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In this thesis we start out by dealing with a mathematical model of the onset of type
1 diabetes as proposed by Marée et al. (2006). It is a 5-dimensional model that
uses ordinary differential equations (ODEs) to simulate the behavior of macrophages,
activated macrophages, apoptotic β-cells, necrotic β-cells, and cytotoxic cytokines in
neonate NOD- and Balb/c-mice. The purpose of Marée et al. (2006) is primarily to
investigate the hypothesis that

impaired macrophage phagocytosis can mean the difference between health
and type 1 diabetes (in mice).

Marée et al. (2006) base their hypothesis on previous work by Trudeau et al. (2003)
and Marée et al. (2005). We start out by presenting an introduction to the biology
behind the DuCa model and introduce some of the tentative treatment strategies as of
today. With the groundwork in place we present, and discuss the foundations of, the
model, which we have dubbed the DuCa model, and provide an analysis of a reduced
version of the DuCa model, called the intermediate model (IM). The IM is based on
the so-called Copenhagen model, made by Blasio et al. (1999).
After this gentle interlude we proceed to do a codimension 1 bifurcation analysis of
the DuCa model. The analysis serves to determine the overall soundness of the model.
Where by “soundness” we mean the lack of nonphysiological behavior within a reason-
able range of key parameters.
The bifurcation analysis, and a thorough discussion of the adherent assumptions as well
as simplifications, leads us to conclude that the DuCa model is sound.
Based on these findings we expand the DuCa model, guided by recent data and guide-
lines that should apply to all mathematical models as well as some criteria that pertain
to this model in particular. The expansion consists of a compartment of healthy β-cells.
By this expansion we add to the realism of the model and set up a model from which
future researches can analyze how best to go about countering the chronic inflamma-
tion of the Islets of Langerhans that leads to T1D in 80 % of female NOD-mice. In our
discussion of the expanded model we also provide some hints as to how one would go
about implementing the effect of, in particular, one tentative drug, as well as point to
additional features that need implementing (and how this could be done).
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Preface
This thesis took its beginning when Professor Johnny Ottesen introduced me to a num-
ber of articles all of which used mathematical modelling to look at diabetes. Amongst
the articles I found that an article called “Onset of Type 1 Diabetes - A Dynamical
Instability” (Blasio et al. (1999)) was the most interesting. At the same time Lars
Hervig Jacobsen was looking to pick a subject for his bachelor thesis.
We got into contact with Professor, Dr. MD, Flemming Pociot, to discuss the afore-
mentioned article, of which he is a coauthor, along with an article by Marée et al. (2006)
called “Modelling the onset of Type 1 diabetes: can impaired macrophage phagocytosis
make the difference between health and disease?” which we had found while searching
for literature. The article by Marée et al. (2006) is a revised and expanded version of
the model presented in Blasio et al. (1999). They modify the model from Blasio et al.
(1999) to investigate another hypothesis than Blasio et al. (1999), but they also state
that the model in Blasio et al. (1999) becomes physiologically unviable when estimated
or experimentally obtained parameters are inserted in the model.
We decided to gain insight into the writings of Marée et al. (2006) to see if they were
correct in their assertions and to see if the revised model was a good foundation from
which we formulate our own model.
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half of the thesis. It made the process much more enjoyable and without him a lot of
the matlab-based results might not have existed in the form they are in today.
Approximately halfway through the process I was in the good fortune of receiving a
grant from Mærsk. The grant was intended to allow one to go abroad for a semester,
and thanks to the kindness of Dr. Tom Archibald and the mathematics department
at the Simon Fraser University (SFU) in Vancouver, Canada, I was able to spend the
fall-semester at SFU. This provided me with the privilege of having a meeting with Dr.
Diane T. Finegood at her office on campus at SFU. There I was given the opportunity
to discuss subjects from the article of Marée et al. (2006), which she coauthored, and
ask questions of relevance in general. Dr. Finegood referred me to Dr. MD Bruce
Vercherer of University of British Columbia (UBC), who provided me with answers to



Preface iii

questions that were outside Dr. Finegood’s field of expertise. Dr. Vercherer’s answers
were very helpful, and he also suggested that I might visit UBC to discuss my questions
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1 Introduction

Insulin dependent diabetes mellitus (IDDM) or Type 1 Diabetes (T1D) is an autoim-
mune disease that, in brief, is characterized by an unnatural depletion of the pancreatic
β-cells, which implies a drop in the production of insulin. Insulin is needed to regulate
the blood sugar level upon ingestion of nutrients1, or else hyperglycemia, i.e. elevated
blood sugar, occurs.
It is known that patients with T1D are genetically predisposed for the disease, but en-
vironmental factors are needed to facilitate the events leading to overt diabetes (Pociot
(2009)) – often the symptoms become apparent only in late adolescence or adulthood
(Wang et al., 2006, p.80). It affects about 0.5% of the population in the developed
countries, and 5-15% of those diagnosed with Type 2 Diabetes (T2D) are believed to
have T1D – not T2D (Mathis et al. (2001)). Without daily subcutaneous injections of
insulin the disease is fatal (Lo and Clare-Salzler, 2006, p.17).
Despite intensive research, the exact etiology (the cause of the disease) remains illusive,
though progress has been made.
In 2004 Wild et al. (2004) made an assessment of how the prevalence of diabetes (T1D
and T2D) will evolve between the year 2000 and 2030, and their projections are dim!
Diabetes is mostly a problem in the western world today, but as more and more develop-
ing countries switch from manual to knowledge-based sedentary labor as their primary
source of income, the number of people with diabetes in these countries is expected to
soar, and the total number of people in the world with diabetes will increase from 171
million in 2000 to 366 million by the year 2030 (Wild et al., 2004, p.1047).
Dire forecasts such as these together with the fact that the life expectancy of diabetics
is reduced2 (Manuel and Schultz (2004)) emphasizes the need for an actual cure of di-
abetes – the best case scenario would be the possibility of pre-natal screening for genes
known to induce diabetes, so precautionary measures could be taken. But this is still a
utopian scenario, so until the advent of such times, the best cause of action is research
in post-natal treatments; see chapter 3.
Since the first bolus of insulin was administered to a human, on January 11. 1922
(Rosenfeld, 2002, p.2277)3, it has been the foremost applied treatment for diabetes.
At the infancy of insulin-treatment the insulin was often bovine, porcine or canine in
origin, furthermore it was impure, which meant that albeit it was better than no treat-
ment, allergic reactions could ensue upon injection (Rosenfeld (2002)). This prompted
the need for better purification methods as well as research aimed at making analogs
to human insulin.

1 For a more thorough description of the mechanisms behind T1D see chapter 2
2 Insulin can be administered to cure the symptoms of diabetes throughout the entire life of a patient,
but diabetes is associated with sequela, see e.g. Franco et al. (2007).

3 The first successful administration was, however, not until January 23 (Rosenfeld, 2002, p.2278).
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In the following decades research along these lines became the top priority, with not
too much attention given to alternatives. Though La Barre, as early as 1930, saw the
potential in using an incretin4 substance, the influential gastrointestinal physiologist
Andrew C. Ivy “disproved” the applicability of the incretin concept (Creutzfeldt, 2005,
p.89), and it was not until 1964 that the incretin concept had a renaissance, and was
recognized as a promising course of research.
An incretin has to fulfill three criteria (taken from (Creutzfeldt, 2005, p.90))

1. The hormone must be released from gut endocrine cells after ingestion of nutrients,
especially of glucose

2. The circulating hormone must stimulate insulin secretion in a concentration which
is easily achieved after ingestion of a nutrient

