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This thesis deals with danish secondary school students’ conceptual understanding
of functions. The function concept is chosen as a case study because of its impor-
tance to mathematics as a discipline, and because of its central role in the danish
educational system. The aim of the thesis is to characterise students’ conceptual
understanding of functions through a combination of theoretical work and empiri-
cal studies. The theoretical framework serves as a guidance for the development of
the methodology, as well as an analytical tool for describing, understanding, and
communicating observations.

The main theory is Anna Sfard’s theory of reification — a theory that describes
fundamental aspects of the development of mathematical concepts, which can be
found within the historical development of concepts in mathematics as a discipline,
as well as within the learning process of individuals. Based on theoretical argu-
ments and observations from the literature, the theory is revised and extended. The
essence of the extension is, that during the learning process, an individual’s concep-
tual understanding can develop differently across different representations of the
same concept. The extension is referred to as disjoint-reification-of-representations
hypothesis. The hypothesis has significant consequences for the characterisation of
students’ conceptual understanding and therefore potentially for how teachers can
support and challenge students’ conceptual understanding.

Three empirical studies, containing a total of 17 pairs of students, spread across
two danish secondary schools, are conducted. The studies consist of video/audio
recordings of pairs of students who are solving a set of mathematical problems,
which were designed according to the theory of reification, with the aim of charac-
terising the students’ understanding of the function concept.

The data analysis consists of a close scrutiny of the video recording and the stu-
dents’ written answers to the problems. Observations are presented in the form
of transcribed dialogues between the students. These dialogues are then analysed
within the theoretical framework of the thesis. Based on the analysis a characteri-
sation of the students’ understanding of the function concept is given.

The overall conclusion of the thesis is, that important aspects of secondary stu-
dents’ conceptual understanding can be probed through video recording of problem
solving sessions, and that it can be characterised by stating the level of reification
which the student has attained of the concept in its different representations.
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Abstract in danish

Dette speciale omhandler danske gymnasieelevers forstaelse af funktionsbegrebet. Funk-
tionsbegrebet er valgt pa baggrund af dets vigtige rolle i matematik som videnskab og
iseer pa grund af dets centrale rolle i det danske uddannelsesystem. Formélet med speci-
alet er at karakterisere individers forstaelse af funktionsbegrebet gennem en kombination
af teoretisk arbejde og empiriske studier. Den teoretiske ramme lsegger fundamentet for
udviklingen af de empiriske studier, og fungerer som et analyseveerktgj til at beskrive,
forsta og kommunikere observationer.

Hovedteorien er Anna Sfards reifikationsteori — en teori, der beskriver de grundlaeg-
gende traek ved matematisk begrebsdannelse, hvilket kan genfindes bade i den historiske
udvikling af begrber i matematik, som videnskab, og i begrebsdannelsen hos individer.

Baseret pa teoretiske argumenter samt observationer fra litteraturen revideres og ud-
vides teorien. Udvidelsen bestar i at abne op for muligheden for, at begrebsdannelsen, i
leereprocesser, kan forkomme forskelligt inden for et begrebs forskellige repraesentationer.
Udvidelsen kaldes for hypotesen om disjunkt-reifikation-af-reprzesentationer. Hypotesen
har afggrende betydning for karakterisering af elevers begrebsforstaelse og dermed ogséa
potentielt for, hvordan man, som laerer, kan stgtte og udfordre elevers begrebsforstaelse.

Der er udfgrt tre empiriske studier, der inkluderer 17 par af studerende spredt over to
danske gymnasier. Studierne bestar af video/audio optagelser af studerende, der lgser ma-
tematiske problemer, som er designet jf. reifikationsteorien med henblik pé at karakterisere
de studerendes forstaelse af funktionsbegrebet.

Dataanalysen bestar af en grundig gennemgang af video-optagelserne og de skrev-
ne opgavebesvarelser. Observationerne praesenteres i form af transskriberede dialoger fra
video-optagelserne. Dialogerne er derefter analyseret i lyset af reifikationsteorien. Baseret
pé disse analyser gives en karakterisering af de studerendes forstaelse af funktionsbegrebet.

Den overordnede konklusion pa specialet er, at vigtige aspekter af gymnasieelevers
forstaelse af funktionsbegrebet kan belyses gennem problemlgsningssessioner, og at de-
res begrebsforstaelse kan karakteriseres ved at udpege det stadie af reifikation som de
studerende har opnéet af begrebet i dets forskellige repraesentationer.
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Introduction






1 Introduction

Functions play an important role in mathematics education, but it turns out that a thor-
ough comprehension of the function concept is remarkably complex and difficult for stu-
dents to attain. [Harel and Dubinsky, 1992]

Historically the evolution of the function concept can be traced back to Bernoulli’s
definition from around 1720: “One calls here Function of a variable a quantity composed
in any manner whatever of this variable and of constants” [Kleiner, 1989, p. 3]. This
is to be compared to Bourbaki’s definition from around 1940, where it is defined as a
subset of ordered paris (z,y) in a product set A x B, in which there are no different paris
with the same first component. The subset is then said to define a function f : A — B
[Kleiner, 1989, p. 18|. Thus, during the approximately 200 year development, the function
concept has undergone extensive revision; e.g. in the first definition an analytic expression
is required; this is not so in the latter definition.

As an example we can consider the parsing of barcodes into prices; each barcode
determines a unique price. This parsing from barcodes to prices can be considered a
function in the Bourbaki definition, but not in the Bernoulli definition.

Having evolved with mathematics, the function concept now plays a central and uni-
fying role; functions occur throughout mathematics and are used in very diverse ways.
Consequently, functions can be represented in many different ways: as a set of ordered
pairs, a correspondence, a graph, a dependent variable, or a formula, just to name a few
points of view. Students often hold only some of these views incompletely, and are having
considerable difficulty changing from one point of view to another. [Harel and Dubinsky,
1992]

It is important to understand students’ conceptual understanding for at least two
reasons: First of all, mathematics is, for the most parts, built from the bottom up; new
concepts rely on old ones — in history as well as for the individual’s learning process.
Therefore, making sure that students have a sound understanding of core concepts is
vital for the success of the students. In the Danish educational system, for example,
the function concept is introduced during elementary school and serves as a gateway to
calculus during secondary school. Thus, the function concept is central to mathematics
in the danish educational system, and any student who wish to succeed in this subject
had better have a sound understanding of this concept.

However, when the function concept is taught in school, only a subset of the pos-
sible representations of the function concept is introduced, and only few standardised
connections between these representations are focused on. This way of teaching has some
unfortunate consequences.

For example, it has been observed by Tall and Bakar in [Tall and Bakar, 1992], that
students’ understanding of a given concept is restricted to the number of examples and
non-examples they have encountered. There is reason to expect that if students see a
limited numbers examples, presented in a limited number of representations, the students
understanding will be limited.

Furthermore, according to Steinbring [Steinbring, 1989, 1997], the meaning of mathe-
matical concepts emerge in the interplay between symbols — the notation used to represent
an instances of a concept — and object domains — the concrete instances of the concept we
wish to describe. Steinbring describes this relationship between the symbols and objects
with the epistemological triangle: object — symbol — concept, as shown in figure 1.1.

As an example, let us consider the function concept: The symbols we use are, e.g.,
graphs, algebraic expressions or table of values. The specific objects we wish to describe
are, e.g. polynomials.

Steinbring points out, that the connection between mathematical objects and the
symbols used to represent these object is indirect. It is important to distinguish between
the objects one wishes to describe, and the symbol one uses to do so; only by relating
these two sides to each other without identifying them directly, can the development of
knowledge advance, since the objects and symbols are the students only means of accessing

3



4 1. INTRODUCTION

the concept [Steinbring, 1989).

However, this is precisely what happens for many students. They equate the objects
with the signs and symbols used to represent them, and as a consequence the epistemolog-
ical collapses (figure 1.1b), and becomes a linear connection between object and concept;
the representation of an object becomes the object, and the concepts are taken out of the
focus — as a consequence the students’ conceptual understanding suffers.

One interpretation of this is be that a student might think that the expression f(z) =
z? and the graph of this function is in fact two different mathematical objects, not two
different representations of the same object.

Object - > Symbol Object = Symbol
Concept Concept
(a) Epistemological triangle (b) Collapse

Figure 1.1 — Steinbring’s epistemological triangle describes

To summarise: Due to the way in which mathematical concepts are taught, students can
obtain an unsatisfactory conceptual understanding — students can only access the math-
ematical concepts thought its different representations and the meaning they attached to
different situations, but some students equate the representations with the objects, and
this removes the focus from the concept itself.

Thus, there is a need to be able to properly understand and characterise students’
conceptual understanding of functions such that we can improve the way the concept is
taught.

The second reason for studying students’ conceptual understanding of functions is
that problem solving skill can be divided into four domains: resources, heuristic, control,
and beliefs. Simply put: in order to be proficient at solving mathematical problems, one
needs some basic mathematical knowledge (resources); a set of procedures, or rules of
thumb, for making progress on a difficult problem (heuristics); and the mental oversight
to monitor ones actions, and plan ahead (control). Furthermore ones ideas (beliefs) about
what mathematics is, has an influence on the problem solving process [Schoenfeld, 1985].
Thus, conceptual understanding, being a part of the students resources, has an influence
on students problem solving performance.

It is well known that students’ conceptual understanding of many core concepts is less
than ideal. The mathematics education literature is filled with reports about students
difficulties with concepts such as function, variable, limit, and compactness, to name just
a few; thus, it is reasonable to ask:

1.1 Research question

What characterises students’ conceptual understanding of functions?

That is, how can we adequately describe students’ conceptual understanding? By ade-
quately describe, I mean be able to understand, explain, and — not in the least — commu-
nicate students’ behaviour, when they are dealing with the function concept. An answer
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to this question will be sought partly through studying the relevant literature, and partly
through an empirical study.

The relevant literature is immense; thus, the real challenge does not lie in finding
relevant literature, as much as choosing parts of the literature, which is representative for
the multitude of theories and observations made by researcher scattered across the globe.

Many have attempted to understand and model students’ conceptual understanding:
Vinner with his concept image/concept definition theory[Tall and Vinner, 1981, Vinner,
1983, Vinner and Dreyfus, 1989]; Dubinsky with his Action-Process-Object-Schema ap-
proach (APOS)[Asiala et al., 1997]; and Sfard with her theory of reification[Sfard, 1988,
1991, 1994, Sfard and Linchevski, 1994a,b|, just to name a few of the most prominent
examples of general theories of the development of conceptual understanding in mathe-
matics. These theories have different origins and, to some extent, a different take on how
to explain students’ conceptual understanding. I will briefly outline the three theories as
examples of what the literature has to offer.

Vinner observed that some students were unable to figure out whether or not a graph,
or an algebraic expression, represented a function, despite the fact that the students were
able to give a correct, set theoretical, definition of a function; that is, the students were
unable to use their definition of the concept. This lead Vinner to introduce the notion of
concept image and concept definition. The concept definition is a linguistic definition of
the concept that accurately explains the concept in a non-circular way, while the concept
image is the set of mental images, properties, and examples of the given concept. Vinner
noticed that the students concept image and concept definition can disagree but coexist,
apparently without giving rise to cognitive conflicts for the student. [Vinner, 1983, Vinner
and Dreyfus, 1989]

For instance, the concept definition of a mathematical function might be taken to be
“a relation between two sets A and B in which each element A is related to precisely one
element in B”, but individuals who have studied functions may, or may not, remember
the concept definition, and the concept image may include many other aspects, such as
the idea that a function is given by a rule or a formula, or perhaps that several different
formulae may be used on different parts of the domain. There may be other notions. For
instance, the function may be thought of as an action which maps a in A to f(a) in B, or
as a graph, or as a table of values. All or none of these aspects may be in an individual’s
concept image. [Tall and Vinner, 1981]

Sfard’s theory of reification is inspired by historical accounts of how mathematical
concepts have evolved through time. Based on these anecdotes, as well as observation
of students misconception about a set of mathematical concepts, she constructs a model
of how mathematical concepts evolve, in mathematics as a discipline, as well as for the
individual learner. The foundation of the theory is the notion that mathematical concepts
can be conceived in two fundamentally different ways; as a process, or as an object. She
goes on to specify the way in which students’ conception of a concept can move from
the process conception to the object conception, though three consecutive stages: interi-
orization, condensation, and reification. [Sfard, 1988, 1991, 1994, Sfard and Linchevski,
1994a,b|

An entire chapter of the thesis will be devoted to this theory, so I will say no more
about it now.

Dubinsky et. al. have developed a theory with the basic hypothesis that an individ-
ual’s mathematical knowledge can be described through that individual’s mental actions,
processes, and objects organised in schemas to make sense of a given situation and help
solve problems. The theory is often referred to as the APOS theory. An action is a
transformation of an object carried out by an individual through some algorithm. When
an individual constructs an internal operation that preforms the same transformation as
the actions, the action is said to be interiorized to a processes. When an individual is
capable of carrying out an action on the process, it is said to be encapsulated to an object.
A coherent collection of processes and objects is called a schema. Schemas are invoked
by the individual in respond to a specific situation or problem. They can be thematised
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to become another kind of objects. At times it might be necessary for the individual to
de-encapsulate a given object or de-thematise a schema, in order to deal with a given sit-
uation or problem, thus the encapsulation and thematisation are no irreversible. [Asiala
et al., 1997, p. 2]

The APOS theory is based on the same fundamental observation as Sfard; the fact that
most mathematical concepts can be conceived as both objects and processes; however, the
focus of the theory is on how a theory of learning mathematics can help us understand
the learning process by providing explanations of phenomena that we can observe in
students who are trying to construct their understandings of mathematical concepts, and
by suggesting directions for pedagogy that can help in this learning process [Asiala et al.,
1997, p. 3]. The theory has a special emphasis on application.

As I see it, the three theories differ in interesting ways. The APOS theory is norma-
tive — it attempts to explain how teachers should go about introducing the mathematical
concepts to the students — while both the concept image/definition and the theory of
reification are descriptive — they strive to characterise and explain problems and phe-
nomena which occur in students learning of mathematical concepts, but mostly without
inferring how the teachers should go about solving these problems. Another difference
lies in the origins of the theories; firstly we have the theory of reification which is, to a
large extent, bases on historical accounts of how the concepts have developed, with the
occasional empirical verification. Secondly we have the APOS theory, which is developed
in intimate collaboration with practicing teachers and with an explicit interest in how to
improve educational programs. Thirdly we have the concept image/ concept definition
theory, which has its origins in observations about students misconceptions of different
mathematical concepts. I think that these theories are representative for the different
types of theories the literature has to offer.

One of the main points of this thesis is to establish a two-way contact between theory
and experiment: On the one hand, the theory should be able to help you classify and
understand observations; that is, the theory should be useful. On the other hand the
observations should be the foundation of further revision and development of the theory;
that is, the theory should not be set in stone. This is one of the reasons why this thesis
contains both a theoretical and an empirical part.

For the empirical part I have chosen to use problem solving as a way of probing the
students’ conceptual understanding of functions. I have done so because I think that in
order to comprehend students’ understanding of the function concept, it is essential to see
how the students use the concept when they actually do mathematics.

The term problem solving is used abundantly in the mathematics education literature,
but there is no consensus among researchers on how to use the term. It it therefore
necessary to clarify exactly how I use the term problem solving. The term is generally used
in two very different ways: Either as a synonym for any activity involving mathematical
thought and arguments, or in a more rigid and strict way, in which problem is to be
understood as a specific kind of mathematical question; one which can not be answered
by simply imploring a set of routine activities. When problem is used in that context, it
is clear that the classification of problem depends on the person who needs to answer the
specific question; thus, the classification of “problem” is subjective.

I will use the term in an intermediate way. The assignments the students solve would
most likely not be problems in the strict sense, so it might make sense to call them non-
problematic. However, most of them are non-standard in their phrasing and general feel.
Let me give some examples. A standard problem might be: f(z) =z, g(z) = —z + 2 for
which z is f(z) = g(x)? A question like this could very well appear in a classic A-level
mathematics text book in the danish secondary school. A non-standard, non-problematic
example could be: x + y = 10, what can you say about x in relation to y? It is unlikely
that you will find a problem like this in any danish mathematics textbook; thus, it is
not standard for the students, but the secondary school students will most likely not find
it problematic in the strict sense. An example of a mathematical question that would
probably be problematic in the strict sense is: Can you construct a triangle from three
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arbitrary side lengths? An answer to this question would require a proof, probably by
contradiction, or a counter example. Again the subjectivity of the categorisation of a
mathematical question as problematic should be stressed: what is problematic to some is
standard to others.

There are several reasons why I have decided not to use problems in the strict sense.
First of all, I wanted to be able to conduct the empirical studies within the time limit of
a normal secondary school mathematics class. This was prioritised to make it more likely
that the secondary school teacher would agree to let me use their students for the studies
and, perhaps more importantly, that the students would not find it too time consuming
and tedious. Secondly, I wished to attain a broad sense of the students conceptual under-
standing which requires them to work on several different kinds of problems, containing
different representation of the concept. Having a lot of problems in the strict sense would,
most likely, yield the information I need, but it would take longer than the 45-60 minutes
at my disposal. Asking a lot of standard questions would make it possible to include a
lot of problems and fish in time; however, since such problems can be solved by imploring
routine procedures, I might not get the necessary amount of information. A compromise
was necessary. Non-standard, non-problematic “problems” seemed to fit the bill. For the
reminder of the thesis I will simply use the term “problem”, but keep in mind, it is, most
likely, not problems in the strict sense.

Another note about the problems: The problems have been designed with a focus on
the different representations of the function concept, and great care have been taken cover
many representations of the function concept, as well as connections between them. I have
chosen to focus on different representations and their connections for two reasons: Firstly,
the literature suggest that students understanding of the different representations is more
superficial than one could hope, see e.g. [Knuth, 2000]. Secondly, the problems have been
designed with the theory of reification in mind. The ability to skilfully change between
different representations of the same concept indicates that a person has reified (made an
object of ) the concept. Thus, studying students understanding of different representations
of the function concept should indicate how solid the students’ understanding of the
function concept is.

1.2 Outline of the report

The thesis is divided into four parts. The first part was the introduction.

The second part of the thesis presents the theoretical framework on which the thesis
is based. The framework serves as a guide for designing the empirical studies as well as
an analytical tool for presenting and discussing the data. It includes a chapter about
how f(z) is used as a symbol in mathematics; a chapter on Schoenfeld’s work on problem
solving; and a chapter on Anna Sfard’s the theory of reification. The chapter on the
theory of reification culminates with the development of a hypothesis that extends the
theory. Part one is concluded with a summary in which theories within the didactics of
mathematics are discussed in general.

The third part of the thesis reports on three studies carried out in the period 2012-
2013. It starts off with a chapter on the methodological considerations regarding the thesis
as a whole, and the empirical studies in particular. These considerations are delayed
to the second part of the thesis because they are so deeply rooted in the theoretical
framework, that it would not make sense to present them prior to the presentation of
the theoretical framework itself. The three studies consists of video recordings of pairs of
students solving a set of problems designed specifically to probe the students’ conceptual
understanding of functions. Each study is presented as a independent whole with its
own results and discussion. Since the purpose of the thesis is to characterise students’
conceptual understanding of the function concept an attempt at this is made at the end
of each empirical study.

The fourth part of the thesis presents a coherent discusses of the main results and



8 1. INTRODUCTION

observations from the theoretical work, as well as the empirical studies. This discussion
also includes suggestions for further work. Lastly, the part includes a conclusion on the
thesis as a whole.

The thesis is written under the assumption that the reader has an understanding of
mathematics equivalent to a bachelors degree in mathematics. The reader is also assumed
to have no prior knowledge of the didactics of mathematics.



Part 11

Theoretical background






2 Schoenfeld’s model of math-
ematical problem solving

In his pioneering book about mathematical problem solving from 1985 Alan Schoenfeld
attempts to categorise mathematical problem solving [Schoenfeld, 1985]. In his own words
his goal is

“... to explain, as accurately as possible, what takes place during the solution
attempt. What mathematical knowledge is accessible to the problem solver?
How is it chosen? How is it used? Why does the solution evolve the way
it does? In what ways do the approaches taken to solve the problem reflect
the individual’s understanding of this area of mathematics, and what is the
relationship between the understanding and the individual’s problem solving
performance? And finally what accounts for the success or failure of the
problem solving attempt.”

In order to answer these many questions he identifies four categories in which the problem
solver can have different abilities. The four categories are: Resources, heuristics, control
and belief system. A section will be devoted to each category.

Schoenfeld used the term problem in the strict sense, but even though we are not
dealing with problems in the strict sense, the general characterisation that Schoenfeld has
developed has proven relevant even for non-problematic problems. Thus, I will introduce
his work, and it will serve as a tool for communicating parts of the analysis in the empirical
part of the thesis.

2.1 Resources

A persons resources is the mathematical knowledge the individual might bring to use dur-
ing the problem solving process. Resources cover: Intuition and informal knowledge about
the mathematical domain; facts; algorithmic procedures; routine and non-algorithmic pro-
cedures; and understanding of the appropriate norms of the mathematical domain in which
the problem takes place. A complete inventory of resources will characterise each of the
skills in these categories that the individual might be able to use. It is important to note
that resources may be more than shaky, they may be wrong. Therefore, a complete inven-
tory of an individual’s knowledge should also describe how solid each of these resources
is.

It is obvious that resources has an influence on the success or failure of problem solving
attempts. One might naively think that an individual’s resources influence the problem
solving process in a trivial way; either you have to resources, or you don’t. However,
since resources cover the students standard procedure (not heuristics), informal knowledge
about the mathematical domain, and knowledge of mathematical concepts, the ways in
which resources might influence problem solving attempts are quite diverse.

2.2 Heuristics

Heuristics are defined as strategies and techniques for making progress on unfamiliar
or nonstandard problems; rules of thumb for effective problem solving including, but not
limited to: Drawing figures; introducing suitable notation; exploiting related problems; re-
formulating problems; working backwards; and testing and verification procedures. Thus,
heuristics is, per definition, not covered under resources.

One might think that resources and heuristics alone should be enough to get through
even the most demanding mathematical problems. The resources describe the students

11
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archive of mathematical knowledge, and the heuristics lets you make progress on unfamil-
iar ground. This, however, is not the case.

Schoenfeld has studied the influence of heuristics on problem solving and found that
heuristics alone was not enough to guarantee successful problem solving. Furthermore
he found that even though students can master a particular problem solving technique,
there is no guarantee that they will use it [Schoenfeld, 1979]. This brings us the to next
category: Control.

2.3 Control

Control covers the global decisions regarding the selection and implementation of re-
sources and strategies covering: planning; monitoring and assessment; decision-making;
and conscious and metacognitive acts.

It should come as no surprise, that an individual’s ability to select the relevant re-
sources, make a solution plan, and monitor and asses their progress along the way, has an
influence on the overall success of the problem solving process.

The effect of control on problem solving was largely studied in [Schoenfeld, 1985]. In
a study, Schoenfeld investigates the possibility of directly teaching control techniques to
students. The study yielded two results: (i) Even in a simple and straightforward domain
(integration), students do not, by themselves, develop efficient control strategies, and their
problem solving performance suffers because of it; and (ii) a prescriptive control strategy
can result in significant improvements in students’ performance.

Thus, one should not expect secondary school students to have great control, and
consequently, control issues might have a great impact on their overall success.

2.4 Belief system

Ones mathematical “world view” is termed belief; it is defined by Schoenfeld to be the
set of, not necessarily conscious, determinants of an individuals behaviour. It covers their
beliefs about: themselves; the environment; the mathematical topic; and mathematics
in general. Schoenfeld found that students’ mathematical beliefs shape the ways that
they behave in mathematical situations; thus, the influence of students’ beliefs on their
problem solving performance is important, but difficult to study, and for many years it
has been considered a hidden variable in educational studies. [Torner, 2013|

To get an idea of to what extent beliefs have an influence on the problem solving
performance, we can consider an example from Schoenfeld’s book: Two students have
worked on a geometrical problem in which they are to make a specific construction. The
approach the students take is entirely empirical; the students make conjectures and then
test them by construction, with the sole standard for accepting or rejecting a potential
solution to the problems being the accuracy of the construction. From this behaviour it
appears that that the two students are completely unfamiliar with deductive geometry;
however, it is later shown that they are perfectly capable of making the deductive argu-
ments that provide the answer the the problem. They simply had not though to approach
the problem that way.

Belief also covers students thoughts about the norms of a given mathematical subject.
As an example of this behaviour we can consider two students, from study A in this thesis,
who are working on a standard mathematics assignment; they are given the graph of two
functions, f(x) and g(x), which intersect in z = 2, and are asked to find the z value that
solves f(z) = g(x). Rather than reading off the = values from the graph, the students
find the expression for the two function, and continue to solve for x in the equation
f(z) = g(x). You might think that the students were simply not able to recognise the
intersection of the graphs as the point where f(z) = g(z), but later the students attempt
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to solve a similar problem by finding the intersection of two graphs; thus, this is not the
case.

These examples goes to show that students’ success or failure to solve mathematical
problems can not be adequately describe by their resources, heuristic, and control alone.
More recently the influence of beliefs on students’ learning of mathematics in general has
been studied by several authors, see [T6rner, 2013] for a review.

2.5 Summary

‘We have seen how problem solving ability can be characterised through the four categories
resources, heuristics, control and belief. The most important thing to take away from this
short presentation of Shoenfeld’s work it this: Problem solving processes are complex,
and the success or failure of a given solution attempt can be due to any of the categories;
thus, when analysing problem solving sessions it should be done with great care.
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3 | f(x) as a symbol

This chapter grew out of several discussions about students’ difficulties with the notation
most frequently used for functions in the danish educational system: f(z). The discussions
were part of the analysis of the data from the empirical studies also presented in this thesis,
and I felt that a discussion of the symbol f(x) was necessary in its own right. The different
uses of the symbol f(x) is sometimes mentioned in the literature, but I am not aware of
any literature devoted solely to the discussion of this symbol; that is the aim of this
chapter. The chapter stands alone in the sense that it transcends the theories otherwise
presented.

The symbols used to represent instances of the function concept are more numerous
and diverse than the three most used representation: graph, algebraic expression, and
table of function values. For example, the symbol f(x) is used across the other represen-
tation; we write f(z) = ... when we represent a function as an algebraic expression; we
write f(x) over the graph of the function; and we write f(z) in the column of the table
containing the function values. f(x) is use both as a symbol for representing the function
values, e.g., f(2) = 3, and as a symbol referring to the function as an object.

This way of using the symbol has a lot of advantages; we can express ideas effectively
across different representation. For example, we can talk about f(f(x)), f'(z), f(z)+g(x),
and f(z +y) = f(z) + f(y), without specifying the representation in which we want to
carry out the operation or which specific function that should be used. f(z) is a very
potent symbols; it enriches to function concept substantially. Furthermore, the notation
f(a) also serves as a reminder of the uniqueness of function values; something which
students are known to forget.

However, we run the risk that the students, according to Steinbringe, identify the
symbol f(z) with the concrete examples which the symbol is referring to. This is no
trivial risk, if the students identify the symbol f(x) with the objects they wish to describe,
they will miss out on the richness and flexibility that the symbol brings to the concept.
For example, this would pose a difficulty for an individual learning about the concept
of differentiation; if one does not have a flexible understanding of the f(z) symbol it is
conceivable that f(x+ Az) will not make a lot of sense to the individual, and consequently
the difference quotient might seem like a strange concept.

15
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4 The theory of reification

In this chapter Anna Sfard’s theory of reification is presented. The problems that are
used in the empirical studies were designed with this theory in mind, and the theory will
be used as the theoretical basis for the data analysis.

