological mechanisms, the relation between the parameter
perturbation and the IFN-dose can be interpreted biologically on a patient-specific level. Figure
6.3 shows a bargraph, with a bar for each of the IFN-treated patients of the DALIAH trial that
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(a) (b)

(c) (d)

Figure 6.2: Examples of patient-specific fit of Cancitis model. The
untreated disease development, shown as a dotted black line, was shifted such
that time t = 0 coincides with the baseline measurement of the JAK2 allele
burden. The patient data is shown as grey asterisks ∗. The parameter d̂y0 was
perturbed in accordance with equation (6.5) to minimize the squared error. In
the scenario shown, νd̂y0

= 0.52 minimized the error. The model simulation

with the resulting time-dependent
ˇ̂
dy0

(t) is shown as a full black line. The
bottom part of all figures shows the modelled blood-concentration of IFN in
a black curve. The coloured background displays the asymptotic behaviour of
the model for the given dose, with green displaying blood-concentrations that
would lead to eradication of the leukemic clone and red background leading to
full-blown disease. Panel (a), (b) and (c) depicts patients “P002”, “P198” and
“P184” respectively, and the model-fits shows good visual agreement with data.
For panel (d), depicted patient “P164”, the model does not visually agree with
data, yielding a bad fit.
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had three or more measurements of the JAK2 allele burden. For the figure, IFN-dose dependent
perturbation of the parameter d̂y0

was fitted to the JAK2 allele burden data as described above for

all patients with three or more JAK2 allele burden measurement. Since d̂y0
relates to the death-

rate of malignant stem cells, the fitted relation between a given dose and the relative increase
of the death-rate was determined for each patient. The figure depicts the relative increase for
a range of doses, between 0 and 15 μg per day. For patient “P002” depicted in figure 6.2a, the
fitted value νd̂y0

= 0.52 implies that for a dose of 5 μg, the parameter d̂y0 is increased by a

factor 1 + 5 · 0.52 = 3.60. The asymptotic dynamics of the model suggest that a threshold over
which treatment will be successful, in the sense that the healthy steady state is locally stable.
Considering only d̂y0

, the bifurcation where local stability switches from the leukemic steady

state to the healthy steady state occurs when d̂y0
is increased by a factor 1.8. This threshold

is shown as a dotted line in figure 6.3. The model-fits suggests that some patients could be
successfully treated with low levels of IFN while some patients required higher doses. Certain
patients have such a low response to IFN that succesfull treatment requires an incredibly high
dose, at which toxicity could become a concern. Hence, the model-fits suggest that other drugs
must be considered for these patients. For the majority of patients however, successful treatment
is attained for doses below 10μg IFN per day.

By relating the IFN-dose to the biological effect we were thus able to give a quantifiable
estimate of how much the death rate had to be increased by IFN for the given patients, assuming
that other effects of treatment were insignificant.

Since the response is dose-dependent, it was possible to determine the threshold dose for each
patient, that is, the dose which would result in a 1.8-fold increase in d̂y0 and hence leads to the
change of local stability. Four patient were excluded, as the required doses greatly exceeded 30μg
IFN daily. Excluding these patients, the distribution of the doses required to attain successful
treatment for the other patients is shown in figure 6.4. While there are differences between
patients, the distribution suggests that the starting dose of 5μg is sufficient for most patients,
with approximately one third of patients requiring doses above 5μg. The behaviour of the
model also suggest that any dose above the given patient-specific threshold will result in faster
treatment. Note however that no effect of toxicity is considered in the model, and high-dose IFN
can be a concern in the clinical setting.

6.5 Predicting JAK2V 617F kinetics

Definitions of molecular response to treatment for ET and PV patients were described by Barosi
et al. (2013), updating previous criteria given by Barosi et al. (2009). Complete molecular
response was defined a complete eradication of the molecular abnormality, while the criteria
for partial molecular response was defined as a decrease in mutant allele burden greater than
50%, for patients with an initial burden above 20%. In the work presented in (Ottesen et al.,
2020), we considered the use of the Cancitis model as a tool for predicting molecular response. For
simplicity, we focused on partial molecular response, and patients with initial JAK2 allele burden
below 20% were also considered. This was done by fitting the model to a subset of the JAK2
allele burden data, and evaluating the model prediction at the time of the next measurement.
Possible changes in dose between the fitted data-points and the predicted data-points were used
in the prediction. From just the three first data-points; measured at baseline, 4 months and 8
months, the model was able to predict whether partial molecular response would be achieved
at the next measurement well. Defining it a positive response when the patient did experience
partial molecular response and a negative response when the patient did not, the predictions of
the model was split into true positive (TP), false positive (FP), true negative (TN) and false
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Figure 6.3: Biological interpretation of fitted IFN-responses when fit-
ting perturbations of d̂y0 . Interpreting the perturbation of d̂y0 as the corre-
sponding fold-increase of the death-rate of leukemic stem cells, each bars rep-
resent a given patient response. The blue part shows the model-prediction for
5 μg of IFN, the green for 10 μg, and the red for 15 μg. The threshold at 1.8-
fold increase required for long-term eradication of the leukemic clone is shown
as a black dotted line. The respond of three patients is not visible, as the fitted
parameters νd̂y0

was too small. Six additional patients are below the threshold

for 15 μg. Hence, the model-fits suggest that for nine of the patients, a dose of
15μg is insufficient. (Reprinted from (Ottesen et al., 2020))
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(a) (b)

Figure 6.4: Distribution of minimum IFN-dose resulting in successful
treatment. Panel (a) displays a histogram of the required doses determined
by the model fits. A log-normal distribution fitted to the data is scaled and
shown for illustration. In panel (b), a cumulative histogram of the threshold
doses is shown, normalised by the number of patients. A cumulative curve of
the log-normal distribution from panel (a) is also shown. Note that the x-axis
of both panels scales logarithmically. For four patient, the necessary average
daily dose exceed 30μg, leading use to exclude them from panel (a). Hence, in
panel (b) the maximal possible percentage of patients are 93.7% (59/63).

negative (FN) predictions. This suggested that the model prediction had sensitivity
(

TP
TP+FN

)
,

specificity
(

TN
TN+FP

)
, and accuracy

(
TP+TN

TP+TN+FP+FN

)
that were all above 75%. These measures

increased when more data-points were considered. Hence, the model and the fitting procedure
described above is capable of adequately predicting whether a patient will experience a partial
molecular response to treatment or not. Figures showing this is shown in (Ottesen et al., 2020),
but are omitted here for brevity.

An example of a more direct prediction of patient response is shown in figure 6.5. The figure
illustrates the procedure described above, where a subset of JAK2 allele burden data was used
to fit the perturbation of d̂y0

as above. The black line shows the model prediction given the
data for changes to IFN dose as they were for the given patient. The dashed magenta and
dashed blue curve however illustrate two hypothetical scenarios with either halted treatment
or constant-dose treatment (i.e. continuing the dose at the last data-point used in the fit),
respectively. These hypothetical model progressions allowed for a visual interpretation of the
difference between continuing treatment and stopping treatment which can be useful in a clinical
setting. Predictive plots for all patients from the DALIAH trial considered are shown in chapter
D of Electronic Supplementary Material 2.

6.6 Fitting procedure for blood-cell counts

Fitting the model to the JAK2 allele burden provides an approximate description of one of the
important clinical biomarkers for MPN. However, in the clinic, additional goals are considered in
addition to reduction of the JAK2 mutational burden. In particular, normalization of the cell-
counts of thrombocytes and leukocytes are important clinical endpoints, and failure to achieve
normalized cell-counts were a criteria for increasing IFN dose in the DALIAH trial. Hence,
agreement between the model and the data is also important in regards to thrombocyte- and
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(a) (b)

Figure 6.5: Examples of patient-specific fits with prediction. Similarly
to figure 6.2, patient data is shown as ∗. The grey data-points are used in the
current fit, while the black data-points show of the rest of the patient data.
In panel (a) patient “P002” is shown, where only the first three data-points
are used for the fitting procedure. Panel (b) depicts patient “P198”, using the
first six data-point in the fitting procedure. The black line shows the model
behaviour following the specific patient dosing-schedule. The dashed blue line
shows a simulation where no further changes are made in dose after the last
grey data-point, while the red dashed line shows a scenario where treatment is
halted after the last grey data-point. In the bottom part of the figures, the dose
information is shown as in figure 6.2, along with the blood-concentrations of the
simulated scenarios in the corresponding colors.
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leukocyte-counts. To relate the model-fits described above to the cell-counts, an additional sub-
sequent fitting procedure was carried out. Since the model considers a conglomerate expression
of mature blood-cells (x1 and y1), it is assumed that a certain fraction of the mature cells in the
model are cells of a particular cell-line, e.g. thrombocytes. We assume a linear relation between
the sum of mature cells in the model, x1+y1, and the cell-counts in data. We define the cell-line
specific errors:

Ec,i = (x1(ti, νθ) + y1(ti, νθ))Rc −Dc,i (6.8)

where Dc,i are the measurements of the cell line c at time ti and Rc is the fraction of mature
cells in the model that relate to cell line c. By changing Rc for each cell line (thrombocyte
and leukocyte), it is possible to minimize the sum of squared errors,

∑n
i=1 E

2
c,i where n is the

number of data-points for the given patient. In figure 6.6 an example is illustrated. The remain-
ing patient-specific fits are available in chapter C of Electronic Supplementary Material 2. By
scaling the sum of mature cells with the cell-line-specific factor, both the disease development
without treatment and the treatment-induced decrease in mature cell-counts can be shown. The
treatment-free development illustrates the predicted development if treatment was not initiated
for the given patient at time t = 0. For many of the patients of the DALIAH trial, the mature
cell-counts of the model were found to agree well with the data when scaled linearly this way.

6.7 Considering multiple parameters

In the examples shown above, only the parameter d̂y0
was perturbed. As a final example of this

section, figure 6.7 displays a least-square minimizing fit where distinct values for νd̂y0
and νay

were

fitted simultaneously, i.e. resulting in simultaneous changes to both d̂y0 and ay. As expected,
increasing the number of parameters fitted leads to an improved fit for most patients. This is
observed in the particular example shown in figure 6.7. Fits to data of all patients considered
are shown in Electronic Supplementary Material 3. Note that for some patients, considering ay
as well as d̂y0

visually only makes little difference compared to just considering d̂y0
.

For some patients, such as the examples shown in figure 6.7, fitting with perturbation of ay
in addition to d̂y0 lead a notable increase in JAK2 allele burden when the IFN dose is increased,
particularly in the beginning, while for other patients the perturbation of ay had an insignificant
effect. Different ay responses to IFN could explain why some patients have a short-term increase
of the JAK2 allele burden before a decay, that is, a small hump in the JAK2 allele burden, similar
to the pseudo-progression discussed by Lewin et al. (2020).

6.8 Summarizing discussion

In this section, we showed that the DALIAH trial data can be accurately modelled by the Cancitis
model. The model was fitted to patient data by considering parameter perturbations that depend
on the IFN-dosing. A simple interpretation of the effect of IFN lead to patient-specific fits that
were able to recreate the dynamics of the JAK2 allele burden well. By considering a particular
singular effect of IFN, namely an increase of the death-rate of malignant stem cells, we were able
to describe how patients responded to treatment. For a significant proportion of patients, an
IFN dose of 5μg was determined to lead to a doubling of the death-rate of malignant stem cells,
with higher doses further increasing the death-rate.

From the fits of increasing death-rates of malignant stem cells to the JAK2 allele burden data,
it was possible to determine patient-specific thresholds of how large a dose of IFN was necessary
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Figure 6.6: Example of the subsequent fit to blood-cell counts. Patient-
data from patient “P086”. The right-hand panels show the minimizing fit when
perturbing d̂y0

, as in figure 6.2. The top-left panel displays the leukocyte-
measurement in cells per microliter, while the bottom-left panel displays the
thrombocyte measurements, also in cells per microliter. The model behaviour
without treatment is shown in dotted black, while the simulated model be-
haviour for the sum of mature cells is shown as a full black line. The model
simulations has been scaled linearly to minimize the sum of squared errors, de-
fined is in equation (6.8), see the text. A healthy interval is shown in dashed
grey, defined as between 4 · 103 and 11 · 103(μL)−1 for leukocytes and between
145 · 103 and 390 · 103(μL)−1 for thrombocytes.
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(a) (b)

Figure 6.7: Example of patient-specific fit of parameters d̂y0
and ay.

Similarly to figure 6.2, model fits to data from patients “P002” and “P198” are
shown in panel (a) and (b) respectively. In these figures, both d̂y0 and ay were
perturbed simultaneously. The perturbations depended on the modelled IFN
blood-concentration, but not necessarily to an equal degree. All data-points
were used in the fit shown. For more details, see the caption of figure 6.2.

to attain successful treatment for the given patients. The results suggest that for some patients,
low doses could be sufficient, however larger doses are assumed to lead to faster treatment, even
for patients where a low dose is sufficient. We determined that the typical IFN starting dose of
approximately 5μg should be sufficient for two thirds of patients, while one third needs higher
doses.

Based on the best fits to patient-specific JAK2 allele burden measurements, we were able to
subsequently fit the model to mature cell counts, through a simple scaling of the mature cell
count in the model. These fits demonstrated that the Cancitis model accurately describes the
dynamics of cell counts, allowing for interpretation of the model variables as thrombocyte and
leukocyte counts. Describing such measurable counts increase the possible clinical endpoints that
the model can be used to evaluate, estimate and predict, and opens a path for testable model
hypotheses about blood-cell counts.

It is possible that IFN-treatment affects multiple parts of the hematopoitic system, and
hence only perturbing one parameter by the IFN-dose is a simplification. Considering multiple
model-parameters is expected to improve the agreement with data. To investigate this, we
perturbed both the death-rate and the differentiation rate of leukemic stem cell, d̂y0 and ay
respectively. This resulted in an improved fit to the JAK2 allele burden data. However, in
addition to longer computational time of the fitting procedure, considering multiple parameters
also introduces additional uncertainty and possibly overfitting. In general, one should consider
the simplest model that agrees with data, and only introduce additional complexity when the
simplest model is insufficient for describing the data. A simple model that agrees with data
can provide simple hypothetical biological interpretation, while a complex but overfitted model
can give false confidence in the model fit, and over-estimate the significance of the effect when
interpreted biologically. Hence, although the improved fits shown in figure 6.7 agrees well with
data, additional data must be considered in the future to verify that fitting both d̂y0

and ay is
necessary for accurate model-fits and biological interpretation of the effect of IFN. If more data
had been obtained between baseline and the initial JAK2 allele burden measurement at month
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4, it would have been possible to determine whether the fit shown in figure 6.7 more accurately
describes the JAK2 kinetics than the fit considering only d̂y0

shown in figure 6.2.
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Chapter 7

Brief review of mathematical
models of HSC

In this part of the thesis, we present a mathematical model of HSC. This entails a presentation
of various reduced forms of the model as well as a thorough analysis on the model dynamics.
Before discussing the specifics of the model, we reiterate some of the important features of HSC,
previously described in section 2.2, and present some of the important mathematical models of
HSC dynamics already presented and discussed in the literature. In particular, the models of
Stiehl et al. (2020); Ashcroft et al. (2017) and Becker et al. (2019) are discussed. While other
important mathematical models of HSC exist, the models presented in these three articles formed
the basis of inspiration for the development of the model presented in the next chapter.

We summarize the most significant features of HSC, as discussed in section 2.2. HSC are pri-
marily found within the bone-marrow microenvironment (BM), and typically in close proximity
of certain cells referred to as niches. HSC undergo self-renewing division (where one HSC divides
into two HSC) or differentiation (where a HSC turns into a more mature cell). Differentiation
occurs either spontaneously or during division. The term “asymmetric division” is used to de-
scribe a division where one HSC gives rise to one HSC and one differentiated cell. Mutations can
occur, resulting in HSC-clones that differ from the rest of the HSC population, and in some cases
lead to malignancy. In case of malignancy, the mutated cells are referred to as malignant stem
cells or leukemic stem cells. Mathematical modelling has been used as a useful tool to investigate
the role that the HSC-specific niches play in maintaining normal HSC behaviour.

Stiehl et al. (2020) present a mechanistic model of HSC as part of a larger model of hemato-
poiesis. The work is an extension of previous investigations by the same authors (Wang et al.,
2017), and is used for risk-stratification of AML-patients with great success. In the model, niche-
bound HSC divides in such a way that one daughter-cell remains in the niche while the other
cell is free and subsequently attempts to find a separate niche to occupy. When the free HSC
encounter an empty niche, it attaches to it. Whe in proximity of an occupied niche, it attempts
to dislodge the occupying cell. If the free cell is unsuccessful in attaching to a niche after a par-
ticular number of tries, it differentiates into a more mature cell. As a result, differentiation and
in turn production of mature blood cells depends directly on the ability for the HSC population
to occupy niche-space. By modelling leukemic stem cells that compete for the same niches, the
model suggests that if a leukemic clone dislodge healthy HSC, it can out-compete the health
clone. Relating the HSC dynamics to a model of progenitor-dynamics due to some of the same
authors (Marciniak-Czochra et al., 2009) (previously mentioned in section 4), and comparing
with experimental data, Wang et al. (2017) provides evidence that HSC and leukemic stem cells
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do indeed compete over a shared resource of niches, rather than leukemic stem cells occupying
a separate set of niches. The recent work described by Stiehl et al. (2020) further substantiates
that the probability that a leukemic stem cell dislodge a healthy stem cell must be sufficiently
high, since otherwise the progression observed in AML-patients cannot occur.

In the model proposed by Ashcroft et al. (2017), niche-bound HSC similarly gives rise to two
cells where one maintains the niche space of the original HSC. The other cell either attaches to an
empty niche, if any are available, or exits the BM and circulates in the peripheral blood. Spon-
taneous detachment of niche-bound HSC is considered, as well as attachment of HSC from the
peripheral blood to empty niches. Cellular death is modelled, with different rates dependent on
whether the HSC is within the BM or in the peripheral blood. Through mathematical analysis of
the model as well as stochastic simulations, Ashcroft et al. (2017) investigates different scenarios
with clinical relevance. The results provides insight into clonal dominance when multiple distinct
HSC clones are considered, revealing a relation between the growth advantage of a mutant clone
and the time it takes for the clone to reach a certain level of clonality. In addition, stem cell
transplantation is considered in the model, showing that multiple small doses of labelled HSC
into the peripheral blood can lead to higher cell-count of the labelled HSC, compared to when
a single large dose of HSC is transplanted. Hence, the model is in agreement with experimental
evidence suggesting more efficient engraftment into the bone-marrow through splitting of the
transplanted dose (Bhattacharya et al., 2009).

Lastly, the model of Becker et al. (2019) also considers HSC and their interaction with the
bone-marrow niches. In contrast to other work, Becker et al. (2019) also models the numbers of
niches dynamically. In the proposed model, HSC are able to divide and self-renew when they
are not attached to the niches. When bound to the niches, signalling from the niche induces
quiescence in the HSC, keeping them from self-renewal. A loss of HSC due to differentiation
and cell death is considered, for both free and niche-bound HSC. Attachment of HSC to empty
niches and detachment is modelled to occur spontaneously. To model niche dynamics, niche-cells
with a HSC bound to them divide and give rise to new empty niches. When no HSC are bound
to the niches, they can undergo apoptosis, and hence the niche-cell population diminishes in the
absence of HSC. The interaction between HSC and niche-cells results in a system that returns
to homeostasis after perturbations, and offers a hypothesis for why HSC reconstitution following
stem cell ablation can be slow. The return to homeostasis occurs in a damped oscillatory way,
which is determined to occur due to integral feedback of HSC numbers on HSC production, a
robust and well-known type of feedback control.

The three models described all consider some type of interaction between HSC and HSC-
specific bone-marrow niches. Together they provide different hypothesis for the details of the
interaction while all agreeing with general HSC knowledge and experimental evidence. Since
observing HSC within the bone-marrow is difficult in vivo, it is hard to determine on which
points the three models are in agreement with real HSC behaviour and on which point they do
not. In the next section, we present a novel model of HSC and their interaction with the niches,
in an effort to further investigate HSC dynamics. The proposed model is inspired by the work
described above, and under certain conditions, the models are in agreement. The proposed model
is thus not a substitution of previous models but rather an extension and additional hypothetical
description of the interaction between HSC and the niches.
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The HSC niche model

In this chapter, we present a mathematical model of HSC within the bone-marrow microenviron-
ment and the interaction between HSC and the HSC-specific niches. The model was originally
proposed and investigated in Pedersen et al. (nd1) (Supplementary material B). Further math-
ematical exploration of the model as well as a model reduction was the focus of the work of
Pedersen et al. (nd2) (Supplementary material C). The mathematical analysis described here is
similar to the one presented in Pedersen et al. (nd2), presented in detail here for completeness.
We first give a description of the formulation of the model and the biological reasoning behind
it.

8.1 Constructing the HSC niche model

To construct a simple mathematical model of HSC dynamics, we restrict our focus to just the
HSC and the interaction with HSC-specific niches, and signalling or immune response from the
rest of the body is not considered until later in this thesis.

We consider multiple distinguishable HSC sub-populations. Differences in sub-populations
could be due to mutations with no significant effect, malignant mutations leading to hematologic
malignancies such as MPN or chemically marked HSC in a transplantation scenario. We refer to
such different sub-populations as different clones of HSC. All variables and rates pertaining to a
given clone carry the same subscript in the model. In the most general terms, the model considers
n ∈ N different distinguishable clones. In the following, we use j to denote any j ∈ (1, . . . , n).

We describe the processes that we consider:

The niche and the release of HSC. HSC that are in proximity with niche-cells are
considered bound. We denote these Nj . These HSC are considered quiescent or dormant,
and while the specifics of this quiescence is not considered in detail here, the interaction
with the niche is assumed to be an important part of maintaining healthy stem cell function
(Kumar and Geiger, 2017; Vaidya and Kale, 2015; Zhang and Gao, 2016). We refer to niches
that have no HSC bound to them as empty niches, and denote them NE . The release or
unbinding of niche-bound HSC is assumed to occur spontaneously with rate uj , and results
in a free cell Aj and an empty niche:

Nj
uj→ NE +Aj (8.1)

Self-renewing division of free HSC. Free HSC can divide in a self-renewing way such
that cells post-division are still considered HSC, i.e. their stemness is maintained. We
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hypothesize that self-renewing division of free HSC cannot be done indefinitely and that
after an unspecified number of divisions, the cell requires interaction with the niche to
self-renew again. We denote free HSC that are active and can self-renew as Aj and the
resulting inactive or inhibited free HSC as Ij :

Aj
rj→ 2γIj (8.2)

Where γ ≥ 1 is a finite real number and rj is the rate at which Aj divide. The exact number
of self-renewing division possible is not well-known, and hence γ is not determined. In the
supplementary material of (Pedersen et al., nd2) (available at the end of appendix C, page
197), we consider a model in which each self-renewing division is considered separately.
Through a quasi-steady-state approximation of all intermediate steps between cells that
have not yet divided, i.e. Aj , and the cells that can no longer divide, i.e. Ij , we determine
that γ ∈ R is appropriate in general, and that assuming γ = 1 is suitable.

Differentiation of active HSC. When active stem cells do not self-renew, they are
modelled to divide and differentiate into two differentiated cells, considered progenitor
cells:

Aj

dAj→ 2Dj (8.3)

We only consider symmetric division, see the discussion in section 8.2 below.

Differentiation of inactive HSC. The inactive HSC can no longer divide in a self-
renewing way. Without interaction with the niche, the inactive HSC are modelled to
differentiate spontaneously:

Ij
dIj→ Dj (8.4)

Note that we do no assume that the inactive HSC divide before differentiation, but rather
that the differentiation is spontaneous.

Attachment to empty niches. Lastly, we model attachment or binding between empty
niches and free HSC. In the most general form, free HSC, both active Aj and inactive Ij , are
assumed to bind with empty niches spontaneously, resulting in bound HSC. The resulting
niche-bound HSC are assumed to be indistinguishable, regardless of previous activity.

