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Recently, it was discovered that some liquids behave in a particularly simple way in part of  
their phase diagram (Bailey et al., 2008a,b; Pedersen et al., 2008b). These liquids can be identified 
in  computer  simulation  by  correlations  between  their potential  energy  and  virial,  which  is  
quantified by the correlation coefficient  R being higher than 0.9. Their simplicity lies in the fact  
that they have curves in their phase diagram called isomorphs, along which many properties are 
invariant to a high degree. This includes for example constant configurational entropy, constant  
isochoric specific heat, invariant equilibrium dynamics, and invariant equilibrium structure (Gnan 
et al.,  2009; Schrøder et al.,  2009).  Whereas previous studies have focused mainly on atomic  
model liquids and small rigid molecules (Ingebrigsten et al., 2012a), this thesis aims to show that  
the isomorph theory is applicable to a much wider range of systems.

We show that  colloidal  suspensions and dusty  plasmas may also be considered simple by  
simulating  the  Yukawa  potential.  The  Yukawa  fluid  is  shown  to  have correlated  energy-virial  
fluctuations and isomorphs in its phase diagram. We show that it is possible to predict the shape  
of the isomorph from the form of the potential.

The shape of an isomorph in the density-temperature phase diagram is described by a function 

h( ). Recent results for real liquids show that the logarithmic slopeρ γ=
d ln h(ρ)

d lnρ
increases with 

density (Bøhling et al., 2012). We show with computer simulations of two novel potentials and the 
Girifalco potential that this may be an effect of the finite molecular volume of many organic glass 
formers.

Before the development isomorph theory it was already found that for many real liquids, the  
dynamics can be scaled onto a single curve by a power law of density. A large part of the real  
liquids that have been shown to obey this scaling are polymers (Roland et al., 2005). For atomic 
models and small rigid molecules this scaling has been shown to be an approximation of isomorph 
theory in small density ranges (Gnan et al., 2009; Ingebrigtsen et al., 2012). We simulated flexible 
chains of  Lennard-Jones  particles  connected  by  rigid  bonds,  and  show  that  this  liquid  has  
correlations and isomorphs. Interestingly, we find that the structure of a single molecule is not  
invariant on the isomorph, while the interatomic structure is. Both the dynamics of the Lennard-
Jones particles,  as well  as  the dynamics  of  the entire chain are found to be invariant  on the  
isomorph. Our results indicate that isomorph theory may also hold for liquids consisting of long,  
flexible chains, like polymers.

Simulations  of  Lennard-Jones  chains  where  the  covalent  bonds  are  simulated  as harmonic  
springs has led to the discovery of so-called pseudo isomorphs. The inclusion of these flexible 
bond destroys the energy-virial correlations almost completely (R ≈ 0.28). We show that these 
chains  nevertheless  have  curves  in  their  phase diagram  along  which  the  dynamics  and  the  
intermolecular structure is invariant. We show that the energy-virial correlations do persist in the 
frequency domain at low frequencies.
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Abstract in Danish

Inden for de sidste par år er det blevet opdaget, at nogle væsker opfører sig p̊a en
særligt simpel m̊ade i dele af deres faserum (Bailey et al., 2008a,b; Pedersen et al.,
2008b). Disse væsker kan identificeres i computersimuleringer ved at have en korre-
lationskoefficient R højere end 0.9. Det simple ved dem vedrører det faktum, at de
har kurver i deres faserum, kaldet isomorfer, langs hvilke mange egenskaber udviser
en høj grad af invarians. Dette gælder eksempelvis konstant konfigurationel en-
tropi, konstant isochorisk varmekapacitet, invariant ligevægtsdynamik og invariant
ligevægtsstruktur (Gnan et al., 2009; Schrøder et al., 2009). Hvor tidligere studier
primært har fokuseret p̊a atomistiske modelvæsker og sm̊a rigide molekyler (Inge-
brigsten et al., 2012a), er form̊alet med denne afhandling at vise, at isomorfteorien
er anvendelig i en langt bredere række af systemer.

Vi viser at kolloidsuspension og støvede plasmaer ogs̊a kan karakteriseres som
simple ved simulering af Yukawapotentialet. Det vises, at Yukawavæsken har ko-
rrelerede energi-virial-fluktuationer og isomorfer i sit faserum. Vi viser at det er
muligt at forudsige formen af isomorferne fra formen p̊a potentialet.

Formen p̊a en isomorf i densitet-temperatur-faserummet beskrives med en funk-
tion h(ρ). Nylige resultater for virkelige væsker har vist at den logaritmiske hæld-

ning γ = d lnh(ρ)
d ln ρ tiltager med densitet (Bøhling et al., 2012). Vi viser ved comput-

ersimuleringer af to nye potentialer samt Girifalco potentialet, at dette kan skyldes
at mange organiske glasformere har et endeligt molekylært volume.

Før isomorfteorien blev udviklet var det kendt, at for mange virkelige væsker
kan dynamikken skaleres til en enkelt kurve ved en potensfunktions af densiteten.
En stor del af de virkelige væsker, for hvilke det er blevet vist at de følger denne type
skalering, er polymere (Roland et al., 2005). For atomare modeller og sm̊a rigide
molekyler er det blevet vist, at denne skalering er en approksimation til isomorfte-
orien i et smalt densitetsinterval (Gnan et al., 2009; Ingebrigtsen et al., 2012). Vi har
simuleret fleksible kæder af Lennard-Jones-partikler holdt sammen med rigide b̊and,
og vi viser, at denne væske har korrelation og isomorfer. Overraskende finder vi, at
strukturen af et enkelt molekyle ikke er invariant langs en isomorf, men at den in-
teratomare struktur er. B̊ade Lennard-Jones-partiklernes dynamik og dynamikken
af hele kæder vises at være invariant p̊a en isomorf. Vores resultater indikerer, at
isomorfteorien muligvis ogs̊a gælder for væsker best̊aende af lange, fleksible kæder,
s̊a som polymere.

Simuleringer af Lennard-Jones-kæder, hvor de kovalente bindinger simuleres som
harmoniske fjedre har ført til opdagelsen af s̊akaldte pseudoisomorfer. Inklusionen af
fleksible b̊and ødelægger næsten fuldstændig energi-virial-korrelationen (R ≈ 0.28).
P̊a trods af dette viser vi, at disse kæder har kurver i deres faserum langs hvilke
dynamikken og den intermolekylære struktur er invariant. Vi viser, at energy-
viriale-korrelationen er bevaret i frekvensdomænet ved lave frekvenser.
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Chapter 1

Background

This chapter gives some general background information on the research field of
glass and viscous liquids, which is the main focus of the Glass and Time group at
Roskilde University. After this, a general explanation of the computational method
of Molecular Dynamics (MD) is given, as well as some details of the specific imple-
mentation used in this thesis.

1.1 Viscous liquids and the glass transition

This section is meant to provide only the most basic background on glasses and
viscous liquids. General overviews of this and related subjects can be found in
Donth (2001), Debenedetti and Stillinger (2001), Dyre (2006), Kivelson and Tarjus
(2008), Cavagna (2009), Ediger and Harrowell (2012), Biroli and Garrahan (2013),
and other sources.

1.1.1 The glass transition

In everyday life, the word “glass” is normally used for a solid, transparent mate-
rial consisting mainly of silicon oxide. The scientific word “glass” however is used
to describe a wide range of materials which have as a common denominator that
they are: 1. solid and 2. amorphous (i.e., the atoms or molecules are not in an or-
dered lattice). Glasses can be formed from many different substances, among others
organic molecular substances including polymers and biomolecules, and inorganic
substances like oxides and metallic alloys.

Glass can be formed in a variety of ways, but the most common way is to start
with a liquid and then cool it down. This is illustrated in figure 1.1, where the
cooling of the liquid starts at the top right corner. As the temperature is lowered, a
typical liquid will at some point encounter the melting temperature Tm at which the
solid crystal phase becomes thermodynamically more stable than then the liquid.
However, the liquid does not necessarily form a crystal at or below Tm. This depends
on the crystal growth and/or nucleation rate. In principle, crystallization can always

1



2 CHAPTER 1. BACKGROUND

Figure 1.1: Illustration of supercooling a liquid to form a glass. A liq-
uid can prevent crystallization below the melting temperature Tm. At the
glass transition temperature Tg the liquid becomes so viscous that relax-
ation processes cannot keep up with the cooling rate. Here the liquid is
not in equilibrium anymore, and is called a glass. The glass transition tem-
perature depends on cooling rate. Taken from Debenedetti and Stillinger
(2001).

be avoid by cooling fast enough, although for some liquids this would need cooling
rates that cannot (yet) be reached. A liquid below the melting temperature is said
to be in the supercooled state.

As the liquid is cooled further, the dynamics of the liquid become slower and
slower, as the molecules have less and less kinetic energy. These slow dynamics
are usually quantified by some relaxation time τ or viscosity η. At some point, the
relaxation in the liquid is so slow that the liquid does not have enough time to “find”
the equilibrium. When the liquid is cooled further after falling out of equilibrium
it can be considered a glass. This happens at the glass transition temperature Tg,
which dependent on the cooling rate. Because the glass transition temperature is
not well defined, other definitions exist, such as the temperature where the viscosity
or some relaxation time reaches a certain value (see for instance figure 1.2).

The glass transition and the glassy state have been known to physicists for a
long time, but the development of a theory that can explain them is still one of the
big problems in physics today (Anderson, 1995).

1.1.2 Viscous liquids

It is actually the viscous, supercooled state that has been studied most in research
related to the glass transition. Part of the reason for this is that the liquid is in
equilibrium, which means that one can use standard thermodynamics to build a
theory. Moreover, many properties of the glass such as the high viscosity and the
amorphous structure are already developing in the equilibrium liquid state upon
approaching the glass transition. The liquid state itself is not well understood
either.
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Figure 1.2: The famous Angell plot. Here the viscosity of many different
glass forming liquids is plotted versus inverse temperature. The temperature
is rescaled by the glass transition temperature, which in this case is defined
as the temperature where the viscosity reaches a certain value. The temper-
ature dependence of the viscosity is very different for the different liquids. In
this plot, liquids that have an approximate linear dependence log(η) ∝ Tg/T
are referred to as “strong”liquids, while they are called “fragile” liquids if
this is not the case. Taken from Cavagna (2009).

One of the main questions in the study of viscous liquids is what controls the
dynamics, such as viscosity and relaxation time. As said before, the dynamics
become slower as the liquid is cooled down, and as the glass transition is approached
the effect becomes quite extreme. This is visualized in figure 1.2, where the viscosity
is shown to increase by a factor of 1014 while for some of the liquids temperature
only changes a by a factor of two. The huge increase in viscosity in itself is hard
to explain, but as can be seen in the figure, the temperature dependence of the
viscosity is dependent on the material.

The problem becomes even more complicated when considering that the glass
transition including the huge viscosity increase also occurs when pressure (or den-
sity) is increased while temperature is kept constant. The problem of what controls
the relaxation time is thus a two dimensional problem that may be material specific.

When looking at what happens at the microscopic level, viscous liquid show
some typical behavior. This is easily shown in computer simulations by looking at
the absolute particle displacement over some period of time. Figure 1.3(a) shows
this mean square displacement for different temperatures. At short times, the par-
ticles move on average unhindered by their neighbors. After some time the particle
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Figure 1.3: The mean square displacement (top) and the Incoherent in-
termediate scattering function (bottom). For these simulations density is
constant ρ = 1.2. As temperature is decreased, the dynamics start two
show two regimes; a fast ballistic regime at short times and a slower diffu-
sive regime at longer times, with a plateau in the middle. (Data are from
simulations of the Kob-Anderson Buckingham liquid. See appendix A for a
description of the liquid.)

will the presence of its neighbors; the slope changes. For the lowest temperatures
however, the slope becomes zero, indicating that the particle does not move beyond
a certain distance that is related to the average interparticle distance in the liquid.
This is called the “cage” effect, and at this timescale the liquid behaves as a solid,
i.e., it does not flow. Only at longer time scales are particles able to escape from
their “cage”, and does the liquid flow. Also the intermediate scattering function in
figure 1.3(b), which is a common quantity to extract dynamical data from scattering
experiments, shows this so called separation of timescales that is typical of viscous
liquids.

1.1.3 Power law density scaling

Experimental results by Tölle (2001); Tölle et al. (1998) indicate that the problem of
what controls the relaxation time of viscous liquids might be simplified. It was found
that the dynamics of ortho-terphenyl, measured at different state points (points in
the phase diagram with different density ρ and temperature T ), can be collapsed
onto a single curve by plotting it as a function h(ρ)/T . In the case of ortho-
terphenyl, the function was found to be h(ρ) = ρ4. Later results have shown that
the dynamics of many liquids can be collapsed when plotted as a function of h(ρ)/T ,
albeit with a different h(ρ) (Alba-Simionesco et al., 2002; Dreyfus et al., 2003; Paluch
et al., 2003b).
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Figure 1.4: Power law density scaling of a selection of polymer melts (left)
and small molecular glass forming liquids (right). The dynamical measure
that is scaled is the dielectric (α) relaxation time, which collapse when plot-
ted versus ργ/T with γ being dependent on the material. Taken from Roland
et al. (2005), where the names of the different substances are explained.

The functional form of h(ρ) and the physical meaning of the functional from were
a source of some controversy (Casalini and Roland, 2004; Roland and Casalini, 2004;
Tarjus et al., 2004a,b). Nevertheless, it was found that the scaling works well for
many liquids if the scaling function is a power law of the density h(ρ) = ργ (Roland
et al., 2005). This is shown in figure 1.4, where for each liquid the dynamics are only
a function of ργ/T , with γ being material dependent. Since h(ρ) is here a power
law of the density, we refer to this scaling as power-law density scaling.

Figure 1.4 shows data for small molecular glass formers and polymers (which are
often also glass forming liquids (Roland, 2010)). However, more recent data have
shown that power law density scaling also holds for ionic liquids (Habasaki et al.,
2010; López et al., 2011; Paluch et al., 2010; Swiety-Pospiech et al., 2012, 2013) and
liquid crystals (Roland et al., 2008; Satoh, 2013; Urban, 2011; Urban and Roland,
2011; Urban and Würflinger, 2005; Urban et al., 2007).
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1.2 Molecular dynamics

This is a minimal background on Molecular Dynamics to give the reader a feeling of
the method. There exist many good books on the method, with Allen and Tildesley
(1987), Frenkel and Smit (2002), and Rapaport (2004) among the classics.

The basic idea of Molecular Dynamics (MD) is to solve Newton’s equations of
motion numerically, specifically Newton’s second law

F = ma , (1.1)

which states that the acceleration a of an object is proportional to the force on that
object.

In an MD simulation the objects of interest are usually atoms, groups of atoms,
or molecules. Let’s call them particles. The force acting on the particles arises
from interaction between the particles. In MD the most classic example of such an
interaction is the Lennard-Jones potential (Jones, 1924)1

υij(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (1.2)

which states how the potential energy depends on the distance r between two par-
ticles i and j. For this potential, the particles repel each other at close distance
(Pauli exclusion) but attract each other at larger distance (van der Waals attrac-
tion). In general, MD is used to solve systems of more than two particles, and in
the Lennard-Jones case the total potential energy would then be just the sum of
the individual pair interactions U(R =

∑
i<j υij , where R = r1, . . . , rN denotes the

positions of all N particles in the system. The force acting on a particle i at position
ri is then simply the gradient of this potential energy

F = −∇riU(R) . (1.3)

Time is discrete in MD, and a time step ∆t is chosen small enough to minimize
any errors due to the discretization. Using a central difference, the acceleration at
time t can be approximated from the velocities half a timestep before and after t.
The same goes for finding the velocities from the positions:

a(t) =
v
(
t+ 1

2∆t
)
− v

(
t− 1

2∆t
)

∆t
, v(t) =

r
(
t+ 1

2∆t
)
− r

(
t− 1

2∆t
)

∆t
. (1.4)

Putting this in equation 1.1 we get what is known as the Verlet algorithm (Verlet,
1967)

r(t+ ∆t) = 2r(t)− r(t−∆t) +
(∆t)2

m
F(t) . (1.5)

Thus the position at the next time step can be calculated from the position at the
current and previous time steps and the force at the current time step.

Different algorithms exist that are equivalent to the Verlet algorithm, the one
used in this thesis being the so called Leap Frog algorithm. The Leap Frog algorithm

1One year after the publication Jones married, adding his wife’s surname to his own. Hence the
name Lennard-Jones potential.



1.2. MOLECULAR DYNAMICS 7

Figure 1.5: Illustration of periodic boundary conditions in two dimensions.
The simulation box containing the particles has “virtual copies” of itself as
neighbors. If a particle moves out of the box on one side, it is just put
back in the box on the other side. Moreover, when the distance to another
particles has to be calculated, then the shortest distance to any of the copies
is taken (drawn by the dashed box). Taken from Frenkel and Smit (2002).

is also a central difference algortihm, as it uses the rewritten left side of equation 1.4
to calculate the velocities at the intermediate half timestep t+ 1

2∆t

v

(
t+

1

2
∆t

)
= v

(
t− 1

2
∆t

)
+ ∆ta(t) . (1.6)

This intermediate velocity is then used to calculate the position at t+ ∆t from the
right hand side of equation 1.4

r (t+ ∆t) = r (t) + ∆tv(t+
1

2
∆t) . (1.7)

As said before, the Leap Frog algorithm is mathematically equivalent to the Verlet
algorithm. It is however more stable on a computer, because is does not take the
difference of two large quantities to obtain a small one.

In thesis the simulations were performed in the canonical (NVT) ensemble. To
keep temperature constant an extra friction force is added. This has the additional
advantage that round off errors do not accumulate during long simulations.

Especially when simulating viscous liquids, one is interested in long time scales,
so the computational costs have to be minimized. There are some simple tricks that
can be used in MD to reduce the amount of computations:

• Potential cutoff. Most forces come from interactions from particles near each
other, so it is not necessary to calculate the force or even the distance between
particles that are far away from each other. (As long as you know they far
away from each other).

• Less particles. Less particles obviously means less calculations per time step.
However, decreasing the system size also means that boundary effects become
more important. For this reason one usually uses periodic boundary conditions
in MD (see figure1.5).
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Figure 1.6: Comparison of the development of the number of floating point
operations per second (FLOPS) between NVIDIA GPUs and CPUs. Taken
from the CUDA programming guide (http://docs.nvidia.com/cuda/).

1.2.1 GPU computing: RUMD

In 2007 NVIDIA released the CUDA programming environment, which provides a
means to directly program a Graphics Processing Unit (GPU) using C or C++.
This made it for the first time relatively easy to harness the power of graphics cards
for scientific computing.

GPUs have been around for a long time, but in the last decade or so their speed
as measured by the amount of floating point operations per second (FLOPS) has
surpassed the speed of the normal Central Processing Unit (CPU) (see figure 1.6).
This is partly due to the development of the CPU being slowed down by issues
related the energy consumption and heat dissipation. Indeed, any standard CPU
nowadays contains multiple cores, which goes in the direction of the GPU which
contain many cores2. In development of the GPUs, the focus has been purely on
increasing the amount of FLOPS due the entertainment industry, where graphics
in computer games are demanding ever more floating point operations (Kirk and
Hwu, 2010).

Since the architecture of the GPU is focused on bare floating point operations
they are perfect for scientific computing. They are not only faster than CPUs when
it comes to the amount of floating point operations, but they are also cheaper and
use less energy per floating point operation. GPUs are particularly good for MD
simulations, since they are optimized to do many identical operations in parallel
on different elements of the same data set. In MD this exactly the case for the
calculation of the forces on each particle for from the positions of the other particles.

The Glass and Time group has developed its own MD code for GPUs, called

2The GTX280, the type of GPU used most for the simulations in this thesis has 240 cores.

http://docs.nvidia.com/cuda/
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Roskilde University Molecular Dynamics (RUMD), which is open source and can
be downloaded at https://rumd.org. There are different reasons for writing a new
code from scratch. The first reason is that main MD codes are running on CPUs.
It is possible to accelerate a CPU code by doing some of the calculations on the
GPU, but due to the relatively slow communication between the GPU and the CPU
this is not ideal. It is much faster to do the entire simulation on the GPU, keeping
communication with the GPU to a minimum. Other MD codes that run completely
on the GPU do exist, but these are optimized for large systems N > 10000. We on
the other hand are interested in simulating small systems very fast to reach long
time scales.

Being part of the RUMD development has been a huge pleasure. It has been
a blessing to be able to customize the program to my own needs, and knowing the
inner workings of the program so well has also proven to be useful in finding new
tools in research. A list of functionalities I have implemented in RUMD during the
course of my PhD can be found in appendix B.

https://rumd.org


10 CHAPTER 1. BACKGROUND



Chapter 2

Introduction to Roskilde-simple
liquids

The aim of this chapter is to give a general overview of the isomorph theory and
simple liquids. The theory has been described extensively in a series of publications
of the Glass and Time group (Bailey et al., 2008a,b; Gnan et al., 2009; Ingebrigtsen
et al., 2012; Schrøder et al., 2009, 2011). Most of the figures used to illustrate
the theory in this chapter have been taken from Paper I and contain data from
simulations with the Buckingham potential. See appendix A for an introduction to
the Buckingham potential and the details of these simulations.

2.1 Liquids with strong energy-pressure correlations

In 2008 it was discovered in Roskilde that some liquids have correlated pressure and
energy fluctuations (Bailey et al., 2008a; Pedersen et al., 2008b). More precisely,
the correlations appear between potential energy U and the virial W , which are
the excess or configurational parts of the energy and pressure. These parts only
depend on the positions of the particles ri, in contrast to the kinetic energy and the
temperature, which only depend on the momenta of the particles pi:

E = K(p1, . . . ,pN ) + U(r1, . . . , rN ) , (2.1)

pV = NkBT (p1, . . . ,pN ) +W (r1, . . . , rN ) . (2.2)

For a system with only pair interaction, the virial (like the potential energy) is
calculated as the sum of contributions of each particle pair, from the force acting
between that pair:

W = −1

3

∑

i<j

rijυ
′rij , (2.3)

where i and j denote particles.
In figure 2.1(a) we visualize the correlated fluctuations by plotting the normal-

ized deviations from the average potential energy and virial. The fluctuations clearly

11
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Figure 2.1: (left) The equilibrium fluctuations of the potential energy and
the virial versus time for the KABB liquid with α = 14.5 at density 1.2 and
temperature 0.5. The data have been normalized by subtracting the mean
and dividing by the standard deviation. The data show that the potential
energy and the virial follow each other, but they are not perfectly correlated.
(right) Data from the same simulation, but now visualized as a scatter plot.
The correlation coefficient at this state point is 0.93, which is “strongly
correlating”. The density scaling exponent γ is the slope of the fluctuations
in the U ,W plane.

follow each other to a good degree. Another way of plotting the fluctuations is as a
scatter plot in the U ,W plane, as done in figure (b).

The correlations are quantified by the standard correlations coefficient

R =
〈∆W∆U〉√

〈(∆W )2〉 〈(∆U)2〉
. (2.4)

Here ∆ denotes the deviation from the average and the angular brackets 〈〉 denote
thermal averaging. The scatter plot in figure 2.1(b) shows that a standard linear
regression gives for the slope

γ =
〈∆W∆U〉
〈(∆U)2〉 , (2.5)

which turns out to be an important quantity in the isomorph theory. So far people
have used the (somewhat arbitrary) threshold of R > 0.9 to define a liquid that is
simple in the Roskilde sense.

Many model liquids have been shown to have these correlations (Bailey et al.,
2008a), but of course the instantaneous values of the potential energy and the virial
are only accessible in computer simulations. Nevertheless, there are indications that
some form of energy correlation are also present in real liquids. For a monoatomic
system like argon for instance, the configurational part of the energy and pressure
fluctuations can be estimated from the isothermal bulk modulus KT , the isochoric
specific heat CV , and the pressure coefficient βV as described in Bailey et al. (2008b)
and Pedersen et al. (2008b). These estimates for supercritical argon are plotted in
figure 2.2, and indicate that argon is indeed a simple liquid. Note also that the
correlations depend on state point. For the two model liquids in figure 2.2 the
correlation coefficient decreases at low temperature where the systems approaches
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Figure 2.2: The correlation coefficients (a) and γ (b) of the single compo-
nent Buckingham and Lennard-Jones liquids compared to the estimate for
supercritical argon. The estimates for argon were calculated using public
data in Pedersen et al. (2008b) and Bailey et al. (2008b), and the potential
parameters for argon were taken from Mason and Rice (1954). The data
indicate that argon is a simple liquid. Note that the correlation coefficient
and γ depend on state point. Taken from Veldhorst et al. (2012).

the coexistence region. With some exceptions, liquids are only simple in part of
their phase diagram. Specifically, the simple properties of liquids will disappear
upon approaching the critical point.

The correlations of a real liquid have also been estimated by another method
for a molecular liquid (Gundermann et al., 2011), which is related to the so-called
Prigogine-Defay ratio which is described in section 6.4.
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2.2 Isomorphs

2.2.1 Isomorph definition

A microconfiguration in reduced (dimensionless) units R̃ is obtained by scaling the
microconfiguration to density unity:

R̃ = ρ1/3R , (2.6)

where R denotes the coordinates of all particles R = {ri, . . . rN}. Two state points
ρ1, T1 and ρ2, T2 are then defined to be isomorphic if microconfigurations R1 and

R2 at those state points with the same reduced coordinates (ρ
1/3
1 R1 = ρ

1/3
2 R2),

also have proportional Boltzmann weights (Gnan et al., 2009)

exp

(
−U(R1)

kBT1

)
= C1,2 exp

(
−U(R2)

kBT2

)
. (2.7)

The proportionality should hold for all physically relevant microconfigurations of
the two state points with the same constant C1,2 which only depends on the state
points. An isomorph is then a curve in the phase diagram on which all points are
isomorphic to each other.

This definition does not include anything about energy-virial correlations, but
it can be shown that only liquids with strong correlation have isomorphs in their
phase diagram and vice versa (Gnan et al., 2009).

2.2.2 Predictions from the isomorph theory

Some properties are invariant on an isomorph, but often only in reduced (dimen-
sionless) units, denoted by a tilde. We have already seen (equation 2.6) that di-
mensionless length can be obtained by scaling with the number density: r̃ = ρ1/3r.
Likewise other reduced quantities are obtained by scaling with macroscopic prop-
erties of the system, for instance for the potential energy U , time t and diffusion
coefficient D

Ũ =
U

kBT
, t̃ = tρ1/3

√
kBT

m
, D̃ = Dρ1/3

√
m

kBT
. (2.8)

Invariant structure

From equation 2.7 it is obvious that the relative probabilities the microconfigura-
tions have at one state point do not change when scaling them to another state
point that is isomorphic. In other words, the normalized probability distribution
function of the reduced microconfigurations

P (R̃) =
exp(U(R̃)/kBT )∫

exp(U(R̃)/kBT ) dR̃
(2.9)

is invariant on the isomorph. This means that the equilibrium structure is invari-
ant in reduced units, since the configurations are taken from the same probability
distribution.
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One common structural quantity that is easy to obtain in computer simula-
tions is the radial distribution function g(r), which is the ratio of the local density
ρ(r) at a distance r from a particle and the macroscopic density ρ. Since in gen-
eral particle distribution functions can be rewritten as function of the probability
distribution (Hansen and McDonald, 1986), it is invariant on the isomorph in re-
duced units. The radial distribution function in reduced units g(r̃) has been used
extensively in this thesis to test the invariance of the structure.

Invariant thermodynamic properties

Since entropy only depends on the (normalized) probabilities

Sex = −kB
∫
P (R̃) lnP (R̃) dR̃ (2.10)

the excess entropy is an isomorph invariant (Gnan et al., 2009).
Taking the logarithm of equation 2.7 we find

U(R1)

kBT1
=
U(R2)

kBT2
− ln(C1,2) . (2.11)

U(R1)/(kBT1) is the potential energy in reduced units, so this gives us

Ũ(R1) = Ũ(R2)− ln(C1,2) . (2.12)

Since the constant C1,2 only depends on the state point, the fluctuations in Ũ as
quantified by the variance 〈(∆Ũ)2〉 are the same at two isomorphic state points.
Using the fluctuation formula for the excess isochoric specific heat

CV,ex =
〈(∆U)2〉
kBT 2

= kB〈(∆Ũ)2〉 (2.13)

is an isomorph invariant (Gnan et al., 2009). This means that for atomic liquids also
the total specific heat is constant, since the kinetic contribution is not dependent
on state point (there are no rotational contributions).

Invariant dynamics

Equation 2.12 shows that the reduced potential energy of two scaled microconfig-
urations on an isomorph are the same except for an additive constant. Therefore
the reduced force F̃ = −∇Ũ is invariant on the isomorphs, which means that we
can write Newton’s seconds law in reduced units as m̃¨̃r = F̃. This means that the
dynamics is invariant as long as it is expressed in reduced time (Gnan et al., 2009).
See also Bøhling et al. (2013) for an illustration that identical forces lead to identical
dynamics.

This also means that for instance the intermediate scattering function is invari-
ant on the isomorph as long as it is in reduced time and normalized properly (Gnan
et al., 2009). The intermediate scattering function is the time correlation function
of the spatial Fourier transform of the number density ρ(q) (Allen and Tildesley,
1987), so with the proper normalization

F (q̃, t̃) =

〈
ρ(q̃, t̃)ρ(−q̃, 0)

〉

〈ρ(q̃, 0)ρ(−q̃, 0)〉 (2.14)
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is an isomorph invariant. The mean square reduced displacement
〈
[r̃(t̃)− r̃(0)]2

〉
is

obviously also an invariant.

The fact that both the dynamics and the excess entropy are invariant on the
isomorph means that the theory is in agreement with Rosenfeld’s excess entropy
scaling, according to which the reduced dynamics are a function of excess en-
tropy (Dzugutov, 1996; Rosenfeld, 1999).

2.2.3 Finding isomorphs in a computer simulation

The direct isomorph check

Equation 2.11 can be rewritten to

U(R2) =
T2

T1
U(R1) + kBT2 ln(C1,2) , (2.15)

which can be used to find isomorphic state points in computer simulations as follows.
Doing a standard equilibrium NVT simulation at some density ρ1 and temperature
T1 it is possible to calculate both potential energies U(R1) and U(R2) by scaling all
configurations to a new density ρ2 at which you want to find the isomorphic state
point

R2 =
ρ

1/3
1

ρ
1/3
2

R1 , (2.16)

keeping the configurations the same in reduced units. According to equation 2.15,
the energies calculated should be linear proportional to each other with proportion-
ality constant T2/T1. So the temperature T2 for which the state point at density
ρ2 is isomorphic to state point 1 can be found from the slope in an U(R1), U(R2)
plot.

In practice, it turns out that it is necessary for some liquids to take the density
change |ρ2−ρ1| not too big, since the isomorph theory is approximate. Because the
reduced structure of the liquid may not be completely invariant, equation 2.6 is not
always rigorously obeyed, and U(R1) and U(R2) are then not perfectly correlating
(see for an example figure 5.7 in chapter 5).

The direct isomorph check has been used in chapters 3 and 4 of this thesis.

Curves of constant excess entropy

It is also possible to find an isomorph by using the property that excess entropy is
constant on an isomorph

dSex =

(
∂Sex
∂V

)

T

dV +

(
∂Sex
∂T

)

V

dT = 0 . (2.17)

That means that on an isomorph we have can rewrite this (using one of Maxwell’s
relations and with W/V the configurational part of the pressure) to

(
∂(W/V )

∂T

)

V

dV =

(
∂(U/T )

∂T

)

V

dT (2.18)
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which can be rewritten to (Gnan et al., 2009)

(
d lnT

d ln ρ

)

Sex

=

(
∂W

∂U

)

V

=
〈∆W∆U〉
〈(∆U)2〉 = γ . (2.19)

So it is possible to find an isomorphic state point by calculating γ form the fluc-
tuations, and then calculating how temperature changes for a small density change
or vice versa. For many systems the change in state point has to small, because γ
changes on the isomorph (see figure 2.2).

This method of generating state points that are isomorphic has been used in
chapter 5.
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Figure 2.3: The effective IPL approximation (red dashed line) of the Buck-
ingham potential (black line). In Paper I is described how the parameters
of the IPL potential were found. The difference between the IPL potential
and the Buckingham potential is approximately linear in the first peak of
g(r). The eIPL (blue dashed line) is indeed a good approximation of the
Buckingham potential. Taken from Paper I.

2.3 Relation to the IPL potentials

In general, the isomorph theory is an approximate theory. However, there is a group
of liquids for which the isomorph theory is exact. These are the inverse power law
(IPL) systems where the interatomic pair potential is given by υ(r) = r−n. For an
IPL υ(r) = rυ′(r), which means that from equation 2.3

W = −1

3

∑

i<j

rijυ
′(rij) =

n

3

∑

i<j

υ(rij) =
n

3
U . (2.20)

This means that for an IPL potential, the virial and potential energy are perfectly
correlated with γ = n/3.

Moreover, an IPL liquid obeys the isomorph definition (equation 2.7) perfectly

for ρ
n/3
1 /T1 = ρ

n/3
2 /T2 with proportionality constant C1,2 = 1, so the IPL liquid has

perfect isomorphs described by curves of constant ργ/T .

Why do non-IPL potentials like the Lennard-Jones and the Buckingham poten-
tial also have strong correlations? It has been shown that the fluctuations in U
and W mostly depend on contributions from nearest neighbor pairs, and that in
this range some attractive potentials are well fitted by an IPL with an extra linear
term Bailey et al. (2008b); Veldhorst et al. (2012)

υ(r) = Ar−n +Br + C (2.21)
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{0.42, 0.44, 0.46, 0.50, 0.6, 1.0}, and the scattering vector is q = 7.225. Taken
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called the extended IPL (eIPL). In figure 2.3 this is illustrated for the Buckingham
potential. The difference between the Buckingham potential and the IPL fit is
indeed approximately linear in the first peak of g(r). Since the liquid is dense, all
particles are surrounded by a coordination shell of other particles. Because of this,
the linear term does not affect the fluctuations in the energy, because making one
pair distance longer will have the effect of making another pair distance shorter by
approximately the same amount (Bailey et al., 2008b).

It has indeed been shown that the properties of the Lennard-Jones (Pedersen
et al., 2010) and the Buckingham (Paper I) potential can be reproduced with an IPL
potential. Figure 2.4 shows the dynamics at different temperatures on an isochore
for the Buckingham liquid and a IPL approximation. The dynamics are indeed
identical over a large range of temperatures. Thus the strong correlations and the
isomorphs are not an effect of the potential that can be written as a sum of IPLs,
but holds for any potential that may be fitted by an extended IPL to some degree.

The effective IPL also gives a good prediction for specific heat of the Buckingham
liquid, as can be seen in figure 2.5. The IPL approximation has has the same
temperature dependence of CV,ex as the Buckingham liquid, but there is a slight
difference in the absolute value. Moreover, the right side of figure 2.5 shows that CV
at different densities can be scaled using ργ/T to collapse on a single master curve.
This confirms that power law density indeed works for small density changes.
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2.4 The shape of isomorphs

The excess isochoric heat capacity and the excess entropy are both predicted to be
constant on an isomorph. This means that for a simple liquid the specific heat can
be written as a function of the excess entropy

CV,ex = f(Sex) . (2.22)

Using that CV,ex = (∂Sex/∂ lnT )V and integrating at constant volume, it has been
found that the temperature of a simple liquid is a product of a function of excess
entropy and a function of density (Ingebrigtsen et al., 2012)

T = g(sex)h(ρ) , (2.23)

where sex = Sex/N is the excess entropy per particle. Note that from equation 2.19
and 2.23 we find that

γ(ρ) =
d lnh(ρ)

d ln ρ
. (2.24)

On an isomorph sex is constant, so an isomorph is defined by

h(ρ)

T
= constant. (2.25)

This is exactly the scaling function that was proposed in the earlier days of density
scaling (Alba-Simionesco et al., 2002, 2004; Tarjus et al., 2004a) as described in
section 1.1.3.
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Figure 2.6: The Lennard-Jones phase diagram showing an isomorph (blue
line). Also the melting and freezing lines are isomorphs. Taken from Paper
IV.