The theory, as it is presented here, is my interpretation of the what have been stated in
the following publications: [Sfard, 1988, 1991, 1992, 1994, Sfard and Linchevski, 1994a,b].
Thus, the theory is not in itself original; however, this specific presentation of it is. The
presentation will include many examples, some of these will by my own interpretation of
how the theory might be used on a specific concept — some will not be. For each example
I have attempted to make it clear which one is the case.

4.1 The general theory

In [Sfard, 1991] Anna Sfard presents a theoretical framework for describing the develop-
ment of mathematical concepts within mathematics as a discipline, as well as the devel-
opment of individuals’ conceptual understanding during the learning process. She states
that mathematical concepts, such as number or function, can be conceived in two funda-
mentally different ways: structurally - as objects, and operationally - as processes. The
model is general in the sense that it seeks to capture the essential aspects of the develop-
ment of mathematical concepts in mathematics as a scientific discipline as well as for in
the individual.

A distinction is made between the mathematical concept, an abstract mathematical
notion which can be represented in different ways, and a persons conception of a given
concept which is “the whole cluster of internal representations and associations evoked by
the concept” for that particular individual.

She conjectures that the operational conception is, for most people, the first step in
acquisition of new mathematical concept. Furthermore she argues that the transition
from a operational conception to a structural conception is a long and inherently difficult
process, accomplished in three steps: interiorization, condensation, and reification.

The relationship between structural and operational conception is discussed at length
in the article. The main point is, that the two views are not a dichotomy, but rather a
duality; they are complementary in the same way as the wave and particle description
of light is complementary — in order to explain the whole range of phenomena involving
light, it is necessary to adopt both points of view. Thus, having a structural conception
of a concept does not exclude ones ability to carry out “the process”. In fact, the abil-
ity to flexibly switch between these two conceptions in a sign of a healthy conceptual
understanding.

The three stage model — interiorization, condensation and reification — for the devel-
opment of mathematical concepts is guided by historical anecdotes, as well as observations
about students ability to use mathematical concepts. A description of the stages is given
below:

Interiorization. At the stage of interiorization the learner gets acquainted with the
process which will eventually give rise to a new concept. A process has been inte-
riorized if it can be carried out through mental representations, and in order to be
considered, analysed, and compared it needs no longer to be actually performed.

Condensation. The stage of condensation is a period of squeezing lengthy sequences of
operations into more manageable units. The condensation phase lasts as long as
the new entity remains tightly connected to a certain process.

Reification. The stage of reification is defined as an ontological shift — a sudden quali-
tative jump in the way of looking at things. A process solidifies into an object, into
a static structure. The individual will be able to consider different representations
of the concept and skilfully alternate between different representations. The stage
of reification is the point where an interiorization of higher level concepts begins.

17
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It should be stressed that the fact that a process has been interiorized and condensed
into a compact self-sustained entity, does not mean, by itself, that a person has acquired
the ability to think about it in the structural way. Without reification the individual’s
approach will remain purely operational.

Once the stage of reification is reached, a now object is born. This new object can then
be used in other processes and the development continues. A schematic representation of
this development is shown in figure 4.1. It should be clear that that the three stages are
hierarchical.

Concept C

New object (C)

Concept B
t
" Refication
Newobject®) | | | T | —
Condensation

Interiorization

Condensation t
1 Processes on
Concrete Interiorization ] concrete objects
object (A (8)

Processes on
\ concrete objects

Figure 4.1 — Visual representation of Anna Sfard’s model of concept formation.
A mathematical concept can be conceived as a process or as an object. To be
able to conceive it as an object the learner must pass through the three stages
interiorization, condensation, and reification. When the stage of reification is reached
a new mathematical object is born, and the concept can be used as inputs for other
processes.

The schematic representation of the three stage model illustrates an unfortunate fact about
the development of new mathematical concepts. The reification of a concept takes place
simultaneously with the interioiaztion of concepts involving the newly reified concept. This
forms the “vicious circle”. The problem is that, on the one hand, without an attempt
at the higher-level interiorization, the reification will not occur — without the need to
preform some process on the concept, it hardly seems necessary to consider the concept
as an object. On the other hand, the existence of objects on which the higher-level
processes are preformed on seems indispensable for interiorization — without such objects
the processes must appear quite meaningless. The problem with the vicious circle can be
stated more compactly: “the lower-level reification and the higher-level interiorization are
prerequisites for each other!” [Sfard, 1991, p 31].

To get a feel for the inherent difficulty one can imagine trying to differentiate a function
or solve a differential equation, when ones conception of a function is still in the process
stage. The vicious circle thesis explains some of the inherent difficulty in acquiring a
satisfactory understanding of new concepts.

But is this progress from operational to structural conception necessary at all? Why
should we strive to reach it? The short answer is that without the structural conception,
some problems are simply too complex to be handled with the rather limited processing
power of our human minds. Furthermore, the formation of structural conception seem
essential for further learning — for acquisition of more advanced concepts. [Sfard, 1992]

This is the essence of the theory of reification. The theory is very general, but as Sfard
herself points out:
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“Our model should not be expected to fit in with every possible concrete
example, because like any formal structure imposed on natural phenomena,
it is not much more than a rough approximation of a prevailing tendency.”
[Sfard, 1992, p 64]

Before the theory can be utilised as an analytical tool, it is necessary to consider how
the model relates to a series of concrete examples. This is the purpose of the next couple
of sections. The theory will be used to describe the development of the mathematical
concepts: Variable, function, and derivative of a function.

4.2 The case of variable

In [Sfard and Linchevski, 1994a| Sfard and Linchevski apply the theory of reification to
algebra. They give an historical account of how algebra has changed from being process
orientated to object orientated throughout history, in accordance with the theory of reifi-
cation. They identify several different stages in students’ conception of algebra, but focus
on two main transitions: The transition from conceiving algebra as a general arithmetic
process, to algebra of an unknown; and the transition from the algebra of an unknown to
a functional algebra.

It has been shown by Usiskin in [Zalman, 1999] that students’ different uses of variable
reflects their conception of algebra, so even though Sfard and Linchevski’s focus is on the
development of students conception of algebra, it is not far fetched to use their analysis
of algebra as the basis for my analysis of the variable concept.

In [Zalman, 1999] Usiskin identifies four different conceptions of algebra each related
with a specific use of the variable concept. They are: Algebra as generalised arithmetic;
algebra as a study of procedures for solving certain kinds of problems; algebra as a study of
relationships; and algebra as the study of structure. This characterisation of the different
conceptions of algebra, and the use of the variable concept is extended by Trigueros and
Ursini in [Trigueros and Ursini, 2003]. They identify three conceptions of variable: as
a specific unknown, as general number, and in functional relationships. For each of the
conceptions they have identified several indications, that might suggest that an individual
has the given conception. Bases on these bodies of work, I have reached the following
description of the stages of reification for the variable concept:

Interiozation: (Variable as unknown). The individual learns how to solve for a specific
unknown in an an equation, e.g. solving for x in © + 7 = 2z + 12. It is at this
stage that the individual becomes familiar with carrying out operations on symbols
representing unknown numbers. It could be argued that an unknown is not, in fact,
a manifestation of a variable because it represents a fixed value; nevertheless, like
Trigueros and Ursini in [Trigueros and Ursini, 2003], I consider it the first step in
acquiring the variable concept.

Condensation: (Algebra with general numbers). The individual starts to understand
that symbols can represent general numbers, not just specific unknowns. They are
able to deduce general methods by distinguishing the constant aspects from the
variable ones. They can manipulate the symbols and symbolise general statements,
rules or methods. An example would be the ability to express the commutative and
distributive property of addition and multiplication of scalars as a -b = b - a and
alb+c)=a-b+a-c

Reification: (Symbols as functional relations) This conception involves interpreting the
symbols as representing a correspondence and joint variation in analytical repre-
sentations, tables, and graphs. The individual will recognise the correspondence
between related variables independent of the representation used. The individual
becomes confident in changing between the different views of a variable and be-
comes familiar with the functional relation. It is necessary to be able to change
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between different views of symbols when learning about functional algebra since
functions like y = ax + b contains symbols representing general numbers (a and b)
and variables (x and y).

Thus, the process which eventually evolves into the concept of variable, is the ability
to let symbols represent numbers and solving for an unknown, even though the symbol
represents a static unknown initially. The reification consists in the ability to interpret
the symbols as representing a correspondence and joint variation.

4.3 The case of function

The concept of function is closely related to that of variable. A lot of researchers have fo-
cused on students’ misconception about functions. In this section, however, I will outline
how a student’s (healthy) transition from an operational conception to a structural con-
ception might be described using the theory of reification. Sfard is not the only one who
have been working on students conceptual development. Therefore I will present some
of the literature regarding students conceptual understanding of the function concept, as
inspiration for the application of the theory of reification.

4.3.1 Some historical examples

It is worthwhile to briefly consider how the concept of function has developed historically.
This is done because the theory of reification should describe the development of mathe-
matical concepts in history as well as in the individual. Thus, the historical development
of the function concept should serve as an excellent inspiration for how the theory of
reification can be applied to the function concept. Now, there is no real reason to believe
that the development of an individual’s conceptual understanding should mirror that of
history, but it can still be used for inspiration. I will show that the definition has changes
over a period of time, from a process orientated definition to a object orientated definition.
The brief historical survey is based on [Kleiner, 1989], and is by no means an attempt at
making a complete and comprehensive presentation of all the historical curiosities that
lead to the function concept we have today.
We start with Bernoulli’s definition of a function from around 1720:

“One calls here Function of a variable a quantity composed in any manner
whatever of this variable and of constants” [Kleiner, 1989, p. 3]

This was the first formal definition of a function, but it was not explained exactly how
one should interpret “composed in any manner whatever”. In this definition the function
concept is closely tied up with the variable concept.

Another definition along the same line is the one by Eulers’ from around 1750:

“A function of a variable quantity is an analytical expression composed in
any manner from that variable quantity and numbers or constant quanti-
ties”[Kleiner, 1989, p. 3|

Both Euler and Bernoulli’s definition leans heavily on the variable concept. Euler stresses
that fact that a function should be an analytical expression. Fourier gave the following
definition of a function:

“In general, the function f(z) represents a succession of values or ordinates
each of which is arbitrary. An infinity of values being given to the abscissa z,
there are an equal number of ordinates f(z). All have actual numerical values,
either positive or negative or null. We do not suppose these ordinates to be
subject to a common law; they succeed each other in any manner whatever,
and each of them is given if it were a single quantity.” [Kleiner, 1989, p. 8|
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This definition no longer focuses on that fact that the relation should be describable by an
analytical expression, but functions are still restricted to numbers. Cauchy gave a similar
definition of a function:

“When the variable quantities are linked together in such a way that, when
the value of one of them is given, we can infer the value of all the others,
we ordinarily conceive that these various quantities are expressed by means
of one of them which then takes the name of independent variable; and the
remaining quantities, expressed by means of the independent variable, are
those which one calls the functions of this variable” [Kleiner, 1989, p. 10]

Although Cauchy’s definition is rather general, evidence suggests that he had something
more limited in mind [Kleiner, 1989, p. 10]. Dirichlet takes the definition one step further
in 1830:

“y is a function of a variable x, defined on the interval a < z < b, if to

every value of the variable x in this interval there corresponds a definite value
of the variable y. Also, it is irrelevant in what way this correspondence is
established.” [Kleiner, 1989, p. 10|

Dirichlet was the first to take the notion of function as an arbitrary correspondence seri-
ously. However, his definition is still a correspondence between numbers. Dedekind gave
a fairly modern definition of function around 1890:

“By a mapping of a system S a law is understood, in accordance with which
is called the image of s and is denoted ¢(s); we say too, that ¢(s) corresponds
to the element s, that ¢(s) is caused or generated by the mapping ¢ out of
s, that s is transformed by the mapping ¢ into ¢(s).” [Kleiner, 1989, p. 18|

Here functions are considered to be mappings between sets, not necessarily between num-
bers. Bourbaki elaborated further on this idea. The following definition is from around
1940:

“Let E and F be two sets, which may or may not be distinct. A relation
between a variable element z of E and a variable element y of F' is called a
functional relation in y if, for all  in F, there exists a unique y in F' which
is in the given relation with x.

We give the name of function to the operation which in this way associates
with every element x in E the element y in F which is in the given relation
with x; y is said to be the value of the function at the element x, and the func-
tion is said to be determined by the given functional relation. Two equivalent
functional relations determine the same function” [Kleiner, 1989, p. 18](my
emphasis)

This is the definition of a function as a set or ordered pairs. Even though this definition
mentions an operation, it is purely structural.

Thus, we have seen examples of how the definition of a function has changes over
a period of little over 200 years. The evolution of the concept goes from variable, to
correspondence, to mapping, to ordered pairs, with each successive change being more
structural than the preceding.

4.3.2 Sierpinska’s epistemological obstacles and acts of un-
derstanding

Now that we have used the historical development for inspiration it is time to turn to
the mathematics education literature for further inspiration. As was explained in the
introduction, there are quite a few different theories of how conceptual understanding
develops for the individual. I focused on the APOS theory, the concept image/definition
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theory, and the theory of reification. In this section I will turn to another theory which I
will refer to as the theory of epistemological obstacles.

In [Sierpinska, 1992] Sierpinska attempts to clarify what it means to understand the
function concept. She concentrates on ‘“the jumps in understanding i.e. the qualitative
changes related to mathematical knowledge in the human mind, jumps from old ways of
knowing to new ways of knowing” [Sierpinska, 1992, p. 27].

There are two complementary ways of looking at these jumps — as epistemological 0b-
stacles and as acts of understanding. Things that prevent one from a new way of knowing
are called epistemological obstacles, while changes in new ways of knowing are called acts
of understanding. The acts of understanding are separated into four different categories:
identification, discrimination, generalisation and synthesis. The two views are comple-
mentary because neither alone is enough to fully describe the jumps in understanding.
Sierpinska has devised 19 levels of understanding, and 16 epistemological obstacles to
overcome, when dealing with the function concept, all of which I have given in table 4.1.

As should be clear from table 4.1, Sierpinska’s analysis is more fine-grained than the
description we aim at; she has 19 acts of understanding and 16 epistemological obstacles
to overcome, while the theory of reification has a meagre three stages. Therefore, in order
to use Sierpinska’s analysis we will have to single out the most important acts of under-
standing, and epistemological obstacles, or group them together. Not all of Sierpinska’s
points are relevant for our analysis, in fact, many of them belong with the development
of the concept of variable. Furthermore, her epistemological obstacles have a focus which
is not quite covered by the theory of reification; namely belief.

Act of understanding number 5 fits nicely with the stage of interiorization; in order to
calculate the function value, you should know which variable is dependent, and which is
independent. Acts of understanding 11 and 15-16 are all covered by the stage of reification.
It is the point where the general notion of function is synthesised as an object, and an
individual will be able to discriminate between different means of representing functions
and the functions themselves. It seems that Sierpinska’s analysis does not cover the stage
of condensation. This is not very surprising because the stage of condensation is a period
of becoming more efficient at carrying out processes, or grouping processes together —
there is no real act of understanding connected to the stage of condensation.
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Table 4.1 — Summary of the different levels of understanding of the function concept
(U) and the epistemological obstacles to be overcome (E).

Understanding Epistemological obstacle

Ul  Identification of changes observed in the surround- | E1 (A philosophy of mathematics) Mathematics is
ing world as a practical problem to solve. not converned with practical problems

U2  Identification of regularities in relationship between | E2 (A philosophy of mathematics) Computational
changes as a way to deal with the changes. techniques used in producing tables of numerical

relationships are not worthy of being an object of
study in mathematics.

U3 Identification of the subjects of change in studying | E3 (Unconscious scheme of thought) Regarding
changes changes as phenomena; focusing on how things

change, ignoring what changes.

U4  Discrimination between two modes of mathematical | E4 (Unconscious scheme of thought) Thinking in
thought: one in terms of known and unknown quan- terms of equations and unknowns to be extracted
tities, the other - in terms of variable and constant from them.
quantities.

U5  Discrimination between the dependent and inde- | Eb5 (Unconscious scheme of thought) Regarding
pendent variables. the order of variables as irrelevant.

U6  Generalisation and synthesis of the notion of num- | E6 (An attitude towards the concept of number)
ber A heterogeneous conception of number.

U7  Discrimination between number and quantity E7  (An attitude towards the notion of number)
A pythagorean philosophy of number: everything is
number.

U8 Synthesis of the concepts of law and the concept of | E8 (An unconscious scheme of thought) Laws in
function; in particular , awareness of the possible physics and functions in mathematics have nothing
use of functions in modelling relationships between in common; they belong to different domains (com-
physical or other magnitudes. partments) of thought.

U9  Discrimination between a function and the analytic | E9 (An unconscious scheme of thought) Propor-
tool sometimes used to describe its law. tion is a privileged kind of relationship.

Ul0 Discrimination between mathematical definitions | E10 (A belief concerning mathematical methods)
and description of objects. Strong belief in the power of formal operations on

algebraic expressions.

U1l Synthesis of the general conception of function as | E11 (A conception of function) Only relationships
an object. described by analytic formulae are worthy of being

given the name of functions.

U12 Discrimination between the concept of function and | E12 (A conception of definition) Definition is a de-
relation. scription of an object otherwise known by senses or

insight. The definition does not determine the ob-
ject: rather the object determines the definition. A
definition is not binding logically.

U13 Discrimination between the notions of function and | E13 (Conception of functions) Functions are se-
sequence. quences.

U1l4 Discrimination between coordinates of a point of a | E15 (Conception of co-ordinates) Coordinates of a
curve and the line segments fulfilling some function point are line segments (not numbers)
for the curve.

Ul5 Discrimination between different means of repre- E15 (Conception of graph of function) The graph of
senting functions and the functions themselves. a function is a geometrical model of the functional

relationship. It need not be faithful, it may contain
points (x,y) such that the function is not defined in
X.

U16 Synthesis of the different ways of giving functions, | E16 (A conception of variable) The changes of a vari-
representing functions and speaking about func- able are changes in time
tions.

U1l7 Generalisation of the notion of variable

U18 Synthesis of the role of notions of function and
causes in the history of science: Awareness of the
fact that search for functional and causal relation-
ships are both expressions of the human endeavour
to understand and explain changes in the world.

U19 Discrimination between the notions of functional

and causal relationships.
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4.3.3 Application of the theory of reification to the function
concept

Based on the historical account, and Sierpinska’s analysis, we are ready to apply the
theory of reification to the concept of function. Here are the stages:

Interiozation: The operational conception of a function is a processes which, given an
input, yields an output. The stage of interiorization is reached when the ability to
find function values is acquired.

Condensation: At the stage of condensation, the learner will become capable of playing
with a function as a whole, without actually looking into its specific values. Even-
tually the learner will be able to investigate functions, combine couples of functions,
and even find the inverse of a given function.

Reification: Functions are conceived as objects. The student becomes capable of dis-
crimination between different means of representing functions and the functions
themselves. The individual will begin to be able carry out processes in which a
function serves as an input, and be able to solving equations in which the “un-
knowns” are functions, that is, e.g. differential equations.

The process which will eventually become the concept of function, is the process of finding
function values. When the concept of function is eventually reified, the student will be
able to treat functions as objects.

4.4 The case of derivative of a function

As an example of a process which is carried out on functions, we will consider the concept
of derivative of a function. For inspiration I turn to Asiala et. al.’s study of students’
understanding of the concept of derivative, which is presented in [Asiala et al., 1997].
Their analyses is based on the APOS theory; however, the theories are similar enough,
that it serves as a good inspiration.

They make a generic decomposition of the concept in both its algebraic and graph-
ical representation. A generic decomposition, or model of cognition, is a description of
specific mental constructions that a learner might make in order to develop his or her
understanding of the concept. These mental constructions are called actions, processes,
objects, and schemas, hence the name: the APOS Theory. Their generic decomposition
consists of eleven stages of development. Three stages for the graphical representation,
three for the analytical (algebraic) representation, and five stages that describe different
stages of encapsulation, interiorization, coordination, and reconstruction of the relation
between the two representations. The stages are as follows:

la. Graphical: The action of connecting two point on a curve to form a chord which
is a portion of the secant line through he two points together with the action of
computing the slope of the secant line through the two points

1b. Analytical: The action of computing the average rate of change by computing the
difference quotient at a point

2a. Graphical: Interiorization of the actions in point la to a single process as the two
points on the graph get “closer and closer” together.

2b. Analytical: Interiorization of the actions in point 1b to a single process as the
difference in the time intervals get “smaller and smaller”; i.e., as the length of the
time interval get “closer and closer” to zero.
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3a. Graphical: Encapsulation of the process in point 2a to produce the tangent line as
the limiting position of the secant lines and also produce the slope of the tangent
line at a point on the graph of a function.

3b. Analytical: Encapsulation of the process in point 2b to produce the instantaneous
rate of change of one variable with respect to another.

4. Encapsulation: Encapsulation of the processes in point 2a and 2b, in general, to
produce the definition of the derivative of a function at a point as a limit of a
difference quotient at a point.

5. Coordination: Coordination of the processes in points 2a and 2b in various situations
to relate the definition of the derivative to several other interpretations.

6. Interiorization: Interiorization of the action of producing the derivative at a point
into the process of a function f’ which takes as input a point z and produces the
output value f’(z) for any z in the domain of f’.

7. Encapsulation: Encapsulation of the process in point 6 to produce the function f’
as an object.

8.Reconstruction: Reconstruction of the schema for the graphical interpretation of a
function using the relation between properties of functions and derivatives.

It should be quite obvious from their “generic decomposition” that the APOS theory and
the theory of reification are similar in essence. Asiala et. al. have chosen to describe the
initial development within two different representations. It is an interesting point, and we
will spend more time on it in section 4.7.

Based on this analysis, I have constructed the three stages of reification, which are
presented below.

Interiozation: The students understand the process of finding the differential quotient
at a point.

Condensation: An individual will be able to find the derivative of a function, f’, sketch
the graph of the f’, and use f’ to e.g. find maxima and minima of f.

Reification: f’ is conceived as a object. The individual will be able to find ” and to
think of f’(z) as an unknown in other problems.

This conclude the application of the theory of reification to the concepts variable, function,
and derivative of function.

4.5 Summary of the general theory

We have now considered the development from process to object of the three concepts:
variable, function and derivative of a function. Hopefully this has given the reader an im-
pression of the applicability of the theory of reification. The development of the concepts
are summarised in figure 4.2.

Notice the visiouse circle which was mentioned in the beginning of the chapter in section
4.1. Before the a new concept can be interiorized it is necessary to have reified the previous
concept, but a concept will not be reified before the interiorization of a new concept seems
necessary. For example: Before the concept of function can be interiorized is is necessary
to see variables as functional relations, but before the concept of variable can be reified
into a functional relation, it is necessary to think about calculating function values; before
the concept of derivative of a function can be reified it is necessary to consider f(x) to be
an object on which processes can be carried out, but before the concept of function can
be reified, it is necessary have some idea of a process which would use f(z) is input.
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Figure 4.2 — Schematic representation of the development of the concepts variable,
function and derivative of function.

4.6 Pseudo-structural conception

Until now we have considered the development of an individual’s healthy conceptual un-
derstanding. It is well known that a students’ conceptual understanding can be limited
at times, and often filled with misconceptions [Harel and Dubinsky, 1992]. So in order for
the theory of reification to serve as a tool for analysing students conceptual understanding
it is useful to see how the theory might explain some of students common misconceptions.
This is the aim of this section.

In [Sfard and Linchevski, 1994b| Sfard and Linchevsky carry out an analysis based on
the theory of reification. They noticed that the majority of mathematical notions draw
their meaning from two kinds of processes: the primary process, that is, the processes from
which the given concept originated, and secondary processes, which are the processes
that can be preformed on the given concept. They state that abstract objects act as
a link between these two kinds of processes, and therefore seem to be crucial for our
understanding of the corresponding concepts. They use the notion of Pseudo-structural
conceptions for the conceptions which develop when the students, unable to think in the
terms of abstract objects, uses symbols as things in themselves and, as a result remains
unaware of the relations between the secondary and primary processes.

When dealing with the concept of algebraic equations they state that the primary
process is when one refers to the arithmetical procedures hiding behind the formulae,
whereas the algebraic manipulations themselves will be called secondary processes. The
abstract objects behind the concept are the truth sets. One of the main conclusions of
the empirical study presented in [Sfard and Linchevski, 1994b] is that, among secondary
school students the pseudo-structural conception of algebra may be more widespread than
suspected.

For the function concept, they consider the sequence of numerical operations necessary
to compute the values of a function as primary processes, whereas procedures which may
be applied to a function as a whole, e.g. adding, composing, deriving, or integrating, are
secondary processes.[Sfard and Linchevski, 1994b, p. 283] The abstract object linking
the two, I would say, are the ordered pairs.

Sfard and Linchevsky have collected a number of phenomena which indicate that an
individual have a pseudo-structural conception. They are [Sfard and Linchevski, 1994b]:

1. When dealing with equations and functions the specific form of the expression
becomes the sole basis for judgements and decisions. This is a result of algebraic
symbols being treated as things in their own right, not standing for anything else.
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2. The secondary operation seems arbitrary and unjustified. This is the case for indi-
viduals who cannot see beyond the symbols.

3. Inability to see different representations of a concept as equivalent. If a sign serves
also as its own referent, there is little hope that the student will be able to see
different representations of the same mathematical concept as equivalent.

4. Inability to handle non-routine problems, even if the individual already has learned
the relevant facts and the appropriate methods of solution. This is because mathe-
matical objects are vitally important for our mathematical thinking. Mathematical
objects tie together facts, concepts, and rules which would otherwise be stored in
separate compartments of out memory. In the absence of such abstract mathemat-
ical objects, it is difficult to see the connection between new facts, when dealing
with a new problem. As a consequence, students will choose algorithms of solu-
tions based only on certain external features. Sometimes, even the most obvious
discrepancies and absurdities will not make the students realise the inadequacy of
the method they are using.

5. Confusion related to use of mathematical notation and terms. Students’ confusion
expresses itself as messy statements, in which different kinds of entities are men-
tioned at random and mistaken for each other. This kind of confusion will be called
out-of-focus phenomenon, OOF for short.

I think that the notion of pseudo-structural conception serves well to encompass many
of the most common observations regarding students misconceptions about mathematical
concepts. Sfard argues that manny of these difficulties — common to the attentive teacher
— may be regarded as an indication of a students inability to think structurally.

In [Sfard, 1992] Sfard considers the possibility of stimulating a structural way of think-
ing in students, with the concept of function as a case study. The way she evaluates the
students ability of thinking structurally is, to a large extent, based on how well the de-
velopment of a pseudo-structural conception of the function concept is avoided. She
is motivated by the observation that despite the object-orientated way of teaching, the
full-blown structural conception of function is rather rare in secondary-school. She sup-
ports this statement by presenting the findings gathered by many other researches, as
well as the answers to a small questionary which she herself have designed. The papers
presents results from a teaching experiment with the aim of teaching the function con-
cept in an operational manner. This is done because the theory of reification suggests
that the operational way of thinking precede the structural one, even if the concept is
taught structurally initially. The results suggest that the students do not fully develop
a structural conception, but that there are good reasons to believe that the danger of
pseudo-structural conception were considerably diminished.

It seems to me, that when analysing the data from my own empirical studies, it would
be a good idea to keep an eye out for signs of a pseudo-structural conception of functions.

4.7 An extension of the theory of reification

The idea that some students consider representations of concepts to be objects in them-
selves, rather than means of signifying the mathematical concept, have been mentioned
twice in this thesis; once in the introduction as a part of Steinbringe’s epistemological
triangle, and in the previous section as an explanation of the a pseudo-structural concep-
tion.

It has been observed that students’ conceptual understanding can differ across different
representations of the same concept. For example, in the case of the function concept,
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it has been shown that many students prefer to use the algebraic representation, even
when the graphical representation would yield an answer to the problems more efficiently
[Knuth, 2000]. Thus, it seems logical to extend the theory of reification to accommodate
for the observation that different representations are not necessarily considered equal by
the students.