Aj +NE

bAj→Nj (8.5)

Ij +NE

bIj→Nj (8.6)

The different processes considered are illustrated in figure 8.1
Note that different clones interact only through the niches. No direct interaction between free

cells are considered in the model. In the processes described above, we did not explicitly consider
apoptosis. We assume that, compared to the other processes, HSC apoptosis is rare. Apoptosis
of both free active and inactive HSC could be considered, by including the rates of apoptosis in
the rates of differentiation dAj

and dIj . Hence dAj
and dIj would describe the effective rates of

loss of HSC due to both differentiation and apoptosis. Hence, including HSC apoptosis in the
model would not impact the dynamics of HSC. While changes in HSC apoptosis could affect the
production of progenitor cells, we postpone this discussion for later parts of this thesis.

Assuming that all considered variables are numerous enough for the law of large numbers to
be applicable, the processes described above can be modelled as a system of ODEs describing
the dynamics of n clones:
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Niche

bound

Active

Inactive

Pro-

genitor

Attachment
and detachment

×
Division

Attachment

Differentiation

×

Division and
differentation

Empty

niche

Figure 8.1: Visual representation of the HSC mechanisms considered.
Blue circles represent cells, with text labelling their type (Niche-bound HSC, ac-
tive HSC, inactive HSC or progenitor cells). HSC-specific niches are illustrated
as gray “egg-trays”. Each arrow depicts one of the processes described above.
Small circles with a × symbol show processes where the cell divides.

ṄE =

n∑
i=1

uiNi −NE

n∑
i=1

(bIiIi + bAi
Ai) (8.7a)

Ṅj = bIjNEIj + bAj
NEAj − ujNj (8.7b)

İj = 2γrjAj − bjINEIj − dIjIj (8.7c)

Ȧj = ujNj − bAj
NEAj − rjAj − dAj

Aj (8.7d)

where j refers to the jth clone. For n clones, the full system consists of 3n+ 1 equations. Since
all parameters describe the rates at which biological processes occur, they are all assumed to be
non-negative. As the right-hand sides of the system fulfil a Lipschitz condition in the variables,
a unique solution exists for which NE(t), Nj(t), Ij(t) and Aj(t) are C1 for all j.

Since the modelled variables are cell-counts, it is useful to make a distinction between solutions
that have biological meaning and solutions that do not. In particular, solutions with non-negative
cell-counts are defined as feasible.

Definition 8.1.1: Feasibility

A set of solutions NE , Nj , Ij , Aj is feasible if all variables NE , Nj , Ij , Aj are non-negative
for all j.

All solutions of equations (8.7) are feasible for all t > 0, for non-negative initial conditions
at t = 0. This can be seen by considering the derivatives of the system in the case where the
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particular variable is zero:

ṄE |NE=0 =
n∑

i=1

uiNi ≥ 0 (8.8a)

Ṅj |Nj=0 = NE

(
bAj

Aj + bIjIj
) ≥ 0 (8.8b)

İj |Ij=0 = 2γrjAj ≥ 0 (8.8c)

Ȧj |Aj=0 = ujNj ≥ 0 (8.8d)

for all j.
The 3n + 1 dimensional system of equations trivially reduces to a 3n dimensional system,

since the sum of the occupied niches
∑n

i=1 Ṅi and empty niches, NE is constant. Hence, we
express the total number of niches as NE +

∑n
i=1 Ni = K. For feasible solutions, it must hold

that K ≥ 0. As K corresponds to the total number of HSC niches in the bone marrow, we
generally assume K > 0 and under realistic biological conditions, we assume K � 1. Having
defined K, we have NE = K −∑n

i=1 Ni and we define the model.

Definition 8.1.2: The HSC niche model

The 3n-dimensional HSC niche model is given by the system of equations:

Ṅj = bIj

(
K −

n∑
i=1

Ni

)
Ij + bAj

(
K −

n∑
i=1

Ni

)
Aj − ujNj (8.9a)

İj = 2γrjAj − bjI

(
K −

n∑
i=1

Ni

)
Ij − dIjIj (8.9b)

Ȧj = ujNj − bAj

(
K −

n∑
i=1

Ni

)
Aj − rjAj − dAjAj (8.9c)

NE = K −
n∑

i=1

Ni (8.9d)

for all j ∈ [1, . . . , n].

Feasibility of solutions and initial conditions still depends on NE ≥ 0 and hence the range of
Nj(t) is restricted to [0,K]. In fact, the sum of niche-bound HSC is restricted,

∑n
i=1 Ni(t) ≤ K

since NE(t) ≥ 0 holds for all t for feasible initial conditions. The range of Ij(t) and Aj(t) is
[0,∞) for all j.

While the production of differentiated cells does not influence the dynamics of the HSC niche
model, is has relevance for the production of blood-cells. Assuming that progenitors arising from
active HSC and inactive HSC are identical, we can define the production of progenitor-cells based
on the processes described in equations (8.3) and (8.4).

Definition 8.1.3: Production of progenitors

Production of progenitor cells of the HSC niche model in definition 8.1.2 is defined for
the jth clone as:

iDj
= 2dAj

Aj + dIjIj (8.10)
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Note that definition 8.1.3 only describe the influx to a hypothetical progenitor compartment.
Further details about progenitor dynamics is considered later in this thesis, but is not relevant
for the present purposes.

For illustration, a compartment diagram of the HSC niche model with n = 2 is shown in
figure 8.2.

Nj

Aj Ij

(Progenitors)

×

×

bAj

uj bIj

2γ

rj 2γrj

dIjdAj

2dAj

Nk

Ak Ik

(Progenitors)

×

×

bAk

uk bIk

2γ

rk 2γrk

dIkdAk

2dAk

Figure 8.2: Compartment diagram of the HSC niche model. Two clones
are considered, clone j shown in blue and clone k shown in red. The compart-
ments of the six variables are shown as rounded boxes and the arrows illustrate
the interaction between variables. The empty dark-gray boxes in the lower part
of the figure illustrates empty niche-space. The dark-red cells depicted at the
bottom are the unspecified niche-cells, shown for illustration.

8.2 Asymmetric division

Before analysing the model in detail, a brief comment on asymmetric cell division is warranted.
As described in section 2.2, HSC can divide both symmetrically and asymmetrically, that is, it
is possible that a cell-division results in two distinct cells; one similar to the original cell and
one which is differentiated. In the processes described above however, only symmetric division
of active cells was considered, giving rise to either two HSC (with rate rj) or two progenitor-
cells (with rate dAj

). For the model presented, the consideration of asymmetric explicitly is not
necessary, as the contribution of asymmetric division can be included in the rates rj and dAj ,
which are hence considered effective rates for self-renewing division and differentiating division
respectively.

To show this, consider asymmetric division by replacing the processes of equations (8.2) and
(8.3) by:

Aj
Sr→ 2γIj (8.11)

Aj
a→ γIj +Dj (8.12)

Aj
Sd→ 2Dj (8.13)

where Sr is the rate of symmetric self-renewing division, Sd the rate of symmetric differentiating
division, and a is the rate of asymmetric division. Note that we assume that the cell resulting
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from self-renewing division gives rise to γ inactive cells Ij , regardless of the symmetry of the
division. The model formulation analogue to equations (8.9) is then:

Ṅj = bIjNEIj + bAjNEAj − ujNj (8.14a)

İj = (2Sr + a)γAj − bjINEIj − dIjIj (8.14b)

Ȧj = ujNj − bAj
NEAj − (Sr + a+ Sd)Aj (8.14c)

NE = K −
n∑

i=1

Nj (8.14d)

iDj
= (2Sd + a)Aj + dIjIj (8.14e)

By defining rj = Sr +
a
2 , equation (8.14b) is identical to (8.7c). Substituting a = 2rj − 2Sr

in the expression for Aj and for iDj
, we obtain:

Ȧj = ujNj − bAj
NEAj − (Sd + 2rj − Sr)Aj (8.15)

iDj
= (2Sd + 2rj − 2Sr)Aj + dIjIj (8.16)

Defining dAj
= Sd + rj − Sr = Sd +

a
2 , we have:

Ȧj = ujNj − bAj
NEAj − (rj + dAj

)Aj (8.17)

iDj
= 2dAj

Aj + dIjIj (8.18)

and exactly the system in equations (8.9) is obtained. Hence, it is not necessary to explicitly
consider asymmetric division, as including a

2 in the effective rates for symmetric division is
equivalent. Note however that while this holds for the system described, it does depend on
the assumption that there is no distinction between the cells arising from asymmetric division
and from symmetric division. Similarly, the assumption that active HSC always divide before
differentiation is also a necessity for omission of explicit asymmetric division. As it has been
suggested that differentiation can occur due to microenvironmental asymmetry rather than due
to divisional asymmetry (Wilson and Trumpp, 2006), the omission of asymmetric division is a
simplification that might not be appropriate.

8.3 Dynamics and behaviour of the HSC niche model

Analysis of the HSC niche model reveals some features of the model behaviour. In this section,
we go through some of the immediate results of the model analysis.

8.3.1 Existence of an attracting trapping region

An attractive trapping region exists for the HSC niche model.
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Theorem 8.3.1: Trapping region for the HSC niche model

For

Âj,ε =
ujK

rj + dAj

+ ε (8.19)

and

Îj,ε =
2γrjujK

dIj (rj + dAj
)
+

2γrj
dIj

ε+ ε (8.20)

where ε ≥ 0,

TRε =

⎧⎨
⎩

n∏
j=0

(Nj , Aj , Ij) ∈ R
3n : Nj ≥ 0, Aj ≥ 0, Ij ≥ 0,

n∑
j=1

Nj ≤ K,Aj ≤ Âj,ε, Ij ≤ Îj,ε, j = 1, . . . , n

⎫⎬
⎭

(8.21)

is a trapping region for the HSC niche model. In addition, for ε > 0, it is an attracting
trapping region.

The existence of the trapping region can be seen by evaluating Ȧj in Âj,ε, yielding only

negative contributions when ε > 0. The situation is similar for İj evaluated in Îj,ε and for any

Ṅj when
∑n

i=1 Ni = K. Further details of are described in (Pedersen et al., nd2), supplementary
material C, along with proof that trajectories starting outside the trapping region enters the
region in finite time.

8.3.2 Steady states of the HSC niche model

Steady states are denoted with an asterisk ∗. The steady states of Ȧj and İj are trivially found
from equations (8.9c) and (8.9b) respectively.

Lemma 8.3.1: Steady states of Ȧj and İj depend on N∗
j and N∗

E

For any steady state with N∗
j and N∗

E = K −∑n
i=1 N

∗
i ,

A∗j =
ujN

∗
j

rj + dAj
+ bAj

N∗
E

. (8.22)

and

I∗j =
2γrjujN

∗
j(

rj + dAj
+ bAj

N∗
E

) (
dIj + bIjN

∗
E

) (8.23)

If all N∗
j are within the trapping region TR0, then so is A∗j and I∗j .

Note that all points in the trapping region are non-negative, and hence determining a steady
state with N∗

j within the trapping region for all j, implies that all variables are non-negative and
hence that the given steady state solution is feasible.
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By considering Ṅ∗
j = 0, the following expression arises:

N∗
j =

1

uj
N∗

E

(
bIjI

∗
j + bAjA

∗
j

)
(8.24)

Due to lemma 8.3.1, N∗
j = 0 implies both A∗j = 0 and I∗j = 0. Hence, equation (8.24) has a

trivial solution, for which N∗
j = A∗j = I∗j = 0. A trivial steady state exists, in which this holds

for all j.

Theorem 8.3.2: Trivial steady state S∗0

A trivial steady state, denoted S∗0 , always exists. In the trivial steady state N∗
j = A∗j =

I∗j = 0, ∀j ∈ {1, . . . , n}.

The number of empty niches in the trivial steady state is N∗
E = K −∑n

i=1 N
∗
i = K.

Using the expression of lemma 8.3.1, equation (8.24) can be written as:

N∗
j = N∗

E

(
bIj

2γrj(
rj + dAj

+ bAj
N∗

E

) (
dIj + bIjN

∗
E

) + bAj

1

rj + dAj + bAjN
∗
E

)
N∗

j (8.25)

Assuming N∗
E ≥ 0 and N∗

j > 0, the expression simplifies to

N∗
E = K −

n∑
i=1

N∗
i =

dIj
(
rj + dAj

)
bIj

(
(2γ − 1)rj − dAj

) , (8.26)

under the assumption (2γ− 1)rj �= dAj . Hence, N∗
E has a unique value for any steady state with

N∗
j > 0. This gives rise to a definition of HSC fitness.

Definition 8.3.1: Fitness

The fitness of the jth clone is defined as:

Fj =
bIj

(
(2γ − 1)rj − dAj

)
dIj

(
rj + dAj

) . (8.27)

In a steady state with Nj > 0, N∗
E = F−1

j , and thus, for feasibility of the steady state

0 ≤ F−1
j ≤ K. Fj > 0 implies that (2γ − 1)rj > dAj

. For F−1
j = K, note that K − F−1

j =

K − N∗
E =

∑n
i=1 N

∗
i = 0 and hence N∗

j = 0. Thus, two conditions for a non-trivial feasible

steady state are (2γ − 1)rj > dAj and F−1
j < K.

A unique value of N∗
j > 0 implies both a unique value of N∗

E as well as for A∗j and I∗j , due
to equations (8.22) and (8.23). In addition, A∗j and I∗j are zero when N∗

j = 0, and hence only in
the trivial steady state.

Lemma 8.3.2: Steady state values for free cells

For any non-trivial steady state, with a unique N∗
j > 0 and K−∑n

i=1 N
∗
i = F−1

j , A∗j and
I∗j are unique and given by equations (8.22) and (8.23) respectively.

Hence, determining a non-trivial feasible steady state depends only on the n values of N∗
j .
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A single-clone steady state exists, in which all clones k �= j have N∗
k = A∗k = I∗k = 0, while

only the jth clone has N∗
j > 0.

Theorem 8.3.3: Single-clone steady state S∗j

Given (2γ − 1)rj > dAj and F−1
j < K, a single-clone steady state exists for which

N∗
j > 0, A∗j > 0, I∗j > 0 and N∗

E > 0 while ∀k �= j : N∗
k = A∗k = I∗k = 0. In particular,

N∗
j = K − F−1

j and N∗
E = F−1

j .

We denote the unique jth single-clone steady state as S∗j .

In addition to the trivial steady state and the n single-clone steady states, another type of
steady state can exist, in which two or more clones have non-negative counts simultaneously.
This occurs only when the fitnesses Fj are equal for the given clones. As an example, two-clone
co-existence steady states with feasible N∗

1 and N∗
2 exist when F1 = F2. This implies

bI1 ((2γ − 1)r1 − dA1
)

dI1 (r1 + dA1)
=

bI2 ((2γ − 1)r2 − dA2
)

dI2 (r2 + dA2)
(8.28)

Note that for the existence of non-trivial steady states, the conditions (2γ − 1)r1 > dA1 , (2γ −
1)r2 > dA2 , F

−1
1 < K and F−1

2 < K must be fulfilled. Defining F = F1 = F2, equation (8.26)
implies N∗

E = F−1. Assuming all other clones are zero, the condition F−1 + N∗
1 + N∗

2 = K
applies. Defining β such that N∗

1 = β, we have N∗
2 = K −F−1 −β. A line is parametrized by β,

going through the single-clone steady states S∗1 (for β = K − F−1) and S∗2 (for β = 0). The line
is unique since F−1 is uniquely determined. All points along this line are feasible steady states
with N∗

1 ≥ 0 and N∗
2 ≥ 0.

The notion of co-existence steady states extends to multiple clones having equal fitness. This
is generalized in the following theorem.

Theorem 8.3.4: Co-existence steady states

Co-existence steady states in which multiple clones assume positive concentrations may
exist.
A necessary and sufficient condition for co-existence is that Fj is equal for all co-existing
clones.
The number of empty niches, N∗

E , in the co-existence steady states is given uniquely by
N∗

E = F−1
j . Additionally, the bound cells must fulfil the condition

∑
i∈C Ni = K − F−1

j

where C is the set of all co-existing clones.
Co-existence steady states exist on a simplex where the dimension of the simplex is the
number of co-existing clones, dim(C).
When there is no ambiguity, we denote the simplex of steady states S∗C .

The existence of multiple simplexes of co-existence steady states simultaneously is possible.
As a particular example, if F1 = F2 �= F3 = F4, two lines of co-existence steady states exists.
Along one line, there are feasible steady states with N∗

1 ≥ 0 and N∗
2 ≥ 0 but N∗

3 = N∗
4 = 0,

while the other line has N∗
1 = N∗

2 = 0 and N∗
3 ≥ 0 and N∗

4 ≥ 0. Similarly, if k clones have equal
fitness, a k-dimensional simplex of co-existence steady states exists. As a consequence, many
different combinations of equal fitness could be considered when multiple clones are considered.
However, we assume that multiple clones having exactly equal fitness is improbable in a noisy
biological setting, and the different simplexes of co-existence steady states are not discussed in
extensive detail in this thesis. For illustration, we do however discuss the simplest case of two
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clones having equal fitness while all other clones have different fitness, as an exemplary situation
of co-existence.

To summarize the steady states of the HSC niche model, a trivial steady state S∗0 always exists
(Theorem 8.3.2), single-clone steady states S∗j exists under certain conditions on parameters
(Theorem 8.3.3). For equal fitness between clones, one or multiple simplexes of co-existence
steady states exist (Theorem 8.3.4). Figure 8.3 illustrates all possible steady states for one, two
and three distinct clones up to permutations.

When only two clones are considered, ordering writing a subset of variables as (N∗
E , N

∗
1 , N

∗
2 )

T

we write up the steady states:

S∗0 =

⎛
⎜⎜⎜⎝
K

0

0

⎞
⎟⎟⎟⎠ , S∗1 =

⎛
⎜⎜⎜⎝

F−1
1

K − F−1
1

0

⎞
⎟⎟⎟⎠ , S∗2 =

⎛
⎜⎜⎜⎝

F−1
2

0

K − F−1
2

⎞
⎟⎟⎟⎠ (8.29)

For equal fitness, F = F1 = F2, a line of co-existence steady states exists:

S∗C =

⎛
⎜⎜⎜⎝

F−1

β

K − F−1 − β

⎞
⎟⎟⎟⎠ (8.30)

where β is a number between 0 and K − F−1.
Lemma 8.3.1 and 8.3.2 shows that for all j and all steady state, unique A∗j and I∗j can be

determined from equations (8.22) and (8.23) respectively.

8.3.3 Local stability of steady states

The local stability of the steady states described above can be determined in the general n-clone
case. Details of the calculations are omitted for brevity. Additional details can be found in the
main text of (Pedersen et al., nd2) and the related supplementary material of the article.

We order the 3n variables as (N1, I1, A1, . . . , Nn, In, An). The Jacobian of the system can
then be written as a block-matrix of the form:

Jac =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 G1 G1 . . . G1

G2 D2 G2 . . . G2

G3 G3 D3 . . . G3

...
...

...
. . .

...

Gn Gn Gn . . . Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.31)

where

Dj =

⎛
⎜⎜⎜⎝
−bIjIj − bAjAj − uj bIj (K −∑n

i=1 Ni) bAj (K −∑n
i=1 Ni)

bIjIj −bIj (K −∑n
i=1 Ni)− dIj 2γrj

uj + bAj
Aj 0 −bAj

(K −∑n
i=1 Ni)− rj − dAj

⎞
⎟⎟⎟⎠

(8.32)
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Figure 8.3: Illustrations of all steady states for one, two and three
feasible clones. Assuming that all clones permit feasible single-clone steady
states, the possible combinations are shown here. As such, this figure is a
complete visual representation of one-, two-, and three-clone scenarios up to
permutations. Only Nj-axes are shown, as A∗j and I∗j follow directly, due to
lemma 8.3.1 and 8.3.2. White circles depict the trivial steady state S∗0 . Grey
and black circles show the single-clone steady states S∗j , with black circles being
locally stable and grey circles being locally stable only within a single-clone
subspace. Panel (a) depicts a single-clone scenario. When S∗1 is feasible it
is locally stable. Scenarios with two clones are illustrated in panels (b) and
(c). In panel (b) F1 < F2 and S∗2 is stable. The dashed line is illustrative
to show that N∗

2 > N∗
1 . In panel (c), F1 = F2 and the line of co-existence

steady states is shown in black. Numerical investigations show that this line
is attracting, however, numerical investigations also reveal that the Jacobian
evaluted in the steady states has a zero eigenvalue and hence the steady states
are non-hyperbolic. Panels (d) through (g) depict the full range of possible
scenarios with three clones. In (d) all three clones have different fitness. In (e)
F1 = F2 < F3, while panel (f) has F1 < F2 = F3. Finally, panel (g) depicts the
scenario where F1 = F2 = F3. In panel (d-f) greyed-out triangles are shown as
guide for the eye, while the black triangle in panel (f) is a triangle of co-existence
steady states S∗C .
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and

Gj =

⎛
⎜⎜⎜⎝
−bIjIj − bAjAj 0 0

bIjIj 0 0

bAj
Aj 0 0

⎞
⎟⎟⎟⎠ (8.33)

We sketch how we determined local stability: Evaluating the Jacobian Jac at the trivial steady
state S∗0 and at the single-clone steady states S∗j reveals that the eigenvalues of the Jacobian are
the eigenvalues of all n submatrices Dj evaluated at the corresponding steady states.

Lemma 8.3.3: Local stability of S∗0 and S∗j is determined by Dj

In the trivial steady state S∗0 and in the single-clone steady states S∗j , the eigenvalues of
the Jacobian of the system of equations (8.9) evaluated in the given steady state values,
are equal to the eigenvalues of the submatrices Dj , defined in equation (8.32).
Hence, the local stability of the steady states can be determined by considering the
submatrices Dj .

Without determining explicit expressions for all eigenvalues of the system, it can be shown
that the sign of the real parts of the eigenvalues is determined by the fitness of the clones. As
a consequence, the Routh-Hurwitz stability criterion implies that local stability of the steady
states can be determined and also depends on the fitness.

Lemma 8.3.4: Routh-Hurwitz stability criterion for Dj

Assume that S∗j is feasible and hence (2γ − 1)rj > dAj
as well as F−1

j < K holds.
The matrix Dj of equation (8.32) evaluated in the trivial steady state, S∗0 , i.e. Dj |S∗

0
, has

at least one eigenvalue with positive real part.
Evaluated in S∗j , the jth single-clone steady state, all eigenvalues of the matrix Dj |S∗

j

have negative real part.
The eigenvalues of Dj |S∗

k
where k �= j (i.e. the matrix with parameters of the jth clone,

evaluated in the single-clone steady state of the kth clone) depend on the fitnesses of both
the jth clone and the kth clone. In particular, if Fk > Fj , all eigenvalues have negative
real part, and when Fk < Fj at least one eigenvalue has positive real part.

Hence the local stability of the trivial steady state and the single-clone steady states can be
determined, assuming no clones have equal fitness.

Theorem 8.3.5: Local stability of S∗0 and S∗j for all j

If the system has a feasible single-clone steady state S∗j , the trivial steady state S∗0 is
locally unstable. Otherwise, it is locally stable.
Assuming no clones have equal fitness, a particular single-clone steady state S∗k is locally
stable if and only if Fk > Fj holds for all j �= k. If it does not hold, the steady state S∗k
is locally unstable.
In the special case where only one clone is considered, S∗1 is locally stable.

Considering the possibility of equal fitness, it was shown in the supplementary material of
(Pedersen et al., nd2) that in the two-clone scenario, an eigenvector along the line of co-existence
has a corresponding eigenvalue zero. Numerical investigations revealed a similar structure when
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equal fitness of more clones were considered, namely eigenvectors with eigenvalues zero along the
simplex of co-existence steady states. Through numerical solutions of the differential equations
under conditions for equal fitness of clones, the dependence on the fitness was found to depend
on the relative fitness of clones in the expected way: When a single clone has the highest fitness,
trajectories of solutions will move toward the corresponding single-clone steady state, and when
multiple clones have equal and highest fitness, solution trajectories approach steady state on the
simplex of co-existence steady states.

8.3.4 Estimates for parameters and numerical simulations

The main work of Pedersen et al. (nd1) consisted of numerical investigations of the HSC niche
model with γ = 1 and bAj

= 0. To obtain estimates of model parameters, the model was
related to experimental data found in the literature. In particular, we considered data from
mice-experiments presented by Bhattacharya et al. (2009). In these experiments, mice were
transplanted with chemically marked HSC, followed by subsequent harvesting of the bone-marrow
to determine the proportion of the bone-marrow HSC carrying the chemical marker at the time
of harvest.