For an IPL potential, the excess entropy is a function of ρn/3/T , so we find
h(ρ) = ρn/3. Also for potentials that have a potential energy which can be written
as a sum of power laws

υ(r) =
∑

n

υnr
−n (2.26)

an analytical expression for h(ρ) has been found. For these potentials, it turns out
that h(ρ) is a some of power laws as well, with each term corresponding to a term
in the potential (Bøhling et al., 2012; Ingebrigtsen et al., 2012).

h(ρ) =
∑

n

Cnρ
n/3 . (2.27)

For the Lennard Jones potential this gives h(ρ) = Aρ4 − Bρ2, where only the
ratio between the constant A and B is relevant and can be determined by a single
simulation (Bøhling et al., 2012; Ingebrigtsen et al., 2012).

Figure 2.6 shows the shape of three isomorphs for the Lennard-Jones liquid.
The liquid isomorph (blue line) is parallel to the melting line, which is also an
isomorph (Gnan et al., 2009). This is easily understood be considering the opposite
case of an isomorph crossing the melting line. In that case structure would not
be invariant on the isomorph. The figure also shows curves of constant correlation
coefficient, showing that the liquid loses its simple behavior upon approaching the
critical point.
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2.5 Rosenfeld-Tarazona

As mentioned before, the isomorph theory is in agreement with Rosenfeld’s excess
entropy scaling (Dzugutov, 1996; Rosenfeld, 1999). This scaling expresses the relax-
ation time or another dynamical measure as a function of excess entropy. However,
this kind of method cannot predict any state point dependence of thermodynamic
quantities.

A prediction of the state point dependence of the potential energy and the
specific heat was given by Rosenfeld and Tarazona (1998), using perturbation theory
on a hard sphere equation of state they find that

U(ρ, T ) = α(ρ)T 3/5 + β(ρ) , (2.28)

CV,ex(ρ, T ) =
3

5
α(ρ)T−2/5 . (2.29)

An equation of the second form was fitted to the data in figure 2.5, showing that the
Buckingham liquid indeed follows the prediction from Rosenfeld and Tarazona. It
has been shown that also the Lennard-Jones and the IPL liquids follow the scaling,
which led the the hypothesis that Rosenfeld-Tarazona prediction works well for
simple liquids.

This was tested systematically in Paper III for a large group of model liquids
including some which have been simulated in thesis. It was found that the Rosenfeld-
Tarazona expression indeed describes the behavior of simple liquids better then
non-simple liquids.



Chapter 3

Isomorphs in plasmas and
colloidal suspensions

3.1 Screened coulomb interactions:
The Yukawa potential

The Yukawa potential is named after the physicist Hideki Yukawa, who predicted the
existence of the subatomic meson particle (Yukawa, 1935), describing the interaction
of two particles in the nucleus by the potential

υ = −g2 e
−λr

r
. (3.1)

This is the same function as the screened Coulomb potential that is used to describe
the electric potential around a charge that is screened by mobile charge carriers in
the surrounding medium (see, e.g., Atkins and de Paula (2010))

υ(r) =
Q2

4πε0

e−kDr

r
, (3.2)

where Q is the charge, ε0 is the permittivity of the medium and k−1
D is the Debye

screening length. The potential was first used by Debye and Hükel (1923) in their
theory of electrolyte solutions. For infinite screening length, this potential is simply
the Coulomb potential. The screening is caused by the fact that the central charge
will attract charge carriers of the opposite charge from the surrounding medium.
At longer distances, the potential that is felt will be reduced due to the effect of the
accumulated opposite charge carriers.

Although the theory was not able to describe the behavior of anything but
the most dilute ionic solutions, the Yukawa potential has still proven itself useful
in the description of the potential energy of charge carriers that are much larger
than the charge carriers in the surrounding medium. One example is for instance
a suspension of charge-stabilized colloids. DLVO theory (Derjaguin and Landau,
1941; Verwey and Overbeek, 1948) says that the interaction energy between two

23
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charged colloids with diameter r0 is given by

υ(r) =
Q2

4πε0(1 + kDr0/2)2

e−kD(r−r0)

r
, (3.3)

which has the same functional form as the Yukawa potential. It has been shown
that the Yukawa potential of the form in equation 3.2 is actually able to describe the
behavior of colloidal suspensions, albeit with a renormalized charge (Alexander et
al., 1984). Moreover, if a hard-core repulsion is included in the potential to account
for the volume of the colloids, Hynninen and Dijkstra (2003) have shown that the
phase diagram of this hard-core Yukawa potential and the point Yukawa potential
can be mapped onto each other as long as the temperature relative to the magnitude
of the potential is low enough so the hard core is not felt.

It should be noted that depending on the charge of the particles, the Yukawa
potential can also be attractive. This is for instance the case in binary suspensions
of colloids. In this case, a repulsion needs to be included to prevent the particles
from overlapping. This can for instance be done using a hard-core repulsion, but
this complicates the simulation when using Molecular Dynamics. González-Melchor
et al. (2004, 2012) instead used an steep inverse power law to model the short range
repulsion.

Another application of the Yukawa potential is in the field of plasmas. Although
ion interactions are not correctly described by the Yukawa potential (Gurnett and
Bhattacharjee, 2005), the interaction of charged dust particles screened by the ions
of the surrounding plasma can be approximated by a screened Coulomb poten-
tial (Fortov et al., 2005; Rowlinson, 1989; Whipple et al., 1985).

Because the Yukawa potential has such wide ranging applications in physics,
different parameters have been used to describe the potential and the phase diagram.
In the field of dusty plasmas, the phase diagram is often described in terms of the
screening parameter κ and the coupling parameter Γ (Vaulina and Khrapak, 2000):

κ = akD , Γ =
Q2

4πε0aT
(3.4)

where a is a measure of the interparticle distance, for instance a = ρ−1/3, al-
though in earlier studies it was more common to use the Wigner-Seitz radius
aWS = (4πρ/3)−1/3 (Farouki and Hamaguchi, 1994; Ohta and Hamaguchi, 2000).
The screening parameter is thus the ratio between the Debye screening length and
the interparticle distance, while the coupling parameter is approximately the ratio
between the potential energy and the kinetic energy.

Here, we mostly present our results in terms of density and temperature with σ
and ε the usual units of length and energy set to unity:

υ(r) =
ε exp

(
− r
σ

)

r/σ
=

exp (−r)
r

. (3.5)

The relation with the other parameters is thus

κ =
1

σρ1/3
, Γ =

εσρ1/3

T
. (3.6)



3.2. SIMULATION PROCEDURE 25

0 1 2 3

r~

0

10

20

υ∼
(r~

)

ρ = 0.005, Τ = 0.0002
ρ = 0.005, Τ = 0.0003
ρ = 0.005, Τ = 0.0005
ρ = 0.005, Τ = 0.001
ρ = 0.2,     Τ = 0.0035
ρ = 0.2,     Τ = 0.005
ρ = 0.2,     Τ = 0.01
ρ = 0.2,     Τ = 0.02

shifted force, r
cut

 = 3.4

Figure 3.1: The Yukawa potential in reduced units υ̃(r̃) = υ(ρ1/3r)/T for
several temperatures at the isochores ρ = 0.005 and ρ = 0.2. For the high
densities, the potential clearly starts to become long-ranged, and the cutoff
radius has to be increased to account for this.

The Yukawa potential is of special interest to us, since it has a phase diagram
that spans a much larger density and temperature range (Hamaguchi et al., 1997;
Meijer and Frenkel, 1991; Robbins et al., 1988) than of the systems that have been
shown to obey the isomorph theory so far (Gnan et al., 2009; Ingebrigtsen et al.,
2012). Moreover, the “softness” of the potential changes more than any other po-
tential in this range (Khrapak et al., 2012).

Moreover the Yukawa fluid has been shown to obey Rosenfeld’s excess entropy
scaling (Rosenfeld, 2000; Sanbonmatsu and Murillo, 2001) and Rosenfeld-Tarazona
scaling (Rosenfeld, 2001; Rosenfeld and Tarazona, 1998), both of which indicate
that the liquid is a simple liquid.

3.2 Simulation procedure

If the screening parameter κ is zero, the potential reduces to the standard Coulomb
potential, also called the one-component plasma (OCP). Although we do not simu-
late the Coulomb potential, the potential already becomes long ranged at densities
that would be considered standard for a Lennard-Jones liquid, as shown in figure 3.1.
In general, correction algorithms are used when simulating long ranged potentials,
e.g., Ewald summation or particle mesh methods. The reason for this is that the
error estimate of the energy due to the cutoff

U ≈ 1

2
Nρ

∫ ∞

rcut

4πr2υ(r) dr (3.7)

diverges for functions that decay slower than r−3 (Frenkel and Smit, 2002). Here,
we have not used any correction algorithms, using a large cutoff radius and system
size, depending on the screening of neighbors to reduce the effect of the long range
interaction.

We found the U ,W fluctuations to be the most sensitive indicator of a cutoff
radius that is too small. This in contrast to for instance the mean square displace-
ment or the radial distribution function. The Yukawa fluid was found to be very
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Figure 3.2: The correlation coefficient (a) on two isochores (ρ = 0.005
and ρ = 0.2) simulated with different cutoff radii rcut. At the low density,
the cutoff radius does not affect the correlations, but at the high density,
the correlation coefficient only becomes independent of the cutoff radius for
r̃cut > 5.2. As long as the cutoff radius is large enough, the correlation
coefficient only seems to depend on temperature. (b) The cutoff radius also
affect γ at high density.

strongly correlating at all simulated state points (R > 0.98). However, for high
density state points, a significant drop in the correlation coefficient was found when
simulation with a short cutoff radius. This is visualized in figure 3.2, where we plot
the correlation coefficient and γ for a high and a low density isochore. We used a
minimum cutoff length r̃cut = 3.4 after the third coordination shell, even for the
lowest densities. This is clearly large enough for the isochore ρ = 0.005, where
increasing the cutoff does not increase the correlation coefficient. For the ρ = 0.2
isochore however, both R and γ are dependent on the cutoff ratio up to r̃cut = 5.2.

In our simulations, we have therefore let the reduced cutoff radius r̃cut depend
on density. Likewise, because the steepness of the potential in reduced units in-
creases with lower densities, we have decreased the time step of the simulations at
lower densities. The exact details of the simulations are shown in table 3.1. The
simulations were performed in the NVT ensemble using a Nosé-Hoover thermostat
with the same reduced time constant.

3.3 Predicting the isomorph from the potential

For an inverse power law potential (IPL) with r−n, the density scaling exponent is
known: γ = n/3. For non-IPL potentials it has been shown that it is possible to
estimate an approximate IPL exponent n from the potential (instead of calculating
γ from the fluctuations). This is done by looking at ratios of consecutive derivatives
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N r̃cut ∆t̃ t̃

ρ < 0.01 2048 4.3 0.0010 3.36 · 104

0.01 6 ρ < 0.5 2048 5.2 0.0025 2.10 · 104

0.5 6 ρ 8192 10.0 0.0025 2.10 · 104

Table 3.1: Simulation details for the Yukawa potential. Depending on the
density the number of particles in the system N was changed to allow for a
larger reduced cutoff radius r̃cut. The reduced time step ∆t̃ was somewhat
reduced for the lowest densities. The minimum simulation time t̃ in reduced
units was the same as the equilibration time.
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Figure 3.3: Estimates of the effective IPL exponent n(p) for the Yukawa
potential using equation 3.8.

of the potential (Bailey et al., 2008b):

n(p) ≡ −rυ
(p+1)(r)

υ(p)(r)
− p , (3.8)

where p denotes the pth derivative. For an IPL potential, n(p) is constant and gives
the correct exponent for every p. For other potentials, n(p)(r) is dependent on both
distance and p. It was found that p = 2 gives a good approximation of the IPL
exponent at more or less the interparticle distance (Bailey et al., 2008b). Another
reason for choosing p = 2 is that it gives the correct exponent for an extended IPL
(eIPL) that consists of an IPL and a linear term (see figure 2.3).

Figure 3.3 shows the approximations of the effective IPL exponent for p =
{0, 1, 2}. At short distances (which correspond to high densities) we can see that all
three predict n = 1. This is in agreement with the fact that the potential reduces
to the Coulomb potential for infinite screening lengths (κ = 0). At higher densities,
the estimates depend on p. As said, we consider n(2) the most valuable. For the
Yukawa potential we find

n(2) = −rυ
′′′(r)

υ′′(r)
− 2 = 1 +

r3

2 + 2r + r2
. (3.9)

From this it is possible to get an estimate of γ = n(2)/3, if we know at what distance
to evaluate this equation. We now that the relevant distance is approximately the
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nearest neighbor distance, which scales with ρ−1/3 (Bailey et al., 2008b; Ingebrigsten
et al., 2012b). Assuming that the relevant reduced nearest neighbor distance Λ is
constant on the isomorph, the relevant distance in normal units is r = Λρ−1/3.
Substituting this in equation 3.9, we find

γ(ρ) =
1

3
+

Λ3

3Λ2ρ1/3 + 6Λρ2/3 + 6ρ
. (3.10)

For ρ = 0.2 and Λ ≈ 1, we find γ ≈ 0.53, which is in agreement with the data in
figure 3.2.

Using equation 2.24, we find for the shape of the isomorph

h(ρ) = T0e
−Λρ−1/3

[
2ρ1/3 + 2Λ + Λ2ρ−1/3

]
. (3.11)

If we express this in the more usual Yukawa parameters, this becomes

Γ =
1

c

eΛκ

2 + 2Λκ+ Λ2κ2
. (3.12)

Vaulina and Khrapak (2000) found that a curve of this shape with Λ = 1 gives a
good description of the melting line as found by (Hamaguchi et al., 1997). They
derived the equation using Lindemann’s melting rule (Gilvarry, 1956), which is in
agreement with the isomorph theory (Gnan et al., 2009).

3.4 Testing the predicted isomorph shape

In this section, we test if our h(ρ) indeed gives a good estimate of an isomorph.
For this, we of course need to know Λ. Because Vaulina and Khrapak (2000) found
equation 3.11 with Λ = 1 to be a good description of the melting line, and the
melting line is predicted to be an isomorph, we of course test if Λ = 1 is the right
value.

We have also tried to calculate the correct value of Λ. For this, we did a
simulation at an initial state point (ρ = 5 · 10−3 and T = 1.5 · 10−4). At this state
point γ was found from the fluctuations to be 1.78 using equation 2.5 and therefore
Λ = 1.03 following equation 3.10 (Paper IV).

We check the invariance of the dynamics for both values of Λ in figure 3.4. For
Λ = 1, the dynamics seem to be reasonably invariant on the isomorph. Although the
collapse may seem not very good, taking the large density range into considering still
makes to collapse quite astonishing. Surprisingly, The dynamics are less invariant
for Λ = 1.03.

In figure 3.5 the radial distribution functions are plotted for both isomorphs.
The structure changes a lot on the isomorph, which is to be expected for such a big
density change. The steepness of the reduced potential changes a lot (see the plot
of γ versus ρ in figure 3.9). Because of this, the steepness of the left slope of the
first peak of g(r̃) should also be dependent on density.

The position of the first peak also changes along the isomorph. Since we assumed
the relevant reduced interparticle distance Λ to be constant on an isomorph in our
derivation of h(ρ), this change in peak position might be the reason for the bad
collapse of the dynamics in figure 3.4(b).
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Figure 3.4: The incoherent intermediate scattering function on a curve
described by h(ρ) (equation 3.11) for Λ = 1 (a) and Λ = 1.03 (b). Both sets
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Bøhling et al. (2014) have also used n(2) to approximate h(ρ) for different poten-
tials consisting of IPLs, including the Lennard-Jones potential. They were able to
get good approximations of h(ρ) with a different Λ. Instead of g(r̃), they used the
first peak in r̃2g(r̃), which is the most probable distance to find a nearest neighbor.
However, also the position of this peak changes a lot in our case; we see a shift of
approximately 10% on the isomorph (data not shown). Nevertheless it is surprising
that Λ = 1 gives such a good approximation of h(ρ), since Λ = 1.03 is closer to the
average peak position on the isomorph.

It should be noted that Bøhling et al. (2014) did not find perfect collapse of the
calculated and the predicted values of γ. Since we studied a much wider density
range, the invariance of the dynamics that we find is not trivial. We plot the relative
difference between the prediction (equation 3.10) and the calculated γ (equation 2.5)
in figure 3.6. Both predictions are off by no more than four percent, and the
prediction with Λ = 1.03 seems better for most densities. At low densities where
the dynamics do not collapse, we find that the error is largest.

3.5 The numerical direct isomorph check

For comparison, we have also constructed an isomorph using more the tested method
of the numerical direct isomorph check. We started the isomorph at ρ = 10−3 and
T = 3 · 10−6, changing the density no more than 10% for the next state points.
The new temperature was then found from the energies of scaled configurations
using equation 2.15. The 10% density change is rather high compared to what is
commonly done for other systems see for instance (Gnan et al., 2009). This was
done in order to get an isomorph that spans a significant part of the Yukawa phase
diagram in a reasonable amount of time. Due to the density dependence of the
structure that we found (figure 3.5) simple scaling of the equilibrium configurations
at one density may not give the correct energy for the next state point. The variance
in the structure in figure 3.5 was however found for density changes much larger
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Figure 3.7: The radial distribution function g(r̃ and the static structure fac-
tor S(q̃) on the isomorph obtained with the direct isomorph check. Although
the change in density is large, the structure does not change significantly in
this part of the phase diagram.

than 10%, so the size of the density steps is probably acceptable.

Using the direct isomorph check, we obtained an isomorph spanning a consid-
erable density range (3.0 · 10−4 6 ρ 6 3.6 · 10−3). The structure for a set of state
points on the isomorph is plotted in figure 3.7. Because this density range is much
smaller than for the isomorphs from the previous section, we do not see a big change
in structure, both for the radial distribution function and the structure factor. This
indicates that the 10% steps in density are small enough.

The reduced dynamics also show a perfect collapse for this set of state points
(figure 3.8). The collapse is better than for the isomorphs from the previous section,
but this is not surprising considering the smaller density range.

3.6 Discussion and conclusion

We have found that the Yukawa fluid is strongly correlating at all investigated den-
sities, with a correlation coefficient above 0.98 (see figure 3.9 and 3.2). This is not
surprising for the high density state points, since we know that here the potential
becomes the standard Coulomb potential, which should have perfect correlations
because it is an IPL. The very high correlations at low densities indicate the the
exponential function is also very strongly correlating, because here it is the domi-
nating term in the potential. This in itself is an interesting result, since it has been
suggested that exponential potentials provide a simpler basis set of functions than
the IPL potentials, and may explain quasiuniversal properties of many different
simple liquids (Dyre, 2013). At intermediate densities there is a minimum in the
correlation coefficient. This may be due to the change in the liquid structure or a
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the mean square displacement on the isomorph from the direct isomorph
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crossover between the the IPL and the exponential potential.

Although the Yukawa potential is purely repulsive, the system has a triple point
because it has two stable solid phases. The triple point of the Yukawa system has
been found to be at ρ = 3 · 10−3 (κ = 6.9) (Hamaguchi et al., 1997). We find a
γ value around 2 here, which is in agreement with data from Agrawal and Kofke
(1995) who showed that for IPL potentials with an exponent n < 6.25 that BCC is
the more stable solid phase. Moreover ρ = 3 · 10−3 is also the density range where
the largest change in peak position is observed in the radial distribution function
(figure 3.5), indicating that this change is caused by a crossover from short to long-
ranged interactions.

Our isomorph are plotted in the ρ, T and κ,Γ phase diagram in figure 3.10. In
the ρ, T the isomorphs seem to collapse at all but the lowest densities. Due to the
different scale in the κ,Γ plane, there is a clear difference between the two predictions
of h(ρ). The isomorph from the direct isomorph check seems to collapse on the
prediction with Λ = 1.03. We have compared our isomorphs with the prediction of
the melting line from Vaulina and Khrapak (2000) which is given by equation 3.12
with Λ = 1 and 1/c = 213. Unsurprisingly, the melting line is parallel to our
isomorph prediction with Λ = 1. However, our isomorph prediction with Λ = 1.03
actually crosses the melting line at around ρ = 2 · 10−4) without any observable
crystallization.

We compare the invariance of our three isomorphs in figure 3.11. Data for the
direct isomorph check and the prediction with Λ = 1.03 collapse and are almost
constant in that density range, indicating that this is indeed the relevant reduced
interparticle distance to evaluate the potential at, at least in this smaller density
range. Especially at very low densities the relaxation time changes a lot. For both
values Λ, there is a big drop in the relaxation time that starts around ρ = 10−2,
which is where γ drops below 2 and there are some large changes in peak position.
Overall, the prediction with Λ = 1 gave the most invariant dynamics over the entire
density range, but closer inspection of figure 3.11 seems to indicate that this is
mostly an effect of cancellation of errors at low and high densities. The distance
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Λ = 1 does not seem to hold any special significance.
To conclude, we have shown that the Yukawa liquid is a simple liquid in the

Roskilde sense, indicating that systems which are generally modelled with a Yukawa
potential, like dusty plasmas and colloidal suspensions may show simple behavior
in part of their phase diagram. The liquid has very strong correlations, and it is
possible to trace out isomorphs with a very big density range. Because the steepness
of the potential and γ change a lot over such a large density range, the structure
also changes a lot. This has a negative effect on the ability to estimate h(ρ) from
the potential. Nevertheless, our prediction of h(ρ) gives a good estimate of the
isomorph.



Chapter 4

Simulations of soft particles
with a finite, hard-core volume

This chapter investigates the applicability of the isomorph theory to different model
liquids. The three models studied in this chapter are

• a new repulsive potential with a non-zero divergence (section 4.1 on page 36),

• a new attractive potential with a non-zero divergence (section 4.2 on page 39),

• the Girifalco potential (section 4.3 on page 45).

The similarity between these potentials is that they diverge at non-zero interparticle
distance. This is in contrast to other, more common interparticle potentials, like
the Lennard-Jones, Buckingham, and the Yukawa potential. The fact that these
potentials have a non-zero divergence means that they have a finite volume, while
it is more common to model interactions of atoms or even groups of atoms as point
particles. These potentials are therefore relevant to explain some experimental
observations of real liquids, in which molecules obviously occupy some volume.

35
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Figure 4.1: The new repulsive potential S6, compared with the IPL6 and
repulsive Lennard-Jones. The potential has a hard core of diameter 1.

4.1 New model systems: I. A new repulsive potential

4.1.1 A sum of inverse power laws

The famous Lennard-Jones potential consists of two inverse power-law (IPL) terms,
one positive and one negative. This gives the Lennard-Jones potential its attractive
well, which makes it useful for simulating systems that have some kind of molec-
ular or atomic attraction. At very high densities, the r−12 term in the potential
dominates, and the system behaves as an IPL with γ = 4. When the interparticle
distances become larger, the r−6 becomes more dominant, but the Lennard Jones
potential never behaves as an IPL liquid with γ = 2 because the system will phase
separate at low densities. The attractive term actually makes the potential steeper
at intermediate densities, leading to γ > 4 in most of the Lennard-Jones phase
diagram (Bailey et al., 2013).

Recently a new potential has been devised by making both terms in the Lennard-
Jones potential positive (Ingebrigtsen et al., 2012; L.Bøhling, 2013). This is a purely
repulsive Lennard-Jones potential that shows a smooth transition from r−6 behavior
to r−12 behavior, leading to 2 < γ < 4. This potential was also surprisingly strongly
correlating, with R > 99.9%.

This sum of two (repulsive) repulsive IPL potentials gave us an idea for a new
potential. Consider for example to sum of all IPLs r−n with n > 6:

∫ ∞

6
r−n dn =

r−6

ln(r)
. (4.1)

This potential is expected to be a simple liquid in at least part of its phase diagram
because it is a sum of power laws. Moreover, the density scaling exponent at low
density where the r−6 dominates should be γ = 2, increasing as density is increased.
The potential energy diverges at r = 1, meaning that the particles have a “hard
core” of excluded volume with diameter unity. This means that there is a maximum
density, and upon approaching this density the system will behave more and more
like a hard sphere system. The hard sphere corresponds to the soft sphere potential
with γ →∞.
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Figure 4.2: The correlation coefficient R (top) and the density scaling
exponent γ (bottom) versus density on an the isomorph. The initial state
point from which the other isomorphic points were calculated, was ρ0 = 0.6,
T0 = 1.5. The blue data set was found by iteratively changing density
and calculating the isomorphic temperature at the new state point from the
scaled configuration. At low densities (red data) it was possible to change
density by a large amount, keeping rcut and ∆t constant in reduced units.
Thus, all low density state points were found directly from the starting state
point. At low density γ approaches 2 as expected, while it increases steeply
at high densities.

Since the potential has no name, we shall denote it as “S6”. The potential is
parameterized as

υ(r) = ε
(r/σ)−6

ln (r/σ)
, (4.2)

and is plotted in figure 4.1, together with the IPL6 and the repulsive Lennard-Jones
potential.

4.1.2 Verification of the isomorph theory

We have simulated one isomorph with this potential, starting at ρ = 0.6, T = 1.5.
We found isomorphic points to this state point using the direct isomorph check
(section 2.2.3). We used a cutoff radius of rcut = 2.5 for high densities and a
reduced r̃cut = 2.5 for the lower densities, shifting the potential to have zero energy
at this distance. To take the high temperature at high densities the time step in
reduced units can be kept constant. However, due to the increased steepness of the
potential at high densities, it was necessary to decrease the reduced time step to
∆t̃ = 0.00015 at the highest density.

The liquid is strongly correlating at most densities, but the correlation coefficient
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variant along the isomorph. The two highest densities plotted here show a
slight deviation. (right) The radial distribution function for different isomor-
phic state points. The structure is quite invariant, although the first peak
becomes higher and steeper at the highest densities.

drops below 0.9 for densities above 0.77, as can be seen in figure 4.2. The density
scaling exponent is close to the value of the r−6 potential at low densities. At high
densities γ becomes very dependent on density, with the highest value found being
γ = 28. This corresponds to an effective IPL potential with exponent 84, which as
already quite a reasonable approximation of a hard sphere, as shown by Jover et al.
(2012) who used a Lennard-Jones potential with exponents 50 and 49 and a WCA
cutoff as an approximation for a hard sphere. It is not surprising that the corre-
lation coefficient drops at these high densities. Although a correlation coefficient
cannot be calculated for a hard sphere liquid because there is no potential energy,
simulations of a square well hard sphere potential yielded a negative correlation
coefficient (Bailey et al., 2008a). Also thinking about the density scaling exponent
as an indication of an effective IPL potential gives some insight. At high densities,
the effective IPL exponent estimated by 3γ becomes very dependent on density, and
therefore also on the interparticle distance. Thus the effective potential that the
particles feel is no longer approximately a single IPL, at least not over the range of
distances comparable to the width of the first peak of g(r).

We test the isomorph invariance of the structure and the dynamics in figure 4.3.
The dynamics do indeed show as good an invariance as any simple liquid. The radial
distribution function changes mainly at the first peak, which becomes narrower as
the potential gets steeper.
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4.2 New model systems: II. A new attractive potential

In the last couple of years, many systems have been shown to obey the isomorph
theory. Except for the IPL liquids, all systems also have a density dependent γ, indi-
cating that power law density scaling is an approximation that only holds for small
density changes. Most model liquids have γ decreasing with density. This includes
the Lennard-Jones potential (Bailey et al., 2008a) and the Buckingham potential
(chapter 2), but also rigid (Ingebrigsten et al., 2012a) and flexible (chapters 5 and 6)
molecular systems. Considering data for supercritical argon, the decrease of γ seems
to be in agreement with experimental data as shown in figure 2.2.

Experimental data from empirical density scaling studies show that a constant
γ gives satisfactory collapse of the dynamics (Roland, 2010; Roland et al., 2005).
There is no a priori reason to believe that γ should indeed be constant (Tarjus et al.,
2004a,b), and indeed it would be surprising if this was the case for all experimental
data on molecular glass formers, given the fact that the opposite is seen in computer
simulations. It is more probable that the density range accessible in experiments
and/or the density dependence of γ was to small to compare different functional for
forms of h(ρ).

Recently, Bøhling et al. (2012) published the first experimental proof that–at
least for two real liquids–the shape of an isochrone (h(ρ)) is not well approximated
by a power law. For this it was necessary to change density much more than usual
in experiments; the maximum density increase was 20% (Paluch et al., 2003a). It
was found that γ increased with density, which is the opposite of what is normally
seen in computer simulations.

4.2.1 The potential
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Figure 4.4: The S12-6 pair potential as described in equation 4.4 plotted
for two values of r0. The minimum of the potential was kept at rm = 21/6

to make it comparable to the Lennard-Jones potential (dashed line).

New potentials like the one in the previous section are interesting in view of this
increasing γ with density. In order to simulate a physically more realistic liquid
we constructed a physically more relevant interatomic potential by including an
attraction at longer interparticle distances. Inspired by the Lennard Jones potential
that is sum of two power laws, the new attractive potential is a sum of two potentials
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as described in the previous section:

A

∫ ∞

p
r−n dn−B

∫ ∞

q
r−n dn = A

r−p

ln(r)
−B r−q

ln(r)
, p > q . (4.3)

Like the Lennard-Jones potential, the exponents are chosen to be p = 12 and q = 6,
and the potential will be denoted S12-6. To facilitate comparison with the Lennard-
Jones potential, the potential is parameterized as

υ(r) = ε
A (r/rm)−12 −B (r/rm)−6

ln (r/r0)
, (4.4)

where
A = ln (rm/r0) + 1/6 , B = 2 ln (rm/r0) + 1/6 , (4.5)

and r0 and rm are the hard core radius and the position of the potential minimum,
respectively.

The potential is plotted in figure 4.4. In order to get densities comparable to the
Lennard-Jones liquid, the position of the potential minimum was chosen to be the
same (rm = 21/6). Two values of the hard-core diameter were simulated (r0 = 0.8
and r0 = 0.9). We simulated both the single component liquid, as well as a Kob-
Andersen mixture to test the dynamical invariance on the isomorph in the viscous
state.

4.2.2 Isomorphs in single component systems

An isomorph was traced out using the direct isomorph check, starting at ρ = 0.9
and T = 1.5. W simulated with a time step ∆t = 0.001, decreasing it for the state
points with the highest values of γ to ∆t = 0.0002. The dynamics and structure are
plotted in figure 4.5 and are invariant. There is not much difference between the
two values of r0, except for the range of densities (see also the left side of figure 4.7).

The liquids are very strongly correlating, except for the lower densities where
there is a sharp decrease in the correlation coefficient (see figure 4.6). For both
particle sizes we see an initial decrease of γ at the lower densities, similar to what
is seen for liquids consisting of point particles like the Lennard-Jones liquid (Bailey
et al., 2008a).

The change of γ on the isomorph is hardly visible in a log(ρ), log(T ) plot. For
a constant γ the isomorph is a straight line shown as a fit (dashed line). We find
γ = 7.92 for r0 = 0.8 and γ = 10.55 for r0 = 0.9. These “constant γ” fits are shown
as dashed lines in figure 4.6. Especially for the particles with r0 = 0.8 the linear fit
approximates the shape of the isomorph well, because the change of γ is small, and
changes sign. The experimental observation from power law density scaling that
γ is constant for many liquids may therefore also be caused by a “cancellation of
effects” in the experimental density range.

4.2.3 Isomorphs in a viscous mixture

We used the same parameters as the Kob-Andersen Lennard-Jones system (Kob
and Andersen, 1994), i.e., a 80 : 20 mixture of A and B particles that interact
via the potential in equation 4.4 with parameters εAA = 1.0, εAB = 1.5, εBB =
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Figure 4.8: The incoherent intermediate scattering functions on isomorphs
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with r0 = 0.9 (dashed lines) have slower dynamics. The dynamics of the A
particles (left) collapse well, but the dynamics of the B particles (right) can-
not be called invariant. The scattering vector was kept constant in reduced
units at q̃ = 6.785 for the A particles and q̃ = 5.449 for the B particles.

0.5, rm,AA = 21/6, rm,AB = 0.8 · 21/6, rm,BB = 0.88 · 21/6, r0,AB = 0.8r0,AA, and
r0,BB = 0.88r0,AA. The potentials were cut and shifted at rcut = 2.5rm. The time
step used was ∆t = 0.001 for all but the highest densities, where the time step had
to be decreased down to ∆t = 0.0005 for the highest density due to the increased
steepness of the potential and the high temperature.

The isomorphs of the Kob-Anderson mixture were started at the standard den-
sity for this mixture ρ = 1.2 and T = 1.6 and state points a consecutive densities
were found using the direct isomorph check. The dynamics are plotted in figure 4.8
for both values of r0. The larger particles (dashed lines) have slower dynamics.
There is a good collapse of the dynamics in reduced units for the A particles. The
dynamics of the B particles do not collapse on both isomorphs, although it must be
noted that the correlation coefficient for the black lines is below 0.9.

The structure on the isomorph is also invariant (figure 4.9), more so for the AA
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morphs of the Kob-Andersen binary mixture. The lowest density state point
with r0 = 0.9 has a slightly negative pressure.

particle pairs than for the AB and BB pairs. This seems the be a general feature
of Kob-Anderson mixtures, since a similar thing has been observed for the binary
Lennard-Jones system (Gnan et al., 2009) and the binary Buckingham system (Pa-
per I).

The behavior of the correlation coefficient and the density scaling exponent
is plotted in figure 4.10. The correlation coefficient decreases sharply when the
pressure approaches zero, which is also seen in other systems (Bailey et al., 2008a;
Veldhorst et al., 2012). The density scaling exponent γ increases significantly at the
higher densities for both values of r0. It seems that at the highest densities, the
correlation coefficient starts to go down again due to the strong change in steepness
of the potential.

The shape of the isomorphs are plotted in figure 4.11, and shows qualitatively
the same behavior as the isomorphs of the single component liquid.
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4.3 The Girifalco potential

This section describes a small study to test if the results encountered with the new
potential can be reproduces qualitatively with an existing potential, namely the
Girifalco potential.

The Girifalco potential was devised by Girifalco (1992) to simulate molecular
C60, also known as Buckminsterfullerene or simply Buckyballs. The C60 molecule
was first discovered by Kroto et al. (1985) and was found to have an almost spherical
shape, with the carbon atoms positions on the surface of the sphere. The molecules
rotate even in the solid phase (Tycko et al., 1991; Yannoni et al., 1991), indicating
that the shape of the molecule is well approximated by a sphere.

Girifalco (1992) derived the potential by assuming that the carbon atoms inter-
act via the standard Lennard-Jones potential. Because of the (fast) rotations of the
molecule, the effect of the 60 carbon atoms can just be averaged out rotationally to
a spherical surface with a uniform density of carbon atoms. The interaction between
two molecules is then found by integrating over the surface of two spheres.

The potential thus obtained has the form

υ(r) = −α
s

[
1

(s− 1)3
+

1

(s+ 1)3
− 2

s3

]
+
β

s

[
1

(s− 1)9
+

1

(s+ 1)9
− 2

s9

]
, (4.6)

where

s =
r

r0
α =

N2A

12r6
0

β =
N2B

90r12
0

. (4.7)

Here r0 is the diameter of the molecule, N is the number of atoms per molecule, and
A and B are the prefactors for each term in the Lennard-Jones potential for a carbon
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atoms in different sheets of graphite (υ(r) = −A/x6+B/x12). For C60, the diameter
of the molecule r0 = 0.71 nm, α = 7.494× 10−21 J, and β = 1.3595× 10−23 J (Gir-
ifalco, 1992).