3. The hormone releases insulin only at elevated glucose levels (glucose dependence)
One such hormone that was discovered in the mid-eighties is Glucagon-Like Peptide 1
(GLP-1)(Nauck (1998); Creutzfeldt (2005)), which we will touch upon in section 3.2.
GLP-1 is still subject to extensive research (e.g. Nauck (1998); Siegel et al. (1999);
Farilla et al. (2003); Egan et al. (2003); Urusova et al. (2004); Suarez-Pinzon et al.
(2008) to name a few), and will also be given special attention in this thesis.
We were introduced to mathematical modelling of diabetes through the pioneering ar-
ticle by Blasio et al. (1999), who proposed the so-called Copenhagen (CPH) model
(see section 6), and are recognized as the first to utilize the language of mathematics
to qualitatively investigate the mechanisms thought to prompt T1D.5 We found the
idea of using mathematical modelling to identify key players in the etiology enthralling,
and started perusing through the literature baring mathematical modelling and T1D
(or IDDM) in mind, while we at the same time started stocking up on the biological
knowledge needed.
As a bit of a surprise we were not overwhelmed by articles that matched our criteria,
but we did come across a couple of articles. One of great interest was by Wang et al.
(2006) in which they extend the CPH model to investigate the age-at-onset of T1D,
another was by Marée et al. (2006) where they investigate the role of a specific type of
immune cell in the development of T1D. Almost in extension of this article is the one by
Mahaffy and Edelstein-Keshet (2007), where the aim is to model the cyclic pattern of
behavior that the same type of immune-cell exhibits, later in the course of the disease.
We also came across an older article by Finegood et al. (1995) where they present a
(simple) mathematical model of the β-cell dynamics in the growing rat pancreas.
Though all of these articles had interesting approaches and aims we decided in the end
to base our continued work on an article by Athansius F. M. Marée, Richard Kublik,
Diane T. Finegood, and Leah Edelstein-Keshet6 called “Modelling the onset of Type
1 Diabetes: can impaired macrophage phagocytosis make the difference between health
and disease?” We chose this article over the others because it deals with a hypothesis
regarding the onset of T1D, which was consistent with our primary objective, namely

4 An incretin substance is a substance extracted from the upper gut mucosa, that induces hypo-
glycemia (Creutzfeldt, 2005, p.88), i.e. lowers the blood-sugar level and counters hyperglycemia.

5 Later we have learned that other diabetes models existed beforehand, but they typically model the
interaction between insulin, glucose and β-cell mass.

6 Leah Edelstein-Keshet is a mathematician at the University of British Columbia, while the others
are biologists.
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modelling of the onset. Furthermore they are inspired by the CPH model; see section 6.

1.1 Thesis Statement
The purpose of this thesis is twofold. First of all we want to perform a thorough analysis
of the DuCa model to decide if it is a sound model for the early stage of T1D. Secondly
we seek to expand the Duca model to make it more realistic.
Before we state the questions, we will answer on our path to obtain the first purpose,
we must first clarify what we mean by a “sound model.” We will define a sound model
as one in which

altering significant parameters within a physiologically reasonable interval
does not induce behavior that is irreconcilable with the underlying physiol-
ogy.

By a “physiologically reasonable interval” we mean, e.g., within the limit of the stan-
dard deviation. We must also explain what we deem “irreconcilable with the underlying
physiology.” An obvious example of this is if we observe that one or more of the con-
centrations in the DuCa model diverge when we tweak a parameter. Another example
is if the concentrations become negative.
Through the analysis of the DuCa model the following questions can be answered

I Are the parameter values given in Marée et al. (2006) reasonable?
II Do bifurcations occur when a suitable parameter is varied within a physiologically

reasonable range?
III Is the model sound?
When we have analyzed the DuCa model and answered questions I-III we will pursue
our second (and most important) goal, which is to try and expand the model. In doing
so three questions are natural to ask
i can we add a natural expansion to the DuCa model?

If the answer to this is yes then the next course of action is to determine if
ii the expansion induces a more realistic behavior

If this is the case, then we will ask ourselves
iii does the (natural) expansion agree with experimental data?

By “natural” we basically mean one that is based on the underlying physiology and will
not cause nonnatural behavior when added to the DuCa model. By “more realistic” we
mean compared to the behavior of the DuCa model by itself. Notice that being unable
to induce a more realistic behavior implies failing at agreeing with experimental data,
while the opposite is not the case.

1.2 Method
The first question (I) will be answered through literature studies, the second (II) will be
answered based on a bifurcation analysis, while the answer to the third (III) hinges on
the answer of the former two and a general analysis and discussion of the assumptions
and simplifications that are made with the DuCa model.
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There are several scenarios that can unfold as we try to answer questions I-III. For
example: if we find that bifurcations occur abundantly, and also within physiologically
realistic parameter spans, then we must look to the literature to see if such behavior has
any foundation in reality before we can answer question III. If we do not find any data
to back such behavior then of course the answer to question III is: No! However let us
assume that we find that the answer to I is yes, and further assume that no bifurcations
occur within such parameter spans, and the literature tells us that this is as it should
be. Then of course we have learned that the DuCa model is a sound model, but should
such a point come, then we can ask ourselves a new question. Namely: how should
the parameter composition be before unnatural behavior is achieved? Perhaps we can
relate the answer to this question to the biology or imagine that it assist in a cure.
This last piece of text goes to illustrate that the questions (I-III) that at first seem to
be simple “yes” or “no” questions are the first layer of several followup questions.

In regards to question i the answer to this question is very much connected to the
way we define “natural expansion.” If we find that we cannot contribute with a natural
expansion based on the physiology that is available to us from the DuCa model, then
we may have to add additional biological features to the mixture in hope of adding
an expansion – notice that we may take several stabs at constructing an expansion,
for we may have overlooked something at first or oversimplified things. The answer to
question ii comes down to wether an expansion entails a behavior that is in qualitative
agreement with what we expect based on the literature. If we get past i and find that
we must answer “No” to ii, then we will go back to question i to see if we could have
done something differently. If we get to question iii, then the answer simply depends on
data. Note that we may want to contest some data, especially if we find contradicting
conclusions and answers in the literature.

1.3 Introductory Remarks
The biology of the pancreas is immensely rich, and could easily fill all of the pages in
this thesis, therefore it will be treated in an introductory fashion only. This facilitates
the overview, and when biological words and concepts appear that have not merited a
prior introduction, then these will be explained in a footnote.
We find that it is often tedious and not very illuminating to read through a long theo-
retical chapter that is often more or less a rewording of an existing textbook. Therefore
relevant mathematical subjects will be covered along the way as they appear naturally.
This way of presenting the theoretical machinery allows the reader to see it in action
immediately, rather than waiting 20 pages. Though we have strived to refrain from re-
gurgitating what others have written, some examples are so generic that it is impossible
to be completely novel. By meshing theory with application the reader, who is in the
know, is unfortunately deprived of the possibility of skipping the theory entirely, but
we have found it to be the most instructive way to introduce the theory.
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1.4 Thesis Structure
Due to the dichotomy between the questions numbered I to III and those numbered
i to iii we have more or less split the thesis into two according pieces. This implies
two discussions and two conclusions – one of each based on the analysis of the DuCa
model and one of each based on the expanded DuCa model. The first part ends with
the conclusion given in chapter 10. After that three chapters follow.
The contents of this thesis is such that in Chapter 2, called Type 1 Diabetes and Its
Etiology we provide a basic introduction to the biology that is needed to understand
and work with the DuCa model. Chapter 3, called Prospects for Therapy – A Mini Re-
view, sheds light on what kind of therapeutic measures are suitable at different stages
of the disease, and also looks at some of the compounds that are of interest today.
In Chapter 4, called Mathematical Modelling, we turn away from the biology for a
moment to discuss how mathematical modelling can contribute in biology and other
natural sciences. Chapter 5 introduces the DuCa model, along with an analysis and a
discussion of the parameters, assumptions and simplifications that belong to the model.
Chapter 6 is retained for the more basic model which the DuCa model is based on. This
basic model is called the Intermediate Model. In regards to the intermediate model we
reproduce and unfold an analysis done in Marée et al. (2006). Furthermore we discuss
key elements and features of the DuCa model; e.g. parameters and model assumptions.
Chapter 7 is called A Brief Introduction to Bifurcation Analysis and Numerical Meth-
ods and is aimed at readers who are somewhat new to the field of applied mathematics.
It is also the chapter where we choose our bifurcation parameters, present the method
we have used to estimate fixed points, and touch upon why bifurcation analysis can be
interesting to biology or physiology. After this mathematical groundwork we bring it
all into play in Chapter 8 where we perform the bifurcation analysis. Thus we have
dubbed Chapter 8 Bifurcation Diagrams and Analysis. Chapter 9 rounds off the first
part of this thesis, by summarizing the findings of the bifurcation analysis and dis-
cussing the implications of these findings, after which follows the conclusion of the first
part in chapter 10. In Chapter 11 the focus is on expanding the DuCa model, analyzing
the implications of the expansion, and investigating which effects a potential treatment
should have on the healthy β-cells to reverse a negative spiral. In chapter 11 we provide
the final discussion before bring our conclusion of part 2 in chapter 13.
The appendices are divided into three categories. In the first everything relating to
mathematics is gathered. The second contains some figures that either serve as doc-
umentation or they corroborate points put forth in the analysis. Finally the third
appendix contains matlab code. At the very end of the thesis is an index which should
ease the job of finding a given subject or if one forgot what an important word meant,
then there is a good chance that it is listed in the index.