In this section I will entertain the idea that some students do in fact consider different
representations of the same concept to be different objects, rather than different repre-
sentations of the same concept, and see how this can be incorporated into the theory of
reification. This will be done by describing how the different stages of reification can be
reached across the different representations separately. The hypothesis will be referred to
as the disjoint-reification-of-representations hypothesis (DRR hypothesis for short).

Since the extension should to be consistent with they general theory of reification,
the initial stage of conceptual development should be the interiozation of a process, and
the final stage should be the reification of the process into a mathematical object. In
addition to this, I will introduce the possibility of different representations of the same
concept evolving seperately, but still following the stages of interiozation, condensation
and reification.

The interioization of a processes require a specific representation in which to carry out
the process. Once this representation has been chosen, the student will gradually become
more efficient in carrying out the process in the specific representation. This is the inte-
rioization of a representation of a process. The stage of condensation of a representation
is a rather technical change, in accordance with the general theory of reification. The
reification of a representation means that a student considers the representation to be an
object in itself. The students will refer to the representation as if it was an object, and
be able to carry out processes on the representation. However, the concept itself will not
be reified before the student realises that the representation it not an object in itself, but
a means of representing a mathematical concept.

Let us consider some consequences that should follow naturally from this hypothesis. It
follows that a student might have reached the stage of condensation in one representation,
and not in another. This means that the student will feel more comfortable, and be more
efficient, in one representation than in another. This behaviour have been observed in e.g.
[Knuth, 2000].

The hypothesis gives another dimension to the difficulty of reification of a concept.
Earlier, the difficulty was mostly justified with the vicious circle — the observation that
reification of a concept, and the interiorization of a higher level concept, are prerequisites
for each other. Here, we see that reification of a concept require the reification of at least
one, and quite possibly several, representations.

Notice also, that reification of a single representation is not necessarily a good thing.
Having reified a single representation, the student might use it as an object in itself,
rather than a means of representing a mathematical object. In the previous section,
when we were discussing the pseudo-structural conception, this was one of the indication
of having a pseudo-structural conception. Thus, it does not seem unreasonable that a
pseudo-structural conception can be obtained as a consequence of having reified one or
several representation, without having achieved reification of the concept itself. Once
again, making reification of a concept very difficult to achieve.

A schematic representation of the disjoint-reification-of-representations hypothesis is
shown in figure 4.3. I would like to point out that the reification of a representation is
not equivalent to the reification of the concept. The reification of a representation is an
ontological shift in the way the specific representation of the concept is conceived — the
representation is considered an object, and not the actual concept. The lines going from
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the representations to the reification of the concept are dotted because the reification of
the representation do not guarantee the reification of the concept. An ontological shift
is still required for the concept. As long as the ontological shift has not taken place, the
student will not have reified the concept.

Reification of
concept
————————— T -——_ -

Reification of Reification of Reification of
representation A representation B representation C
Condensation of Condensation of Condensation of
representation A representation B representation C
Interiorization of Interiorization of Interiorization of
representation A representation B representation C

== T T
Interiorization of
process

Figure 4.3 — Schematic representation of the disjoint-reification-of-representations
hypothesis. Conceptual understanding can evolve separately across different repre-
sentations. The concept will not be reified before the student realise that the different
representation do in fact represent the same mathematical object.

I would like to discuss the relation between pseudo-structural conception and the DRR
hypothesis in further detail. In the previous section the term pseudo-structural conception
was used “for the conceptions which develop when the students, unable to think in the
terms of abstract objects, uses symbols as things in themselves and, as a result remains
unaware of the relations between the secondary and primary processes”. Thus, pseudo-
structural conception develops when students use symbols as objects in themselves. Now,
the DRR hypothesis states that students will use symbols (representations) as things
in themselves because their conceptual understanding have developed separately across
different representations — the reification of a single representation can result in students
using symbols as things in themselves. Therefore, the DRR hypothesis explains how a
pseudo-structural conception may evolve.

As an example I will apply the hypothesis to the concept of function. I have chosen
to focus on the three representations that are most commonly used: graphical, algebraic
and table of values. In accordance with section 4.3.3, the process that must be interiozed
is the process of finding the function value corresponding to a value of the dependent
variable. The stage of condensation is a technical change which require that the student
can play with the function as a whole, without actually looking into the specific values.
This includes being able to investigate function, combine function and finding inverse of
a given function. At the stage of reification functions are conceived as objects, and the
students should before capable of changing between different means of representing func-
tions. The result is presented in table 4.2.
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Table 4.2 — The theory of reification applied to the different representation of the
function concept.

sider the graph of a
function as an object

sider the algebraic
expression as an ob-
ject

Graph Algebraic Table value

Interiozation | The student will be | The student is able | The student will be
able to find values of | to calculate values of | able to use the table
the dependent vari- | the dependent vari- | to determine the de-
able by reading them | able by inserting val- | pendent value.
off the graph. The | ues of the indepen-
process is following | dent variable.
from the x-axis to the
graph, to the y-axis.

Condensation | The student will be | The student is capa- | It will be possible for
able to superimpose | ble of adding func- | the student to use the
the graphs of two | tion and calculating | table of two graphs to
function and even | composite function. find their sum or the
draw the composite composite of the two.
of two graphs.

Reification The student will con- | The student will con- | The student will con-

sider the table of val-
ues as an object.

Let us consider some specific consequences of this analysis.

First of all, it is not

strange that students ability can vary across different representations of the function

concept. For example, it seems reasonable to assume that some students will be able to

add the algebraic expressions for two functions, but be unable to superimpose the graphs

of two function. Secondly, if a student has reified the algebraic representation, but not

the graph representation, he may refer to the algebraic expression as an object, but not

the graphical. Even if both representations are reified, he may still not realise that they

are connected. Furthermore, secondary processes, like finding the derivative of a function,

may seem justified in one representation, but not in another, if the latter representation

of the function concept has not been reified.




5 Summary and discussion of
the theoretical framework

This chapter gives a very brief summary of the theoretical framework to be used in this
thesis and it discusses the nature and present state of theories within this particular
branch of the didactics of mathematics.

The theoretical framework includes Schoenfeld’s characterisation of problem solving
and Sfard’s theory of the development of mathematical concepts. Furthermore there has
been a short discussion of how f(z) is used as a symbol in mathematics and the chal-
lenges for understanding the concept of function that this complex symbolic representation
causes. The primary points of this part of the thesis are:

1. That problem solving can be divided into four categories, and that conceptual
understanding falls within the category of resources. This has several implications
that are of the upmost importance for the development of the methodology which
is presented in the next part of the thesis.

2. That concepts can be conceived as both processes and objects, and that the de-
velopment from a process to a object conception is achieved through three stages:
interioziation, condensation, and reification. The theory of reification has been ap-
plied to the function concept, such that it can serve as an analytical tool during the
data analysis.

3. That an individual’s conceptual understanding might develop disjointly across dif-
ferent representations of the same concept. This is referred to as the disjoint-
reification-of-representations hypothesis.

4. That the symbol f(z) is very diverse. It can be used both to refer to a function as an
object, or as an instruction to e.g. find the function value for some specific number
as, f(a). Thus, the way in which students use this symbol might tell something
about their conception of functions. In addition awareness of the epistemological
obstacles caused by the complexity of f(x) as a symbolic representation of a function
or of a particular function in a given context, could and should influence the practice
of mathematics teaching.

These point form the basis on which the methodology will be developed in the next part
of the thesis. But before we move on to the next part, I would like to discuss shortly
the nature and present state of theories within this particular branch of the didactics of
mathematics — it is hard to work within a field without forming some opinion about the
field itself.

It seems to me that this branch has reached a point at which there are many different
theories attempting to explain the same fundamental observation, and that they do so
with strikingly similar thoughts and ideas. Thus, there seem to be some convergence of
ideas towards a consensus.

However, these theories seem to flourish quite independently of each other at the
moment. It seems to me, that no real attempt is made at comparing the different theories
with the aim of determining which theory explains the most observations in a consistent
manner. Thus, it seems that the theories at not so much competing as they are coexisting.

This might have something to do with the nature of the theories, and the quality of the
observations they attempt to explain. The predictions that the theories make are often of
a very qualitative nature. This makes it hard to compare the predictions of the theories
to each other, because the predictions are qualitatively very similar. The situation is not
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improved by the fact that the data is often not detailed enough, or convincing enough, to
distinguish between the two predictions.

As an example we can consider the APOS theory and the theory of reification. Both
theories focus on the duality of mathematical concepts: they can be considered as being
process or objects. Both theories are concerned with the development from the one con-
ception to the other. However, the nomenclature is slightly different: Sfard talk about
interiozation, condensation, and reification; Dubinsky talk about action, process, and ob-
ject. But as we have seen the interiozation stresses the action aspect of the concept,
while Condensation is the stage of automatisation of different complicated processes, e.g.
adding function. Reification is the stage at which the concept is considered by the in-
dividual to be an object. Clearly the two theories are quite similar. Thus, a potential
difference between the two is to be found in the details and not in the general ideas.

Now, in order for two theories to be different, they should have different predictions.
However, specific predictions do not fall out of these theories easily. As will hopefully be
apparent from the preceding sections, a great deal of effort has gone into actually applying
the theory of reification to the function concept. This can be considered an example
of a prediction based on the theory of reification. When I was applying the theory of
reification to the concept of derivative of function, however, I was greatly inspired by
Asiala’s application of the APOS theory to the very same concept. Thus, even the details
of the two theories seem to be quite compatible.

Another example of a prediction could be the disjoint-reification-of-representation hy-
pothesis, which was put forward in one of the preceding sections. This hypothesis was cast
within the framework of the theory of reification, but the very essence of the hypothesis is
very simple: an individuals understanding of a given mathematical concept can develop
differently, and even disjointly, across different representations of the concept. Here there
is no reference to the theory of reification, and I do not think that it is far fetched to say
that this hypothesis could just as easily have been implemented within the framework of
the APOS theory.

I think that it would be interesting to investigate this further. After all, if one of the
theories turns out to be more more precise and correct than the other, there is no reason
that it should not be prioritised. As it is now, different groups seem to be inventing the
wheel separately.
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Empirical studies
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6 Methodological considera-
tions

The aim of this chapter is to explain how the research question, the theory, and the
empirical studies all come together.

The chapter is divided into two parts; one concerning methodological considerations
regarding the emperical studies; another regarding the data analysis. Before we get to
those considerations, let me explain the time scope of the master’s thesis. Officially, the
thesis is written between February of 2013 and August of 2013. However, prior to that,
during Marts of 2012, I conducted a pilot study which is referred to as Study A in the
thesis. The two studies, B and C, were conducted in april of 2013. A timeline is presented
in figure 6.1.

Study A was conducted at Mulernes Legat Skole in Odense and involved eight students
separated into four pairs. Study B was conducted on the same class one year after, and
also involved eight students, four of which also participated in Study A. Study C was
conducted at Roskilde Katedral Skole. It involved an entire class of 18 students which
were divided into 9 pairs. Since I do not have nine recording devices at my disposal only
four of the problem solving sessions were recorded; the rest of the pairs simply handed in
their written answers.

Between the study A and B the problems were revised. Since the choice of problems
is an enormous part of the preparation for the empirical studies an entire sections will be
devoted to this — it takes time and effort to come of with problems that should neither
be too difficult, or too trivial; thus, prior to study A, and between study A and B, time
have been spend on evaluating and coming up with relevant problems.

Writing thesis

Desiani bl 7 7
esigning problems % %

Conducting experiments

Marts February April August
2012 2013 2013 2013

Figure 6.1 — Overview of events in chronological order

Now it should be clear roughly what 1 have done and when it was done, so let us
discuss why and how.

6.1 Methodological considerations concerning the
empirical studies

The purpose of the empirical studies is to get a broad sense of the possible conceptions
that danish secondary school students can have of the function concept; thus, what I
wish to gain from the empirical studies is of qualitative nature rather than quantitative;
I do not wish to carry out a statistical analysis. This, of course, has implications for
the method that needs to be developed, and since didactics, being an interdisciplinary
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field, utilities quite a broad range of methods to acquire data — qualitative as well as
quantitative — developing the right method is not a trivial task.

The most common methods seems to be: Reports from the class room; multiple choice
tests; concept maps; and problem solving. All these methods are applied in slightly
different variants. The problem solving activities usually fall within three categories:
clinical interviews, analysis of written answers, and video recordings of the problem solving
process. Researchers can, and do, use one or several of these methods to illuminate their
particular research interests.

I have chosen to use video recording of students solving problems in pairs — problems
which have been designed specifically to probe their conceptual understanding of functions.

This method was chosen because I believe, that if you want to know something about
students’ understanding of mathematical concepts, you have to observe how they actually
use those concepts while doing mathematics. Also, since I wish to be able to characterise
the students conceptual understanding, potential discussions between the students could
come in handy. The method is deeply inspired by Schoenfeld’s book [Schoenfeld, 1985].
Even though I do not use the protocol analysis which he developed, the book did leave me
with the impression that recordings of the problem solving processes can yield very inter-
esting information about the students, and that transcriptions of the students’ dialogues
is an excellent way of presenting and discussing the observations.

As I briefly explained in the introduction, the term “problem” is a slippery one, and
the decision to use what I call non-standard, non-problematic problems was no taken
lightly. AsT also explained in the introduction, it was, however, made mostly for pragmatic
reasons; I wanted to be able to carry out the empirical studies during a single mathematics
lesson, and I did not want the students’ possible lack of control or heuristics to overshadow
their ability to use their mathematical concepts.

But is it really necessary to film the students while they solve the problems? Isn’t it
enough to collect their written answers, and see how they answered the assignment? Well,
often the answers to the assignments will be along the lines of “z < y” or “Yes, because
of the equation”. These answers do not give a very satisfactory insight into the students’
thinking; thus, more information is needed.

As an example, consider one of the answers given above. A pair students were given
the assignment: “y = x + 5, what can you say about x in relation to y”, and their written
answer was “a < y”. This following dialogue took place during the problem solving process:

CAIN: y =z + 5. What can you say about x in relation to y?

ABEL: That x is less than y, because you have to add five to = in order to obtain
y. So what can we write?

cAIN: We can write z < y. Okay.

The students correctly state the reasoning behind their written answer, but this informa-
tion would not be available if I had not recorded the problem solving process. I would
not consider z < y to be a satisfactory answer to the question, while the answer “z is less
than y, because you have to add five to x to obtain y” would be considered to be very close
to a satisfactory answer, e.g. “z is five less than y” would be considered to be correct.
Thus, the video recoding shows that the students are on the right track, more so than
would would guess by simply looking at their written answer.

The method of filming students while they solve problems has both strengths and
weaknesses. One strength is that you can obtain very detailed information on the students’
actions, information which would be available to you otherwise; this information is what
allows us to really probe the students’ understanding of the mathematical concepts. One
weakness is the fact that choosing the right problems can be difficult since we know
from Schoenfeld’s work on mathematical problem solving, that a student’s success or
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failure in solving a mathematical problem is a complex mixture of that students resources,
heuristics, control, and beliefs about the mathematical domain in which the problem takes
place, but this is, of course, always the case when dealing with problem solving.

Since we are chiefly interested in students’ conceptual understanding, this leaves us
with quite a lot of experimental variables that we need to get under control, and one way
of controlling this is designing problems that focus more on resources than, say, control
and heuristics.

Another weakness is the fact that working with human subjects is not easy. People do
not always act rationally or consistently, and you can never know exactly what they are
thinking. This poses a challenge when you want to conduct empirical studies involving
humans, a challenge which is expressed by Dubinsky and Heral:

«

the same individual will behave very differently at different times, in
both constant an varying contexts. ... This leads to a mosaic that for some
individuals allows us to judge their process conception as relatively strong
or relatively weak. But for many subjects we have only a contradictory col-
lection of conclusions and so we must refer to the totality of episodes for an
individual.” [Dubinsky and Harel, 1992]

This is, of course, a problem shard by all the methods, but it is important to remember
none the less.

The quote has several implication. First of all, one should not read too much into
isolated episodes, since students apparently behave inconsistently; what is the point of
attempting to give a complete and comprehensive description of a student’s every though
and move, if the student behaves differently under similar circumstances ten minutes
later? Secondly, reproducibility, in its strictest sense, is out of the question; you a not
guaranteed to get the same results from consecutive empirical studies. Then, where does
that leave us? Well, on a larger scale, the same observations have been made by different
people across different countries. Thus, not all is lost for reproducibility.

Yet another weakness is the fact that I make the students solve the problems in
pairs. It has been shown that the meta-cognitive processes (i.e. control in the schoenfeld
terminology) that take place during problem solving in pairs differ from the ones that
take place during individual problem solving process [liskala et al., 2011]. I do so anyway,
because I am not interested in studying control, but their resources, and I believe that
the pros outweigh the cons. The fact that they solve the problems in pairs will force
the students to explicitly state the reasoning behind their answers in a way that is more
natural to the students.

As an example of this we can consider Mads and Michael’s work on the problem: “is
x = 2 the solution to 3z — 2 = 22

MADS: Yes. It is simple. We just insert x = 2. [he continues to reads aloud while
he inserts © = 2, and concludes that 4 = 4.]

MICHAEL: [ didn’t get that at all. You said 3 -2. Why did you do that?
MADS: Because it says ¢ = 2. Is x = 2 the solution?
MICHAEL: Ah, ok. Well, you could just isolate x.

MADS: Yeah, sure.

Here Michael’s question makes Mads elaborate on the reasoning behind his solution
method.

One alternative would be to tell the students to “think aloud”; however, without ex-
tensive instruction it is most unlikely that the student will say what they think uncondi-
tionally. The students are told that they should attempt to solve as many problems as
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possible; that they are not allowed to erase anything; and that they should state explic-
itly when they move on to a new assignment. I have done this in an attempt to keep the
environment as natural as possible.

6.1.1 Designing the right problems

The choice of problems is perhaps to most important aspect of planning these empirical
studies. I have argued for the general genre of the problems: they are non-standard and
non-problematic, but this statement does not get us much closer to actually having ten
problems which are likely to tell us anything about the students’ conceptual understanding
regarding the function concept.

I wanted the problems to allow me to get information about the students ability to
use and reason with the function concept in a broad sense; I wanted to test the limit of
their ability to use the different representations in ways that might be unfamiliar, or at
least uncommon to them.

The representations most commonly used in the danish secondary school (in fact, I
think this is so for any secondary school) is algebraic, table of values, and graphical. The
problems I have designed are supposed to cover these representations, but I have also cov-
ered an additional representation: the linguistic representation. The reason that I have
chosen to include the linguistic representation is that students are having a hard time
expressing statements mathematically. For example, when a group of 150 engineering
students at the University of Massachusetts were asked to write an equation using the
variable S for the number of students, and P for the number of professors, to represent
the following statement: “At this university there are siz times as many students as pro-
fessors”, 37% were unable to write up the correct equation S = 6P in any form. In fact,
the most common error was that they wrote 65 = P. When the ratio was changed to
4:5 from 6:1 the error rate increased to 75%. When another group of students were given
the problem in reverse, that is, they were given the equation S = 6P and were asked
to choose from a list what S and P stood for, over 40% were unable to pick “number of
professors” for P and “number of students” for S. In fact, over 22% chose “S stands for
professor” as their answer [Rosnick, 1981]. I wanted to see if the students in the danish
secondary school had similar difficulties with the linguistic representation.

Choosing the right problems is hard, and it would be very time consuming to develop
sets of problems for different grades, or possibly even different parts of the danish educa-
tional system. Thus, it made sense to focus on a small part of the educational system:
First year of secondary school. The study include two secondary school. The two schools
were chosen mostly for pragmatic reasons. The contact to Mulernes Legat Skole was es-
tablished during a meeting on cognition and infinity in mathematics at a secondary school
in Ringsted. One of the teachers said that she would be happy to let me use her students,
and I took her up on the offer. The contact to Roskilde Katedral Skole was established
through Kasper Bjering Sgby Jensen at Roskilde University. Thus, both secondary school
were chosen out of convenience. I wanted to have two different classes because I think the
teachers’ influence on the students’ conceptual understanding is paramount, so I wanted to
have classes with different teachers. The fact that the two secondary school are separated
by some 100 kilometres is fine, but it is of no real importance to my study.

In the two following subsection I will present and discuss the problems that I have
designed. Since the problems were revised between study A and B, a section has been
devoted to each.
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The problems for study A

In this section the problems used in study A presented and discussed. The problems are all
included on the page following the next one. It should be noted that when these problems
were designed, it was still my ambition to investigate the relation between conceptual
understanding and problem solving; therefore, the problems are divided into assignments
— which were supposed to probe their conceptual understanding — and problems — which
were supposed to test their problem solving ability.

Assignment 1 tests if the students know what it means for an unknown to be the
solution to a given equation. In the literature there are examples of students who
are able to solve the equation 7z — 3 = 13z + 15 to find x = —3, but that same
individual will be unable to say if x = 10 solves 7z — 3 = 13z + 15.

Assignment 2 tests whether or not the students know the difference between a variable
and an unknown. This assignment was included because some studies suggest that
students have a weak understanding of the variable concept [Trigueros and Ursini,
2003]. Since the variable and function concepts are closely related I wanted to
investigate the students understanding of the variable concept.

Assignment 3 tests the students ability to give linguistic descriptions of equations. This

is not something that the danish secondary school curriculum focuses on, so I wanted
to see how the students reacted to such assignments. The assignment “y = z +
5, what can you say about x in relation to y” has been used in the literature
already. Blomhgj used it in [Blomhgj, 1997], and by Orjan Hansson in [Hansson
and Grevholm, 2003].
In [Blomhgj, 1997] Blomhgj discusses the difficulties related to the formulation of
the assignment. The formulation suggests that the students should give a linguistic
formulation of the connection that the equation describes. The fact that the assign-
ment asks for x in relation to y, and not the other way around, is no coincidence,
and it probably makes the assignment harder. If the student sees the equation
as an expression for a function them the assignment consists in giving a linguistic
description of a function. Before one can consider the expression as a function is
it necessary to see x and y as variables. However, the assignment does not specify
the domains of x and y, so in that regard the assignment requires that the stu-
dents interpret the assignment. The formulation of the assignment also require an
interpretation: Are we talking about the pairs of x— and y—values that obey the
expression? How should one understand the phrasing: “z in relation to y”?

Assignment 4 also tests the students ability to give linguistic descriptions of equations.
The assignment is very similar to assignment 3, but the equation is not in intercept-
slope form.

Assignment 5 focuses on the students ability to go from the graphical representation
of a function to the algebraic one. Studies suggest that students prefer to use the
algebraic representation when dealing with functions. Since reification of a concept
involves the ability utilise different representations and being able to change between
them, this is something that I need to study. The assignment is very standard, and
its sole purpose is to check if the students are in fact able to carry out the procedures
necessary to change from the graph representation to the algebraic.

Assignment 6 is meant to test if the students can use the graphical representation of a
function to reason about a function — do the students know what it means for a point
to be part of the graph of a function? The assignment is similar to assignment 1 in
essence, since the students simply need to evaluate an expression — in assignment
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1 they are asked if x = 2 solves © + 3 = 5 and in this assignment they are asked if
x =1 solves f(x) = 1. I have chosen a point which does not lie on the graph of the
function because I do not want the students beliefs about the graph of a function
to interfere too much. If the point had been on the graph of the function you run
the chance that students will not use the point because, in principle, they can not
know if the point lies on the graph, or if it just looks like it.

In [Knuth, 2000] a set of similar, but not identical, assignments were given to 284
students. He found that students hardly ever used the graphical representation,
even though the assignments were specifically designed to be solved most easily
with the graphical representation. Many students even found the graph irrelevant.
His final conclusion was that many students had a limited understanding of the
connection between equations and their graphs.

Assignment 7 is meant, like assignment 6, to test their ability to reason with the graph-
ical representation of functions. Do they students know what it means for the graph
of functions to intersect?

Assignment 8 is essentially the same as assignment 7, but given in a different represen-
tation. Assignment 7 and 8 are standard in the sense that they could easily appear
in the textbooks used in the danish secondary school. I have included them because
it may show if students ability can vary across different representations.

These assignments were all supposed to assess the students’ conceptual understanding of
functions. The last three assignments (termed ‘problems’ on the hand-out.) were meant
the test the students problem solving ability with problems involving the function concept.

Problem 1 is similar to assignment 7 and 8, but the students need to write up the correct
expressions for the functions themselves. The students are given a text describing
a scenario where two cars are driving along a road with different velocities, and
an initial offset of five kilometres. Their assignment is to figure out when the two
cars meet. This problem is included to see if the students are able to carry out the
analysis of the written text, and if they would use graphs or algebraic expressions
to solve the problem. That fact that the students have also solved problems 7 and 8
tells me if they are able to carry out the relevant reasoning in a more standardised
context.

Problem 2 gives Martin and Maria’s heights as measured from january to may, rep-
resented in a table, and asks when Martin will be taller than Maria. Again the
students need to construct the functions describing the heights and figure out when
the functions give the same function value. The purpose is similar to problem one;
I want to see if they prefer to use graphs or expressions for solving such problems.

Problem 3 was included to have something more abstract than the other two problems.
Here the students need to equate the expressions for the area of a circle and a
square, and figure out, under which conditions, the two areas are similar. This
assignment requires the students to give an “open” answer to the question.

The students were asked to try and solve at least one of the three problems.



1 Opgaver
Opgave 1 Erz = 2 losningen til ligningen & + 3 = 57

Opgave 2 Er der forskel pi x et i de folgende ligninger?

fx)=3-z+5 (1)
3.a4+5=11 2)
z=5 (3)

Opgave 3
y=x+5 (4)

Huvad kan du sige om @ i forhold til y?

Opgave 4 Hvad kan du sige om de @ ogy der opfylder ligningen x+y = 10.

Opgave 5 Forneden er grafen for funktionen f(x). Hvad er liniens ligning?

Figur 1 - grafen af funktionen f(x)

Opgave 6 Kan du fra grafen for funktionen f(x) og punktet (z, f(x)) =

(1,1) sige noget om hvorvidt = = 1 loser ligningen f(z) = 17
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Figur 2 - Grafen for funktionen f(x) og punktet (1,1).

Opgave 7 Graferne for funktionerne f(x) o g(x) ses forneden. For hil-
ke(n) @ vardier er f(x) = g(x)?

Figur 3 - Grafen for funktionerne f(z) og g(x).

Opgave 8 Du er givet to funktioner f(x) = og g(x) = —a + 4. For hvilke

z veerdier er f(z) = g(x)?

2 Problemer

Problem 1 7o biler A og B holder ved den samme vej. De setter begge igang
samtidig og korer i samme retning, A med 80 kn/time og B med 60 kn/time
Hvornar overhaler A B, hvis A fra starten holdte 5 kilometer lengere nede

ad vejen?

Problem 2 Martin og Maria er soskende med et ar imellem. Forneden er
en tabel of deres hojder, malt hvert mined. Hois vi antager at de bliver ved

med at vokse med samme fart, hvornar er Martin s hojere end Maria?

Tabel 1 - Martin og Marias hojder malt hvert méaned over en periode af 5
méneder.

Martin (hpjde i cm) Maria (hojde i cm)

Januar 160 164
Feburar 161 164.5
Marts 162 165
April 163 165.5
Maj 164 166

Problem 3 Under huilken betingelse er arealet af en cirkel og et kvadrat

ens?
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The problems for study B

One of the main motivations for conducting study A already in 2012, was to assess and
revise the problems. It is the purpose of this section to explain the changes that were
made to the problems.

Some of the coordinate systems I used were made up by 0.5 x 1 cells rather than
the 1 x 1 cells normally used. This caused confusion for the students. Even though
it is interesting that this is enough to cause a considerably amount of confusion, it is
unnecessary. All the coordinate systems have been changed to standard 1 x 1 cells.