A more general from of this potential has been used to describe the interaction
between fullerene molecules of different sizes (Kniaź et al., 1995):

υ(r) = − α

rarbr

[
1

(r − ra − rb)3
− 1

(r + ra − rb)3
− 1

(s− ra + rb)3
+

1

(r + ra + rb)3

]

+
β

rarbr

[
1

(r − ra − rb)9
− 1

(r + ra − rb)9
− 1

(r − ra + rb)9
+

1

(r + ra + rb)9

]
,

(4.8)

where ra and rb are the diameters of the two molecules. The values of α and β are
also defined in a different way:

α =
1

48
NaNbA , β =

1

360
NaNbB . (4.9)

4.3.1 Simulation procedure

The potential was simulated with parameter values r0 = 1, α = 0.17, and β =
1.8141 × 10−3α. This gives a potential that diverges at r = 1, and has a potential
well of unity depth. The ratio between α and β is as found by Girifalco (1992).
The implementation of the potential was verified to be correct by comparing to
simulation data from Alemany et al. (2000). We used a cutoff radius of rcut = 2.5 and
time steps between 10−5 6 ∆t 6 5 · 10−4. To facilitate comparison with literature
data on the Girifalco potential we present our results in Kelvin and nanometers.

There has been some controversy about the existence of a liquid phase in the
phase diagram of the Girifalco fluid (Ashcroft, 1993; Cheng et al., 1993; Hagen
et al., 1993; Hasegawa and Ohno, 1999), but we only present from simulations at
supercritical temperatures.

4.3.2 Simulation of isomorphs

We construct an isomorph using the direct isomorph check, starting at density
ρ0 = 1.118 nm−3 and T0 = 3193 K. The dynamics and the structure are invariant
on the isomorph, as shown in figure 4.13

As shown in figure 4.14, the density scaling exponent is very high, as can be
expected for such a steep potential. γ shows first a decrease in density to later
increase again at higher densities. At the very lowest densities, there is a steep drop
in γ and the fluid stops being strongly correlating.
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4.4 Conclusion

The systems studied in this chapter all have potential that diverges at non-zero
particle separation, giving the particles a “hard core” of finite volume, in contrast
to the point particles of the Lennard-Jones and related potentials. All potentials
here have been shown to be strongly correlating and have isomorphs in their phase
diagram. Unlike the Lennard-Jones and the Buckingham potential, the hard core
potentials studied here have a density scaling exponent that is increasing with den-
sity, as is the case for recently published experimental data (Bøhling et al., 2012).
The results presented in this chapter point to the presence of inaccessible excluded
volume as a possible explanation for the discrepancy between the experimental den-
sity scaling data from Bøhling et al. (2012) and most simulation results of atomic
and molecular liquids such as presented in chapter 2, 5, 6, and by Ingebrigsten et
al. (2012a). Moreover, the results for the Girifalco potential indicate that at high
densities and pressures, Buckminsterfullerene is a simple liquid, although it is not
clear if this part of the phase diagram is physically relevant.



Chapter 5

Isomorphs in the phase diagram
of flexible Lennard-Jones chains.

I. Results for rigid bonds

5.1 Introduction

As mentioned in chapter 2, the isomorph theory has so far been tested for atomic
systems and rigid molecular systems. Real liquids for which we expect the theory
to hold are–among others–the molecular glass formers that obey power-law density
scaling. A large part of the liquids that have been shown to obey power-law density
scaling are polymers, which are clearly very different form the simple model systems
for which the isomorph theory has been tested. Our aim in this chapter is to bridge
this gap somewhat by showing that the isomorph theory also holds for flexible
molecules with intramolecular degrees of freedom.

5.1.1 Model and simulation procedure

The Lennard-Jones chain model

The Lennard Jones chain consists of a series of Lennard-Jones particles connected by
bonds. The Lennard-Jones chain was first simulated by Grest and Kremer (1986),
who used it as a coarse-grained model to study the properties of polymeric liquids.
They used their early version of the model to simulate chains consisting of 5 to 400
segments (Kremer and Grest, 1990; Kremer et al., 1988). The particles in chain do
not correspond to a single atom, but rather to groups of atoms, like one CHn unit
in an alkane or one or several monomers in a polymer. For this reason we refer to
the Lennard-Jones particles in the chain as “segments”.

Starting at the end of the 90’s, extensive simulations of the model have been
done to investigate the behavior of polymer melts around the glass transition (Ben-
nemann et al., 1998, 1999a,b,c,d; Binder et al., 1999). At that time the model had
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already undergone some changes compared to the original version. The main dif-
ference was that the new simulations used a longer cut-off radius, including also
the attractive part of the Lennard-Jones potential (Kopf et al., 1997), whereas the
earlier versions cut and shifted the potential at the minimum. A second differ-
ence was that Grest and Kremer (1986) did not use standard Molecular Dynamics,
but Langevin Dynamics, including a stochastic force similar to what is done when
simulating an implicit solvent (Schlick, 2002).

The Lennard-Jones chain has since been used often to model viscous polymer
melts close to the glass transition. The recurring chain length in these simulations
is ten segments (Aichele et al., 2003; Binder et al., 2003; Puosi and Leporini, 2011,
2012). Even though one segment may correspond to several monomers, a chain of
ten segments can hardly be called a polymer in chemical or physical sense. The
reason for simulating such short chains is the fact that one is usually interested in
the equilibrium properties of the viscous liquid. Increasing the chain length greatly
increases the equilibration time, as does increasing the viscosity, so there is always
a trade-off to be made (Barrat et al., 2010; Glotzer and Paul, 2002). When it is
not the equilibrium liquid, but the non-equilibrium properties that are of interest
this issue does not arise (as much), and simulations with longer chains have been
performed (Riggleman et al., 2009; Shavit et al., 2013).

The Lennard-Jones model is a good candidate for the isomorph theory, since has
been shown to obey power law density scaling (Galliero et al., 2011), and Rosenfeld’s
excess entropy scaling (Galliero and Boned, 2009; Galliero et al., 2011; Goel et al.,
2008; Voyiatzis et al., 2013).

Simulation procedure

In order to investigate the applicability of the isomorph theory to flexible molecules,
we have simulated the Lennard Jones chain model. All particles except the bonded
particles interact by a cut and shifted Lennard-Jones potential (equation 1.2) with
the standard cutoff radius rc = 2.5σ. The potential parameters were set to unity
ε = σ = 1. In this chapter the Lennard-Jones particles are connected by “covalent”
bonds to form a linear chain. In the next chapter we also present results for chains
where the covalent bonds are modelled as harmonic springs.

The bond lengths are also fixed to be unity: b = σ. The bonds are completely
rigid during the simulation, which is achieved using constraint dynamics (Allen and
Tildesley, 1987). When simulating constraint dynamics, one calculates the forces on
all particles that come from interactions between non-constraint particle pairs. An
additional force is than added to keep the relative velocities of bonded particles zero
along the direction of the bonds, using Gauss principle of least constraint (Edberg
et al., 1986). We use here a recently improved constraint algorithm that has the
advantage that it is energy conserving and time symmetric (Toxvaerd et al., 2009). It
should be noted that the constraint algorithm adds an extra force that contributes to
the pressure of the system via the virial, but it does not give a (direct) contribution
to the potential energy.

We have simulated chains of different lengths L = {2, 4, 8, 10, 16, 32} segments.
While in the introduction and section 5.2 we investigate the effect of chain length,
in later sections we only focus on chains with 10 segments. For most systems the
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L N M

2 2048 1024
4 2048 512
8 2048 256

10 2000 200
16 2048 128
32 2048 64

Table 5.1: System size in number of segments N and number of molecules
M for the different chain lengths L.

total number of segments in the simulation N was 2048, except for chains with ten
segments. This resulted in a variable number of molecules in the system, as listed
in table 5.1.

The simulations were performed in the NVT ensemble with a Nosé-Hoover ther-
mostat in a cubic box with periodic boundary conditions. The time step was set to
∆t = 0.0025.

5.1.2 The structure of linear molecules

In this and the follow section we discuss the structure and dynamics of linear
molecules in terms of some standard models. This can be found in standard text-
books like Doi and Edwards (1986), Ferry (1980), and Rubinstein and Colby (2003).

The origin of the Lennard-Jones chain model in Molecular dynamics lies in early
(analytical) models of polymers. The Gaussian chain is one of the simplest models
for polymer structure, and consists of a series of connected springs. The springs
have a reference length b. The “particles” in the Gaussian chain do not interact
with each other, i.e., it is an ideal chain. Also, the angles between the bonds are
random, so the equilibrium configuration of the polymer in this case is essentially a
random walk. If the position of the first and last position in the chain are denoted
by r1 and rL, and the bond vector between positions ri and ri+1 is denoted by
bm = rm+1 − rm the end-to-end vector of the chain is defined by

R = rL − r1 =
L−1∑

m

bm . (5.1)

Normally, it is the mean square end-to-end distance that is used to characterize the
size of a chain, which for a random walk is given by

〈
R2
〉

=
〈
R2
〉

= (L− 1)b2 , (5.2)

for a chain of length L. Another common way to quantify the size of a molecule is
the radius of gyration Rg, defined by:

R2
g =

1

2L2

L∑

i,j

(ri − rj)
2 , (5.3)

where i and j denote positions in the chain. This is a more general quantity because
it is also defined for non-linear molecules, and can be measured in scattering exper-
iments. For the Gaussian chain, it can be shown that R2

g = 〈R2〉/6 = (L− 1)b2/6.
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Figure 5.1: The mean square end-to-end distance
〈
R2
〉
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ration
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g

〉
as a function of the number of bonds L − 1. Both are almost

proportional L. The Flory exponent ν is found to be 0.54 by fitting the
function (L− 1)2ν . The dotted line shows the same fit divided by 6.

For a real molecule, the assumption that the directions of consecutive bonds are
uncorrelated is of course not correct. However, for two bonds rm and rm+k separated
by an amount k, their orientation will be uncorrelated if k is large enough. k is
called the Kuhn length, and can be calculated by

k =

〈
R2
〉

Rmax
, (5.4)

where Rmax = (L−1)rbond is the maximum end-to-end distance of the chain. For the
Gaussian chain k = rbond, so the “particles” in the Gaussian chain model correspond
to the Kuhn segments of a molecules.

Even considering the particles in a Gaussian chain as Kuhn segments, the model
does not describe the size of real molecules, because there are no interactions be-
tween the segments. In real molecules, particles do interact when they are far away
from each other in the chain. This is called the excluded volume effect and was
first taken into by Flory (1949) for polymers in solution. Flory theory predicts that
〈R2〉 ∝ r2

bond(L− 1)2ν with ν = 3/5 for a perfect solvent.

The Lennard-Jones chain is of course not ideal, but the prediction of Flory (1949)
for the size of the chain does not hold either, as shown in figure 5.1. By fitting, we
obtain a Flory exponent ν = 0.54, which is somewhere in between the theoretical
values for the ideal Gaussian chain (0.5) and the Flory model for a perfect solvent
(0.6). Figure 5.1 also shows that at low chain lengths, the prediction R2

g =
〈
R2
〉
/6

is not exact.

5.1.3 Dynamics of linear molecules

The Rouse model

One of the earliest theories that is successful in explaining the dynamics of polymers
and linear molecules was published by Rouse (1953). In Rouse theory the molecule
is represented as a series of particles connected by harmonic springs. The particles
experience friction as they move through their surroundings, quantified by a friction
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coefficient ζ. The friction coefficient of the Rouse chain is the sum of the friction
coefficients of the particles Lζ, and so the diffusion coefficient of the chain DR is
found from the Einstein relation to be

DR =
kBT

Lζ
. (5.5)

The Rouse time, the time it takes for the molecule to move approximately it’s own
length is given by

τR ≈
〈
R2
〉

DR
≈ ζb2L(L− 1)2ν

kBT
. (5.6)

Similarly, the characteristic time in which one segment moves a distance comparable
to its own size (b) is predicted to be

τ0 ≈
ζb2

kBT
, (5.7)

and therefore
τR ≈ τ0L(L− 1)2ν (5.8)

For long chains, L − 1 is approximately L, so the relaxation time of a long ideal
Rouse chain is proportional to τ0L

2.
The dynamics of an ideal Rouse chain is commonly expressed in its normal

modes, analogous to the modes of a vibrating string. The modes are often called
Rouse modes, and for a chain of L beads the Rouse modes Xp are given by the
discrete cosine transform of the position of the segments by (Meyer et al., 2008;
Verdier, 1966)

Xp(t) =
1

L

L∑

i=1

cos

((
i− 1

2

)
pπ

L

)
ri(t) , p = 0, 1, . . . , L− 1 . (5.9)

The zeroth mode corresponds to the position of the center of mass of the chain:

Xp(t) =
1

L

L∑

i=1

ri(t) = rcm(t) , (5.10)

while the higher modes correspond to (sub)chains of L/p segments. For an ideal
Rouse chain, the Rouse modes are independent of each other, but this is not the
case for more realistic chains that have interactions between the segments, including
the Lennard-Jones chain (Barkema et al., 2011; Meyer et al., 2008).

The relaxations of the Rouse modes can be visualized by plotting autocorrelation
functions of the Rouse modes; 〈Xp(t)Xp(0)〉 (Bennemann et al., 1999d). Different
Rouse modes characterized by p are plotted for the different chain lengths L in
figure 5.2. The figure clearly shows that according to Rouse theory, small sections
of a molecule behave in the same way as a molecule with the same size as the section.

Each mode has its own relaxation time corresponding to the relaxation time of
a chain with length L/p (see equation 5.8)

τp ≈ τ0
L

p

(
L

p
− 1

)2ν

. (5.11)



54 CHAPTER 5. LJ CHAINS WITH RIGID BONDS

10
-1

10
0

10
1

10
2

10
3

10
4

t

0.0

0.2

0.4

0.6

0.8

1.0

〈X
p
(t

)X
p
(0

)〉
L = 4, p = 1
L = 4, p = 2
L = 8, p = 1
L = 8, p = 2
L = 8, p = 4

L = 16, p = 1

L = 16, p = 2

L = 16, p = 4

L = 16, p = 8
L = 32, p = 1
L = 32, p = 2
L = 32, p = 4
L = 32, p = 8

L = 32, p = 16

Rouse mode
autocorrelation

rigid bonds

ρ = 1, T = 2

L
/p

 =
 1

6

L
/p

 =
 3

2

L
/p

 =
 8

L
/p

 =
 4

L
/p

 =
 2

Figure 5.2: Normalized Rouse mode autocorrelation functions for different
chain lengths. Symbol shapes correspond with chain length L, while auto-
correlation functions with the same value of L/p have the same color. The
data show that (sub)chains with the same length have similar relaxation.

For long subchains, we can assume for the size of a segment to be L/p + 1 ≈ L/p
and we can rewrite equation 5.11 to

(
L

p

)2ν

≈
(
τp
τ0

)2ν/(1+2ν)

. (5.12)

During this time τp, the segments move a distance of approximately the size of a
segment, which for the longer chains is well approximated by b2(L/p)ν , so for the
mean square displacement we can write

〈
[ri(τp)− ri(0)]2

〉
≈ b2

(
L

p

)2ν

≈
(
τp
τ0

)2ν/(1+2ν)

. (5.13)

Since the relaxation times of the modes τp are time dependent, we can rewrite this
to get the time dependence of the mean square displacement

〈
[ri(t)− ri(0)]2

〉
≈
(
t

τ0

)2ν/(1+2ν)

(5.14)

for the timescale of the Rouse mode relaxations (τ0 < t < τR). For our Lennard-
Jones chains ν = 0.54 so we expect a slope in the mean square displacement of
2ν/(1 + 2ν) = 0.52, close to the slope of 0.5 for ideal chains.

Figure 5.3 shows the mean square displacements of the segments and the centers
of mass for different chain lengths. The data clearly show three regions for the
segments in the longest chains. At short times, the segments move ballistically
because they are not hindered by their neighbors. At long distances, their movement
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Figure 5.3: The mean square displacement for chains with two to 32 seg-
ments at the state point (ρ, T ) = (1.00, 2.00). Solid lines are for the segments
while the dashed lines are for the centers of mass of the chain. For the longer
chains the mean square displacement of the segments shows a ballistic, sub-
diffusive, and a diffusive regime. In the diffusive regime the mean square
displacement of the segments and the center of mass collapse and the slope
is related to the diffusion coefficient

〈
[ri(t)− ri(0)]2

〉
∝ 6Dt. (inset) The

diffusion coefficients were obtained by fitting to the center of mass mean
square displacement for

〈
[rcm,j(t)− rcm,j(0)]2

〉
> 10. For the short chains,

the diffusion coefficient does not follow the prediction for Rouse dynam-
ics: D ∝ L−1 which would correspond to a horizontal line in this plot. At
longer chain lengths the chain length dependence of the diffusion coefficient
becomes larger, closer to the prediction of reptation dynamics, D ∝ L−2

(dashed line).

is diffusive and the same as the movement of the whole molecule. At intermediate
times, there is a regime where the mean square displacement is almost proportional
to L−1/2 as is predicted from Rouse theory.

The Rouse model was first conceived to describe the dynamics of a polymers
in dilute solutions (Rouse, 1953), but the theory is not correct under these circum-
stances. The reason for this is the hydrodynamic effect, which is a long ranged
interaction between the moving polymer and the solvent. The dynamics of dilute
polymer solutions are more correctly described by the Zimm model, which takes
into account the hydrodynamic interaction (Zimm, 1956).

The Rouse model is however useful in the description of melts of short polymers,
because here the hydrodynamic interactions are screened. For instance, the Rouse
model predicts the correct chain length dependence of the viscosity for short polymer
melts (Colby et al., 1987; Rubinstein and Colby, 2003). For long chains however,
the Rouse theory is incorrect due to the effect of entanglement.
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Figure 5.4: (left) Movement of a “defect” in the chain. (right) Movement
of the entire chain in and with its tube. Taken from Doi and Edwards (1986).

Entanglement

Long chains have topological interactions because they cannot cross each other.
For linear molecules, these interactions do not affect the structure because all con-
figurations are still accessible. There is however a strong effect on the dynamics,
especially for long chains in the melt or in concentrated solutions. The effect of
entanglements is usually discussed in terms of the tube model.

In the melt, the conformation of a chain is limited by topological constraints due
to the neighboring chains. Within these constraints there is however some room for
small (local) changes in the conformation. The idea of the tube model is that the
space that is occupied by all this different local changes in the conformation has the
shape a tube, and movement of the chain is confined to this tube (see figure 5.4).
Local conformational changes can be considered “defects” and can move back and
forth on the chain, but do not change the shape of the tube. The tube only changes
by extension or reduction at the end points due to the moving defects within the
tube. Movement of the chain through these “defects” resembles the movement of
caterpillars and is called reptation (de Gennes, 1971). The importance of the topo-
logical constraints has been demonstrated convincingly in computer simulations,
where the topological constraints can be easily removed by allowing chains to cross
each other (Everaers, 1999).

In the tube model the minimum length Le (in segments) at which a chain be-
comes entangled is related to the width of the tube a by assuming an ideal chain:

a ≈ b
√
Le (5.15)

The average contour length of the tube 〈Ct〉 is then the width times the number of
sections of length Le in the chain:

〈Ct〉 ≈ a
L

Le
≈ bL√

Le
(5.16)

The longest relaxation time τrep of the reptation model is related to the time it
takes the chain to diffuse out of its original tube. The diffusion constant Dt for this
movement along the tube is characterized by the standard Rouse friction coefficient
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Figure 5.5: (left)Normalized fluctuations in the the potential energy and
virial versus time, for a length L = 10 chain at density ρ = 1.00 and temper-
ature T = 0.70. (right) Data for the same state point, now in a scatter plot
in the U -W plane. The correlation coefficient and the slope γ are obtained
by linear regression and are found to be R = 0.86 and γ = 7.36.

of the chain by Dt = kBT/(Lζ) (equation 5.5). Thus, for the reptation time

τrep ≈
〈Ct〉2
Dt

≈ LζL3

kBTLe
, (5.17)

and we can get the diffusion coefficient of the chain from the size of the chain and
the relaxation time:

Drep ≈
〈
R2
〉

τrep
≈ kBTLe

ζL2
. (5.18)

So the reptation model predicts that the diffusion coefficient is proportional to
L−2, in contrast to the L−1 for the Rouse model. Experimental data show that
the chain length dependence of entangled polymers is even stronger, approximately
L−2.3 (Lodge, 1999).

The inset of figure 5.3 shows the diffusion coefficient obtained from the mean
square displacement versus chain length. For the short chains the product DL
should be constant according to Rouse theory, while the reptation model predicts a
negative slope of unity (log(DL) ∝ − log(L)). Although the Rouse prediction does
not hold for short chains, the slope clearly increases for higher chain lengths and
the longest chains can be considered to be in the crossover regime between Rouse
and reptation dynamics. This is in agreement with the findings of Kremer and
Grest (1990) and Sen et al. (2005) who found an entanglement length Le ≈ 35 and
Le ≈ 28, respectively. This means that the chains of ten segments that have been
simulated in the following sections of this chapter may be considered as a coarse
grained model of short polymers in the Rouse regime.

5.2 Strong correlations

As usual when investigating isomorphs in a new model, we first look at the fluctu-
ations in the energy and the virial. As shown in figure 5.5 there are correlations
in the instantaneous values of the potential energy and the virial for a liquid with
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Lennard-Jones liquid).

chains of length 10. Often the energy and virial follow each other perfectly, while
other times there is a clear difference in the fluctuations. At density ρ = 1.00 and
temperature T = 0.70, the correlation coefficient is R = 0.86. This is lower then
R = 0.90 which has previously been the limit for liquids to be called “strongly
correlating” (Bailey et al., 2008b), and lower than the standard single component
Lennard-Jones liquid (Bailey et al., 2008a).

Also the slope γ of the fluctuations in the U -W plane is markedly different
from the value of the single component Lennard-Jones liquid, which has 4 < γ <
6.5 (Bailey et al., 2008a). It is however in the range of γ values for the coarse-
grained ortho-terphenyl model from Lewis and Wahnström (1993, 1994), which has
6.3 < γ < 8.0 (Ingebrigsten et al., 2012a). This model is similar to the Lennard-
Jones chain model in the sense that it also consists of Lennard-Jones particles
connected by rigid bonds. It was found that contributions to the virial from the
constraints increases the the value of γ (Ingebrigsten et al., 2012a).

Figure 5.6 shows the effect of the chain length on the correlations of the potential
energy and the virial. The correlation coefficient decreases with increasing chain
length. When plotting the data as a function of the number of bonds per particle
(L− 1)/L shows an almost linear dependence. The opposite behavior is seen for γ,
which is increasing for increasing chain length. Again there is a much more linear
dependence on the bonds per particle, although there is clear systematic deviation
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from linearity. The data indicate that the correlation coefficient is not expected
to decrease much for chains longer than 32 segments. This is may not be true for
γ, although care should be taken by concluding anything about long chains when
plotting the data as function of the number of bonds per particle since this removes
most of the details foor longer chains.

An intuitive explanation for the higher γ values of the longer chains is that
the rigid bonds can be viewed as a very steep repulsion between the segments.
Nevertheless, higher γ values for the longer chains are somewhat surprising in view
of experimental data; power law density scaling in general gives lower γ values
for polymers than for small molecular liquids (Roland, 2010). On the other hand,
experimental data from power law density scaling of viscosity data are not conclusive
for alkanes. Pensado et al. (2008) found that γ decreases for increasing alkane length,
while Galliero et al. (2011) found the opposite.

A possible explanation is the fact that we compare different chain lengths at the
same density and temperature. Experimental data are generally obtained around
ambient temperatures and pressures. In our simulations we find that pressure is
lower for the longer chains at the same density and temperature. This means that
if we would compare our chains at the same pressure, the density of the longer
chains would be higher, which leads to lower γ values (see section 5.3).

It might be that the Lennard-Jones chain model just does not capture the be-
havior of γ in real molecules correctly. For example, Tsolou et al. (2006) found
γ = 2.8 from power-law density scaling of simulation data of a realistic united atom
model of cis-1,4-polybutadiene. Chain length is far from the only variable influenc-
ing γ. Previously, Ingebrigsten et al. (2012a) found that γ decreases with increasing
bond lengths in the assymetric dumbbel model, and Xu and Freed (2013) showed
using the generalized entropy theory that polymer rigidity (quantified by the bend-
ing energy between consecutive bonds) significantly decreases the power law density
scaling exponent γ.

5.3 Isomorphs

In this section we show that the Lennard-Jones chain liquid has isomorphs in its
phase diagram. Chains of length L = 10 have been used for this, because these
shorter chains were still reasonably fast to equilibrate at state points where the
segmental dynamics start to show the typical two-step relaxation of viscous liquids.
Moreover, chains of length ten have been simulated extensively in previous works
(see section 5.1.1).

5.3.1 Isomorph definition

Previously, Ingebrigsten et al. (2012a) tested the isomorph theory for small molecules
that were simulated with rigid bonds. Because the bonds do not scale with density,
the isomorph theory was changed to include rigid molecules. For a liquid consisting
of rigid molecules, configurations at two state points (1) and (2) with density ρ1

and ρ1 and temperature T1 and T2 are considered scaled versions of each other if
the molecules have the same reduced position of the center of mass rcm:

ρ
1/3
1 r(1)

cm = ρ
1/3
1 r(1)

cm , (5.19)
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Figure 5.7: The numerical direct isomorph with Lennard-Jones chains.
configurations of an equilibrium simulation at ρ1 = 1.00 and T1 = 0.70 were
scaled to a new density ρ2 while keeping intramolecular distances constant.
From these scaled configurations we calculated U2. The slope in the U2, U1-
plane than gives the ration of temperatures for the isomorphic state points.
We find for ρ2 = 0.98 that T2 = 0.607, and for ρ2 = 1.02 that T2 = 0.8124.

while the distances within the molecules and the orientations of the molecules are
the same. Denototing the energy of two such scaled configurations U1 and U2, the
two state points are then isomorphic to each other if each physically relevant pair
of scaled configurations has proportional Boltzmann weights

e−U1/kBT1 = C1,2e
−U2/kBT2 , (5.20)

with the same factor C1,2 that only depends on the two state points (Ingebrigsten
et al., 2012a).

This definion could then be used to perform the numerical direct isomorph check
in a similar way as is done for atomic liquids. Taking the logarithm on both sides,
one obtains

U2 =
T2

T1
U1 + kBT2 ln(C1,2) . (5.21)

Thus, if one performs a simulation at state point 1 one can calculate U2 by scaling
configurations to the density at state point 2 while keeping all intramolecular dis-
tances constant. When U2 is then plotted versus U1, the slope simply gives fraction
T2/T1, from which we can calculate the temperature T2 of the isomorphic state
point.

We have performed the numerical direct isomorph check exactly in this way, but
now for flexible molecules. A long equilibrium simulation was performed at density
ρ1 = 1.00 and temperature T1 = 0.7. Every 512 timesteps, the configuration was
scaled to the new densities ρ2 = 0.98 and ρ2 = 1.02 while keeping intramolecular
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distances and angles fixed. The energies U2 were calculated from these scaled con-
figurations. The result is plotted in figure 5.7. We find temperatures of 0.6073 and
0.8124 for the two new densities. This is very close to the 0.6033 and 0.8099 we
find using the slope γ = 7.36 of the U ,W fluctuations (figure 5.5). Nevertheless,
we have not used this method to create the isomorphs, because it is not known
if the intramolecular structure of flexible molecules is constant on the isomorph.
This definition of the isomorphicc state points may therefor not be true. Moreover,
our method of scaling only centers of mass to a new density cannot hold for longer
chains, since it might create significant overlap of segments in different molecules.

5.3.2 Generating isomorphs

Instead of the numerical direct isomorph check we have here used the “old-fashioned”
method of creating a curve of constant excess entropy Sex using equation 2.19, cal-
culating γ from the fluctuations using equation 2.5. Five different isomorphs were
made, starting from five different starting state points with temperatures T0 be-
tween 0.50 and 0.80 on the isochore ρ0 = 1.00. The lengths of the simulation runs
are listed in table 5.2. Before the start of the simulation, an equilibration run was
done with at least the same length. Also the segmental and longest (chain) relax-
ation times are given in table 5.2. This shows that the simulation time for the most
viscous isomorph is approximately 40τR.

After obtaining γ at the starting state point, density was changed by 0.02 and
equation 2.19 was used to find the temperature with the same excess entropy. In
this way a set of state points is obtained with the same excess entropy, which should
be an isomorph according to the theory. As is the case with other model systems,
these small density increments are necessary because γ is density dependent.

Table 5.2 also lists the smallest and largest density for each isomorph. These
are the real limits of the isomorph; at densities lower than ρmin we observed phase
separation or the formation of cavities in the system due to too negative pressures,
while at higher densities than ρmax we observed crystallization. This seems to be in
contradiction with the isomorph theory, which predicts that the melting line is an
isomorph (Gnan et al., 2009). This prediction holds well for the single component

T0 t τ0 τR ρmin ρmax
0.50 1.34 · 106 198 3.29 · 104 1.00 1.04
0.60 6.71 · 105 31.6 7.40 · 103 0.98 1.14
0.65 6.71 · 105 18.2 4.65 · 103 0.98 1.16
0.70 3.36 · 105 12.1 3.33 · 103 0.96 1.20
0.80 1.68 · 105 6.66 1.98 · 103 0.96 1.20

Table 5.2: Starting temperature T0, simulation time t and relaxation times
at the starting state points of the five isomorphs. The simulation time is the
minimum time of all state points on the isomorphs. Relaxation times are
determined from the segmental intermediate scattering function (τ0) and the
autocorrelation of the end-to-end vector (τR). ρmin and ρmax correspond to
the lowest and highest density state point on that isomorph. All data are in
standard Lennard-Jones units (not in reduced units).
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colors correspond to the five isomorphs (see table 5.2). As for other model
liquids and in agreement with the theory, γ depends only on density and not
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Lennard-Jones liquid (Pedersen, 2013), but for the Lennard-Jones chain liquid the
isomorphs cross the melting line instead of being parallel to it. We explain this by
the presence of the rigid bonds, which do not scale with density, i.e., their length is
not constant in reduced units. This means that at high densities, the bond length
is comparable to the interparticle distance of the non-bonded particles, which is
favorable for crystallization. At lower densities however, there is a discrepancy be-
tween the interparticle distances of the bonded and non-bonded particles, supressing
crystallization

Figure 5.8(b) shows γ at the state points of the five isomorphs. γ ranges from
7.8 at low densities to 6.1 at high densities. This behavior is similar to the behavior
of the single component Lennard-Jones liquids (Bailey et al., 2008a) and the small
molecular liquids consisting of Lennard-Jones particles (Ingebrigsten et al., 2012a).
The data agree with the theory in the sense that γ is only dependent on temperature,
and not on density (Gnan et al., 2009; Schrøder et al., 2011). This is quantified
by derivatives of γ on the isochore and isotherm. We find for the temperature

dependence ∂ ln γ
∂ lnT

∣∣∣
ρ=1
≈ 0.05 and for the density dependence ∂ ln γ

∂ ln ρ

∣∣∣
T=0.7

≈ 0.89.

We plot the correlation coefficient R on the isomorphs in figure 5.8(a). The
correlations coefficient is decreasing with density as is the case for the single com-
ponent Lennard-Jones liquid (Bailey et al., 2008a, 2013). The correlation coefficient
is however much lower, and even below the (somewhat arbitrary) 0.9 limit for simple
liquids. Despite the low correlation coefficient, we show in the following sections
that the Lennard-Jones chain can be considered a simple liquid, and that these
curves of constant Sex do indeed have many of the traits that isomorphs have.
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Figure 5.9: The self part of the intermediate scattering functions of the
segments and the centers of mass, and the orientational autocorrelation of
the end-to-end vector on the isomorph with T0 = 0.7 (a) and on an isotherm
for comparison (b). For each of these dynamical measures, the data at the
isomorphic state points collapse when plotted in reduced units, in contrast
to the isothermal state points in (b). We kept the wave vector constant in
reduced units at q̃ = ρ1/3q = 7.09, which is close to the position of the main
peak in the static structure factor. Adapted from Paper V.

5.3.3 Equilibrium dynamics on the isomorph

The first isomorph prediction we verify is the invariance of the dynamics in reduced
units. In figure 5.9(a) we probe the dynamics at three different time and length
scales for one of the isomorphs. The segmental and center of mass intermediate
scatter function FS(q̃, t̃) and the orientational autocorrelation of the end-to-end
vector

〈
R(0)R(t̃)

〉
collapse on a single curve for the isomorphic state points. Es-

pecially when we compare the dynamics on the isomorph to the dynamics on the
isotherm (figure 5.9(b)) the collapse is striking. On the isotherm, an 11% change
in density changes the dynamics by more than a decade, while the dynamics on the
isomorph are invariant over a 25% change in density.

Figure 5.10 shows the self part of the segmental intermediate scattering function
as well as the end-to-end vector autocorrelation for all five isomorphs. The data
show that both the segmental and the chain dynamics are invariant in a significant
part of the phase diagram; from high temperature non-viscous state points to viscous
state points where the dynamics show the typical two-step relaxation. For the most
viscous isomorph with T0 = 0.5, the end-to-end-vector autocorrelations do not fall
exactly on top of each other. This is probably caused by a too short simulation or
equilibration time (see table 5.2). The liquid may not be completely in equilibrium,
or the data may not have been averaged over long enough time scales.

In figure 5.9 and 5.10 we have plotted the self intermediate scattering function
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the data of the different state point collapse.

for only one value of the magnitude of the reduced scattering vector q̃. We now
compare the dynamics for different wavevectors by plotting the relaxation times
obtained from the self intermediate scattering vectors in figure 5.11. The relaxation
times are defined as the time at which the scattering function has decayed to 0.2.
For all tested wavevectors the reduced relaxation time is constant on this particular
isomorph. For comparison, we included the relaxation times obtained from the
isothermal scattering functions in figure 5.9.

The invariance of the dynamics is also confirmed by plotting the mean square
displacement in reduced units (figure 5.12). The movement of the molecule as a
whole, as probed by the center of mass displacement, and the movement of the seg-
ments collapse for all five isomorphs (only three isomorphs are shown for clarity).
The invariance holds for all three regimes of the segmental mean square displace-
ment, including the subdiffusive regime at intermediate times that is typical for
chain molecules. The fact the curves collapse in the diffusive regime at long time
means that also the diffusion coefficient in reduced units is invariant as predicted
by the theory.

As mentioned in section 5.1.3, the dynamics of chain molecules are often ex-
pressed in terms of the Rouse modes (equation 5.10). We plot the normalized
autocorrelations of the Rouse modes 〈Xp(t)Xp(0)〉 in figure 5.13. The Rouse modes
correspond to the movement of subchains of L/p segments, so the autocorrela-
tion function of the first mode is almost the same as the autocorrelation of the
end-to-end vector (Doi and Edwards, 1986), and indeed they have the same relax-
ation time. Also the Rouse mode autocorrelation functions collapse for isomorphic
state points. For the higher modes however, the collapse is not as good. This is
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probably not relevant for the overall dynamics, since it is not seen in any of the
previous figures in this section. Moreover, these higher modes do not contribute
much to the dynamics; the amplitude of the Rouse modes is predicted to scale
as
〈
X2
p

〉
∝ 1/(L sin2(p/L)) (Bennemann et al., 1999d), which is also seen in our

simulations (data not shown).