This thesis has been done in two rounds so to speak. Initially I worked with Lars
Hervig Jacobsen. The goal for Lars was to finish his thesis for the degree of bachelor
of science.
Lars had more experience with matlab, and I had more knowledge of the mathematics
that is used in nonlinear dynamics. Thus we formed a partnership where the workload
was split more or less 50-50 – he could draw on my insight into the mathematics, while
I learned from his knowledge of matlab. Eventually we broke off the partnership,
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because I had to make preparations for staying in Canada during the fall-semester, and
Lars had to defend his thesis before the beginning of said semester, which he did on
August the 31. 2009.
Since then I have added new parts (chapters 11 and 12, the subsection on activation
by necrotic β-cells in section 5.7 and appendices A.1, A.2, A.3 and B.6) cut out and/or
replaced other parts (e.g. the bifurcation analysis of the DuCa model (section 7) has
been totally redone as well as the following discussion in chapter 9) and reworked
virtually the whole thesis. Nevertheless I have chosen to keep my writing in a “we-
form” as opposed to an “I-form” to honor the initial collaboration between Lars and
I.

The reader may wonder why so much time and space has been devoted to the analysis
of the DuCa model instead of the expanded model. My answer is that: when you write
a project or a thesis such as this, where you work within a time-limit, it is often the
case that the most interesting work is done toward the end, thus leaving little time
to incorporate and analyze discoveries that arise from said work. I have also included
all the model-variations of the expanded model to illustrate how the final model came
about; i.e. another insight into the work process.



2 Type 1 Diabetes and Its Etiology

The pancreas consists of an exocrine gland and an endocrine gland, of which only the
endocrine gland is of any concern to us. The endocrine part consists of between 5×105-
1× 106 islets of Langerhans, which in turn are constituted by different cell types. The
cells of the pancreas we are interested in are the β-cells. They make up around 75%
of the total number of cells in the islets of Langerhans which comes to about 500-1000
β-cells per islet Verchere (2009).
Postcibal1 the β-cells are stimulated to secrete insulin, to maintain homeostasis of the
blood glucose level (Seeley et al., 2008, p.632-639). Much has been unveiled in the field
of autoimmune diabetes during the past 20 years. These advances owe a great deal
to what in the field of medicine is known simply as models. These are essentially ani-
mal models, i.e. an animal in which the development of diabetes resembles, or can be
made to resemble, that of the human development. From here on we call these models
bio-models so as not to confuse them with mathematical models. One such bio-model
that is particularly suitable, and also the most extensively used in T1D-research, is the
diabetes prone NOD mouse. This is because the development of diabetes in NOD-mice
resembles the human development in some key aspects (Höglund et al. (1999))(Cantor
and Haskins, 2006, p.381), such as presence of autoantibodies in the pancreas and au-
toreactive T cells (Anderson and Bluestone (2005)).
The use of bio-models has led to the consensus of today which is that: T1D arises
when β-cells fall prey to an autoimmune response (Höglund et al. (1999), Green and
Flavell (1999), Yoon and Yun (2001), Notkins and Åke Lernmark (2001), Beyan et al.
(2002), Cantor and Haskins (2006) to name a few). This depletion leads to a lack of
endogenous insulin, which has a detrimental impact on the homeostasis of blood glu-
cose, and inevitably results in constant hyperglycemia, leaving the subject dependent
on exogenous administered insulin. Clinical symptoms of T1D, in humans, become
apparent when 60-90% of the β-cells have been depleted (Notkins and Åke Lernmark,
2001, p.1247)(Seeley et al., 2008, p.636). In the NOD-mouse strain about 80% of female
and 20% of male NOD-mice develop overt hyperglycemia, this happens at 30 weeks of
age (Sreenan et al., 1999, p.989).
The autoimmune response induces β-cell death either by apoptosis or necrosis. Apopto-
sis is commonly described as “programmed cell death”. It entails an organized shutting-
down of the cell (like the regulated shutting-down of a computer), where the cell shrinks,
and no or little cell-debris is spilled (Steer et al., 2006, p.254-257). The result of this
“quiet” death is that no inflammation ensues. Necrosis on the other hand is associated
with inflammation, and entails loss of cell-membrane integrity which implies spillage of
cell-debris (Steer et al., 2006, p.254).

1 After ingestion of nutrients.
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This much is understood and well documented today, but the exact etiology of T1D in
humans as well as NOD-mice is still a Nobel Prize away. In the following we shed light
on mechanisms, at a cellular level, that recent research has identified as crucial to the
development of diabetes.2 Some of the findings are still a matter of debate, and to the
uninitiated it sometimes seems as though the ones who are “right” are the ones who
are most respected or are the most cited; e.g. Andrew C. Ivy’s rejection of the incretin
concept. We try to explain things without venturing too deep into the field of advanced
cellular biology – when it is necessary to use technical terms, these will be accompanied
by an explanatory footnote.

2.1 Prediction and Detection Using Autoantigens
Just as the old saying goes: there is no smoke without a fire, so there are no autoan-
tibodies without diabetes.3 This may be an overstatement but there is some truth to
it, since 70-80 % of newly diagnosed patients have autoantibodies to the autoantigen4
known as glutamic acid decarboxylase (GAD), approximately the same number are posi-
tive for antibodies to another autoantigen called tyrosine phosphatase (IA-2) (Wong and
Jr., 1999, p.643)(Notkins and Åke Lernmark, 2001, p.1249), the remaining cases that
are not associated with antibodies for these two autoantigens can be ascribed to insulin
autoantibodies, and to a lesser extent autoantigens that are less frequent (Notkins and
Åke Lernmark, 2001, p.1248-1249). In total over 90 % of newly diagnosed T1D patients
are positive for autoantibodies (Pociot (2009)).
Insulin has been shown to be an autoantigen for the pathogenic T cells5 CD4+ and
CD8+ (Wong and Jr., 1999, p.645) while GAD is an autoantigen to CD4+ but not
CD8+ in NOD-mice (Wong and Jr., 1999, p.644). Though the exact interaction be-
tween autoantigens and immune cells is not fully understood (Yoon and Yun (2001)),
there are results that indicate a clear connection between GAD as well as insulin and
diabetes in NOD-mice (Yoon and Yun, 2001, p.202). Furthermore Notkins and Åke
Lernmark (2001) report of the presence of autoantibodies in humans long before the
onset of diabetes (Notkins and Åke Lernmark, 2001, p.1249), and further lists a number
of articles (e.g. Leslie et al. (1999)) that provide results that indicate how the presence
of one or more autoantibodies in a healthy person can be used to asses how likely said
person is to develop diabetes. This relation between autoantibodies and the risk of
developing diabetes is shown in figure 2.1. The y-axis represents the risk of developing

2 Though scientific evidence has been gathered that indicates that environmental factors also play
a part (Notkins and Åke Lernmark, 2001, p.1250)(Gianani and Eisenbarth, 2005, p.233)(Onengut-
Gumuscu and Concannon, 2006, p.634)(Yu and Eisenbarth (2006)) we omit these results, because they
are of no importance to the aim of this project.

3 Antibodies are proteins that can attach themselves to antigens (see next footnote) and cause them to
self-destruct (Seeley et al., 2008, p.661). Autoantibodies have the same function, but for autoantigens.

4 An antigen can be a virus, a bacteria or even drugs just to name a few; i.e. substances that cause
the immune system to react. An autoantigen, sometimes called a self-antigen, is an antigen produced
by the body itself (Seeley et al., 2008, p.798).