It appeared that all the students had problems with assignments two and six. The
major difficulty seemed to arise from my phrasing of the assignments. Assignment two
was meant to lure the students into considering the difference between x as a variable, and
z as an unknown. All of the students misunderstood the purpose of the assignment, and
simply checked if one value of = could satisfy all the equations. This could be interpreted
as an indication of the students preference for  as an unknown, but it could just as well
indicate that the problem was poorly phrased. One could attempt to fix the problem by
giving the students a set of equations, and asking them to tell which one include z as an
unknown, and which one include z as a variable. This would definitely clear things up.
However, the problem has been removed from the set in favour of another problem.

In assignment seven and eight they are asked to find the x value for which two function
f(z) and g(x) are equal. In assignment seven they are given the graphs of the functions,
and in assignment eight they are given the algebraic expressions. The functions happen to
be the same in both assignments. This was changed such that they have to carry out the
procedure in assignment eight. Assignment one and six have both been changed slightly.
Two new assignments have been introduced:

New assignment 1 asks for a definition of a function. They are invited to both draw
and write, as they see fit.

New assignment 2 Focuses on the students ability to change between different repre-
sentations; The students are given six cards, each with a function represented either
as a graph, an analytical expression, or as a table. The students are then told to
figure out which cards include the same function; there are three pairs.

Since the focus of the thesis has changed from the relation between conceptual un-
derstanding and problem solving, to focusing purely on conceptual understanding, the
“problems” (assignment 9,10 and 11) have been removed.

New assignment 3 Another problem similar to — but slighter more difficult than — the
old assignment 9 has been introduced. Two cars are now separated by 520 km, and
they are driving towards each other. One car sets off at 13 o’clock with a constant
velocity of 80 km/hr, and the other car sets off at 15 o’clock with 100 km/hr, when
do they meet? This problem is included to see how the students prefer to solve it;
which representation do they use?

The assignments are presented on the following page.



Opgave 1 Kan du give en definition af en funktion? Du mi meget gerne

bide skrive og tegne.

Opgave 2 Er =2 losningen til ligningen 3z — 2

Opgave 3 Forneden er grafen for funktionen f(x). Hvad er funktionens for-

shrift?

f(z)

Figur 1 - grafen af funktionen f(x).
Opgave 4
y=x+5 (1)

Huvad kan du sige om @ i forhold til y?

Opgave 5 Hvad kan du sige om de x og y der opfylder ligningen & +y = 10.

Opgave 6 Her er 6 “kort”. Hvert kort viser en funktion enten som tabel,
graf eller regneforskrift. Huilke kort viser den samme funktion? Der er 3 par

i alt. Angiv de 3 par.
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Figur 2 - De 6 kort.

Opgave 7 Kan du fra grafen for funktionen f(x) og punktet (x,y) = (2,1)

sige noget om, hvorvidt @ = 2 loser ligningen f(x) = 17

. f@)
i =21

Figur 3 - Grafen for funktionen f(x) og punktet (2,1)

Opgave 8 Graferne for funktionerne f(x) og g(x) ses forneden. For hvilke

x verdier er f(x) = g(x)?

g(x)

Figur 4 - Grafen for funktionerne f(x) og g(x)

Opgave 9 Du har to funktioner f —a + 4. For huilke

= og g()

vardier er () = g(x)?

Opgave 10 Vi betragter to biler, bil 1 og bil 2. Der er to punkt er A og
B 520 km fra hinanden. Bil 1 starter ved A klokken 1 og korer mod B med
80 km/timen. To timer efter starter bil 2 fra B og korer mod A med 100

km/timen. Hvor mange timer gar der for de to biler modes?




44 6. METHODOLOGICAL CONSIDERATIONS

6.2 Methodological considerations concerning the
data analysis

The main methodological considerations concerning the data analysis is this: It is theory
driven.

Some researchers have developed comprehensive coding algorithms to make the data
analysis as objective as possible; they even let different people (who are trained in using
the algorithm, of course!) preform the coding and compare the results.

My take on the data analysis is different. I do not aspire to eliminate every grain
of subjectivity from the data analysis, but rather I wish for my conclusions to be based
on observations, and that the reader will be able to follow the logic of my analysis; the
reader need not agree with my analysis, but it should be possible for the reader to judge
if it is a possible interpretation of the events. In a way, you can say that subjectivity is
at the heart of the data analysis: I have chosen parts of the dialogues shared by students
while they solve problem, that can be interpreted using theories that I have hand picked
from a multitude of different theories. A person with other theories in mind might have
focused on other parts of the dialogues. I do not consider this to be a weakness in the
methodology, but it is something that one should be aware of.

In all three studies the data will be processed in the same fashion. The process of
analysing the data involves several steps:

1. First the written answers are analysed. I evaluate all the written answers and
present the success ratio of each assignment in a plot. This gives an overview of the
difficulty of the different assignments. All written answers are presented and the
reasoning behind their evaluation is given.

2. I then turn to the recorded problem solving processes and scrutinise the recording,
to better understand the reasoning behind the students written answers. Parts of
the dialogues are chosen and transcribed for presentation and further analysis.

3. The findings are then analysed in the light of the theoretical framework.

4. Based on the analysis of their written answers and their dialogues, a characterisation
of the students conceptual understanding of functions is put forward.

The actual analysis have not been quite as structured as this — I have gone over
the written answers and the recording several times, often seeing episodes differently the
second or third time round, but this is the essence of it.

When the data is presented, it will be with a section for each problem. The section
will include all the students’ written answers to the assignment together with the cho-
sen transcribed dialogues followed by the analysis of the dialogues. A discussion of the
observations is given at the end of each study.



7 Study A

Study A took place during the spring semester of 2012. It was conducted on four pairs
of students from Mulernes Legat Skole in Odense, Denmark. The student were going
through their 2. semester of A-level mathematics. The aims of this study were:

1. To get acquainted with the empirical method; to detect pitfalls and disadvantages
of the method early on, with a special focus on assessing the chosen problems.

2. To investigate students understanding of the function concepts and their ability to
solve mathematical problems involving this concept.

The majority of the motivation for doing this study came from a need to assess the quality
of the assignments.

Based on the literature and my knowledge of the danish secondary school curriculum,
I constructed a set of 11 assignments, which I hoped would neither be too difficult, nor
to hard to handle for the students, as explained in section 6.1.1.

Before we move on to the presentation of the the data analysis it is important to
note that the focus of the thesis has changed from the spring of 2012 to the spring of
2013. Initially, the aim was to study the relation between conceptual understanding and
problem solving competency, as is reflected in the second aim of this study. The focus
has since then changed to conceptual understanding alone, but studied by analysing the
problem solving process of students. This decision was based on the observation that
it is difficult to study both conceptual understanding and problem solving ability — let
alone investigate the relation between the two — within the limited time at my disposal.
Furthermore, conceptual understanding is not at all well understood.

The results of this study are still of relevance to the thesis and are therefore included
in the report.

7.1 Data analysis

Figure 7.1 shows both the number of attempts to solve the problems, and the number of
successful attempts. From the graph it is quite clear that the students must have found
the assignments rather difficult; five of the assignments, roughly 45%, were not answered
correctly by any of the pairs.

I will present the written answers of all the pairs in the following subsections — one as-
signment at a time. The pairs have all been given pretend names, which do not necessarily
reflect the sex of the students.

7.1.1 Assignment 1

All of the students were able to answer this assignment correctly; the students either solve
for x or insert z = 2, to see if it is true.

Cain & Abel: +3=5;2+3—-3=5—2; 2 =2
Tegan & Sara: Yes, 2+ 3 =5.

Hans & Grete: =2, true. t+3=5;5—-3=2; 2 =2
Seth & Rogan: © =2

45
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& Attempts

W Success

1 2 3 4 5 6 7 8 9 10 11
Problems
Figure 7.1

We can look at the video recording of Cain and Abel’s problem solving process to get
an idea of their reasoning. Their immediate respond is: “yes”, followed by the following
dialogue:

cAIN: Well, we need to show it. We can show it by solving for x. If we subtract 3
from both sides we obtain x = 2.

ABEL: We could also just insert x = 2.

cAIN: Well, we need to show it, so...

ABEL: yes, you are right.

From the dialogue it seems that Cain thinks it is necessary so solve the equation, in order
to show that x = 2 is the solution to the equation. Abel knows that it is enough to simply
insert x to see if it is true, but Cain does not think that this “shows it”.

7.1.2 Assignment 2

None of the students were able to answer this assignment correctly, and one of the four
paris neglected to write anything at all. I wanted the students to consider the difference
between x used as an unknown, and x used as a variable. Here are their written answers:

Cain & Abel: Yes, they do not have the same value.
Tegan & Sara: The last one is not the same.

Hans & Grete: Difference is present.

It seems quite clear that the students misunderstood the purpose of this assignment. To
get an idea of what the students did, let us consider how Cain and Abel approached this
assignment. They wanted to check if the value of x was the same in all the three equations.
They realised that = 5 is stated in the last equation, compared it with 3z +5 = 11 and
concludes that 20 # 11. Thus, the x could not be the same. They briefly considered the
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function but they state: “well this is a function, so this will end up with a graph”, which
confirms their suspicion that x is “not the same”. Their final answer to the question is
“yes, they do not have the same value”. They do not explicitly state that the difference
lies in x being an “unknown” in 3z + 5 = 11 and a variable in f(z) = 3z + 5, but they
seem to have an idea that the x’s are at least qualitatively different.

As another example, we can consider the dialogue shared by Tegan & Sara:

TEGAN: Well, this is just a function. This actually means y. You know y = ax + b
[referring to f(z) =3-x +5 I assume].

SARAH: But down here x will end up being a single number [referring to 3-x+5 =
11 ¢ assume/

TEGAN: Ah, but in both cases x = 2 right?

SARAH: Oh we only have to say if there is a difference.

TEGAN: But we insert z = 2 it gives 11.

SARAH: Yes, yes it does.

TEGAN: But we insert this [pointing to x = 5 i assume/ it doesn’t make sense. So
no x is not the same. That must be the answer

SARAH: Yes.

It seems that Tegan and Sara have a good idea about the difference between the x as a
variable and x as an unknown. However, when they notice the equation x = 5 does not
agree with 3z + 5 = 11, their focuses changes; they think that I ask them to check if there
is a single z, which satisfies all the equations.

Tegan’s comment: “Ah, but in both cases x=2, right?”, when referring to f(x) = 3x+5
and 3z + 5 = 11, does blur the picture a little, though. Sure, f(2) = 11 and x = 2 does
solve 3z 45 = 11 but the fact that she talks about x being a specific value for the function
suggests that her conception of variable might be sketchy.

Hans and Grete’s written answer suggests, that they also think that I ask them if the
same value for x applies to all the equations. A brief inspection of the video recording
reveals the following dialogue:

HANS: Are the x’s in the following different? [he continues to read aloud the equa-
tions]. Yes there is, isn’t there?
GRETE: 5... 15... 20, yes there is a difference.

Again it seems they insert = 5 into 3z + 5 = 11 and notice that 20 # 11.

Seth and Rogan does not write anything, but the video recording reveals that they
insert x = 5 into 3 - x + 5 = 11 and notice that it is not the same. After this observation
they simply move on to the next problem.

7.1.3 Assignment 3

The students are asked: “y = z+5, what can you say about x compared to y”. Judging
wether or not an answer to assignments three and four is correct is not trivial; it requires
convention. The phrasing of the question is intentionally left open; I did not ask the
students specifically not to use mathematical notation, because I wanted to see how the
students responded to such questions. Since I want to give a graphical presentation of the
number of successful answers, however, it is necessary to decide wether or not the answers
are correct. To be consistent, I apply the following convention: correct answer must
have two properties: It should not rely solely on mathematical notation; and it should
convey enough information for a third party to reconstruct the relations, based on the
written answer — there has to be no ambiguity. Since I do not ask the students explicitly
to give answers which have these properties, it is to be expected that the many of the
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students’ written answers will be considered to be incorrect, but this is not so important;
the important thing is how the students go about answering such open questions.

Only one of the four pairs were able to answer the assignment correctly. The written
answers are given below.

Cain & Abel: z <y

Tegan & Sara: y is always 5 larger than x
Hans & Grete: Proportional

Seth & Rogan: That when y =5, x is 0.

These are three very different answers. Cain and Abel’s answer is considered to be wrong
since it does not have any of the two properties. First, they relying solely on mathematical
notation. Secondly, even if they had written: “z is less than y”, it still would not have
contained sufficient information for someone to reconstruct the exact relation. Seth and
Rogan only consider a single case, which is not sufficient. Hans & Grete’s answer is
considered to be incorrect because x and y are in fact not proportional. Tegan & Sara’s
answer is considered to be correct.

Let us look at the video recording to better understand the reasoning behind their
answers. We will begin by considering Tegan and Sara’s dialogue:

TEGAN: [ see it as a graph. Which i guess is just horizontal then.

SARAH: This one?

TEGAN: Yes, with intersection 5

SARAH: But what can we say? what is meant with this assignment? ... If it were
like this, they would be the same.

TEGAN: We can say that y is always x plus this other term. I don’t know what to
say. It must be explained in a better way.

SARAH: Yes for example y is five bigger than x. But we must not say 5 times
bigger, just 5 bigger.

TEGAN: But what about if we look at it as a graph?

SARAH: ... mmhm... Then it goes like... We have... x and y is just the same. no
its not.

TEGAN: Never mind that graph

With that final comment they move on to the next assignment.

It is quite interesting that their first respond is “I see it as a graph”. This is indicative
of a structural conception; however, they seem to think that their final answer is somehow
not compatible withe the graphical representation of the function.

When they consider the graph for the second time, Sarah states that “x and y is just
the same”. Even though she corrects herself straight after, it seem that they would need
to convince themselves that x is five less than y in the graphical representation as well.

They also think y = = 4+ 5 is a horizontal line (they are able to correctly give the
algebraic expression for the graph in assignment five). From the dialogue we can not say
why they make this mistake, but a reason might be, that it does not say lz, and since
there is no a present, a must be 0, and everyone knows, that if a line has no slope, then
it is horizontal, but this is speculation.

Cain & Abel dialogue is as follows:

CAIN: y = x + 5. What can you say about x in relation to y?
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ABEL: That x is less than y, because you have to add five to = in order to obtain
y. So what can we write?

cAIN: We can write z < y. Okay

It seems that they do not have any trouble going from an algebraic representation to a
linguistic one; however, they write down their answer as x < y. They make the correct
consideration, but choose to write x < y.

One reason for this could be that they think that answers to mathematical questions
should be given in symbolic notation. Their answer suggests a process conception of
function; this is based on Abel’s statement: “That x is less than y, because you have to
add five to x in order to obtain y”, which focuses on the act of adding 5 to x, rather than
simply stating that x is 5 less than y.

Hans & Grete’s answer seems to be due to a confusion of concepts; x and y are
proportional if there is a number, a, such that y = ax. The students probably also know
that the equation for a straight line is y = ax + b. They probably notice the similarities,
and in an attempt to give a linguistic description of y = x + 5, proportional might seem
more correct than e.g. “straight line”. Let us inspect the problem solving process.

GRETE: That y depends on z. So what does one say? Proportional?
HANS: Yes, one talks about proportional. Constant. It must be like that.
GRETE: This is a constant. [probably pointing at 5/, so it is proportional.

HANS: Yes, so it is proportional.

It seems that they have mixed the concept of proportionality with that of straight line.
This is an example of an out-of-focus phenomena.

Seth and Rogan’s dialogue is all in a foreign language, so I can not tell anything useful
from their dialogue. Based on their written answer alone, one might speculate, that they
have a process conception of the function, since they simply insert values for y and find
the corresponding z-values.

7.1.4 Assignment 4

Assignment four is along the same line as assignment three, but the phrasing is different.
None of the four pairs were able to answer the assignment correctly.

Cain & Abel: The sum of x and y gives 10. z + y = 10.
Tegan & Sara: x and y are two different number which give 10

Seth & Rogan: 5+ 5 =10,z +y = 10

Again the answers are quite different. Let us start by considering Cain and Abel’s answer.
I consider their answer to be wrong, but it is a close call. Their answer is considered to
be wrong, because it closely resembles what you would get from simply reading aloud the
mathematical notation: x plus y equals 10. Their problem solving process stats with the
following dialogue:

ABEL: That the sum of x and y gives 10. Hehe. Then we can say... I guess... Well
I don’t know, it can really be a lot of numbers. You can have a negative
number plus y, for example, If x is negative.

CAIN: So we can say..

ABEL: Well, it sort of whats already there. x and y put together should give 10
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Cain and Abel are not oblivious to the fact, that their answer closely resembles what you
would get by simply reading aloud the symbolic notation. They do allow for the x to be
negative, which, as we will see later, students do not always do.

Tegan and Sara’s answer is considered to be wrong because they specifically state the
z and y should be different. Their dialogue shows that this is not just an unfortunate
choice of words:

TEGAN: That both are 5. Haha

SARA: No they have to be different, otherwise it would just be x + z, you know.

TEGAN: Well, I guess you can say that the one is always larger than the other.
That would be a start. We can probably say all kinds of things.

SARA: Yes, we can say that they are two different number, which give ten.

It is interesting, that they do not “see” the graph in this case, as they did in assignment
3. It seems that the expression has to be on intercept-slope form before they recognise it
as a function.

It would seem it is no coincidence that they use the word “different” in their answer;
they do not think that z = y = 5 is valid. This suggest that they do not completely
see ¢ and y as variables, and that they do not have a good understanding of the variable
concept, otherwise it should have been clear to them that when x is 5 then so is y.

Hans & Grete did not give a written answer to the assignment; however, if we look at
Hans’ monologue during the problem solving process we see the following;:

HANS: If one of them is one, then the other one should be 9. So lets say if z is one,
we can pull it over to the other side and subtract, then if = is one, then y is
9. If x is 2 then y is 8 and so on until you reach the opposite, or.. 5 plus 5.

Hans basically rewrote the equation to intercept-slope form and calculated the y values
for a few x values. He sees the pattern, but chooses to stop when x =y = 5.

Seth and Rogan simply look at x = y = 5. They did the same with problem three. The
video recording does not reveal much; there is a silent mumbling for 30 seconds followed
by the utterance of “Yes, of course! 5+5=10!". It seems quite clear from assignment 3 and
4 that Hans and Grete do not see functional relations when they look at y = x + 5 and
z +y = 10.

7.1.5 Assignment 5

In this assignment the students are given a graph of a function, and are asked to give the
equation describing it. Below their written answers are given.

Cain & Abel: a =1, b=0.5, (f(z) = 1z + 0.5).
Tegan & Sara: y =2z +1

Hans & Grete: y=2-3+1

Seth & Rogan: f(z)=1,3.

Only one of the pairs were able to find the algebraic expression for the graph of the
function f(x) = 2z 4+ 1. This is rather surprising, since you learn the procedure much
earlier in the danish educational system. You would think that students who choose to
study A-level mathematics would know how to carry out this procedure.

Let us consider Cain & Abel’s attempt to solve this assignment. They generally spend
a long time trying to figure out if a is the intersection or the slope. I have transcribed
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their dialogue in quite some detail, because it shows where they go wrong and how fragile
their mathematical knowledge is. The dialogue includes some of their work on assignment
6, because it is a continuation of their discussion. Their solution to assignment 5 starts
with the following lines:

ABEL: b must be one.

cAIN: Then we need to find the slope.

ABEL: We can say that for each time it goes 1/2 along, we go one up.

CAIN: Seems correct. So what is it?

ABEL: So x is... haha...

cAIN: How is it?

ABEL: It is a number you multiply z with, such that for each time we go one along
the x-axis. Okay, then we can say it is one.

cAIN: We have to write it up as an equation. Ugh, what is the formula for linear
regression?

ABEL: It is az... f(z)... the function of z

CAIN: mx times b or a times bz.

The confusion continues along these lines for several minutes. They constantly interchange
a, b, and = when they talk about linear functions which indicates that they do not have
a very robust understanding of the concept of a variable. It is a clear example an OOF
phenomena, and it continues.

They start to interchange the dependent variable y with the independent variable x,
as is clear from the following lines of dialogue

cAIN: We know every time y in increased by 1, x is increased by 1/2. Isn’t it just
1-1/27

ABEL: Well you need an x in there somewhere. One times x?

cAIN: What is the z a symbol for?

ABEL: Isn’t it a symbol for all the numbers on the x-axis?

CAIN: I don’t remember

ABEL: Yes, it has to be.

cAIN: Ok, let’s return to it if we have the time.

With this comment they continue to problem six. They read the text several times.
When they try to make sense of the assignment Cain states that “f(z) must the the result
of a-bx”, which indicates a process conception, since he talks about f(x) being the result
of a calculation. They go on to find the formula for the slope. They find b to be one and
since, as Cain mentions:

CAIN: every time y increases 1/2, x increases with 1/2, so the slope must be 1.
That is one times one which is one. And for x the point is at one, so one
times one times one is one so f(z) = 1.

[This is an example of the fact that Cain seems to think that the algebraic
expression for a linear function is f(x) = axb./

ABEL: Well this is exactly what it says there, but it is follow by a question mark?

cAIN: Well the intersection is one. and the slope is —

ABEL: Its 1/2, because every time you go 1/2 out you go 1/2 up.

CAIN: ... should we then add the two numbers?

ABEL: Yes i think so. Normally with a linear regression. I think that is what it
is called. Then you have a number b, which is the intersection, and a slope
which is @ number times z.

[Abel starts to look at assignment two]
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ABEL: You see this? This is a function. Here I would say that if I had to draw this
is would intersect in —

cAIN: Okay! Now I see. This is the starting point, a, and +5 five is... [It seems
that Cain interchange the intersection and the slope.]

ABEL: thisis b

CAIN: no

ABEL: yes

CAIN: no

ABEL: yes

CAIN: no it must be 3

ABEL: no

CAIN: Yes because +5 must be the slope!
[They are looking at the function f(x) =3z + 5/

ABEL: I disagree. I would say that b is the intersection.

cAIN: Oh. So if we go one up, we have to multiply 2 with three to obtain x.
Wouldn’t it make more sense if 3 was the intersection and 5 was the slope?
Because if you go 1/2 up then you have to add 1/2 on the x-axis.

ABEL: No I think that the number 3 means that you have to go 3 along the y-axis
and x-number along the x-axis.

caIN: No, because we are at 1. Lets assume it said 1 there and 1/2 there. We
start at 1 and add 1/2, so every time we go 1/2 up we add 1/2... Or every
time we go one up we have to add 1.

ABEL: I don’t think it is correct.

They finally agree to continue to the next problem.

I think that this dialogue shows several things. First, their understanding seems to
have a very fragile foundation; they make one mistake, and after just a few minutes, they
start to wonder that the z in f(z) actually is. At some point they even attempt to find
the slope by varying y by one and finding the corresponding change in z; that is, they
mix up the dependent and independent variable.

They do not seem to have a solid understanding of what the symbols they use actually
mean. During the approximately 10 minutes of this dialogue Cain and Abel give two
different expressions for a linear function. The fact that they constantly interchange
the slope and intersection shows that they do not have a solid understanding of the
mathematical notation they use, e.g. Cain states “What is the x a symbol for?”

The dialogue also shows an unfortunate side effect of the methodology: Abel seems to
have a clear idea about how to answer the assignment, but he is unable to convince Cain,
and consequently end up agreeing to answers, which he not fully comfortable with. Let
us move on to the remaining teams.

Tegan and Sara quickly find the expression for the graph by using the rise over run
method.

Hans and Grete’s answer is incorrect. Generally Hans and Grete do not communicate
a lot when they attempt to solve the problems. This makes the video recording of limited
use, but let us inspect their dialogue anyhow.

HANS: Below the graph of the function f(z) is given. What is the equation de-
scribing the line? y = ax + b, and it intersects in 1.
[Hans continues to carry out the rise over run procedure. He marks off a
line from (0,1) to (1,3) and notice that if you go vertically from (1,3) to the
y-axis, then:|

GRETE: It crosses in 3

GRETE: Soitsxz-3+1
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Their mistake lies in carrying out the rise over run procedure incorrectly.

Seth and Rogan give a very strange answer to this problem: “f(x) = 1,3”. Let us
see if we can better understand this by looking at the video recordings of their problem
solving process. They realise that the intersection is 1, and make the same mistake and
Hans and Grete:

SETH: So 3,1 right?

ROGAN: You have to write up the equation.
SETH: 1,3

ROGAN: I think you have to say f(z) =1,3.
SETH: There we go.

They seem to have some idea that a straight line is defined by intersection with the y-axis
and its slope; however, they do not know how to convey this information in a mathematical
manner. This is quite surprising, they are following A-level mathematics after all.

7.1.6 Assignment 6

None of the pairs were able to answer the assignment correctly. Their written answers are
given below.

Cain & Abel: f(z) =1, f(z) =1-1-0.5=10.5. 1 > 0.5 ergo, f(z) = 1 does not solve
the equation.

Hans & Grete: 1-z+1, f(z) =2

Seth & Rogan: f(z) = 1, because you have to go one along and one up, and the graph
is a linear function.

We have already seen Cain and Abel’s attempt to solve the problem. Their idea is correct,
but they fail to give the correct expression for the graph, because of their confusion about
the expression for a straight line.

Hans & Grete spend almost five minutes on this assignment, but without much dia-
logue; they do not have a clear idea about how to solve this assignment. It would seem
that they think that f(z) = 1 is true, and that their assignment is to show it. They write
up the expression for the graph, that is the 1-x + 1 part of their written answer, but
they don’t really know what to do with it. Then they begin to focus on the point, and
since f(z) = 1 should be true, the equation for the graph should be f(xz) = . Then the
following dialogue takes place:

GRETE: So f(z) = «?
HANS: Yeah, it must be something like that, but it does not go through the point
though?

After this they move on to the next problem.

Hans & Grete’s failure is due to a mixture of lack of control and resources. They do
not have a plan and spend their five minutes without really knowing what to do.

The dialogue shows that Hans seems to be worried about the fact that the graph
does not pass through the point. It shows that he has some idea about the fact that the
algebraic and the graphical representation have to be consistent, but the fact that he does
not follow up on it shows that he is not complete sure about what to make of it.

It seems that Seth & Rogan try to say that f(z) = x, but write f(x) = 1 instead.
Nothing can be gained from watching the video recordings.
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Tegan and Sara did not write anything. Let us look at their dialogue to figure out
what went wrong.

TEGAN: We should justify that x is one... And then we should solve the equation

SARA: No we have to check if x = 1 solves the equation. We should use the
information to tell if x = 1 solves the equation

TEGAN: Ohh, I thought we had to show that x = 1 first.

SARA: No I don’t think so.

TEGAN: [ guess I just misunderstood the text.

SARA: Okay. So this is the point (z, 1) and this is (1,1), but then z = 1, as it says
there, and y is also 1.

TEGAN: So it is (1,1).

SARA: I don’t understand it.

TEGAN: No it’s strange. I don’t see what he wants us to do.

SARA: He wants us to state if x = 1 solves the equation. I don’t think it is difficult,
I just cant figure it out.

TEGAN: It’s just a strange explanation.

Tegan explicitly states that she does not understand the phrasing of the question. Sara
seems to understand that they have to figure out if z = 1 solves f(z) = 1, but she does
not have a good idea about how to go about doing just that. It is not completely clear to
me what lies behind the sentence “Okay. So this is the point (x,1) and this is (1,1), but
then z=1, as it says there, and y is also one.”.