In the model, we considered all HSC to pertain to a single endogenous clone. We interpreted
the transplanted HSC as a separate clone, with properties identical to the endogenous clone. From
a single-clone equilibrium of the endogenous clone, we simulated a transplant of free HSC (A and
I) from the transplanted HSC clone, similar to the experiment described by Bhattacharya et al.
(2009). The relative frequency of the transplanted clone was then compared to the experimental
data of Bhattacharya et al. (2009). Fitting to the experimental data with simulated annealing
(using the MATLAB implementation due to Vandekerckhove (2008)) provided us with estimates
for the parameters of the model. The parameter-estimates found for the long-term dynamics
observed in data from (Bhattacharya et al., 2009) are shown in table 8.1. These values were used
for the numerical investigations described in (Pedersen et al., nd1), see supplementary material
B.

Table 8.1: Default parameters for the niche model. Parameters were
found by relating the niche model to the data of Bhattacharya et al. (2009)
using simulated annealing, see the supplementary material of (Pedersen et al.,
nd1), available at the end of appendix B for details. We assumed that all clones
had identical parameters, and hence the shown parameters are default values
for all clones j.

K 15000 cells uj 0.04 day−1

rj 2.32 day−1 bIj 0.96 day−1

dAj
2.06 day−1 dIj 3.77 day−1

Our numerical investigations considered the effect of each parameter on equilibrium HSC-
counts and various transplant scenario. In particular, we investigated the effect of stem cell
mobilization and preconditioning in relation to stem cell transplantation through simulation of
temporary increases of u and by removing bound HSC before the transplant. The findings are
presented in full in the article available as supplementary material B at the end of this thesis,
but some important findings are described here.

Our results implied that increased mobilization of HSC must be done with great care if the
mobilization affects both healthy and malignant cells. The release of bound malignant cells can
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enhance their competitive advantage and speed up the eradication of healthy HSC. This was
particularly clear following preconditioning in which great numbers of cells (both healthy and
malignant) were removed initially.

However, we found a range of timing and mobilization efficiency for which the mobilization
can be beneficial for patients and can delay disease progression. By increasing mobilization for
a short time following a transplant of healthy cells, our simulations implied that the increased
mobilization lead to an increased homing of the free cells and a smaller disease burden as a
result. If intense preconditioning was simulated to precede the transplantation, the homing of
free cells was not increased. Hence, for patient where only reduced intensity preconditioning is
an option (such as for weak or elderly patients), we find that mobilization is more beneficial than
for patient that can tolerate intense preconditioning.

We investigated the effect parameter-changes had on blood-production. We assumed that
the production of progenitors as described in definition 8.1.3 correlated with the production of
blood-cells. Simulating a transient increase in differentiation-rates dIj and dAj

, the equilibrium
value of iDj

, Ij and Aj all decrease. However, progenitor production momentarily increase
before converging to the decreased equilibrium value. Hence the model suggests that medical
intervention that increase differentiation lead to a temporary increase of blood-cells. In addition,
the model suggests that differences in HSC behaviours are not immediately clear from only
blood-cell measurements. The rate of release from the niches uj does not influence the steady
state value of bound HSC, N∗

j , but does influence both free HSC and progenitor production.
Hence, large differences in the release from the niche can result in over-representation of a clone
in the progenitor production iDj

and hence in the blood. This finding implies that blood-cell
measurement cannot be sufficient for determining the state of HSC within the bone-marrow.
However, it also implies that a malignant clone can be more numerous within the bone-marrow
than otherwise implied by blood-cell measurements, which highlights the importance of HSC-
targeted therapy, see figure 8.4.

8.4 Summarizing discussion

In this section, a mechanism-based mathematical model of the behaviour of HSC was suggested,
analysed and parametrized. We here summarize the model formulation and the most significant
findings.

8.4.1 Model formulation

Inspired by previous work on modelling HSC-behaviour (section 7), we made assumptions about
which properties of HSC play the most significant role in determining the general behaviour of
HSC in the human body. The role of HSC-specific niches within the bone-marrow is difficult to
determine. We suggested a hypothetical interaction between HSC and the niche where HSC self-
renewing division is limited and niche-binding is required to allow for continued division. This
leads to a distinction between active HSC that are ready to divide in a self-renewing fashion
and inactive HSC that can only differentiate or bind to the niche. To formulate the model,
some additional assumptions were made. The total number of niches were assumed to remain
constant. This is in contrast to the work of Becker et al. (2019), where the production and
clearance of niche-cells were linked dynamically to the binding with HSC. Similar interaction
could be included in our proposed HSC-model, by modifying the behaviour of empty niche NE

in equation (8.7a). However, the exact nature of how niches are produced are unknown, and
we decided to omit dynamic niche-counts in our model. Some initial numerical investigations of
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(a)

(b)

Figure 8.4: Production of progenitors composition does not necessarily
reflect HSC composition. Two scenarios of clonal competition between two
clones are simulated. In both cases, clone 2 has a competitive advantage and
initially makes up 1% of all HSC. In panel (a) the fitness advantage of clone
2 is small, r2 = 1.2r1, but the release of the second clone is much faster than
the first clone, u2 = 5u1. Due to the fitness advantage of the second clone,
the relative frequency of clone 2 is increasing. The production of progenitor
cells appears to be delayed compared to the time evolution of the stem cells.
In the scenario depicted in panel (b), the competitive advantage is bigger, with
r2 = 4r1. However, a slower release of HSC from the niche, u2 = 0.4u1 results
in a development where the relative frequency of progenitor cells pertaining to
the second clone increases earlier than the relative frequency of HSC from clone
2 out of all HSC.
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implementing such differences did however show that as long as the number of niches are near
a steady-state count, the effect of production and clearance of niches have only an insignificant
effect on HSC-dynamics. In the absence of niches, HSC-production cannot be maintained. In
our model, this occurs because HSC are lost to differentiation. Additional loss of HSC due to
HSC apoptosis could be included, however, we assumed such stem cell death to be rare and
omitted it from the model formulation. Note that including HSC apoptosis does not change
the properties and dynamics of the model, since the effective loss of cells could be included in
the rates for loss of cells due to differentiation, dAj

and dIj . However, this would necessitate
a different formulation of the production of progenitor cells. While such a reformulation has
little effect on the numerical results discussed at the end of this section, it could have an effect
in other scenarios. This is relevant in later parts of this thesis, and will be discussed in more
detail then. Whether HSC differentiate during division, due to environmental factor, or both, is
uncertain (Wilson and Trumpp, 2006). In our proposed model, active stem cells are modelled to
always divide before differentiating (i.e. one HSC divides into two progenitors), while inactive
cells differentiate without division (i.e. one HSC differentiate spontaneously and one progenitor
arise). Hence both types of differentiation is considered in the model, and the distinction between
active and inactive provides an explanation for both to occur naturally. However, we note that
requiring division before differentiation of inactive cells only leads to a reformulation of the
progenitor-production, and does not change the model. The model describes symmetric division
of active stem cells, that is division leading to either two HSC or two differentiated cells. While
the model thus does not explicitly consider asymmetric division, we showed in section 8.2 that
the resulting model would be equivalent if asymmetric division was included.

Other mathematical models of stem cell behaviour explicitly models the cell cycle, and puts
a time-dependence on HSC-quiescence. A notable example is the model of Michael Mackey,
proposed in Mackey (1978) and analysed in detail throughout the literature, as described in
section 4. In our model, niche-bound HSC are considered quiescent, and the detachment from
the niche is modelled to occur spontaneously, and hence independent of how long the HSC had
been niche-bound. If quiescence of HSC must be maintained for an extended time before the
HSC regains its self-renewing potential, the model could include an explicit time-delay from
attachment of inactive HSC to detachment as active HSC. While this could have a significant
effect on the dynamics of the system, in particular when simulating HSC transplantation, we
chose to omit such effects of time-delays for simplicity.

8.4.2 Fitness and structure of steady states

Analysis of the model revealed that an attractive non-negative trapping region exists, and hence
that solutions to the system with non-negative initial conditions are non-negative for all time t.
This is important for the biological applicability of the model as solutions that lead to non-feasible
variables or variables that approach infinity would not correctly model reality.

Within the trapping region, a number of steady state of the HSC niche model exists. A trivial
steady state S∗0 always exists, in which all niches are empty. Under conditions on parameters, n
single-clone steady states S∗j exist in which only cells pertaining to a given clone, j, are non-zero.
The specific conditions depend only on the properties of the clone as well as the total number of
niches. This gives rise to the notion of a stem cell fitness, Fj . When multiple cells have the same
fitness, co-existences steady states exist. These steady states exist along a k-simplex, where k is
the number of clones with equal fitness.

Local stability of steady states where determined to depend on the relative fitness of the
different HSC-clones considered. When one clone had higher fitness than all other clones, the
related single-clone steady state was locally stable, while all other steady states were locally
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unstable. Hence, the use of the term fitness was justified, as high fitness of one clone leads to out-
competition of other clones in the long-term. The expression of the fitness of a given clone does
not depend on properties of the cells it is competing with. Hence, the model suggests that it is
possible to determine the fitness of a clone by investigating it in isolation. This could theoretically
imply that the fitness of two clones could be determined independently and the outcome of clonal
competition could be predicted. This could be beneficial in HSC transplantation, as it could be
used to predict if a transplanted HSC clone will out-compete a malignant clone in the patient.

Equal fitness of clones lead to a complicated scenario, where the co-existence steady states
are highly degenerate. It is possible for multiple groups of equal fitness to arise, such as e.g.
two clones with fitness Fa, and three other clones with fitness Fb where Fa �= Fb. In such a
scenario, a line of steady states between single-clone steady states of the clones with fitness Fa

exists, while a plane of steady states also exists, going through the single-clone steady states of
the clones with fitness Fb. The complexity of such scenarios makes them difficult to analyse,
however, we assume that equal fitness of clones is unlikely to arise in a biological system, and is
an artefact of the simplicity of the modelling approach. However, the co-existence steady states
are important from a mathematical view, as they represent the boundary between to biologically
attainable situations, that is, between the scenario where one clone has the higher fitness, and
one where another clone has.

8.4.3 Model parametrization and numerical findings

The HSC niche model was parametrized using data from Bhattacharya et al. (2009). While the
data arose from a mouse HSC-transplantation study, we assumed that the dynamics of HSC
in mice are similar enough to the dynamics in the human body. As the experimental data of
Bhattacharya et al. (2009) came from studies of HSC clone expected to have similar properties, it
was only necessary to determine one set of cell-properties, and use those parameter-values for both
clone in the experiment. However, we emphasize that the parameters are indeed still uncertain,
and comparing the model behaviour to additional HSC data could lead to other estimates for
parameters. The default parameters of the HSC niche model given in table 8.1 should thus be
considered first estimates of HSC parameters. Having an estimate of the parameters, albeit an
uncertain one, allowed us to investigate the model numerically. A range of biologically relevant
scenarios were simulated, and the relation between HSC properties and the outcome of e.g. HSC
transplantation could be found in the model. The model can be used as a tool to suggest possible
transplantation schemes that would not be possible or ethical to investigate in vivo. In particular,
we simulated the effect of drug-induced HSC-mobilization combined with HSC-transplantation
and found that short-term mobilization can be beneficial when treating malignancies with HSC-
transplantation.

Investigating how differences between clones affect the production of progenitors, we found
that there can be significant discrepancy between the relative frequency of different clones when
comparing the HSC and the production of progenitors, both transiently after sudden changes
and sustained for clones with equal or similar fitness. As the progenitors in turn give rise to the
mature blood-cells, this result implies that the relative frequency of clones can be significantly
different when comparing HSC and blood cells. Note that this difference can go either way; it
is both possible for a HSC clone (healthy or malignant) to be over-represented in the blood and
to be under-represented in the blood. Hence, our investigations suggest that great care must be
taken to ensure that the composition of clones observed in blood is indicative of the composition
of HSC in the bone-marrow, particularly when malignancies are considered.
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Chapter 9

Model reduction

We here present the mathematical analysis of the HSC niche model described above, as well as
a number of model assumptions that lead to different reduced and simplified forms of the HSC
niche model. The majority of the considerations described in this chapter were also described in
(Pedersen et al., nd2), available in section C.

9.1 Reducing the HSC niche model

For simplicity, we first assume that bAj
= 0 is valid for all j. The considerations about steady

states and local stability described in the previous section is unchanged by this assumption. bAj

is the rate at which active stem cells re-attach to an empty niche immediately after detaching.
Hence, the simplification is equivalent to considering the population of cells that detach and
immediately re-attach as a subpopulation of the bound HSC. While other free cells could intercept
such immediate re-attachment we assume this occurs rarely, and hence that Aj represent the
free HSC that are committed to division or differentiation.

Two additional assumptions form the basis for the model reductions we consider. These are:

Assumption R1 Most HSC niches are occupied.

Assumption R2 Niche-bound HSC make up the majority of the total HSC population.

Assumption R1 is based on experimental evidence from Bhattacharya et al. (2009), while we
base Assumption R2 on the low frequency of HSC division (Lee-Six et al., 2018) and studies of
HSC mobilization in the literature (Yang et al., 2009).

From mice experiments, Bhattacharya et al. (2009) conclude that only few niches were avail-
able for engraftment of transplanted HSC. Unless the total number of HSC is small, this implies
that Assumption R1 is a reasonable biological assumption. In the niche model, Assumption
R1 implies that the number of empty niches, NE , at steady state should be low compared to
the number of occupied niches,

∑n
i=1 Ni. From the steady state considerations discussed in the

previous section, we found that the steady state values of Aj and Ij scale with uj , while NE and
Nj were independent of uj . The steady state value of NE was however determined to scale with
b−1
Ij

. Hence, if the dimensionless quantity
uj

bIj
� 1, Assumption R1 is fulfilled.

For purposes of reducing the niche model, Assumption R2 is interpreted as niche-bound HSC
counts, Nj , being numerous compared to Aj and Ij for all j in steady state. When bAj

= 0,
both the steady state value of Aj and Ij scales with

uj

rj+dAj
Nj , as seen in the previous section.

Hence, if the dimensionless quantity
uj

rj+dAj
� 1, Assumption R2 is fulfilled.
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To show how these assumptions and our model-interpretation of them leads to a reduced form
of the model, we first present a scaling of variables. Letting superscript o denote the unscaled
variables, the scaled variables are denoted with the original notations. The following scalings are
chosen:

No
j = KNj (9.1)

Ioj =
uj

bIj
Ij (9.2)

Ao
j =

uj

rj
KAj (9.3)

In addition, we define U as the smallest uj , that is, the specific uj such that U = uj ≤ uk holds
for all k ∈ [1, n]. Introducing a scaled time τ = Ut, the scaled model is:

dNj

dτ
=

uj

U

((
1−

n∑
i=1

Ni

)
Ij −Nj

)
(9.4a)

U
dIj
dτ

= 2γbIjKAj − bIjK

(
1−

n∑
i=1

Ni

)
Ij − dIjIj (9.4b)

U
dAj

dτ
= rjNj − (rj + dAj )Aj (9.4c)

Note that Nj , Ij and Aj now denote the scaled variables. While the domain of the scaled
variables Ij and Aj is still the non-negative real numbers R≥0, the scaling of niche-bound HSC
has solutions Nj(t) ∈ [0, 1]. This also implies a scaling of the empty niches: NE = 1−∑n

i=1 Nj ,
also on [0, 1].

Equation (9.4b) can be written as:

U

bIjK

dIj
dτ

= 2γAj −
(
1−

n∑
i=1

Ni

)
Ij −

dIj
bIjK

Ij (9.5)

In general K > 1, and hence U
bIjK

≤ uj

bIjK
<

uj

bIj
. Under Assumption R1 we thus have

U
bIjK

� 1 which suggests the approximation U
bIjK

→ 0 is appropriate. Hence a quasi-steady-

state approximation of
dIj
dτ arise, in which the left-hand-side of equation (9.5) is set to zero.

Lemma 9.1.1: Quasi-steady-state approximation, Ij

The expression

Ij,redu =
2γ

dIj

bIjK
+ 1−∑n

i=1 Ni

Aj (9.6)

is a quasi-steady-state approximation of equation (9.4b), which is valid under Assumption
R1.

Hence Ij,redu scales with Aj . Dividing equation (9.4c) by rj + dAj , we obtain

U

rj + dAj

dAj

dτ
=

rj
rj + dAj

Nj −Aj (9.7)
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Since Assumption R2 implies that
uj

rj+dAj
� 1 holds for all j, and U

rj+dAj
≤ uj

rj+dAj
, we ap-

proximate U
rj+dAj

→ 0. A quasi-steady-state approximation of
dAj

dτ is then appropriate, as the

left-hand-side of equation (9.7) is zero.

Lemma 9.1.2: Quasi-steady-state approximation, Aj

The expression

Aj,redu =
rj

rj + dAj

Nj (9.8)

is a quasi-steady-state approximation of equation (9.4c), which is valid under Assumption
R2.

The two quasi-steady-state approximations allows us to define the reduced model. We first
define the domain T on which solutions of the reduced model exist.

Definition 9.1.1: Reduced domain, T

We define the reduced domain as:

T = {(N1, . . . , Nn) : Nj ≥ 0, j = 1, . . . , n ∧
n∑

j=1

Nj ≤ 1} (9.9)

Replacing Aj in equation (9.6) with the expression for Aj,redu in lemma 9.1.2 yields an
expression for Ij,redu which depends only on parameters and Nj for all j. Using Ij,redu in
equation (9.4a) hence leads to a model which has solutions that can be described on the domain
T.

Definition 9.1.2: Reduced Model

On the domain T, the Reduced Model, is given by:

Ṅj = uj

(
2γρj(1−

∑n
i=1 Ni)

αj + 1−∑n
i=1 Ni

− 1

)
Nj (9.10)

where ρj =
rj

rj+dAj
and αj =

dIj

bIjK
, for all j. The variables Ij and Aj are given by

equations (9.6) and (9.8) respectively.

Note that since all parameters of the niche model are positive, it must hold that 0 ≤ ρj ≤ 1,
since ρj > 1 would imply dAj

< 0.

Basic analysis of steady state and stability of the reduced model is completely analogue to
the analysis of the full model, albeit shorter and simpler. For this reason, we summarize the
results rather than going through the calculations here. Details are described in (Pedersen et al.,
nd2). Before summarizing the results however, two definitions are useful. These definitions are
used throughout the analysis of the reduced model, but also prove useful in later parts of this
thesis.
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Definition 9.1.3: Scaled fitness

The scaled fitness of the jth clone is defined as fj = KFj , which can be written as:

fj =
2γρj − 1

αj
(9.11)

where ρj =
rj

rj+dAj
and αj =

dIj

bIjK
.

When there is no ambiguity, the scaled fitness will be referred to as just fitness.

Definition 9.1.4: Reduced pre-factor

We define the function gj(N1, . . . , Nn) as

gj(N1, . . . , Nn) = ujαjfj

(
1−∑n

i=1 Ni − f−1
j

αj + 1−∑n
i=1 Ni

)
(9.12)

where ρj =
rj

rj+dAj
and αj =

dIj

bIjK
.

As the functional dependence of gj(N1, . . . , Nn) is clear, we write just gj in most cases. Note

that the expression for jth clone of the reduced model can be written Ṅj = gjNj .

As for the full model, a trivial steady state exists regardless of parameter values.

Theorem 9.1.1: Trivial steady state S∗0 , reduced form

A trivial steady state, denoted S∗0 , always exists. In the trivial steady state N∗
j = 0,

∀j ∈ {1, . . . , n}.

When 0 < f−1
j < 1, a feasible single-clone steady state exists.

Theorem 9.1.2: Single-clone steady state S∗j , reduced form

Given 2γρj > 1 and f−1
j < 1, a single-clone steady state exists for which N∗

j > 0 while

∀k �= j : N∗
k = 0 In particular, N∗

j = 1− f−1
j and N∗

E = f−1
j .

We denote the jth single-clone steady state as S∗j .

Co-existence steady states exists for the reduced model, analogous to the co-existence steady
states of the full model. These are characterized by equal fitness of two or more clones, and
constitute a k-dimensional simplex of steady states where k is the number of clones with equal
fitness. For all steady states on the simplex, N∗

E = f−1
j and hence

∑
i∈C Ni = 1 − f−1

j where C
is the set of clones with equal fitness.

Stability considerations of the reduced model mirror the full system. The single-clone steady
state of any clone with fitness higher than all other clones is locally stable while all other steady
state are locally unstable. For cases where a number of clones have equal fitness, a simplex
of steady states exists and numerical investigations have shown that an eigenvector along the
simplex has corresponding eigenvalue zero.
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Thus, we have found the reduced model maintains the same stability structure as the full
model, with the same dependence on fitness.

When evaluating the kth reduced pre-factor, gk, in the steady state pertaining to a clone
j �= k, gk can be written:

gk|S∗
j
=

uk

αk + 1
fj

(
fk
fj

− 1

)
(9.13)

Hence, for fk > fj , gk|S∗
j
> 0, while fk < fj implies that gk|S∗

j
< 0. As the sign of Ṅk is the same

as gk, we see that the sign of Ṅk at the jth steady state depends only on the relation between
fitnesses fk and fj .

9.2 Production of progenitors in the reduced niche model

Before introducing further simplifications of the niche model, we here show that the production
of progenitors HSC give rise to can be written in terms of the reduced parameters ρj and αj .
This is relevant when considering the effect that changes to the reduced model has on blood-cell
production since some parameter-changes can affect progenitor production and must be carefully
considered in further work using the niche model, described in part V of this thesis.

In terms of the unscaled variables, production of progenitors was given in definition 8.1.3 as
iDj = 2dAjA

o
j + dIjI

o
j . By replacing Ao

j and Ioj by the scaled variables, we see:

iDj
= 2dAj

Ao
j + dIjI

o
j (9.14a)

= 2dAj

uj

rj
KAj + dIj

uj

bIj
Ij (9.14b)

=

(
2
dAj

rj
K +

dIj
bIj

2γ

αj + 1−∑n
i=1 Ni

)
ujAj (9.14c)

=

(
2
dAj

rj
+

2γαj

αj + 1−∑n
i=1 Ni

)
ujKρjNj (9.14d)

=

(
2(1− ρj) +

2γαjρj
αj + 1−∑n

i=1 Ni

)
ujKNj (9.14e)

For the last step, observe that
2dAj

rj
ρj =

2dAj

rj+dAj
=

2rj−2rj+2dAj

rj+dAj
= 2(1 − ρj). Hence, the

production of progenitors of the jth clone can be written in terms of the niche-bound HSC of
the reduced model, Nj , and the set of parameters related to the jth clone; uj , ρj , αj and K.

Definition 9.2.1: Production of progenitors, reduced model

Production of progenitor cells of the reduced model in definition 9.1.2 is defined for the
jth clone as:

iDj =

(
2(1− ρj) +

2γαjρj
αj + 1−∑n

i=1 Ni

)
ujKNj (9.15)

Since 0 ≤ ρj ≤ 1 by definition of the reduced parameters,
iDj

Nj
is always non-negative, and

hence any non-negative number of HSC Nj results in a non-negative prodution of progenitors,
iDj

.
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9.3 The transformed HSC niche model

As discussed previously, the relative frequency of a given clone is an important clinical measure,
used in case of malignancies to e.g. identify the progression of disease for a patient. Additionally,
the total HSC cell-count can be easier to estimate than the numbers of cells from a given clone.

Excluding the trivial steady state, we define the set T \ S∗0 in R
n. On this set, transformed

variables are defined. The sum of total niche-bound cells is given as:

T =

n∑
i=1

Ni (9.16)

and for j ∈ (2, 3, . . . , n) we define the relative frequency of the jth clone as:

Cj =
Nj∑n
i=1 Ni

(9.17)

The relative frequency of the 1st clone, C1, is calculated as C1 = 1−∑n
i=2 Ci. Note that T > 0

holds since the trivial steady state S∗0 = {(0, . . . , 0)} was omitted, and hence Cj is well-defined
for all j.

The definition of T and Cj allows for a transformation of the reduced model.