5 When an immature T cell is presented with an antigen it matures into either a helper T cell, also
called a CD4, or a cytotoxic T cell, also called a CD8. The respective cells are called so because they
“express” CD4 and CD8 (Seeley et al., 2008, p.802), for the same reason they are sometimes called
CD4+ and CD8+ T cells.
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Figure 2.1 Relation between the number
of autoantibodies in the blood and how
likely the person is to develop diabetes
in the following ten years. The figure is
based on data obtained from longitudinal
studies on first-degree relatives (i.e.
parents, siblings or children) of T1D
patients (Notkins and Åke Lernmark,
2001, p.1249). If tested positive for
three autoantibodies, then there is an
80% risk of developing T1D during the
next 10 years. The figure is borrowed
with permission from Notkins and Åke
Lernmark (2001)

diabetes in percentages. The x-axis represents the years that have transpired since
the detection of autoantibodies. The figure is based on studies of first-degree relatives
of individuals with T1D (Notkins and Åke Lernmark, 2001, p.1249). The detection of
three autoantibodies means that after 10 years the person has an 80% risk of developing
diabetes.
Now that we have touched upon the autoantigens, and their role in the autoimmune
process let us turn to the cells that are implicated in mediating the autoimmunity.

2.2 The Immune Cells
Most6 of the articles published on T1D today focus on dendritic cells (DC), macrophages,
T cells and B cells. The B cells (not to be confused with β-cells), macrophages and
DC’s are so-called antigen presenting cells (APC). APCs “swallow” antigens in a process
called phagocytosis7, where they are processed, i.e. broken down into smaller fragments.
After the antigens have been processed the APCs present them to receptors of T cells
(and other cells) via proteins on their surface.
The most illusive problem in the etiology of T1D is where in vivo the T cells are stimu-
lated to initiate an immune response towards the islets of Langerhans (Höglund et al.,
1999, p.331). At the early stages of insulitis macrophages and DCs have been found
to infiltrate the islets of Langerhans (Yoon and Yun, 2001, p.203). So one possibility
is that when the macrophages and DCs encounter antigens in the islets, they travel
to the pancreatic lymph nodes where they present these antigens to mature as well as
immature T cells. The immature T cells become mature, and the mature cells start

6 The following is based on (Seeley et al., 2008, p.792-816) when not stated otherwise.
7 In the phagocytosis the APC literally ingests the antigen as opposed to, say, drink it.
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to divide. The findings of Höglund et al. (1999) corroborates that the T cells are first
stimulated in the lymph nodes. Other results favor the hypothesis8 that activation
of intraislet macrophages initiates sustained β-cell death through macrophage-derived
pro-inflammatory cytokines9 (Steer et al., 2006, p.263) – T cells become a key-factor in
the β-cell destruction at 4-5 weeks of age (Trudeau et al., 2003, p.219).
When the T cells divide they excrete cytokines of which interleukin-2 (IL-2) is especially
important. IL-2 is one of several cytokines that have been found to precipitate T1D
due to their cytotoxic10 effect on β-cells. Two other important cytotoxic cytokines are
interleukin-1 (IL-1), and interferon-γ (IFN-γ), which are macrophage-derived.
Besides the role as an APC, and more importantly, according to Marée et al. (2006)
and Steer et al. (2006), macrophages also secrete cytokines themselves (Marée et al.
(2006), (Steer et al., 2006, p.253)) when they phagocytize apoptotic and necrotic β-
cells. Recent results indicate that (some of the) cytokines secreted upon phagocytosis
of necrotic cells are cytotoxic, and thus further the death of β-cells by necrosis (Steer
et al., 2006, p.257) and apoptosis . But at the same time it has been found that β-cell
regeneration takes place in the midst of the inflammation (Akirav et al., 2008, p.2883).
One could speculate that this is due to some benign cytokines, but this is only specu-
lation. While dwelling on cytokines we will briefly introduce one discrepancy between
the NOD bio-model and humans, which, according to Steer et al. (2006) and Eizirk and
Darville (2001), is that in humans cytokines only induce β-cell apoptosis (for reasons we
will not get into here), whereas they induce apoptosis as well as necrosis in the NOD
mouse (and other bio-models) (Steer et al., 2006, p.263) (Eizirk and Darville, 2001,
p.s65). This illustrates that one should take care not to overextend the conclusions
drawn from the NOD-mouse model, and other bio-models, to apply to humans as well.
Sparre et al. (2005) provide arguments based of the genetic makeup of the NOD-mouse
as to why one must proceed cautiously when making conclusions based on these mice
(Sparre et al., 2005, p.443).

2.3 Summary and Discussion
We have learned that macrophages/dendritic cells, T cells and cytokines excreted from
these cells constitute a deadly combination, that ultimately leads to β-cell apoptosis or
necrosis (Yoon and Yun (2001)). It is debateable which are the most important. Eizirik
and Mandrup-Poulsen (2001) report that CD8+ are the most important T cells for the
initiation of the immune process that leads to sustained apoptosis, but CD8+ cells alone
cannot lead to diabetes. NOD macrophages are unable to present antigens and are as
such not important as APCs in the NOD bio-model of T1D, this implies that DC’s and
B cells are the important APCs in this bio-model (Eizirik and Mandrup-Poulsen, 2001,
p.2117). They also find that the cytotoxicity of the cytokines depends on the period in
the life of the NOD-mouse at which they are released (Eizirik and Mandrup-Poulsen,
2001, p.2119).
Despite all the recent advances one remaining mystery still needs to be solved: what

8 This is also the hypothesis that Marée et al. (2006) utilize in their mathematical model, though they
also recognize the significance of T cells.

9 A cytokine is a protein that stimulates cell proliferation and differentiation, but they can also be
harmful to other cells.
10 Cytotoxic means harmful to cells.
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triggers the autoimmune response that leads to T1D?11
One way of getting closer to a definitive answer to this could be through using a bio-
model that was more akin to a human. Though bio-models have proven to be priceless
assets in diabetes research it is important not to forget that they are models, and despite
certain similarities the results obtained from these can not be directly interpreted in
the frame of human physiology. Hopefully medical instruments will be so fine-tuned in
the future that human pancreatic biopsies, that are too hazardous today (Notkins and
Åke Lernmark (2001)), can be performed with great benefit for the research society and
so also diabetes patients.
One could speculate that there are several subtypes of autoimmune diabetes, each
associated by a specific trigger/event. In chapter 3 we will see how tentative treatments
are sometimes, but not always, successful. An explanation for this fact could be that a
treatment needs to be paired up with the right subtype of autoimmune diabetes.

11 This is not only the case with T1D, but with a wide range of autoimmune diseases (Christen and
von Herrath (2004)), of which T1D is one of the most common (Cantor and Haskins (2006)).
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3 Prospects for Therapy – A Mini Review

As more information about the etiology of diabetes has become available, several possi-
ble means of preventing/curing it have surfaced. In this chapter we give a brief account
of some of these.

3.1 Treatment Strategies
Depending on the progression of the disease different therapeutical approaches are rel-
evant (Greenbaum and Harrison (2008)), though some of them are not confined to one
stage. Figure 3.1 gives a qualitative indication of how the amount of β-cells left is
related to treatment strategy, how prediction becomes more and more accurate with
time while prevention of T1D becomes less and less possible.
Firstly and most ideally every infant should be genetically screened to test for genes

Figure 3.1 shows how different treatment strategies apply as β-cell mass is reduced over time.
On the y-axis we have β-cell mass and along the x-axis we have time. As time passes the
ability to prevent T1D becomes smaller and smaller. Figure was borrowed, with permission,
from Staeva-Vieira et al. (2008)

that are linked with T1D. This would permit for precautionary measures such as diet
changes or antigen-based therapy. The only problem with this is that these genes need
still be identified.
Secondly, when autoimmunity is observed, antigen therapy is still an option, but also
direct administration of regulatory cells (e.g. macrophages) has been suggested. At
this stage the aim of the treatment is to prevent β-cell destruction.
Unless the autoimmunity is treated it will inevitably lead to β-cell destruction, the

13
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third stage of T1D, at which point antigen therapy looses its applicability. Regenera-
tion, neogenesis and proliferation of β-cells are defining aspects of potential treatment
strategies.
Total depletion of β-cells delineates the fourth stage. Future possible courses of action
at this stage is to insert “immune-blind” β-cells and use intermittent immunotherapy,
i.e. stopping the autoimmune process.