5.3.4 Structure on the isomorph

We now test the prediction that the liquid structure is invariant on the isomorph.
Traditionally this is done for atomic liquids by plotting the radial distribution func-
tion g(r̃) in reduced units. We also plotted this for the segments of the chain in
figure 5.14(a). Due to the bond lengths, which are constant in real units but not
in reduced units, the total segmental distribution function is not invariant on the
isomorph. The delta functions around r̃ ≈ 1 are the most obvious, but also around
r̃ ≈ 2, there is an effect of the next-nearest neighbors in the chain. For this reason
we split the radial distribution in an intermolecular and an intramolecular contri-
bution, plotted in figures 5.14(b) and (c), respectively. The intramolecular g(r̃) is
clearly less invariant than the intermolecular g(r̃).

We also plotted the radial distribution function of the centers of mass in fig-
ure 5.14(d). These are invariant as well on the isomorph, but when compared with
isothermal density changes the invarance is not surprising. It seems that the distri-
bution of the centers of mass is not dependent on state point at all when plotted in
reduced units.
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with T0 = 0.7. (a) The total segmental distribution function, which has
been split into contributions of the particle pairs in different molecules (b)
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In figure 5.15 we plot two more quantities related to the molecular structure,
the mean square end-to-end distance

〈
R2
〉

and the mean square radius of gyration〈
R2
g

〉
. These are clearly not invariant on the isomorph. Comparison with isothermal

data, these quantities seem to be purely dependent on density. Comparison with
isochoric data indeed shows that there is only a small dependence on temperature
on the isochore. Moreover, any temperature dependence on the isochore may be
caused by the fact that the molecular structure has not completely equilibrated.
Bennemann et al. (1999c) also noted that the size of the molecule is not dependent
on temperature.

In conclusion, the structure is not completely invariant on the isomorph, espe-
cially compared to the atomic liquids. This is not surprising, since the bonds do
not scale with density. The effect of the bonds is however completely captured by
the intramolecular structure, leaving the intermolecular structure invariant on the
isomorph.
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5.3.5 Non-equilibrium dynamics on the isomorph

Because isomorphic state points have proportional Boltzmann factors for all config-
urations, it is possible to scale an equilibrium configuration from one state point to
another on the same isomorph while staying in equilibrium (Gnan et al., 2009). We
show this by performing different instantaneous jumps between equilibrium config-
urations. When jumping to another density, we scale only the box with the centers
of mass of the molecules. The intramolecular distances are kept constant as in the
formal definition of the isomorphs by Ingebrigsten et al. (2012a), and to satisfy the
constraints.

We plot the relaxation of the of the potential energy after the isomorphic jump
in figure 5.16 (black line). The average potential energy before the change in density
is shown by the black dashed line, while the average equilibrium energy of the state
point that is jumped to is given by the pink dashed line. Even though the state
points have different average energies, there is no relaxation when jumping between
them, especially when compared to jumps from state points that are on another
isomorph (black and red lines).

Jumping from two isomorphic state points to a third (non-isomorphic) state
point will give the same relaxation, because scaling an equilibrium configuration
anywhere on an isomorph will give an equilibrium configuration at the new den-
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sity (Gnan et al., 2010). This is shown by the green and the red curves in fig-
ure 5.16, which show the relaxation in the potential energy when jumping from two
state points on the isomorph with T0 = 0.7, to a point that is not on the isomorph
(at ρ = 1.00, T = 0.5). The data show that even though the two state points have
different equilibrium energies before the jump (dashed red and green lines), they
have the same energy immediately after the jump. The relaxation is then the same
for both starting state points.

It should be noted that since the intramolecular structure is not invariant on an
isomorph, some relaxation of the individual chains will still occur, but this does not
seem to have an effect on the potential energy of the system.

5.4 Isomorphic scaling

According to the theory, the shape of the isomorphs in the phase diagram is de-
scribed by h(ρ) with a multiplicative constant T0 (see equation 2.25). It is easy to
The isomorphs therefore have the same shape, as shown in figure 5.17. It is possible
to scale the isomorphs with their starting temperature T0 to collapse on a single
curve (open symbols).

For particles interacting with (sums of) inverse power laws, the functional form
of h(ρ) is known. For instance, for the single component Lennard-Jones liquid,
h(ρ) = αρ4 + (α− 1)ρ2 (Bøhling et al., 2012; Ingebrigtsen et al., 2012). Due to the
rigid bonds, we do not have an analytical expression h(ρ), and it is found that the
h(ρ) from the single component Lennard-Jones liquid does not describe the shape
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Figure 5.18: Relaxation times from the end-to-end autocorrelation (top)
and the segmental intermediate scattering function (bottom). In (a) and (b)
attempts are made to collapse the relaxation times of different isochores onto
a single master curve by power law density scaling. This is not possible, ρ7.7

collapses only the low density isochores, while ρ7.7 collapses the high density
isochores. When using equation 5.22, the data collapse well over the entire
density range. Adapted from Paper V.

of Lennard-Jones chain isomorphs correctly. Instead, we have fitted the shape of
the isomorphs with a function of the form h(ρ) = 2ρα − ρβ where α and β are
fitting parameters. The choice of the functional form is rather arbitrary; there is
no reason why h(ρ) should be a sum of two power laws. Nonetheless, this function
with α = 5.06 and β = 2.61 was found to fit the isomorphs well (pink dashed line
in figure 5.17. The shape of each isomorph is thus described by the function

h(ρ) = T0

(
2ρ5.06 − ρ2.61

)
, (5.22)

shown as black dashed lines in figure 5.17.
Our empirical h(ρ) indicates that power law density scaling may not work for

the Lennard-Jones chain system. We test this in figure 5.18(a) and (b) by plotting
the segmental and chain relaxation times of three isochores. We plot the relaxation
times versus ργ/T for two values of γ. The higher γ collapses the relaxation times
for the two lowest densities, while the low γ works for the high densities. This is in
agreement with the γ values obtained from the fluctuations, where we find higher
values for the lower densities (figure 5.8). It is however not possible to scale all
three isochores on top of each other with a single power law. Instead, this can
be achieved by using our empirical h(ρ) (equation 5.22), which collapses all three
isochores perfectly. The scaling works for both the fast segmental dynamics, as well
as for the slow chain dynamics, which is also found to be the case for power law
density scaling of polymers over a small range of densities (Casalini and Roland,
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2005; Roland, 2007; Roland et al., 2004).

5.5 Conclusion

The Lennard-Jones chain liquid with rigid bonds is simple in part of its phase
diagram. For all chain lengths simulated we found correlations in the fluctuations
of the viral and the potential energy. Although the correlation coefficient is lower
than 0.9, the fluctuations can still be used to trace out isomorphs in the phase
diagram.

On the isomorph, both the segmental and the chain dynamics are invariant in
reduced units. Indeed all dynamics are invariant. Because γ is found to change
with density, power law density scaling does not hold in the density range that
was simulated. Although no analytical expression for h(ρ) exists for the model, the
empirical expression h(ρ) = 2ρ5.06 − ρ2.61 can be used to collapse the dynamics of
the entire density range.

Not all structure in the liquid is constant on the isomorph, due to the fixed
bond length that does not scale with density. However, we have shown that this
is captured completely in the structure within the chain. Intermolecular structure
is constant, while intramolecular structure like the molecular size is not. Also the
non-equilibrium dynamics, probed by the relaxation of the potential energy after a
jump in the phase diagram is found to obey the isomorph theory.



Chapter 6

Isomorphs in the phase diagram
of flexible Lennard-Jones chains.

II. Results for harmonic bonds

6.1 Introduction

Although the Lennard-Jones chain model has been used extensively in the field
of (glass-forming) liquids and polymers, different versions of the model have been
simulated. Apart from the length of the chain, which is often varied depending
on the system under investigation and the technical capabilities, the bond type is
another property which often differs between works.

In the field of chemical and biochemical Molecular Modelling, one generally uses
empirical force fields to paramerize the different interatomic interactions (Leach,
2001). Both all atom and united atom force fields (Brooks et al., 2009; Cornell et
al., 1995), as well as coarse grained force fields (Marrink et al., 2007) approximate
the covalent bonds by a harmonic potential, given by

υij(rij) = −0.5k(rij − r0)2 . (6.1)

where k is the spring constant and r0 is the reference bond length where the bond
energy is zero. The harmonic bond has the advantage that it is fast to calculate,
and it is easily parameterized using the reference bond length. Although it does not
take into account the anharmonicity of real covalent bonds, it is usually a reasonable
approximation because the deviations from harmonicity are small or not relevant
when simulating equilibrium configurations (Leach, 2001).

On the other hand, Grest and Kremer (1986) used a finitely extensible nonlinear
elastic (FENE) potential in their original simulations of Lennard-Jones chains. The
FENE potential is given by

υFENEij (rij) = −0.5kr2
max ln

[
1−

(
rij
rmax

)2
]
, (6.2)
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Figure 6.1: Comparison between the FENE potential and the harmonic
potential for bonded particles as used in Lennard-Jones chains. The FENE
potential is always used in addition to a potential with repulsion, in this case
the Lennard-Jones potential. The FENE potential has a spring constant k =
30εLJ and a maximum bond length rmax = 1.5σLJ ., resulting in a potential
minimum around 0.96σLJ for low pressures. The harmonic potential has a
spring constant of k = 3000εLJ and a bond length r0 = σLJ .

where ks is the spring constant and rmax is the maximum bond length. The FENE
potential was proposed as an empirical bond potential that behaves as an harmonic
spring and therefore gives a Gaussian bond length distribution at small bond lengths
(rij/rmax < 0.2), but becomes stiffer at larger bond lengths (Warner, 1972). This
second property has been of importance in the theory of coarse-grained bead-spring
polymer models, because it prevents the chain to from being stretched to infinite
length (Bird et al., 1987).

The potential is purely attractive, and is therefore often used in addition to
another potential to prevent particle overlap. For the Lennard-Jones chain, the
repulsion is provided by including the Lennard-Jones interaction for the bonded
particles: υij = υFENEij +υLJij . The FENE bonds in the Lennard-Jones chain have a
spring constant k = 30εLJ and maximum bond length rmax = 1.5σLJ . This results
in a potential minimum for a bond length of about 0.96 (see figure 6.1). This choice
of potential parameters leads however to non-Gaussian bond length distributions.

More recent simulations of Lennard-Jones chains have also used harmonic bonds,
and in that case have a spring constant of k = 3000εLJ and a reference bond length
of r0 = σLJ (Riggleman et al., 2009, 2010; Shavit et al., 2013). In figure 6.1 this
potential is plotted, together with the FENE bond an the Lennard Jones poten-
tial. As can be seen the harmonic bond is longer than the FENE bond, and more
narrow. Both bonds are shorter than the average interparticle distance in the low
pressure liquid. The different bond length will probably have a significant effect
on the molecular structure. On the other hand, the Lennard-Jones chain with har-
monic bonds is expected to have very similar behavior to the Lennard-Jones chain
with rigid bonds, due the the similar bond length and the narrow potential of the
potential well. The Harmonic bond was therefore chosen for comparison with the
rigid bond results from the previous chapter.

Section 6.1.1 shows the effect of bond type on the dynamics, structure, and fluc-
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Figure 6.2: The intermolecular (left) and intramolecular (right) radial
distribution functions for chains with rigid (blue solid lines) and harmonic
(dashed red lines) bonds. The intermolecular structure is identical for both
bond types. The intramolecular structure is slightly different, mainly due to
the bond length distribution for the harmonic bonds.

tuations of the Lennard-Jones chain liquid. The following sections discuss different
methods to obtain isomorphs for the liquid with harmonic bonds.

6.1.1 Rigid bonds versus flexible bonds

Since the rigid and harmonic bonds have the same length, the difference in the
overall liquid structure is expected to be minimal. This is indeed the case for the
intermolecular radial distribution function g(r) plotted in figure 6.2. When varying
only the bond type, the intermolecular g(r) is unchanged. The only structural effect
of the harmonic bonds can be seen in the intramolecular g(r), where a widening of
the bond peak can be seen.

Figure 6.3 shows the effect of the bond type on the dynamics, in this case the
segmental and center of mass incoherent intermediate scattering function FS(q, t)
and the orientational autocorrelation function of the end-to-end vector 〈R(0)R(t)〉
. Here the bond type causes bigger differences. For the high temperature (T = 0.7)
state point, the dynamics are slightly but visibly faster for the harmonic bonds.
However, when temperature is decreased towards a more viscous state point (T =
0.5), the effect of bond type becomes more pronounced.

So far the effect of bond type on the liquid seems qualitatively very small. There
is however a big effect on bond type that becomes immediately apparent when
looking for strong correlations. In chapter 5 it was shown that the rigid bonds have
correlations between their potential energy U and virial W , albeit not as strongly as
many atomic liquids. For the state point (ρ, T ) = (1, 0.7) The correlation coefficient
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Figure 6.5: State points from the rigid bond chain isomorph with starting
state point ρ0 = 1.0, T0 = 0.8, now simulated with harmonic bonds. (a)
With a spring constant of k = 3000, the dynamics are slightly less invariant
than for the rigid bonds. (b) With more flexible bonds (spring constant
k = 300) the dynamics become much less invariant.

was R = 0.86 and the slope γ = 7.36. Figure 6.4 shows that these correlations
completely disappear when using harmonic bonds. For the same state point we find
for the harmonic bonds R = 0.28 and γ = 4.36. This value of γ cannot be used
to trace out an isomorph, it leads to dynamics that are far from invariant. The
absence of correlations raises the question if any of the molecular liquids that are
simulated using flexible bonds have correlations and/or conform to the isomorph
theory.

6.2 Simulating rigid bond isomorphs using flexible bonds

Since the differences in the dynamics of the chains with rigid bonds and harmonic
bonds is small, an obvious first attempt to obtain an isomorph with the harmonic
springs, is to use the same isomorphic state points as the rigid bond isomorph. In
order for this to work, the shape of the isomorphs, h(ρ), has to be the same for
the rigid bonds and the harmonic bonds. The small difference in the dynamics
in figure 6.3 is not necessarily a problem if this difference is constant along the
isomorph.

Figure 6.5(a) shows the dynamics of the harmonic bond chain at the state points
of the least viscous isomorph from chapter 5 (with ρ0 = 1.0, T0 = 0.8). For the stiff
spring with spring constant k = 3000 , the collapse of the curves is not perfect, but
the dynamics are reasonably similar. For the more flexible harmonic bonds however,
the set of state points clearly does not resemble a curve with invariant dynamics.
The chains with harmonic spring thus have dynamics that are not only faster than
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Figure 6.6: The intermolecular structure for chains with harmonic bonds
with spring constants k = 3000 (a) k = 300 (b). The state points simulated
are the state points of the isomorph for rigid bond chains which starts at
ρ0 = 1.0, T0 = 0.8. The collapse is not perfect; for the high spring constant
the left side of the first peak seems to shift slightly, for the low spring constant
the height of the peaks changes significantly.

the dynamics of rigid bond chains (figure 6.3), but also have a different state point
dependence. In other words, curves of invariant dynamics are not described by the
same h(ρ) for the different bond types.

We now investigate the structure for the same set of state points for both spring
constants by calculating plotting the intermolecular radial distribution function (fig-
ure 6.6). Here there is no obvious difference between the chains with the harmonic
bonds, and the isomorph of the rigid bond chains. So the observation that rigid
bonds have the same intermolecular structure as stiff harmonic bonds seems to be
correct over a large range of densities. The simulations of the low spring constant
obviously different; here the it is especially the peak height that changes.

If we go to more viscous isomorphs, where the dynamics are more temperature
dependent, the difference between rigid and harmonic bonds becomes even more
pronounced. Figure 6.7 shows the dynamics and the structure of the harmonic bond
chain with spring constant k = 3000 at the state points from the rigid bond isomorph
with ρ0 = 1.0, T0 = 0.7. The spread of the intermediate scattering functions is larger
than in figure 6.5(a) and it is quite safe to assume that this will only be worse when
going to more viscous state points.
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Figure 6.7: State points from the rigid bond chain isomorph that was
started at ρ0 = 1.00, T0 = 0.7, simulated with harmonic bonds with spring
constant k = 3000. (a) Especially for the dynamics, it is clear that the
invariance is less at these lower temperatures then at the higher temperature
state points of figure 6.5(a). (b) The collapse of the intermolecular radial
distribution functions is not very good at these state points.

6.3 Density scaling of Lennard-Jones chains with har-
monic bonds

So far we have found that the chains with stiff harmonic bonds have similar behavior
to the chains with rigid bonds. Apart from the absence of potential energy-virial
correlations, the dynamics are a little bit faster and have a different density de-
pendence. We therefore expect that also Lennard-Jones chains with flexible bonds
should have isomorphs in their phase diagram, at least if isomorphs are defined
as curves in the phase diagram along which structure and dynamics are invariant.
However, due to the lack of correlations between the potential energy and virial
fluctuations, it is not possible to use equation 2.5 to obtain the scaling exponent
γ from the fluctuations. Moreover, it is not possible to use the numerical direct
isomorph check (equation 2.15) by scaling the simulation box to a different density
during the simulation, because it is known that the intramolecular structure, and
especially the bonds do not scale with density.

Instead, we have attempted to use a more “old fashioned” approach to obtain
curves of invariant dynamics. Where in section 5.4 we used our h(ρ) obtained from
the isomorphs to scale the dynamics at different isochores on to of each other. We
now do the opposite by empirically scaling the dynamics of harmonic bond chains
to obtain values of h(ρ).

The relaxation times as determined from the segmental incoherent intermediate
scattering function and the orientational autocorrelation function of the end-to-end
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vector are shown for five different isochores in figure 6.8(a). Again it was not possible
to go to the higher relaxation times for all densities due to phase separation (or
negative pressure) at low densities and crystallization at high densities. Nevertheless
a large range of relaxation times could be reached for some densities. Each isochore
was then scaled by hand to collapse onto the ρ = 1.00 isochore, using h(ρ) as
a scaling parameter. Thus for each isochore, a scalar h was chosen by hand to
collapse the relaxation times. The result of the scaling is plotted in figure 6.8(b),
showing a good collapse.

The h(ρ) that is thus obtained for the harmonic bond chain is compared with
the h(ρ) of the rigid bond chains in figure 6.9. There is a noticeable difference
in the shapes of h(ρ) for the two models. The Difference is most obvious at high
density, where the harmonic bond h(ρ) is lower than the rigid bond h(ρ). This is in
agreement with the data in figure 6.7, that show that the rigid bond h(ρ) results in
too fast dynamics for the harmonic spring isomorph at high density, which means
that the temperature is too high at those state points. Again, we fit the h(ρ) values
of the harmonic springs to a function of the form 2ρα − ρβ. The resulting function
h(ρ) = 2ρ4.32 − ρ1.07 fits the data well.

From this, we can calculate γ(ρ) using γ(ρ) = d lnh(ρ)/ d ln ρ using equa-
tion 2.24. At low densities the harmonic bond chain has a lower γ than the rigid
bonds while at high densities the rigid bonds have a higher γ. There might be a
significant error in the data at low density, due to the fitting. In figure 6.9 there is
a visible difference between the fit and the data point at ρ = 0.96. Moreover, cal-
culating γ(ρ) for the rigid bonds also gives a function that disagrees at low density
with the γ values from the fluctuations.

Now that we have an expression for h(ρ), we can use it to simulate an isomorph1.
We create a set of isomorphic state points using T0 = 0.7 at ρ = 1 (the same
state point was in the rigid bond isomorph simulated in section 6.2) using T =
T0(2ρ4.32 − ρ1.07). Different measures of the dynamics are plotted in figures 6.11
and 6.12. The dynamics are exactly invariant, except for the higher Rouse modes,
which were also not invariant on the isomorphs of the rigid bond chains.

As we have seen in the previous chapter, not all structure is invariant on the
isomorph for the Lennard-Jones chains with rigid bonds. The reason for this is
that the bonds do not scale with density, and are therefore not constant in reduced
units. Since we now have harmonic bonds, their length may depend on density
and the intramolecular structure may be invariant on the isomorph. The bond
length distributions are plotted in figure 6.11 and are clearly not invariant on the
isomorph. Comparison with the bond length distributions along the isochore and
isotherm shows that the width of the distribution depends solely on the temperature.
The average bond length is slightly state point dependent (in normal Lennard-Jones
units), but this is only a small effect and the average bond length does not become
constant when expressed in reduced units.

When plotting the mean square end-to-end vector 〈R2〉 and mean square radius
of gyration 〈R2

g〉 the results are qualitatively the same as for the rigid bonds. The
molecular size is only dependent on density; it is practically constant on an isochore.

1“Isomorph” may not be the best name for this set of state points. Since only the relaxation
time has been used as a criterion in the selection of these state points, “isochrone” might be a more
appropriate term (Roed et al., 2013; Tölle, 2001).
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6.4 The dynamic Prigogine-Defay ratio

Since the dynamics at long time are so similar for the harmonic bonds and the
rigid bonds, but the short time dynamics very different, we expect that the har-
monic bonds only have affect the U ,W correlations at high frequencies. We test
this by looking at the frequency dependence of the correlations. This is closely re-
lated to earlier work related to the Prigogine-Defay ratio, hence first explain some
background on this.

6.4.1 Background

The idea of a single-parameter liquid is not a new idea, and already in the early
days of glass science the idea was used in the investigation of the glass transition. It
was found that if it is possible to describe the a liquid system with only one order
parameter, then the Prigogine-Defay ratio given by

Π = − ∆cp∆κT
Tg(∆αp)2

(6.3)

is unity (Davies and Jones, 1953a,b; Prigogine and Defay, 1954). Here Tg is the
glass transition temperature, cp is the isobaric specific heat per unit volume, κT
is the isothermal compressibility, αp is the isobaric thermal expansion coefficient,
and ∆ denotes the difference in these quantities when going from the liquid to the
glass, extrapolated to Tg. The equality also follows from the Ehrenfest equations
for second order phase transitions, although the glass transition was not considered
a phase transition (Davies and Jones, 1953a; Gee, 1947).

Moreover, it was argued that the Prigogine-Defay ratio can never be smaller
than unity (Davies and Jones, 1953b; Gupta and Moynihan, 1976). This was later
confirmed by experimental data; most glass formers do indeed have a Prigogine-
Defay ratio larger than one (Berg and Simha, 1976; Gupta and Moynihan, 1976; Oels
and Rehage, 1977), meaning that in general, a single order parameter description
of glasses did not seem feasible.

This definition of the Prigogine-Defay ratio in equation 6.3 is however not rigor-
ous, firstly because Tg is not well defined, and secondly because material properties
of a glass can change slightly over time. Therefore the differences in the material
properties of the glass and the liquid at Tg are ill defined as well. Moreover, extrap-
olation is inherently not rigorous. A more rigorous definition was proposed using
linear response measurements of viscous liquids (Moynihan and Gupta, 1978; Roe,
1977):

Πlin = − [cp(ω → 0)− cp(ω →∞)][κT (ω → 0)− κT (ω →∞)]

T [αp(ω → 0)− αp(ω →∞)]2
, (6.4)

called the linear Prigogine-Defay ratio. This definition has the advantage that it is
defined for a viscous liquids of any temperature T , so it only depends on the well
defined equilibrium quantities. On the other hand, the definition has the disadvan-
tage that it is hard to do linear response measurements over such a large frequency
range; so far, Πlin has only been determined once experimentally (Gundermann
et al., 2011). This experimental challenge led to the definition of a linear dynamic
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Prigogine-Defay ratio by Ellegaard et al. (2007), using the imaginary (loss) part of
the linear response functions:

ΛpT (ω) = −
c′′p(ω)κ′′T (ω)

T [α′′p(ω)]2
, (6.5)

Ellegaard et al. (2007) also showed the definitions of the dynamic Prigogine-Defay
ratio that naturally occur when using other combinations of control variables than
p and T ; ΛSV (ω), ΛSp(ω), and ΛV T (ω). It was moreover shown that if one of these
Λ(ω) = 1 at one frequency, then Λ(ω) = 1 at all frequencies for all control variables.

6.4.2 Calculating the Prigogine-Defay ratio in simulations

Our simulations are done in the NVT ensemble, so the natural dynamic Prigogine-
Defay ratio for this ensemble is (Ellegaard et al., 2007)

ΛV T (ω) = −c
′′
V (ω)K ′′T (ω)

T [β′′V (ω)]2
, (6.6)

where βV is the isochoric pressure coefficient, and KT the isothermal bulk modulus.
Using the fluctuation-dissipation theorem, it is possible to calculate the response

functions from equilibrium fluctuations. For instance, the isochoric specific heat can
be calculated from the autocorrelation function of the energy using (Nielsen, 1999;
Nielsen and Dyre, 1996)

cv(ω) =
〈(∆E)2〉
kBT

− iω

kBT

∫ ∞

0
〈∆E(0)∆E(t)〉(cos(ωt) + i sin(ωt)) dt . (6.7)

Since we are only interested in the imaginary part we write (for the excess part)

c′′v,ex(ω) =
ω

kBT

∫ ∞

0
〈∆U(0)∆U(t)〉 cos(ωt) dt . (6.8)

The autocorrelation function is a real and even function, so
∫∞

0 = 1
2

∫∞
∞ . Denot-

ing the cosine transform as F̂cω(g(t)) =
∫∞
∞ g(t) cos(ωt)dt we can write following

Pedersen (2009) for the three response functions per particle

c′′V,ex(ω) =
ω

2NkBT 2
F̂cω〈∆U(0)∆U(t)〉V T , (6.9)

β′′V,ex(ω) =
ω

2NV kBT 2
F̂cω〈∆U(0)∆W (t)〉V T , (6.10)

K ′′T,ex(ω) = − ω

2NV 2kBT
F̂cω〈∆W (0)∆W (t)〉V T . (6.11)

This is now the excess quantity per particle.
On a computer, one usually calculates (auto)correlation functions of discrete

data using the Wiener-Khinchin theorem, which states that the autocorrelation
function of a function g(t) is the inverse transform of its power spectrum |G(ω)|2 =
G(ω)G(ω). Likewise, the crosscorrelation of two functions g(t) and h(t) is the inverse
transform of G(ω)H(ω) (Press et al., 2007). Denoting the inverse Fourier transform
as F̂−1

ω and the Fourier transform of ∆U(t) as ∆U(ω) the Wiener-Khinchin states
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that 〈∆U(0)∆U(t)〉V T = F̂−1
ω |∆U(ω)|2. Taking the specific heat as example, equa-

tion 6.9 can then be rewritten as

c′′V,ex(ω) =
ω

2NkBT 2
F̂cω F̂−1

ω |∆U(ω)|2 . (6.12)

This can be simplified further by noting that the inverse Fourier transform of an
real and even function yields a real and even function (Press et al., 2007). In other
words, the inverse Fourier transform F̂−1

ω (and also the forward Fourier transform
F̂ω) of an even function reduces to the cosine transform F̂cω. Therefore

c′′V,ex(ω) =
ω

2NkBT 2
F̂cω F̂−1

ω |∆U(ω)|2 =
ω

2NkBT 2
|∆U(ω)|2 , (6.13)

because, as we have just seen, the cosine transform is its own inverse. This can also
be done for the compressibility and the pressure coefficient, yielding a total of three
response functions

c′′V,ex(ω) =
ω

2NkBT 2
|∆U(ω)|2 , (6.14)

β′′V,ex(ω) =
ω

2NV kBT 2
∆U(ω)∆W (ω) , (6.15)

K ′′T,ex(ω) = − ω

2NV 2kBT
|∆W (ω)|2 . (6.16)

Figure 6.15 shows these response function for the Lennard-Jones chain system.
The α-relaxation peak can be seen in all three response functions at a frequency
of around ω ≈ 0.15, which corresponds to a relaxation time of 42. This value
is reasonably close to the time at which the (segmental) intermediate scattering
function vanishes. At low frequencies all three response functions have a slope of
around 1, which is expected for the low frequency side of the α-relaxation. The fact
that all three slopes are the same also indicates that the linear dynamic Prigogine-
Defay ratio is constant in that frequency range. At high frequencies on the other
hand, the response functions show very dissimilar behavior due to the effects of the
springs.

To show how similar the shapes of the response functions are, they are scaled to
collapse at low frequencies in figure 6.17. Only at high frequencies the shapes of the
three response functions differ significantly. The scaling parameters we determined
by fitting a linear function y = x + b to the low frequency part of the response
functions in the log-log plane. From the fitting parameters we estimate the dynamic
Prigogine-Defay ratio to be 10bc+bK−2bc/T = 100.318+2.04−2 · 1.13/0.7 = 1.80 using
equation 6.6.

If we now express the dynamic Prigogine-Defay ratio in terms of the Fourier
transforms of fluctuations as

ΛV T (ω) = −
c′′V,ex(ω)K ′′T,ex(ω)

T [β′′V,ex(ω)]2
=
|∆U(ω)|2|∆W (ω)|2
[∆U(ω)∆W (ω)]2

, (6.17)

we see that this definition resembles the inverse square of the definition of the cor-
relation coefficient R (see equation 2.4). We therefore define a frequency dependent
correlation coefficient

R(ω) =
1√

ΛV T (ω)
=

∆U(ω)∆W (ω)√
|∆U(ω)|2|∆W (ω)|2

. (6.18)
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Figure 6.15: The imaginary (loss) parts of the isochoric specific heat c′′V,ex,
the negative isothermal bulk modulus −K ′′T,ex and the isochoric pressure
coefficient β′′V,ex for the Lennard-Jones chain model at density 1.00 and tem-
perature 0.7, calculated using equations 6.14 - 6.16. The data have been
obtained by averaging over 17 independent simulations. The simulations
were run for 227 steps, sampling the potential energy and virial every four
steps. This high sampling frequency was shown to be high enough to pre-
vent aliasing (Press et al., 2007). Logarithmic data binning with 20 bins per
decade has been used to smooth the final data.
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Figure 6.16: The imaginary part of the frequency dependent configura-
tional isochoric specific heat, calculated from data with different sample
frequencies. The two lowest sample intervals correspond to saving the en-
ergy every timestep and every four timesteps, And the resulting response
functions are indistinguishable at high frequencies, indicating an absence of
aliasing. For the larger sampling intervals, it is clear that there is spec-
tral density from outside the frequency window is folded into the frequency
window (Press et al., 2007).
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Figure 6.17: The same data as in figure 6.15, but now the data have been
scaled to collapse at low frequencies. At low frequencies the collapse is good,
although there appear to be small deviations at the top of the α-peak. The
inset shows the determination of the scaling parameters. A linear function
of log10(ω) with slope unity was fitted to the data for ω < 0.01, with the
offsets b as fitting parameters. The response functions in the main graph
were scaled by 10−b.
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Similarly, we define a frequency dependent version of γ:

γ(ω) =
∆U(ω)∆W (ω)

|∆U(ω)|2 =
V β′′V,ex(ω)

c′′V,ex(ω)
. (6.19)

The link between the Prigogine-Defay ratio is nothing new, Pedersen et al. (2008a)
have shown for instance that the strongly correlating Kob-Anderson Lennard-Jones
liquid indeed has a Prigogine-Defay ratio close to unity. Moreover, the Prigogine-
Defay ratio of molecular and polymeric van der Waals-bonded glass formers is lower
(closer to unity) (Gundermann et al., 2011; Takahara et al., 1999; Zoller, 1982) than
that of inorganic and hydrogen bonded glass formers (Dingwell et al., 1993; Gupta
and Moynihan, 1976; Samwer et al., 1999; Wondraczek and Behrens, 2007)2.

The low frequency correlation coefficient as shown in figure 6.18 is around 0.8,
which is much higher than the standard correlation coefficient R = 0.28 as found
from the instantaneous values. The low frequency coefficient is comparable to the
instantaneous correlation coefficient of the chain with rigid bonds. This indicates
that also the LJC model with harmonic springs may have isomorphs in its phase
diagram.

At low frequencies we find that γ(ω < 1) ≈ 6.5 which is lower than the value for
the LJC liquid with rigid bonds at the same state point, where we find γ = 7.36.

2For an overview of Prigogine-Defay ratios from the literature, see Pedersen (2009) and Gun-
dermann et al. (2011).
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This indicates that the two LJC model have a different state point dependence of
the dynamics. In particular, the dynamics of the spring model has a smaller density
dependence.

Although it seems that it is possible to determine the scaling exponent γ nec-
essary to trace out an isomorph, this method has some disadvantages. To prevent
aliasing, it is necessary to choose the sample interval small enough to include all
high frequency contributions to the spectrum. This means that the sample interval
should not be bigger than 0.01 LJ units. On the other hand, the total simulation
time has to be large enough to get good statistics at low frequencies. This means
that the length of the simulation has to be longer than for a normal equilibrium
simulation, making the construction of the whole isomorph in an iterative fashion a
very time consuming process. For this reason the frequency dependent γ(ω) has not
been used to show that this model obeys the isomorph theory. The data do however
show that the liquid has “hidden correlations” in the low frequency component of
the U and W fluctuations, and how these correlations can be found.

6.5 Conclusion

We have shown that the Lennard-Jones chain liquid with harmonic bonds has curves
in its phase diagram that resemble the isomorphs found for the rigid bond chains.
However, the harmonic bonds destroy the energy-virial correlations almost com-
pletely, and the γ value found from the fluctuations cannot not be used to find
a curves of invariant dynamics. This means that the pseudoisomorphic curves we
have identified are not configurational adiabats.

By going to the frequency domain we have found that the harmonic bonds only
destroy the correlations at high frequency. At low frequency we find a correlation
coefficient and γ that are close to the values found for the chains with rigid bonds.
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102.2, pp. 308–316. doi: 10.1103/PhysRev.102.308 (cit. on p. 28).

Girifalco, L. A. (1992). “Molecular properties of C60 in the gas and solid phases”.
In: J. Phys. Chem. 96, pp. 858–861 (cit. on pp. 45, 46).

Glotzer, S. C. and W. Paul (2002). “Molecular and mesoscale simulation methods
for polymer materials”. In: Annu. Rev. Mater. Res. 32, pp. 401–36. doi: 10.
1146/annurev.matsci.32.010802.112213 (cit. on p. 50).

Gnan, N., T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre (2009).
“Pressure-energy correlations in liquids. IV. “Isomorphs” in liquid phase dia-
grams”. In: J. Chem. Phys. 131.23, p. 234504. doi: 10.1063/1.3265957 (cit. on
pp. i, ii, 11, 14, 15, 17, 21, 25, 28, 30, 43, 61, 62, 69).

Gnan, N., C. Maggi, T. B. Schrøder, and J. C. Dyre (2010). “Predicting the effective
temperature of a glass”. In: Phys. Rev. Lett. 104.23, p. 125902. doi: 10.1103/
PhysRevLett.104.125902 (cit. on p. 70).

Goel, T., C. Nath Patra, T. Mukherjee, and C. Chakravarty (2008). “Excess entropy
scaling of transport properties of Lennard-Jones chains”. In: J. Chem. Phys.
129.16, p. 164904. doi: 10.1063/1.2995990 (cit. on p. 50).
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Kniaź, K., J. E. Fischer, L. A. Girifalco, A. R. McGhie, R. M. Strongin, and A. B.
Smith III (1995). “Fullerene Alloys”. In: Solid State Commun. 96.10, pp. 739–
743. doi: 10.1016/0038-1098(95)00541-2 (cit. on p. 46).