Definition 9.3.1: Transformed Model

On the domain (0, 1]× [0, 1]n−1 the transformed model is given as:

Ṫ = T
n∑

i=1

gi(T )Ci (9.18a)

Ċj =

(
gj(T )

n∑
i=1

Ci −
n∑

i=1

gi(T )Ci

)
Cj for j = 2, . . . n (9.18b)

C1 = 1−
n∑

i=2

Ci (9.18c)

where gj(T ) is given as

gj(T ) = ujαjfj

(
1− T − f−1

j

αj + 1− T

)
(9.19)

A transformation F exists:

F : (N1, . . . , Nn) ∈ T \ S∗0 ⊂R
n �→ (T,C2, . . . , Cn) =(
n∑

i=1

Ni,
N2∑n
i=1 Ni

, . . . ,
Nn∑n
i=1 Ni

)
∈ (0, 1]× [0, 1]n−1 ⊂ R

n
(9.20)

with an inverse function:

F−1 : (T,C2, . . . , Cn) ∈ (0, 1]× [0, 1]n−1 ⊂ R
n �→ (N1, . . . , Nn) =(

T (1−
n∑

i=2

Ci), TC2, . . . , TCn

)
∈ T \ S∗0 ⊂ R

n
(9.21)
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The two functions F and F−1 are bijective and transforms points between the domain of the
reduced model and the domain of the transformed. Hence, a notion of equivalence between the
transformed model and the reduced model exists.

Lemma 9.3.1: Equivalence of the reduced model and the transformed model

When excluding the trivial steady state S∗0 from the domain of the reduced model, the
transformed model is equivalent to the reduced model from definition 9.1.2 in the sense
that solutions of one model can be transformed to equivalent solutions of the other model.
In particular F of equation (9.20) and its inverse transforms solutions between the two
models.

In the transformed model, the single-clone steady states of the reduced model, S∗j , have
corresponding transformed steady states:

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− f1

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− f2

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− f3

0

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , Sn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− fn

0

0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.22)

where Sj describes (T,C2, C3, . . . , Cn).
For equal fitness between clones, we consider as an example where clone 2 and 3 have equal

fitness. This would allow for a line of steady states given as:

S2,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− f

β

1− β

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.23)

where β is a number between 0 and 1, and the fitness of clone 2 and 3 is f = f2 = f3. As for
the full HSC model, k-dimensional simplexes exists when k clones have the same fitness. The
structure when multiple clones have the same fitness is thus maintained.

In general, different HSC clones can arise that are functionally similar to each-other albeit
genetically different. For simplification, we consider a scenario in which all healthy clones are
considered a single sub-population, and only a single clone that differ from the main population
is considered. This allows us to consider disease scenarios or HSC-transplantation scenarios by
modelling just two distinct clones. Writing the relative frequency of the second clone, C2 as
simply C, the transformed model can be written as:

Ṫ = [g1(T )(1− C) + g2(T )C]T (9.24a)

Ċ = (g2(T )− g1(T )) (1− C)C (9.24b)
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This model is referred to as the two-clone transformed model. In the supplementary material of
(Pedersen et al., nd2) this version of the model is analysed in detail, and the global dynamics
are determined. We write the two-clone versions of the steady states:

S1 =

⎛
⎝1− f−1

1

0

⎞
⎠ , S2 =

⎛
⎝1− f−1

2

1

⎞
⎠ (9.25)

Theorem 9.3.1: Global dynamics of the transformed two-clone system

For f1 �= f2, the system of equations (9.24) has just two steady states, S1 and S2, as
defined in equations (9.25). There are no periodic solutions.
For f1 > f2, all solutions with C(0) < 1 are attracted toward S1.
For f1 < f2, all solutions with C(0) > 0 are attracted toward S2.

9.4 The logistic approximation in the two-clone case

As shown in equation (9.13), evaluating the reduced pre-factor of the kth clone in the steady
state of the jth clone shows a simple relation between the sign of Ṅk and the relative fitness
between clone k and j. This importance is carried over to the transformed model, and paves
the way for an additional simplification of the two-clone transformed model. Evaluating g2(T )
in the steady state S1 we obtain

g2(T
∗
1 ) = u2

α2

α2 + f−1
1

(
f2
f1

− 1

)
(9.26)

where T ∗1 = 1− f−1
1 . Note that g1(T

∗
1 ) = 0.

The final reduction of niche model assumes that Ṫ = 0 is appropriate and that the behaviour
of the model in general resembles the behaviour close to S1. From these assumptions, a logistic
equation arises, in which equation (9.26) determines the asymptotic behaviour.

Definition 9.4.1: Logistic Approximation of the relative frequency of the 2nd

clone

The Logistic Approximation Model is given as

Ċ = φ(1− C)C (9.27)

where φ = g2(T
∗
1 ) = u2

α2

α2+f−1
1

(
f2
f1

− 1
)
. The sum of HSC is constant with T = 1− f−1

1 .

Note that φ has units of [time]−1, due to the factor u2.
Determining the steady states of equation (9.27) is trivial: One has C = 0, corresponding

to S1, and the other has C = 1, corresponding to S2. The sign of φ determines whether Ċ is
positive or negative for 0 < C < 1, and determining the sign of φ is enough to determine the
asymptotic behaviour. For φ > 0, the steady state C = 1 is attracting, while C = 0 is attracting
for φ < 0. As f2 > f1 implies φ > 0, and f2 < f1 implies φ < 0, the stability of the steady states
for the logistic approximation is in agreement with the transformed model and in turn the full
HSC niche model.
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Changes to parameters affect the logistic approximation similar to the other forms of the
model. However, as an artefact of the approximation, the parameter u1 has not effect on φ and
hence on the logistic approximation. However, numerical investigations based on the default
values of parameters determined that u1 and u2 had to be much different for the omission of u1

to cause significant differences between the logistic approximation and the two-clone transformed
model.

In section 3, we discussed data from patients with the JAK2 mutation, from the DALIAH
clinical trial. As described previously in (Pedersen et al., 2020), the kinetics of the JAK2 allele
burden was approximately exponential for both patients not receiving treatment and patients
receiving IFN treatment. For low numbers, exponential growth is similar to the growth of a
logistic equation, such as the logistic approximation of the HSC niche model. In figure 9.1a data
for untreated growth of the JAK2 allele burden is shown, together with patient-specific fits of φ
in the logistic approximation. This shows that the single-parameter logistic approximation allows
for growth-curve in good agreement with patient-data. Similarly, figure 9.1b depicts patient from
the DALIAH trial under IFN treatment. Here the logistic approximation also allows for a fit to
data which visually appears to agree well with data. Hence, the logistic approximation provides
a one-parameter fit to JAK2 allele burden data, both before and during treatment, suggesting
that the underlying mechanism giving rise to both disease growth and decay could be explained
by the HSC dynamics captured in the HSC niche model.

(a) (b)

Figure 9.1: The logistic approximation agrees with data from the
DALIAH trial. Ignoring changes in IFN-dose, the logistic approximation
of definition 9.4.1 is fit to patient-data. In panel (a) data is shown from the
patients used to determine the exponential growth of the JAK2 allele burden
in (Pedersen et al., 2020). As in (Pedersen et al., 2020), the first 200 days were
not used in the fit, since all three patients previously received treatment. In
panel (b) data for the JAK2 allele burden of five patients of the DALIAH trial
is shown as colored ∗, time-shifted to coincide at baseline with growth similar to
the fits shown in panel (a), shown in dotted black. Dashed colored lines depict
the logistic approximation with a fitted value of φ which minimizes the sum of
squared differences between the model and the data.

9.5 Summarizing discussion

We have presented a series of model reductions, leading to reduced and simpler forms of the
HSC niche model. Through assumptions based on biology, we showed that two quasi-steady-
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state approximations of the model are appropriate. For n distinct clones, this reduced the 3n-
dimensional HSC niche model to a reduced model of n dynamic variables. With the reduction,
the HSC-count was scaled with the total number of available niches, leading to an expression of
scaled fitness, fj . As the reduction was based on quasi-steady-state approximations, the reduced
model has the same steady states, and analysis reveals that the local stability of the steady
states depends on the scaled fitness in the same way as the full non-scaled model depended on
the non-scaled fitness. Hence, the general structure of the model is maintained when reducing
the model. In addition, we found that production of progenitors could be described in terms of
the reduced parameters of the reduced model, allowing for an interpretation of the behaviour of
the reduced model to the production of progenitors and in turn the production of mature blood
cells.

As discussed in section 3, two important measures of disease are the count of mature cells and
the relative frequency of a malignant clone, expressed through the JAK2 allele burden for the
MPNs. Introducing a transformation of variables, it is possible to formulate a transformed form
of the reduced model in which the total sum of HSC, T , and the relative frequency of a given
clone j, Cj , are the dynamic variables. The resulting model is hence more directly comparable to
clinical measures. Considering a two-clone scenario, it is possible to show that the transformed
model for two clones cannot have periodic solutions, and determine the basin of attraction for
the possible steady states under all circumstances.

Finally, we showed that when a malignant clone makes up a small part of the cells, the two-
clone transformed system can be approximated by a one-parameter logistic expression. The sign
of the single parameter of the logistic equation determines which clone out-competes the other.

Interestingly, the HSC niche model and the reduced and simplified forms were determined to
depend on the fitness in a similar way. Whenever one clone had a higher fitness than all other
clones, it was found to out-compete the others and drive them to extinction. This suggests that
the concept of fitness could be an inherent feature of HSC competition, and draw parallels to the
types of competition seen in ecology such as between populations of animals. While it is possible
that the HSC niche model omits important features of HSC behaviour, asymptotic behaviours
with similar dependence on HSC fitness could arise, and hence the notion of HSC fitness must
be investigated further, both mathematically and experimentally.

The HSC niche model, reduced niche model, the transformed model and the logistic ap-
proximation provide four different levels of complexities of modelling HSC. While most detail
about biological features of HSC could be obtained through comparing the HSC niche model
with experimental or clinical data, challenges of identifiability arise due to the number of model
parameters.

From the analysis described in section 3.2 and originally presented in (Pedersen et al., 2020),
data for the IFN-treated MPN patients in the DALIAH trial showed a decline in JAK2 allele
burden which in many case resembled a simple exponential decay. In addition, we found that the
increasing JAK2 allele burden of untreated patients resembled exponential growth in the early
stages for the patients considered in (Pedersen et al., 2020). For the JAK2 mutation, the allele
burden of HSC has been found to agree well with the allele burden of mature cells (Takahashi
et al., 2013), and hence comparing the data of blood measurements from the DALIAH trial
with the HSC niche model and the related reduced forms is reasonable for the JAK2 mutation.
The simplest form, the logistic approximation, is capable of capturing both the initial increase
in JAK2 allele burden and the IFN-induced decay, as shown in figure 9.1. Hence, all other
forms of the model will fit at least as well to the patient-data. This demonstrates the challenge
with identifiability of parameters, since the logistic approximation is a single-parameter model
that agrees with data. The full HSC niche model for two clones has 14 distinct parameters, and
identifying each parameter from this data is not reasonable. As such, model parameters identified
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by the relative frequency of a malignant clone are shrouded in uncertainty, and consequently
interpretation of model results will also be uncertain.

Coincidentally, the success of the logistic approximation to fit to data also explains the success
of using an exponential expression to describe data in our work in (Pedersen et al., 2020). Hence,
the HSC niche model and the reduced and simplified forms lay a theoretical foundation for
interpretation of the otherwise empirical model, which can be used to understand the dynamics
of the JAK2 allele burden or similar measure for other hematologic malignancies.
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Combining the Cancitis model
and the bone-marrow model
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Chapter 10

Formulation of a combined
Cancitis-Niche model

While fits of the Cancitis model to the data from the DALIAH trial, as described in chapter
5 and in (Ottesen et al., 2020) results in good fits to patient data and a reasonable hypothesis
about the biological response to IFN, the mathematical interpretation of the effect of IFN is still
uncertain. In particular, IFN was previously modelled to interact only with the rate of apoptosis
of malignant stem cells, i.e. through the parameter d̂y0

. In the following, the Cancitis model and
the niche model will be combined to allow for a IFN-interaction with parts of the HSC system
not considered in the Cancitis model.

Before combining the two models, we first present some general considerations about how
mature blood-cells relate to the production of progenitors due to HSC.

10.1 Connecting HSC and mature cells

From differentiation of HSC to the mature cells that constitute the blood, multiple stages of
specialized progenitor cells give rise to the increase in numbers that occurs from few HSC to the
abundant blood-cells. Progenitor cells are generally stem-like cells, characterized by a limited
capacity for self-renewal, which cannot regain stem-ness. In the niche model, differentiating
HSC were simply considered a loss of cells. However, to also model the blood cells, we must
carefully consider how differentiated HSC give rise to progenitors which in turn give rise to the
mature blood-cells. For simplicity, we refer to all intermediate steps between HSC and blood as
progenitors, and consider no significant differences between different cell lines such as leukocytes
or thrombocytes. We here present an argument for making a quasi-steady-state approximation
for the progenitors. Such simplification was done implicitly in the formulation of the Cancitis
model in (Andersen et al., 2017).

We first describe the biological assumptions that we consider:

Assumption P1 When hematopoietic progenitors cells divide, the resulting cells are more likely
to be differentiated cells than cells identical to the original cell.

Assumption P2 Differentiation of progenitor cells occurs more frequently than HSC are re-
leased from the HSC-niches.

Assumption P1 is in agreement with the idea that progenitor self-renewal is limited and
progenitor cells cannot sustains their numbers indefinitely. The existence of multiple intermediate
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steps of progenitors between HSC and mature cells and the slow time-scale of HSC division
suggest that individual cells must differentiate relatively quickly for stem cell changes to have an
effect on the mature blood cells. This is the base of assumption P2.

We consider a general formulation of a mathematical model of stem cells, progenitor cells and
mature blood cells. The model is illustrated in figure 10.1. Consider an ODE for HSC defined
as:

Ṅ = u (f(N)− d0N) (10.1)

where, for generality of the argument, f(N) is an unspecified positive function and ud0 denotes
a rate at which differentiated cells are produced. First stage of differentiated cells are given as:

Ṗ1 = ud0N + r1P1 − d1P1 (10.2)

where r1 is self-renewal of progenitors and d1 is the rate of differentiation. Apoptosis of progen-
itors are assumed to be rare enough to be negligible. The differentiating cells, d1P1 give rise to
two cells of the next stage of progenitors, P2. For k stages of progenitors, we write up the jth

stage as:

Ṗj = 2dj−1Pj−1 + rjPj − djPj (10.3)

Following the k’th stage, the differentiated cells no longer divide and are considered mature.
The mature blood-cells remain in circulation for an extended period of time before they undergo
apoptosis. Denoting this rate by a, the differential equation for the mature cells is:

Ṁ = 2dkPk − aM (10.4)

N P1 P2 Pk M× ×u
dN

f(N)

d1 2d1 d2 2dk−1 dk 2dk a

r1 r2 rk

Figure 10.1: Diagram of the relation between the HSC, mature cell and
the intermediate progenitor cells. Each cell-type is shown as a blue circle.
Arrows depict rates of flow from one variable to another. The circle with the
× symbolizes a division and hence doubling of cells. The dotted arrows in the
middle illustrate an undetermined number of intermediate step of progenitors.

Assumption P1 implies that rj < dj holds for all progenitors j and we define δj = dj−rj > 0.
This allows us to write:

Ṗ1 = ud0N − δ1P1 (10.5)

Ṗj = 2dj−1Pj−1 − δjPj (10.6)

Scaling time and variables
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We scale time by u, and let ′ denote d
dτ where τ = ut. Hence the system described above is:

N ′ = f(N)− d0N (10.7a)

uP ′1 = d0N − δ1P1 (10.7b)

uP ′2 = 2d1P1 − δ2P2 (10.7c)

... (10.7d)

uP ′k = 2dk−1Pk−1 − δkPk (10.7e)

uM ′ = 2dkPk − aM (10.7f)

Next, we scale the variables. N remains unscaled, the progenitors are scaled such that
pj = δjPj and the mature cells are scaled such that m = aM . The scaled system is then:

N ′ = f(N)− d0N (10.8a)
u

δ1
p′1 = d0N − p1 (10.8b)

u

δ2
p′2 = 2

d1
δ1

p1 − p2 (10.8c)

... (10.8d)

u

δk
p′k = 2

dk−1

δk−1
pk−1 − pk (10.8e)

u

a
m′ = 2

dk
δk

pk −m (10.8f)

Slow manifold / Quasi-steady-state approximation
Note that u

δj
= u

dj−rj
< u

dj
for any stage j. Assumption P2 implies that u

dj
� 1. Thus, for

each j, we consider the limit where u
δj

→ 0 and quasi-steady-state approximations of equations

(10.8b) through (10.8e) (i.e. the expressions for all stages of progenitors) are appropriate.
The system in equations (10.8) can now be approximated as:

N ′ = f(N)− d0N (10.9a)

0 = d0N − p1 (10.9b)

0 = 2
d1
δ1

p1 − p2 (10.9c)

... (10.9d)

0 = 2
dk−1

δk−1
pk−1 − pk (10.9e)

u

a
m′ = 2

dk
δk

pk −m (10.9f)

or equivalently:

N ′ = f(N)− d0N (10.10)

m′ = a

⎛
⎝ k∏

j=1

2
dj
δ1

⎞
⎠ d0N − a

u
m (10.11)
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By scaling back time and m back to M we finally have:

Ṅ = uf(N)− ud0N (10.12a)

Ṁ = uωN − aM (10.12b)

where

ω = 2

⎛
⎝ k∏

j=1

2
dj
δ1

⎞
⎠ d0 (10.13)

Hence, when Assumption P1 and Assumption P2 holds, the system of HSC, progenitors and ma-
ture cells can be approximated by equations (10.12). Further quasi-steady-state approximation
leading to Ṁ = 0 would be appropriate only if u

a � 1. However, based on our previously esti-
mated parameter values for the release of HSC from the niche (u in table 8.1) and the death-rate
of mature blood-cells (dx1

and dy1
in table 5.1), this does not appear to be appropriate.

10.2 The combined model

10.2.1 Formulation of the combined model

The production of progenitor cells in the reduced niche model was described in section 9.2. In
particular, the influx to the first stage of progenitors was found to be described by

iDj
=

(
2− 2ρj +

2γαjρj
αj + 1−∑n

i=1 Ni

)
ujKNj (10.14)

for all j clones. Through the argument described above, it is appropriate to make a quasi-steady-
state approximation of dynamics of the intermediate step between HSC and mature cells, and
consider just the mature blood-cells that the final stage of progenitors give rise to.

Mature blood cells can influence HSC behaviour. The same feedback as in the Cancitis model
is considered: Apoptosis of blood cells lead to cellular debris, D, and cleanup of debris can up-
regulate the immune system, modelled by an abstract measure of the inflammatory load, S. An
unspecified exogenous stimulus, I, guaranties immune system activity at all time.

As discussed in section 2.1, chronic inflammation is considered a hallmark of cancer (Colotta
et al., 2009) and for MPN such inflammation of the bone-marrow microenvironment is believed
to result in an egress of HSC from the niches (Hasselbalch and Bjørn, 2015). For this reason, we
connect the inflammatory stimulus, S, with the release of HSC from the niches and we replace uj

by ujS in the reduced niche model and in the expression iDj
for the production of progenitors,

equation (10.14).

With this connection of the HSC and inflammation, it is now possible to propose a model
which is a combination of the Cancitis model, and the niche model. The combined model has
both the detailed description of HSC-mechanisms of the niche model, along with the intricate
relationship between the production of mature blood cells and feedback on HSC production as
considered in the Cancitis model. The added HSC-mechanisms allows for a more complete de-
scription of the effect of the immune system on the HSC, and enables a mechanistic interpretation
of the interaction between HSC properties and chronic inflammation.
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Definition 10.2.1: The Combined Cancitis-Niche model

The Combined Cancitis-Niche model is given by the system of differential equations:

ṄH = uHS

(
2γρH (1−NH −NL)

αH + 1−NH −NL
− 1

)
NH (10.15a)

ṄL = uLS

(
2γρL (1−NH −NL)

αL + 1−NH −NL
− 1

)
NL (10.15b)

ṀH = ωH iDH
S − dMH

MH (10.15c)

ṀL = ωLiDL
S − dML

ML (10.15d)

Ḋ = dMH
MH + dML

ML − eDDS (10.15e)

Ṡ = rSD − eSS + I (10.15f)

where iDj
=

(
2− 2ρj +

2γαjρj
αj + 1−NH −NL

)
ujKNj . All parameters are non-negative.

In addition, ρj ≤ 1 and γ ≥ 1.

Due to the symmetry of different clones, it is trivial to extend the combined Cancitis-niche
model to consider more than two clones. For generality, we define the n-clone combined Cancitis-
niche model.

Definition 10.2.2: The n-clone Combined Cancitis-Niche model

The n-clone Combined Cancitis-Niche model is given by the 2n + 2-dimensional system
of differential equations:

Ṅj = ujS

(
2γρj (1−

∑n
i=1 Ni)

αj + 1−∑n
i=1 Ni

− 1

)
Nj (10.16a)

Ṁj = ωjiDjS − dMjMj (10.16b)

Ḋ =
n∑

i=1

dMiMi − eDDS (10.16c)

Ṡ = rSD − eSS + I (10.16d)

where iDj
=

(
2− 2ρj +

2γαjρj
αj + 1−∑n

i=1 Ni

)
ujKNj . All parameters are non-negative.

In addition, ρj ≤ 1 and γ ≥ 1.

Note that extending the original Cancitis model to consider multiple clones is possible, and
different ways to do this was considered in the work of Bangsgaard et al. (nd). The n-clone
Combined Cancitis-Niche model is thus comparable to a hypothetical n-clone Cancitis model.

Although some results generalize to the n-dimensional combined Cancitis-Niche model, we
restrict our focus to the two-clone version in definition 10.2.1. Hence “the combined model” will
refer to equations (10.15) for the remainder of this thesis. A schematic diagram of the model for
two clones is shown in figure 10.2.
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NH NL

MH ML

D

S

× ×
iDH

ωH iDH

iDL

ωLiDL

dMH dMLrS

eD

eS
Eliminated

Eliminated

�

I

Figure 10.2: Compartment diagram for the combined Cancitis-Niche
model. Healthy HSC and mature cells, NH and MH , are shown in the left-
hand side as blue circles, while leukemic cells and leukemic mature cells, NL

and ML, are shown in the right-hand side as red circles. The dead cells, D
and the immune response, S is shown in the middle as a grey circle and a grey
box respectively. The black arrows represents flows between compartments,
while the red arrows signify rates that are upregulated by the immune response.
The box with the × symbolizes a multiplication due to progenitor proliferation.
The reproduction of healthy and leukemic stem cells is not shown, however
the interaction and self-renewal through the niche is illustrated by the grey
background and the dark-red box at the bottom of the figure.
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10.2.2 Brief comments on the formulation of the combined model

In the formulation of the combined model, we assumed that immune response, S, affects the
detachment of HSC from the bone-marrow niches, uj , in a linearly increasing way. Naturally, it
is possible that multiple HSC properties are directly affected by the immune system, and that
the contribution of immune cells in various biological pathways should be included as well. S as
a linear factor on uj is thus a simplification. An alternative contribution of the immune response
could be directly on the HSC niches. Increased inflammation of the immune system is known to
affect HSC and the bone-marrow (Hasselbalch and Bjørn, 2015), which could affect the number
and properties of available HSC niches. Hence the number of free niches K could be perturbed
by S leading to changes for the HSC and the production of progenitors. However, the details of
how changes of K affects the model dynamics should first be considered separately in the niche
model, to ensure that the model reduction is analogous. Lacking a particular mode of effect from
the immune response on the HSC niches, we omit any possible effect of S on K.