Besides this brief introduction to the different strategies applicable to different stages
of the disease the following sections are reserved solely for strategies directed at autoim-
munity and β-cell destruction. We choose to do so because these are the most realistic
stages to aim at today, and they are the most relevant stages of the model of Marée
et al. (2006). Furthermore GLP-1 will be commented on most extensively simply be-
cause articles on GLP-1 were most abundant.
Though different promising ideas for therapy have been proposed since the mid-eighties,
it is necessary to be cautious (Marée et al. (2006)) – the final section of this chapter is
reserved for a brief note on this.

3.2 Glucagon-Like Peptide 1
GLP-1 is an incretin peptide, i.e. it meets the criteria given in the introduction.
GLP-1 was interesting for T2D-patients from the point of its discovery (Nauck (1998)),
because it

• enhances glucose-stimulated postcibal insulin secretion,
• inhibits glucagon release and
• inhibits gastric emptying, and food intake (Brubaker and Drucker (2004)),

while it was not until the beginning of the 1990’s, that results emerged that suggested
that GLP-1 also had an effect in patients with T1D (Nauck, 1998, p.125). Since then
an abundance of articles on GLP-1 has appeared – and continue to appear. A search
for GLP-1 and diabetes on the scholar version of google as of June 2009 returns 14300
results. Accordingly we are not able to give a full overview, and have chosen to confine
ourselves to some recent results.
Suarez-Pinzon et al. (2008) found that a combination of GLP-1 and gastrin (we will
return to gastrin in section 3.3) restored normoglycemia in NOD-mice through an in-
crease in β-cell mass and downregulation of the autoimmune response (Suarez-Pinzon
et al., 2008, p.3281), while GLP-1 or gastrin alone did not induce such an effect. The
downregulation of the autoimmune response arises when the cytokines change their
expression from cytotoxic to benign, thus sparing the β-cells from further cytokine-
induced apoptosis. Beside this intermittence of autoimmunity Suarez-Pinzon et al.
(2008) also observed an increase in β-cell replication of duct cells, but not from the
pancreatic β-cells (Suarez-Pinzon et al., 2008, p.3284). The results of Suarez-Pinzon
et al. (2008) suggests that combination therapy with GLP-1 and gastrin can be used at
the third stage of T1D.
Besides these positive results obtained by the combination of GLP-1 and gastrin,
Urusova et al. (2004) gives a summary of recent data that shows that GLP-1 on its
own has an anti-apoptotic effect on β-cells. Urusova et al. (2004) also reports that
GLP-1 regulates the differentiation of progenitor cells as well as induces β-cell prolif-
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eration in situ Urusova et al. (2004). The findings reported Urusova et al. (2004) are
corroborated in Brubaker and Drucker (2004).
Though we have several other articles on GLP-1 we stop here, and present a summary
of GLP-1-related positive effects that could be included in a mathematical model:

• Regulates differentiation of pancreatic progenitor cells (Urusova et al., 2004, p.27)
• It causes β-cell proliferation in the islets (Urusova et al., 2004, p.28)
• Protects β-cells from apoptosis (Urusova et al., 2004, p.30-31)
• Increases replication of duct cells (Suarez-Pinzon et al. (2008))
• Has an intermittent effect on the autoimmune response (Suarez-Pinzon et al.

(2008))
We would like to reiterate that the results of Suarez-Pinzon et al. (2008) are for GLP-1
and gastrin, while those of Urusova et al. (2004) and Brubaker and Drucker (2004) are
for GLP-1 alone. In the following section we will turn our attention to gastrin.

3.3 Gastrin
Rooman and Bouwens (2004) tested the effects of gastrin and epidermal growth factor
(EGF), as well as gastrin only and EGF only on (C57Bl6/J1) alloxan2 treated mice.
They also treated healthy specimens, that were not to be given alloxan, with the com-
bination to see if it had any effect on these.
On the first day the mice that were not chosen as control specimens were given in-
travenous injections of alloxan. The mice that were treated with gastrin and EGF all
became normoglycemic after eight days of treatment, and normoglycemia persisted un-
til 6 weeks after administration of alloxan, at which point the mice were terminated.
The mice that were treated with gastrin only or EGF only were unsuccessful in reach-
ing normoglycemia (Rooman and Bouwens, 2004, p.261). Rooman and Bouwens (2004)
speculates that duct cells are responsible for regeneration in the pancreas (Rooman and
Bouwens, 2004, p.264). In the mice that were given gastrin only neogenesis of β-cells
was observed.
Again we see that the desired effects depend on a combination of gastrin and another
drug – in this case epidermal growth factor.

3.4 Dendritic Cells
Dendritic cells (DC) may play a crucial part in the initiation T1D, but they also have a
part to play in regards of possible therapeutic advances. Immature DCs are responsible
for keeping the immune system from initiating autoimmune attacks, by making T cells
tolerant to autoantigens.3 However under certain (pathological) circumstances the DC’s
travel to the lymph nodes where they activate the immune system, thus initiating an

1 The C57Bl6 mouse is the most commonly used laboratory mouse. The “J” in C57BL6/J indicates
that it is an C57Bl6 mouse that has been (genetically) altered (Pociot (2009)).

2 Alloxan is a medicament used to induce experimental diabetes (Szkudelskii (2001)).
3 Autoantigens are recognized by the adaptive immune system – if the immune system recognizes the
autoantigens as foreign antigens, then an autoimmune response may occur leading to cell destruction
(Seeley et al., 2008, p.798-801).
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autoimmune response focused on the pancreatic β-cells, see e.g. Ludewig et al. (1998)
or Haase et al. (2004). Dendritic cells have also been linked to predisposition for T1D
(Skarsvik et al. (2004)).
Some of the first experiments using transfer of dendritic cells as therapy were carried
out approximately at the same time as GLP-1 came into the spotlight (Clare-Salzier
et al. (1992)). But where GLP-1, and especially GLP-1 together with gastrin, showed
potential as a stage-3 drug, successful therapy using DC has been carried out primarily
at early stages of islet destruction (Lo and Clare-Salzler, 2006, p.421), though prelimi-
nary results of Lo and Clare-Salzler (2006) indicate that treatment using DC’s can be
initiated at any time before onset of T1D.

3.5 Antigen Treatment Merits Caution
In the previous sections we have only encountered cases where antigen therapy yielded
positive results. However not all results are so optimistic. Blanas et al. (1996) urges
caution in administering antigen therapy to human patients, as it can precipitate rather
than arrest the onset of T1D (and other autoimmune diseases). Häenninen (2000) report
similar results, and ascribes the continued autoimmune response to cytotoxic T cells.
In Marée et al. (2006)(b) (not to be confused with Marée et al. (2006) which contains the
model we will analyze in this work) they have taken the consequence of these seemingly
contradictory results and made a mathematical model that shows that the difference
between failure or success of antigen therapy hinges on marginal deviations in dose or
peptide affinity.



4 Mathematical Modelling

The language of mathematics is widely used to describe a myriad of naturally occurring
phenomena. This is partly due to the fact that mathematical modelling along with
stability analysis allows for a qualitative description/understanding of systems in which
one or more of the components are not sufficiently or accurately determined, as it is
particularly the case in the medical sciences, where it is next to impossible to obtain data
for many in vivo parameters, e.g. rate constants. It can also help estimate parameters
based on which dynamical behavior is expected from a given system, or it can aide in
the understanding of which parameters are the most significant for the behavior – given
of course that the model is accurate enough, but more about this in the next paragraph.
The construction of mathematical models is not something that is based on a set of
well-defined rules or prescriptions, and one must always keep in mind what the purpose
of the model is; Do we (think we) know all the parameters and just want to make
long-term simulations? Are there stochastic processes involved, so we are content with
results within a confidence interval? Is the model made with the single purpose of
estimating parameters or do we just want to mimic a certain behavior regardless of
quantitative agreement with nature? To each purpose different a priori guidelines for
constructing a mathematical model comes to mind. In terms of mathematical modelling
in the biosciences we find these to be:

1. A reliable model should be based on an observable structure, by structure we
mean the underlying physiological/physical/biochemical etc. system which is of
interest.

2. The model should be rid of non-natural behavior, e.g. concentrations should not
be able to reach infinity or assume negative values.