Kob, W. and H. C. Andersen (1994). “Scaling behavior in the β-relaxation regime
of a supercooled Lennard-Jones mixture”. In: Phys. Rev. Lett. 73.10, p. 1376.
doi: 10.1103/PhysRevLett.73.1376 (cit. on pp. 40, 106).
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Appendix A

The Buckingham potential

In the Lennard-Jones potential, the repulsion between two atoms due to the Pauli
exclusion principle is given by an inverse power law (IPL). This has been found
to be a relatively good model for the interatomic repulsion (Jones, 1924). Slightly
after this, due to the advent of quantum physics, it was possible to calculate the
functional form of the short range repulsion between two atoms. The was done by
Slater (1928), who found that the repulsion was better described by an exponential.
Buckingham (1938) used a potential like the Lennard-Jones potential but with an
repulsive exponential to calculate the equation of state of several noble gasses.

In this thesis, we have used the following form of the Buckingham potential (Koči
et al., 2007; Young et al., 1981):

υ(r) = ε

(
6

α− 6
exp

[
α

(
1− r

rm

)]
− α

α− 6

(rm
r

)6
)
. (A.1)

This to make it easily comparable with the Lennard-Jones potential. The distance
rm is the minimum of the potential, ε the depth of the potential well, and the
parameter α is related to the width of the potential well and therefore the steepness
of the repulsion.

The Buckingham potential has been shown to be indeed better than the Lennard-
Jones potential in the reproduction of experimental data of inert gasses (Abraham-
son, 1963; Kilpatrick et al., 1955; Mason and Rice, 1954). Note also that in figure 2.2
in chapter 2 the Buckingham potential is better able to reproduce the behavior and
magnitude of γ.

Despite the correctness of the Buckingham potential, it has never been able
to reach the popularity of the Lennard-Jones potential in the field of computer
simulations. The main reason for this is simply the extra computational time it
takes to calculate an exponential.

Except figure 2.2, all simulation data of the Buckingham potential are from a
Kob-Andersen binary glass-forming mixture (Kob and Andersen, 1994). The po-
tential parameters ε = 1 and rm = 21/6 were the same as for the Lennard-Jones
potential, and α = 14.5 is a common value for the Buckingham potential.
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Appendix B

Additions to RUMD

The simulations done for this thesis were performed using the Roskilde University
Molecular Dynamics (RUMD) code, which is developed by the Glass and Time
group. This means I implemented several functionalities in the code because I
needed them for research. Therefore here a small list of things I have implemented
in the code.

• Pair potentials: Several of the pair potentials used in this thesis were not
implemented yet, including the Yukawa, Girifalco, and the two new potentials
S6 and S12-6. Luckily, RUMD has been designed to make this a relatively
easy task.

• Linear solver on the GPU: For the simulation of rigid bonds, a set of linear
equations has to be solved for each molecule to keep the bond lengths fixed.
This is done fastest on the GPU, where it can be done using multiple cores per
molecule and without sending data back and forth to the CPU. For the linear
molecules simulated in this thesis, an optimized solver was also implemented
that makes use of the fact that for these molecules, the matrix to be solved
can be written in tridiagonal form.

• Box scaling for molecules: For the so called isomorphic “jumps” in the
phase diagram that were performed in chapter 5, it was necessary to imple-
ment a function to scale the box with the centers of mass of the molecules,
while keeping intramolecular distances and orientations fixed and handling
the periodic boundary conditions correctly.

• Analysis tools for molecules: Some quantities specific for molecules and/or
linear molecules have been included in the RUMD distribution, such as cal-
culation of Rouse modes, the end-to-end vector, and their autocorrelation
functions.

• Python output manager: An output manager has been implemented in
the python interface, making it possible to define a data analysis function in
the python script that is called during the simulation. This provides a means
to analyze any data that are present in the program during the simulation on
the fly in the simulation script.
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108 APPENDIX B. ADDITIONS TO RUMD

• Sorting for molecules: In order to optimize the code for bigger systems, the
particles were sorted in such a way that particles that are close to each other
in the simulation are also close in memory. I implemented functions in the
classes that handle data on molecules to keep track of the changing memory
locations of these particle during the simulation.
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Abstract. It is demonstrated by molecular dynamics simulations that liquids interacting via the
Buckingham potential are strongly correlating, i.e., have regions of their phase diagram where constant-
volume equilibrium fluctuations in the virial and potential energy are strongly correlated. A binary
Buckingham liquid is cooled to a viscous phase and shown to have isomorphs, which are curves in the
phase diagram along which structure and dynamics in appropriate units are invariant to a good approxi-
mation. To test this, the radial distribution function, and both the incoherent and coherent intermediate
scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its
exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear
term in the region of the first peak of the radial distribution function. As a consequence the dynamics of
the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-
law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids,
demonstrating that the existence of strong correlations and isomorphs does not depend critically on the
mathematical form of the repulsion being an inverse power law.

1 Introduction

Recently a series of papers has been published concern-
ing so-called strongly correlating liquids and their phys-
ical properties [1–6]. Liquids that exhibit these strong
correlations have simpler thermodynamic, structural, and
dynamical properties than liquids in general. A strongly
correlating liquid is identified by looking at the correla-
tion coefficient of the equilibrium fluctuations of the po-
tential energy U(r1, . . . , rN ) and virial W (r1, . . . , rN ) ≡
−1/3

∑
i ri · ∇riU(r1, . . . , rN ) [7] at constant volume:

R =
〈ΔWΔU〉√

〈(ΔW )2〉 〈(ΔU)2〉
. (1)

Here brackets denote averages in the NVT ensemble (fixed
particle number, volume, and temperature), Δ denotes the
difference from the average. The virial W gives the con-
figurational part of the pressure [7],

pV = NkBT (p1, . . . ,pN ) + W (r1, . . . , rN ). (2)

Strongly correlating liquids are defined [1] as liquids that
have R ≥ 0.9.

The origin of strong WU correlations was investigated
in detail in references [3,4] for systems interacting via the

a e-mail: tbs@ruc.dk

Lennard-Jones (LJ) potential:

υ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]
. (3)

The fluctuations of W and U are dominated by fluctu-
ations of pair distances within the first neighbor shell,
where the LJ potential is well approximated by an ex-
tended inverse power law (eIPL), defined as an inverse
power law (IPL) plus a linear term [3]:

υeIPL(r) = Ar−n + B + Cr. (4)

The IPL term gives perfect UW correlations, whereas
the linear term contributes little to the fluctuations at
constant volume: when one pair distance increases, oth-
ers decrease, keeping the contributions from the linear
term almost constant (this cancellation is exact in one
dimension). The consequence is that LJ systems inherit
some of the scaling properties of the IPL potential – they
have a “hidden scale invariance” [4,8]. Prominent among
the properties of strongly correlating liquids is that they
have “isomorphs”, i.e., curves in the phase diagram along
which structure, dynamics, and some thermodynamical
properties are invariant in appropriate units [5,6]. The
physics of strongly correlating liquids was briefly reviewed
recently in reference [9].

Since the LJ system consists of two IPL terms, it is
perhaps tempting to assume that a repulsive (inverse)
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power law is necessary for the hidden scale invariance de-
scribed above. In the present paper we use the modified
Buckingham (exp-six) pair potential to show that this is
not the case. The Buckingham potential was first derived
by Slater from first-principle calculations of the force be-
tween helium atoms [10]. Buckingham later used this form
of the potential to calculate the equation of state for dif-
ferent noble gases [11]. The Buckingham potential has an
exponential repulsive term, while the attractive part is
given by a power law [12,13]:

υ(r) = ε

(
6

α − 6
exp

[
α

(
1 − r

rm

)]
− α

α − 6

(rm

r

)6
)

.

(5)
Here ε is the depth of the potential well and rm speci-
fies the position of the potential minimum. The param-
eter α determines the shape of the potential well. The
Buckingham potential is better able to reproduce experi-
mental data of inert gasses than the LJ potential [14–16],
but is also computationally more expensive (unless look-
up tables are utilized [7]).

All simulation data in this paper were obtained from
molecular dynamics in the NVT ensemble. The samples
contained 1000 particles. The simulations were set up
by instant cooling from a high temperature state point
followed by an equilibration period, to ensure the sim-
ulations were independent from each other. The simula-
tions were performed with the RUMD molecular dynamics
package [17], which is optimized for doing computations
on state-of-the-art GPU hardware.

2 Correlations in single-component
Buckingham liquids

To compare the simulations with experiments [18], ar-
gon parameters from reference [14] were used; α = 14.0,
rm = 0.3866 nm, ε/kB = 123.2 K. As can be seen in Fig-
ure 1a, the single-component Buckingham (SCB) liquid is
strongly correlating (R ≥ 0.9) in parts of the phase dia-
gram, particularly at high densities and/or temperatures.
The correlation coefficients (Eq. (1)) of the Buckingham
systems are very similar to those of argon and the LJ sys-
tem (dotted line in Fig. 1). This is a first indication that
the actual functional form of the repulsive part of the po-
tential does not have to be an inverse power law in order
for a system to exhibit strong WU correlations.

Another interesting property of the fluctuations is the
quantity γ defined [4,5] as

γ =
〈ΔWΔU〉
〈(ΔU)2〉 . (6)

When a system is strongly correlating (R is close to one),
ΔW ≈ γΔU . For IPL potentials γ is constant and equal
to n/3 and R = 1. For non-IPL potentials, however, R < 1
and γ may change with temperature and density as seen in
Figure 1b [1,19]. Especially for R < 0.9, we find γ changing
rapidly. The curves are similar for the 20.0 mol/L SCB and
SCLJ systems, except for a vertical offset.

0.8

0.9

1.0

R argon 30.0 mol/L
argon 20.0 mol/L
SCB 30.0 mol/L
SCB 20.0 mol/L
SCLJ 20.0 mol/L

100 200 300 400 500 600
T [K]

4.5

5.0

5.5

γ

(a)

(b)

Fig. 1. (Color online) (a) The correlation coefficient, R, as
a function of temperature on isochores for single-component
Buckingham (SCB), single-component Lennard-Jones (SCLJ),
and argon. For SCB and SCLJ argon values were used for all
potential parameters [14], and R was calculated directly from
equation (1). For argon R was calculated from experimental
data [18] as described in references [1,3]. The correlations are
strongest for state points with both high density and high tem-
perature, and the difference between the Buckingham and the
LJ potential is small. The correlation coefficient R > 1 for
low-temperature 20.0 mol/L argon is of course unphysical and
either caused by an uncertainty in the experimental data or the
approximations applied in the calculation of R (see Refs. [3,20]
for details). (b) The value of γ (Eq. (6)) plotted versus temper-
ature for the same systems as in (a). For argon γ was calculated
from experimental data [18] using equation (7). γ decreases
slowly for increasing temperatures, except when the correla-
tion coefficient is low (R � 0.9).

Fluctuations in U and W are of course only directly
accessible in simulations. For experimental systems one
must revert to the use of thermodynamic quantities that
reflect the fluctuations in U and W . For instance, the
configurational part of the pressure coefficient βex

V =
(∂(W/V )/∂T )V and the configurational part of the iso-
choric specific heat per unit volume cex

V = (∂(U/V )/∂T )V

can be used to to calculate γ for argon as follows [1,3,5]:

γ =
βex

V

cex
V

. (7)

The values of γ for argon obtained in this way are plotted
in Figure 1b, and the agreement with the Buckingham sys-
tems is good. This confirms that the Buckingham poten-
tial produces more accurate predictions of experimental
argon data than the LJ potential.

Interestingly, low density argon has a higher correla-
tion coefficient than high density argon. This is the op-
posite of what is found for the Buckingham and the LJ
potentials. Furthermore, the buckingham data are in bet-
ter agreement with the argon data at low density than at
high density. At the present we do not have any explana-
tion for these observations.
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3 Isomorphs in binary Buckingham mixtures

Strongly correlating liquids are predicted to have iso-
morphs, which are curves in the phase diagram along
which structure, dynamics, and some thermodynamical
properties are invariant in appropriate reduced units [5,6].
Introducing reduced coordinates as r̃i = ρ1/3ri, two state
points (1) and (2) are defined to be isomorphic if pairs of
microscopic configurations with same reduced coordinates

(r̃
(1)
i = r̃

(2)
i ) have proportional configurational Boltzmann

weights:

e
−U

(
r
(1)
1 ,...,r

(1)
N

)
/kBT1 = C12e

−U
(
r
(2)
1 ,...,r

(2)
N

)
/kBT2 . (8)

Here the constant C12 depends only on the two state
points and equation (8) is required to hold to a good ap-
proximation for all physically relevant configurations [6].
An isomorph is a curve in the phase diagram for which
all points are isomorphic (an isomorph is a mathematical
equivalence class of isomorphic state points). The isomor-
phic invariance of structure, dynamics, and some thermo-
dynamical properties – all in reduced units – can be de-
rived directly from equation (8) [5]. Only IPL liquids have
exact isomorphs, but it has been shown that all strongly
correlating liquids have isomorphs to a good approxima-
tion (Appendix A of Ref. [5]).

Among the thermodynamical properties that are iso-
morphic invariant is the excess entropy, Sex ≡ S − Sideal,
where Sideal is the entropy of an ideal gas at the same tem-
perature and density. In the following, isomorphic state
points were generated by utilizing that the quantity γ in
equation (6) can be used to change density and tempera-
ture while keeping the excess entropy constant [5,6]:

γ =

(
∂ lnT

∂ ln ρ

)

Sex

. (9)

By choosing the density of a new isomorphic state point
close to the density of the previous isomorphic state point,
the temperature of the new state point can be calcu-
lated from the fluctuations by combining equations (6)
and (9) [5]. In this way a set of isomorphic points can be
obtained from one initial state point.

The predicted isomorphic invariance of the dynamics
is most striking in viscous liquids, where the dynamics in
general depend strongly on temperature and density. To
demonstrate that systems interacting via the Buckingham
potential have isomorphs, we study what we term a Kob-
Andersen binary Buckingham (KABB) mixture with po-
tential parameters being the same as for the original Kob-
Andersen binary LJ (KABLJ) mixture [21]: εAA = 1.0,

rm, AA = 6
√

2, εAB = 1.5, rm, AB = 0.8 6
√

2, εBB = 0.5,

rm, BB = 0.88 6
√

2. A 4:1 mixture (A:B) was used with
α = 14.5. The potentials were truncated and shifted at
rcut
ij = 2.5rm, ij/

6
√

2.
One of the predicted invariants on an isomorph is the

structure of the system. To test this prediction, the ra-
dial distribution function in reduced coordinates g(r̃) =
g(ρ1/3r) was plotted for isomorphic state points (Fig. 2a).
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(b) Isotherm (T=0.5)

Fig. 2. (Color online) The radial distribution functions g(r̃)
for simulations of the KABB mixture. Both graphs are in re-
duced units where r̃ = ρ1/3r. (a) g(r̃) for isomorphic state
points and the three different particle combinations. The struc-
ture is invariant on the isomorph for the AA particle pairs,
but for the AB and BB pairs the structure is less invariant.
(b) g(r̃) for isothermal state points of smaller density varia-
tion. The structure is not invariant on the isotherm for any of
the particle pairs.

The structure is invariant for the large (A) particle pair
correlation function to a very good approximation. For the
AB and BB pairs the structure is less invariant. However,
when a comparison is made with Figure 2b, it is clear
that g(r̃) for the AB and BB pairs is still more invariant
on an isomorph than on an isotherm (note that the density
variation on the isomorph is larger than on the isotherm).
This situation is similar to what is found for the KABLJ
system [5].

To investigate the dynamics of the systems, the inco-
herent intermediate scattering function Fs(q, t) is plotted
in reduced units in Figures 3a and 3b. The presence of a
plateau in Fs shows that the system is in a viscous state,
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Fig. 3. (Color online) Incoherent intermediate scattering func-
tion for the A (a) and B (b) particles of the KABB system. The
time is given in reduced units (t̃ = ρ1/3T 1/2t) and the q-vector
is kept constant in reduced units: qA = 7.25(ρ/1.2)1/3 and
qB = 5.5(ρ/1.2)1/3 . The solid lines represent isomorphic state
points, while dashed lines show isothermal density changes for
comparison. The dynamics are to a good approximation invari-
ant on an isomorph when expressed in reduced units, especially
when compared to the isotherm. In contrast to g(r̃), this holds
for both the A and the B particles.

where the dynamics are highly state point dependent. The
large difference in Fs for the two isothermal state points
confirms this (dashed lines). For the isomorph all Fs data
collapse more or less onto the same curve, showing that
the dynamics are indeed invariant to a good approxima-
tion on an isomorph. In contrast to the radial distribu-
tion functions, the invariance holds well for both types of
particles.

To investigate the invariance in dynamics further, the
coherent intermediate scattering function was calculated
(Fig. 4). The coherent intermediate scattering function
was calculated from the spatial transform of the number
density ρ(q) [7]. In order to obtain good results, it is nec-
essary to average over time scales that are 10–15 times
longer than what is usual for the intermediate scatter-
ing function. This is the reason that there are less state
points shown for the coherent-, than for the incoherent in-
termediate scattering function. The data confirm that the
dynamics are invariant on the isomorph, especially when
compared to the isothermal density change (dashed lines).
However, the invariance seems to hold slightly better for
the AB and BB parts, which is the opposite of what is
seen for the structural invariance.

For systems described by a generalized LJ potential
consisting of two IPL terms, the invariance of the structure
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qρ=1.2
 =  7.34
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qρ=1.2
 = 6.01

Fig. 4. (Color online) Coherent intermediate scattering func-
tion for different particle pairs on an isomorph in reduced units
(t̃ = ρ1/3T 1/2t). The solid lines represent isomorphic state
points, while dotted lines show isothermal density changes
for comparison. Again, the q-vector is kept constant in re-
duced units: qAA = 7.34(ρ/1.2)1/3 , qAB = 8.01(ρ/1.2)1/3 and
qBB = 6.01(ρ/1.2)1/3 . Also F (q̃, t̃) is invariant on the iso-
morph. Contrary to what is seen for g(r̃), the invariance holds
better for the AB and BB parts.

leads to a prediction for the shape of an isomorph when
plotted in the U -W plane [6] (generalized LJ potentials
are a sum of inverse power laws). Since the repulsive term
in the Buckingham potential is described by an exponen-
tial function, it is not possible to derive an exact equation
that describes the isomorph in terms of U and W . Fig-
ure 5a shows that isomorphs for the KABB system agree
well with the prediction for the 12–6 LJ system if α = 14.5
(this value of α was chosen to demonstrate this feature).
For α = 13.0, there is a significant difference with the
predicted shape at higher density and temperature. Fig-
ure 5b shows the isomorphs for both values of α after
scaling U and W by the same isomorph-dependent factor,
demonstrating the existence of a master isomorph [6]. This
shows that master isomorphs exist not only in generalized
LJ systems where they can be justified from analytical
arguments [6].
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Fig. 5. (Color online) (a) Plot of the potential energy per
particle versus virial per particle for the KABB system. The
solid lines are the predictions of the isomorph shape for the 12–
6 LJ potential [6]. For these predictions the initial state points
with ρ = 1.2 were used as reference point. Since a new value
of γ was calculated for every state point, γ is not constant
on the isomorphs, but changes approximately 10% along the
isomorphs. The shape of the KABB isomorph agrees very well
with the predicted shape for the 12–6 LJ potential for α =
14.5. For α = 13.0, the shape is different. (b) The same data
now scaled with W ∗

0 defined as the virial at U = 0 [6]. The
isomorphs scale onto each other, forming a so called master
isomorph for each value of α.

4 The inverse-power-law (IPL) approximation

As mentioned in the introduction, a generic explana-
tion [3–5] for the existence of strong correlations and iso-
morphs in non-IPL systems, is the fact that some pair
potentials can be well approximated by an eIPL (Eq. (4))
as shown in Figure 6. Putting this explanation to the test,
it was recently demonstrated that structure and dynam-
ics of the KABLJ system can be reproduced by a purely

1.0 1.2 1.4
r/σ

-1

0

1
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3

4

υ(
r)

/ε

Buckingham α = 14.5

IPL: 2.08 r
-14.71

IPL - Buckingham
g(r)
approximate linear term
eIPL: IPL -7.18 + 5.17r/σ

Fig. 6. (Color online) The figure shows how the Buckingham
potential (α = 14.5) can be approximated by an extended IPL
potential (eIPL). The red dotted line is the IPL approximation
obtained using the parameters obtained below in Figure 7. The
difference of the IPL approximation and the Buckingham po-
tential (dashed green line) is more or less linear in the first peak
of g(r). By subtracting this linear term from the IPL term the
eIPL approximation is found (dashed blue line).

repulsive IPL system even in the viscous phase [22]. In the
following we demonstrate that this procedure works also
for the KABB system, despite its non-IPL repulsion.

Following Pedersen et al. [22], we assume that the Kob-
Andersen IPL (KABIPL) system used to approximate the
KABB system has the form

υIPL(r) = Aεij

(
σij

rij

)n

(10)

where the parameters εij and σij are the Kob-Andersen
parameters for the different types of particles and the con-
stants A and n are independent of particle type.

For IPL liquids it is known that W = (n/3)U , so in
principle the value of n could be calculated from γ deter-
mined from the WU fluctuations (Eq. (9)). For non-IPL
liquids however, there is a slight state point dependence
of γ, so instead the slope of an isochore was used to de-
termine n (Fig. 7a) making use of the identity [5]

γ =

(
∂W

∂U

)

V

. (11)

For the Buckingham potential with α = 14.5 we obtained
γ = 4.904 and n = 14.71. This is lower than the γ = 5.16
which was found for the 12–6 LJ potential [22]. This is
also consistent with the data in Figure 1b where the SCB
system has a lower value of gamma than the SCLJ system.

From equation (10) it follows that the total internal
energy of the IPL system can be written as

U IPL = A
∑

i>j

εij

(
σij

rij

)n

. (12)
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Fig. 7. (Color online) Three isochoric state points were used
to obtain the parameters for the IPL potential. (a) The value
of n was determined by linear regression to the mean values of
the virial and the potential energy (marked by yellow crosses.
(b) The method used to find the value of A of equation (12).
UIPL =

∑
i>j εij(σij/rij)

n was calculated from configurations
drawn from the KABB simulations and plotted against the
energy obtained during the simulations; the value of A was then
obtained from the slope of the mean energies (again marked
by yellow crosses).

The scaling factor A was determined from the slope of the
mean values of the energies in a U , U IPL plot (Fig. 7b),
where U IPL is given by equation (12) evaluated on con-
figurations from simulations of the KABB mixture [22].
Using these parameters, simulations of the KABIPL sys-
tems were performed and the results were compared with
the results of the KABB system. In Figure 8 the incoher-
ent intermediate scattering function of the two systems
is plotted for comparison. The KABIPL reproduces the
dynamics of the KABB system very well. It should how-
ever be noted that in spite of the good reproduction of
the dynamics, the KABIPL had a stronger tendency to
crystallize than the KABB system at the two lowest tem-
peratures due to the absence of attractive forces. The good
agreement shown in Figure 8 only holds if both systems
are in the same (supercooled) state.

From the fluctuations in the potential energy one can
calculate the excess isochoric specific heat using [7]:

Cex
V = CV − 3

2
NkB =

〈
(ΔU)2

〉

kBT 2
. (13)

In Figure 9a Cex
V is plotted for different isochores calcu-

lated from KABB and KABIPL simulations. The heat
capacities for the two systems follow each other closely,
although there is a small and systematic difference increas-
ing with density. This is similar to what was found for the
KABLJ system [22], but the deviations are slightly larger
for the KABB mixture. Figure 9b shows that the excess
heat capacity to a good approximation obeys density scal-
ing, Cex

V /N = f(ργ/T ), and Rosenfeld-Tarazona scaling,
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Fig. 8. (Color online) The incoherent intermediate scattering
function Fs(q, t), (q = 7.25) of the KABB and KABIPL simu-
lations for isochoric state points with ρ = 1.2, T = 0.42, 0.44,
0.46, 0.50, 0.6, 1.0. The IPL potentials reproduce the dynam-
ics of the Buckingham potential over a significant temperature
range.
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Fig. 9. (Color online) (a) The configurational part of the in-
tensive isochoric specific heat Cex

V /N as a function of temper-
ature. Three isochores were simulated of the KABB and the
KABIPL systems. At low density the agreement between the
two systems is fairly good, but for higher densities the differ-
ences become larger. (b) The same data plotted versus T/ργ

where γ = 4.904. The data collapse on a single curve, which
shows that density scaling works. The function (1.42ργ/T )2/5

was fitted to the data (dashed line), showing that Rosenfeld-
Tarazona scaling is also obeyed.

Cex
V /N = g(ρ)T −2/5 [23] – again in good agreement with

results for the KABLJ system [22].

5 Conclusion

The Buckingham potential has been shown to be strongly
correlating like the Lennard-Jones potential. In spite of
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its exponential repulsion, the Buckingham potential’s dy-
namics and heat capacity can be closely approximated by
a purely repulsive IPL system. In particular the system
has good isomorphs in the phase diagram. These findings
are very similar to those found for Lennard-Jones systems.
We conclude that the existence of strong correlations and
isomorphs is not dependent on the repulsion being an in-
verse power-law.

The centre for viscous liquid dynamics “Glass and Time”
is sponsored by the Danish National Research Foundation
(DNRF).
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Abstract
According to standard liquid-state theory repulsive and attractive pair forces play distinct roles
for the physics of liquids. This paradigm is put into perspective here by demonstrating a
continuous series of pair potentials that have virtually the same structure and dynamics,
although only some of them have attractive forces of significance. Our findings reflect the fact
that the motion of a given particle is determined by the total force on it, whereas the quantity
usually discussed in liquid-state theory is the individual pair force.

(Some figures may appear in colour only in the online journal)

A liquid is held together by attractions between its molecules.
At the same time, it is very difficult to compress a liquid
because the molecules strongly resist closely approaching
each other. These facts have been known for a long time,
and today it is conventional wisdom that the repulsive and
the attractive forces play distinct roles for the physics of
liquids. The repulsive forces, which ultimately derive from
the Fermi statistics of electrons, are harsh and short ranged.
According to standard theory these forces are responsible for
the structure and, in particular, for reducing considerably the
liquid’s entropy compared to that of an ideal gas at the same
density and temperature. The attractive forces, on the other
hand, are long ranged and weaker. These forces, which derive
from induced dipolar interactions, reduce the pressure and
energy compared to that of an ideal gas at the same density
and temperature. We argue below that this physical picture,
though quite appealing, overemphasizes the individual pair
forces and does not provide a full understanding because it
does not relate directly to the total force on a given particle.

The traditional understanding of the liquid state is
based on pioneering works by Frenkel, Longuet-Higgins and

Widom, Barker and Henderson, and Weeks, Chandler, and
Andersen (WCA), and many others [1, 2]. The basic idea
is that the attractions may be regarded as a perturbation of
a Hamiltonian based on the repulsive forces, the physics of
which is usually well represented by a hard-sphere reference
system [3]. Perturbation theories based on this picture [1–4]
are standard for calculating simple liquids’ thermodynamics
and structure as quantified, e.g., by the radial distribution
function. We do not question the usefulness of perturbation
theories, but will argue from theory and simulations that the
repulsive and the attractive pair forces do not always play
clearly distinguishable roles for the structure and dynamics
of simple liquids.

This point is illustrated in the simplest possible way by
studying systems of Lennard-Jones (LJ) particles. The LJ pair
potential is given by vLJ(r) = 4ε[(r/σ)−12

− (r/σ)−6
]. This

function is plotted in figure 1 for a number of different choices
of the parameters ε and σ . In the following we adopt the
unit system in which ε0 = σ0 = 1 and kB = 1. We use the
same unit system for all the potentials. Consider a simulation
of the potential with (ε, σ ) = (1.25, 0.947) at the state point

10953-8984/13/032101+05$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA



J. Phys.: Condens. Matter 25 (2013) 032101 Fast Track Communication

Figure 1. Lennard-Jones pair potentials vLJ(r) = 4ε [(r/σ)−12

− (r/σ)−6
] predicted to give virtually the same physics at the state

point (ρ,T) = (1, 1) using the unit system defined by ε0 = σ0 = 1
and kB = 1. Visually, these potentials have little in common; in
particular, they have very different contributions from attractive
forces. These pair potentials were constructed analytically using the
isomorph theory, as detailed in the text after figure 2.

(ρ ≡ N/V,T) = (1, 1). Clearly, it would lead to exactly the
same structure and dynamics (after appropriate rescaling)
doing a simulation of the potential with (ε, σ ) = (8.73 ×
10−5, 2.0) at the temperature T = 8.73 × 10−5/1.25 and
the density ρ = (0.947/2.00)3—this simply reflects the fact
that the physics is determined by the two dimensionless
parameters T/ε and σ 3ρ. We show below however that, in
addition to this trivial fact, the two potentials also give (to a
good approximation) the same structure and dynamics when
both potentials are investigated at the state point (ρ,T) =
(1, 1). In fact, all the potentials in figure 1 were chosen to
give virtually the same structure and dynamics at the state
point (ρ,T) = (1, 1). The paper mainly focuses on this state
point, but results for a few other state points are also given,
confirming the findings at (ρ,T) = (1, 1).

The potentials of figure 1 all have attractive forces, but
for some of the potentials the attractive forces are entirely
insignificant. To show that these potentials nevertheless have
virtually the same structure and dynamics, NVT computer
simulations of systems of 1000 particles were performed
using the RUMD software that runs on graphics processing
units [5].

Figure 2(a) shows the radial distribution function g(r)
for the seven LJ pair potentials of figure 1 at the state point
(ρ,T) = (1, 1). For comparison, simulations at the same
state point are shown in figure 2(b) for seven potentials
with the same ε variation, but fixed σ = 0.947. Figure 2(c)
shows the radial distribution functions at the state point (1, 1)
for the pair potentials of figure 1 cut off according to the
Weeks–Chandler–Andersen (WCA) recipe, i.e., by cutting the
potentials at their minima and shifting them to zero there.

Figure 3 shows results for the dynamics, with (a) giving
the mean-square displacement for the seven potentials of
figure 1. Figure 3(b) compares the results for the diffusion
constants with those of WCA simulations.

By the Henderson uniqueness theorem [6] the pair
potentials of figure 1 cannot have exactly the same pair

Figure 2. Radial distribution functions at the state point
(ρ,T) = (1, 1) for different sets of potentials: (a) the LJ pair
potentials of figure 1; (b) a series of LJ pair potentials with fixed σ
parameter and the ε-values listed in figure 1; (c) results for the
series of Weeks–Chandler–Andersen (WCA) potentials
corresponding to the LJ potentials of figure 1.

distribution functions. Based on figures 2 and 3 we see that,
nevertheless, the potentials lead to very similar structure and
very similar dynamics. In fact, both structure and dynamics
among the potentials of figure 1 are closer to each other than
to the WCA versions of the same potentials.

How were the pair potentials of figure 1 determined and
why do they have almost the same structure and dynamics?
The starting point is the existence of isomorphs in the phase
diagram of liquids with strong correlations between NVT
virial and potential-energy equilibrium fluctuations [7, 8]
(which we recently argued provides a useful definition of a
simple liquid [9]). Two state points with density and tempera-
ture (ρ1,T1) and (ρ2,T2) are termed isomorphic [7] if all pairs
of physically relevant microconfigurations of the two state
points, which trivially scale into one another, i.e., ρ1/3

1 r(1)i =

ρ
1/3
2 r(2)i for all particles i, have proportional configura-

tional Boltzmann factors: exp[−U(r(1)1 , . . . , r(1)N )/kBT1] =

C12 exp[−U(r(2)1 , . . . , r(2)N )/kBT2] in which the constant of
proportionality is independent of the microconfiguration.

2
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Figure 3. (a) The mean-square displacement for the LJ pair
potentials of figure 1 at the state point (ρ,T) = (1, 1). (b) Diffusion
constants as functions of σ for the full potentials of figure 1 (red)
and for the WCA versions of the potentials (black). At high σ the
WCA results are accurate because these potentials are almost purely
repulsive.

LJ systems are strongly correlating and thus have isomorphs
to a good approximation [8]. The invariance of the canonical
probabilities of scaled configurations along an isomorph
has several implications [7]. Excess entropy and isochoric
specific heat are both isomorph invariant, the dynamics in
reduced units are invariant for both Newtonian and Brownian
equations of motion, reduced-unit static density correlation
functions are invariant, a jump between two isomorphic state
points takes the system instantaneously to equilibrium, etc.
For Newtonian dynamics, using reduced units corresponds
to measuring length in units of ρ−1/3, time in units of
ρ−1/3√m/kBT where m is the particle mass, and energy in
units of kBT . Thus the reduced particle coordinates are defined
by r̃i = ρ

1/3ri.
An isomorph was generated using the recently derived

result [10] that liquids with good isomorphs have simple
thermodynamics in the sense that the temperature is a product
of a function of excess entropy per particle s and a function of
density,

T = f (s)h(ρ). (1)

The function h(ρ) inherits the analytical structure of the
pair potential in the sense that, if the latter is given by
the expression v(r) =

∑
nvnr−n, then h(ρ) =

∑
nCnρ

n/3,
in which each term corresponds to a term in the pair
potential [10]. Since h(ρ) is only defined within an overall

Figure 4. (a) The AA particle radial distribution function of the
Kob–Andersen binary Lennard-Jones (KABLJ) mixture for a family
of isomorphic pair potentials similar to those of figure 1. (b) The
AA particle radial distribution function of the KABLJ mixture with
the corresponding WCA potentials. (c) The A particle incoherent
intermediate scattering function for the same family of potentials as
a function of time at the wavevector defined from the maximum of
g(r) (full curves). The full dotted curves show the WCA
predictions [12]. (d) The function χ4(t) for the A particles for the
same pair potentials (full curves) and the WCA predictions (dashed
curves).

multiplicative constant, one can write for the LJ pair potential

h(ρ) = αρ4
+ (1− α)ρ2. (2)

The constant α was determined from simulations at the state
point (ρ,T) = (1, 1) for ε = 1.25 and σ = 0.947, which is

3
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a typical liquid state point of the LJ system. This was done
by proceeding as follows [11]. We have previously [7, 10]
derived the identities

γ ≡

(
∂ ln T
∂ ln ρ

)
Sex

=
d ln h
d ln ρ

=
〈1W1U〉
〈(1U)2〉

, (3)

in which W is the virial, U the potential energy, and the
angular brackets denote NVT equilibrium ensemble averages.
Combining equations (2) and (3) with the simulation results
for the fluctuations of W and U leads to α = γ /2− 1 = 1.85.

An isomorph is a set of state points with almost
the same structure and dynamics in reduced units [7].
Via appropriate rescaling, however, an isomorph can be
interpreted differently: as defining a set of different LJ
pair potentials that give invariant properties at the same
state point. These are simply two different ways of
looking at an invariant Boltzmann factor: equation (1)
implies that exp

(
−U(ρ−1/3r̃1, . . . , ρ

−1/3r̃N)/[f (s)h(ρ)]
)
=

exp(−[1/f (s)]
∑

i<jvLJ(ρ
−1/3r̃ij)/h(ρ)), where rij is the

distance between particles i and j. Along an isomorph f (s)
is a constant; if we consider the isomorph which includes
the state point ρ = T = 1, then given the normalization of
equation (2) we have f (s) = 1. The shift in interpretation
now comes by noticing that the same Boltzmann factor is
obtained by considering a configuration at unit density and
unit temperature and a family of isomorphic pair potentials
vd

LJ(r) ≡ vLJ
(
d−1/3r

)
/h(d), where we have dropped the tilde

from positions and replaced ρ with d to emphasize the shift
in perspective. These pair potentials are still LJ potentials,
but with different energy and length parameters; the potentials
plotted in figure 1 were arrived at in this way.

The single-component LJ system does not have a broad
dynamic range because it cannot be deeply supercooled. To
test the robustness of the predicted invariance of the physics
for families of ‘isomorphic’ pair potentials, we simulated also
the Kob–Andersen binary LJ (KABLJ) mixture [13], which
is easily supercooled into a highly viscous state. For this
system the constant α = 1.29 was identified from simulations
of 1000 particles at the state point (ρ,T) = (1.60, 2.00),
using again equation (3). From the function h(ρ) a family of
isomorphic equivalent pair potentials was generated that looks
much like those of figure 1; in particular, some of them have
a vanishingly small attraction.