Two features of the Cancitis model are not included in the formulation of the combined
model: The mutation-rate rm and the T-cell induced death-rate of leukemic stem cells d̃y0

.
While including a flow of healthy stem cells NH to leukemic stem cells NL through a mutation
rate would be trivial in the niche model, we omit this contribution in the combined model, since
the specifics of the rate of mutation is largely unknown. In previous investigations of the Cancitis
model, as well as in section 6, we assumed rm = 0 for simplicity, with the interpretation that the
rate of mutation is so rare that within a simulated time-period, no mutations occur. The T-cell
induced death-rate d̃y0

were introduced in (Ottesen et al., 2019), to include the contribution
from the immune system assumed to be most significant in regards to clearing of malignant
cells. Analysis showed that changes to d̃y0

changed the stability structure of the system, and
hence suggested that T-cell activation could be beneficial to the patient. In the niche model, HSC
death-rates were assumed to be insignificant and loss of cells were modelled to occur only through
differentiation. However, an additional rate of loss through HSC apoptosis (either naturally
occurring or T-cell induced) could be included in the rates of differentiation, hence modelling the
combined loss of cells. Changing the definition of differentiation in the niche model such that
dAj

= ΔAj
+ δAj

where ΔAj
is the rate of differentiation and δAj

is the rate of apoptosis would
lead to an equivalent model. However, the definition of the production of progenitors would
change to only consider the rates of differentiation ΔAj and ΔIj . Thus, including HSC death in
the niche model would not change the dynamics, but would reduce the production of progenitors.
For simplicity, we assume that it is possible to capture such reduction of progenitor-production
through changes to the multiplication factors ωH and ωL. Put differently, our assumption is that
increased HSC apoptosis primarily affects the production of mature cells, and that it does so
linearly. Increased apoptosis of active HSC Aj is modelled as an increase of dAj which in turn
decrease ρj and reduction of ωj . Simiarly for Ij , apoptosis is assumed to be captured through a
decrease of ωj , as well as an increase of dIj , increasing the reduced parameter αj .

In the Cancitis model, and in turn also in the combined model, there is no distinction between
different cell-lines such as thrombocytes or leukocytes. This has the consequence that different
cell-lines behave identically, and hence mutations, immune-system feedback or treatment that
affect cell-lines differently cannot be considered, and different cell-lines must be considered as
different scaled versions of the same count of mature cells for the given clone.

We present a simplified way to extend the model to consider separate cell-lines. By splitting
the mature cell counts, MH of equations (10.15c), separate expressions for particular cell-lines
could be described, by considering different multiplication factors such as e.g. ωH,1 = ηHωH

and ωH,2 = (1 − ηH)ωH with ηH ∈ [0, 1]. This could model e.g. thrombocytes and leukocytes
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separately:

ṀH,trom = ω1iDH
S − dMH,trom

MH,trom (10.17a)

ṀH,leuk = ω2iDH
S − dMH,leuk

MH,leuk (10.17b)

with both contributing to the debris D and similar expression for the malignant clone. Such
splitting of cell-lines allows for different modelling opportunities, like modelling diseases that
increase just thrombocyte production (by increasing ηL > ηH) as well as treatment the directly
affects one cell-line but not another (through e.g. an increased cell-line-specific death-rate).
Additionally, one could consider immune-system feedbacks that affect each cell-line in a unique
way. Such separate modelling of different cell-lines is not uncommon in the literature, and is
considered in, for example the Mackey model (Colijn and Mackey, 2005b). We direct the reader
to the ongoing research of the Cancitis group, in particular the Ph.D.-thesis of Zamra Sajid, in
which such extension is considered for the Cancitis model (in preparation at the time of writing).
Since different signalling is known to regulate the progenitors of particular cell-lines, this concept
is biologically reasonable. However, considering multiple cell-lines would increase the number of
parameters and make identification of parameter from data more difficult.

The mathematical structure of the combined model is similar to the reduced niche model.
The mathematical properties of the model are discussed below.

10.2.3 Feasibility

As for the niche model, the notion of feasibility of solutions and steady states (definition 8.1.1),
has similar importance for the combined model. Only solutions that remain feasible (i.e. non-
negative) for all time can be considered biologically reasonable. The definition of feasibility for
the combined model is trivially that all variables are non-negative.

We show feasibility of the n-clone version. Considering the derivatives of the system in the
cases where the particular variable is zero, we find:

Ṅj |Nj=0 = 0 (10.18)

Ṁj |Mj=0 = ωjiDjS ≥ 0 (10.19)

Ḋ|D=0 =
n∑

i=1

dMi
Mi ≥ 0 (10.20)

Ṡ|S=0 = rSD + I ≥ I > 0 (10.21)

In addition, considering the sum of HSC approaching zero,
∑n

i=1 Ni → 0, we find:

Ṅj

Nj
−→∑n

i=1 Ni→0
ujS

1

αj + 1
(2γρj − 1− αj) (10.22)

and hence when 2γρj − 1 > αj ,
Ṅj

Nj
is positive for a vanishing sum of HSC. As will be shown

below, this is exactly the requirement for a feasible steady state for clone j, as was the case for
the niche model.

10.2.4 Steady states

The steady state of the combined model resemble the steady states of the niche model. Only
feasible steady states are considered. Steady state values are denoted with an asterisk ∗.
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We first consider a scenario with no malignant clone, i.e. NL = ML = 0. As all parameters

are positive, ṄH = 0 implies either S∗ = 0, N∗
H = 0 or

2γρH(1−N∗
H)

αH+1−N∗
H

= 1. For S∗ = 0, Ṡ = 0

implies that D∗ = − I
rS

< 0. Such steady state would not be feasible, and we omit further
investigations. For N∗

H = 0, the steady state production of progenitors, i∗DH
= 0 which in turn

implies M∗
H = 0. As a consequence Ḋ = 0 ⇒ D∗ = 0 and Ṡ = 0 ⇒ S∗ = I

eS
. We refer

to the steady state identified as the trivial steady state, E∗0 , which can be written in the order
(N∗

H ,M∗
H , N∗

L,M
∗
L, D

∗, S∗)T as:

E∗0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0
I

eS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.23)

The case
2γρH(1−N∗

H)
αH+1−N∗

H
= 1, implies N∗

H = 1 − αH

2γρH−1 . Note that this is exactly the same

as for the reduced niche model. In particular N∗
H = 1 − f−1

H where fH is the scaled fitness of
the reduced model from in definition 9.1.3. The production of progenitors can be simplified for
1−N∗

H = f−1
H as

i∗DH
= (1 + 2ρH(γ − 1))uHK

(
1− f−1

H

)
(10.24)

where fH =
2γρH − 1

αH
.

Trivially M∗
H = ωH

dMH
i∗DH

S∗ arises from ṀH = 0. Writing up Ḋ = 0 with ML = 0, and

assuming S∗ > 0, we find:

D∗ =
ωH

eD
i∗DH

(10.25)

which allows us to determine S∗ by setting Ṡ = 0 and obtaining:

S∗ =
rS
eS

D∗ +
I

eS
(10.26)

Hence, we have determined a healthy steady state, E∗H :

E∗H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− f−1
H

ωH

dMH
i∗DH

(
rSωH

eSeD
i∗DH

+
I

eS

)
0

0
ωH

eD
i∗DH

rSωH

eSeD
i∗DH

+
I

eS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.27)

where fH =
2γρH − 1

αH
and i∗DH

is given in equation (10.24). The steady state solution is feasible

99



Part V Combining the Cancitis model and the bone-marrow model

only when 0 < f−1
H < 1. Analogously, we find a leukemic steady state, E∗L:

E∗L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1− f−1
L

ωL

dML
i∗DL

(
rSωL

eSeD
i∗DL

+
I

eS

)
ωL

eD
i∗DL

rSωL

eSeD
i∗DL

+
I

eS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.28)

where fL =
2γρL − 1

αL
and i∗DL

is given by

i∗DL
= (1 + 2ρL(γ − 1))uLK

(
1− f−1

L

)
. (10.29)

The leukemic steady state is feasible when 0 < f−1
L < 1.

Co-existence

As in the niche model, co-existence steady states are possible, when fH = fL i.e. 2γρH−1
αH

=
2γρL−1

αL
.

By defining f = fH = fL and observing that N∗
H +N∗

L = 1− f−1 implies both ṄH = 0 and
ṄL = 0. Hence, as for the niche model, a line of co-existence steady states exists, determined by
N∗

H +N∗
L = 1− f−1. Defining β ∈ [0, 1− f−1] allows us to write N∗

L = β and N∗
H = 1− f−1−β.

As in equation (10.24) and (10.29), the production of progenitors can be simplified in co-
existence steady states:

i∗DH ,β = (1 + 2ρH(γ − 1))uHKN∗
H = (1 + 2ρH(γ − 1))uHK

(
1− f−1 − β

)
(10.30a)

i∗DL,β = (1 + 2ρL(γ − 1))uLKN∗
L = (1 + 2ρL(γ − 1))uLKβ (10.30b)

The steady state values of M∗
H , M∗

L, D
∗ and S∗ can be determined in the same way as in the

single-clone steady state:

M∗
H =

ωH

dMH

i∗DH ,βS
∗ (10.31)

M∗
L =

ωL

dML

i∗DL,βS
∗ (10.32)

For D∗, we assume S∗ > 0 as above and the expression Ḋ = 0 simplifies to:

D∗ =
ωH

eD
i∗DH ,β +

ωL

eD
i∗DL,β (10.33)

Ṡ = 0 yields S∗ = rS
eS

D∗ + I
eS

as above.
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The line of co-existence steady states, parametrized by β can then be written as:

E∗β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− f−1 − β
ωH

dMH

i∗DH ,β

(
rS
eS

D∗ + I
eS

)
β

ωL

dML

i∗DL,β

(
rS
eS

D∗ + I
eS

)
D∗

rS
eS

D∗ + I
eS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.34)

where D∗ is given is equation (10.33), i∗DH ,β and i∗DL,β are given in equations (10.30), and

β ∈ [0, 1− f−1]. The line of co-existence steady states is feasible only when 0 < f−1 < 1.
Note that for β = 0, E∗β = E∗H and for β = 1− f−1, E∗β = E∗L. Hence, the line of co-existence

steady states connects the two single-clone steady states.

Local stability

The local stability of the steady states can be determined from the eigenvalues of the Jacobian
evaluated at the steady states. Analysing the 6 × 6 Jacobian is primarily done numerically in
the following sections. However, for the trivial steady state E∗0 , the eigenvalues of the Jacobian
is a simple expression, which alludes to the stability of the niche model. The eigenvalues of the
Jacobian evaluated at E∗0 are:

λJac,E∗
0
=

{
−eS ,−eD

eS
I,−dMH

,−dML
,

uH

1 + α−1
H

I

eS
(fH − 1),

uL

1 + α−1
L

I

eS
(fL − 1)

}
(10.35)

From equations (10.27) and (10.28) fH > 1 and fL > 1 are necessary for feasibility of E∗H and
E∗L respectively. Hence two of the eigenvalues λJac,E∗

0
are positive, and E∗0 is locally unstable.

Only in the case where neither of the steady states E∗H and E∗L are feasible are all the eigenvalues
λJac,E∗

0
negative. As such, when there are no other feasible steady states, E∗0 is locally stable.

Numerical investigations suggest that local stability depends on fH and fL in the same way
as in the niche model: When fH > fL, the eigenvalues of the Jacobian evaluated in the healthy
steady state all have negative real parts, while both the trivial and the leukemic steady state
has at least one eigenvalue with positive real part. For fH < fL, only the leukemic steady state
has negative real parts of all eigenvalues and the trivial and healthy steady states both have at
least one eigenvalue with positive real part. In the co-existence scenario, evaluating the Jacobian
along the line of co-existence, one eigenvalue is zero.

Summary of steady states

The steady states of the combined model are analogous to the steady states of the niche model,
that is, a trivial steady state, E∗0 , always exists. Under the assumption 0 < f−1

H < 1 (or
equivalently α < 2γρH − 1, since 0 < α) a healthy steady state, E∗H , exists. For 0 < f−1

L < 1
a leukemic steady state, E∗L, exists. In the special case where fL = fH , a line of co-existence
steady states exists, connecting E∗H and E∗L.

Investigating the eigenvalues of the Jacobian numerically revealed that the fitnesses of the
clones determine the local stability. When fH < fL, only the leukemic steady state is locally
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Parameter Value Origin Parameter Value Origin

uH 0.0376 Niche model uL 0.0432 See text

ρH 0.5289 Niche model ρL 0.5310 See text

αH 0.0053 Niche model αL 0.0051 See text

K 15000 Niche model γ 1 Niche model

ωH 4.7 · 106 Cancitis Ax ωL 11.75 · 106 See text

dMH
0.0129 Cancitis dx1

dML
0.0129 Cancitis dy1

eD 2 · 105 Cancitis ea rS 0.0003 Cancitis rs

eS 2 Cancitis es I 7 Cancitis I

Table 10.1: Default parameters used in simulations of the combined
model. Parameters uH , UL, dMH

, dML
, eD, rS and eS are in units of [days−1],

while the other parameters are without unit. For parameter where the values
come from the Cancitis model, the name of the original parameter is included.
Parameters uL, ρL, αL and ωL were determined from the healthy counterparts,
modified to agree with the disease progression shown in figure 10.3, see main
text for details.

stable. When fH > fL, only the healthy steady state is locally stable. From numerical in-
vestigations of the fitnesses, it is possible to determine which steady state is stable for a given
set of parameters. In the following sections, this is done in treatment simulations to illustrate
whether the flow for a given set of parameters approach E∗0 , E

∗
H or E∗L (or whether co-existence

is possible).

10.2.5 Parametrization and numerical investigations

The default parameters of the combined model come from the parameters of the Cancitis model
and the HSC niche model, since all terms in the combined model are analogous to terms in the
original models. In table 10.1 the default parameters are shown, along with an explanation of
where the values came from. The advantage of the leukemic clone was determined by modifying
the parameter values by hand to obtain a visual agreement with both the exponential growth
described in section 3 and the default parameters of the Cancitis model when simulating disease
progression starting with a single malignant stem cell. The values of ρL, αL and uL were all
modified. In figure 10.3 a comparison is shown. To have a larger count of mature cells in the
leukemic steady state, we set ωL = 2.5ωH . The analogous parameter in the Cancitis model, Ax

and Ay were equal, however, in the Cancitis model the leukemic steady state was characterized
by a large count of leukemic stem cells, resulting in large numbers of mature cells. Since stem
cells counts in the leukemic steady state in the niche model are only slightly more numerous
than in the healthy steady state, the increased counts of malignant mature cells must arise due
to an excessive proliferation of malignant progenitor cells. While the logistic approximation of
the niche model was related to MPN in section 9.4, we determined that unique values of ρL, αL

and uL cannot be estimated from the data considered. Hence the default values for these are
particularly uncertain, but provide possible reasonable first estimates of values.

Figure 10.4 shows all variables of an exemplary simulation in which a single mutation at time
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Figure 10.3: Disease progression in the emperical model, the Cancitis
model and the combined model. The exponential growth of the JAK2 allele
burden determined in section 3 is shown in dashed blue. The relative frequency
of malignant mature cells in the Cancitis model is shown in black, while the
grey dotted line depict the relative frequency of malignant mature cells in the
combined model, using the default parameters given in table 10.1.
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t = 0 is simulated as K−1 cells subtracted from NH in the healthy steady state and added to
NL. The default parameters imply that the clones have fitness fH = 11.0 and fL = 12.1, and
hence the leukemic steady state is locally stable since fH < fL.

Figure 10.4: Illustration of a model simulation of the combined model.
At time t = 0, the system is perturbed out of the healthy steady state, by
removing K−1 ≈ 7 · 10−5 from NH and adding the same amount to NL. In
the left panel and the top mid panel green curves depict the healthy clone NH

and MH respectively, while the red curves are the leukemic clone NL and ML.
The dotted black curves shows the sum. The middle panel at the bottom shows
the relative frequency ML

MH+ML
. In the top-right, the debris of dead cells D is

depicted, while the bottom-right depicts the inflammatory load, S. The default
parameters of table 10.1 were used.

As the parameters of the combined model have biological interpretations, it is possible to
simulate treatment that affects particular biological processes. From the steady state consider-
ations in the previous section, disease progression toward the leukemic steady state occurs due
to the leukemic clone having a higher fitness than the healthy clone, fL > fH . Hence it is clear
that successful treatment must perturb parameters such that the healthy clone has a higher
fitness than the leukemic clone. This can be achieved by either increasing fH , decreasing fL
or a combination thereof. Figure 10.5 depicts a simulation such a treatment scenario, in which
ρL is significantly decreased in a two-year period. The parameter-perturbation changes fL to
5.86 and hence the healthy steady state becomes locally stable because fH > fL. This results
in a decline of leukemic cells (red curve) and an increase of healthy cells (green curve). The
relative frequency of malignant mature cells out of all mature cells also decreases significantly as
a consequence.

The relative frequency of the malignant clone in the simulation shown in figure 10.5 agrees
well with the decay of the JAK2 allele burden observed in IFN-treated patients from the DALIAH
trial. An initial delay before decreasing is in agreement with the slow respond observed in some
patients, and could explain the pseudo-progression response-type discussed in the end of section 3.
However, the DALIAH trial data showed that during IFN treatment, blood-cells counts decreased
on a time-scale much faster than the decrease observed in the JAK2 allele burden. Hence, figure
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Figure 10.5: Illustrative example of ρL treatment in the combined
model. Starting in the healthy steady state S∗0 at time t = 0 (with MH ≈
1 · 1012), the equivalent of one HSC, K−1 ≈ 7 · 10−5, is removed from NH and
added to NL. Due to the growth advantage of the malignant clone, the dis-
ease develops, the relative frequency of malignant mature cells, ML

MH+ML
reaches

approximately 65% within 20 years. Between year 20 and 22 treatment is sim-
ulated, setting ρL = 0.515. This reduces the fitness of the malignant clone, fL,
from 12.1 to 5.9, resulting in the healthy clone having the higher fitness during
treatment since fH = 11. At year 22, the ρL parameter is reset to the default
value. The grey background shows the period of treatment. The left panel
depicts the mature cell-counts, with full lines depicting the simulated scenario
and the dotted lines showing the scenario without treatment. MH is shown in
green, ML is magenta and the sum MH +ML is shown in black. The right-hand
panel shows the relative frequency of malignant mature cells, with the dotted
blue curve showing the scenario without treatment.
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10.5 suggests that while a decreased value of ρL can explain the JAK2 decrease, it does not lead
to a fast decrease of blood cell counts and additional parameters must be perturbed to model the
full effect of IFN. In figure 10.6 such a scenario is depicted. In addition to a significant reduction
of ρL during treatment, we also model a decrease of ωH and ωL. The two parameters are reduced
by the same magnitude. This results in treatment which features an immediate and significant
decrease in mature blood cells while maintaining a slower decay in the relative frequency of
malignant mature cells. Hence both the relative difference in blood cell counts (given by the
JAK2 allele burden) and the absolute blood cell counts can be captured by the combined model
when ωH and ωL is perturbed in addition to ρL. Note that ωH and ωL does not influence the
fitness of either clone.

Figure 10.6: Illustrative example of treatment affecting ρL, ωH and ωL

in the combined model. Starting in the healthy steady state S∗0 at time t = 0
(with MH ≈ 1 · 1012), the equivalent of one HSC, K−1 ≈ 7 · 10−5, is removed
from NH and added to NL. Due to the growth advantage of the leukemic
clone, the disease develops, the relative frequency of malignant mature cells,

ML

MH+ML
reaches approximately 65% within 20 years. Between year 20 and 22

treatment is simulated, setting ρL = 0.515, ωH = 2 · 106 and ωL = 5 · 106 (and
hence maintaining the relationship ωL = 2.5ωH). At year 22 parameter are
reset to the default parameters. The left panel depicts the mature cell-counts,
with full lines depicting the simulated scenario and the dotted lines showing
the scenario without treatment. MH is shown in green, ML is magenta and
the sum MH +ML is shown in black. The right-hand panel shows the relative
frequency of malignant mature cells, with the dotted blue curve showing the
scenario without treatment.

During simulated treatment, the healthy steady state is only approached asymptotically and
hence never reached. For this reason, treatment cessation will always be followed by a relapse,
since some non-zero (possibly very small) number of NL is present and is competitively advan-
tageous without treatment. Increased thrombocyte counts are one of the primary risk-factors of
MPNs, as it is associated with an increase risk of thrombosis. Investigating the time it takes
from treatment cessation until dangerous high counts of thrombocyte arise again is therefore
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an important measure for the effect of treatment. By defining enhanced thrombocyte counts
as mature cells being 50% increased compared to the healthy steady state, we simulated the
model following treatment cessation. Figure 10.7 illustrates this definition of relapse, using the
treatment shown in figure 10.6 and continuing simulation after treatment cessation.

Figure 10.7: Illustration of relapse after treatment cessation. Simulating
the same scenario as in figure 10.6, the figure shows the increase in mature cell
counts following treatment cessation. The dashed cyan line shows the value
of N∗

H in the healthy steady state, while the dashed magenta line shows our
definition of a relapse threshold, 50% higher than healthy cell-counts. Hence,
even with almost normalized cell-counts due to treatment, the model predicts
that the patient will relapse approximately 8 years after treatment cessation.

Considering a range of perturbations of ρL, ωH and ωL, the relationship between specific
treatment-related changes to biology and the time to relapse can be investigated. A contour-plot
is shown in figure 10.8. Additional investigation not shown revealed that changing the time of
treatment initiation and/or cessation made no significant difference. The specific time to relapse
depends on all model-parameters and is thus uncertain. However the general relation between
how the treatment affects the patient and the expected time to relapse is hypothesized to be
robust in the sense that it is indicative for real predictions. Hence, determining the patient
respond to treatment could be used to make long-term predictions and ultimately to determine
the best time for diagnosing for relapse of the leukemic clone.

Although a reduction of ωH and ωL leads to shorter time to relapse as seen in figure 10.8,
we note that the immediate decrease in cell-counts associated with the reduction of ωH and ωL

is not only observed in data, but also an important clinical goal of treatment, as decreasing
thrombocyte-counts immediately is important to reduce the risk of thrombosis for the patient.
Hence, even if the reduction of ωH and ωL can worsen long-term patient outcome, it is beneficial
for the patient in the short-term. In figure 10.9, the short-term benefits of reducing both ρL,
ωH and ωL is illustrated. Considering two independent clinical goals, a reduction of blood-cell
counts and a reduction of the relative frequency of the malignant clone, the figure shows how
fast these goal are reached. Notably, the reduction of the relative frequency of the malignant
clone is shown in panel 10.9a is similar to the time to relapse shown in figure 10.8, while the
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Figure 10.8: The relationship between modelled treatment respond and
time to relapse. The model was simulated as in figure 10.6 and 10.7, and the
time to relapse was found, defined as mature cell count 50% above the healthy
steady state. Fold changes to ρL was considered as well as fold changes to both
ωH and ωL. Both ωH and ωL were perturbed equally, such that the relation
ωL = 2.5ωH was maintained. From the contours, we see that decreasing ρL is
associated with a longer time to relapse, while reducing ωH and ωL can shorten
the time to relapse, although not as significantly. The perturbation illustrated
in figures 10.5 and 10.7 corresponds to a 0.97 fold decrease of ρL, while the
additional perturbation of ωH and ωL shown in figure 10.6 corresponds to 0.43
fold decrease of both.
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reduction of blood-cells in panel 10.9b is different. Since both are clinical goals, it is relevant
to consider the maximal time it takes before both are attained. This is shown in panel 10.9c.
The specifics of the simulations in figure 10.9 depends on many elements including the model
parameters, the definition of cell-count normalization and on the stage of disease progression at
which treatment is initiated. Regardless, the figure illustrates that successful treatment must
target both the behaviour of stem cells (through e.g. a reduction of ρL) and the production of
mature cells (through e.g. a reduction of ωH and ωL). Treatment that only targets either would
not allow for short-term clinical benefit, even if the time to relapse after treatment cessation is
long.