3. The model must exhibit the measured/expected behavior within a given range of
known parameter-values.

The first guideline should secure that the model is not taken out of the thin air. The
second and third guidelines serve to validate the model’s foundation in reality.1
In this study we will concern ourselves with modelling of type 1 diabetes. To the
uninitiated this may sound as a well-defined and isolated task, but the workings of the
pancreas like most physiological systems is astonishingly complex. Thus the mathe-
matical description of such systems becomes a difficult balancing act between including
relevant factors and not making the model impossible to work with. Including every
single mechanism involved in the onset of T1D would very likely obscure rather than
elucidate which are the important components in the system dynamics. Therefore it is
often advisable to seek a parsimonious model. Or as Murray (2002) puts it (Murray,
2002, p.175)

1 Notice that question i (cf. section 1.1) deals with the second guideline.
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The complexity of biological and biochemical processes is such that the
development of a simplifying model is often essential in trying to understand
the phenomenon under consideration. [...] Frequently the first model to be
studied may itself be a model of a more realistic, but still to complicated,
biochemical model.

It is however important to stress that one should not oversimplify a system when trying
to model it – modelling the dynamics of hares versus foxes makes no sense if you remove
either one of them!
But how then can mathematical modelling contribute to research in the etiology of
T1D? Luckily it is possible to obtain data from bio-models such as the diabetes prone
NOD mouse and the Balb/c mouse; cf. section 2. These data can be used as a ref-
erence, both quantitatively and qualitatively to see if a mathematical model that is
based on a certain hypothesis matches this hypothesis. Thus the bio-models allows for
testing of different hypothesis in a (to humans) non-invasive manor. This means that
the mathematical models can be refined (based on biological reasoning), and hopefully
at some point be so in tune with the data, that we can learn something from it that
can be of assistance in the understanding of the human development of T1D.
This symbiosis between data and mathematical modelling is exemplified in the next
chapter where we will introduce the model of Marée et al. (2006). They use mathemat-
ical modelling to test the hypothesis that it is first of all macrophages that are the most
important immune cells affiliated with the onset of T1D, and secondly that it is a defect
in the macrophages of NOD mice that is responsible for the spontaneous outbreak of
insulitis in this rodent. This means that they do not include T or B cells, or DCs for
that matter – in agreement with Murray (2002).
In section 5.7 we will present and look closer at some of Marée et al. (2006)’s simplifi-
cations and assumptions.



5 The DuCa Model

In the following we give an account of the background of the full model of Marée et al.
(2006), which we have coined the DuCa model since it is a Dutch-Canadian collabo-
ration. We will also present the compartment system and the system of differential
equations as they have presented it in their article. While doing so we will comment or
clarify when we find it necessary. Afterwards, in sections 5.5 and 5.7, we discuss and
give a critical appraisal of the DuCa model and the assumptions/simplifications made
with it.

5.1 Background for the DuCa Model
The model proposed by Marée et al. (2006) is partly based on an earlier work by Marée
et al. (2005) and findings by Trudeau et al. (2000).
In Marée et al. (2005) they conclude that Balb/c macrophages are generally more ef-
ficient at phagocytizing apoptotic β-cells than NOD macrophages. Furthermore they
found that the Balb/c macrophages undergo an activation step after they have engulfed
their first apoptotic β-cell. After the activation step, their phagocytosis rate increases;
see table 5.1. In NOD-mice no activation step was observed, i.e. the NOD macrophages
do not become more efficient at phagocytizing after engulfment of an apoptotic β-cell.
Trudeau et al. (2000) found that a wave of apoptosis1 occurs in the pancreatic β-cells
in neonatal mice and other rodents as well. These findings led the scientific community
to hypothesize that the reason why T1D is more prevalent in NOD-mice (relative to
Balb/c-mice) is due to the poor phagocytosis rate of their macrophages (e.g. Trudeau
et al. (2000), Mathis et al. (2001)).
The greater phagocytosis rate in Balb/c-mice implies that the macrophages are able
to accommodate the increased amount of apoptotic β-cells during the apoptotic wave,
whereas this is not the case in NOD-mice. Here some of the apoptotic β-cells are left
uncleared long enough for the cells to become necrotic.2
When an activated macrophage engulfs a necrotic β-cell it secretes cytokines of which
some are cytotoxic to β-cells (Stoffels et al. (2004)). Thus more β-cells undergo apopto-
sis, yielding a higher concentration of apoptotic β-cells to be phagocytized. The NOD
macrophages are already incapable of clearing the cells that entered the system during
the apoptotic wave, and so more cells become necrotic and the cycle continues. In
other words a feedback loop is initiated in the NOD-mice, which eventually leads to
the decimation of the β-cell population. The more efficient phagocytosis of the Balb/c

1 An apoptotic wave is when an elevated rate of cells undergo apoptosis over a short interval of time
relative to the lifespan of the organism in which it takes place.

2 This also happens in the Balb/c mice, but only during a brief period.
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macrophages prevents the ignition of the feedback loop in these mice.
The following list summarizes the events that lead up to the sustained apoptosis of
β-cells in NOD-mice.

1. An apoptotic wave occurs.
2. The resting macrophages become activated when they engulf an apoptotic β-cell.
3. The activated macrophages, being as (in)efficient as the inactivated macrophages

are unable to clear all the apoptotic β-cells.
4. As some of the β-cells are left uncleared too long they enter necrosis.
5. The activated macrophages engulf necrotic β-cells as well as apoptotic β-cells. The

phagocytosis of necrotic cells causes the active macrophages to secrete cytokines.
6. Some of the cytokines are cytotoxic to β-cells, thus causing more β-cells to undergo

apoptosis.
7. As more β-cells undergo apoptosis the NOD macrophages will be more and more

overburdened thus more β-cells will become necrotic, which amplifies the detri-
mental feedback mechanism.

This should not be understood as though these things happen in a consecutive order,
rather they take place more or less concurrently. For example the instance the apoptotic
wave starts macrophages begin to become activated, a concentration of necrotic cells
arise and so also a concentration of cytokines etc.
To give a proper critique of the DuCa model we most now what the purpose of it is.
This leads us to our next section.

5.2 Purpose of Marée et al. (2006)
The purpose of Marée et al. (2006) is to answer the following questions (Marée et al.,
2006, p.1269)

• Can the difference in macrophage phagocytosis function in NOD ver-
sus Balb/c mice (alone, or in combination with other factors) account
for the distinct fates of these two strains, i.e. possible initiation of
autoimmunity in NOD but not in Balb/c mice?

• Can the wave of β-cell death associated with normal development in all
mice be a triggering stimulus that initiates the inflammation in NOD
mice?

using a mathematical model that retains the most important features of the preface of
T1D, i.e. continued β-cell destruction, based on a less is more concept (Marée et al.,
2006, p.1269).
They do not want to construct a mathematical model that incorporates every detail
involved in the onset of T1D, in agreement with our thoughts on mathematical mod-
elling; cf. chapter 4.
One example of their parsimonious approach is their handling of cytokines (and other
harmful factors). In chapter 2 we learned that several cytokines play a role in the eti-
ology of T1D (Blasio et al. (1999)), but Marée et al. (2006) lump all of these together
in one compartment (Marée et al., 2006, p.1276).
Marée et al. (2006) emphasizes that this mathematical model is based on the NOD
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and Balb/c bio-models, and they make no claims as to its applicability to the human
physiology.
The novel features in the DuCa model are comprised of the incorporation of an apop-
totic wave and necrotic β-cells.

5.3 The DuCa Model – An Appetiser
The DuCa model is not presented in a mathematical frame3 however Marée et al.
(2006) notes in an almost Fermatian4 way on the fact that their model holds interesting
dynamics by stating (Marée et al., 2006, p.1280):

Extended bifurcation analysis ... points to other interesting dynamics, in-
cluding cycle dynamics within certain parameter ranges. This will be the
subject of a mathematical treatment elsewhere.

The co-author Leah Edelstein-Keshet has informed us that no such analysis has been
performed because “[they] got busy with other projects” (Edelstein-Keshet (2009)).
The aim of this chapter is to embark on such an analysis.
Firstly we give a presentation to the DuCa model. The DuCa model contains five
coupled nonlinear differential equations. After the introduction to the DuCa model we
will analyze a few less complicated, or intermediate models, that contain only three
equations and are based on the CPH model. This gives the reader the opportunity
to appreciate what the simplifications made with the intermediate models entail and
contemplate the soundness of said simplifications. It should be noted that Marée et al.
(2006) themselves analyze, what we have called, The Intermediate Model (IM), and
since it is comme il faut to reproduce the results of others in the natural sciences, when
using their work as a basis, we reproduce and extend the analysis performed in the
article of Marée et al. (2006) in order to confirm the results they obtained in section 6.
Marée et al. (2006) presents a so-called compartment model as a visual representation
of their full system. Therefore we would like to present the principles behind com-
partment models as they are widely used in mathematical modelling of biological and
physiological systems.