I think that it is safe to say that the students had a hard time understanding the
assignment. As I see it, this assignment can be solved in one of two ways. Either you
find the expression for f(x) check if f(1) = 1, or you realise that the point (1,1) does not
lie on the graph of the function f(x), consequently f(1) # 1. In order to use the latter
approach it is helpful to realise that the graph of a function are the points (z, f(z)). Thus,
one reason for the students failure might be that they do not have a clear definition of the
graph of a function. Another reason might be that the assignment is deceivingly simple.
If T had written “is f(1) = 1?7, rather than “does x=1 solve the equation f(x)=1", then
most likely, the students would all be able to answer. This only requires the students to
understand that the notation f(a) specifies the function value of f(x) for x = a.

I would argue that the first approach is indicative of a process conception of the
function concept, while the latter is indicative of a structural conception.

7.1.7 Assignment 7

In this problem the students are given the graphs of two functions, f(z) and g(z), and
are asked for which z f(z) = g(z). Two pairs answered the assignment correctly.

Cain & Abel: f(z) =1, g(z) = —1.
Tegan & Sara: We need to figure out where g(x) and f(z) intersect. z = 2.
Hans & Grete: 2

Cain and Abel seem to have misunderstood the assignment. Let us take a look at the
video recording to figure out what went wrong.

ABEL: [ have no clue.
cAIN: The graphs of the function f(x) and g(x)...
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ABEL: Well, I guess they are the same, one of them are just negative, right?

cAIN: For which n values are f(z) = g(x). I don’t understand. [the confusion
about “n” is caused because i write “for hvilke(n) veerdier...” where then (n)
is meant to keep open the possibility of there being several values of z./

ABEL: Ahh! nis...

CAIN: What did n mean? What was it?

ABEL: I have no clue

CAIN: Was it rational number? No it was...

ABEL: Natural numbers!

CAIN: Ah yes natural number. 1, 2, 3, 4...

ABEL: For which natural number of the x value are f(x)=g(x)?

CAIN: Oh, then we have to calculate f(z) and g(z).

ABEL: Yes, and they must be the same, just negative.

caiN: Okay, so f(x), what is that?

ABEL: You go one along and one up, so f(z) = 1z

cAIN: Yes f(x) =1, and then g(z) = —1

ABEL: f(x) is equal one times x.

CAIN: yes, and g(z) = —1, don’t you see?

ABEL: Yeah. sure. Write that. It’s out best offer.

caAIN: So if we calculate everything f(z) = 1 and g(z) = —1. [He reads aloud what
he is writing].

ABEL: Well, now you are answering problem 8, because there we have to find the
x-value. I don’t know, fuck it.

After this they move on to problem 8.

I Believe that this dialogue shows two things. First, they students can get confused by
the smallest things. In this case it was the “hvilke(n)” in the phrasing of the assignment
text. If the students met this notation in a danish class, they probably would not have
thought twice about it, but because they memt it as part of a mathematical question,
they immediately thought about the set of natural numbers. This is seen clearly when
Abel rephrases the question to “For which natural number of the x value are f(x)=g(x)”.
Secondly, Abel seems to have a clear idea about how to describe a straight line mathe-
matically, while Cain does not. One example is when Abel specifies “f(z) is equal one
times x.” and Cain responds “yes, and g(x) = —1, don’t you see?”. We will get back to
Cain’s f(z) = —1 notation in the next subsection.

Somehow the focus changes from the x value they are supposed to find, to the equations
for the lines. As a consequence they never get around to finding the actual x value. Abel’s
last statement “Well, now you are answering problem 8, because there we have to find the
z-value.” shows that he has forgotten what problem 7 was about.

Tegan and Sara, and Hans and Grete solved the problem correctly. It is quite clear
from their written answer that Tegan and Sara knew what they were doing when they
arrived at x = 2. For Hans and Grete the reasoning is less clear. Let us take a look at
the video recordings.

HANS: It must be here, right? Where they intersect. At (2,2).

It seems they do indeed look at the intersection.
Seth and Rogan did not write anything and nothing meaning full can be recovered
from the video recordings. It is a mixture of foreign language and silence.
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7.1.8 Assignment 8

The two paris which solved assignment 7 correctly also succeeded in solving this assign-
ment.

Cain & Abel: f(z) =2, g(z) = 2.
Tegan & Sara: Its the same as in assignment 7. x = 2.
Hans & Grete:

z=—-x+4
r+zr=4

2¢ =4 (7.1)
x/2=4/2

r =2

Tegan and Sara realise that the functions are actually the same as in assignment seven,
and conclude that the function are equal for x = 2.

Hans and Grete correctly equate f(x) and g(z), and solve for x to find their intersec-
tion.

Seth and Rogan did not write anything. Again, nothing can be gained from looking
at the video recording.

Cain and Abel attempt to solve the assignment in a way similar to what they did in
assignment seven; however, from their written answer it is not clear what went wrong.
In assignment seven they attempted to give the expressions for the two functions, which
is alright, since they were given graphs, but here they are given two expressions for the
function, and yet, they end up with f(z) = 2 and g(x) — 2. What is going on? Let us
inspect the problem solving process.

ABEL: You are given two function f(z) = x and g(x) = —z+4. Because it intersects
in 4! You see? This is our b, and this is the slope, a, because +4 is where
it intersects the y-axis.. you see... otherwise it should be the intersection
with the x-axis. However, I don’t think so. It a little unfortunate that it also
intersects the x-axis at 4.

cAIN: So what should we write? For which values? I mean f(x) must be z + 0.

ABEL: Sure write that. I don’t think its completely true, but I don’t have anything
better to offer.

CAIN: It’s the same as before. —1 +4 = 3, and if you insert 0 and x... then if you
insert 1, then z+1 gives 1 plus 2 it gives... So what should it be f(z) = 0+z?
or f(x) =z + 07

ABEL: | don’t think thats what we have to find at all. We should just find out
which x value it is, you know, what slope. Or what? [z is confused with the
slope again/

caIN: Ohh

ABEL: What should x be for those two to make sense. In g(z) we’re told that is it
—x because it goes towards minus, and here it is z, it goes toward plus.

cAIN: Ohh! I think it should be 2 and -2!

ABEL: Yes, Okay, lets write that.

cAIN: Because then they hit the same place.

ABEL: Yes, sure, try that.
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CAIN: f(x)=2and g(z) = -2

Once again they are having some difficulties with the notation, i.e. Abel confuses xz with
the slope of the line. It seems that they do, in fact, understand what the assignments
asks for, since Abel states: “What should z be for those two to make sense.” The way in
which they express their final answer is a little strange, though; let us see if we can make
sense of their notation.

As T see it the notation f(z) = 2 can be taken to mean one of two things: Either it
means that the slope of f(z) is 2, or it is an instruction to put z = 2 in f(x), similar to
— but not identical to — the notation f(2). Let me explain why.

In assignment seven it seemed that Cain talked about the function f(z) and g(z) as
though they were only specified by the slopes, e.g. they wrote f(z) = 1, because the slope
of f(z) was 1. This suggests that f(z) = 1 is their way of specifying the slope of the
function.

However, at the end of the dialogue from problem seven Cain says “so if we calculate
everything f(z) = 1 and g(x) = —17. The fact that he says: “if we calculate everything”,
might suggest that he is thinking about the function values.

In assignment eight Cain seems to think that he is on to something when he says
“It’s the same as before. —1 4+ 4 = 3, and if you insert 0 and z... then if you insert 1,
then © + 1 it gives 1, then = plus 2 it gives... So what should it be f(x) = 0+ x? or
f(z) = x4+ 0” It is not quite clear to me exactly what is going on in Cain’s head, but
if we ignore, for a second, the fact that he seems to be varying “0” rather than x, we can
attempt to make sense of this. I think he is attempting to insert values for z, which would
make f(z) and g(x) be equal; that what he attempts to say is f(2) = 2, and that he is
ignoring the minus in front of the = in —z + 4, thinking about —x as a whole, such that
—x = —2 = —2+4 = 2. This could be why he writes g(x) = —2. To him the notation
f(a) = number, does not mean the function value for x = a, but rather something along
the lines: f(x) = “what you should put in the place of the term containing x”. If this is
truly what his notation means, he would write f(x) = 25 as an instruction for someone
to calculate the function value of f(z) = 2® + 8, for = 5. Which is different that the
usual notation f(5) = 33.

If my analysis is correct, their answer should be read as an instruction: insert 2 in
place of  in f(x) to obtain 2; insert —2 in place of —z in g(z) to obtain 2; see that they
are equal.

I realise that it a bit of a stretch, but it is hard to make sense of their final answer
otherwise.

This is a good time to summarise the notation that we have seen Cain utilise so far.
He has given f(z) = axb and f(x) = mab as expressions for a straight line and now he
uses the notation f(x) = number, not to mean an horizontal line, but to mean something
along the line of an instruction to calculate the function value, when the x term is replaced
by the number.

7.1.9 Assignment 9

This is the first of the problems which were meant to be problematic for the students. It
can be solved using some of the same method as the previous assignments. Only Tegan
and Sara were able to solve the problem correctly. The written answers are given below.
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Cain & Abel: [They have drawn a graph|

f(A) =80z +0

f(B) =60z +5
80z = 60z + 5 (7.2)

75z = 60x

125 =2

Tegan & Sara: [They have drawn a graph/

Bil a:y =60z
Bilb:y=80x—5
60x = 80z — 5
5= 20z (7.3)
S g
20
0.25 ==z

Hans & Grete: [They have drawn a graph/

y=axr+b

A=a-80-5

B=a-604+0
a-80—5=a-60 (7.4)

a-75=a-60

a® =75/60

a® =1,25.

Seth & Rogan: 80 — 60 = 20

Cain and Abel spend approximately 9 minutes working on the assignment. In their first
attempt to solve the problem they try to graph the position of the cars as a function
of time, and then finding the intersection between the two functions. This solution, if
carried out correctly, will yield the correct answer. After about four minutes they give up
on the plan, because they are having trouble drawing the graph rigorously enough. After
a brief period of planning (= 1 min.) they try to implement their next plan: Equating
the algebraic expression of the positions of the cars. This plan would also yield the
correct answer, if carried out correctly. They are able to correctly write up the equations
describing the positions of the cars as a function of time, but they make a mistake when
they try so solve for x, and end up with a wrong answer. Briefly after they write down
their answer they run out of time. Considering their previous difficulties with describing
a straight line algebraically, it is quite remarkable that they get it right this time.

They way in which they express the functions describing the positions of the cars is
interesting. We have already seen them use a quite strange notation regarding functions.
This time they use f(A) and f(B) to denote the function describing respectively car A
and B. The fact that they use this notation suggests that to them, what you write in the
parentheses of the f(...) has no mathematical consequence; once again showing that their
understanding of standard mathematical notation is less than ideal.
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Let us look at Tegan & Sara’s attempt to solve the problem. Assignment nine is where
they spend the majority of their time (35% of the entire session). Their main difficulty lies
with translating the problem text into mathematical notation; almost immediately after
reading the problem text aloud Sara states that “we just need to find the intersection of
their graphs”. Thus, their problem does not consist in being unable to find a solution to
the problem, but rather in their implementation of their chosen solution method. Figure
7.2 shows their graph. Their attempt fails because they fail to scale the axis of the figure
conveniently.

They realise that they can equate the expressions for the positions of the cars, and
they correctly give the algebraic expressions and solve for & without making mistakes;
however, they are unsure about their answer. They explicitly state that they do not know
what © = 0.25 means. This is an example of students difficulties with “reading meaning”
into the mathematical notation they use.

Figure 7.2 — Tegan & Sara’s solution to problem 1

Hans and Grete correctly write up formula for a straight line as y = ax + b. Im-
mediately blow, however, they give the equations describing the motion of the cars as
A=a-80—-5and B=a-60+0. It is a little bit confusing that they choose a to be the
variable rather than x, but since they are consistent it is not a problem. They equate A
and B but run into trouble because they can not solve for a correctly.

From the video recording it becomes clear that Hans and Grete’s initial attempt to
solve the problem was through graphing the positions of the cars as a function of time.
They spend five minutes attempting the graph the positions, but they realise that they
have scaled the x-axis completely wrong (it goes from 0 to 10 hours, with very small
separation between the ticks on the axis). Rather than redrawing the coordinate system,
they decide to equate the two functions; This is their dialogue:

HANS: a must be —5 and b must be 0. z must be 80. [he has written y = ax + b
followed by A=a-80—5 and B=a-60+0/

GRETE: +5 you mean.

HANS: No, because it starts further down the road. So after one hour it will be at
75. I'm talking about A. And B will be at 60.
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GRETE: Well, then they have already crossed.

HANS: Hah, yes, then we have to make the graph a lot smaller.
GRETE: Well, I guess we can equate them.

HANS: Yes, of course. Then we say a-80—5=a-60

They continue to solve for a, but make a mistake along the way. When they arrive at
their final answer, Grete notes: “no, it cannot be true. It has to be less.” After this Hans
suggests that “we can try again. This time we call it © so we won’t get confused”. Before
they can finish they run out of time.

It is not clear why they choose to use a as the variable and x as the slope initially;
they do not use this convention when solving any of the previous problems, and their
first axis is marked as “Time”. I is hard to tell, if they change notation by choice or by
accident. Hans’s statement “we can try again. This time we call it © so we won’t get
confused” makes it clear, that he is aware of the change, however.

Based on Seth and Rogans written answer it is difficult to say anything about their
thoughts. It looks like they simply subtracted the two velocities of the cars. Yet again,
the video recording reveals nothing useful.

7.1.10 Assignment 10

Only Tegan & Sara had the time to work on assignment 10 and 11.

Tegan & Sara:

y = 164z + 0.5 Marias

7.5
y =160z +1 Martin (75)

At some point they will intersect.

After reading the problem text aloud the following dialogue takes place:

TEGAN: Every time he grows one centimetre she grows half a centimetre.

SARAH: Yes, she only grows a half.

TEGAN: So we can just count? Or we can make an equation.

SARAH: [ see it as a graph. So we have January, February and so one here, and
then we have the height here.
[Since this is not a video recording it hard to tell what she is pointing at, but it
might very well be the x-axis and y-axis of one the graphs on the assignment
set./

TEGAN: The months are z, its the independent variable. If we can say that the
equation for martin is.. January is 0 and there it’s 160, so the b value is 160
and the a value is x.

SARAH: And for her b is 164 and a is 1/2.

TEGAN: So the equation is y = 164« + 0.5 and for martin it is 160x + 1.

SARAH: So if we had Inspire [Inspire is the mathematical software most danish
schools use] we could simply graph them and find the intersection and we
would be done.

They start to draw the graph but realise they they have made the scale on the y axis
way to small and give up. It is interesting, that they talk about increasing 1 for each
month, even though they give the formula for the height as f(z) = 164z + 0.5. In this
case they exchange the intersection and the slope, when they write up the algebraic
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expression for the function, but when they attempt to graph the function, they do it
correctly (f(z) = 0.5z 4+ 164). They do not notice this inconsistency at any point. In
assignment five and nine they do not make this kind of mistake.

It is interesting that they do not equate the two function. They have shown earlier
that they are clearly able to do so. It might be because they already have their mind set
on using Inspire.

7.1.11 Assignment 11

The students are asked under which conditions the area of a circle and a square are equal.
The students written answers are given below.

Tegan & Sara: Area of circle: 71?2

Areal of square: - b

Tegan and Sara correctly write up the expression for the area of a circle. Instead of writing
up the area of a square, however, they use the more general formula for an arbitrary
rectangle. On paper, they fail to state any conditions for the equality of the area. Let us
consider what Tegan and Sara did during the problem solving process.

They quickly state that they want to equate the formula for the area of a square with
that of a circle. This gives them the following expression:

mor?=1-b, (7.6)

and they state “if | = 7 and b = 727 it is the same, but they don’t find the answer
satisfactory, and as a consequence they do not write it down. Maybe if they had consid-
ered a square instead of a rectangle, they would have felt more comfortable, but this is
speculation.

7.2 Characterisation of the students understanding
of the function concept

Since these 11 assignment were meant to be the basis on which the students conceptual
understanding of function were to be evaluated, let us attempt to draw some conclusions
regarding the students conceptual understanding of functions.

I have grouped the students together, mostly out of convenience, since an individual
assessment would require a more fine grained analysis of the data.

Cain & Abel are at the stage of interiorization of the function concept or very early
stage of condensation, since they have difficult time changing between different
representations of the function concept. There were many instances of out-of-focus
phenomena during their problem solving session. They used no less than four
different expressions for a straight line, and they generally seemed to have a poor
understanding of the mathematical notation they used. Their understanding of the
graphical representation seems to be limited to its potential of being translated into
an algebraic expression, and even this is hard for them to do.

Tegan & Sara seem to be at the stage of condensation of the function concept. They are
capable of changing between different representations; they solved assignment seven
and eight, and they even realised that the functions in the two assignments were in
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fact the same. There have been episodes where they seem to “see” a graph when
to look at algebraic expressions, and they solve assignment seven by inspection,
but their failure to solve assignment six suggests that their understanding of the
graphical representation is rather limited.

Hans & Grete seem to be able to reason with the different representations of the func-
tion concept, and they solved assignment seven and eight. The fact that they failed
to solve assignment five suggests that they are capable of reasoning with the differ-
ent representations of the function concept, but unable to alternate between them.
This indicates that they are at a late stage of interiorization, or very early con-
densation, of the function concept. There is at least one instance of out-of-focus
phenomena when they use the term proportional to describe the relation y = x + 5.

Seth & Rogan seem to have a very week understanding, not only of the function con-
cept, but of the variable concept as well. I would argue, that they are at the earliest
stage of interiorization of the function concept, and that their variable concept has
yet to be reified. In both the assignment that require them to describe a func-
tional relation they simply examples of values that would make the statement true,
which suggests that, to them, the symbols x and y represent unknowns rather than
variables.

7.3 Discussion

In this section I will attempt to summarise and discuss the main results of this study.

7.3.1 Pseudo-structural conception

In section 4.6 we discussed five indication of what is referred to as a pseudo-structural
conception.

As the reader may have noticed, there were quite a lot of episodes that indicate a
pseudo-structural conception. Most of the examples were instances of out-of-focus phe-
nomenon, which basically is the imprecise use of otherwise precise mathematical concepts
and notions. One example of this is Hans and Grete’s incorrect use of the notion of
proportionality. Most of these out-of-focus phenomenons occurred disguised as notational
difficulties; several of the students ran in to problems with their notation, during their work
with the assignments. For example, we can consider Cain and Abel’s ideas about the alge-
braic representation of a function. Their final answer to assignment 5, written in a small
parentheses, to show that they are not completely sure about the answer, is f(z) = 1z+0.5
(it is wrong, the answer is f(x) = 2z + 1), while they write f(z) =1-1-0.5=0.5<1 as
their solution to assignment 6. In assignment 7 they give the formula for f(z) and g(x)
as f(z) =1 and g(x) = —1, and again in assignment 8 as f(z) = 2 and g(z) = —2, even
though they are talking about the slopes of the graphs as being respectively 2 and —2.
During the thirty minutes they express that the algebraic expression for a linear function
is:

flx)=a-z+b , f(x)=mab , f(z)=a-x-b and f(z)= number (7.7)
It seems that they do not have a clear cut idea how to give the algebraic expression for a
linear function.

This supports the observation of Heral and Dubinsky, in [Dubinsky and Harel, 1992],
that students can react differently in similar context, at different times. In this case, the
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students have three different idea about the algebraic expression of a linear function over
the period of just 30 minutes.

Similarly, Tegan and Sara think that y = = + 5 is a horizontal line, when they discuss
assignment three. However, they are able to correctly give the expression for the line in
assignment five, but when they get to assignment ten, they confuse the intersection with
the slope, and as a consequence, they write up equations describing a person growing 164
cm each month.

While we are at Tegan and Sara’s answer to assignment ten: It is an excellent example
of students inability to “read meaning” into the mathematical notation they use, as is seen
from their comment: “x = 0.25, 0.25 what?”. They do not know what they use the symbol
x to represent.

Seth and Rogan use the notation f(x) = 1, 3 to describe, what they think is a function
whose graph intersects the y-axis at 1, and has a slope of 3. These are mostly examples
of out-of-focus phenomena.

Another indication of a pseudo-structural conception is the inability to see different
representations of a concept as equivalent. Many of the students were not able to change
from the graphical representation to the graphical representation. This does not, in it self,
mean that they do not see the two representations as equivalent. They might simply be
unable to carry out the rise over run procedure. However, it does seem that the different
representation are not considered equal by the students. For example, all the students
that attempt to give an answer to assignment six did it by changing to the algebraic
representation, rather than trying to solve it in the graphic representation. Another
example is Cain and Abel’s attempt to solve assignment seven — they attempt to give the
algebraic representation of the two function, rather than just checking where the graphs
intersect. This is not because they are unaware of the possibility to use the graphs to
find when f(x) = g(z), because they attempt to utilise exactly this solution method on
assignment nine.

Inability to solve “non-routine” problems is also indicative of a pseudo-structural con-
ception. Seeing as only one of the pairs solved any of the assignments which were meant
to be “non-routine”| it is safe to say that this is the case.

7.3.2 Difficulties with linguistic descriptions

It is quite clear that the students are having a difficult time with the assignments that
require them to give a description of an equation. Initially, most of the students are
completely dumbstruck by the assignments; they simply do not know what to do with it.

This is not a strange result. The linguistic representation is not really treated in the
danish curriculum, so there is no reason to expect that the students should be able to use
it on equal footing with the other three representations.

7.3.3 Importance of context

)

In assignment seven I ask the students “for hvilke(n) veerdier...” which translates into

“for which value(s)...”.

The (n) or (s) are there to indicate that there may be several
values for x. Mathematically it is pretty obvious that there can only be one x-value for
which f(z) = g(z), but the student do not necessarily know this, so I wanted to keep the
question open. When the students encounter this notations, because they encounter it
as part of a mathematics assignment, they take the “(n)” to mean natural numbers and
immediately start looking for which natural numbers value of x that make f(z) = g(z).
As luck would have it, it is in fact a natural number, namely z = 2. It goes to show just

how important context is.
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8 Study B

Study B took place approximately one year after study A. It included four paris of students
from the same class as study A. Tegen, Sara, Hans, and Grete from study A participated
both studies. The revised version of the problems were used.

It should be noted that the students only spend about 20 minutes going through all of
the 10 problems, even though they were given an hour to do so. This might indicate that
they found the problems too easy, but it might also indicate that they were in a hurry to
get out. The students were not forced to participate, but the teacher did ask a select few
in a rather suggestive manner. As a consequence, not all the students were eager to solve
the problems in a nice manner, but rather get through them quickly. This is most obvious
from Tegan and Sara’s recording. After reading the text of some of the assignment aloud
a few times, they simply move on; after reading the text of problem ten, and making a
small diagram, they simply say “Thank you for today” and switch off the recording device.
Clearly they did not wish to stay long. This is unfortunate, but it is one of the difficulties
when working with people as test-subjects.

I did not have enough recording equipment for all of the teams, so I do not have any
recording of Hans and Grete’s work. Their answers are included anyway because their
written answers can be compared to the remaining teams.

8.1 Data analysis

The number of attempts to solve each problems, together with the successful attempts
are shown in figure 8.1.

W Attempts

& Success

1 2 3 4 5 6 7 8 9 10
Problems
Figure 8.1

A few things are clear from the graph. First of all, the students generally fared better
than the previous year. Secondly, none of the students were able to give a satisfactory
definition of a function, and the students are having a difficult time giving linguistic
descriptions of functional relations. The students did very well on problem seven, in

65
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which they are given a point (2,1), a graph of f(z) = 4+ 1 and are asked if x = 2 solves
f(z) = 1. In the previous year none were able to solve a very similar problem.
Let us dive into the analysis of the their written answers and problem solving processes.

8.1.1 Assignment 1

None of the students gave a satisfactory definition of a function. They all fail to mention
uniqueness of y for a given x. Some of the students simply give examples of functions
they have encountered during their mathematics classes, which suggests that they have a
different understanding of the word definition than I do.

Hans & Grete: f(z) = axz +b, fo(z) = ax® + bz + ¢, f3(z) = ax® + bx® + cx + d.
Mads & Michael: y depends on x

Nora & Helmut: f(z) = x*

Tegan & Sara: A function is defined by f(z).

It is interesting that none of the students are able to give a satisfactory definition of
a function. The students were on their second year of A-level mathematics and were
currently learning integration. It would seem that the students simply forget the definition
as time goes by.

Let us begin by looking at Tegan and Sara’s attempt at answering the assignment:

TEGAN: A definition? It’s something with f(z).
SARA: Yes, I think so too.

TEGAN: Look at assignment three, haha.
SARA: Yes.

Assignment three contains the graph of a function f(x) and asks “what is the algebraic
expression for the function”. The fact that they are referring to this assignment might
suggest that they are simply thinking of an example of a function, and that “a function
is defined by f(x)” should be understood as “a function is defined through the equation
relating x and y”. This is, of course, speculation.

Mads and Michael gave a rather general answer to the assignment. Let us see if this
generality is also present in the reasoning that lead them to give this answer.

MADs: Sure. f(z) = z?

MICHAEL: Yes or f(z) = ax + b for example

MADS: Yes, but now it is just #2. Then f(x) is described by z

MICHAEL: Yes, the y value is described through the x value

MADS: Exactly. And z is a placeholder for every number.

MICHAEL: Yes, if it is continues

MADS: Yes, if it is continues

MICHAEL: Or actually, I guess that doesn’t matter.

MADS: No no.

MICHAEL: Yes, because it would just jump up higher.

MADSs: Well, if there is a large whole here, and then it jumps further up.

MICHAEL: Yes, ok. If it skips along [he is gesturing a whole in the x-axis, with his
arms, it seems|. Thats right.

MADs: Thank you
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We can see that they start off by giving an example of a specific parabola, followed
by a more general example for a straight line. Based one these examples they arrive
at a more general statement about functions: “the y wvalue is described through the x
value”. The statement “and z is a placeholder for every number” sets off a discussion
about the requirement of continuity in the definition of a function. The requirement is
discussed through examples about, what is popularly called, a “staircase function” and
a split domain function. It seems that Michael is thinking of a staircase function when
he says “or actually, that doesn’t matter, it would just jump up higher”, and when Mads
comments ‘“well, if there is a large whole”, it seems that he is thinking about a split
domain function, something along the lines of f(z) =1forz € | —o00,1] A f(z) =2 for
x € [2,00 [. It would seem that their conclusion is that a function must be continues, at
least if x should be able to be a place holder for “every number”.

My interpretation of this is based partly on their words, and partly on their gesticula-
tion. When Michael says “or actually, that doesn’t matter, it would just jump up higher.”
he is gesturing, what seems to be, a jump in the vertical direction. When Mads is saying
“Well, if there is a large whole here, and then it jumps further up.” he is moving his arm
both horizontally and vertically. I think my interpretation is reasonable, but may be it is
not the only interpretation. This is a good example of why it is important to have video
recording of the problem solving process.

I think this is a good example of an out-of-focus phenomenon, since they use the word
continues in a different manner, than what is usually meant in a mathematical context;
they use it to mean x can be varied continuously. It is interesting that continuity has
crept its way into the students’ concept definition of a function.

The video recording of Helmut and Nora’s answer does not show similar considerations:

HELMUT: So should we just show some functions? We have a linear one: f(z) =
ar +b

NORA: Then we can continue and make a 2. degree one. f2(z) = az® + bz + c.

HELMUT: And then we can take a 3. degree one and so on.

Apparently, they think that it is enough to simply give some examples of functions.

8.1.2 Assignment 2

All the students answered this assignment correctly; they either solve for x, or insert x = 2
and check it the resulting statement is true.

Tegan, Sara, Helmut, and Nora simply solve the equation straight away. Hans and
Grete have written “yes!”, and since we do not have any recording of their attempt, we
can not know how they arrived at the conclusion. Mads and Michael inset = = 2; lets
have a look at the video recording:

MADS: Yes. It is simple. We just insert x = 2. [he continues to reads aloud while
he inserts x = 2, and concludes that 4 = 4.]