In section 3.1, we noted that the thrombocyte-counts and the JAK2 allele burden did not
correlate at baseline. Investigating the parameter-space of the combined model suggests possible
explanations for why the thrombocyte counts can be significantly different for equal levels of
disease, as assessed by the JAK2 allele burden. By assuming that default parameters, table 10.1,
describe an average person well, the mature cell counts in the healthy steady state should be
within the healthy interval. As such, we assume that a scaling of thrombocytes is possible such
that N∗

H is 300 · 103(μL)−1 at the healthy steady state for default parameters. In figure 10.10
disease progression is simulated as in figure 10.4, for different sets of parameters. By maintaining
the same scaling of mature cells, we observe that changes in parameters gives rise to differences
in mature cell counts, both before and during disease progression. In particular, figure 10.10a
shows that increasing external inflammatory stimulus, I, can increase cell-counts, while figure
10.10b shows that the same is the case for the total number of HSC niches, K. We propose two
hypotheses for the lack of correlation between thrombocytes and JAK2 allele burden observed
at baseline. We consider a hypothetical patient which gets diagnosed when the thrombocyte-
count crosses an arbitrary threshold of 800 · 103(μL)−1. For default parameters, the relative
frequency of the malignant clone is 80% when the threshold is crossed. However, if the external
inflammatory stimulus, I, was tripled compared to the default value, the relative frequency of the
malignant clone was just 20% when the thrombocyte-count exceeds 800 · 103(μL)−1. Similarly,
small changes in the count of HSC niches is found to influence this difference significantly, with
just a 33% increased niche-count leading to a similar difference in the relative frequency of the
malignant cells at diagnosis. These starting conditions are shown as red asterisks ∗ in figure
10.10, with simulated treatment scenarios shown as red lines.
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(a) (b)

(c)

Figure 10.9: The relationship between modelled treatment perturba-
tion and the short-term response. Simulating the same scenario as other
figures in this section (figures 10.6 and 10.7), a range of changes to ρL, ωH and
ωL is simulated. As above, ωL = 2.5ωH is maintained. Panel (a) shows the time
from treatment initiation until the relative frequency of the malignant clone is
halved compared to the initial level. A significant reduction of ρL is found to be
necessary for the reduction, whereas the reduction of ωH and ωL has little effect.
In panel (b) the time to normalization of mature cell counts is illustrated. The
time to normalization is here defined as the time from treatment initiation until
mature cell counts return to the cell-counts in the healthy steady state. Note
that in some cases, the cell-counts are reduced such that they are lower than the
healthy level, which can also have negative consequences for the patient. We
omit this consideration for simplicity. The worst-case scenario is shown in panel
(c), by considering the maximal time it takes before both goals of treatment are
attained.
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(a) (b)

Figure 10.10: Changes in parameters influences the disease progression
in the combined model. Disease progression is simulated for different values
of I and K, while all other parameters attained the default values. The model
was simulated with initial conditions corresponding to one malignant stem cell
added in the healthy steady state. The sum of mature cells is scaled such that the
healthy steady state for default parameters is 300 · 103(μL)−1, corresponding
to a healthy thrombocyte count. In both panels, the black line depicts the
scenario where all parameters attain their default value. Disease progression
follows the curve from a relative frequency of the malignant clone close to 0
toward a relative frequency of 1. In panel (a) the model was simulated over
a range of values for I, from 1

3 of the default value shown in green on the far
left, increasing in intervals of 1

3 of the default up to a three-fold increase from
default, shown in blue on the far right. Similarly, panel (b) depicts simulations
where K was perturbed instead of I, starting from 1

3 the default on the left in
green, to a three-fold increase of the default value, shown on the right in blue.
The intermediate steps similarly had steps of 1

3 of the default value between
them. In both panels, simulated treatment scenarios are shown for illustration,
initiated as the red asterisks, see the main text. In the treatment-scenarios,
treatment is simulated as a 0.98-fold change of ρL, while both ωH and ωL are
reduced by a factor 0.6.
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10.3 Summarizing discussion

In this section, the Cancitis model of section 5 and the HSC niche model of section 8 were
combined to formulate the combined Cancitis-Niche model, definition 10.2.1 and 10.2.2. The
combined model includes the features of HSC behaviour from the HSC niche model, as well as
blood-cell feedback through an abstract notion of the immune system and inflammation as in
the Cancitis model. Hence the combined model describes the full hematopoietic system with
possible biological interpretation of the parameters included. We showed that the combined
model has steady states that are very similar to those of the HSC niche-model. Single-clone
steady states exist, and an expression for HSC fitness determines which steady state is locally
stable. The fitness expression is found to be the same as for the reduced HSC niche model.
As the combined model is derived from two models for which parameter values were already
determined, the values of the parameters of the combined model were based on the values of
the corresponding original parameters. Numerical investigations showed that the dynamics of
the model is similar to the Cancitis model, see figures 5.2 and 10.4. To investigate the model
behaviour, we simulated different treatment scenarios and determined how the clinically relevant
measures of total mature cell count and relative frequency of the malignant mature cells responds
to hypothetical treatment.

To combine the models, choices about the modelling of progenitor cells were necessary. We
formulated a hypothetical scheme of HSC behaviour and blood-cell production with multiple
steps of cells of increasing maturity. Intermediate steps were considered progenitor cells, while
the final step described the mature blood-cells. Two biological assumptions were made: Limited
self-renewal of progenitors and frequent differentiation of progenitors. Under these assumptions,
quasi-steady-state approximations of the intermediate steps are appropriate, revealing a model
of just HSC and mature cells with progenitors primarily playing a role of multiplication of cell-
numbers. We found that a quasi-steady-state approximation of mature cells was not appropriate,
based on the comparable time-scales of HSC release from the niche and the death-rate of mature
cells. This suggests a connection between the slow dynamics of HSC and the life-span of mature
cells. For the HSC niche model, we previously determined that the a slow detachment rate of
HSC were related to the assumption that most HSC are niche-bound. Together, these findings
suggests that the proportion of HSC that are quiescent and the average life-span of mature cells
could be related. This will be discussed further in chapter VI.

The combined model does not include HSC apoptosis, in contrast to the Cancitis model where
the parameters dx0

, d̂y0
and d̃y0

all relate to death-rates of HSC. As perturbation of d̂y0
were in

focus in section 6, some comments on HSC apoptosis in the combined model are necessary. The
introduction of HSC apoptosis would not affect the HSC niche model or the structure of steady
states of the combined model, since the differentiation rates of HSCs could be redefined to include
the effective loss of HSC due to both differentiation and apoptosis. However, the definition of
the production of progenitors would change, and hence also the expressions iDH

and iDL
of the

combined model. For simplicity, we assume that apoptosis occurs rarely enough to not have
an effect under normal circumstances. During apoptosis-increasing treatment, we assume that
the resulting decrease in progenitor production is either insignificant or can be approximated
by a linear decrease in the production of mature cells that the progenitors in turn produce.
Since a linear decrease of iDH

or iDL
is equivalent to a decrease of ωH and ωL respectively, we

assumed that increasing the death-rates of HSC and malignant stem cells can be approximated
by changes in ωH and ωL. Additionally, if treatment that induces apoptosis of stem cells also
induces apoptosis of progenitors, we assume that the effect on the production of mature cells can
also be captured by changes in ωH and ωL.

As a particular example of the effect of increasing the death-rate of stem cells, we simulated
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a scenario where the malignant clone is expanding from a single malignant clone at time t = 0
to full-blown malignancy. In accordance with the discussion above, increasing the death-rate of
stem cells corresponds to increasing the differentiation rates of the niche model, corresponding
to a decrease of ρH and ρL or an increase of αH and αL, as well as an increase of ωH and ωL.
While not shown here, preliminary numerical investigations suggested that the model dynamics
that arise from increasing αL were similar to the dynamics that arise from decreasing ρL. For
simplicity, therapeutic intervention was simulated as only a decrease of ρL and a decrease of ωH

and ωL and the remaining parameters were kept fixed. We defined three measures of successful
treatment. Firstly, a fast decrease in mature cell counts, secondly, a fast halving of the relative
frequency of the malignant clone compared to the baseline value, and thirdly, an increased time
from treatment cessation until cell-counts are heightened again. Simulating a wide range of values
of the death-rate related parameters mentioned above, we found that while a decrease of ρL is
important for reducing the relative frequency of the malignant cells and for postponing relapse,
a reduction of ωH and ωL must occur if cell-counts are to be lowered. Hence, reduction of ρL
as well as of ωH and ωL is necessary to attain the response to treatment seen for IFN-treated
patients in the DALIAH trial, see section 3. Patient-specific fits of exactly such responses is the
focus of the next section.

The effect of different values of the external inflammatory stimulus I and the number of
HSC-niches K was shown in figure 10.10. While this is not a substitute for a thorough sensitiv-
ity analysis of the relation between model parameters and different outputs of importance, the
numerical investigations were indicative of how changes in parameters can lead to large changes
in cell-counts during disease progression. Importantly our findings suggest that different combi-
nations of counts and relative frequencies of cells can be observed at different stages of disease
progression. As a consequence, patients with e.g. different external inflammatory stimulus could
have experienced very different disease progression up to the point of diagnosis. In particular, a
patient with high inflammatory stimulus could experience heightened levels of blood-cells much
earlier than a patient with low inflammatory stimulus. Similarly, heightened number of HSC-
niches, K, could lead to heightened levels of blood-cells. Conversely, the model suggests that a
diminished pool of HSC-niches would lead to reduced blood-cell counts.
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Chapter 11

Modelling MPN-patient responses
with the combined model

In this section, the combined model is compared to the data from DALIAH trial. The methodol-
ogy is based on the methodology used for comparing the Cancitis model to the same data-set in
section 6, with some modifications. In particular, certain non-fixed model parameters are fitted
to data of the blood-cell counts, in addition to a linear scaling of mature cells. The resulting fits
are interpreted across the population, and a proof-of-concept of a population-modelling approach
is presented.

11.1 Mapping blood-concentration to parameter pertur-
bation

In section 6.1, we discussed how the blood-concentration of IFN was modelled for the study
of the DALIAH trial patients for the work described in section 6. Parameters were perturbed
relative to the simple pharmacokinetic model of IFN concentration given in equation (6.5). For
the combined model, however, the dependence of parameters on the blood concentration of IFN
was modified slightly. This was done to easier allow for negative contribution due to treatment,
while avoiding the theoretical boundaries of parameter values. In particular, all parameters of
the combined model are positive. In addition, the parameters ρH and ρL must both be less than
1, since e.g. ρH > 1 would imply dAH

< 0.

When considering the DALIAH trial data, the blood concentration of IFN, B, changes with
time in accordance with equation (6.4), page 44, and is hence generally a function of time. For
simplicity, we write just B instead of B(t) here. The parameters ρH and ρL are modelled to have
the following dependence on B:

ρ̂j(B) =
ρj

ρj + (1− ρj)e
−νρj

B
(11.1)

where ρj is the default parameter value and νρj is a parameter determining the degree of response
to treatment. The expression in equation (11.1) is a logistic expression from 0 to 1, going through
ρj at B = 0, with the slope being determined by νρj

.

For all other parameters, two cases were considered. For νθ ≥ 0 a linear increase as in
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equation (6.5) and for νθ < 0, an exponential decrease toward zero:

θ̂(B) =

{
(1 + νθB)θ for νθ ≥ 0

eνθBθ for νθ < 0
(11.2)

Hence, θ̂ : (0,∞) → (0,∞), with θ̂(B) = θ when νθ = 0. Note that θ̂(B) is continuous in νθ. In
practice, this meant that no restrictions on νθ were necessary when fitting to patient data. From
the data of the DALIAH trial, B takes values between 0 and 20. The linear relation for νθ ≥ 0
was chosen as the simplest possible relation between increases in dose and increases in parameter
perturbation. We assess that the effect of increases in dose would have been to significant if an
exponential function eνθBθ had been used for νθ ≥ 0 as well.

Additional details could be considered for the parameter perturbations. This could include
a lower threshold for an effect (i.e. an interval of B in which θ̂ = θ), or an upper limit of how

significant an effect treatment could have (i.e. a threshold B such that θ̂(B) = (1 + νθB)θ for
all B ≥ B). While such details are biologically realistic, including more details would introduce
additional fitting parameters, greatly increasing the complexity of the fitting procedure, and
hence obscuring or overcomplicating the interpretation of the response. For this reason, the
single-parameter perturbations of equations (11.1) and (11.2) were chosen.

(a) (b)

Figure 11.1: Parameter perturbation in the combined model. The re-
lation between the fit-parameter νθ, the blood-concentration B(t) and the re-
sulting value of the perturbed parameter is shown. For a given value of νθ, the
top of the blue area shows the value of the perturbed parameter for a blood-
concentration of B = 5, corresponding to sustained 5 μg daily IFN, the top
of the green corresponding to B = 10 μg daily IFN, and top of the full red
corresponds to B = 15 μg daily IFN. The two light-pink areas show B = 20
and B = 25 μg for illustration. Panel (a) shows the parameter perturbation of
equation (11.1) used for ρC and ρL with the perturbation of the latter shown
here. All other parameters were perturbed according to equation (11.2), and
panel (b) shows the perturbation of ωL, as an example.
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11.2 Methodology for fitting the Combined model to data

The behaviour of the combined model under certain perturbations were discussed in section
10.2.5. In particular, it was shown in figure 10.5 that decreasing ρL can lead to a decline in
the relative frequency of malignant cells that is visually similar to the decays observed in the
JAK2 allele burden of the IFN-treated patients in the DALIAH trial. We found that decreasing
both ωH and ωL only made little difference in the dynamics of the relative frequency of mature
cells, but resulted in a fast decline of the cell-counts. Combining these observations with dose-
dependent parameter perturbation and the procedure used for fitting the Cancitis model to data
(as described in chapter 6), different possible ways to relate the combined model to data arise.
We here describe the methodology that we have used. Some of the considerations from previous
sections bears repeating. The relative frequency of malignant mature cells in the model, ML

MH+ML
,

is assumed to agree with the JAK2 allele burden, and a linear scaling is assumed to relate the
sum of mature cells in the model (MH + ML for the combined model) to patient blood-cell
counts (both thrombocyte- and leukocyte-counts). The blood-concentration of IFN is modelled
in the same way as described in previous sections. All patients are considered on an individual
level, and the found model-response thus reflects a patient-specific response to treatment. Initial
investigations suggested that optimizing for both the blood-cell counts and relative frequency of
the malignant cells was difficult due to scaling of errors-measures, leading to model-fits that only
agreed with either the cell-counts or the relative frequency of malignant mature cells, but rarely
both simultaneously. To alleviate this problem, we chose a three-step methodology:

1. ρL and the JAK2 allele burden.

Initially, dose-dependent perturbation of just ρL was considered. We minimized the squared
difference of the JAK2 allele burden measurement of the given patient and the relative
frequency of the malignant cells at the corresponding times, by fitting the parameter νρ

L
,

see equation (11.1).

As in section 6.6, we considered a linear scaling of the sum of mature cells,Mtot = MH+ML,
in the model. We defined the error of the model prediction and the observed cell count as
in equation (6.8):

Ec,i = (MH(ti, νθ) +ML(ti, νθ))Rc −Dc,i (11.3)

where Dc,i were the c cell-line measurements at time ti and Rc was the model-predicted
fraction of mature cells from the cell line c.

Using the dose-dependent perturbation of ρL, patient-specific scaling factors for thrombo-
cytes and leukocytes were determined.

2. Multiplication factors fitted to linearly scaled blood-cell counts.

The multiplication factors ωH and ωL were determined to affect the mature cell counts
MH and ML greatly, without much change to the relative frequency of the cells. For
this reason, we fitted dose-dependent perturbations of ωH and ωL simultaneously with
cell-line specific linear scaling as above. The perturbation of ωH and ωL was equal, to
reduce the number of fitted parameters. Hence, a single parameter νω = νωH

= νωL
was

used in the fitting procedure. Initial investigations revealed that considering independent
fits of νωH

and νωL
leads to an improved fit for some patients, however, the resulting

parameter values correlated in most cases, suggesting that the two parameters cannot be
independently identifiable.

3. Final optimization of ρL to JAK2 allele burden.
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Finally, we fitted the relative frequency of malignant cells to the JAK2 allele burden by
maintaining the found value of νω = νωH

= νωL
and subsequently optimizing νρL

to reduce
the JAK2 allele burden error a second time. The changes to ωH and ωL had little effect on
this measure, however in some cases, the effect could be alleviated by this step. For most
patients, the change to νρL

was minor. After optimizing νρL
, the scaling-factors were also

fitted again.

To summarize, step 1 consisted of fitting the model to JAK2 data with parameter νρL
,

followed by a fitting of the scaling factors R to thrombocyte- and leukocyte-counts. In step 2
the parameter νω = νωH

= νωL
were fitted to the thrombocyte- and leukocyte-counts and the

scaling factors were updated. The final step consisted of fitting the parameter νρL
again. Hence,

two model-parameters were considered, as well as two scaling factors; one for thrombocytes
and one for leukocytes. Fitting of parameters were done for 63 patients, using the MATLAB

function fminsearch. Figures of the resulting model-dynamics after each step are shown in
Electronic Supplementary Material 4. In the section below, some examples of particular patients
are highlighted and discussed in detail.

11.3 Examples of patient fits

A dose-dependent ρ̂L(B) was obtained for each patient by fitting νρL
to the JAK2 allele burden.

This resulted in a good visual agreement between data and model-fit for most patients. For some
patients however, such dose-dependent perturbation of ρL does not result in the behaviour seen
in data. In figure 11.2 examples are shown of both good and bad fits.

As shown in section 10.2.5, equal perturbation of ωH and ωL had little influence on the
behaviour of the relative frequency of malignant mature cells out of all mature cells. Hence, for
patients where perturbing ρL is not sufficient to obtain a satisfactory fit to data, perturbing ωH

and ωL equally does not change the agreement between the model and the JAK2 allele burden
much. However, by maintaining the dose-dependence of ρ̂L found above, equal dose-dependent
perturbation of ωH and ωL can greatly improve the agreement between the scaled sum of mature
cells in the model and the leukocyte- and thrombocyte counts. This is achieved in the second
step of the methodology by finding a value νω = νωH

= νωL
that minimizes the blood-cell error

as defined in equation 11.3. In figure 11.3 examples of the resulting fits are illustrated. Only
thrombocytes are shown. For most patients, the dynamics of thrombocytes and leukocytes during
IFN treatment were visually similar, however, due to differences in the order of magnitude of
data, fitting often lead to better fit for thrombocytes than for leukocytes whenever there were
differences in dynamics, see Electronic Supplementary Material 4 for all data and fits. The
fits with νω = 0, shown in blue in figure 11.3, show a slow decrease of thrombocytes, and the
initial count at baseline is underestimated. This is the case for almost all patients. Fitting
with νω as well as the thrombocyte-specific scaling factor leads to a higher estimate of baseline
thrombocyte counts, in good agreement with data, and fast decrease in counts within the first
half year. Fitting a dose-dependent perturbation of ωH and ωL suggests that changes in dose
directly influence the thrombocyte count. In both examples shown in figure 11.3, the IFN-dose
is increased approximately eight months after baseline. The effect of the increase as well as the
effect of later decreases in dose are seen clearly in the model-fit. Hence the model suggests a that
IFN has significant effect of reducing the production of blood cells within the time-scale of a few
months of treatment. Importantly, for both patients shown in figure 11.3, our modelling of the
effect of IFN leads to good agreement between the data and the model for the initial half-year
of fast decrease.
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(a) (b)

(c) (d)

Figure 11.2: Perturbing ρL provides a good visual fit for most patients.
The results of the first step are shown here. Panel (a) shows patient “P184”,
while panel (b) shows patient “P198”, previously shown in examples in section 6.
The full black curve in the figures show the relative frequency of the malignant
clone in the model. In panel (c), patient “P111” is depicted, as an exemplary
patient with a bad response in the JAK2 allele burden. Based on the particular
treatment dosing for the patient, the model is unable to capture the response,
with black model-curve showing a visually different response. Another example
of a bad fit of the model to data is shown in panel (d). Here the patient, “P164”
experiences a sustained level of JAK2 allele burden, while the model shows a
decreasing level, due to the increasing dose. The best-fit parameters νρL

for
each patient were −0.024 for “P184”, −0.004 for “P198”, −0.001 for “P111”
and finally −0.005 for “P164”. In regards to the adjusted R2 values described
later in the text, the fit to “P184” gave a value of 0.94, “P198” was 0.99, “P111”
was −2.88, and “P164” was −5.30.

119



Part V Combining the Cancitis model and the bone-marrow model

(a) (b)

Figure 11.3: Subsequent optimization of ωH and ωL can greatly improve
the fit to blood-cell counts. Panel (a) displays the differences between the
first and second step for patient “P184”, while panel (b) displays the same for
patient “P198”. In both panels, the blue curve displays the mature cell counts
resulting from perturbing just ρL to fit the relative frequency of malignant
cells to the JAK2 allele burden measurement of the given patient, scaled to
minimize the difference between the sum of mature cells in the model and the
thrombocyte counts. The simulated scenarios without treatment is shown as
dotted lines. With the same perturbation of ρL, we subsequently make a fit of
the scaling-parameter and a perturbation of ωH and ωL and obtain the curve
shown in black. In both of the shown cases, this reduced the difference between
data and model. The bottom parts of the figures display the dosing of the given
patient, as in previous figures. Patient “P184” has νω = −0.1 and νρL

= −0.024,
while patient “P198” has νω = −0.046 and νρL

= −0.004.
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While the effect of non-zero values of νω leads to significant differences in dynamics of blood-
cells, the relative frequency of blood-cells is only changed to a small degree. However, for some
patients, the optimization of νω to fit with thrombocyte- and leukocyte-date yields a model-fit
where the relative frequency of malignant cells in the model no longer agrees with the JAK2 allele
burden measurements. To improve this, the third step consisted of an additional optimization of
νρL

. Examples are shown in figure 11.4. While some discrepancies between data and model are
still present, the model simulation with the new value of νρL

shown in black in the figure reduces
the sum of squared errors. This final optimization makes only insignificant differences in blood-
cell counts, and hence the combined set of fit values consisting of νρL

, νω, a leukocyte scaling-
factor and a thrombocyte scaling-factor, provides a dose-dependent model fit which allows for
good visual agreement between both blood-cell counts and relative frequency of clones. Collecting
these fit-parameters for all patients allows for population-level interpretation of how the model
fits to data, and in turn, the effect of IFN.

(a) (b)

Figure 11.4: Final optimization of νρL
improves agreement with JAK2

allele burden. Changing νω to fit with thrombocyte and leukocyte counts can
cause minor changes in the relative frequency of malignant cells, leading to a
sub-optimal fit to the JAK2 allele burden. The resulting fit for patient “P184”
is shown in panel (a), while the fit for patient “P198” is shown in panel (b).
Making a new fit of νρL

to the JAK2 allele burden while maintaining the error-
minimizing value found for νω improves the agreement with data. This is shown
in black in both figures. In the shown scenarios, νρL

is changed from −0.024 to
−0.030 for patient “P184”, and from −0.0035 to −0.0040 for patient “P198”.
Note that for most patients, this additional fitting lead to only minor changes
in the dynamics of the relative frequency of clones.

121



Part V Combining the Cancitis model and the bone-marrow model

11.4 Population-level interpretation of fits to data

For all patients, a linear scaling of the sum of mature cells in the model was made, interpreted
as a scaling factor describing how big a ratio of the modelled mature cells that pertain to the
given cell-type. Since these scaling factors are independent of how far the disease of the given
patients has progressed, the factors can be used to determine a model-estimate of the cell-counts
in the healthy steady state. Assuming the model accurately describes the progression that the
patient experiences before diagnosis, the found cell-counts are estimates for the actual cell-counts
that the given patient had before the disease-initiating HSC-mutation, ignoring other changes to
cell-counts unrelated to MPN. Additionally, we can predict how large cell-counts for the given
patient would be in the full-blown disease steady state. While treatment is always to be preferred
before such state is approached, determining the predicted counts of specific cell-lines in this full-
blown disease state can illustrate how bad a worst-case scenario could be for MPN-patients. The
distribution of patient-specific cell-counts in the healthy steady state is shown in figure 11.5,
while the full-blown disease steady state is shown in 11.6.

We see that for most patients, scaling the healthy steady state leads to cell-counts within the
expected interval. Hence, the scaling of the mature cell counts is not only valid during disease
and treatment (as suggested by the agreement with data), but also suggests realistic cell-counts
in the absence of disease.

For the full-blown disease steady state, both cell-counts are predicted to be significantly
heightened. In particular, we observe that the distribution of thrombocyte counts are more varied
than leukocytes, and that relative to upper limit of the healthy interval, thrombocytes are more
heightened than leukocytes. We confirmed by visual inspection of data from individual patients
that heightened thrombocyte-counts were more common than heightened leukocyte-counts. As
increased thrombocyte-levels is one of the diagnostic criteria for ET, this was expected.