Figure 4(a) shows the AA particle radial distribution
functions for these different pair potentials and figure 4(b)
shows the same quantity for the WCA version of the
potentials. Figure 4(c) shows the A particle incoherent
intermediate scattering function and, with dashed lines,
simulations of the corresponding WCA systems. Even though
the WCA approximation has the correct repulsive forces,
its physics differs considerably from the isomorphic pair
potentials, as noted already by Berthier and Tarjus [12]. We
also calculated χ4(t), a measure of dynamic heterogeneities.
The results shown in figure 4(d) are more noisy, but confirm
the predicted invariance of the dynamics for the different pair
potentials. The corresponding WCA results are shown with
dashed lines.

Figure 5. (a) Probability distribution of x-components of the total
forces on individual particles, p(Fx), for the different
single-component LJ potentials of figure 1 at the state point
(ρ,T) = (1, 1). (b) Snapshot of the x-component of the force Fx on
one particle as a function of time. The system simulated is defined
by ε = 1.25 and σ = 0.947, and Fx was subsequently evaluated for
the same series of configurations for the six other potentials. These
figures show that, even though the pair potentials are quite different,
the forces are virtually identical except at the extrema.

It would require extraordinary abilities to know from in-
spection of figure 1 that these pair potentials have virtually the
same structure and dynamics. The potentials have neither the
repulsive nor the attractive terms in common, so why is it that
they have such similar behavior? The answer is that they result
in virtually the same forces (figure 5). The force on a given
particle is the sum of contributions from (primarily) its nearest
neighbors, and plotting merely the pair potential can be mis-
leading. We conclude that, by reference to the pair potential
alone, one cannot identify separate roles for the repulsive and
the attractive forces in a many-particle system. There simply
are no ‘repulsive’ and ‘attractive’ forces as such.

The above reported simulations focused for each system
on one particular state point. If the potentials in figure 1 are
to be regarded as equivalent with respect to structure and
dynamics, however, one should also test other state points. We
have done this briefly, and the results are shown in figure 6.
Clearly, the degree of similarity observed at the state point
(ρ,T) = (1, 1) is also maintained for the other state points
(for comparison, figure 6(c) reproduces the (ρ,T) = (1, 1)
results from figure 2(a)).

4
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Figure 6. Radial distribution functions for the potentials of figure 1
at other state points than the state point (ρ,T) = (1, 1) studied
above. For reference we give in each subfigure the value of γ
defined in equation (3). (a) (ρ,T) = (1, 2); (b) (ρ,T) = (1, 4);
(c) (ρ,T) = (1, 8)—the γ -values reported in this subfigure are
those of the state point (ρ,T) = (1, 1).

What are the implications of the above results? For
liquid-state perturbation theory the WCA theory is rightfully
renowned for its ability to make semi-analytic predictions
for thermodynamic properties of simple liquids. The focus of
liquid-state theory has moved on, however, in part because

modern computers make it straightforward to simulate the
kinds of liquid for which WCA theory can make accurate
predictions. We do not claim to have a better way to do
perturbation theory in the sense of WCA. While WCA
theory is based upon an assumed equivalence between two
potentials differing by the removal of attractions, the present
work describes a predicted and observed equivalence between
apparently quite different potentials. This observation will
not facilitate perturbation theory, but it could potentially be
useful as a check on perturbation theories and other theories
of the liquid state, for example density functional theory; such
theories should be consistent with the observed invariance as
the parameters of the potential are changed.

The center for viscous liquid dynamics ‘Glass and Time’
is sponsored by the Danish National Research Foundation
(DNRF).
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We investigate the accuracy of the expression of Rosenfeld and Tarazona (RT) for the excess iso-
choric heat capacity, Cex

V ∝ T −2/5, for 18 model liquids. Previous investigations have reported no
unifying features of breakdown for the RT expression. Here, liquids with different stoichiometric
composition, molecular topology, chemical interactions, degree of undercooling, and environment
are investigated. The RT expression is a better approximation for liquids with strong correlations
between equilibrium fluctuations of virial and potential energy, i.e., “Roskilde-simple” liquids [T. S.
Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011 (2012)]. This observation holds
even for molecular liquids under severe nanoscale confinement which does not follow from the orig-
inal RT bulk hard-sphere fluid perturbation theory arguments. The density dependence of the specific
heat is predicted from the isomorph theory for Roskilde-simple liquids, which in combination with
the RT expression provides a complete description of the specific heat’s density and temperature de-
pendence. © 2013 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4827865]

Fundamental theories for the temperature and pressure
(or density) dependence of thermodynamic quantities have
gained renewed attention in the last decade. These theories
can serve as a valuable input to equations of state,1, 2 but also
as input to scaling strategies which relate key dimensionless
transport coefficients to thermodynamic quantities, such as
the excess (or “residual”) entropy3 (with respect to an ideal
gas) or the excess isochoric heat capacity.4 Predicting dynam-
ical quantities from first principles is a challenging task. One
such theory is mode-coupling theory5 which relates the dy-
namic density correlations of a fluid to its static structure.
Alternative theories which relate dynamics to thermodynam-
ics such as that of Adam and Gibbs6 and Rosenfeld’s excess
entropy scaling,3 consider the dynamics also in the highly
supercooled liquid regime.7, 8 Excess entropy scaling strate-
gies, as proposed by Rosenfeld, have proven successful in
predicting the dynamics of not only single-component atomic
fluids,3 but also binary mixtures,7, 8 ionic substances,9, 10

small molecules,11, 12 and polymers.13 In fact, excess en-
tropy scaling strategies have been used as reliable predictors
even for the perplexing dynamics of nanoconfined liquids4, 14

which exhibit stratification and position-dependent relaxation
processes.

To fully harness the power of predicting dynamics from
thermodynamics, however, it is imperative to develop re-
liable theories for the temperature and pressure (or den-
sity) dependence of thermodynamic quantities. Rosenfeld and
Tarazona15 (RT) argued for a mathematically simple expres-
sion for the temperature and density dependence of the poten-
tial energy U for fluids. Their arguments are based on ther-
modynamic perturbation theory, using a functional for hard-

a)Electronic mail: trond@ruc.dk

spheres in combination with an expansion of the free energy
around the η = 1 packing fraction. The arguments are not
easy to follow, but their expressions have found widespread
application.1, 2, 11, 15–24

From the potential energy one gains access to thermo-
dynamic quantities such as the excess isochoric heat ca-
pacity Cex

V = (∂U/∂T )V and the excess entropy Sex via Cex
V

= T (∂Sex/∂T )V . Both of these quantities enter the aforemen-
tioned strategies. For a long time only few studies focused
on the heat capacity.25 Recently, however, the heat capacity
of liquids has begun to receive more attention.26 The RT ex-
pressions for the potential energy and excess isochoric heat
capacity read

U (ρ, T ) = α(ρ)T 3/5 + β(ρ), (1)

Cex
V (ρ, T ) = 3/5α(ρ)T −2/5, (2)

where α(ρ) and β(ρ) are extensive functions of density ρ that
relate to the specific system.15

Several numerical investigations have tested the appli-
cability of the RT expressions for various model liquids.
These liquids span from simple atomic model fluids to liq-
uids showing a wide range of structural, dynamical, and
thermodynamical anomalies in their phase diagram. More
specifically, the RT expressions have been investigated for
single-component atomic fluids,15–17 binary mixtures,2, 18, 19

ionic substances,1, 20 hydrogen-bonding liquids,11, 21, 22 small
molecules,23 and sheared liquids.24 These investigations
showed that the RT expressions give a good approximation
for a range of systems, but are less accurate when applied
to systems known not to have strong virial/potential energy
correlations,27 such as the Dzugutov liquid and Gaussian core
model, as well as for SiO2 and BeF2 in their anomalous

0021-9606/2013/139(17)/171101/4 © Author(s) 2013139, 171101-1
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regions. For SPC/E water different results for the applicability
of RT have been reported.11, 21, 22

The purpose of this paper is to investigate the conditions
under which RT applies by simulating 18 different model sys-
tems possessing different stoichiometric composition, molec-
ular topology, chemical interactions, degree of undercool-
ing, and environment. We use GPU-optimized NVT molec-
ular dynamics computer simulations (http://rumd.org; in to-
tal over 40 000 GPU hours) to calculate the potential en-
ergy and excess isochoric heat capacity along a single iso-
chore for each of these 18 model systems (for the single-
component Lennard-Jones (SCLJ) liquid we also vary the
density). Here and henceforth quantities are reported in di-
mensionless units, e.g., by setting σ = 1, ε = 1, etc. The
heat capacity is calculated via Einstein’s fluctuation formula
Cex

V = 〈(	U )2〉/kBT 2. Table I presents the 18 investigated
model systems, which range from simple atomic fluids to
molecules under severe nanoscale confinement. The densities
represent typical liquid-state densities.

Figure 1 shows the excess isochoric heat capacity at con-
stant density as a function of temperature for selected systems
of Table I. The inset shows NIST equation of state data for

TABLE I. The 18 model systems investigated. DU and DCex
V

are the coeffi-
cient of determination (Eq. (3)) for the potential energy and excess isochoric
heat capacity, respectively, for the isochore of density ρ. The virial/potential
energy correlation coefficient R is given for the lowest temperature state point
Tmin. The abbreviations used are: Kob-Andersen binary Lennard-Jones mix-
ture (KABLJ); inverse power-law fluid with exponent n (IPL n); LJ poly-
mer chain of length n (LJC n); Lewis-Wahnström o-terphenyl (OTP); single-
component Buckingham liquid (SCB); single-component LJ liquid (SCLJ);
Wahnström binary LJ mixture (WABLJ). The “Nanoconfined dumbbell” is
confined to a (smooth) slit-pore of width H = 8.13, corresponding to roughly
16 molecular lengths.

System ρ Tmin DU DCex
V

R

Core-soft water28 0.40 0.138 0.974 0.473 0.10
Dumbbell29 0.93 0.380 >0.999 0.999 0.96
Nanoconfined dumbbell4 0.93 0.600 >0.999 0.998 0.91
Dzugutov30 0.80 0.540 0.997 0.786 0.71
Girifalco31 0.40 0.840 0.999 − 0.664 0.91
KABLJ32 1.20 0.420 >0.999 0.984 0.93

IPL 6 0.85 0.104 >0.999 0.997 1.00
IPL 12 0.85 0.195 >0.999 >0.999 1.00
IPL 18 0.85 0.271 >0.999 0.988 1.00
LJC 1033 1.00 0.450 >0.999 0.998 0.86
LJC 4 1.00 0.510 >0.999 0.991 0.90
Molten salt34 0.37 0.018 >0.999 0.952 0.15
OTP35 0.33 0.640 >0.999 0.995 0.91
Repulsive LJ36 1.00 0.360 >0.999 0.995 1.00
SCB37 1.00 0.960 >0.999 0.991 0.99

SCLJ 0.85 0.700 >0.999 0.974 0.96
SCLJ 0.82 0.660 >0.999 0.962 0.94
SCLJ 0.77 0.740 >0.999 0.940 0.90
SCLJ 0.70 0.860 >0.999 0.954 0.82
SCLJ 0.66 0.910 >0.999 0.959 0.75
SCLJ 0.61 0.980 >0.999 0.859 0.64
SCLJ 0.59 0.990 >0.999 0.729 0.56
SCLJ 0.55 1.050 >0.999 0.644 0.51
SPC/E water38 1.00 3.800 0.987 0.558 0.07
WABLJ39 1.30 0.670 >0.999 0.911 0.98
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FIG. 1. Isochores studied for selected model systems of Table I. The inset
shows NIST equation of state data for supercritical argon at ρ = 20, 25, 32.6,
35 mol/L and 200 K ≤ T ≤ 700 K. The orange lines represent linear regres-
sion fits of the individual isochores, testing the correct RT power-law expo-
nent dependence. The excess isochoric heat capacity Cex

V = 〈(	U )2〉/kBT 2

per atom is shown as a function of T−2/5. For all liquids Cex
V decreases with

increasing temperature.

supercritical argon at ρ = 20, 25, 32.6, 35 mol/L and 200 K
≤ T ≤ 700 K. The orange lines represent linear regression fits
of the individual isochores, testing the correct RT power-law
exponent dependence. In all cases, the excess isochoric heat
capacity decreases with increasing temperature.

The data points of the main plot of Fig. 1 (and Table I)
were generated by the following procedure.

1. First the system is cooled at constant density until one
of the following happens: The system crystallizes or the
pressure becomes negative or the relaxation time is of
the order 105 time units. This happens at the tempera-
ture Tmin. The system is then equilibrated at T = Tmin; in
the case of crystallization or negative pressure, the tem-
perature is increased slightly (and this new temperature
defines Tmin).

2. Next, the temperature is increased from Tmin up to Tmax

= 3Tmin, probing state points along the isochore with a
spacing of 	T = 2/7 Tmin. A total of eight equilibrium
state points are hereby generated for each isochore.

Turning now to the RT expressions, we show in Figs. 2(a)
and 2(b) the coefficient of determination40 D for the poten-
tial energy and excess isochoric heat capacity as a function of
1 − R (see below) for all model systems. For a generic quan-
tity X, the coefficient of determination DX is defined by

DX = 1 −
∑N

i=1(Xi − f (Xi))2∑N
i=1(Xi − 〈X〉)2

, (3)

where f(Xi) is a function that provides the model values,
and the average 〈X〉 is taken over a set of data points
X = {X1, . . . , XN }. In our case f(Xi) is given by best fits to
the data points in X using, respectively, U = A0 T3/5 + A1,
and Cex

V = 3/5A2 T −2/5, where A0, A1, and A2 are constants.
DX measures the proportion of variability in a data set that
is accounted for by the statistical model;40 DX = 1 implies
perfect account of the variability.
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FIG. 2. The coefficient of determination D (Eq. (3)) for U and Cex
V as a func-

tion of 1 − R for the 18 different model systems. The insets show D for the
SCLJ liquid (see Table I). (a) DU and (b) DCex

V
. The Girifalco system gives a

negative value for DCex
V

and has for clarity of presentation been left out (see
Table I). For both the potential energy and the excess isochoric heat capacity,
RT is seen to deteriorate as R decreases below 0.90 (to the right of the red
line); in particular, see insets for the SCLJ liquid.

The virial/potential energy correlation coefficient R is
defined27 via

R = 〈	W	U 〉√
〈(	W )2〉

√
〈(	U )2〉

, (4)

and calculated from the canonical ensemble equilibrium fluc-
tuations at Tmin. The “Roskilde-simple” liquids41 are defined
by R ≥ 0.90. Only inverse power-law fluids are perfectly cor-
relating (R = 1), but many models27 as well as some exper-
imental liquids42 have been shown to belong to the class of
Roskilde-simple liquids. We believe this class includes most
or all van der Waals and metallic liquids, whereas covalently,
hydrogen-bonding or strongly ionic or dipolar liquids are gen-
erally not Roskilde simple.27

We observe from Fig. 2(a) that for all liquids DU gives a
value close to 1, but RT provides a better approximation for
liquids with R larger than 0.90 (to the left of the red line).
A similar behavior is observed for DCex

V
in Fig. 2(b) (note the

change of scale). The insets of both figures show for the SCLJ
liquid how RT deteriorates as R decreases below 0.90. We
conclude that the RT expressions work better for systems that
are Roskilde simple at the state points in question. We ob-

serve, however, also from Fig. 1 that for supercritical argon
the excess isochoric heat capacity does not seem to go zero
at very high temperatures which is in contrast to all simulated
Roskilde liquids.

Originally,15 RT was argued from thermodynamic pertur-
bation theory using a bulk hard-sphere reference system and
via simulation shown to describe inverse power-law systems
to a high degree of accuracy. Later investigations showed that
RT is a good approximation also for LJ liquids. These sys-
tems are all Roskilde simple, and a recently argued quasi-
universality43 for Roskilde simple single-component atomic
systems implies this behavior. We have shown that the key
determining factor for RT is not whether systems are atomic
or molecular (see the results for the dumbbell model, OTP,
and LJC in Fig. 2), but rather the degree of strong correlation
between virial and potential energy. This was shown to be the
case even for severely nanoconfined molecular systems which
exhibit a completely different physics from bulk hard-sphere
fluids4 and are thus not expected to satisfy the original RT ar-
guments. The latter is, in particular, true also for the elongated
non-spherical molecules studied here. The observed corre-
lation between RT and Roskilde-simple liquids is thus not
trivial.

As a further validation of the above viewpoint, we relate
the function α(ρ) in the RT expression to h(ρ) for Roskilde
liquids. For such liquids, temperature separates36 into a prod-
uct of a function of excess entropy per particle and a func-
tion of density via T = f(sex)h(ρ). Roskilde liquids are char-
acterized by having isomorphs to a good approximation.44

Isomorphs are curves in the thermodynamic phase diagram
along which structure and dynamics in reduced units, as well
as some thermodynamic quantities are invariant. Along an
isomorph both Cex

V and h(ρ)/T are invariant, and consequently
one may write

Cex
V = F

(
h(ρ)

T

)
. (5)

Since by the RT expression; Cex
V = 3/5α(ρ)T −2/5 = 3/5

(α(ρ)5/2/T )2/5, it follows that h(ρ) = α(ρ)5/2 or, equivalently,

α(ρ) = h(ρ)2/5. (6)

For a LJ system, it was shown in Refs. 36 and 45 that h(ρ) is
given by

h(ρ) = (γ0/2 − 1)ρ4 + (2 − γ0/2)ρ2, (7)

in which γ 0 is calculated from the virial/potential energy
fluctuations at the state point ρ = 1 and T = 1 via γ0

= 〈	W	U 〉/〈(	U )2〉.
Equation (6) is tested in Fig. 3 for the KABLJ and the

repulsive LJ system (for which, respectively, γ 0 = 5.35 and
γ 0 = 3.56). The latter system is defined from v(r) = (r−12

+ r−6)/2 and has R above 99.9% in its entire phase diagram;
γ varies from 2 at low density to 4 at high density. We deter-
mine α(ρ) for different densities by fitting Eq. (1) as a func-
tion of temperature for each isochore and system. h(ρ) is cal-
culated analytically from Eq. (7). Figure 3 shows that α(ρ) as
predicted by the isomorph theory to a very good approxima-
tion is given by h(ρ)2/5. Equations (2) and (7) thus provide a
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complete description for the temperature and density depen-
dence of the specific heat, i.e., Cex

V = (h(ρ)/T )2/5.
Scaling strategies which relate dynamics to thermody-

namics have in the past proven useful to predict perplexing
dynamical phenomena. We identified here the range of appli-
cability for RT as the class of Roskilde liquids. By combining
the RT expressions with the isomorph theory, we were able
to provide also the full temperature and density dependence
of the specific heat. Roskilde liquids include most or all van
der Waals and metallic liquids. In contrast, water is a prime
example of a non-Roskilde liquid with R close to zero near its
density maximum. Water is thus not a good candidate for sat-
isfying RT in large parts of its phase diagram as the simulation
results presented here also show.

Beyond RT, Roskilde liquids also exhibit other types of
simple behavior, for instance, they obey density scaling42, 46

and isochronal superposition.47 Taking density scaling as an
example, this property has been studied for a wide range of
experimental liquids. A potential estimate of whether an ex-
perimental liquid obeys RT is thus to use whether this liquid
obeys also density scaling.
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We derive exact results for the rate of change of thermodynamic quantities, in particular, the con-
figurational specific heat at constant volume, CV , along configurational adiabats (curves of constant
excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view
of the invariance of various structural and dynamical quantities along them. The slope of the iso-
morphs in a double logarithmic representation of the density-temperature phase diagram, γ , can be
interpreted as one third of an effective inverse power-law potential exponent. We show that in liq-
uids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than
configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctu-
ation formula for the slope of the CV -contours is derived. The theoretical results are supported with
data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The
sign of dγ /dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-
potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of
a dynamical quantity, the self-diffusion coefficient, along adiabats and CV -contours, finding it more
invariant along adiabats. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827090]

I. INTRODUCTION

The traditional notion of a simple liquid-involving
point-like particles interacting via radially symmetric pair
potentials1–13 (for example, the Lennard-Jones (LJ) system)
is challenged by the existence of examples such as the Gaus-
sian core model14 and the Lennard-Jones Gaussian model15, 16

which exhibit complex behavior. Moreover, many molecu-
lar models have simple behavior in computer simulations,
and experiments on van der Waals liquids show that these
are generally regular with no anomalous behavior. We have
recently suggested redefining a simple liquid—termed now
a Roskilde-simple liquid, or just a Roskilde liquid—as one
with strong correlations between the equilibrium virial (W )
and potential-energy (U) fluctuations in the canonical fixed-
volume (NVT) ensemble.17 The basic phenomenology and
theoretical understanding of Roskilde liquids were presented
in a series of five papers published in the Journal of Chem-
ical Physics.18–22 In particular, Appendix A of Ref. 21 es-
tablished an essential theorem of Roskilde liquids: A system
has strong U,W correlations if and only if it has good iso-
morphs (curves in the thermodynamic phase diagram along
which a number of properties are invariant in reduced units21).
The degree of simplicity depends on the thermodynamic
state point—all realistic systems lose simplicity when ap-
proaching the critical point and gas states. To illustrate this,
Figure 1 shows the Lennard-Jones diagram including con-
tours of the correlation coefficient R between U and W . We
choose an (arbitrary) cut-off R > 0.9 as the boundary of
simple-liquid behavior. It is clear from the figure that the cor-
relation coefficient decreases rapidly as the liquid-gas spin-
odal is approached.

The theory of isomorphs starts with their definition and
derives consequences from this which can be tested in simula-
tions. For a system with N particles, two density-temperature
state points (ρ1, T1) and (ρ2, T2) are isomorphic to each other
if the Boltzmann factors for corresponding configurational
microstates are proportional:

exp

(
−U (r1

(1), . . . , rN
(1))

kBT1

)

= C12 exp

(
−U (r1

(2), . . . , rN
(2))

kBT2

)
. (1)

Here U is the potential energy function and C12 depends
on the two state points, but not on which microstates
are considered. Corresponding microstates means ρ

1/3
1 ri

(1)

= ρ
1/3
2 ri

(2), or r̃(1)
i = r̃(2)

i , where a tilde denotes so-called re-
duced units. Reduced units for lengths means multiplying by
ρ1/3, for energies dividing by kBT, and for times dividing
by (m/kBT)1/2ρ−1/3 (for Newtonian dynamics). An isomorph
is a curve in the phase diagram consisting of points which
are isomorphic to each other. From the definition it follows
that all structural and dynamical correlation functions are iso-
morph invariant when expressed in reduced units. Thermo-
dynamic quantities which do not involve volume derivatives,
such as the excess entropy Sex and excess specific heat at
constant volume Cex

V , are also isomorph invariant. Another
consequence of the isomorph definition is that phase bound-
aries lying within the simple region of the phase diagram are
isomorphs—note that the isomorph shown in Fig. 1 is nearly
parallel to the liquid-solid coexistence lines. Reference 28
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FIG. 1. Contour plot of R in (ρ, T) phase diagram for the single-component
Lennard-Jones system using a shifted-potential cutoff of 4σ and system size
N = 1000. Contour values are indicated at the top. Also indicated are bin-
odal and spinodal obtained from the Johnson equation of state with the cutoff
taken into account in a mean-field manner,23 and the corresponding curves for
solid-liquid coexistence as parameterized by Mastny and de Pablo (though for
the larger cutoff 6σ ).24 T and C indicate the triple24 and critical23 points. The
blue curve is a configurational adiabat, while the green line is the configura-
tional isochoric specific heat contour CV = NkB/2 (total specific heat 2NkB);
this is one of the criteria for the dynamic crossover separating liquid and gas
regions in the phase diagram proposed by Brazhkin et al.25–27 According to
the theory of isomorphs both configurational adiabats and CV -contours are
isomorphs for sufficiently large R (Eq. (2)).

gives a brief review of the theory and its experimentally rele-
vant consequences.

Only inverse power-law (IPL) systems, i.e., systems for
which the potential energy is an Euler homogeneous func-
tion, have 100% virial potential-energy correlation and per-
fect isomorphs. Thus for realistic Roskilde liquids the iso-
morph concept is only approximate. Extensive computer
simulations have shown, however, that the predicted iso-
morph invariants apply to a good approximation for several
systems.17, 21, 22, 29–33 A few predictions have also been con-
firmed experimentally.33, 34

Despite the success of the isomorph concept, it remains
a “zero-order” theory, analogous to the ideal gas. In partic-
ular, there is no systematic theory for describing realistic
systems in terms of perturbations about the ideal case. The
purpose of this work is to examine deviations from perfect
isomorph behavior in Roskilde liquids. One motivation is to
understand what kind of deviations from IPL behavior (for ex-
ample, constancy of the scaling exponent) are allowed while
remaining in the “simple part” of the phase diagram. A second
motivation is the hope of using Roskilde liquids to identify a
general theory of liquids. For example, the existence of good
isomorphs explains many observed connections between dy-
namics, structure, and thermodynamics, but also means that
cause-and-effect interpretations of such connections (“the dy-
namics is controlled by . . . ”) must be reexamined. Given per-
fect isomorphs, any isomorph-invariant quantity can be said
to control all the others. This puts a constraint on general
theories, referred to as the “isomorph filter,”21 but prevents
one from sorting among theories that pass the filter. Examin-

ing carefully whether dynamical properties are more invariant
when holding one isomorph-invariant quantity fixed versus
holding another fixed could provide a means to select theories.
The above applies equally well to theories of supercooled liq-
uids and the glass transition; for example, in a theory featuring
a characteristic activation energy or a characteristic tempera-
ture such as the Kauzmann temperature, then requiring the
theory to pass the isomorph filter means that the characteristic
energy/temperature depends on density in a specific manner.

Strong U,W correlation in the equilibrium NVT ensem-
ble is a hallmark, and the first identified feature,35 of Roskilde
liquids. It is characterized at the level of second moments by
the correlation coefficient

R(ρ, T ) = 〈�U�W 〉√
〈(�U )2〉〈(�U )2〉

(2)

and the slope

γ (ρ, T ) = 〈�U�W 〉
〈(�U )2〉 . (3)

Here � represents the deviation of a quantity from its NVT
ensemble average. It has been shown that γ may be thought
of in terms of an effective IPL potential with exponent 3γ

(which in general depends on state point).18, 19 It has also a
thermodynamic interpretation, namely, it is the ratio of the ex-
cess pressure coefficient βex

V ≡ (1/V )(∂W/∂T )V and excess
specific heat per unit volume,

γ = βex
V

cex
V

. (4)

As mentioned, in IPL systems the correlation is indeed
perfect, but non-IPL systems exist which yet have strong
U,W -correlations, in particular the usual LJ fluid. While in
any system the fluctuation formula for γ can be used to gen-
erate curves of constant (excess) entropy Sex (configurational
adiabats) via21

(
∂ ln T

∂ ln ρ

)
Sex

= γ (ρ, T ), (5)

in Roskilde-simple liquids several properties related to struc-
ture, thermodynamics, and dynamics are invariant along these
curves. This leads to their designation as “isomorphs”; note
that quantities must be expressed in thermodynamically re-
duced units to exhibit the invariance.21 As an example of a
structural quantity, the radial distribution function g(r) is typ-
ically found to collapse well when plotted in reduced units
along an isomorph; it could be that higher order measures of
structure are less invariant, though.36 One of the most basic
isomorph-invariant quantities is the specific heat at constant
volume: perfect isomorphs are also CV -contours, while in im-
perfectly correlating systems the CV contours and configura-
tional adiabats may differ.

One might expect that the closer R is to unity, the better
approximated the system would be by a single IPL potential.
So it is perhaps surprising that we have recently identified sys-
tems where γ changes much more than in the LJ case, over
a range in which strong U,W -correlation (R > 0.9) is main-
tained. One such system is the “repulsive Lennard-Jones” po-
tential, in which the sign of the 1/r6 term is made positive.32 It
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seems that the property of strong U,W correlation and the ex-
istence of isomorphs are somehow more robust than the con-
stancy of γ . It can be surprising how well isomorphs “work”
for non-IPL systems. This robustness allows for a richer vari-
ety of behavior, since the shapes of isomorphs are no longer
necessarily straight lines in a (ln ρ, ln T)-plot. The theory of
the thermodynamics of Roskilde-simple liquids32 implies that
γ may be considered a function of ρ only. This immediately
gives us a new quantity (in addition to R and γ ) to charac-
terize Roskilde liquids: dγ /dρ, or more simply, its sign. This
result depends on the assumption that configurational adiabats
and CV -contours exactly coincide. It is not clear what to ex-
pect when this does not hold exactly; this paper is an attempt
to address the topic of imperfect correlation from statistical
mechanical considerations. Because CV is also a fundamen-
tal thermodynamic quantity, the difference between adiabats
and CV -contours should be a useful probe of the breakdown
of perfect isomorphs as U,W -correlation becomes less than
perfect, and will be the focus of this paper.

While, as mentioned above, the arguments of Ref. 32
(which assume perfect isomorphs) show that γ = γ (ρ), in
practice γ does depend on T but the dependence is much
smaller than that on ρ, and we can ignore it most of the
time. This is apparent for the single-component LJ system in
Fig. 5 of Ref. 18. A more explicit quantitative compari-
son, of the logarithmic derivatives of γ with respect to ρ

and T, was made in Ref. 33 for two molecular systems. We
present further data on this below. Fluids with LJ and sim-
ilar potentials (for example, generalized-LJ potentials with
different exponents) tend to have dγ /dρ < 0: It is clear
that γ must converge to one third of the repulsive expo-
nent at very high densities and temperatures while typical
values are larger.19 On the other hand, potentials may be
constructed which have dγ /dρ > 0, simply by shifting the
potential radially outwards so that the repulsive divergence
occurs at a finite value of pair separation. Such potentials
naturally involve a hard core of absolutely excluded volume.
They are relevant to experiments,33 because tests of the iso-
morph theory34 typically involve molecules rather than sin-
gle atoms, with the interaction range being relatively short
compared to the particle size (colloids are an even more ex-
treme example of this, of course). The Dzugutov system,37

although only Roskilde-simple at high densities and tempera-
tures, is another example with dγ /dρ > 0, but where there is
no hard core. Another such system is the above-mentioned
repulsive Lennard-Jones potential; in this case the effec-
tive exponent increases monotonically, interpolating between
the low density limit 6 (γ = 2) and the high density limit
12 (γ = 4).

For brevity we term curves of constant Sex adiabats (the
qualifier “configurational” is to be understood); in this pa-
per, unlike all our other works on isomorphs, we deliberately
avoid calling them isomorphs, since the point of this work
is to examine deviations from perfect isomorph behavior. We
also drop the subscript ex for notational simplicity, and simi-
larly use CV to mean the configurational part of specific heat
(the kinetic part is also isomorph invariant, though, being 3/2
for a classical monatomic system). Below we derive some ex-
act results concerning the relation between adiabats and CV -

contours, and argue how this connects to whether γ is an in-
creasing or decreasing function of ρ (more specifically the
sign of (∂γ /∂ρ)S). The argument involves relating γ to an
exponent determined by derivatives of the pair potential, in-
troduced in Ref. 19. The claim is supported by simulations
of two Roskilde liquids: the LJ fluid (with dγ /dρ < 0) and
the Girifalco fluid (with dγ /dρ > 0 at least for high densi-
ties). The Girifalco potential was constructed to model the ef-
fective interaction between C60 molecules, modeling the car-
bon atoms as Lennard-Jones particles and applying rotational
averaging:38

v(r) = −α

(
1

s(s − 1)3
+ 1

s(s + 1)3
− 2

s4

)

+β

(
1

s(s − 1)9
+ 1

s(s + 1)9
− 2

s10

)
. (6)

where s is the distance two molecules’ centers, scaled by
the diameter. We have chosen the parameters α and β such
that the potential well has a depth of approximately 1 and
the potential diverges at unit distance, β = 0.0018141α with
α = 0.17.

For simulations we use systems of 1000 particles sim-
ulated at constant volume and temperature (NVT) using the
RUMD code39 for simulating on NVIDIA graphical process-
ing units (GPUs). Although the state points considered do not
involve long relaxation times, the speed provided by GPUs is
desirable because reasonably accurate determination of third
moments requires of order 1 × 106 independent samples; we
typically run 50 × 106 steps and sample every 50 steps (the
time step sizes were 0.0025–0.004 for LJ and 0.0004 for Gir-
ifalco). The temperature was controlled using a Nosé-Hoover
thermostat. Part (d) in Fig. 3 shows the correlation coeffi-
cient R along an adiabat for each system. Both systems are
Roskilde-simple (have R > 0.9) in the simulated part of the
phase diagram.

In Sec. II, a general fluctuation formula for derivatives of
thermodynamic quantities along adiabats is derived, and ap-
plied to the case of CV . In Sec. III we show the connection
between the derivative of CV and derivatives of γ . The results
are illustrated with data from simulations. In Sec. IV a fluctu-
ation formula for the slope of contours of CV is derived, and
illustrated with simulation data. Finally, Secs. V and VI are
the discussion and a brief conclusion, respectively.

II. THERMODYNAMIC DERIVATIVES AT CONSTANT
ENTROPY

A. γ as linear-regression slope

Before proceeding to thermodynamic derivatives we re-
call the connection between the above definition of γ and lin-
ear regression. Following Appendix C of Ref. 21 we charac-
terize the deviation from perfect correlation via the fluctuating
variable

ε ≡ �W − γ�U, (7)

which vanishes for perfect correlation. The linear regression
slope is defined by minimizing 〈ε2〉 with respect to γ , leading
to Eq. (3).40 A consequence of this definition of γ is seen by
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writing

�W = γ�U + ε, (8)

and correlating41 this with �U:

〈�W�U 〉 = γ 〈(�U )2〉 + 〈�Uε〉 (9)

From this and the definition of γ it follows that

〈�Uε〉 = 0, (10)

that is, U and ε are (linearly) uncorrelated, independent of
whether perfect correlation holds between U and W .