MICHAEL: [ didn’t get that at all. You said 3 - 2. Why did you do that?

MADS: Because it says = 2. Is x = 2 the solution?

MICHAEL: Ah, ok. Well, you could just isolate x.

MADS: Yeah, sure.

Initially Michael did not understand what Mads did, when he inserted z = 2. This
might be due to the fact that he had an idea about how to solve the problem himself,
and as a consequence, he was confused about Mads’s deviation from this method. The
written answers, together with the dialogue between Mads and Michael, goes to show that
isolating for z is by far the most popular way of showing that some value of z solves an
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equation; even though Mads carries out the method of inserting = 2 while reading aloud
every step, Michael is not quite sure why you would want to do that.

8.1.3 Assignment 3

All of the students were able to correctly give the algebraic expression for the graph of
the function. This is quite an improvement from the previous year, where only one pair
of students were able to do so (Tegan and Sara).

8.1.4 Assignment 4

Only one of the pairs were able to give a completely satisfactory answer to this problem.
Their written answers are given below.

Hans & Grete: x controls y; 2+5=7; 34+5=8 etc.
Mads & Michael: x is always 5 larger than y
Nora & Helmut: y will always be 5 larger than x
Tegan & Sara: y is larger than x

Nora and Helmut are the only pair which answers the problem in a satisfactory manner.
Based on their description it would be possible to reconstruct the equation. Let us have
a look at the video recording;:

NORA: That x is the slope?

HELMUT: Well, I think that you have to say something. I mean if x is a number,
then y will be five larger. I think that is what they mean. I don’t think that
it has to be a graph, I think that we should just describe it.

NORA: Are you sure?

HELMUT: Well, if it is a function then we normally say f(z).

NORA: Yeah, and it does say “what can you say”

It is interesting that Helmut doesn’t think that y = = + 5 should be a graph based solely
on the fact that it doesn’t say f(x). This could be interpreted as the following: To him,
the graph of y = x + 5 and the expression y = z + 5 are two completely different things —
Helmut equates symbols with the objects they are supposed to represent.

However, since Helmut says “if it is a function then we normally say f(x)” it might
suggest that it is the fact that it says y = = + 5, rather than f(z) = = + 5; to him f(x)
invokes the function concept and its different representation. Maybe he would be able to
see f(xz) = x + 5 and a graph with slope 1 and intersection 5 as two different symbols for
the same object.

It seems that they agree that a graph would be inappropriate because the assignment:
“y=x+b5, what can you say about x in relation to y” include the word “say”.

Mads and Michael make the same mistake that Blomhgj observed in [Blomhgj, 1997]
for Danish 9. grade students. They think that y = x + 5, means that x is larger than y.
They spend 35 seconds on the assignment, and Michael states almost instantly “yes. z is
five larger than y”, which is what they write down. It is interesting that misconceptions
like this are still present at the second year of secondary school.

Hans and Grete’s answer is considered to be wrong because they do not adequately
convey the necessary information to be able to reconstruct the relation. While it is true
that the two points (2,7) and (3,8), which they have essentially given, would be enough
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to reconstruct the relation y = x + 5, it is not certain that this is what caused Hans and
Grete to give two examples. It is just as likely that they simply give two examples to say
something about the the relation.

Tegan and Sara’s answer does not contain sufficient information to reconstruct the
relation. It is interesting that they fail to answer this problem correctly since they were
able to do so the previous year. Let us take a look at the video recording;:

TEGAN: X is five times larger. Right?

sARA: Well sure.

TEGAN: Well, not 5 times larger. Just five larger. Can you say that? Five larger?

SARA: Yeah sure. Or what does one say about x.

TEGAN: You can say that it is less than y. Its y that is larger than x.

SARA: That is only if you add the five to it. They could be the same in principle.

TEGAN: No they can not. Not when it is stated like that. Then it would say y = x.
y must be larger then x if you have to add something to = in order to get y.

SARA: Well, sure, when you add the five to x, then it gets larger. Right?

TEGAN: Well, not that they are equal. It is an equation.

SARA: Yes of course.

TEGAN: So you can say that y is larger than x. It is a simple equation so you can
not really say it more precisely without saying the equation directly.

This last statement from Tegan suggest that their written answer is vague because they
do not wish to “to say the equation directly”.

Initially they make the same mistake as Mads and Michael; they think that x is five
larger than y. Tegan notices the mistakes and corrects it, but it takes some time to
convince Sara. Sara seems to think that x and y could be equal in principle, but that
once you add the five, then they are different. Notice that she still seems to think that
x is the larger one, even though Tegan has stated that y must be the larger one, at least
that is how I interpret her statement: ‘“when you add the five to z, then it gets larger”.
It seems that she is really parsing the mathematical notation from left to right: y equals
x plus 5, tells her that y and x are equal until you add the five to x, after which x will
obviously be the bigger one. The statement “it is an equation”, seems to convince her that
she had been using faulty reasoning.

It seems that only Nora “sees” a graph when he looks at the expression y = x + 5, and
he it convinced that this is in fact the wrong way to look at it. There is reason to believe
that the students would see a graph if it had said f(z) = z + 5; to the students, it seems,
y=xz+5 and f(z) =z + 5 are not the same.

8.1.5 Assignment 5

The written answers are given below:

Hans & Grete: They are opposite [They have given a table with the z-y values corre-
sponding to © going from 9 to 2. At the end of the table they have written “etc.’)

Mads & Michael: Positive numbers = interval between [0;10]. Negatives numbers can
in principle be ANYTHING, e.g. —21+ 31 =10, z = —21 y = 31.

Nora & Helmut: Together they must give 10, and they can be both positive and neg-
ative, at least one of them must be positive.

Tegan & Sara: They give 10. They are good friends.
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Nora and Helmut gave a satisfactory answer. They convey both the fact that the sum of
z and y must give 10, and that x and y can be any number, positive and negative, as long
as ¢ +y = 10. Let’s have a look at their dialogue:

NORA: Uhm. 8+2,6+4

HELMUT: So what can you say. Together they should give 10.
NORA: We could also have -10 and 20.

HELMUT: Yeah, they just have to give 10.

NORA: Yeah, so if one is negative, the other one must be positive.

They start with two examples and conclude with a general statement based on the exam-
ples. It is interesting that Nora does not “see” the graph in this assignment.

Hans and Grete give table values corresponding to x going from two to nine, and
conclude that they are “opposite”. While the table values are indeed enough information
to reconstruct the relation z 4+ y = 10; the statement “they are opposite” is definitely not
sufficient.

Mads and Michael give two separate descriptions of the relation, one for x and y being
positive and one with the possibility of them being negative. Then fail to mention the fact
that the sum of x and y should be 10 in their written answer, and as a consequence their
descriptions are too vague to enable reconstruction of the relation. This is their dialogue:

MICHAEL: They are within an interval of 0 to 10. Both variable.

MADS: No, it can be infinitely many. In the place of x we can have —21.
MICHAEL: Are you sure?

MADS: Yes, and +11 for y.

MICHAEL: That would give -10

MADS: Ah, yes +31 then.

MICHAEL: Well, sure. If you look at it like that. If they are allowed to go negative,

it can be infinitely many. But it we only look at positive numbers, it goes
from 0 to 10.

It seems that their written answer is an attempt to satisfy both Michael and Mads’s
considerations.

Tegan and Sara give an intentionally silly answer. Let us have a look at their dialogue:

TEGAN: [ was thinking 5 and 5, but it doesn’t have to be.
SARA: or it could be 7 and 3

TEGAN: So what can you say. They are good pals. haha.
sARA: Well, they are good friends. They give.

TEGAN: Together they give 10. Their sum should be 10.

It seems that the students are having difficulties given linguistic descriptions of equa-
tions. If one compares the answers to this assignment with those to assignment four, one
will notice that they are not very similar, even though the essence of the assignments are
the same. This may be due to, at least, two factors; first of all, the assignment in phrased
differently, we ask them to describe the x and y that obey x + y = 10 in assignment five,
and in assignment four we ask them what they can say about = in relation to y.

Maybe if the assignment was rephrased as “what can you say about the x and y that
obey y = —x + 10” the students would be more inclined to think about the points that lie
on the graph of the function, but then again, we have already seen that the students will
most likely not think of a graph unless the notation f(z) is used explicitly.
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8.1.6 Assignment 6

All the students gave correct answers to this problem, and there is nothing of interest
to report. It goes to show that the students can easily change between the different
representations as long as the assignment is phrased in a familiar way.

8.1.7 Assignment 7

Three of four students successfully solved this problem. This is quite an improvement
from the previous year, where none of the four pairs of students were able to do so. The
students who solved it all did it in the exact same way; they find the expression for f(x)
and check if f(2) = 1. Their written answers are given below:

Hans & Grete: No,y=azx+b. y=x+1. y=2+1=3.
Mads & Michael: f(z) =z + 1. f(2) =1 = False.
Nora & Helmut: f(z)=z+1. z+1=1 24+1#1.

Let us start by looking at Michael and Mads’s recording:

MICHAEL: Yes. If you write f(2) = 1.
MADS: We can see what the equation describing the graph is.
MICHAEL: Yes

MADS: Itisz+1,s0 f(z) = z+1 and f(2) should be 1, which it is not. So it does
not solve the equation. Then Inspire would say “false”. haha.

Their reasoning is sound and clear. I think that it is interesting that they do not simply
inspect if f(2) = 1 is true by looking at the graph, rather than finding the expression,
and then checking.

Nora and Helmut share the following dialogue.

HELMUT: Well, what is our function? It is the same as before. Right.
NORA: Yes.

HELMUT: So that should be equals one. So 2 + 1, that does not give 1.

Once again, the assignment seems to cause no problems at all.
Tegan and Sara solve it in a similar way:

TEGAN: Solves the equation. So we should insert 2 there?

SARA: I don’t know if we have to use the point for anything?

TEGAN: Well, x is here.

sARA: Ok, so if we use the two values, x and y, then we could put this in the
place of y, or f(z), and then we can find the equation for the graph, it is
f@)=x+1so0 f(2) =3. So it is not true at all.

Apparently they also solve the problem without great difficulty.

The students fared much better on this problem, than they did the year before. They
all solved the problem in the same way, and this is a fine way to solve the problem. I would
like to note, however, that no one use the more structural approach of inspecting if the
point lies on the graph. If the equation for the function was not immediately accessible
to them, their solution strategy would not have worked.
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8.1.8 Assignment 8

Everyone solved this assignment by inspection.

Mads and Michael answer it almost without thinking. So does Tegan and Sara and
Helmut and Nora; however, Helmut and Nora continue to write up the equation for the
two graphs, equate them, and solve for x, just in case.

8.1.9 Assignment 9

All of the pairs were able to solve this problem correctly as well. They all solve it by
equating f(x) and g(z). Once again showing that the students are quite efficient as long
as the assignment takes place in a familiar setting.

8.1.10 Assignment 10

Only Mads and Michael manage to solve this problem correctly. The students approach
the problem in a mixture of drawing diagrams, and manipulating the the functions de-
scribing the positions of the cars. Their written answers are given below.

Hans & Grete:

80x — 360 = 100x
20z = 360 (8.1)
z =18

18 hours.
Mads & Michael:

80z + 100z = 360
180z = 360 (8.2)
llgp =2

4 Hours after car 1 starts and 2 hours after car 2 starts.

Nora & Helmut: We can conclude that they meet after about 3.5 hours. [they have
drawn a diagram.|

Tegan & Sara: ... [they have drawn a diagram/

It would seem that Hans and Grete’s problem lies in taking into account that the cars are
driving towards each other. They have correctly accounted for the fact that, once both
cars are moving, they only have to travel the remaining 360 km. The fact that their result
is an astonishing 18 hours does not seem to bother them in the least.

Nora and Helmut attempt to solve the problem purely by drawing a diagram, see figure
8.2a. This should work, but is seems that they do not draw the diagram rigorously enough.
The video recording shows what you would expect; they spend about four minutes on the
problem and they start by drawing the diagram (figure 8.2) almost immediately after they
have read the assignment.

Tegan and Sara have only drawn a diagram, see figure 8.2b. After reading the problem
text slowly and carefully they decide that they don’t feel like doing any more math and
turn off the camera.
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Figure 8.2 — 8.2a: Nora and Helmut’s diagram to assignment 10. 8.2b Tegan and
Sars’ diagram.

Mads and Michael solve it correctly. They take into account that once both cars are
moving they are only separated by 360 km and the fact that the cars are moving towards
each other. The last two lines of their written answer seems a little strange though. Let
us consider their problem solving process.

They start by writing up the two expression for the positions of the cars as 80z + 160
for the car starting at A and 100x for the car starting at B, and they equate these two
terms as 80x + 160 = 100x. They notice that they have been making a mistake, and the
dialogue continues as follows:

MADS: Oh, we’re making a mistake. 2 hours after, a cars starts from B and drives
toward A. So they are driving towards each other. B starts at 520, and A
stats at 0, and it has driven 160, when B begins, so B must be at 360.

MICHAEL: Yes, so one drives with 100 km/hr and the other one with 80 km/hr

MADS: So we can say 80x 4+ 100z = 360, because for each hour this one drives 100
km and the other one drives 80 km. Then z = 2.

‘Which is correct.

8.2 Characterisation of the students understanding
of the function concept

Hans & Grete are able to solve all the standard problem (2, 3, 6, 8, and 9) as well
as problem 7, suggesting that they are at the stage of condensation. They solve
assignment 7 by changing to the algebraic representation rather than solving it
in the graphic representation, indicating that they are not as confident with the
graphic representation. They fail to solve both assignments that require a linguistic
description, showing that they are unfamiliar with this representation.

Mads & Michael solve all the standard problems correctly and efficiently, and they
are able to solve assignment 10, leading me to believe that they are at the stage
of condensation. They were unable to give a satisfactory definition of a function,
and they failed to solve both the assignments that requires a linguistic description
of a functional relation, even giving a wrong description, rather one that is just
insufficient.

Nora & Helmut seem to be at the early stage of reification. They are able to change
between the different representations quite efficiently — they are even able to solve
both the assignments that require linguistic descriptions, suggesting that they have
a sound understanding of the variable concept as well. However, they shown sign of
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a having a pseudo-structural conception, since they seem to think that the algebraic
and graphical representation are different mathematical objects. Furthermore, they
are unable to give a proper definition of a function.

Tegan & Sara seem to be at the early stage of condensation, since they solve all the
standard problems efficiently, but they are unable to give a proper definition of
a function. They are unable to solve the assignments that require them to give
a linguistic description. They skip assignment 7 all together, suggesting that they
have a weak understanding of the graphical representation. Furthermore, they were
unable to solve assignment ten.

8.3 Discussion

Since I have been fortunate enough to study some of the same students with a year in
between each study, it seems appropriate to comment on the signs of change in conceptual
understanding, and attitude towards mathematics in general, that have taken place during
that year.

The students generally fared better than the previous year — the most obvious change
being their success on assignment seven, an assignment that no-one was able to solve
the previous year. However, when solving the assignment, none of the students used the
graphic representation. It seems that even during the second year of A-level mathematics
the fundamental challenges have not changed much from the ones experienced by first
year students.

One thing that does seem to have changed is their use of f(z) as a symbol for a
function. The video recording shows signs which are both positive and negative. On the
one hand, the students seem to be confident with using f(a) to denote the function value
at a. This was something that caused quite some difficulty the previous year. I would
argue that this improved understanding of f(z) as a symbol, is in fact, the main reason
that they are able to solve assignment 7 this year, and were unable to do so the previous
year.

On the other hand, some of the students showed signs of using f(x) as the only sign
for representing a function. This tendency is present in the assignments that require a
linguistic description of functional relations. They students generally don’t think of the
expressions as functions because it does not say f(z). We saw this with Helmut and Nora
when they noted that “if it is a function then we normally say f(x)”.

This is not so for all the students, however. Tegan and Sara noted that “we could
put this in the place of y, or f(x)”, which suggests that y and f(z) is the same to them,
when they are sure that the are dealing with functions, at least — they did not talk about
functions when they solve assignment four and five. Similarly, Mads and Michael defined
a function as a relation between z and y, not = and f(x).

There are generally fewer out-of-focus phenomena than the previous year. But some
still occur, e.g. when Mads and Michael’s use of the concept of continuity.



9 Study C

Study C was conducted at Roskilde Katedralskole on a Bio-tech class with A-level math-
ematics. The math teacher was using “Vejen til matematik” as the text book. The class
were in the middle of their first year of mathematics. A set of 18 students were divided
into 9 pairs, 4 of which were recorded. The pairs which were recorded are Laura & Lotte,
Louise & Henriette, Matilde & Hilda and Lars & Erik. The students were given 50 minutes
to solve the 10 revised problems.

In this study, all the students were placed in the same room. They were placed as far
from each other as possible, but there is the change that the students may have overheard
each others solutions, which is of course unfortunate. However, as long as the students
state the reasoning behind their answers, it should not be a problem.

9.1 Data analysis

Figure 9.1 shows both the number of attempts to solve the assignment and the number
of correct answers to the assignments.

B Attempts

B Success

Problems

Figure 9.1 — Overview of the number of correct answers to the assignments.

Looking at the plot, we see a pattern similar to the results from the previous studies.
Only one pair were able to give a correct definition of a function; assignments four and
five, in which the students are asked to give a description of functional relations both have
comparably low success rate; problem seven and ten also gave the students a hard time.

9.1.1 Assignment 1

The correctness of assignment one is based on the students ability to articulate what they
consider to be the essence of a function. I do not expect the students to give a correct set
theoretical definition of a function, since this is not taught to upper secondary students.
Before we start to analyse the definitions the students give, I will give a definition of a
function, as it is given in the textbook “Vejen til matematik”.

75



76 9. STUDY C

A function y = f(z) is a relation between two variables x and y for which it holds that
there exists a unique y for every x in the domain.

All the written answers are given below. I will comment on the definitions and state which
ones I considered to be correct. The following definition is considered to be correct:

Jon & Troels For a function the following holds: There can only be 1 y-value to 1
x-value. A function describes the connection between two variables.

Jon and Troels both convey the fact that a function is a connection between two variables,
and that there exists a unique y for every x. All the really need is to specify that the x’s
need to bee in the domain of the function as well.

The rest of the definitions of the students are wrong for various reasons.

Laura & Lotte A function describes a connection between a series of numbers. A linear
function is f(xz) = ax + b. An exponential function is f(z) =b-a”.

They fail to mention the uniqueness of y. Laura and Lotte are one of the pair I have
recorded, so let us dive into the recordings:

LAURA: A function is when there is a connection between two quantities.

LOTTE: Yes, or a long series of them, several quantities, and that they can be
described graphically.

LAURA: Yes. A function can be shown graphically, but yes, a connection between
different quantities.

LOTTE: Should we make a model of a linear relation and an exponential relation?

LAURA: Yes sure, I guess it would be fine to do it like that. We can draw it.

It would seem that Laura and Lotte think that a function is a connection between two
quantities, and that his connection can be represented in different ways, e.g. as a graph.
After this, a minute or two passes while one of the girls draw the graph of a function on
the paper. Suddenly Lotte stats the following dialogue:

LOTTE: [ guess that it is through variables that it describes a connection between
a series of numbers, right? Through variables.

LAURA: Why variables?

LOTTE: No, just forget it.

LAURA: No, but why? why variables?

LOTTE: Just forget it.

LAURA: No, I mean what was the reason that you said it? there must have been
a reason.

LOTTE: I was just thinking that there are variables in... hmm... in the function. I
was thinking about the fact that you can just interchange the numbers and
it would still be the... same...

LAURA: Yes, I can see what you mean.

LOTTE: But what can you say. I mean, it is not a specific series of number, you
can insert all kinds of stuff, and it would still be a linear relation.

LAURA: [ see what you mean. You would write a series of numbers. Variables. Is
that what you were thinking?
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During the dialogue Laura states that “A function is, when there is a connection
between two quantities”, and Lotte elaborates that “is through variables that it describes
a connection between a series of numbers”. Put together, it brings them close to stating
that a function is a connection between variables. However, Laura is not convinced by
Lotte’s logic, and Lotte has to elaborate further. She states that “there are variables in
the function” and that “it is not a specific series of number, you can insert all kinds of
stuff”. Suggesting that she thinks that the statement “a connection between variables” is
more general than “a connection between numbers”. They end up writing down the latter,
though.

Matilde & Hilda A function is a connection between x and y
Louise & Henriette A connection between two values. E.g. height dependent of time.

Dan & Anders A function is a unambiguous connection between x and y. For 1 y-value
there exists 1 x-value.

Laura, Lotte, Matilde, Hilda, Louise and Henriette all fail to mention the uniqueness of
the y corresponding to a given x. Dan and Anders remember that uniqueness is important,
but the get the uniqueness wrong. All these definitions focus on the fact that a function
is a relation between x and y values.

Let us have a look at Matilde and Hilda’s dialogue.

MATILDE: A function is when there is a connection between they way...

HILDA: x and y

MATILDE: There is a connection between the way x and y grow. Right?

HILDA: A function... is when there is a connection between...

MATILDE: Is the connection between x and y. Or the connection between two
variables actually.

HILDA: Yeah. But a function can also be exponential. Then there is more variable
than two.

MATILDE: A connection between a minimum of two variables, then.

HILDA: No, because we talk about the connection between x and y. It is a connec-
tion that can be described with several variables, so there are only two. So
should we just call them x and y?

MATILDE: Yeah. That is the question. We can say the way a number.. or a graph..
how do we describe this in a simply way? A function is the connection between
x and y, described by variables

HILDA: Described by an equation.

MATILDE: Described with variables.

It seems that Matilde knows that a function is a connection between variables, but they
never get around to the uniqueness of the function value for a given x.

There is some confusion about what role the variables play. It is unclear why Hilda
thinks that an exponential function requires several variables or what she means that a
function is a connection that can be described with several variables, I do not think that
she is function of a function of several variables. Maybe she is thinking about the fact
that an exponential function f(z) = b-a” contain more symbols than just z and y, since
there is both a and b, and that the function is then described through the specification
these symbols, but this is speculation.

Matilde states that a function is the connection between x and y, which suggests that
she knows that the function describes the connection between variables, and not the other
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way around, as Hilda seems to think. Over all there is quite a lot of confusion regarding
the definition of a function, and they are not complete certain what role the variables
play.
Let us have a look at Louise and Henriette’s dialogue
LOUISE: | guess we can draw a coordinate system, if we should make a drawing.
HENRIETTE: Yeah.
LOUISE: [she draws a coordinate system containing a straight line and starts to
label the azes| so we can put time here [the fist-axis| and... height here [the
second-azis|.
HENRIETTE: Should we give an algebraic expression as well, do you think?
LOUISE: ...Can you give a definition? What is a function a connection between. Is
it two values? Proportional values?
HENRIETTE: [ don’t think that they have to be proportional
LOUISE: ... a connection between two values.
HENRIETTE: Should we give an example?
LOUISE: Well, we already have with the graph.

The concept of proportionality has somehow crept it way into Louise’s concept definition
of a function.

Here are some definitions which have some of the right ingredients, but lack a crucial
component of the definition and are therefore considered to be incorrect.

Julie & Esben There can only be one y-value to one x-value.

Julie and Esben seem to understand the a function consists of something ordered, but
they fail to state that there must be some connection between domain and codomain.

Jens & Martin A function is connection between x and y values which can be describes
by a mathematical model.

It is not clear exactly what the students mean by mathematical model. It might
be that there should be an mathematical formula for the connection between the x and
y-values. Either way, they do not mention the uniqueness of y.

Lars & Erik A function is when an independent variable is put into an equations which
yields a product.

This definition is wrong because it focus on the algebraic expression and it does not
mention the uniqueness of function values. Lets have a look at their dialogue.

LARS: A function is when you get an dependent variable from an input

ERIK: Yes, you insert a number which has to be random, and then you can calculate
the other.

LARS: You get a product from a constant.

ERIK: Yes, basically yes.

LARS: Ok, what do we write?
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ERIK: [t is important about the constants, where you have a variable which should
be put into an equation which then yields a result.

LARS: Not a variable. Well, yes, an independent variable can be put in and then
you get an dependent... you know f(z) =...

ERIK: Yes, exactly. But, how do we explain it. Maybe we should give an example.
It says that we can both write and draw, so i guess we can give examples too.

LARS: It is when an independent variable is [he reads aloud while he writes, and
pauses| should we said “is being used” or?

ERIK: [t is more like “put into”. They always try to explain it as a machine or
something stupid like that.

LARS: ... is put into a [he reads aloud while he writes, and pauses/|

ERIK: say formula

LARS: ... ok formula, which then yields an [he reads aloud while he writes, and
pauses| independent variable or product?

ERIK: Just write product.

It is clear that there is a strong focus on the algebraic representation. Lars state that you
get a product from a constant, and Erik states that it is important about the constants.
It is not entirely clear to me what they are thinking about. It is quite clear that they have
a heavy process conception of the function concept, since they talk about an input being
put into an expression which then yields and output, and they make a specific reference
to the “function machine”.

Fenja & Ronja A function can both be linear and exponential. A Function has both a
dependent and an independent variable. From this, you can write up an equation
describing the function. The equation describing a linear function is f(z) = az - b
and the equations describing the exponential function is: f(z) =b-a”.

Fenja and Ronja simply give examples of functions they can remember from their
classes. Furthermore they give an incorrect definition of a linear function.

9.1.2 Assignment 2

Eight of the nine pairs of students answered this assignment correctly. Basically the
students apply one of two methods; either they solve for x, or they insert = 2 into the
equation and checks if the statement is correct. It is worth analysing what went wrong
for the pair that answered incorrectly.

This is what they wrote:

Fenja & Ronja

3z — 2 =2z

3:2—-2=2-2
14 (9.1)

rz=1

It is interesting that the students would have solved the assignment correctly if they had
just left out that last line. I think they added it because solving equations usually required
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you to give the answer in the form of © = something. When they got to the last line and
realised that there were no longer any x in play, the simply added one on the lefthand
side as 4z = 4 which lets you conclude that x = 1.

9.1.3 Assignment 3

All of the students were able to correctly state the equation describing the function. Lets
have a look at Louise and Henriette dialogue:

LOUISE: It is linear, so we have...

HENRIETTE: f(z)=1...

LOUISE: Normally it is b, right?

HENRIETTE: Yes, plus a. No. az + b.

LOUISE: our b value is equal 1, right?

HENRIETTE: And a is... when the x-value rises one, the y-value rises one.

LOUISE: So we have a slope of one

HENRIETTE: [s this not always a [she is carrying out the rise-over-run method and
is pointing at the vertical line, which shows how much you have to “rise” to
reach the graph of the function after having moved unity along the x-axis.|

LOUISE: Yes, that is the slope. Then it must be one.

HENRIETTE: yes.

LOUISE: So we can just say X.

They carry out the rise-over-run method with only a little confusion as to how to give the
algebraic expression for a straight line.

9.1.4 Assignment 4

Only three of the nine pairs of students were able to correctly answer assignment four
and five. Both assignments required the students to give a linguistic description of an
equation. The two assignments were; “y = x + 5, what can you say y compared to x”, and
“what can you say about the x and y that obey the equation z 4+ y = 107”

Generally the student either wrote up the equations with words, or they focused on
only a part of the property of the equations. Here are some of the written solutions:

Lars & Erik y is always 5 higher than x
Matilde & Hilda y is 5 higher than x
Laura & Lotte The value y is 5 larger than x

These are the three answers I have considered to be correct. They all convey enough infor-
mation for someone to express up the relation between x and y in another representation.
Let us look at Matilde and Hilda’s dialogue

MATILDE: That z is five larger than y.

HILDA: Hmm... Yes.

MATILDE: Yes, that is all. Is there any more we can say?

HILDA: No, not really.

MATILDE: z starts off being five larger than y. Then, every time y... then there is
just a linear growth thereafter.