It is possible to use the fits of the combined model to determine a lower threshold for the
IFN-dose required for successful treatment on the level of individual patients. This threshold is
defined by the dose at which the leukemic steady state becomes locally unstable and the healthy
steady state becomes locally stable, indicative of long-term eradication of the malignant clone.
Figure 11.7 shows the distribution of these thresholds. As for the Cancitis model-fits, we predict
that treatment can be attained for a dose of 5μg for most patients, while a subset of 10 patients
out of 63 (16%) require doses above 10μg IFN daily.

Since the stability does not depend on ωH and ωL, figure 11.7 depends only on the fitted value
of νρL

, and the model suggests that higher doses will always lead to faster treatment and hence
better patient prognosis. However, by fitting with both ρL as well as ωH and ωL, the benefits
of treatment is separated into a long-term benefit due to ρL perturbation and a shorter-term
benefit due to ωH and ωL, as discussed in section 10 and illustrated in figure 10.9. In figure
10.9c we showed how sufficient perturbations of both ρL, ωH and ωL can lead to a 50% decrease
in the relative frequency of malignant cells and cause a decline of all mature cells such that
cell-counts equal to the healthy steady state are achieved. For each patient, we determined the
dose required to achieve both of these goals within a five year period of sustained treatment,
based on simulation of an identical treatment scenario. Twenty years after initial mutation, as
in the examples considered throughout section 10, treatment was initiated with the response to
treatment mimicking those of the DALIAH trial patients. Determining the threshold between
doses that lead to both goals being achieved and doses that did not, allowed us to interpret the
patient-specific fit-parameters as indicative of the dose required for treatment within a five year
period. The distribution of dose-thresholds is shown in figure 11.8. These results suggest that
for most patient, achieving both the goal of reducing the relative frequency of malignant cells by
50% and attaining healthy cell-counts within a five year period, an average daily dose of at least
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Figure 11.5: Distribution of counts of mature cells in the healthy steady
state. Patient-specific scaled values of leukocytes and thrombocytes in the
healthy steady state shown as histograms. The approximate “normal range” of
cell-counts is shown with dotted black lines, defined as between 4·103(μL)−1 and
11 ·103(μL)−1 for leukocytes and 145 ·103(μL)−1 and 390 ·103(μL)−1 for throm-
bocytes. The model-fits suggest that most patients had cell-counts within these
intervals before disease onset. The leukocyte-counts are below 4 · 103(μL)−1,
and hence possibly underestimated for 7 patients, while thrombocyte-counts are
above the interval for approximately a third of patients, suggesting a possible
overestimation of the thrombocyte count.
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Figure 11.6: Distribution of counts of mature cells in the full-blown dis-
ease steady state. Histogram of patient-specific scaled values of leukocytes
and thrombocytes for the full-blown disease steady state. Healthy intervals are
shown for comparison, as in figure 11.5. For almost all patients, the model pre-
dicts that full-blown disease would result in significantly increased cell-counts,
with leukocyte counts as high as 50 · 103(μL)−1, and thrombocyte counts up
to 4.1 · 106(μL)−1. The median value of leukocyte counts is 29 · 103(μL)−1,
corresponding to 264% above the upper part of the healthy interval, while the
median thrombocyte count is 1831 · 103(μL)−1, corresponding to 469% above
the threshold.
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(a) (b)

Figure 11.7: Distribution of minimum IFN-dose resulting in successful
treatment based on the fits of the combined model. Patient-specific
estimates of the required IFN-dose were determined. Panel (a) shows a his-
togram of the found threshold-doses, with a log-normal distribution shown in
black to guide the eye. In panel (b) the cumulative percentage of patients that
are predicted to have succesful treatment at a given dose is shown, with a cu-
mulative curve of the log-normal distribution from panel (a) shown in black.
Two patients were found to require doses greater than 30μg. As this is outside
the normal range of IFN-doses, the two patients were not included in panel (a).
Hence, a maximum of 97% of patients (61/63) is shown in panel (b).

5μg IFN must be sustained throughout the period.

11.5 Proof-of-concept of population-level responses

The fitted parameters νρL
and νωH

= νωL
resulted in model behaviour that agreed well with

patients on an individual level. On a population level, patient responses differed significantly,
partly due to the heterogeneity in data, previously discussed in section 3. This limits the re-
liability of any interpretation and prediction about population-level responses. However, as a
proof-of-concept, we here show how the modelling framework described can lead to pre-treatment
predictions that in some cases visually agrees well with patient responses.

Adjusted R2 values were computed for the JAK2 allele burden measurements and for the
thrombocyte measurements, defined as:

R̄2 = 1−
∑n

i=1 E
2
i∑n

i=1(Di − D̄)2
(n− 1)

(n− p− 1)
(11.4)

where Ei is the error of the model at the i’th data-point, Di the i’th data-point, D̄ the mean
of data, n the number of data-points and p is the degrees of freedom. As two parameters were
considered νρL

and νω = νωH
= νωL

, p = 2. An adjusted R2 close to 1 indicates a good fit,
while low or negative values indicate a bad fit. The adjusted R2 was used as it will be lower
for patients with fewer data-points, compared to patients where the model fits well to more
data-point. By visual inspection of model-fits, we defined a cut-off between good and bad fits,
defined as R̄2

J = 0.5 for the JAK2 allele burden and R̄2
T = 0.6 for thrombocytes. This gave us

a population of the 20 best fits of the combined model to data. For all 20 patients, the values
of νρL

and νω = νωH
= νωL

were negative. Considering the negative of the fitted values, and
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(a) (b)

Figure 11.8: Distribution of minimum IFN-dose resulting in blood-
cell normalization and halving of the relative frequency of malignant
cells within one year of treatment. A common scenario similar to the
examples shown in section 10 was simulated in which treatment was initiated
20 years after the first mutation. The response to treatment was simulated in
accordance with the fitted parameters of each individual patient. Five years of
treatment was simulated at a constant dose-level. Panel (a) shows a histogram
of the distribution of doses required to attain both blood-cell normalization
and a reduction of the relative frequency of the malignant cells by 50%, with
a logarithmic x-axis. A log-normal distribution is shown as a black curve to
guide the eye. In panel (b) a cumulative histogram is shown, together with a
cumulative curve of the log-normal distribution from panel (a). For six patients,
the necessary average daily dose was found to be greater than 30μg. Four of
these were excluded from panel (a), and hence panel (b) has a maximal number
of patients at 93.7% (59/63) patients.
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assuming a log-normal distribution of parameters, distributions of νρL
and νω = νωH

= νωL
were

determined, see figure 11.9.

Figure 11.9: Distribution of fitted parameters νρL
and νω = νωH

= νωL
.

All patients are shown as black dots, while grey circles are added to patients
for which the adjusted R2 values above the chosen thresholds described in the
text. The left-hand panel depicts the natural logarithm of the −νρL

and −νω for
each patient, while the right-hand panel depict the untransformed fitted values.
Note that two patients had νω > 0 (Patients “P014” and “P070”), and one
patient had νρL

> 0 (Patient “P089”) and are only shown in the right panel.
The adjusted R2 for these three patients were all below the threshold, and
hence they were excluded due to measure of the goodness-of-fit and not because
of the positive fit-parameter values. The lines depict the two-dimensional log-
normal distribution that fits best to the 20 patients with acceptable adjusted
R2 values in the transformed space in the left-hand panel. The distribution was
transformed back and shown in the right-hand panel as well. In the transformed

log-space depicted in the left-panel the distribution has μ =

⎛
⎝−4.92

−2.89

⎞
⎠ and

covariance matrix Σ =

⎛
⎝0.42 0.07

0.07 0.41

⎞
⎠. Hence, the mean of the distribution

corresponds to ν̄ρL
= −0.0073 and ν̄ω = −0.0556.

For each of the 20 patients whose data the combined model fit well with, 1000 sets of νρL

and νωH
= νωL

were randomly chosen from the distributions, leading to 1000 virtual patient-
responses. The initial conditions of the virtual patients were determined from the baseline
JAK2 allele burden measurement of the real patient. The scaling-factors for thrombocytes and
leukocytes were chosen such that the simulated model agreed with baseline measurements of the
given cell-counts. Hence, the virtual patients were all made to agree perfectly with patient-data
at baseline.

Since changes in doses had a significant impact on patient-response, all virtual patients were
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assumed to undergo the same changes in IFN dose, regardless of whether criteria for dose-
increases or dose-decreases were met or not. This was done to avoid discrepancies between the
real patients and the virtual patients that would arise solely due to changes in dose.

Figure 11.10 displays an example of the distribution of virtual patient-responses, compared
to patient data for the particular real patient. The rest of the 20 patients which the combined
model fitted well with along with similar distribution of virtual patient-responses is shown in
Electronic Supplementary Material 5. The example shown in figure 11.10 is an example of a
patient were the virtual patients agree particularly well with data. For some of the patients,
the distribution of virtual patient-responses appears to agree well visually, while other patients
had responses different from the virtual responses. The linear scaling of mature blood cells
counts is observed to lead to bad fits for particular patients. As the scaling-factors determined
during patient-fitting was based on all data, such factors would not be available based solely on
the baseline measurements, and hence scaling with just the baseline measurement is the only
possibly option for this type of pre-treatment prediction.

Finally, we consider an entire simulated patient-response. For patients diagnosed with PV,
the mean leukocyte-count at baseline was 11.4 · 103(μL)−1, the mean thrombocyte-count at
baseline was 571 · 103(μL)−1, while the mean JAK2 allele burden was 44%. Considering a PV
patient with these baseline values and a constant dose of 5μg IFN (the typical initial dose for
interferon-alfa2b “PegIntron”), we simulated 1000 virtual responses. The resulting distribution
is shown in figure 11.11. The figure illustrates how the model predicts an idealized PV patient
to respond to treatment.

We emphasize that figures 11.10 and 11.11 depict a proof-of-concept of how population mod-
elling of dose-dependent IFN-responses could be used to asses possible patient responses before
treatment. Due to the various restrictions on the data used and other limitations, the reliabil-
ity of these virtual patient responses are uncertain, and further work must be done before the
prediction of the virtual patients can be used in the clinic to predict patient response.

11.6 Summarizing discussion

The combined model was shown to allow for dynamics that are in agreement with the patient
data of the DALIAH trial. IFN-dose dependence of parameters were modelled in a way similar
to how the Cancitis model was fitted to data in section 6 and the work described in (Ottesen
et al., 2020). As the combined model must have 0 ≤ ρH ≤ 1 and 0 ≤ ρL ≤ 1, these parametres
were scaled in accordance with equation (11.1), while all dose-dependent perturbation of any
other parameter is determined by equation (11.2).

In section 10 we found that the effect of IFN observed in patient-data from the DALIAH
trial could be captured by perturbing ρL and ωH and ωL, with the former primarily affecting
the long-term response of the relative frequency of the clones and the latter affecting short-
term decrease of blood-cells. For this reason, a multi-step procedure was adopted, in which ρL
was perturbed initially to allow for agreement with the JAK2 allele burden measurements of
individual patients. This was followed by a scaling of the mature blood-cell-counts and an equal
perturbation of ωH and ωL, to allow for agreement with both thrombocyte and leukocyte-counts.
After a final minor improvement of ρL, a fit was obtained such that the model were in good visual
agreement with most patients. Through scaling of the mature cells to fit with blood-cell counts,
we found that, for most patients, the model predicted realistic counts of cells in the absence
of disease. Additionally, the scaling suggests that were treatment not initiated, most patients
would ultimately have reached a stage of disease with thrombocytes counts above one million
per microliter, significantly above the level at which the patient would be at risk of thrombosis.
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Figure 11.10: Virtual patient responses based on baseline measurement
and IFN dosing shows good agreement with real patient-response in
some cases. Patient data for patient “P082” is shown as black circles ©.
1000 virtual patients were simulated and the sum of mature cells were scaled to
agree with the baseline data-point for either leukocytes or thrombocytes. The
blue curve shows the median response-curve. The shaded grey areas displays
the distribution, with the darkest grey showing the interval from 25% to 75%
of values at the given time-points, the next-darkest interval shows from 10% to
90% while the final interval from 5% to 95% of virtual patient-responses is shown
in light grey. The bottom right panel displays the IFN blood-concentration used
for both the real patient and the virtual patients.

129



Part V Combining the Cancitis model and the bone-marrow model

Figure 11.11: Virtual patient responses based on average PV baseline
measurements shows the distribution of an idealized IFN response.
Based on the average baseline values of PV patients, shown as black circles ©,
1000 virtual patients were simulated and the sum of mature cells were scaled
to agree with the baseline data-point for leukocytes and thrombocytes in the
top-left and bottom-left panel respectively. The blue curve shows the median
response-curve. The shaded grey areas displays the distribution, with the dark-
est grey showing the interval from 25% to 75% of values at the given time-points,
the next-darkest interval shows from 10% to 90% while the final interval from
5% to 95% of virtual patient-responses is shown in light grey. The bottom right
panel displays the IFN blood-concentration used, corresponding to a constant
5μg IFN dose.
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The local stability of the steady states of the combined model allowed us to determine a
IFN-dose threshold above which the malignant steady state becomes unstable and the healthy
steady state becomes locally stable. This threshold can be interpreted as the minimum dose
required for long-term treatment of the patients, and was found to be below 5μg for two thirds
of the patients, suggesting that the initial dose of IFN typically used is sufficient for long-term
treatment for most patients.

Considering the daily average IFN dose required to both reduce the relative frequency of
malignant cells by 50% and to normalize total blood-cell counts within a five year treatment
period, we found that 5μg IFN is sufficient for only about half of the patients. For approximately
a fourth of the patients, these two measures would not be attained within five years of treatment
with a daily dose of 10μg IFN. These findings were based on simulations in which treatment was
initiated 20 years after the initial mutation of a malignant stem cell. Thus, while this suggests
that doses above 10μg IFN daily are necessary to attain successful treatment within a five year
period for a significant proportion of patients, earlier diagnosis and treatment could change this
outcome. Similarly, changes in dosing such as e.g. intermittent high-dose IFN and/or short-
term treatment cessation could affect the dose required to attain both goals. Optimizing dose
scheduling to minimize the average dose while attaining both goals could be possible and should
be explored in future work.

While the patient-specific fits were (local) minima of the sum of the squared error between
model and patient-data and typically gave a good visual agreement with data for most patients,
there were some patients for which the model-fit differed from the actual treatment-response
observed in data. We hypothesize that some of this is due to heterogeneity of patient-responses,
to be discussed in detail in the next chapter. Different methodologies for fitting were tested for
comparison. In particular, we initially fitted the model to all data simultaneously. However,
due to scaling-issues with the three biomarkers considered (JAK2 allele burden, thrombocytes
and leukocytes), our initial tests lead to agreement with one measure but disagreement with the
others for the vast majority of patients. This lead us to the presently described methodology
which, while sometimes suboptimal for certain patients, gave a satisfying visual fit to the data
of most patients.

Based on an adjusted R2 measure of goodness-of-fit, the 20 patients that the model agreed
best with were used for modelling a population-level response to IFN treatment. As the patients
chosen represent the 20 patients that the model agreed with the best, there is a risk that the
population-level responses found are biased toward a particular type of response. Hence, this final
part of the work should primarily be considered a proof-of-concept. Regardless, the collection
of responses of the 20 patients were used to determine a distribution of dose-dependent model
parameters, which allowed us to do population modelling, showing how simulated patients would
respond to a given IFN-dose schedule. Comparing with patient data, as shown in figure 11.10
and in Electronic Supplementary Material 5, the distribution of virtual patient captured the
data of the real patients well, based solely on the baseline measurement taken before treatment
initiation. For some patients, scaling the blood-cell counts with baseline measurements lead to
bad agreement between the patient behaviour and the virtual patients. As an example, patient
“P021” shows disagreement between the virtual patients and the thrombocyte-counts. However,
the baseline thrombocyte-measurement appears to be much lower than the next measurements
taken just weeks later. This could be indicative of an erroneous baseline measurement, which
consequently leads to a bad scaling of the virtual patients. Similar problems with the scaling of
blood cells can possibly explain discrepancies for other patients, such as e.g. higher leukocytes
counts of the virtual patients observed in patient “P028”. Additional samples at or before
baseline could help alleviate such problems. In figure 11.11, we showed the predicted distribution
of responses of an idealized PV patient, defined as a patient with baseline cell-counts and JAK2
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allele burden equal to the average values for all PV patients. This hypothetical patient-response
illustrates how the population-level response is distributed on a conceptual level, leading to
almost all virtual patients having thrombocyte-counts in the healthy range within five years,
as well as a significantly reduced JAK2 allele burden, even without increasing the IFN-dose.
However, the figure also shows how the reduction of thrombocyte-counts can be slow. For the
median response, shown in blue in the figure, heightened thrombocyte-counts were still observed
after the first four months of treatment. As discussed in chapter 3, this was a criteria for dose
escalation in the DALIAH trial. Hence, the model predicts that the dose for an idealized PV
would be increased after four months, in agreement with the changes in dosing observed for
many patients in the DALIAH trial. Thus, while the model suggests that five-years of low-dose
treatment is sufficient for achieving the clinical goals of reduced cell-counts and reduced JAK2
allele burden, the model also suggests that the goals are not achieved quickly enough without
increasing the IFN-dose.

For the results discussed in this section, we considered perturbations of the parameters ρL,
ωH and ωL. As such, we did not include perturbation of the parameters uH and uL, related to the
rate of release or activation of niche-bound (or quiescent) HSC. This is regarded as one possible
effect of IFN, see section 2.1. Preliminary investigation not presented here showed that including
perturbations of both uH and uL could improve the fit of the model to data. In particular, an
increase in uC and uL was found to allow for a short-term increase in the relative frequency of
clones, as observed in a small group of patients. However, fitting with two additional parameter
introduced uncertainty and ambiguity to the model-behaviour due to the risk of overfitting. For
this reason, we only perturbed ρL, ωH and ωL, with the equal perturbations of ωH and ωL, to
reduce the degrees of freedom.

In conclusion, we investigated if the IFN-treatment responses observed in the DALIAH trial
could be explained by a reduction of the parameters ρL, ωH and ωL of the combined Cancitis-
Niche model, associated with increasing differentiation and/or apoptosis of malignant stem cells.
Model-fits to data were determined to be visually satisfactory, suggesting that our hypothetical
interpretation of the effect of IFN on a biological level is reasonable. Importantly, we found that
from the two types of data considered, JAK2 allele burden and blood-cell counts, two separate
effects of IFN could be determined: A slow decrease of the JAK2 allele burden due to changes
to HSC competition and a fast decrease of blood-cell counts due to a lowered production of both
healthy and malignant mature cells.
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Chapter 12

General discussion of findings,
limitations and future work

In this thesis, we have described our work toward accurate mathematical modelling of blood
cancers, particularly MPNs. In this final chapter, the results and overarching themes are dis-
cussed and the different findings are related to each other. Finally, we describe some of the future
challenges that still await for mathematical modelling of MPNs and give a prediction for how
overcoming these challenges could benefit clinicians and patients.

12.1 Implications of the proposed models

A range of mathematical models were investigated and discussed in this thesis: The Cancitis
model due to Andersen et al. (2017) (Section 5), the proposed HSC niche model (Section 8) and
finally a combined Cancitis-Niche model (Section 10).

The proposed HSC niche model was formulated by considering the biological processes that
HSC undergo, with an assumption of a limited pool of HSC niches and a novel idea of post-cell-
division exhaustion of the divisional capacity of HSC. Simulating the niche model suggested that
significant differences between the relative frequency of a malignant clone in the HSC compart-
ment and in the mature blood-cell compartment could arise naturally due to differences in HSC
properties. Additionally, the niche model allowed for a thorough investigation of combinations of
HSC mobilization therapy, transplantation and pre-conditioning HSC ablation. We found that
short-term HSC mobilization was beneficial in a HSC transplantation scenario, particularly in
combination with preconditioning of reduced intensity.

Analysis of the properties of the model showed that a quasi-steady-state approximation was
appropriate, resulting in a reduced model. By transforming the variables such that the sum of
cells and the relative frequency of the clones involved are modelled, rather than counts of indi-
vidual clones, an equivalent model arose, allowing for easier comparison with experimental data.
In addition, the transformation allowed for global analysis in a two-clone scenario. Simplifying
the model further, a simple logistic expression arose, describing just the relative frequency of
a particular clone. This is a model of e.g. the chimerism of a transplanted HSC-clone or the
relative frequency of a malignant HSC-clone out of all HSC. The dynamics of the logistic ap-
proximation was found to agree well with the kinetics of the JAK2 allele burden of a cohort of
patients from the DALIAH trial, suggesting that the simple kinetics of the JAK2 allele burden
can be explained by changes in the properties of HSC.
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The success of using the single-parameter logistic approximation to describe the JAK2 allele
burden in data highlights a problem of identifiability of the parameters of the HSC-niche model,
as briefly discussed in section 9.5. Any particular value of φ that leads to good agreement
between the logistic approximation model and the JAK2 allele burden data could arise in a
multitude of ways from the parameters of the reduced HSC-niche model and in turn even more
ways from the parameters of the full HSC niche-model. As a consequence, if model parameters
were to be determined solely on data that the logistic approximation can accurately fit to, such
as the examples of JAK2 allele burden shown in figure 9.1, the resulting parameters would be
highly uncertain. Hence, any interpretation of results based on the parameters would likewise
be uncertain.

The combined Cancitis-niche model retains many of the features of both models, such as
the positive feedback on blood-production through immune-system regulation from the Cancitis
model and the details of HSC properties of the niche model. Default parameters were based on
the default parameters of the Cancitis model and of the reduced HSC niche-model. To determine
the parameters related to the malignant stem cells that give rise to MPNs, ρL, αL and uL, we
fitted the disease growth to agree with the Cancitis model and the exponential growth described
in (Pedersen et al., 2020). As discussed above, determining three parameters on such limited
data results in parameter-values that are uncertain. However, with the limited data available for
untreated patients, a more certain estimate was difficult to make. In addition, initial investiga-
tions determined that changes to the three parameters had little effect on the overall behaviour
of the model, particularly for the later considerations about different treatment-scenarios. We
believe that the combined model provides a reasonable middle-ground between oversimplified
empirical models and complicated models with excessive biological detail. The balance is, in
our opinion, obtained thanks to the combination of model reductions and the increased detail of
HSC-biology added through the niche model. Such questions of model complexity are important
for successful and useful mathematical modelling and should be considered and evaluated with
great care.

The immune system feedback considered in the Cancitis model and in the combined model
suggests that inflammation plays an important role in the progression of MPN. The increased
external inflammation, due to e.g. smoking, typically only has a small effect in relation to the
qualitative behaviour of the system, as observed along the horizontal axes of figure 5.5. However,
as illustrated by figures 5.5 and 5.3 for the Cancitis model and figure 10.10a for the combined
model, increased inflammation leads to a significant increase of both healthy and malignant
mature blood cell-counts in both models. This suggests that patients with heightened external
inflammation are at risk of complications due to high cell-counts earlier along the progression
of MPN compared to patients with low external inflammatory stimulus. As the models suggest
that inflammation increases as the disease progresses, the increased cell-counts related to the ma-
lignant clone is heightened further and the positive feedback between malignant cell-production
and inflammation provides an explanation for rapid disease progression in later stages of MPN.

All three models suggest that treatment of MPN must act on stem cell level. The reduced
Cancitis model suggests that long-term dynamics are decided by expressions of relative reproduc-
tion of the two HSC clones considered, as described by the primary and secondary reproduction
numbers, R and S. In the niche model and the combined model, we determined an expression
of fitness for an individual HSC clone. By perturbing parameters related to only the mature
blood-cells or to the immune system, it was possible to decrease malignant mature cell-counts
and hence reduce the related health-risks. However, such effects were found to be unsustain-
able if the competition between healthy and malignant HSC were not perturbed as well, in the
sense that following treatment cessation, cell-counts would quickly return to dangerous levels.
Loosening the hold that the malignant clone has on the bone-marrow microenvironment is thus
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necessary for the success of long-term treatment. The notion of fitness of HSC is not a novel
idea (see e.g. (Traulsen et al., 2010) or (Watson et al., 2020)), however, the notion appears to
arise naturally from the niche model, and is maintained even when the model is reduced, simpli-
fied and combined with the Cancitis model. This robustness of a simple expression of stem cell
fitness suggests that considering HSC clones as populations competing for resources is not only
a useful idea, but in fact an accurate representation of the interaction between stem cells in the
bone-marrow microenvironment. This highlights the importance of determining the fitness of a
stem cell clone clone, or more importantly, the relative fitness between the population of healthy
clones and a malignant clone.