B. Density-derivatives of averages on adiabats

We are interested in the derivatives of thermodynamic
quantities along certain curves in the phase diagram, in par-
ticular those of constant S, so we start by presenting general
formulas for the derivatives with respect to ln ρ and ln T (hold-
ing the other constant). From standard statistical mechanics
(see, for example, Appendix B of Ref. 18) we have (with β

= 1/(kBT); in the following we set kB = 1)
(

∂ 〈A〉
∂β

)
ρ

= −〈�U�A〉 (11)

which implies
(

∂ 〈A〉
∂ ln T

)
ρ

= β 〈�U�A〉 . (12)

Likewise (see Appendix A),
(

∂ 〈A〉
∂ ln ρ

)
T

=
〈

∂A

∂ ln ρ

〉
− β 〈�W�A〉 , (13)

where differentiation with respect to ln ρ inside an expecta-
tion value—that is, for an arbitrary configuration rather than
an ensemble average—is understood to imply that the reduced
coordinates of the configuration, r̃i ≡ ρ1/3ri , are held fixed.
Equations (12) and (13) can be used to construct the deriva-
tive with respect to ln ρ along an arbitrary direction; that is
instead of keeping T constant (a line of zero slope) we take a
direction with slope g (in ln ρ, ln T space):
(

∂ 〈A〉
∂ ln ρ

)
[g]

=
(

∂ 〈A〉
∂ ln ρ

)
T

+ g

(
∂ 〈A〉
∂ ln T

)
ρ

(14)

=
〈

∂A

∂ ln ρ

〉
− β 〈�W�A〉 + gβ 〈�U�A〉 (15)

=
〈

∂A

∂ ln ρ

〉
− β 〈�A(�W − g�U )〉 . (16)

Note that we use subscript [g] to indicate that g is the slope
in the ln ρ, ln T plane, rather than the quantity held constant,
in the derivative. This expression can be used to find formulas
for the direction in which a given thermodynamic variable is
constant, as we do below. For now we choose g = γ , to obtain

a formula for derivatives along adiabats (Eq. (5)):

(
∂ 〈A〉
∂ ln ρ

)
S

=
〈

∂A

∂ ln ρ

〉
− β 〈�A�(W − γU )〉

=
〈

∂A

∂ ln ρ

〉
− β 〈�A ε〉 . (17)

As an example, we take A = U. Noting that
W ≡ ∂U/∂ ln ρ and Eq. (10), we get

(
∂ 〈U 〉
∂ ln ρ

)
S

=
〈

∂U

∂ ln ρ

〉
= 〈W 〉 , (18)

which is a general result that can also be derived
thermodynamically starting with the fundamental ther-
modynamic identity T dS = dU + pdV = dU + Wd ln(V )
= dU − Wd ln ρ (here the variables U, W refer to macro-
scopic, or thermally averaged quantities, the omission of
angle-brackets notwithstanding). As a second application of
Eq. (17), consider a system with perfect correlation. Then ε

≡ 0, and we get

(
∂ 〈A〉
∂ ln ρ

)
S

=
〈

∂A

∂ ln ρ

〉
, (19)

which means that in such systems the derivative along an adi-
abat is given entirely by the “intrinsic” density dependence for
individual configurations; fluctuations do not contribute. This
is of course the case of perfect isomorphs, where the probabil-
ities of scaled configurations are identical along an isomorph.

C. Variation of CV on adiabats

We consider the derivative of CV with respect to ln ρ on
an adiabat. From CV = 〈

(�U )2
〉
/T 2, we have

(
∂CV

∂ ln ρ

)
S

= 1

T 2

(
∂〈(�U )2〉

∂ ln ρ

)
S

− 2

T 3
〈(�U )2〉

(
∂T

∂ ln ρ

)
S

(20)

= 1

T 2

(
∂〈(�U )2〉

∂ ln ρ

)
S

− 2γ

T 2
〈(�U )2〉. (21)

Writing 〈(�U)2〉 = 〈U2〉 − 〈U〉2 and making use of
the general result of Eq. (17), after some algebra (see
Appendix B) we obtain the simple result

(
∂CV

∂ ln ρ

)
S

= −β3〈(�U )2�(W − γU )〉 = −β3〈(�U )2ε〉.
(22)

This is a major result of this paper. Note that the right side
vanishes for perfect correlation (ε = 0)—in which case CV is
constant on the same curves that S is; in other words, CV is
a function of entropy only. For less than perfect correlation,
the most interesting feature is the sign, which we argue in
Sec. III, is the opposite of that of dγ /dρ.
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III. CONNECTION BETWEEN (∂CV /∂ρ)S
AND DERIVATIVES OF γ

A. Relation to temperature-dependence of γ

We wish to understand the sign of 〈(�U)2ε〉. We know
from Eq. (10) that U and ε are linearly uncorrelated; we must
now consider higher order correlations. Recall that γ may also
be interpreted18 as the slope of isochores in the W,U phase
diagram—the linear regression of the scatter-plot of instanta-
neous W,U values at one state point gives the slope of 〈W 〉
versus 〈U〉 at fixed density. The triple correlation is related to
the curvature of the isochore, and thus to (∂γ /∂T)ρ . We obtain
the exact relation by differentiating γ with respect to β:(

∂γ

∂β

)
ρ

= 1

〈(�U )2〉
(

∂ 〈�U�W 〉
∂β

)
ρ

−〈�U�W 〉
〈(�U )2〉2

(
∂〈(�U )2〉

∂β

)
ρ

(23)

= −〈(�U )2�W 〉
〈(�U )2〉 − γ

〈(�U )2〉
(−〈(�U )3〉) (24)

= −〈(�U )2(�W − γ�U )〉
〈(�U )2〉 (25)

= −
〈
(�U )2ε

〉
〈
(�U )2

〉 , (26)

where we have used Eq. (11) and some algebraic manipula-
tion as in Appendix B. Combining this result with Eq. (22)
gives(

∂CV

∂ ln ρ

)
S

= β2〈(�U )2〉β
(

∂γ

∂β

)
ρ

= −CV

(
∂γ

∂ ln T

)
ρ

,

(27)
or more concisely

(
∂ ln CV

∂ ln ρ

)
S

= −
(

∂γ

∂ ln T

)
ρ

. (28)

B. Relation to density-dependence of γ via the
effective IPL exponent n(2)(r)

The last result implies, in particular, that the sign of the
density-derivative of CV along an isomorph is opposite to that
of (∂γ /∂T)ρ . Since the latter derivative is neglected in the the-
ory of isomorphs, it is useful to find a connection with a den-
sity derivative of γ . The relevant derivative turns out not to
be (∂γ /∂ρ)T but (∂γ /∂ρ)S, i.e., the derivative of γ along the
adiabat. For many systems of interest this derivative has the
same sign as (∂γ /∂T)ρ , while those signs can be positive or
negative depending on the system (or even for a given sys-
tem). We shall now argue that this sign-equivalence is to be
expected by considering how γ is related to the pair poten-
tial v(r). This is an interesting question in its own right, and
was explored in Ref. 19. For potentials with strong repulsion
at short distances, we can indeed relate γ directly, albeit ap-
proximately, to v(r), or more precisely, to its derivatives. As

discussed in Ref. 19 the idea is to match an IPL to the ac-
tual potential; γ is then one third of the “effective IPL ex-
ponent.” There are many ways to define such an exponent,
but a key insight is that it should involve neither the poten-
tial itself (because shifting the zero of potential has no con-
sequences), nor its first derivative (because the contributions
to the forces from a linear term tend to cancel out in dense
systems at fixed volume).19 The simplest possibility within
these constraints involves the ratio of the second and third
derivatives. For an IPL, v(r) ∝ 1/rn, and indicating deriva-
tives with primes, we have v′′′(r)/v′′(r) = −(n + 2)/r , so n
can be extracted as −rv′′′(r)/v′′(r) − 2. For a general pair po-
tential this quantity will be a function of r, and thus we define
the r-dependent second-order effective IPL exponent n(2)(r)
as19

n(2)(r) ≡ − rv′′′(r)

v′′(r)
− 2. (29)

The superscript “(2)” indicates which derivative appears in the
denominator; one can similarly19 define n(p)(r) for p = 0, 1,
. . . ; p = 2 is the first not involving v or v′. Interestingly, the
IPL is not the only solution to n(2)(r) = n with constant n; so
is the so-called extended IPL

veIPL(r) = A/rn + Br + C, (30)

introduced in Ref. 19. The resemblance of the Lennard-Jones
potential to such a form can be considered an explanation of
why it inherits many of the properties of the IPL potential. For
a general potential, the question that now arises is at which r
one should evaluate n(2). It was argued in Ref. 19 that n(2)/3
evaluated at a point near the maximum of g(r)—let us call it
rγ —should correspond to γ . One expects that, like the peak
in g(r), rγ = 
ρ−1/3, where 
 is of order unity and depends
weakly on temperature, but we do not know it precisely a pri-
ori. There are two crucial things we can say, however: First,
we can certainly identify rγ a posteriori by inspection for a
given state point: That is, having simulated a reference state
point (ρref, Tref) and determined γref there, it is straightforward
to (typically numerically) solve the equation n(2)(rγ )/3 = γref

for rγ . The second crucial point is that whatever details of
the liquid’s statistical mechanics determine rγ (for instance,
a kind of g(r)-weighted average), these details do not vary
along an isomorph (this argument assumes good isomorphs,
so that the statement can be applied to adiabats). Therefore,
rγ is an isomorph invariant—more precisely its reduced-unit
form ρ1/3rγ = 
 is constant along an adiabat, which implies

 = 
(S). So γ is given by

γ (ρ, S) = 1

3
n(2)(
(S)ρ−1/3), (31)

or

γ (ρ, S) = 1

3
n(2)

(
rγ,ref(S)

ρ−1/3

ρ
−1/3
ref

)
. (32)

In the form with 
 we explicitly recognize that 
 is constant
on an isomorph, or equivalently, that it depends on S; the sec-
ond form shows how 
 can be determined using a simulation
at one density to identify rγ there.
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For the Lennard-Jones potential n(2)(r) decreases as r de-
creases (corresponding to as ρ increases), while for potentials
such as the Girifalco potential with a divergence at finite r
(see Fig. 3), it increases as r decreases (ρ increases), although
at low densities the opposite behavior is seen. The validity
of Eq. (31) has been investigated by Bøhling et al.42 Under
which circumstances does Eq. (31) give a good estimate of
the density dependence of γ ? The system must have suffi-
ciently strong W,U correlations, since as R → 0, γ must
also vanish irrespective of n(2)’s behavior. (For example, in
a Lennard-Jones-like liquid, as r increases, the curvature of
the pair potential becomes negative at some r, at which point
n(2) diverges. At or below the corresponding density, and not
too high temperature, a single phase is likely to have a neg-
ative pressure and be mechanically unstable, giving way to
liquid-gas coexistence. In this regime W,U correlations tend
to break down completely and γ goes to zero; see Figs. 3(c)
and 3(d), in particular the Girifalco data.)

Equation (31) shows how γ depends on ρ, but we need to
consider temperature dependence in order to connect with the
result for CV along an adiabat. This comes in through 
(S).
We cannot right away determine how 
 depends on S but we
know it is a weak dependence, since rγ is expected to remain
close to the peak in g(r).42 For liquids with a repulsive core
this peak moves slowly to shorter distances as temperature,
and hence entropy, increase at fixed ρ. We expect the same
to be true for 
, since in the high-temperature limit potential
energy and virial fluctuations, and thus γ , are dominated by
ever smaller pair separations. Thus we expect that

d
(S)

dS
< 0, (33)

while the weak dependence on entropy/temperature at fixed
density can be expressed as

CV

d ln 
(S)

dS
� 1, (34)

(the use of CV to make the left side dimensionless, instead
of, for example, differentiating with respect to ln S, is done
for convenience below; note that CV varies slowly and has a
similar order of magnitude to the entropy differences between
isomorphs in the liquid region of the phase diagram). From
Eq. (33) it follows that both increasing ρ at fixed S, and in-
creasing T at fixed ρ, decrease the argument of n(2). (Recall
that in the earliest work on Roskilde liquids it was noted that
the slope of the W,U correlation converges down towards
12/3 = 4 for the LJ case both in the high temperature and
the high density limits.35) Taking the appropriate derivatives
of Eq. (31) yields

(
∂γ

∂ ln ρ

)
S

= −
(S)ρ−1/3

9

dn(2)(r)

dr

∣∣∣∣
r=
(S)ρ−1/3

, (35)

(
∂γ

∂ ln T

)
ρ

= 
(S)ρ−1/3

3

dn(2)(r)

dr

∣∣∣∣
r=
(S)ρ−1/3

d ln(
(S))

dS
CV .

(36)

TABLE I. Validity of Eq. (38) for several potentials. For each system the
signs of (∂γ /∂T)ρ and (∂γ /∂ρ)S have been checked for a set of adiabats.
For the Lennard-Jones, Buckingham and Dzugutov system the density range
gives the lowest densities of the simulated adiabats while the temperature
range gives the range of temperatures simulated for each adiabat. For the
Girifalco and repulsive Lennard-Jones the density range indicates the range
of densities simulated for each adiabat, while the temperature range indicates
the lowest temperatures. Data near extrema of γ have not been included.

Potential ρ-range T-range (∂γ /∂T)ρ (∂γ /∂ρ)S

Lennard-Jones 0.6–1.2 0.8–5.0 − −
Buckingham 0.7–1.2 2–6 − −
Dzugutov 0.55–0.8 0.75–1.2 + +
Girifalco 0.45–0.5 6–54 + +
Repulsive Lennard-Jones 0.1–10 0.4–2.0 + +

Combining these gives
(

∂γ

∂ ln T

)
ρ

=
(

∂γ

∂ ln ρ

)
S

(
−3

d ln(
(S))

dS
CV

)
. (37)

From Eqs. (33) and (34) the quantity in brackets on the right
side is positive but much smaller than unity. We therefore have

sgn

((
∂γ

∂T

)
ρ

)
= sgn

((
∂γ

∂ρ

)
S

)
,

(38)∣∣∣∣∣
(

∂γ

∂ ln T

)
ρ

∣∣∣∣∣ �
∣∣∣∣
(

∂γ

∂ ln ρ

)
S

∣∣∣∣ ,
which is expected to hold for liquids with repulsive cores,
with sufficiently strong W,U -correlations. It remains to be
investigated thoroughly to what extent Eq. (38) holds, both re-
garding in how large a region of the phase diagram it holds for
a given liquid, and for which liquids it holds in a reasonably
large region. Its validity depends both on that of Eq. (31) and
the conjecture that 
 decreases, slowly, as entropy increases.
Some data are shown in Table I which compares the signs
of the two derivatives for different systems and Fig. 2 which
compares the two derivatives at state points along an adiabat
for the LJ system. For comparison the density derivative at
fixed temperature is also shown, obtained via chain-rule com-
bination of the other two derivatives. This involves a minus
sign and therefore the two terms (which have the same sign)
tend to cancel.

In the limit of perfect W,U correlation we know
(∂γ /∂T)ρ vanishes. There is no reason to expect 
 to become
constant in this limit,43 therefore (∂γ /∂ρ)S must also vanish
in the limit. This corresponds to n(2)(r) becoming constant:
IPL or extended IPL systems (Eq. (30)). But because the de-
pendence of 
 on S is in general weak, there is a regime—
that of general Roskilde liquids—where we can neglect it, but
where n(2) cannot be considered constant. In this approxima-
tion, then, we can write the density derivative as an ordinary
derivative. Combining this with Eq. (28) we have the follow-
ing result for the sign of the CV :

sgn

((
∂CV

∂ ln ρ

)
S

)
= − sgn (dγ /dρ) . (39)
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FIG. 2. Logarithmic derivatives of γ : (1) with respect to T at constant ρ,
(2) respect to ρ at constant S and (3) respect to ρ at constant T, for the LJ
system at points along the adiabat including ρ = 0.85, T = 0.80. The first
derivative was determined via fitting ln (γ ) versus ln T data (obtained also
for neighboring adiabats) at each ρ to a quadratic function; the second an-
alytically after making a (one-parameter) fit to the logarithmic derivative of
Eq. (C5), and the third via the chain rule as a linear combination of the other
two, (∂ln (γ )/∂ln ρ)T = (∂ln (γ )/∂ln ρ)S − γ (∂ln (γ )/∂ln T)ρ . While all de-
crease to zero at high densities (consistent with γ converging to a constant 4
= 12/3) the temperature derivative is consistently a factor of ten smaller than
the density derivative at constant S.

Thus, we can predict—based on the n(2) estimate of γ —
that the rate of change of CV along an adiabat has the opposite
sign as the density dependence of γ (along the adiabat if we
need to be specific). Thus from knowing only the pair poten-
tial one can say something reasonably accurate about both the
adiabats and the CV -contours.

C. Simulation results for variation of CV
along adiabats

To confirm the relation between the sign of dγ /dρ and
that of (∂CV /∂ρ)S and exhibit the relation between adiabats
and CV contours we carried out simulations on two model
systems. Figure 3(a) shows the pair potentials. Note that the
Girifalco potential diverges at r = 1; this hard core restricts
the density to be somewhat smaller than for the LJ case. Part
(b) of Fig. 3 shows the effective exponent n(2)(r). There is a
singularity where the second derivative vanishes (the transi-
tion from concave up to concave down), which can be seen in
the figure at r 	 1.224 for LJ and r 	 1.48 for Girifalco; as
r decreases from the singularity n(2) decreases monotonically
in the LJ case, while in the Girifalco case it first decreases and
then has a minimum before increasing and in fact diverging as
r = 1 is approached. Part (c) of Fig. 3 shows the estimate of
γ (ρ) from Eq. (31) along with γ (ρ) calculated in simulations
along an adiabat for each system. Here 
 was determined by
matching n(2)/3 with γ at the highest density. The agreement
is good for not too low densities—as mentioned above when
n(2)(r) diverges due to the curvature of the potential vanishing,
then both R and γ will rapidly approach zero, which is what
we can see happening for the Girifalco system in parts (c) and
(d) and low density. Note that the adiabat for the Girifalco
system rapidly reaches rather high temperatures, since the ex-
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FIG. 3. (a) The pair potentials used in this work. The Girifalco potential
diverges at r = 1. (b) n(2)(r) for the two potentials. (c) n(2)(
ρ−1/3) (full
lines) and γ on sample adiabats for both models (symbols). The entropy was
not calculated, but adiabats are uniquely specified by giving one state point,
for example, ρ = 0.80, T = 0.80 for the LJ case and ρ = 0.4, T = 4.0 for
the GF case. The value of 
 was fixed by requiring agreement with γ at the
highest simulated density for each isomorph. (d) Correlation coefficient R
from simulations, along the same adiabats as in (c).

ponent is always greater than 15, or roughly three times that
of the LJ system. More interestingly, for the Girifalco system
dγ /dρ changes sign at a density around 0.4, so we can expect
the dependence of CV along an adiabat to reflect this. The
location and value of the minimum in γ do not match those
for n(2), however—perhaps the vanishing of the curvature is
already having an effect.

The procedure for determining adiabats is described in
Appendix C. Figures 4 and 5 show cV = CV /N along adia-
bats for the LJ and Girifalco systems, respectively. For the LJ
case the slope is positive, which is consistent with dγ /dρ be-
ing negative as discussed in Sec. III. It is worth noting that
the overall variation of CV is quite small, of order 0.1 per
particle for the density range shown, but it is not negligible,
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FIG. 4. Dependence of cV = CV /N on density along six different adiabats
for the LJ fluid. We label the curves by their temperature at a fixed density,
here the starting density ρ = 0.8. The change in cV is of order 0.1–0.15 for
the ∼50% change in density shown here, small but not negligible. The slopes
are positive, consistent with the negative sign of dγ /dρ and arguments of
Sec. III.
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ρ = 0.4. For the ∼20% changes in density shown here, cV changes by about
0.05. It is generally decreasing in the range shown but increases at low densi-
ties and temperatures; the maxima (determined by fitting a cubic polynomial)
are shown as crosses, and appear at different densities for different adiabats.

even though the system has strong U,W correlations and the
structure and dynamics have been shown to be quite invari-
ant along the adiabats. For the Girifalco system the slope is
positive at low density until a maximum is reached, with a
negative slope at higher densities. This is also broadly con-
sistent with the expectations from Fig. 3 (the locations of the
maxima are not expected to be accurately given by Eq. (31)).

D. Contours of CV and S directly compared

As an alternative to considering how CV varies along an
adiabat, we can find the contours of CV separately. First we
simulated several isochores, then the data were interpolated
to allow constant-CV curves to be constructed. Specifically,
we find that the dependence of CV on temperature along an
isochore can be accurately fitted by the expression

CV (T ) = A(ρ)

T B(ρ)
+ C(ρ), (40)

where A, B, and C are functions of ρ. This expression was
inspired by the Rosenfeld-Tarazona expression CV ∼ T −2/5

for the specific heat;44 we do not constrain the exponent B
to be 2/5, however. The expression can easily be inverted to
yield the temperature TCV

(ρ) corresponding to a given value
of CV , as a function of density

TCV
(ρ) =

(
A(ρ)

CV − C(ρ)

)1/B(ρ)

. (41)

The CV contours are shown along with the adiabats in
Figs. 6 and 7. Recall that in typical liquids we expect CV to
increase as T decreases or ρ increases. For the LJ case the CV

contours have a higher slope than the adiabats, therefore as ρ

increases along an adiabat we cross contours corresponding to
higher values of CV . For the Girifalco system the CV contours
have initially (at low density) higher slopes than the adiabats
but then bend over and have lower slopes. Thus the picture
is consistent with the data for CV along adiabats shown in
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FIG. 6. Comparison of adiabats and CV -contours for the LJ system. The
adiabats are the same as those shown in Fig. 4, and were calculated using
Eq. (C3), while CV -contours (values 0.9, 1.0, 1.1, and 1.2 in units of kB) were
determined from a series of simulations on different isochores and interpolat-
ing the CV data as a function of T (some extrapolated points, indicated, were
also included).

Figs. 4 and 5. It cannot be otherwise, but there is more in-
formation here compared to those figures. For example, the
adiabats are closer to the straight lines (in the double-log rep-
resentation) expected for IPL systems, while the CV -contours
have more non-trivial shapes. Furthermore a small variation
of CV along an adiabat could hide a relatively large differ-
ence in slope between CV -contours and adiabats (since CV is
typically a relatively slowly varying function).

IV. FLUCTUATION FORMULA FOR GENERATING
CONTOURS OF CV

Apart from investigating the variation of CV along an adi-
abat, it is of interest to identify the contours of CV ; the non-
constancy of CV along an adiabat is equivalent to the state-
ment that the CV contours do not coincide with the adiabats,
although we can expect them to be close for Roskilde liquids.
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FIG. 7. Comparison of adiabats with CV -contours for the Girifalco system.
The adiabats were calculated using the definition of γ and small changes in ρ,
while CV -contours were determined from a series of simulations on different
isochores and interpolating the CV data as a function of T.
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In practice, we identify CV contours using the interpolation
procedure described above, but it is potentially useful from a
theoretical point of view to have a fluctuation formula for the
slope of these curves. This we derive in this section.

Since the variation of CV along an adiabat (Eq. (22))
involves the difference between two triple correlations
〈(�U )2�(W − γU )〉 (which vanishes for perfect correla-
tion); it is tempting to speculate that the ratio

〈(�U )2�W 〉
〈(�U )3〉 , (42)

which equals γ for perfect correlation, gives the slope of
curves of constant CV . But it is not so simple. The total deriva-
tive of CV with respect to ln ρ along an arbitrary slope g in the
(ln ρ, ln T) plane is(

∂CV

∂ ln ρ

)
[g]

=
(

∂CV

∂ ln ρ

)
T

+ g

(
∂CV

∂ ln T

)
ρ

. (43)

We need to calculate the partial derivatives with respect to T
and ρ. From Appendix D:
(

∂CV

∂ ln T

)
ρ

= −2β2〈(�U )2〉 − β3 ∂〈U 2〉
∂β

− 2β3〈U 〉〈(�U )2〉.
(44)

From Eqs. (11) and (B8) we have

∂〈U 2〉
∂β

= −〈�U�(U 2)〉 (45)

= −〈�U (2〈U 〉�U + (�U )2 − 〈(�U )2〉)〉 (46)

= −2〈U 〉〈(�U )2〉 − 〈(�U )3〉. (47)

Inserting this into Eq. (44) gives(
∂CV

∂ ln T

)
ρ

= −2β2〈(�U )2〉 + β3〈(�U )3〉. (48)

It might seem surprising that the third moment appears, since
one expects the limit of large N that the distribution converges
to a Gaussian, in accordance with the central limit theorem. A
closer look at the proof of that theorem shows that when con-
sidering the summed variable (here the total potential energy),
all the so-called cumulants are proportional to N, and both the
second and third moments are equal to the corresponding cu-
mulants, and therefore proportional to N. It is when one con-
siders the average instead of the sum (potential energy per
particle instead of total potential energy) that one finds the
third moment and cumulant vanishing faster than the second
(1/N2 as opposed to 1/N) in the limit of large N.

The density derivative of CV ,
(

∂CV

∂ ln ρ

)
T

= β2

(
∂〈U 2〉
∂ ln ρ

)
T

− β22 〈U 〉
(

∂ 〈U 〉
∂ ln ρ

)
T

, (49)

is evaluated in Appendix D with the result(
∂CV

∂ ln ρ

)
T

= −β3〈�W (�U )2〉 + 2β2 〈�U�W 〉 . (50)

The derivative of CV along an arbitrary slope g is then(
dCV

d ln ρ

)
[g]

=CV

(
β〈(�U )3〉g−β〈(�U )2�W 〉

〈(�U )2〉 +2(γ −g)

)
.

(51)
Note that with g = γ we recover Eq. (22). When the correla-
tion is not perfect we can set this expression to zero and solve
for the slope g which gives curves of constant CV , now calling
it γCV

≡ (∂ ln T/∂ ln ρ)CV
:

γCV

(
β〈(�U )3〉
〈(�U )2〉 − 2

)
= β〈(�U )2�W 〉

〈(�U )2〉 − 2γ (52)

or

γCV
= 〈(�U )2�W 〉 − 2T γ 〈(�U )2〉

〈(�U )3〉 − 2T 〈(�U )2〉 . (53)

Again we check the case of perfect correlation where we can
replace �W by γ�U and see that we get γ as we should. We
can also write this as γ plus a correction term:

γCV
= γ + 〈(�U )2ε〉

〈(�U )3〉 − 2T 〈(�U )2〉 . (54)

Figure 8 shows the fluctuation-determined slope γCV
of a

CV contour in the (ln ρ, ln T)-plane along the CV = 1.0 con-
tour of the LJ system. We present the CV -contour here to be
able to check the validity of the exponent: The (fixed) ex-
ponent determined by a fit of the contour to a power law is
also indicated for comparison. A clear trend is observed with
γCV

higher than γ , and like the latter decreasing towards 4
as the density increases. There is some scatter due to the dif-
ficulty in determining third moments (compare the data for
γ which are based on second moments), so this would not
be a practical method for determining the contours. On the
other hand, if we are interested in knowing roughly how big
the difference in slope between an adiabat and a CV -contour
is, we do not need to simulate a CV -contour–we can simu-
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estimated from fluctuations, along
the CV = 1.0 contour for the LJ system. The contour was determined by
interpolation. The horizontal line indicates the slope found by fitting the con-
tour to a power-law form for comparison. The decrease of γCV

towards large
densities is expected, just as with γ (also shown) since at high densities we
expect both to converge to one third of the repulsive exponent, i.e., 4. The
inset shows CV versus ρ along the contour as a check that the contour was
correctly determined.
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late a few state points, perhaps on an isochore, and estimate
the γCV

from fluctuations. The scatter is not a big problem
if we are not using γCV

to determine where to simulate next.
Figure 9 compares γCV

with γ for both LJ and Girifalco sys-
tem along an adiabat, and the trends are very clear: the CV -
contours have definitely larger slope for the LJ system, closer
to 6 than 5 (they must converge to 4 at high density). For the
Girifalco system the differences are quite dramatic, more so
than the direct comparison of the contours in Fig. 7 (where
a logarithmic temperature scale was used). It is worth not-
ing that all the data here correspond to state points with R
> 0.985, i.e., very strong U,W correlation, and that nothing
special happens when the exponents are equal (e.g., ρ ∼ 0.42
in Fig. 9(b)) (in any system one can define phase-space curves
along which γ − γCV

= 0; it would be significant only if a
two-dimensional region of equality existed).

V. DISCUSSION

A. Roskilde liquids are more than, and more
interesting than, IPL liquids

IPL liquids are perfectly correlating and have perfect
isomorphs—straight lines in the (ln ρ − ln T) plane with
slope given by one third of the IPL exponent. In this case
the phase diagram is completely degenerate—the isomorphs
are contours of excess entropy, CV and all structural and dy-
namical properties (when expressed in reduced units). Liq-
uids which have strong, but not perfect U,W correlation are
much more interesting: we can still identify excellent iso-
morphs via Eq. (5), as adiabats, but these are no longer con-
strained to be power laws; the effective exponent can vary
along an isomorph/adiabat and can exhibit non-trivial density
dependence.42 Moreover, CV contours deviate now from the
isomorphs/adiabats in a manner connected to the density de-
pendence of γ .

It is interesting to compare the insight obtained from
statistical mechanical versus thermodynamic considera-
tions. Using statistical mechanics—the arguments leading to
Eq. (38)—we have shown that (∂γ /∂T)ρ vanishes when cor-

relation is perfect, and this occurs only for (extended) IPL
systems (see Eq. (30)). We have also argued that in liquids
with strong but not perfect U,W correlations the tempera-
ture derivative is relatively small, therefore as a first approx-
imation it can be ignored, leaving the density dependence
of γ as a new characteristic for a Roskilde liquid. On the
other hand the purely thermodynamic arguments presented in
Ref. 32 constrain only (∂γ /∂T)ρ to be zero, leaving γ free to
depend on density, which allows for the richer set of behaviors
just mentioned. The thermodynamic argument leads more di-
rectly (and elegantly) to the empirical truth—that in practice
γ ’s temperature dependence is small compared to its density
dependence—while the statistical mechanical arguments fill
in the details of why this is the case.

B. Is isomorph theory the zeroth term
in a systematic expansion?

The isomorph theory was characterized in the introduc-
tion as a “zero-order” theory, analogous to the ideal gas. For
the latter there exists a systematic expansion (the virial se-
ries, with the small parameter being density times molec-
ular volume) for obtaining the equation of state for inter-
acting systems, or for obtaining transport properties (kinetic
theory).45, 46 It is an open question whether a similar expan-
sion exists where perfect isomorphs correspond to the zeroth
term. If so, one could quantify the errors made in using the
isomorph theory. A natural starting point might be thermo-
dynamic perturbation theory using an IPL reference system,
but here caution should be advised, because this would ignore
that fact γ varies along an isomorph and in any case we do not
have exact or near exact analytical solution for the thermody-
namics and structure of the IPL system. Furthermore, tradi-
tional thermodynamic perturbation theory is primarily con-
cerned with thermodynamics (equation of state), less so with
structure, and not much at all with dynamics; isomorph the-
ory makes predictions primarily for structure, dynamics, and
some thermodynamic quantities but in general not the equa-
tion of state as such (though see Refs. 22 and 47). In partic-
ular, the use of variational perturbation theory to estimate the
IPL exponent at a given state point through an optimal pertur-
bation estimate of the free energy typically finds an exponent
larger than γ .48

C. Status of n(2) and relation between
different γ derivatives

The claim (38) needs to be thoroughly investigated by
simulation for a wider range of systems as does the valid-
ity of Eq. (31) as an estimate of γ . While we have argued
these for high temperatures and densities, their validity could
turn out to depend on how strong U,W -correlation a liquid
has, though it seems that R > 0.9 is not necessarily required,
that is, they apply more generally than strong U,W corre-
lation. One could imagine that it would be useful to derive
a fluctuation formula for (∂γ /∂ρ)S. We have indeed derived
such a formula, see Appendix E, but it is not particularly
simple, and we have not been able to use it to make a more
rigorous theoretical connection with (∂γ /∂T)ρ—even the sign
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is far from obvious due to near cancellation of the various
terms. Its usefulness in simulations is also expected to be
limited since it involves fluctuations of the so-called hyper-
virial (the quantity used to determine the bulk modulus from
fluctuations49) which is not typically available in a MD sim-
ulation. On the other hand, from the other results presented
here, one can use the quantity 〈(�U)2ε〉 or the formula for
γCV

to determine the sign of (∂γ /∂ρ)S from a simulation of a
single state point.

D. Adiabats versus CV contours
in non-Roskilde-simple liquids

It is interesting to consider a non-simple liquid, where
there is no reason to expect that CV -contours at all coincide
with adiabats (i.e., there are not good isomorphs). We have
done so for two liquids without actually determining the CV -
contours; instead we just calculated the exponent γCV

from
the fluctuations. As mentioned above this is accurate enough
to give an idea of the trends, in particular which way the CV -
contours are oriented with respect to the adiabats. The first
example is the Dzugutov fluid.37 Figure 10 shows γCV

and γ

for this system along an adiabat. In the range shown R takes
values from ∼0.56 to ∼0.84. As the figure shows γCV

is sub-
stantially smaller than γ . We can note also that this is con-
sistent with the positive slope dγ /dρ, and suggests the argu-
ments leading to Eq. (38) do not necessarily require strong
W,U correlation. The Lennard-Jones-Gaussian system15 be-
haves similarly (data not shown). A very different example is
the Gaussian core potential,14 which lacks a hard core (thus
particles can overlap/penetrate each other) for which data is
also shown in Fig. 10. In this case there is almost no W,U

correlation; 0.16 > R > 0.06, and in fact γCV
and γ even have

opposite sign (although both are close to zero). Moreover, this
system clearly violates Eq. (38), since γ decreases with den-
sity on the adiabat shown, which should correspond to the
case γCV

> γ (as in the LJ case); this is not surprising since it
does not have a hard core.
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FIG. 11. Diffusivity in reduced units versus density along an adiabat and
along a CV -contour for the LJ and GF systems. It is more or less invariant on
the adiabats but not on the CV -contours.

E. Relevance of adiabats versus CV contours

In our simulation studies of isomorphs, the procedure has
always been to use Eq. (5) to generate adiabats (straightfor-
ward, since an accurate estimate of γ is readily computed
from the W,U fluctuations) and then examine to what extent
the other isomorph-invariant quantities are actually invari-
ant along these curves. One could also generate CV contours
and check for invariance along them. While it is not obvi-
ous that adiabats are more fundamental, Rosenfeld proposed
that transport properties are in fact governed by the excess
entropy.50 Given the not insignificant difference between adi-
abats and CV -contours it is worth checking explicitly whether
measures of dynamics are more invariant along one versus
the other. This is done in Fig. 11 for the reduced diffusivity
D̃ ≡ (

ρ1/3√m/T
)
D. It is clear that by the this measure, the

dynamics are more invariant along adiabats than along CV -
contours, consistent with Rosenfeld’s theory. We note also
that the adiabats seem to be simpler than the CV -contours in
that the exponent γ varies less than the exponent γCV

. This
is true for the all the systems presented here including simple
and non-simple ones. This implies γ is more practical as a
liquid characteristic than γCV

and suggests that adiabats pro-
vide a more useful, and fundamental basis for describing the
phase diagram than CV -contours. In fact a (ρ, S) phase dia-
gram would be consistent with the traditional starting point of
statistical mechanics—a function U (S, V ) expressing the de-
pendence of internal energy on entropy and volume (though
typically the total entropy, not S, is considered).

VI. CONCLUSION

We have derived several exact results relating to
Roskilde-simple liquids (previously termed strongly corre-
lating liquids) in the form of fluctuation formulas for vari-
ous thermodynamic derivatives. These include the derivative
(with respect to ln ρ) of an arbitrary NVT averaged dynamical
variable along a configurational adiabat, Eq. (17), the deriva-
tive of CV along an adiabat, Eq. (22), the temperature deriva-
tive of γ itself on an isochore, Eq. (27), and the slope of con-
tours of CV in the (ln ρ, ln T) plane, Eq. (53). In addition to
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the exact formulas we have argued that when dγ /dρ is neg-
ative (positive) one expects that (∂CV /∂ρ)S is positive (neg-
ative) and that the slopes of CV -contours are greater (less)
than those of adiabats. This we have tested with two model
Roskilde-simple liquids, the Lennard-Jones fluid with dγ /dρ

< 0 and the Girifalco potential which has dγ /dρ < 0 at low
density but switches to dγ /dρ > 0 at high density. From this
argument emerged a claim, Eq. (38) equating the sign of the
temperature derivative of γ to the density derivative along
an adiabat for a wide class of liquids (wider than Roskilde-
simple liquids). Finally, we note that the data presented here
provide support for the use of the n(2) exponent, determined
purely by the pair potential, as a quick and convenient way to
estimate γ and its density dependence.
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APPENDIX A: DERIVATION OF EQ. (13)

As in Appendix A of Ref. 18, we use a discrete-state no-
tation for convenience, such that Ai is the value of observable
A in microstate i and the (configurational) partition function
is Z = ∑

iexp ( − βUi). We have(
∂ 〈A〉
∂ ln ρ

)
T

= 1

Z

∂
∑

i Ai exp(−βUi)

∂ ln ρ

− 1

Z2

∑
i

Ai exp(−βUi)
∂

∑
j exp(−βUj )

∂ ln ρ
(A1)

= 1

Z

∑
i

(
∂Ai

∂ ln ρ
exp(−βUi) + Ai exp(−βUi)(−β)

∂Ui

∂ ln ρ

)

−
∑

i Ai exp(−βUi)

Z2

∑
j

exp(−βUj )(−β)
∂Ui

∂ ln ρ
(A2)

=
〈

∂A

∂ ln ρ

〉
− β (〈AW 〉 − 〈A〉 〈W 〉) (A3)

=
〈

∂A

∂ ln ρ

〉
− β 〈�A�W 〉 . (A4)

In the second last step the definition of the virial for a
micro-configuration, Wi ≡ (∂Ui/∂ ln ρ) was used; the density
derivative is understood to mean that the reduced coordinates
are held fixed while the volume is changed.