An introduction to compartment models
In figure 5.1 a simple example of a basic compartment model with three compartments is
shown. Species A, B and C are some generic molecules/compounds/reactants/cells/etc.
of interest to a given model – in order not to make the rest of the text in this tutorial
too cumbersome let us say molecules. The concentration of species A is governed by
k1 and k2 times the concentration itself. k1 is the inflow, which is a measure of how
much, or how many, of species A that, possibly on average, flows into the first compart-

3 The article is from Philosophical Transactions of The Royal Society, and so not written with a
strictly mathematical audience in mind.

4 Fermat was a mathematician who lived in the seventeenth century. He is most famous for leaving a
note in the margin of his example of Arithmetica stating that an + bn = cn, where (a, b, c, n) ∈ N has
no solution for n > 2, and that he had found a wonderful proof for this, though the margin was too
little to contain it. A formal proof was not given until 1995.
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ment over some given period, e.g. a day. k2 is the corresponding efflux rate, or when
multiplied by the concentration the expression is the outflow, from the first compart-
ment, and is simultaneously the influx of the second compartment and so forth with
k3 and k4. Every ki is a positive rate constant, since they indicate the rate at which
the different molecules “are made” or turned into the type of molecule residing in the
next compartment – this process is assumed to be constant (as a first approximation),
hence rate constant (Murray, 2002, p.176). The rate constants k2, k3 and k4 have the
dimension time−1, thus one of these rate constants times a molecular concentration
implies a flow of said molecule with dimensions molecules per volume per time – notice
that the dimensions of k1 necessarily must differ from the other k’s, since it will not be
multiplied by a concentration. Therefore the dimension of k1 is molecules per volume
per time.
Molecules in the same compartment are all alike, with emphasis on “all”, i.e. a molecule
that has just entered the compartment cannot be singled out among the others.
It is important to notice that the arrows signify an actual flow of molecules from one
compartment to the next – the importance should become clear in a little while, as this
is not the case for all arrows in the compartment diagram made by Marée et al. (2006)
for the DuCa model.
Models such as the one in figure 5.1 can (often) be deconstructed into a set of biochem-
ical reaction equations as given in equations 5.1 to 5.4

k1−→ A (5.1)

A k2−→ B (5.2)

B k3−→ C (5.3)

C k4−→ P (5.4)

By noting that an influx implies a positive contribution of molecules, and an efflux im-
plies a negative contribution, we can construct the corresponding differential equations

-
k1

Species A -
k2

Species B -
k3

Species C -
k4

Figure 5.1 shows an example of a generic compartment model.
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for the change in the concentration of A,B,C (Othmer (2006)):

da
dt = k1 − k2a (5.5)

db
dt = k2a− k3b

dc
dt = k3b− k4c

dp
dt = k4c

where we have assumed that we have an inexhaustible source and sink, and lower-case
letters denotes concentrations.
Using a compartment description of a system has the benefit that it provides an easy
overview of the molecular flow in the system, and thereby it facilitates a visual under-
standing of how the differential equations interact.
Now that we have presented some fundamentals regarding compartment models we
present a slightly modified version of Marée et al. (2006)’s compartment model; see fig-
ure 5.2. In the original compartment diagram in Marée et al. (2006), the arrow pointing
from the compartment of macrophages toward the compartment of active macrophages
was associated with a rate constant called g. But in the Marée et al. (2006) article
they write that g = f1 several times so we have decided only to use f1 to avoid con-
fusion – this is our modification. Besides this figure 5.2 is a replication of the original
compartment diagram as presented on page 1277 in Marée et al. (2006).

5.4 The DuCa Model – Compartment Model and Equation System
As we have just learned the fully drawn arrows should signify an actual flow of mole-
cules from one compartment to another; e.g. resting macrophages become activated,
and leave the macrophage compartment, only to enter the compartment of activated
macrophages (at rate f1); figure 5.2. But as we will soon learn from equations 5.6 to
5.10 the fully drawn arrow from the Ma compartment to the cytokine compartment
does not obey this rule. The interpretation of the stippled arrows is also a little ab-
struse. On one hand the stippled arrows seem to indicate that a stimuli is mediated to
the appropriate receptors/cells thus facilitating an increase/decrease in the molecular
concentration at hand; e.g. the activated macrophages do not themselves flow into
the surrounding tissue and reenter the macrophage compartment – rather they recruit
macrophages by signaling, signified by b. On the other hand the secretion of cytokines,
at rate α, is evidently not a signaling process, but Marée et al. (2006) also identify it
by a stippled arrow that meets the fully drawn arrow from the Ma-compartment which
we mentioned just before. We will get back to these sources of confusion in section
5.5, where we will present a modified compartment model that we have constructed
ourselves.
Just as there was a correspondence between figure 5.1 and equations 5.5 so Marée et al.
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Figure 5.2 shows the compartment system as given by Marée et al. (2006). M , Ma, Ba, C and
Bn are the concentrations of macrophages, activated macrophages, apoptotic β-cells, cytokines
and necrotic β-cells respectively, and Amax/(kc+C) is a Michaelis-Menten saturation function
of the concentration of cytokines; cf. appendix A.4 for an introduction to Michaelis-Menten
kinetics. An explanation and values of a, b, c, d, f1, f2, kc, Amax, α, δ is given in table 5.1.

(2006) set up a set of nonlinear coupled differential equations as follows (cf. figure 5.2)

dM
dt = a+ (k + b)Ma − cM − f1MBa − e1M(M +Ma) (5.6)

dMa

dt = f1MBa − kMa − e2Ma(M +Ma) (5.7)

dBa
dt = W (t) + AmaxC

kc + C
− f1MBa − f2MaBa − dBa (5.8)

dBn
dt = dBa − f1MBn − f2MaBn (5.9)

dC
dt = αBnMa − δC (5.10)
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with initial conditions (M,Ma, Ba, Bn, C) = (4.77 × 105, 0, 0, 0, 0).5 The equations
should be interpreted thusly:
Equation 5.6: the rate of change in the concentration of macrophages, M , is made up
of a gain from the influx, a, the deactivation rate of the active macrophages times the
concentration of active macrophages, kMa, and the recruitment rate times the con-
centration of active macrophages, bMa, and a loss constituted by the efflux, c, times
M , the activation rate of resting macrophages, f1, times M times the concentration of
apoptotic β-cells, Ba, and lastly the crowding rate, e1, times M(M +Ma).
Equation 5.7: the rate of change of the concentration of active macrophages, Ma, is
made up of a gain from f1 times MBa and a loss or efflux due to the deactivation rate,
k times Ma, and the crowding rate, e2, times Ma(M +Ma).
Equation 5.8: the rate of change in the concentration of apoptotic β-cells, Ba, is gov-
erned by the phagocytosis rates, f1 and f2, times MBa and MaBa respectively and the
nonspecific decay rate, d, times Ba. These make up the negative contributions while
the apoptotic wave (not shown in the figure), W (t), and the Michaelis-Menten satura-
tion function of cytokines, (AmaxC)/(kc+C), where Amax is the maximal rate of apoptotsis
that the cytokines can induce, and kc is the Michaelis constant, constitute the positive
contributions.
Equation 5.9: the rate of change of the necrotic β-cells, Bn, is influenced by a positive
contribution from dBa, and negative contributions from f1 and f2 times MBn and
MaBn respectively.
Equation 5.10: the rate of change in the cytokine concentration, C, depends on the
decay rate, δ, times C and the secretion rate by active macrophages, α times MaBn.
The meaning and units of the different parameters are given in table 5.1. At a first
glance the equations almost seem to be in accordance with what we learned when we
looked at generic compartments in subsection 5.3. But soon we see that something is
amiss. We will return to these matters in section 5.5. For now let us return to the
DuCa model, or rather the equations that comprise it.
To unfold equations 5.6 to 5.10 a little more and to give ourselves the opportunity to
think thoroughly about every term on the right hand side in said equations we present
a comprehensive list of how we understand each term:

• a is daily inflow of resting macrophages from the surrounding tissue
• kMa is the deactivation rate of activated macrophages times the concentration

of activated macrophages, i.e. the dimensions are cells ml−1d−1, where “d” in
this case is days, not to be confused with the parameter d. This term repre-
sents the flow of deactivated macrophages from the Ma-compartment into the
M -compartment

• bMa is a measure of the extra influx of resting macrophages due to signalling to
the surrounding tissue by active macrophages.