As described in section 10.1, three biological assumptions about progenitor cells implied that
considering progenitor cells explicitly was unnecessary in the combined model and a quasi-steady-
state approximation of intermediate steps between stem cells and mature cells was appropriate.
The argument holds in general, implying that if self-renewal of progenitor is limited and differ-
entiation is faster than the time-scale of HSC dynamics, then the dynamics of progenitors are
qualitatively similar to the production of the first step of progenitors and hence on the differen-
tiation of HSC. Additionally, we found evidence that the ratio of HSC that are quiescent could
be related to the life-span of mature blood cells. In the model parametrizations, the average
life-span of mature cells (d−1

x1
) was found to be comparable to the average time between HSC

release from the niche (u−1
j ). This meant that a quasi-steady-state approximation of the dy-

namics of mature blood cells was not appropriate. In the niche model, the release of HSC from
the niche was related to the ratio between the quiescent HSC and the sum of all HSC. Hence,
we hypothesize that the fraction of quiescent HSC and the time-scale of HSC behaviour within
the bone-marrow could be directly determined by the necessity of replenishing the blood-cells
that undergo apoptosis on the comparable time-scale. We emphasize that further investigation
into such hypothetical connection is necessary before any conclusions about a connection can be
made.

12.2 Limitations of data

Understanding the progression and treatment of MPNs rely on the data available. We here
comment on the DALIAH trial data, as discussed in section 3, without explicitly considering
the work on relating the mathematical models to the DALIAH trial data (sections 6 and 11).
Throughout this thesis, we assumed that the MPN diagnoses of ET, PV and myelofibrosis all
exist on a continuum, and that the particular diagnosis did not allow for a meaningful distinction
of patient for our purposes of modelling the response to IFN treatment. Although baseline
thrombocyte counts and JAK2 allele burden was determined to be different for ET patients
compared to other diagnoses in a statistically significant sense, the responses to treatment were
visually similar. Additionally, statistical testing of the parameters fitted to data in section 11
showed no significant distinction between groups of patients with different diagnoses.

We hypothesize that one reason behind the lack of discernment between the diagnosis and
the variance in fitted parameters is due to heterogeneity in patient-responses to IFN as well as
the differences in IFN-dosing that followed as a consequence of patient heterogeneity. Particular
examples of the heterogeneity of patients with similar IFN-scheduling is shown in figure 12.1.
As previously discussed, differences in patient responses are fairly common in oncology, and
some classification of the patient-responses, such as those described by (Lewin et al., 2020),
could be possible, as shown in figure 3.6. Unfortunately, the low number of patients ultimately
meant that it was difficult to divide patients into groups that were not too small, particularly
if the grouping was based only on pre-treatment measurement. However, we emphasize that
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our assessment of this difficulty is based primarily on the measurements of JAK2 allele burden,
thrombocyte-counts and leukocyte-counts. Additional biological markers were obtained in the
DALIAH trial, but were not considered in the present work. Different bio-markers (such as
e.g. hemaglobin-levels, considered as part of the PV diagnostic criteria (Arber et al., 2016), or
inflammation-related cytokines) could possibly lead to a pre-treatment distinction of patients
that respond well to treatment and patients that do not. Such distinction could in turn allow
for splitting the distribution of fitted model-parameters discussed below into different types of
IFN-responses, and hence possibly a robust classification of patient response-types.

(a) (b)

Figure 12.1: Examples of patient heterogeneity in response to IFN
treatment. In both panels, thrombocyte-counts, JAK2 allele burden measure-
ments and IFN dosing is shown. IFN dose is given as the future daily average,
i.e. the dose prescribed to follow after the given data-point. The left-hand pan-
els displays the data for two patients diagnosed with PV (“P139” and “P140”)
for which the thrombocyte-counts decline similarly in response to comparable
doses of IFN. While the kinetics of the JAK2 allele burden appear visually sim-
ilar, the JAK2 allele burden of patient “P140” is approximately three times as
high as the JAK2 allele burden of patient “P139” for all data-points. In the
right-hand panels, patients “P067” and “P087” are compared. Both patients
were diagnosed with ET. The JAK2 allele burden of both patients appear mostly
unchanged the first 1.5 year of treatment, while the thrombocyte-counts differed
significantly. “P067” experienced a sustained thrombocyte count until around
one year after baseline, where it declines rapidly, possibly due to the increase in
IFN dose. In contrast, “P087” experienced a steady decline of thrombocytes,
until an increase after 1.2 year. Note that both patient dropped out of the study
after the date of the final data-point.

In section 3.1 some cursory statistical investigations of the patient-data at baseline were
presented. Some correlation between baseline JAK2 allele burden and leukocyte counts was
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observed in the DALIAH trial data, however the JAK2 allele burden did not correlate with
thrombocyte counts at baseline. For both the empirical modelling described in section 3 and in
(Pedersen et al., 2020) as well as in the model-fits described in sections 6 and 11, we assumed
that disease progression followed a common dynamic where both JAK2 allele burden and mature
blood-cell counts increased as time passed from the initial JAK2V 617F mutation. In particular, we
interpreted that relative frequency of mature blood-cells (and hence thrombocytes) as a measure
of the JAK2 allele burden. While the lack of correlation between thrombocytes and the JAK2
allele burden could suggest that our interpretation of JAK2 allele burden is not appropriate,
there are other possible explanations behind it. In figure 10.10, we showed how changes in
external inflammatory stimulus and changes in the number of available HSC-niches can lead
to significantly different relative frequencies of malignant blood-cells out of all blood-cells for
the same sum of blood cells at diagnosis. Hence, differences in inflammatory stimulus or bone-
marrow micro-environment could explain why some DALIAH patients experienced heightened
blood-cells counts together with low JAK2 allele burden at baseline and vice versa. Another
possible hypothesis for why the thrombocyte-count and the JAK2 allele burden could be due
to the specifics of the JAK2V 617F mutation of the given patients. As mentioned in section 2.1,
the mutation is either heterozygous or homozygous. For a heterozygous JAK2 mutation, the
maximal JAK2 allele burden possible is 50%. Evidence suggests that PV typically arise from the
expansion of a homozygous clone while ET is from a heterozygous clone (Kjær, 2020; Godfrey
et al., 2012). Hence, our interpretation of the JAK2 allele burden as a measure of disease level
could have been underestimating the stage of disease for patients with JAK2 mutations that
were heterozygous. Whether distinguishing between heterozygous and homozygous clone would
lead to better correlation between thrombocyte-count and JAK2 allele burden at diagnosis is
unclear, as this information were not available to us at the time of writing.

To understand the IFN-response of MPN patients, it is first necessary to understand how
blood-cell counts and bio-markers behave in the absence of treatment. However, since patients are
typically treated shortly following the MPN diagnosis, data of patients not receiving treatment is
naturally very limited. In (Pedersen et al., 2020), three MPN-patients observed for an extended
period of no treatment were presented. All three had previously received treatment with IFN, and
hence it is possible that the disease progression of these three patients differ from the progression
for patients that had not previously received treatment. This data was used to estimate the
growth of the JAK2 allele burden in (Pedersen et al., 2020). This estimate was in turn used to
determine parameters of the malignant clone in both the Cancitis model and in the combined
model. As such, the specifics of how the malignant clone grows, in both the emperical study and
in the model, are very uncertain. Obtaining additional data for the JAK2 allele burden as well
as blood-cell counts could result in significant changes to all results described in this thesis. As
a “Watch-and-wait” approach is used for MPN-patients in some clinics, it is possible that such
data does in fact exist, however, we did not manage to obtain such data for our study.

12.3 Relating data and models

The Cancitis model and the combined model were related and fitted to patient-data, in sections
6 and 11 respectively. This granted insight about not only the applicability of the models but
also about the IFN-response of patients in the DALIAH trial.

The DALIAH trial included criteria for dose changes, leading to differences in IFN-dose and
-timing for the patients considered. While the empirical modelling of data did not explicitly
consider the IFN-dose, it was included in the mechanism-based modelling to correctly interpret
how the treatment affects biological mechanisms. As dose- and treatment-timing varied greatly,
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we first simplified doses as a daily average dose of IFN. We assumed a constant uptake and
clearance of IFN. Initial tests showed that considering a daily average rather than e.g. weekly
administration made little difference in model behaviour. Through a simple pharmacokinetic
model of IFN blood-concentration, we modelled parameter-perturbations that increased with
increasing blood-concentration of IFN. This allowed for effects of treatment where changes in
dose directly affect model dynamics and allowed for capturing specific dynamics such as e.g.
patients where temporary treatment cessation or reduction of dose lead to increasing blood-cell
counts. For both models, the effect of treatment always scaled with the dose. Realistically, it is
possible that a certain threshold of IFN must be attained before a notable effect occurs. Similarly,
patients could also have an upper bound for how significant the effect of IFN-treatment is. We
hypothesize that this is the case for some patients observed in the DALIAH trial data. For a
subgroup of patients, the JAK2 allele burden decreased in a way that appeared independent of
changes in IFN dose, suggesting that increasing the dose does not increase the effect for these
patients. Some of these responses were captured very well by the empirical modelling described
in (Pedersen et al., 2020), while the dose-dependent responses of the mechanism-based models
suggest that the dose must be increased to see the decrease in the relative frequency of the
malignant cells. Our approach with a dose-dependence without upper or lower boundaries on
the effect is the simplest possible model for the effect of IFN. However, for future work on
investigating the nature of how IFN-dose affects model parameters, and in turn model dynamics,
it should first be determined whether considering such thresholds is appropriate.

Fitting the Cancitis model to the DALIAH trial data suggested a possible hypothesis for
the IFN-responses observed in data, namely a dose-dependent increase in the apoptosis rate
of malignant stem cells, d̂y0

. For a large number of patients, this resulted in good agreement
between the Cancitis model and both the kinetics of the JAK2 allele burden and of the mature
blood-cells. For approximately two thirds of the patients, a daily average IFN dose of 5μg was
determined to be sufficient for attaining a decline in the JAK2 allele burden, albeit possibly very
slowly. This suggests a biological interpretation that, for most patients, 5μg average daily IFN
results in a more than 1.8-fold increase in the apoptosis rate of malignant stem cells. While
more complex effects of IFN could allow for a more detailed description of how IFN affects
MPN-patients, the modelled increase of the apoptosis rate provides a first approximation of a
mechanistic explanation, with patient-specific expressions of dose-responses. We observed that
most patients experienced a decline of thrombocytes and leukocytes immediately after treatment
initiation, occurring faster than the decline of the JAK2 allele burden. Such difference between
the time-scales of the decline of blood-cell counts and the decline of the JAK2 allele burden was
not captured by the fits of the Cancitis model to data. By fitting the combined Cancitis-Niche
model to data, we determined that this behaviour could be captured by letting IFN affect the
parameter ρL as well as parameters ωH and ωL, related to self-renewal of malignant HSC and
the cell-count amplification from progenitors to mature cells, respectively. One hypothetical
interpretation of such changes is that IFN affects differentiation of malignant stem cells, instead
of, or in addition to, affecting the apoptosis rate of malignant stem cells. A decrease of ωH and
ωL could also be suggestive of increased apoptosis- and/or differentiation rates of progenitor cells.
Hence our results suggest that the effect of IFN is two-fold: A long-term effect on malignant stem
cells, either through increased apoptosis or differentation, as well as an effect on the production
of mature blood-cells, occurring on a faster time-scale than the effect on stem cells.

Comparing the models to data of individual patients allowed us to determine a lower threshold
for IFN-doses that would lead to long-term treatment of the given patient if the treatment was
maintained. This was done by determining the local stability of the steady states of the models
for a given dose. If a malignancy-free steady state was determined to be the only stable steady
state, we interpreted the given dose as sufficient for successful treatment. For most patients, both
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models suggested that doses with a daily average 5μg of IFN allows for long-term treatment.
This is similar to the initial doses of used in the DALIAH trial: 30μg weekly for PegIntron
(Daily average of 4.3μg) and 45μg weekly for Pegasys (Daily average of 6.4μg). Note however
that the models suggest that larger doses results in a faster decline of the malignant clone and
thus faster treatment. For some patients, significantly higher doses of IFN were determined to
be necessary for successful treatment. Identifying such patients early could be a clinical goal,
allowing the clinicians to make changes to treatment, either to higher doses of IFN if tolerable or
to alternative drugs. This requires sufficient data within short time following treatment initiation
to be available. Such data would however also be beneficial for purposes of model calibration
and for future identification of MPN diagnosed patients, and hence there is a need for obtaining
additional data within e.g. the first year of treatment.

For all patients considered from the DALIAH trial, the first measurement of the JAK2 allele
burden was made four months after inclusion. From the baseline-measurement to the first post-
baseline measurement, some patient experienced a sustained JAK2 allele burden, or even in a
few cases, an increase in JAK2 allele burden. This was the reasoning behind considering the
bi-exponential decay described in section 3 and (Pedersen et al., 2020). This four-month gap in
data results in great uncertainty about the JAK2 kinetics immediately after initiation of IFN-
treatment. As illustrated in figure 6.7 and in Electronic Supplementary Material 3, the first
four months could feature a significantly increased JAK2 allele burden due to effects on stem
cell differentiation. Similarly, other hypothetical effects of IFN could be considered in both the
Cancitis model and the combined model, resulting in vastly different dynamics of the JAK2 allele
burden in the time between data-points. Determining the best hypothesis for the effect of IFN
on the JAK2 allele burden is therefore highly dependent on the time-resolution at which the
JAK2 allele burden is measured. This substantiates the need for additional data for the JAK2
allele burden, particularly during the first year of IFN treatment.

12.4 Future aims of mathematical modelling of MPN

Mathematical modelling of MPN shows great promise for the future, both as a prognostic tool
and to further our understanding of the diseases on a conceptual level. While the findings
discussed above can be useful on their own, much can be done to further develop mathematical
modelling of MPN. We here suggest possible directions of research and model development that,
in our opinion, would be most appropriate and beneficial.

As discussed above, heterogeneity of patient-responses is a significant limitation of the present
study. Most of the uncertainty observed in fitted parameters is believed to arise because of
heterogeneity of patients. If patients were to be grouped in clear groups where a similar response
is expected, modelling their IFN-response could allow for a clearer interpretation of the effect of
IFN. Such groupings could, as mentioned, be determined through detailed analysis of baseline
measurements, or through careful calibration to patient-data based on an initial period of data
with a high time-resolution. There is an urgent need for classification of such groups of patient-
responses, and our other suggestions for future research rely on good classification.

The field of sensitivity analysis describes a wide range of methods that can be used, in
broad terms, to determine the relation between model inputs, e.g. parameters and data used for
calibration, and model output, e.g. patient prognosis or optimal dosing. For the present purposes,
sensitivity analysis can be used to determine how important parameters or particular features
of a model are, in terms of model agreement with data. Similarly it can be used to investigate
how important certain effects of treatment are in improving the health of the patient. When
comparing model outputs to data, insensitive parameters can be indicative of a overparametrized

141



Part VI Discussion and concluding remarks

model, suggesting that a model reduction is appropriate, or that additional data should be
obtained. In this thesis, we did not analyse parameter sensitivity, neither for the niche-model or
for the combined model. Preliminary sensitivity analysis of the Cancitis model was included in
the original proposal of the model (Andersen et al., 2017). One challenge of sensitivity analysis is
to decide which model output to compare to what data. As model calibration of the treatment-
free disease progression was based on a very limited set of data, sensitivity analysis of the
parameters related to disease progression would be difficult as a result. This in turn affects
sensitivity analysis of treatment-related parameters as well. Hence, as already discussed above,
obtaining more data for disease progression is important, to guarantee the robustness of our
results and to determine the sensitivity of model parameters. The methods of the related field
of uncertainty quantification could also allow for determining how uncertainty of data relate to
uncertainty of parameter values. In the work presented, all estimated parameters were point
estimates, that is, singular values that minimize the difference between model and data in a
least-square sense. Important tools from uncertainty quantification such as the Markov chain
Monte Carlo method of delayed rejection adaptive Metropolis sampling (DRAM) could be used
to determine the distribution of model parameters. This would more clearly describe how IFN
affects the related biological processes for any given patient: If a treatment-perturbed parameters
is very uncertain, the biological interpretation of the effect of IFN is likewise uncertain. Similarly,
uncertainty of parameters would allow for a way to communicate to clinicians the probability
that a certain patient is responding well to treatment against the probability that the patient is
not responding. For patients where model calibration and uncertainty quantification suggests a
high probability for a treatment-response with a future increase in disease burden, clinicians can
make changes to treatment and use the formulation of the uncertainty to determine their trust
in the predictions of the mathematical models.

On a population level, uncertainty of the estimated parameters can also be beneficial to
understand how different treatment-responses relate to one another. Indeed, grouping of patients
based on the ranges of parameter uncertainty could solve the patient-response classification-
challenge discussed above. We considered the distribution of fit-parameters for a cohort of the
20 patients that the model was determined to most accurately agree with. The fit-parameters of
these patients were found to be approximately log-normally distributed, allowing us to describe
a two-dimensional distribution of fit-parameters on a population level. As a proof-of-concept,
we simulated 1000 virtual patient responses, where the fit-parameters of the virtual patients
were randomly chosen from the population-level distribution. By having the virtual patients
follow the same IFN-dose schedule as a given patient and start from the same baseline blood-
cell measurements, we were able to simulate 1000 different outcomes of the same treatment.
The results were shown in Electronic Supplementary Material 5. For most of the 20 patients
considered, the patient data was found to fall within the distribution of the virtual patients,
suggesting that the given patient would be accurately captured by the model using only the
population-level distribution of parameters and measurement at diagnosis. This illustrates that
using only information available at diagnosis, the population-level relation between IFN-dose and
response in the model can accurately predict how changes in dose will affect the leukocyte-counts,
thrombocyte-counts and the JAK2 allele burden. Collecting additional data and calibrating the
model to the response of a particular patient ad-hoc is hypothesized to improve such predictions.
We emphasize that these results should only be considered proof-of-concept. The virtual patient
responses were based on the response of the 20 patients that the model was determined to fit
best with, out of the 63 patient considered. While some of the excluded 43 had responses that
also agreed with the virtual patients responses (not shown), additional work should be done to
ensure that the model more accurately agrees with more types of patient-responses. In addition,
not all of the 20 patients were in perfect agreement with the virtual patient responses, and hence
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further investigation must be made before model predictions using a cohort of virtual patient
can be used with confidence e.g. in the clinic.

We considered the treatment-response of an idealized PV-diagnosed patients, by simulating
virtual patients as above, with baseline values corresponding to the average baseline values of
patients diagnosed with PV. The dose was maintained at 5μg average daily IFN, similar to
the starting dose used in the DALIAH trial. The simulations suggested that more than half of
patients would not attain thrombocyte-counts below 400 · 103(μL)−1 until after five months of
treatment. In the DALIAH trial, heightened thrombocyte-counts four months after initiation of
treatment was a criteria for increasing the IFN dose. Such an increase after four months was
observed in a significant proportion of patients, such as e.g. patient “P198” shown in figure
11.2b and patient “P086” shown in figure 6.6. Our results suggest that increasing the IFN dose
is necessary if a rapid decline of the thrombocyte-counts is desired. Whether such higher initial
doses of IFN introduce a risk of drug toxicity was not part of our considerations, however the
doses used in the DALIAH trial are considered low-dose IFN. A possible suggestion could thus
be the use of initial low-dose IFN to determine possible toxicity, before increasing the dose to
attain the clinical criteria of rapid decline in blood-cells.

Mathematical models can be used to predict how changes in treatment affects individual
patient. We showed two particular types of model predictions. In addition to the discussion
above about the virtual patient responses based on baseline measurements of an individual
patient, figure 6.5 displayed the predicted model behaviour that would arise if treatment was
ceased at a given point in time, on a patient-specific level using the Cancitis model. We believe
that both types of predictions, i.e. pre-treatment initiation and illustrations of the effect of
treatment cessation, could be useful in a clinic setting, to help clinicians communicate important
ideas to the patient about e.g. the reasoning behind changes in dosing. It is also possible that
visual representations of disease marker predictions could have a positive psychological effect for
the patient. The predicting of individualized patient-responses is discussed on a conceptual level
by Brady and Enderling (2019), highlighting the importance of distinguishing between models
that are of academic interest and models that allow for robust translation of predictions into the
clinic. The predictions of the models discussed in this thesis are shrouded in great uncertainty due
to the limited data used to calibrate parameters. While many of the improvements and further
developments discussed above would result in a more reliable model, it is instructive to relate the
work presented in this thesis with a six-step framework for reliable predictions presented by Brady
and Enderling (2019). The first step consists of identifying a biomarker to focus on. For our work,
primary focus was given to the JAK2 allele burden and to a lesser degree also thrombocyte and
leukocyte counts. In future work, a measure of the immune system load could also be considered.
In the work of (Andersen et al., 2017), the Cancitis model was related to specific cytokines (e.g.
IL-1β, IL-6 and IL-10 ), considered to be indicative of immune system load. These cytokines, or
other biomarkers, could similarly be considered for the combined Cancitis-Niche model. Having
decided on one or more biomarkers, the second step consists of developing mechanistic models
that describe the biomarker(s). The Cancitis model and the combined Cancitis-Niche model,
both describe mature cell counts. The interpretation of specific cell-lines (e.g. thrombocytes or
leukocytes) as a scaling of the mature cell count in the model allows us to relate the model output
to the biomarker. Similarly, we interpreted the relative frequency of malignant mature cells in
the model as indicative of the JAK2 allele burden. Calibrating the model with existing data, the
third step in the pipeline described by Brady and Enderling (2019), was the primary purpose of
the work described in sections 6 and 11. While the model themselves were previously validated
with existing data from the literature (In (Andersen et al., 2017) and (Pedersen et al., nd1),
for the Cancitis model and the Niche-model respectively), this validation was not specific to the
MPN diseases. In addition, treatment with IFN was not considered in previous validation of the
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models. The model calibration to data provided population-level estimates that were difficult to
evaluate the reliability of. The heterogeneity of patient-responses resulted in a relation between
model input (IFN-treatment timing) and model output (the changes in the chosen biomarkers)
that differed greatly from patient to patient. Again, classification of patient could allow for
separate calibration to different populations, leading to improved agreement between patient-
data and model predictions. The remaining steps described by Brady and Enderling (2019)
consists of validating the model with untrained data, evaluating the predictive performance of
the model and then finally simulating and predicting novel or optimized treatment schemes.
While different methods such as e.g. leave-one-out or k-fold cross validation could be used to
validate the model on the available data, making predictions for a completely separate set of
patient-data is preferable.

In conclusion, our work suggests a path toward mathematical modelling of MPN-treatment
with IFN; (1) Additional data should be considered and included in the mathematical analysis.
This would allow for statistically significant criteria for distinguishing between patients group-
ings, both preceding and during treatment. For future patients, collecting data on a higher
time-resolution would be beneficial, particularly for the JAK2 allele burden. (2) The models
must be calibrated independently to patient data for different patient classifications, and if nec-
essary, model modifications must be considered to take into account possible differences between
classifications. (3) Validation of new data (or cross-validation within the same data-set) must be
carried out and the performance of the model predictions must be evaluated.

While this appears a tremendous task, it is not unlikely that considering additional patient-
data already collected within the DALIAH trial (e.g. cytokine data, patient age, etc.), such
patient classification could be possible, and translational predictions could be made using the
models presented here, albeit on a possibly uncertain basis due to the relative low number of
patients that each classification would contain. In addition, accurate classifications of patients is
useful on its own, as it could lead to improvement of MPN diagnostic criteria and possibly new
diagnoses. Hence, patient classification is an important goal by itself, and should be the focus of
future work, both mathematical and otherwise.

Clarke and Fisher (2020) discuss the concept of executable models to help guide clinical
decisions. We believe that our work is a step in this direction and that personalized mathematical
modelling of individual MPN-diagnosed patients is a realistic goal to be reached in the near future.
Such mathematical modelling could be a useful tool for clinicians and the inclusion into clinical
practice could ultimately benefit the lives of patients suffering from MPN.
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