APPENDIX B: DERIVATION OF EQ. (22)

Here we give the details of the derivation of the ex-
pression for the derivative of CV at constant S. Writing the
variance of U as 〈(�U)2〉 = 〈U2〉 − 〈U〉2 allows us to
use Eq. (17) to take the derivative of 〈U2〉 and Eq. (18) to

differentiate 〈U〉:(
∂

〈
(�U )2

〉
∂ ln ρ

)
S

=
〈

∂U 2

∂ ln ρ

〉
− β〈�(U 2)�(W − γU )〉 − 2 〈U 〉 〈W 〉 (B1)

= 〈2UW 〉 − β
〈
�(U 2)�(W − γU )

〉 − 2〈U 〉〈W 〉 (B2)

= 2〈�U�W 〉 − β〈�(U 2)�(W − γU )〉 (B3)

= 2γ 〈(�U )2〉 − β〈�(U 2)�(W − γU )〉, (B4)

where we have used Eq. (3) to write the covariance 〈�U�W 〉
in terms of the variance of U. Inserting this result into Eq. (21)
gives the relatively simple formula(

∂CV

∂ ln ρ

)
S

= −β3〈�(U 2)�(W − γU )〉 = −β3〈�(U 2)ε〉.
(B5)

We make one more change by writing U = 〈U〉 + �U, so that

�(U 2) = U 2 − 〈U 2〉 (B6)

= 〈U 〉2 + 2〈U 〉�U + (�U )2 − (〈U 〉2 + 〈(�U )2〉)
(B7)

= 2〈U 〉�U + (�U )2 − 〈(�U )2〉. (B8)

When this is correlated with ε = �W − γ�U , the first term
vanishes because of Eq. (10) and the last term vanishes be-
cause 〈ε〉 = 0. Thus 〈�(U2)ε〉 = 〈(�U)2ε〉 and we arrive at
Eq. (22).

APPENDIX C: GENERATING CONFIGURATIONAL
ADIABATS

Equation (5) indicates a general procedure for generating
adiabats: (1) evaluate γ from the fluctuations at the current
state point; (2) choose a small change in density, say of order
1% or less; (3) use Eq. (5) to determine the corresponding
change in temperature:

ρn+1 = ρn + δρ, (C1)

Tn+1 = Tn (ρn+1/ρn)γn . (C2)

We have used this method for the Girifalco system with
δρ = 0.005 for values of ρ between 0.4 and 0.5. For general-
ized Lennard-Jones systems there is now an analytic expres-
sion for the ρ-dependence of γ which allows large changes in
ρ, the so-called “long jump method”:32, 33

ρn+1 = ρn + δρ, (C3)

Tn+1 = Tnh(αn, ρn+1)/h(αn, ρn), (C4)
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where the energy/temperature scaling function h(α, ρ) is de-
fined by (see Refs. 32 and 33; the normalization is such that
h(α, 1) = 1).

h(α, ρ) = αρ4 + (1 − α)ρ2. (C5)

Here α is a parameter which according to the theory
of isomorphs—i.e., assuming perfect isomorphs for LJ
systems—is a constant. More generally one may expect that
it is fixed for a given isomorph, but can vary weakly among
isomorphs, analogous to 
(S) in Eq. (31). In fact, since
γ = dln (h)/dln (ρ),32 there is a close connection between h(ρ)
and n(2); by identifying Eq. (31) with the logarithmic deriva-
tive of h(ρ) we find that the latter can be expressed generally
in terms of the curvature of the pair potential:

h(ρ) = ρ−2/3v′′(
(S)ρ−1/3), (C6)

making it clear how to include dependence on S in h(ρ). This
connection will be discussed in more detail elsewhere.42 At a
given density α can be evaluated via

α = (γ − 2)/(4ρ2 − 2 − γρ2 + γ ) (C7)

(at ρ = 1 this becomes simply γ /2 − 1).
Since the theory is not exact, and α determined this way

will also vary weakly along the isomorph, in order to get the
best determination of the adiabats we re-evaluate α at each
state point. It therefore also has an index n. We observe a sys-
tematic variation in α of at most 0.5% for a given adiabat, and
a few percent variation between adiabats. We have used the
long-jump formula for the LJ system with δρ = 0.05 for val-
ues of ρ between 0.8 and 1.4. We noticed more noise in the
data for the Girifalco system, but have not checked whether
this is due to not having a long-jump formula or to differ-
ences in effective sampling rate (because of different relax-
ation times) giving different statistical errors.

APPENDIX D: DERIVATION OF CV EXPONENT

The temperature derivative of CV , Eq. (44), is obtained
as follows:(

∂CV

∂ ln T

)
ρ

= − ∂

∂ ln β
(β2〈(�U )2〉) = −β

∂

∂β
(β2〈(�U )2〉) (D1)

= −2β2〈(�U )2〉 − β3 ∂

∂β
(〈U 2〉 − 〈U 〉2) (D2)

= −2β2〈(�U )2〉 − β3 ∂〈U 2〉
∂β

+ 2β2〈U 〉β ∂〈U 〉
∂β

(D3)

= −2β2〈(�U )2〉 − β3 ∂〈U 2〉
∂β

− 2β2〈U 〉T CV (D4)

= −2β2〈(�U )2〉 + β3〈(�(U 2)�U 〉 − 2β3〈U 〉〈(�U )2〉.
(D5)

In the last line Eq. (11) was used. We can simplify by using
Eq. (B8):(

∂CV

∂ ln T

)
ρ

= −2β2〈(�U )2〉 + β3(2〈U 〉〈(�U )2〉 + 〈(�U )3〉)

−2β3〈U 〉〈(�U )2〉 (D6)

= −2β2〈(�U )2〉 + β3〈(�U )3〉. (D7)

For the density derivative of CV , we have likewise,(
∂CV

∂ ln ρ

)
T

= β2

(
∂〈U 2〉
∂ ln ρ

)
T

− β22〈U 〉
(

∂〈U 〉
∂ ln ρ

)
T

. (D8)

Starting with the second term, using Eq. (13),(
∂〈U 〉
∂ ln ρ

)
T

= −β〈�W�U 〉 + 〈W 〉 (D9)

while the first gives, also using Eqs. (13) and (B8),(
∂〈U 2〉
∂ ln ρ

)
T

= −β〈�W�(U 2)〉 + 〈2UW 〉 (D10)

= −2β〈U 〉〈�W�U )〉 − β〈�W (�U )2)〉 + 2〈UW 〉.
(D11)

Combining the two terms then gives(
∂CV

∂ ln ρ

)
T

=−β32〈U 〉〈�U�W 〉 − β3〈�W (�U )2〉

+2β2〈UW 〉+ 2〈U 〉β3〈�W�U 〉−2〈U 〉β2〈W 〉
(D12)

= −β3〈�W (�U )2〉 + 2β2〈�U�W 〉 (D13)

which is Eq. (50). Now we can assemble the derivative of CV

along an arbitrary slope g (Eq. (43)),(
dCV

d ln ρ

)
[g]

= −β3〈�W (�U )2〉 + 2β2〈�U�W 〉

+g(−2β2〈(�U )2〉 + β3〈(�U )3〉) (D14)

= β2〈(�U )2〉(−β〈�W (�U )2〉/〈(�U )2〉 + 2γ

+g(−2 + β〈(�U )3〉/〈(�U )2〉)) (D15)

which can be rewritten as Eq. (51).

APPENDIX E: FLUCTUATION FORMULA
FOR THE DERIVATIVE OF γ

We include here, omitting the derivation, the fluctuation
formula for the derivative of γ with respect to ln ρ at constant
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S. The quantity X ≡ dW/d ln ρ is the hypervirial, which ap-
pears in fluctuation expressions for the bulk modulus.49

(
∂γ

∂ ln ρ

)
S

= 1

〈(�U )2〉 (〈(�W )2〉 + 〈�U�X〉

−2γ 2〈(�U )2〉 − β〈�Uε2〉). (E1)

For IPL systems (and perfect correlating systems in general)
we have �X = γ�W = γ 2�U and ε ≡ 0, so that the deriva-
tive is zero.

1I. Z. Fisher, Statistical Theory of Liquids (University of Chicago, Chicago,
1964).

2S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Inter-
science, New York, 1965).

3H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, Physics of
Simple Liquids (Wiley, 1968).

4N. K. Ailawadi, Phys. Rep. 57, 241 (1980).
5J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Claren-
don, Oxford, 1982).

6C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Oxford
University Press, 1984).

7D. Chandler, Introduction to Modern Statistical Mechanics (Oxford
University Press, 1987).

8J. L. Barrat and J. P. Hansen, Basic Concepts for Simple and Complex
Liquids (Cambridge University Press, 2003).

9P. G. Debenedetti, AIChE J. 51, 2391 (2005).
10J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed.

(Academic Press, New York, 1986).
11J. F. Douglas, J. Dudowicz, and K. F. Freed, J. Chem. Phys. 127, 224901

(2007).
12B. Kirchner, Phys. Rep. 440, 1 (2007).
13B. Bagchi and C. Chakravarty, J. Chem. Sci. 122, 459 (2010).
14F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
15M. Engel and H.-R. Trebin, Phys. Rev. Lett. 98, 225505 (2007).
16V. Van Hoang and T. Odagaki, Physica B 403, 3910 (2008).
17T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011

(2012).
18N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre,

J. Chem. Phys. 129, 184507 (2008).
19N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre,

J. Chem. Phys. 129, 184508 (2008).
20T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre,

J. Chem. Phys. 131, 234503 (2009).
21N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre,

J. Chem. Phys. 131, 234504 (2009).
22T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre,

J. Chem. Phys. 134, 164505 (2011).

23J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78, 591
(1993).

24E. A. Mastny and J. J. de Pablo, J. Chem. Phys. 127, 104504 (2007).
25V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and K.

Trachenko, JETP Lett. 95, 164 (2012).
26V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and K.

Trachenko, Phys. Rev. E 85, 031203 (2012).
27V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, and

K. Trachenko, Phys. Rev. Lett. 111, 145901 (2013).
28U. R. Pedersen, N. Gnan, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, J.

Non-Cryst. Solids 357, 320 (2011).
29A. A. Veldhorst, L. Bøhling, J. C. Dyre, and T. B. Schrøder, Eur. Phys. J. B

85, 21 (2012).
30T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, J. Phys. Chem. B 116,

1018 (2012).
31N. Gnan, C. Maggi, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 104,

125902 (2010).
32T. S. Ingebrigtsen, L. Bøhling, T. B. Schrøder, and J. C. Dyre, J. Chem.

Phys. 136, 061102 (2012).
33L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and

T. B. Schrøder, New J. Phys. 14, 113035 (2012).
34D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T.

Christensen, N. B. Olsen, T. B. Schrøder, D. Fragiadakis, R. Casalini et al.,
Nat. Phys. 7, 816 (2011).

35U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev.
Lett. 100, 015701 (2008).

36A. Malins, J. Eggers, and C. P. Royall, “Investigating isomorphs
with the topological cluster classification,” preprint arXiv:1307.5516
(2013).

37M. Dzugutov, Phys. Rev. A 46, R2984 (1992).
38L. A. Girifalco, J. Phys. Chem. 96, 858 (1992).
39See http://rumd.org for the RUMD source code.
40H. Robbins and J. Van Ryzin, Introduction to Statistics (Science Research

Associates, 1975).
41To “correlate with” means to multiply by and take an ensemble average.
42L. Bøhling, N. B. Bailey, T. B. Schrøder, and J. C. Dyre, “Estimating the

density-scaling exponent of a liquid from its pair potential” (unpublished).
43Our method of determining 
 fails when n(2) is constant, but the value of r

where one should evaluate n(2) is in principle well-defined.
44Y. Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998).
45H. Smith and H. H. Jensen, Transport Phenomena (Oxford University

Press, USA, 1989).
46S. G. Brush, Kinetic Theory (Pergamon Press, 1972), Vol. 3.
47J. C. Dyre, Phys. Rev. E 88, 042139 (2013).
48N. P. Bailey, T. B. Schrøder, and J. C. Dyre, “Non-uniqueness of effective

inverse power-law exponent for Lennard-Jones potential from variational
perturbation theory” (unpublished).

49M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, 1987).

50Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999).



ar
X

iv
:1

30
7.

52
37

v3
  [

co
nd

-m
at

.s
of

t]
  2

8 
M

ar
 2

01
4

The isomorph theory explains the dynamical scaling properties of flexible
Lennard-Jones chains
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The isomorph theory provides an explanation for the so-called power law density scaling which
has been observed in many molecular and polymeric glass formers, both experimentally and in
simulations. Power law density scaling (relaxation times and transport coefficients being functions
of ργ/T , where ρ is density, T is temperature, and γ is a material specific scaling exponent) is
an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the
isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coef-
ficients being functions of excess entropy) which has been observed in simulations of both molecular
and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains
(LJC), we provide the first detailed test of the isomorph theory applied to flexible chain molecules.
We confirm the existence of “isomorphs”, which are curves in the phase diagram along which the
dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times
but also for the full time dependence of the dynamics, including chain specific dynamics such as
the end-to-end vector autocorrelation function, and the relaxation of the Rouse modes. As pre-
dicted by the isomorph theory, jumps between different state points on the same isomorph happen
instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for
alkanes and polymers, our results provide a possible explanation for why power-law density scaling
is observed experimentally in alkanes and many polymeric systems. The theory provides an inde-
pendent method of determining the scaling exponent, which is usually treated as a empirical scaling
parameter.

I. INTRODUCTION

When a liquid or polymer melt is (super)cooled to-
wards the glass transition, its viscosity and relaxation
time increase with many orders of magnitude over a rel-
atively small temperature range. More generally, the dy-
namics of a viscous liquid depends on two variables, den-
sity ρ and temperature T (or pressure and temperature).
Understanding what exactly controls the viscous slowing
down upon cooling and/or compression remains one of
the main challenges related to the glass transition1–3.

An indication that a single, underlying quantity de-
termines the viscous slowing down of supercooled liquids
was published in 1998 by Tölle et al.4,5. They showed
that the dynamics of ortho-terphenyl, measured at dif-
ferent densities and temperatures, collapses on a single
curve when plotted against a function of density over
temperature h(ρ)/T . More specifically, these neutron
scattering data were found to collapse for h(ρ) = ρ4.
Later, a similar scaling was found to work for other or-
ganic glass formers, including polymers, showing that
the relaxation time is a function of h(ρ)/T 6–8. There
was some debate over the functional form of h(ρ) and
whether it could be uniquely determined given the lim-
ited density changes experimentally available9–14. In a
famous review Roland et al.15 demonstrated that scaling
with h(ρ) = ργ with a material specific scaling exponent
γ works well for a large group of organic glass formers, in-
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cluding polymers. We refer to this scaling as power-law
density scaling. To date, many more molecular liquids
have been shown to obey power-law density scaling to a
good approximation, including polymers, but also ionic
liquids16–20 and liquid crystals21–26.

The recently developed isomorph theory27 explains
and generalizes power-law density scaling. The isomorph
theory states that a group of simple liquids exists that
have curves (isomorphs) in their phase diagrams along
which structure and dynamics are invariant in the ap-
propriate units. The isomorphs are identified by h(ρ)/T
being constant on an isomorph, where h(ρ) is a mate-
rial specific function. Consequently relaxation times and
transport coefficients are predicted28 to be functions of
h(ρ)/T . For sufficiently small density changes h(ρ) may
be approximated by a power law: h(ρ) ∝ ργ , which is
equivalent to power law density scaling. The theory pro-
vides an independent method of determining the scaling
exponent, γ. Other predictions of the theory are that
certain thermodynamical quantities including the excess
entropy and isochoric specific heat are invariant on the
isomorph. Since both excess entropy and the relaxation
times are predicted to be constant on an isomorph, the
isomorph theory provides an explanation for Rosenfeld’s
excess entropy scaling27,29,30, according to which a liq-
uid’s relaxation times and transport coefficients are func-
tions of excess entropy only.

The isomorph theory has so far only been tested in
detail for atomic systems27,31, and for some small rigid
molecules32. However, many organic glass formers are
large molecules or have bulky side groups, because this
makes it harder for the liquid to crystallize. These larger
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molecules, and polymers in particular, inherently have
intra molecular degrees of freedom that influence the liq-
uid structure and dynamics. Here, we aim to bridge the
gap between the simple models already shown to obey
they isomorph theory, and larger flexible glass formers
shown experimentally to obey power law density scaling.

Since both alkanes18,33,34 and polymers15,35 have been
shown to obey power-law density scaling, we simulated a
general viscous model liquid of linear, flexible Lennard-
Jones chains (LJC). The model has been used exten-
sively for viscous polymer melts close to the glass tran-
sition36–40. We show that the LJC liquid has isomorphs
in its phase diagram, and we study the effect of the intra
molecular degrees of freedom on the applicability of the
isomorph theory.

In section II we give a short overview over the rel-
evant aspects of the isomorph theory. We explain the
LJC model in section III and present the details of our
simulation method. We start our discussion of the re-
sults by showing how the isomorphs were obtained for
the LJC model (section IVA) . We then verify that the
dynamics (section IVB) and some aspects of the struc-
ture IVC are invariant on the isomorph. As predicted
by the isomorph theory, we show in section IVD that
isomorph scaling can be used to collapse the dynamics
along different isochores onto a single master curve.

II. ISOMORPH THEORY

The development of the isomorph theory was preceded
by the discovery of a class of liquids that have strong
correlations in the equilibrium fluctuations of the config-
urational parts of their energy and pressure. The cor-
relations can be quantified by the standard correlation
coefficient41,42:

R =
〈∆W∆U〉√

〈(∆W )2〉 〈(∆U)2〉
, (1)

where U is the potential energy, W is the virial, ∆ de-
notes deviation from thermal average, and brackets 〈...〉
denote average in the canonical ensemble. For liquids
where the pair potential is an inverse power law (IPL),
υ(r) ∝ r−n, the correlation is perfect (R = 1), but a large
group of liquids have a correlation coefficient close to one,
indicating strong correlation. Liquids with a correlation
larger than 0.9 were referred to as “strongly correlating”,
but since this term was often confused with strongly cor-
related quantum systems, we now refer to this class of
liquids as “Roskilde-simple” liquids.

The “slope” γ of the fluctuations can be defined by

γ =
〈∆W∆U〉
〈(∆U)2〉 . (2)

This definition of the slope is equal to the logarithmic
density derivative of the temperature on a curve of con-
stant excess entropy Sex ≡ S − Sideal, where Sideal is

the entropy of an ideal gas at the same temperature and
density27

γ =

(
∂ ln T

∂ ln ρ

)

Sex

. (3)

This means that one can use the “slope” γ calculated
from the fluctuations to trace out a curve of constant ex-
cess entropy in the phase diagram. One can calculate γ
at a certain state point (1) with temperature T (1) and
density ρ(1) using Eq. (2). If one then increments den-
sity by a sufficiently small amount to density ρ(2), Eq. (3)
gives the temperature of state point (2) that has the same
excess entropy. This can be done many times in an it-
erative fashion to obtain a set of state points that have
the same excess entropy. We use this method to trace
out curves in the phase diagram with invariant excess
entropy, and check if the predicted isomorphic invariance
of other properties is fulfilled. It should be noted that
the invariance is only predicted to hold when quantities
are considered in the appropriate reduced units, e.g., us-
ing ρ−1/3 as the unit of length, and kBT as the unit of
energy27,43.

The isomorph theory predicts “isomorph scaling”, i.e.,
that the dynamics is a function of h(ρ)/T , where h(ρ)
depends on the system28,44. For atomic systems interact-
ing via a pair potential that is the sum of IPL potentials
υ(r) =

∑
n υnr−n, h(ρ) is given by h(ρ) =

∑
n Cnρn/3,

where the constants Cn are the fractional contributions of
each term to the heat capacity28,44. This includes for ex-
ample the celebrated Lennard-Jones potential44,45. For
molecular liquids h(ρ) is not known analytically.

III. MODEL AND SIMULATION METHOD

We performed Molecular Dynamics simulations of flex-
ible Lennard-Jones chains (LJCs) consisting of 10 bonded
segments. Segments in different molecules and non-
bonded segments within a molecule interact via the stan-
dard LJ potential, cutting and shifting the potential at
2.5σ. We simulated 200 chains in a cubic bounding box
with periodic boundary conditions, in the NVT ensem-
ble using a Nosé-Hoover thermostat. For the time step
we used ∆t = 0.0025, and the time constant of the ther-
mostat was 0.2. The simulation was performed with our
RUMD46 software utilizing state of the art GPU com-
puting.

The model has been derived from a model by Kremer
and Grest47, who did not include the attractive part of
the LJ potential. Later, the attractive part has usually
been included. Short LJ chains of around ten segments
have been used extensively to simulate glassy polymer
melts48–51, even though real polymers easily consist of
thousands of monomers. The reason for this is threefold.
Firstly, the LJC is a coarse-grained model, meaning that
a single Lennard-Jones particle may correspond to sev-
eral monomers. Secondly, increasing the chain length
in general increases the total system size, which in turn
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increases the simulation time. Most importantly, it is
often the equilibrium (viscous) liquid that is of interest.
Both increasing the chain length and approaching the
glass transition increase the equilibration time, meaning
that there is always a trade-off between chain length and
viscosity52,53.

Usually, the neighboring segments in the chain are
bonded by a FENE potential, although harmonic
springs38–40 and rigid bonds34,54,55 have also been used.
Here, the bond length lb = σ = 1 was kept constant using
the Time Symmetrical Central Difference algorithm56,57.
Like other constraint algorithms, these bonds contribute
to the virial58: Wtotal = WLJ + Wconstraint, but not to
the energy.

With our purpose in mind, the model is of special in-
terest since it has already been shown to obey power-law
density scaling, using γ as an empirical scaling parame-
ter.34. Moreover, the LJC liquid has been shown to obey
Rosenfeld’s excess entropy scaling34,54,55,59.

IV. RESULTS AND DISCUSSION

A. Generating isomorphs

To generate an isomorph, a NVT simulation was per-
formed at a state point (ρ0, T0), and the scaling exponent
γ was calculated using Eq. (2). We then change density
with 0.02 and use equation Eq. (3) to find the tempera-
ture at the new state point for which the excess entropy
Sex is the same. Applying this procedure iteratively we
obtain a curve with constant Sex. If the model conforms
to the isomorph theory, this curve will be an isomorph,
i.e., have invariant dynamics and structure in reduced
units. Five isomorphs were generated using this proce-
dure with ρ0 = 1.0 and T0 = {0.5, 0.6, 0.65, 0.7, 0.8}.

In Fig. 1(a), the correlation coefficient R is plotted as
a function of density for the five isomorphs. For the den-
sities we have simulated, the correlation coefficient varies
between 0.81 and 0.87, which is lower then the (some-
what arbitrary) 0.9 limit for simple liquids. However, we
show with this paper, that the LJC model also shows
clear isomorphs in its phase diagram, and that within
the density range investigated, simple power-law density
scaling does not suffice.

In Fig. 1(b) we plot the values of γ calculated from
Eq. (2). The isomorph theory predicts γ to depend on
density but not temperature27,45. This is seen to be ful-
filled to a good approximation; γ is seen to change much
more by increasing density by 25% than by increasing
temperature by 60%. The density dependence of γ means
that we can only use Eq. (3) for small density changes,
and indicates that simple power-law density scaling is an
approximation that only works for small density changes.

The γ values found for the LJC model (6.1–7.9) are
higher than for a single component LJ liquid (5.3–6.7)42.
This increase in γ is due to the fixed constraints, which
can be seen as a very steep repulsion between bonded seg-
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FIG. 1. (a) The correlation coefficient R, calculated from the
instantaneous values of the virial W and the potential energy
U using Eq. (1). Each data set corresponds to an isomorph,
obtained as described in the text. The correlation coefficient
is high, albeit lower than for a standard single component
Lennard-Jones liquid60. (b) The isomorphic scaling expo-
nent γ as defined by Eq. (2). The values found are signifi-
cantly higher than for the single component Lennard-Jones
liquids60, and show a clear density dependence. The logarith-
mic derivatives of γ on the isochore and isotherm confirm that
γ is much more dependent on the density: ( ∂ ln γ

∂ ln T
)ρ=1 ≈ 0.05

and ( ∂ ln γ
∂ ln ρ

)T=0.7 ≈ 0.89, as predicted by the isomorph theory.

ments. On the other hand, the high γ values is in contrast
to the values found from power-law density scaling,which
are generally lower for polymers than for small molecular
liquids35. Tsolou et al61 found γ = 2.8 from power-law
density scaling of simulation data of a united atom model
of cis-1,4-polybutadiene. A possible explanation for this
low value of γ has been given by Xu62 who showed using
the generalized entropy theory that polymer rigidity sig-
nificantly decreases the density scaling exponent γ. Here,
polymer rigidity was quantified by the bending energy of
the angle between two bonds.

B. Dynamics on an isomorph

In the following, we test a number of isomorph pre-
dictions focusing on the (ρ0, T0) = (1.0, 0.7) isomorph,
before returning to the question of the overall scaling
properties of the model. The isomorph theory predicts
dynamics and structure to be invariant on an isomorph.
This invariance applies to data in reduced units, which
means that distance and time are scaled using r̃ = ρ1/3r
and t̃ = ρ1/3(T/m)1/2t, where m is the mass of a segment.
The dynamics are of particular interest here, because the
dependence on state point becomes large upon cooling
and/or compression. In Fig. 2(a), different dynamical
quantities are plotted. The self part of the segmental
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FIG. 2. The segmental and center of mass intermediate
scattering function FS(q, t̃), as well as the normalized ori-
entational autocorrelation function of the end-to-end vector
〈R(t)R(0)〉. The position of the peak of the (segmental) static
structure factor was taken as the value for q. (a) The data for
7 isomorphic state points collapse on a single master curve
when plotted in reduced units, and this is the case for all
three relaxation functions. (b) For isothermal state points,
the curves do not collapse but are spread over a larger dy-
namical range.

and the center of mass intermediate scattering function
FS(q, t), as well as the normalized orientational autocor-
relation of the end-to-end vector 〈R(0)R(t)〉 are plotted
as a function of reduced time. The values of q were kept
constant in reduced units: q = q̃ρ1/3. All these mea-
sures of the dynamics collapse well for the isomorphic
state points compared to an isothermal density change;
Increasing the density by 11% while keeping temperature
constant significantly changes the dynamics, whereas in-
creasing the density 25% while following the isomorph
keeps the dynamics invariant to a really good approxi-
mation.
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FIG. 3. Relaxation times calculated from the orientational
autocorrelation of the end-to-end vector and the intermediate
scattering function, as function of density. The value of the
q̃ vector has been varied to obtain different measures of the
relaxation time. Each value was kept constant in reduced
units for the different densities All relaxation time measures
are invariant for isomorphic state points (filled symbols). An
isotherm is included for comparison (open red symbols).

We define a relaxation time for the dynamical quan-
tities as the time where the correlation function reaches
0.2. These relaxation times are plotted in Fig. 3, this
time also varying q. The different relaxation times char-
acterizing the dynamics covers more than 4 decades in
time, but each of them are to a good approximation in-
variant on the isomorph. In contrast, the relaxation times
on the isotherm shown (open red symbols) shows a clear
dependence on density.

The dynamics of flexible chains are often expressed
in terms of correlation functions of Rouse modes,
〈Xp(t)Xq(0)〉63,64. The zeroth mode describes the center
of mass displacement of the chain, while the other modes
describe vibrations in a subchain of N/p segments. In
Fig. 4 some of the Rouse mode auto correlation func-
tions are plotted for the isomorphic state points. For
the lower modes, there is an excellent collapse of the
correlation functions, whereas the invariance decreases
somewhat for the higher modes. It should be noted that
the amplitude of the rouse modes is predicted to scale
as

〈
X2

p

〉
∝ 1/(N sin2(p/N)), so the contribution of the

higher modes is very small65.
Fig. 5 shows the isomorphic invariance of the mean

square displacement of both the segments and the cen-
ter of mass in all regimes, including the subdiffusive
regimes which is specific for polymers and other flexible
molecules.

Not only equilibrium dynamics, but also out of equi-
librium dynamics are predicted to be invariant on an iso-
morph. We test this by changing density and tempera-
ture instantaneously during a simulation. The center of
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FIG. 4. Auto-correlation functions of some rouse modes. (a)
For the same isomorphic state points as in Fig. 2(a). The
collapse of the Rouse modes is good, especially for the lower
modes. (b) Data for the same isothermal state points as in
Fig. 2(b). There is no collapse of the dynamics for isothermal
state points.

mass positions are scaled together with the box, but the
intramolecular distances were kept constant. In Fig. 6
the relaxation of the potential energy is plotted after dif-
ferent instantaneous jumps. The figure shows that no
relaxation is visible in the energy when jumping between
two state points that are isomorphic to each other (black
line). This is predicted by the isomorph theory: two
state points on the same isomorph are equivalent with re-
gard for aging27. Likewise, when jumping from two state
points on the same isomorph to a third state point that
is not on that isomorph, the relaxation curve is the same
for the two jumps. When the density is changed, the
system is immediately in equilibrium at the isomorphic
state point with the new density. Any relaxation after
the density jump then takes place on the isochore66.
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FIG. 5. The mean square displacements of the segments and
the center of mass of the chains. (a) again, there is a good
collapse for the mean square displacement on the isomorph,
for both the segments and the center of mass. (b) This is not
the case for the isotherm.

C. Structure on an isomorph

Also the structure is predicted to be invariant on an
isomorph27. However, not all structural quantities are
necessarily equally invariant when molecular liquids are
considered. Since the length of the constrained bonds is
constant in normal units and does not change with den-
sity, the bond length in reduced units will not be con-
stant on the isomorph in reduced units. For that reason
we plot the inter- and intramolecular contribution to the
segmental radial distribution function g(r) separately in
Fig. 7. The intermolecular structure is quite constant
on the isomorph, while the intramolecular structure is
clearly not. The center of mass g(r̃) was also found to be
invariant on the isomorph when plotted in reduced units
(data not shown), but it is also invariant on the isochore
and isotherm within the liquid (fluid) phase.
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for the same state points as in Fig. 2. Dashed lines cor-
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comparison. The data show that intermolecular structure is
invariant, while intramolecular structure is not invariant on
the isomorph due to the constant bond length. (a) The in-
termolecular (segmental) radial distribution function g(r̃) in
reduced units on the isomorph (ρ, T ) = (1.00, 0.70). The in-
termolecular g(r) is to a good degree invariant for isomorph
state points, especially when compared to a (small) density
change on an isotherm. (b) The intramolecular g(r) is clearly
not invariant on an isomorph.
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FIG. 8. Intramolecular quantities are not invariant on the
isomorph (black solid lines) (a) The mean square end-to-end
vector

〈
R2

〉
and the mean square radius of gyration (b) as

a function of density. The temperature dependence of these
quantities is similar on the isomorph and isotherms (dashed
lines). It should be mentioned that when these quantities
are plotted in real units, they show an (intuitive) decrease
with density. (c) and (d) The same data for the isomorphic
state points, now plotted as a function of temperature and
compared with an isochore. These intramolecular quantities
are actually more constant on the isochore, due to the fixed
bond length.

To investigate the difference in inter- and intramolec-
ular structure further, we plot the mean square radius
of gyration

〈
R2

g

〉
and the mean square end-to-end vec-

tor
〈
R2

〉
in Fig. 8. These intramolecular quantities are

clearly not invariant on the isomorph, changing as much
with density as on the isotherm. On an isochore these
quantities are even more constant than on the isomorph.
The lack of temperature dependence of these quantities
was already noted for a similar bead-spring model67.

D. Scaling of the dynamics

Finally, we return to the question of the overall scal-
ing of the dynamics of the model. As mentioned in the
introduction, the isomorph theory predicts that each re-
laxation time characterizing the dynamics is a function
of h(ρ)/T where h(ρ) is system dependent function. For
atomic system with pair potentials being sums of power
laws, we have an analytical expression for h(ρ)44. Due
to the presence of the bonds, we unfortunately do not
have an analytical expression for h(ρ) in the model stud-
ied here. Fig. 9 shows the five studied isomorph in the
ρ, T plane (filled symbols). The open symbols show the
same data, except that the temperatures are divided by
T0 (the temperature at ρ = 1). The scaled data is pre-
dicted to collapse on a single curve, h(ρ), which is indeed
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seen to be the case. We find h(ρ) to be well approximated
by h(ρ) = 2ρ5.06 − ρ2.61, where the two exponents were
determined by fitting.

Fig. 10 compares for three isochores the power-law den-
sity scaling and the scaling predicted by the isomorph
theory. Fig. 10(a) and Fig. 10(b) show that the two
smallest densities collapse using power-law density scal-
ing with γ = 7.7, whereas the two highest densities col-
lapse using γ = 6.7. Notice that the values of γ found by
this empirical scaling is consistent with the values found
from the W, U fluctuations in the respective density in-
tervals (see Fig. 1). The power-law density scaling is
thus an approximation that works for (relatively) small
density changes, and the scaling exponent γ can be de-
termined independently from the W, U -fluctuations. The
more general form of scaling is the one predicted by the
isomorph theory, which is tested in Fig. 10(c), using the
h(ρ) determined empirically in Fig. 9. The collapse is
seen to be excellent. Notice that the isomorph scaling
also captures the different shapes of the segmental and
chain dynamics, which is also well known for power-law
density scaling in a small density range68–70.

V. CONCLUSION

To summarize, we have shown that the predictions
of the isomorph theory apply to a flexible chain-like
model system, despite the fact that the system is not
entirely “Roskilde-simple” because the correlation coeffi-
cient of the instantaneous U, W fluctuations is less than
0.9. However, the collapse of the dynamics at different
time scales is unmistakable, and works for the segmental

dynamics as well as the chain dynamics. The rigid bonds
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FIG. 10. Comparison between power-law density scaling and
isomorph density scaling, applied to the relaxation times of
the end-to-end vector and the segmental incoherent interme-
diate scattering function (FS). (a) and (b) The power-law
density scaling approach for two different values of γ (7.7
and 6.7), collapsing the low and high density isochores re-
spectively. Neither value gives a good collapse of all the
data. (c) Isomorph scaling approach, using the function
h(ρ) = 2ρ5.06 −ρ2.61 (see Fig. 9) to scale the relaxation times,
giving a much better collapse.

in the model cannot scale with density and the struc-
ture can therefore not be constant on the isomorphs. We
have shown that this is only the case for intramolecular
structure, while the intermolecular structure stays invari-
ant on the isomorph. This indicates that the isomorph
theory may be extended to include flexible molecules.
In particular this explains the experimentally observed
power-law density scaling for alkanes and many polymers
- and predicts that it should break down at larger density
variations where isomorph scaling is needed.
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