HILDA: Yes, because it wont be more than five. More or less than five.
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MATILDE: No. Do we have to write it? z is five larger than y. No y is five larger
than z. Yes.

HILDA: y is five larger, no not times, larger than x. It that just it?

MATILDE: It almost seems too easy.

Initially they think that z is the larger one, because it says +5 next to the x. Matilde
corrects the mistake without much fuss, and they go on to write down their final answer.
Let us look at Lars and Erik’s dialogue.

ERIK: That one is always bigger than the other?
LARS: Yes. Yes.

ERIK: x will always be five higher than y [Erik notices the mistake immediately
and says “no” as the following line takes place].

LARS: y will always be five higher x.

So initially Erik makes the mistake of thinking that x is the larger one because it says
“+5” next to the x, but he spots his mistake immediately.

Let us consider Laura and Lotte’s dialogue:

LAURA: We can say that the value x always will be five larger than y. Right?
LOTTE: No, because when you have the value x, then you need to add five to obtain

y
LAURA: Ah, so x will always be 5 less than y, so y is five larger than x.

It seems that they make the mistake of thinking that z is the larger one as well, but they
are also able to correct the mistake.
Let us look at the remaining answers:

Louise & Henriette y >«

while this is true, it is not enough to reconstruct the relation between x and y; some
information is lost. Let us have a look at their dialogue

LOUISE: z + 5. It must be that y is larger than x
HENRIETTE: Yes

LOUISE: Then it must be y > =

HENRIETTE: So for every y, we add 5 and then we have z

LOUISE: No you subtract five. If you have y and you want x, you subtract five.
Because = + 5 gives y.

HENRIETTE: Oh, yes. Of course. It’s a good think that I've got you, Louise.
LOUISE: But the only thing we can say is that y is larger than z. Or five larger.
HENRIETTE: But it is not five times larger

LOUISE: No you are right.

HENRIETTE: So you can’t say that.

LOUISE: And y will always be larger than five. x can be equal zero, but not matter
what y must be five.

HENRIETTE: But x can be negative

LOUISE: Yes, you are right. Well, then we can only say that y should be larger
than z.
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Louise actually gets it right, but she is discouraged by Henriette’s misunderstanding.
Initially Louise thinks that z is restricted to positive values or zero, but Henriette corrects
her. Very briefly Henriette thinks that one should add five to y to obtain z, even though
they have just agreed that y is larger than x, but this is corrected quickly by Louise.

Jens & Martin y depends on a given x-value (+5)

Julie & Esben x is the independent variable, y is the dependent variable. The value of
y will be the x-value +5

These answers are considered to be incorrect because they use the mathematical notation
+5.

Jon & Troels x is a constant and y is a variable

This is simply not true, but it is interesting that the students can see one of them as
being constant while the other one is able to vary. Please note, that Jon and Troels were
actually the only students who were able to give a correct definition of a function; never
the less, they give am answer like this.

Fenja and Ronja wrote nothing at all. The same goes for Dan and Anders.

Based on the number of students who have neglected to even attempt to answer
the assignment, I think it is safe to say that the students felt that the phrasing of the
assignment was unusual, if not difficult to understand.

9.1.5 Assignment 5

And here are the two correct answers to assignment 5

Jon & Troels Their total value should be 10

Laura & Lotte The values for x and y can be infinitely big/small (positive/negative) —
when x is negative y must equally positive in order for them to obey x + y = 10.

Let us consider Laura and Lotte’s dialogue:

LAURA: Well, there are infinitely many x and y values that obey the equation.

LOTTE: Should we just write that?

LAURA: Yes, we can not say any more, I mean, they can even be negative. So if x
is negative y will just be correspondingly larger

LOTTE: All number?

LAURA: | guess that they can.

LOTTE: I don’t know. Okay. what about this: can x be a million?

LAURA: Yeah, sure then y has to be... correspondingly negative

LOTTE: Then y has to be 999990.

LAURA: So they can be infinitely many numbers?

LOTTE: Lets write that.

It is interesting that Lotte state that “y has to be 999990” even though they have just
decided that y has to be negative, but she probably just forgot to say “minus”.
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The rest are considered to be incorrect.

Lars & Erik They are inversely proportional, since their sum must be 10.
Jens & Martin z,y < 10
Louise & Henriette = < 10 and y < 10

Matilde & Hilda z =]0;10[ and y =]0; 10[. It is linear [they have drawn a liniear func-
tion f(x) = —x + 10 shown in the interval x = [0;10]./

Let us have a look at Matilde and Hilda’s dialogue

MATILDE: Ok. So how do we do this?

HILDA: What are you trying to do?

MATILDE: The domain of definition

HILDA: Why?

MATILDE: To describe what values x and y can take. They can both be as close
to zero as possible and as close to ten as possible. So we can do like this.

HILDA: Well, we need to describe that they can not both be 10 simultaneously.

MATILDE: Ok, so how to we do that in an easy way. = + y = 10 is what i would
usually say.

HILDA: Yes, it is a little difficult. We can almost do it with... But are we allowed
to draw, because then we could just draw the graph.

They go on to draw the graph, but they do not allow z to run negative. Matilde and
Hilda apparently understand that x + y = 10 is a function, and the the points that obey
this relation defines the graph of the function.

Let us have a look at Louise and Henriette’s attempt:

LOUISE: That neither can be larger than 10. They should be less than 10.
HENRIETTE: yes.

LOUISE: [ guess we can not say anything about = and y in relation to each other.
HENRIETTE: No.

Again Louise restricts the variables to be positive or zero, but this time Henriette does

not correct her. Apparently the expression x + y = 10 does not convey any information

to them about relation between the values that  and y can take, even though they were

able to say that y = x + 5 meant that y was 5 larger than x in the previous problem.
Let us have a look at Erik and Lars’ dialogue

ERIK: Well, we can say that they are inversely proportional.

LARS: What can you say about the x and y...

ERIK: ...that solve the equation. They must be inversely proportional if they have
to give the same always.

LARS: Yes. I don’t know. Yes

ERIK: If one is increased by one the other one has to decrease by one.

From this dialogue it is quite clear that Erik takes “inversely proportional” to mean that
if one increases then the other decreases by the same amount, rather than the usual
definition where y = k/x with k being the constant of proportionality. I take this to be
an example of a out-of-focus phenomena.

Fenja and Ronja wrote nothing at all. The same goes for Dan, Anders, Esben, and
Julie.
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9.1.6 Assignment 6

All the students were able to correctly list the three pairs of functions.

9.1.7 Assignment 7

The following two answers were considered to be correct:

Jens & Martin b=1,a=1, f(z) =azr+1,1-2+ 1= 3, thus = 2 does not satisfy
the equation.

Louise & Henriette f(z) =1, f(2) =1 = (2,1). The point (2,1) can be read off the
coordinate system and does not lie anywhere near f(z). f(z) = 1 can be read off
the coordinate system and f(z) = 1 gives z = 0.

Louise and Henriette initially have a hard time understanding the question. They seem
to be confused about the fact that the point does not lie on the graph. In an attempt
to do something, they find the expression for the graph, and this lets them get on with
the problem. It does not seem that they find the expression for the graph with the sole
purpose of evaluating f(2), but rather as an automatic response. Once they have the
equation, however, they are able to think about the assignment more clearly; they start
to consider what they are supposed to use the point for:

LOUISE: Oh, we are not supposed to find the equation for the graph.

HENRIETTE: No, we just have to decide if x = 2 solves the equation. Which it
does not.

LOUISE: Which equation?

HENRIETTE: The equation f(z) = 1. This is what were asked about. Does z = 2
solve that equation. It does not.

They do not write anything down at this point, but continue to discuss the problem. They
have actually solved the problem, but it seems that they are not quite satisfied with the
answer.

HENRIETTE: This point says the same as what they said there [pointing at f(x) =
1 in the problem text], that if = 2 then we should also have... So we can
say it does not lie on the line [referring to the graph/

LOUISE: No wait, no I'm confused again.

Shortly after this they decide to move on to the next assignment and leave room for the
assignment, if they have time to get back to it. When they return to the assignment they
assume that f(2) =1 is correct.

HENRIETTE: If we assume that this is correct, then we would have z = 2. This
we have found. And if that should fit the equation, then f(z) = 1, and the
function always denotes the y-corrdinates right?

LOUISE: Yes

HENRIETTE: Then this will be be the point, if this is correct, and if our function
is here, then we can just see that it is not true.

LOUISE: Well. It is this equation [pointing at f(x) = 1], that we have to check for
=27

HENRIETTE: Yes

LOUISE: Then...
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HENRIETTE: Well, I'm thinking this point shows if this equation should be correct
for x = 2. That is what the point tells us.

LOUISE: So we have to insert = 27

HENRIETTE: Well, I don’t think that we have to calculate anything. I just think
the this tells us if it is correct or not.

LOUISE: It is correct for the point. But it is not correct for that one [pointing at
the graph/

HENRIETTE: This point point tells us that this [points at the equation f(z) = 1]
should be correct. But this point does not line of the graph of the function.
Can that not be what we are supposed to answer?

LOUISE: I guess so.

HENRIETTE: Because we can not calculate anything, because we know it is wrong.

They go on to write down the final answer. Their language is imprecise at times, but they
get to the essence of the problem.

Henriette talks about the point showing that f(2) = 1 should be true; about the point
(2,1) “telling her” the same as the equation f(2) = 1; if the point lay on the graph then
f(2) =1 would be true. The fact that she says “we can just see that it is not true” shows
that she has understood the essence of the problem — she is giving a structural argument.

The rest are considered to be wrong:

Jon & Troels If you insert x = 2 in f(z) = 1, you get the point P. (we had trouble
understanding the phrasing of the assignment).

Dan & Anders We assume that f(z) is the same as y. Thus ¢ = 2 and f(z) = 1 are
the same as the point P = (2,1)

Matilde & Hilda Correct, based on the expression of the graph. f(z) =z +1

It is interesting that Dan and Anders feel that they have to assume that y and f(z) are
the same.

It is hard to understand how Matilde and Hilda can conclude that f(2) = 1 based on
f(xz) =z + 1. Let us have a look at their dialogue:

HILDA: Ok, so we can see that the function is f(z) = 4+ 1. So if we insert z = 2,
does that give 17

MATILDE: Why do we have that point?

HILDA: I don’t know.

MATILDE: So from the given information we should... We can just see it. It is
much easier. We agree that the function is f(z) = z + 1.

HILDA: Yes

MATILDE: Like the one we had before

HILDA: Yes, so let us set 1 in place of z. 1+ 1 = 2, yes it does.

MATILDE: Therefore it is correct.

Hilda actually solves the essence of the problem with her first comment. Unfortunately
Hilda’s comment about the point seems to throw her off. They end up checking if f(1) = 2
rather than if f(2) = 1. They seem to completely ignore the point.

Let us look at Laura and Lotte’s written answer

Laura & Lotte f(z) =z + 1.
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Laura and Lotte simply give the equation for the graph, illustrating once again that the
students first instinct when they see a graph, is to give the algebraic expression for it. Let
us look at their problem solving process:

LAURA: What are you supposed to do?

LOTTE: I don’t understand the formulation either...

LAURA: If the equation f(z) =1 —

LOTTE: — we can determine the formula for the function and see if that helps us
at all.

LAURA: It intersects in the point 1 and the slope is 1. So f(z) = = + 1 which was
what we had before... mmhm...

LOTTE: ... If we insert x...

LAURA: [ don’t understand how we should interpret this...

LOTTE: But f(z) =1... Then x is 0...

LAURA: Yes...

LOTTE: Therefore, z = 2 does not solve the equation f(2) = 1... Then what should
we use the point for.

LAURA: I don’t get it either.

After this they decide to move on to the next problem. It is interesting that they
actually solve the problem, but that they are unable to accept their answer as correct.
The dialogue also shows that they do in fact find the expression for the function just to
do something.

The last of the written answers is the following:

Lars & Erik If the point does not lie on the curve, it can not be used to conclude
anything about the curve

Lars and Erik give what I would call a structural argument, but sadly, it is wrong. The
fact that the point does not lie on the curve is enough to conclude that f(2) # 1. Let us
have a look at their dialogue

LARS: Can you from the graph... and the point... Well, it does because it is
something with z, which gives 1

ERIK: Yes, then it pretty much has to be two here. My first though was: “is this
a trap”.

LARS: Yes, when the point (2,1) [he starts to write]

ERIK: Lars, are you sure about that?

LARS: Well it can not be anything but true.

ERIK: Well, on the graph. It [the graph of the function| is not a part of the
dot. This point does not lie on the line. It is not a part of the function. I
don’t think that we interpreted the question correctly. He asks if we can say
anything, should we just say no?

LARS: Well, yes because we can not say anything because the point is not a part
of the graph. That was a tricky one. [he starts to write up the answer|. If
the point does not lie on the curve or graph?

ERIK: The curve, because the graph is the entire thing.

LARS: If the point does not lie on the curve, the function of the curve can not be
used.
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ERIK: No no no. The function can still be used. There is nothing wrong with the
function. We just can not conclude anything about it.

LARS: So if the point does not lie on the curve, we can not use the curve to say
anything about it

ERIK: The point. We can not use the point to say anything about the curve.

LARS: Well, we should say if © = 2 solve the equation f(z) = 1.

ERIK: The problem is that, when we are not informed that the point should lie on
the...

LARS: Yes. well. It does not state that the function... = 2 does not give us
anything. If the point does not lie on the curve we can not use it to say
anything.

It would seem that they think that the graph is the entire coordinate system, and
that the curve is what we would normally refer to as the graph of the function. The fact
that Erik states that “the problem is that, when we are not informed that the point lie on
the [curve]” suggests that he might have been able to solve the assignment if it had asked
about a point on the graph of the function. The problem may be that they are not used
to equation being wrong. To him the expression f(z) = 1 may not be something that can
possibly be wrong.

Fenja and Ronja wrote nothing at all. Neither did Julie and Esben.

9.1.8 Assignment 8

Fenja and Ronja were the only pair of students who answered the assignment incorrectly.
Their answer was “f(z) = 1 and g(z) = —1”. It is interesting that we see this notation
used here as well — remember Cain and Abel’s notation from Study A.

Laura and Lotte spend 10 minutes on this problem, which is a lot longer than you
would expect. It turns out, that they actually solve the assignment within the first minute
where the following dialogue takes place.

LAURA: they intersect at (1,1)

LOTTE: yes

LAURA: they must be. f(z) = g(z) must be the point where they intersect

LOTTE: yes at (1,1)... For which x-values?

LAURA: Then it must be for the x-value 1.

LOTTE: yes

LAURA: no... yes, it must be

LOTTE: yes. It just sounds as if there should be several points in that formulation.

LAURA: for which...

LOTTE: But if.. yes...

LAURA: [ don’t know how else to interpret it

LOTTE: Neither can I. If you found the algebraic expression for both functions then
you could equate them, then would would probably get the same. Or, I mean,
you really should get the same.

LAURA: For the x-value 1 f(z) = g(x) [she reads aloud while she writes|

The actually solve the assignment by inspection, and the only reason that they are not
completely sure about their answer seems to be that my formulation of the assignment is
sloppy, since it leads them to believe that there might be several intersection points.

To make sure that they got the right answer they decide to solve the assignment in the
algebraic representation as well. The remaining 8-9 minutes are spend on attempting to
find the expressions of the to function and equating them. This is very difficult for them
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— more so than you would expect from their rapid solution of assignment 3. It turn out,
that their problem is that they are unable to write up the expression for the function with
the negative slope; they talk about g(z) = x — 1. As a consequence they do not get z =1
when they equate f(z) and g(z). At the end of the 10 minutes they decide to get back
to it later. The fact that they decide to solve the assignment in another representation to
double check their answer shows that they understand that the two representations are
equivalent. After having worked at problem 10 they come back to this assignment and
write it up correctly.

Lars and Erik solve the assignment by inspection.

Matilde and Hilda solve the assignment correctly, but their road to the correct answer
is interesting.

MATILDE: It guess it is where they intersect

HILDA: Yes, at 1. On the other hand, it is only z-values. They are also equal...
Here it is both z and y.

MATILDE: They are equal everywhere. Because there is 90 degrees between them.
Or actually it is 180.

HILDA: But they intersect at one place.

MATILDE: So everywhere. Don’t we agree? ... or wait. Not down here. When
they become negative.

HILDA: Well, the z-values are not the same here, it is the y values.

MATILDE: Well, if you look here, these two have the same x-value, but f(z) is
not the same. This is what we need to consider, and that only counts there
[pointing at (1,1)].

HILDA: Yes, there they’re equal.

MATILDE: And that is the only place where f(z) = g(x).

HILDA: Yeah, but it does not mention the y values. It asks for which x values.

MATILDE: Yeah. The formulation is difficult. I mean, either it is only at the point
(1,1) or it is for all z-values.

HILDA: Yeah, but why?

MATILDE: Ok. Description. Im good at that. Since there are 180 degrees be-
tween... Can we not describe it through the algebraic expressions for the
graphs? Let’s write them up f(z) =...

HILDA: No, f(z) intersects in 0, so it should be 0 - z, so f(z) =...

MATILDE: f(z)=2x. g(x) = —z. Heh, no it intersects in 2, so g(z) = 2z.

HILDA: 2z plus. no wait. It is decreasing.

MATILDE: 2.

HILDA: No, it is b that is the intersection with the y—axis, a is the slope. We
forgot.

MATILDE: Oh, yes.

HILDA: So it will be —z, right? +2. Do we agree.

MATILDE: Yes.

HILDA: [ cant describe this. Don’t you think that it is enough that we have said
it out loud?

MATILDE: I don’t know.

HILDA: For all z—values, f(z) = g(z)... No, I think that we have to say for which
points is counts, with the help of the z—value... I think we have to find the
point at which they are equal, and then we should just give the x—value the
function has for the point where f(z) = g(x).

MATILDE: Ohh. That makes sense. But the algebraic expressions are still right.
So we should just equate them, say f(z) = g(x).
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HILDA: Can’t we just inspect it.

MATILDE: No, that is too easy.

HILDA: For the z—value 1, f(x) = g(z) since this is where they intersect. Or should
we take the fun route and say that because we can not be 100% certain that
what we see it correct?

MATILDE: Yes. Well, on the other hand we used the graphs to find the algebraic
expressions.

HILDA: Hah. Damn, the other way is more entertaining.

MATILDE: Well, the phrasing is quite difficult.

HILDA: At the z—value one, f(z) = g(z).

They solve the assignment within the first line of dialogue. From that point, however, a
lang string of confusion arguments follow. They talk about the functions being equal for
all = values and the argument is, that there is a angle of 180° between the graph of the
two function.

One way of interpreting this is, that they are in fact think about for which z—values
the functions are defined. It is, however, a bit confusion that Matilde says that they are
not equal when “they become negative”. I don’t know what to make of it.

The fact that Hilda says that the assignment doesn’t mention the y-values suggests
that she does not fully understand that the function values are y—values, and that the
functions are equal for some z if they take on the same y-value.

It is interesting that they bring up the fact that you can not truly trust the graph
representation because of the limited resolution of the graph. I have wondered if this is
the reason that the students sometimes do not like relying on the graph representation,
because they think it is not as “exact” as the algebraic representation.

9.1.9 Assignment 9

Only Dan and Anders answered this assignment incorrectly. They attempted to graph
the two function f(z) = z and g(z) = —z + 4, but graphed f(z) =0 and g(z) = —z + 4
and arrived at f(z) = g(z) for z = 4. For some reason they could not graph f(z) = «
correctly. The same pair answered assignment 2 and 8 correctly.

Lars and Erik solve the assignment correctly. They do not do it by equating the
algebraic expression for the two functions initially. They “draw” the graphs of the function
in their mind and find the intersection. Erik says “This increases one for one. And this
decreases. They must intersect in two. If one starts at 0 and increases and the other
decreases and starts at four. Then they meet at two.” After this they go on to solve the
assignment by equating the algebraic expression for the two functions.

Let us have a look at Matilde and Hilda’s approach to the problem.

MATILDE: So we should just solve for . We can just put f(x) = 4 and then —A4.
No wait, what am I doing? What am i thinking. No, what I am thinking is,
we can put these two together to one, and we know that f(z) = z, so we can
insert f(z) in place for = in the g(z) function. Right?

HILDA: Okey. Ehm. I'm thinking. No thats how you find y. Can’t we just put
them together?

MATILDE: Well, thats what I’'m doing.

HILDA: Yeah, but you want it in place of z, I want it to say z = —z + 4

MATILDE: Yeah sure we can do that. It should give the same.

HILDA: Ok. So we can write it up as * = —x + 4, can we not do that?
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MATILDE: I'm not sure you can. f(z) = z, g(z) = —z + 4. If we isolate x as
positive [in g(x)] and then insert it up here [in f(z)], the we get f(z)+... No.
Maybe we are going at this all wrong. If we just choose two points then we
can determine...

HILDA: We could also just draw it.

MATILDE: Should we just draw it.

HILDA: But the other way is much more fun.

MATILDE: We can draw it, and then we can calculate backwards afterwards.

HILDA: Ok.

They go on to draw the graph of the two functions. After having drawn the graph
of the two function and found the intersection to be at = 2 they go on to solve the
assignment by equating the expression for the two functions which they found earlier.
This time they solve for z and find that x = 2.

9.1.10 Assignment 10

Two pairs were able to solve this problem. One of them with startling clarity. Their
written answer is the following:

Jens & Martin During the first two hours car 1 drives alone. It drives with 80 km/hr
and at 3 o’clock the two cars will be separated by 360 km. After this the 2. cars
also starts driving and their combined velocity is 180 km/hr. 360/180 = 2 hours.
So the total time before the cars meet is 4 hours.

Another group used the same approach:

Erik & Jens The distance between the two cars after two hours is given by: 520—2-80 =
360. After this the cars will be closer by 180 km for each hour. Thus another two
hours pass before the cars meets, since 360/(100+ 80) = 2. 2+ 2 = 4, since car one
had been driving for 2 hours.

Initially, Erik and Jens attempt to just add the velocities of the two cars and calculate how
long it takes to travel the 520 kilometers. Here they do not take into account that one car
starts before the other. This solution attempt is interrupted because Lars misunderstands
the assignment, and thinks that both cars starts at point A and travel to B. They spend
some time on this approach. Initially they attempt to equate the algebraic expression
for the functions describing the positions of the cars. They give the position of the
cars respectively as f(z) = 80z and g(x) = 100z — 160 and equate them. This is the
correct solution to the assignment they are trying to solve, but unfortunately it is not the
assignment I asked them to solve. Erik notices that the car are in fact travel towards each
other and not in the same direction. From here they go on to solve the assignment within
minutes.

During their solution attempt they use all the representation: graph, table of values
and algebraic expression.

Another pair of students give an answer which is almost correct. They takes a slightly
differ approach; their solutions goes like this:
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Matilde & Hilda .
1. hour: 520 — 80 =z
2. hour: 520 — 80 —80 ==
3. hour: 360 — (100 4+ 8) = =
4. hour: 180 — (100 + 80) = x.
Since the result < 0 it is the number of hours.

Hilda starts off by noting that she has solved a similar assignment before. They discusses
if they want to solve in the algebraic or graph representation and they decide on using
the algebraic representation because, as Hilda notes “if we had Inspire we could use the
graph because it could be very precise. But we cant use Inspire.” Once again they decide
not to use the graphic representation because they see it as being less precise than the
algebraic representation.

Initially they think that the two cars start at the same point, and drives in the same
direction. They are having a hard time taking into account that one car has a head start.
At a point they decide to graph the position of the cars anyhow, but they get confused
about when the cars should intersection.

After about 12 minutes they figure out that the cars are in fact traveling towards each
other, and they start to rework the problem. They still do not take into account that one
car has a head start. At the end they decide to calculate the distance between the two
cars for each hour after the start of the first car. This method only works because the
number of hours is a natural number.

They let = denote the distance between the two cars, and calculate the value of z for
each hour until they meet; however, The fact that they write “Since the result x < 0 it is
the number of hours” suggest that they do not think that z denote the number of hours
before they meet. This is strange, because they write “/. hour: 180 — (100 + 80) = z”,
but if  was the number of hours, it should be four, and here x = 0. Apparently, they do
not notice this inconsistency.

Laura & Lotte .
Car 1: a=280,b=0, f(z) =80z
Car 2: a = —100, b = 2, g(z) = —100x + 2

80x = —100x + 2 (9.2)

180x
= = (9.3)
z = = (9.4)

It takes them less than 3 minutes to get the idea of how to solve the assignment. This
is their dialogue:

LAURA: If we drew a graph car one would be driving with the slope of 80 km.
Where on the x-axis we have time. No kilometers along the x-axis and time
up the y-axis. And then we have...

LOTTE: They are quite far from each other, I mean, it’s 520 kilometers.

LAURA: Yes, but if we find the algebraic expression for both we can equate them

This method will yield the correct answer if carried out correctly. The dialogue shows
that Laura thinks in terms of the graph representation, but that she wants to use the
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algebraic representation to solve the problem.

LOTTE: Don’t they intersect at 5207 I mean, they are both 520 kilometers from
each other.

LAURA: yes? ...

LOTTE: Is that not the y-value, and then the x-value is the slope — the velovity
which they drive. They both start at 520, they are 520 away from each other.
B is 520 from A, A is 520 from B. It is the same value, and then their slopes
are just different. Couldn’t you say that their initial position is y-value. Or
don’t you understand it?

LAURA: Yes i understand it

This is quite a long sequence of out-of-focus phenomena. They had just agreed that
kilometers should be along the “x’-axis, and time along the “y”-axis. Lotte starts talking
about their position being the y-value which is good, but then she goes on to talk about
the cars velocities being the x-value. I think that Lotte though is the following: Since the
cars are separated by 520 kilometers, then the graphs representing the positions of the
cars (as a function of something) should intersect when both cars have traveled the total
of 520 kilometres. She realises that the slope of the graphs should be the velocities of the
cars, but somehow she thinks that this should be on the “x” -axis.

LAURA: Ok, I just need to finish drawing this... No it doesn’t make any sense what
I am drawing.

LOTTE: Could we set it up as some kind of exponential. [Laura keeps drawing/

LAURA: So time is here, and distance is here.

LOTTE: Why did you change it?

LAURA: It is the only way it made sense to me... I really don’t know what I am
doing right now, I just know where I want to go.

LOTTE: [ just keep thinking that they have the same initial point, I all depends on
their velocities.

LAURA: Write down what you are thinking. Write it down.

LOTTE: Im not sure it makes any sense. [she starts to draw a coordinate system
with “kilometers” along the y-azis and “time/hours” along the z-axis|

They give up on the graph representation and start working on the algebraic representa-
tion. It seems that their main problem is that the don’t know how to take into account
that the cars do not start off at the same time — they write g(x) = —100x + 2 rather than
g(z) = 100(x — 2) to compensate for car B starting two hours after car A. They have
accounted for the fact that the cars are indeed approaching each other, but they fail to
take into account that the cars are separated by 520 kilometres initially. Also, they solve
for x incorrectly. Thus, their problem lies with the technicality and not with getting the
ideas for solving the problem. A part of their dialogue sums it up perfectly

LAURA: [ wan’t two graphs that intersect or two algebraic expressions which I can
equate somehow

LOTTE: But we don’t know how to set it up.

LAURA: No.

After this Lotte notes that they need to take into account the 520 kilometers.

LAURA: If car B had to travel the 520 kilometers it would take 5.2 hours, and if
car A had to travel the 520 kilometers it would take 6.5 hours.

LOTTE: But it starts two hours later...
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As is seen from their written answer they end up with subtracting these two numbers,
even though they are aware of the fact that they do not take into the account that the
cars do not start off at the same time.

Louise & Henriette .

. 520 _
Car 1: %5 = 6.5 hours

Car 2: % = 5.2 hours
420 520 _
80 100

Louise and Henriette start off by calculating the time it would take each car to travel the
520 kilometers between them. Once this is calculated, they subtract these two times from
each other, and conclude that this must be x. This is part of their dialogue

LOUISE: So 520 divided by 80 is some number of hours. 520 divided by 100 is some
number of hours. And this number of hours should be the same. We should
be able to equate them.

HENRIETTE: They shouldn’t be the same.

LOUISE: We want to know when they meet.

HENRIETTE: Well, they don’t have to travel the entire distance.

It shows that their plan was to subtract the time it would take from each car to travel
the 520 kilometers, but Henriette realises that they have failed to take into account that
the cars are traveling towards each other.

LOUISE: If we equate the two, we get a number of hours. Then we can calculate
how long they drive. Car 1 gets a head start of two hours, so it would take
it 4.5 hours to travel the entire distance. Car 1 will get the furthest.

HENRIETTE: Why?

LOUISE: Because it has a head start of 2 hours, which means that we can remove
two hours before it will meet the other car at any point.

HENRIETTE: Well, that still does not give us anything.

The follow this approach for a while but decide to take a break and go back to assignment
7. When they return to assignment 10. They spend an additional 15 minutes, but they
are unable to give a better answer to the problem. They are aware that the cars are
driving towards each other, and the one of the cars have a head start of two hours, but
they are unable to use this information to solve the problem correctly.

Dan & Anders 7-S = %; Isolating T; T = K{‘gT; % = 6.5 hours. They meet when
they have driven more than 520 KM.

Their final answer, that “they meet when they have driven more than 520 km” is a bit
cheeky.

Jon & Troels [They have drawn a graph of of the positions of the cars|
2. car: f(z) =100z +3
1. car: f(z) =80z +1
They meet after 8.5 hours
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Their idea of equating the position of the two cars is good, but they fail to take account

for the two hour delay.
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(a) Jon & Troels (b) Dan & Anders

Figure 9.2 — Jon, Troels, Dan, and Anders attempted to solve assignment 10 partly
by graphing the positions of the cars.

Ronja and Fenja did not write anything.

9.2 Characterisation of the students understanding

of the function concept

Laura & Lotte seem to be at the early stage of condensation. They seem to have a

somewhat sound understanding of the variable concept, based on their answer to
assignment four and five, together with their work on assignment 1. In assignment
seven they are able to give the algebraic expression for the function, but they are
unable to use this to check if f(2) = 1, showing that they do not fully understand
how f(z) is used as a symbol.

Louise & Henriette fail to give a proper definition of a function. They have problems

with the linguistic description of functional relations. This is based on the fact that
they do not allow for z and y to run negative in assignment five, furthermore they
state that x +y = 10 can not be used to say anything about the relation between x
and y. Their answer to assignment seven is very confusing and it suggests that they
do not have a good understanding of the graph representation of functions. They
are able to solve assignment three, eight and nine, showing that they are able to
reason with both the algebraic and graph representation as long as the assignments
are fairly standard, which suggests that they might be at the stage of condensation.

Matilde & Hilda fail to give a proper definition of a function, and it seems that they do

not see how the variable concept ties in with the function concept. They are able to
give a correct linguistic description in assignment four, but in assignment five they
only consider positive values, suggesting that their understanding of the variable
concept is somewhat limited. In assignment seven they conclude that x = 2 solves
f(z) =1, even though f(z) = z + 1, which suggests that both their understanding
of the graph representation and the use of f(z) as a symbol is limited.

Lars & Erik. Their definition of a function shows that they have a strong process-

conception of the function concept. They are able to correctly answer assignment
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four showing that they can translate the mathematical notation, but they fail to
solve assignment five because they use the notion of proportionality incorrectly.
Their answer to assignment seven shows that they are willing to use the graph
representation to support arguments and reason. They solve assignment eight and
nine which suggests that they are at the stage of condensation.

9.3 Discussion

The students are obviously having a difficulty with the assignments that require them to
give a linguistic description of functional relations. It seems that their main difficulties
lies in figuring out when they have given “enough of a description”. They attempt to avoid
simply translating the mathematical notation, as e.g., y is « plus five. In assignment five,
three of nine of the paris restrict the equation x + y = 10 to positive x and y values.

The students generally do well on the assignments in which algebraic and graphical
representations are needed. The fact that assignment seven, which focuses on the graphical
representation, is the assignment with the lowest success rate might seem surprising. What
is it about the assignment that makes it so difficult for the students to solve? It is very
likely that the students have not encountered an assignment phrased similarly before. If
the assignment was rephrased as “does the point (2,1) lie on the graph of f(xz)”, there is no
doubt that anyone could answer the assignment correctly, it is trivial. Thus, the difficulty
lies in realising that this is actually what is being asked. The student must first realised
that the graph consists of the points (z, f(z)) so checking if (2,1) lies on the curve is
equivalent to checking if it is in fact true that f(2) = 1.

There are a couple of examples of episode that are indicative of a pseudo-structural
conception.

One example is the difference in the answers to assignment four and five. The assign-
ments are similar in essence, but the students generally give very different answers — the
specific algebraic expression becomes the sole basis on which the function is evaluated.
They are given the expression y = x + 5 and = + y = 10. For the first expression some
are able to conclude that y is five larger than x, but no one conclude that, in the second
expression, y is the difference between 10 and x. This may be because the assignments are
phrased differently; in the first I ask for the relation between x and y, and in the second
I ask for what they can say about the x and y which obey the expression. For a specific
example we can consider Louise and Henriette’s answer to the two problems. In the first
of the two, they state that “.. the only thing we can say is that y is larger than x. Or five
larger”, in the second of the two, they state that “I guess we can not say anything about
x and y in relation to each other”, even though they write down that x < 10 and y < 10.

An example of an out-of-focus phenomena is Matilde and Hilda’s work on assignment
eight. Matilde states that “they [the functions] are equal everywhere. Because there is 90
degrees between them. Or actually it is 180.”, which suggests that she does not have clear
understanding of what it means for functions to be equal.
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10 Results, Discussion, per-
spective

As the title suggests, it is the aim of this chapter to present and discuss the main results
of the thesis, and to offer some perspective on the results in the form of suggestions for
further work.

Section 10.1 presents an overview of the main results and observation of the thesis.
This includes the result of the theoretical work presented in part II, and the empirical
observation presented in part III. Section 10.2 discusses the empirical observation in the
light of the theoretical results, and offers suggesting for further work.

10.1 Theoretical results and empirical observations

I consider the main results from the theoretical part of the thesis to be:

Problem solving as a way of probing students conceptual understanding: Because
conceptual understanding is a part of students’ resources when they do problem
solving, there is reason to believe that problem solving can be used to study stu-
dents’ conceptual understanding. Problem solving activities shows the students’
conceptual understanding in action.

The disjoint-reification-of-representations (DRR) hypothesis: Inspired by the ob-
servation that some students use symbols as objects in themselves, rather than
means of representing an abstract mathematical object, an extension to the theory
of reification is proposed. The extension is presented in the form of the hypothesis,
that it is possible for students’ conceptual understanding to develop separately in
the different representations of the same concept. The observation that students
use symbols as objects in themselves is explained by saying that the students have
reified a representation, without having reified the concept itself. The extension is
referred to as the disjoint-reification-of-representations hypothesis.

These results were obtained through theoretical work, which was inspired by observations
presented in the literature.

Based on Schoenfeld’s work on problem solving and the theory of reification, a method-
ology for studying students’ understanding of the function concept was developed. In all,
a total of 15 pairs of students have participated in the empirical studies, and 17" charac-
terisation have been given. I consider the main observations from the empirical part to
be:

Limited concept definition of function: Only 1 of 13 pairs of students were able to
give a satisfactory definition of the function concept.

Limited mastery of linguistic representation: The assignments which required the
students to give a linguistic description of functional relations caused quite a lot of
difficulty for the students — of the 172 pairs of students 5 answered the assignment:
“y = x + 5, what can you say about x in relation to y”, correctly, and 3 of the
17 answered the assignment: “What can you say about the x and y that satisfy
z +y = 107" correctly.

1Tegan, Sara, Hans and Grete participated in two of the studies, so they their understanding
have been characterised twice.
2Counting both the answers from Tegan & Sara and Hans & Grete
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Limited understanding of the graphic representation: Many of the students are
able to solve the problems that involve graphs, as long as the graphs are used in a
familiar way, e.g., when they are asked to find the algebraic expression corresponding
to a certain graph, or when they are asked for intersections of graphs. However,
when the assignments are not familiar to the students, they seem to be unable
to reason with the graph representation. This is based on the observations that
very few were able to solve the assignment in which they were given the graph of a
function, f(z), and a point (2, 1), which clearly did not lie on the graph of f(x), and
were asked if z = 2 solves f(z) = 1. Those who solved it, did so by changing to the
algebraic representation first. Furthermore, in the assignment where the students
were given the graphs of two function f(z) and g(z), and were asked which value
of x solves the equation f(z) = g(x), some even choose to change to the algebraic
representation rather than looking at the intersection.

Limited understanding of the algebraic representation: The students have a hard
time handling the algebraic representation; carrying out even the most simple of al-
gebraic manipulations, e.g. solving simple linear equations, can cause considerable
amounts of trouble.

Notational difficulties: Almost all of the students show signs of having difficulties with
notation at one point or another during the problem solving session. Most of the
notational difficulties were related to the use of f(x) as a symbol — e.g. using f(A)
to describe the position of car A, even though it was a function of time, and x was
used to signify time — and how to express a straight line algebraically — e.g. thinking
that f(x) = axb describes an arbitrary straight line.

Limited ability to solve “real life” problems: Some of the problems I posed required
the students to interpret a situation and formulate the information mathematically.
These are the problem 1-3 in the set used in Study A, and assignment 10 from
study B and C. Only one of the four pairs solve any of those problems in study A.
In study B and C 3 our of 13 pairs were able to solve assignment 10.

Based on these observations, one can attempt to give a general characterisation of danish
secondary school students’ understanding of the function concept. The characterisation
will, of course, be a rather rough generalisation, but it may be useful none the less.

Generalised 1. year student named Bob: Bob is at the early stage of condensation
of the function concept. He can carry out some standard procedure, but generally,
he does not have a very sound understanding of the mathematical notation he uses
— the notation f(x) is especially difficult for him to understand. Bob is aware that
different representation can be in play, when dealing with the function concept, but
the different representation are mostly used to obtain an algebraic expression, which
then can be used to solve the assignment. Bob finds it difficult to give linguistic
descriptions of functional relations and can not give a definition of the function
concept.

10.2 Discussion

This section discusses the empirical observations in the light of the theoretical results.
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10.2.1 About the disjoint-reification-of-representations hy-
pothesis

The main point of the disjoint-reification-of-representations hypothesis is, as the name
suggests, that conceptual understanding can develop separately across different repre-
sentations of the same concept. This thesis was developed rather late in the process of
writing the thesis, and consequently, the problem I have designed were not designed to
test this hypothesis. It is the aim of this section to discuss some preliminary observations
regarding the hypothesis and how the hypothesis might be used to improve the teaching
of the function concept.

Preliminary results

First of all, the students did not fare equally well in assignments with different represen-
tations. This might be because some of the problems are simply more difficult in some
representation than other, but this is not always the case. For example, almost all of
the students were able to solve the problems in which they are asked if a given value of
x solved an equation — they simply inserted the value and inspected, or isolated for = —
while very few of the students were able solve the problem in which the students were
given a graph of the function f(z) = z+ 1 and a point, (2,1), and were asked if z = 2
solves f(z) = 1. Now, the essence of the two problems are strikingly similar, yet almost
none of the students were able to solve the problem in the graphical representation, and
the ones who managed to solve it, did so by switching to the algebraic representation.

Another concrete example comes from Fenja and Ronja from study C. They are unable
to solve the assignment in which they are given the graph of two function, f(z) and g(z),
and are asked when f(z) = g(x). However, they are able to solve the assignment in
which they are given the expression for two functions, f(z) and g(z), and are asked what
value of z solves the equation f(z) = g(x). The same assignment, posed in different
representation, can lead to different outcomes.

Secondly, there have also been episodes suggesting that some students think that
different representations are in fact different mathematical objects. For example, when
Helmut and Nora were working on problem four of the revised problems, they shared the
following dialogue:

HELMUT: Well, I think that you have to say something. I mean if x is a number,
then y will be five larger. I think that is what they mean. I don’t think that
it has to be a graph, I think that we should just describe it.

NORA: Are you sure?

HELMUT: Well, if it is a function then we normally say f(z).

Helmut does not think that y = z + 5 should be a graph based solely on the fact that it
doesn’t say f(x). This suggests that, to him, the graph of y = z + 5 and the expression
y = x + 5 are two different things.

These observations are all in agreement with the disjoint-reification-of-representations
hypothesis, but they are suggestive at best. To test the hypothesis one would need to
design a different set op problems, which brings us to the next section.

Developing problems for further studies

I would design a series of problems posed in different representations, making sure that
each problem is given in each representation. Some of the problems should focus on
students ability to carry out procedures like finding function values or adding function,
and some should focus on changing between the different representation. Care should be
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taken to cover all usual representations and the links between them. In table 10.1 I have

given suggesting for two of such sets of problems.
One could also ask students to draw the graph of the function h(z) = f(z) + g(z)
with f(z) and g(x) given in the algebraic representation. It would be interesting to see if

the students would add the algebraic representation and then draw the graph, or if they

would draw the graphs of both functions and superimpose them.

Table 10.1 — Example of the kind of pairs of assignments that may test the DRR
hypothesis in more detail.

Procedure algebraic graph table
finding function | f(x) = 2z + 1 what is | Given the graph of | Given a table for f(z),
value f(2) f(z), what is f(2)7 what is f(2)

addition of function

f(z) = 2z + 1 and
g(z) = 5 what is (f +
9)(x)?

given the graphs of
f(z) and g(x), draw
(f +9)(x)

Given the tables of
f(x) and g(x), create
the table of (f + g)(z)

A study containing many problems like this could show, more clearly, if the students
had different skills across the different representations — can they find function values
across all the different representation, what about adding functions?

One should try to design problems that are likely to reveal if a student has reified a
representation or not. I think that assignment seven, in the revised version of the problems,
is an example of this kind of problems. If one has reified the graph representation, it should
be no problem to realise that f(a) # b if the point (a,b) does not lie on the graph of the
function f(x).

I think that this is definitely something that could be promising, and it would be
worth while to look in to.

Avoiding pseudo-structural conception when teaching

So what does the DRR hypothesis tell us about how the function concept should be taught?
Well, the aim is to have the student reify the concept whilst avoiding the development of
a pseudo-structural conception. One should make sure that the student is at the same
stage of concept formation for each representation, since you do not want the student to
reify one representation before the others. This could be done by keeping the students
active across the different representations whilst focusing on how different representation
can be used to solve a given assignment. It is clear that different representations might
not be equally efficient for solving a given task, but this can be a point in itself — there is
a reason why you should know how to change between representations.

During the teaching of the function concept the teacher should check continually that
the students can carry out the same processes in different representations. If this is done,
one could hope that by the time reification is reached in the different representations,
it might be clear to the students that they do in fact represent the same concept, and
reification of the function concept may be reached.

One way to stress this relation even further may be to focus on the symbol f(z) to
make to connection between different representations explicit. From this study it is quite
obvious that the students have a difficult time using f(z) as a symbol — it is the source
of much confusion for Cain an Abel when they discuss functions, and it is probably also
behind some of the confusion that the students experience in assignment seven of the
I think that some of the difficulties arise from the fact that
the symbol f(z) transcends the different representations of the function concept. Now,

revised set of problems.
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it is quite clear from the empirical studies that none of the students have reified the
function concept. Any symbol that refers to a function as an object must therefore be
quite difficult to handle. For the students it might be hard to coincide the different uses
of the symbol, because they do not see the object that f(x) refers to. When teaching the
function concept, the use of f(x) in the different representation should be made explicit.
Taught correctly, it may very well help the students see the connection between different
representation by offering a symbol that transcends the representations, and help them
see function as objects that can be represented by different means.

When teaching, one should be aware of that difficulties connected to the concept
formation in the students may differ across the different representations. Sierpinska epis-
temological obstacles/acts-of-understanding analysis of the function concept does touch
upon different representations of the function concept, but the graph representation is
only mentioned in one act of understanding and two epistemological obstacles. With the
DRR hypothesis in mind, one could make a similar analysis, but with equal focus on the
different representation.

Sfard has put forward some principles on how to teach mathematical concepts. The
principles are based on the theory of reification, and with the aim of avoiding pseudo-
structural conception in mind. The principles are:

Principle I New concepts should not be introduced in structural terms.

Principle IT A structural conception should not be required as long as a student can do
without it.

Base on the discussion above, I would add:

Principle III One should be aware that the students’ conceptual understanding can
vary across the different representation of a concept. If the goal is for students
to students attain the same level of conceptual understanding across the different
representations, one needs to actively work towards this goal.

10.2.2 Regarding the theory of reification

Having used the theory of reification throughout the thesis, I would like to take a step
back and discuss the theory.

The hierarchical structure of the stages of reification

The theory of reification is hierarchical in nature. A concept is reified by going though
the three stages: interiorization, condensation, and reification, in that order. This makes
sense because at the stage of interiorization the learner gets acquainted with the process
which will eventually lead to a new concept. The stage of condensation is a stage of
technical improvements, and the stage of reification is defined as an ontological shift; the
process solidifies into an object. Thus, it seems reasonable that the stage of interiozation
precedes that of condensation, after all, how can you condense a processes you have not
yet gotten acquainted with? The hierarchical ordering of the stages make sense, logically.

From the empirical studies it seems, however, that some students are at the stage of
condensation of the function concept even though they have not interiorized the process
of finding function values. This may be because of the fact, that the acts which we take to
indicate that an individual has reached the stage of condensation of the function concept,
can be learned by heart — adding functions, finding intersection between graphs of function
or finding inverse function. All of these procedures can be carried out without referring
to the process nature of the functions.
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The empirical studies suggest that none of the students have reified the function
concept. This is despite the fact that many of the students were able to change between
the different representations of the function concept. Thus, it seems that being able to
change between different representations is not, in it self, a sign that a person has reified
a concept.

The vicious circle states that reification of a concept A, and the interiorization of a
higher level process B — a process that takes concept A as input — are requisites for each
other. We have seen that students at the second year of secondary school, students who
know how to differentiate and integrate, have not yet reified the concept of function. Thus,
the ability to carry out higher level processes does not, in it itself, guarantee reification
of the lower level concept. They are not, strictly speaking, requisites for each other.

The point I'm trying to make is not that they theory of reification is wrong, but rather
that the observables we use are too crude.

How can one know if a student is at the stage of condensation? In stead of simply
looking at the students ability to carry out standardised procedures we must focus on
weather or not the student sees the connection between standardised procedures and
the underlying (primary) process. The stage of condensation was defined as technical
improvement, a period of squeezing lengthy procedures into smaller manageable units,
but it also requires a process conception of the concept. Thus, if students can carry out
these standardised procedures without knowing about the underlying process, I do not
think that it is fair to say that they are at the stage of condensation.

How can one know if a student has reified a concept or not? We must look for it
in the details. The stage of reification was defined as an ontological shift — the student
must think of instances of the concept as if they are actual objects. Being able to skilfully
alternate between different representation, and being able to carry out processes on these
supposed objects both indicate that a student has reified the concept, but it does not
prove it. We must catch people in referring to the mathematical notions as if they were
objects.

This does make the characterisation more difficult and it is discussed in the following
section.

10.2.3 About the characterisations

Now that I have given 12 characterisation of students understanding of the function con-
cept, I would like to discuss their quality and their potential.

Improving the characterisations and the methodology

The characterisation I have giving are rather limited in their detail of description and
many of the conclusion are based on the students work on just a few problems. Having
more problems and consistency checks would be nice.

An obvious improvement of the characterisation would be to individualise them, rather
than having them in pairs. I would not change the actual set up of the experiment — I
think that having them solve the problems in pairs is an over all good solution — but with
more time and possibly more problems, it should be possible to do the characterisation
for the individuals rather than for the pairs.

One way of improving the detail of the characterisations would be to use the disjoint-
reification-of-representation hypothesis. With the right amount of problems designed as
described in section 10.2.1, it should be possibly to specify the stage of reification in each
of the representation, that are used in the problems.
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Another way of improving the characterisations may be to make a double study.
That is, to use the first characterisation to design new problems that dig deeper into an
individual’s conceptual understanding. For example, we can consider Seth and Rogan’s
characterisation. I am not entirely sure that the students have properly interiorized the
function concept; do they actually know what it means to find function values, and can
they do this in different representation? Is their problems that they don’t understand the
diversity of the f(x) notation? Some light could be shed on these questions by giving them
additional assignments. For example, one could give them the problems “f(x)=2x, what
is the function value for x = 2”, “Given the graph of the function f(x), what is f(2)?”,
“Given a table of values of x and f(x), what is £(8)”, or “f(z) = x + 2 and g(z) = —z + 5,
what is f(2) — g(3)?” Seeing how they go about solving these problems should shed some
light on how well they have interiorized the process of finding function values.

An alternative to designing an additional set of problems would be to follow up the
problem solving sessions with clinical interviews. Because of the fact that the students’
solution attempts are recorded, it would be possible to play them back to the students
and ask clarifying questions. The advantage of using clinical interviews as a method is
that it lets you ask several consecutive clarifying equations. Often, when analysing the
dialogues between students I have had to make educated guesses as to what the students
are thinking and why, doing clinical interviews should improve the quality of the guesses.

For example, when Nora and Helmut were working the the problem “y = x + 5, what
can you say about x in relation to y”, Helmut talk about not using the graph because if it
were a function, it would say f(z). It would be interesting to ask him what he could say
about the relation between f(x) and x, when f(xz) = x+5. Would he then use a graph to
describe this relation? If so, what has changed? Having his answers to questions like these
would definitely improve the quality of the analysis, and the following characterisation.

The influence of beliefs

I have not focused on students’ beliefs. Students beliefs can have a great influence on their
problem solving performance, and should not be ignored. For example, an alternative
explanation for students preference for the algebraic representation might be that student
are often asked to show the “intermediate result”. Writing down that = 5 because
the graphs of the the functions intersect at z = 5 may not feel like intermediate results.
Similarly, stating that f(2) # 1, because the point (2,1) does not lie on the graph of
f(z), may not seem like a proper mathematical explanation — there are no intermediate
calculations.

The students’ focus on the algebraic representation may be explained by the fact that
CAS tool are used extensively in the danish educational system. CAS tools does allow
you to switch between different representations of the function concept, but most of time
it is done by typing in an algebraic expression, and then inspecting other representations.
This may lead students to believe that it is it fact the algebraic expression that is being
represented as a graph or a table of values, and not a function per say.

I do not think that beliefs like this can sufficiently account for all of the empirical
observations, but I am quite sure that they do play a role in how the students give their
written answers, and further work should not ignore it to the same extent that I have
done in this work.

One example of just how strong an influence beliefs have on the students’ thinking is
Hilda and Matilde’s dialogue during problem eight:

HILDA: Can’t we just inspect it.
MATILDE: No, that is too easy.
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HILDA: For the z—value 1, f(x) = g(x) since this is where they intersect. Or should
we take the fun route and say that because we can not be 100% certain that
what we see it correct?

MATILDE: Yes. Well, on the other hand we used the graphs to find the algebraic
expressions.

HILDA: Hah. Damn, the other way is more entertaining.

First Matilde refuses to simply inspect where the function intersect because it is too easy
— where is the fun in that? Thus, the students’ preference for the algebraic representation
might be that is cooler and more math-like to do calculations. A second explanation is
revealed by Hilda comment about the vagueness of the graph representation; they can
never be 100% sure that what they see is correct. Matilde’s answer is a valid point. In
this instance Matilde and Hilda were very explicit about their reasoning, but I have no
way of know how normal these beliefs are — they are probably not uncommon.

Following up the problem solving session with clinical interview may be a way to
better understand how strong the influence of beliefs is.

The relation between conceptual understanding and problem solving

Now we have a way of characterising students’ conceptual understanding of functions.
What then? For me, the ultimate goal has been to study the relation between conceptual
understanding and different mathematical competencies®. A competency, that I think
would be particularly interesting to study, is the problem solving competency.

We have seen that the theory of reification touches on problem solving shortly. Sfard
states that reification of a concept makes problem solving a lot easier. This is because
conceiving concepts as objects makes it possible to store, and recall, information in a way,
that a person who have not reified the concept would not be able to. In her own words:

“It is the static object-like representation which squeezes the operational in-
formation into a compact whole and turns the cognitive schema into a more
convenient structure.” [Sfard, 1991, p. 26]

“Thus, almost any mathematical activity may be seen as an intricate inter
play between the operational and the structural versions of the same math-
ematical ideas: when a complex problem is being tackled, the solver would
repeatedly switch from one approach to the other in order to use his knowl-
edge as proficiently as possible.” [Sfard, 1991, p. 28]

It would be interesting to study this relation in detail. One could, for example, focus on
the problem solving process. In his book from 1985 Schoenfeld briefly presents a model
for the problem solving process. This model has been extended by Yimer [Yimer and
Ellerton, 2006, 2009]. It would be interesting to better understand where in the problem
solving process conceptual understanding plays a role: is it during planning? Is it while
implementing the chosen solution strategy? Does it have an effect at all?

Some work has already been done in this direction by Elia, see |Elia et al., 2007|. They
focus on a relation between students’ constructed definitions of the concept of function
in relation to their abilities in dealing with tasks involving different representations of
functions and problem solving tasks. I would focus on relating conceptual understanding
to the different parts of the problem solving process.

How should one go about studying the relation between conceptual understanding
and problem solving process? I would start by characterising the students’ conceptual

31 realise that competencies is possibly a loaded word, so to be clear I use it as described in
[Niss and Jensen, 2002]
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understanding by using the method developed in this thesis, with the revisions suggested
in section 10.2.3. This should be followed by a session of problem solving, where the
assignment would be problems in the “strict” sense.

The data from the (strict) problem solving session should be analysed with the aid of
protocol analysis as presented in Schoenfeld’s book. The protocol will give an overview
of the problem solving process, and help monitor the students’ control abilities.

Having characterised the students’ conceptual understanding and analysed their prob-
lem solving protocols, with a focus on the understanding the problem solving process, one
might be able to understand the relation between conceptual understanding and the prob-
lem solving process.
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11 Conclusion

The goal of this thesis has been to find a way to adequately describe students’ conceptual
understanding of the functions. This includes being able to understand, explain, and
communicate students’ behaviour when they are dealing with the function concept. The
research question was: “What characterises students conceptual understanding of func-
tions?”, and the short answer is: The level of reification which the student has attained
of the concept in its different representations and as a whole.

As for the description and communication of students’ conceptual understanding, sev-
eral examples have been given, two of them are:

Cain & Abel are at the stage of interiorization of the function concept or very early
stage of condensation, since they have difficult time changing between different
representations of the function concept. There were many instances of out-of-focus
phenomena during their problem solving session. They used no less than four
different expressions for a straight line, and they generally seemed to have a poor
understanding of the mathematical notation they used. Their understanding of the
graphical representation seems to be limited to its potential of being translated into
an algebraic expression, and even this is hard for them to do.

Nora & Helmut seem to be at the early stage of reification. They are able to change
between the different representations quite efficiently — they are even able to solve
both the assignments that require linguistic descriptions, suggesting that they have
a sound understanding of the variable concept as well. However, they shown sign of
a having a pseudo-structural conception, since they seem to think that the algebraic
and graphical representation are different mathematical objects. Furthermore, they
are unable to give a proper definition of a function.

It has been demonstrated that problem solving — in the restricted sense, as non-problematic,
non-standard assignments — can be used as a probe to investigate students’ conceptual
understanding.
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