• cM is daily efflux of resting macrophages, i.e. the outflow of resting macrophages
to the surrounding tissue.

• f1MBa in equation 5.6 represents the outflow of resting macrophages that have
become activated upon clearance of an apoptotic β-cell, hence Ba is included in

5 For a statement of the existence and uniqueness theorem, and its application to the DuCa model cf.
appendix A.1.
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the expression. This is also why f1MBa appears in equation 5.8 as a loss and in
equation 5.7 as a positive inflow.

• e1M(M + Ma) and e2Ma(M + Ma) are effluxes that model the effect of crowd-
ing. More precisely they model the competition for space (Strogatz, 2000, p.156)
between macrophages and active macrophages. The specific expressions are classi-
cal for two-species competition (Edelstein-Keshet (2009)), e.g. the Lotka-Volterra
model of competition (Strogatz, 2000, p.155-159). They serve as inhibitory terms,
that become significant only when the concentration of M and/or Ma becomes
large. In other words they ensure a limit to the growth of M and Ma – as the
concentrations M and Ma grow the e1M(M + Ma) and e2Ma(M + Ma) terms
become more and more significant, thus limiting the growth, while when M and
Ma are small the terms are insignificant. In the original parameter-table given
in Marée et al. (2006) the units of e1 and e2 were cell−1d−1, but naturally this
implies a dimensional-discrepancy in the model, so we have altered these units in
table 5.1.

• W (t) is the apoptotic wave. In the DuCa model it is modeled by a Gaussian
function given by 4 × 107 exp(−((t − 9)/3)2) cells ml−1 d−1 because the wave
peaks after 9 days and 4× 107 enter apoptosis overall due the apoptotic wave.

• AmaxC
kc+C describes the rate of cytokine induced apoptosis. Amax

kc+C is a Michaelis-
Menten saturation function of C which in other words means that the cytokine
induced apoptosis is saturated. Other functions could have been chosen, e.g.
a general Hill function which is a function of the form AmaxC

r

krc+Cr where r > 0 is
not generally an integer (Murray, 2002, p.200), and the higher the r the quicker
the saturation effect, but Marée et al. (2006) assumes the saturation to follow a
Michaelis-Menten function (Marée et al., 2006, p.1276) (notice that a Michaelis-
Menten function is just a Hill function with r = 1). In section 5.7 we will take a
look at what happens if Hill functions are used instead.

• f2MaBa is the amount of Ba cleared by Ma at rate f2, thus f2MaBa appears as
a loss in equation 5.8, but not in 5.7, since this does not imply any contribution
to the Ma-concentration (the active macrophages remain active, and therefore do
not leave the Ma-compartment).

• dBa is the amount of apoptotic β-cells that become necrotic per day.
• f1MBn is the amount of Bn cleared by M at rate f1 – Marée et al. (2006) as-

sumes that only clearance of apoptotic β-cells induces activation, thus the resting
macrophages do not leave their compartment (we will return to this assumption
in section 5.7).

• f2MaBn is the amount of Bn cleared by Ma at rate f2. As with the apoptotic
cells, the active macrophages remain activated during the process of phagocytosis.

• αBnMa is the amount of cytokines that are secreted by Ma upon phagocytosis of
Bn – once again the active macrophages do not leave their compartment due to
this, therefore this does not influence the rate of change of Ma.

• δC gives a measure of how many cytokines turnover a day without inducing
apoptosis.
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As a macrophage engulfs an apoptotic β-cell it becomes activated, moves from the com-
partment of resting macrophages, and into the compartment of activated macrophages,
yielding a positive contribution to this compartment. This can be seen in equation
5.6 and 5.7 where f1MBa is an efflux in equation 5.6 and reappears as the positive
input in equation 5.7 – remember that the macrophage engulfs the apoptotic β-cell i.e.
“it carries it with it” to the active macrophages compartment. We must remark that
in reality the macrophage does not move into a specific part of the tissue once it has
engulfed a β-cell, but rather into another state.
Now that we have introduced the compartment model, the equations and the para-

Parameter Meaning Balb/c NOD Units
a Normal macrophage influx 5 – ×104cells ml−1d−1

b Recruitment rate of M by Ma 0.09 – d−1

c Macrophage egress rate 0.1 – d−1

d Ba non-specific decay rate 0.5 – d−1

k Ma deactivation rate 0.4 – d−1

l Ba apoptosis induced per Ma 0.41 – d−1

f1 Basal phagocytosis rate per M 2 1 ×10−5ml cell−1d−1

f2 Activated phagocytosis rate per Ma 5 1 ×10−5ml cell−1d−1

e1 = e2 Anti-crowding rates 1 – ×10−8ml cell−1d−1

Amax Maximal cytokine-induced β-cell apoptosis rate 2 – ×107 cells ml−1d−1

kc Cytokine concentration for half-maximal apoptosis rate 1.0 – nM
α Cytokine secretion rate by Ma due to Bn 5 – ×10−9nM cell−2d−1

δ Cytokine turnover rate 25 – d−1

kb δ/αkc 5 – ×1010cell2

Table 5.1 summarizes the model-parameters and their values – d−1 is days to the power of
minus one, or “per day”. If not stated otherwise the parameters for NOD-mice are the same
as for Balb/c-mice. The rate constant l is not included in the DuCa model but appears in the
intermediate model in section 6. kb is not in the DuCa model either, but it appears in section
7 in equation 8.5. The table is a combination of the table on p. 1271 and p. 1278 in Marée
et al. (2006)

meters it is time to take a look at how the two systems (NOD and Balb/c) evolve over
time.
In figure 5.3 matlab-simulations of the systems with parameters as given in table 5.1
are shown. The concentrations in figure 5.3 are logarithmic.
On the left we see that the Balb/c-mouse is rid of everything but resting macrophages
after 50 days.6 This is not the case for the NOD-mouse. Here all concentrations become
constant, and greater than 0. This is in itself not a problem as long as they settle at a
very low concentration (save for the resting macrophages). The concentration of apop-
totic β-cells stabilizes at approximately 12 after 50 days. Thus after day 50 e12 β-cells
per ml become apoptotic. This is not a huge number, but if we add to this the number
of β-cells that were depleted before the first 50 days it starts adding up. We must also
remember that around 4-5 weeks of age, T cells will start infiltrating the islets, and add
to the destruction. The most important consequence of the constant concentration is
that the β-cells will keep on becoming apoptotic.

6 Remember that the concentrations are logarithmic, so a concentration of 0 is not really a concen-
tration of 0, rather it is a concentration of 1.
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Figure 5.3 To the left: dynamics of the Balb/c-mouse. To the right: dynamics of the NOD-
mouse. Based on parameters found in Marée et al. (2006), see table 5.1, and initial conditions
that correspond to a healthy rest state, i.e. (M,Ma, Ba, Bn, C) = (4.77× 105, 0, 0, 0, 0). The
apoptotic wave and the effect of it is seen as the peak at 9 days on the curves describing Ba-,
Bn- and C-concentrations. We see that inflammation persists in the NOD-mouse, whereas
nearly all apoptotic β-cells are removed before 21 days have transpired in Balb/c-mice.

5.5 Discussion of the Compartment Model
As we pointed out in the above section there are some discrepancies between equa-
tions 5.6-5.10 and figure 5.2, compared to how the equations in 5.5 corresponded to
the compartment system in figure 5.1. Not least the use of stippled arrows makes a
transformation from the compartment-system to a set of conventional reaction-kinetic
equations ambiguous.
Here we will make these matters more precise, devise some stringent rules for when it is
appropriate to use stippled arrows, or when the use of such arrows can be circumvented,
and when full-drawn arrows should be used. Ultimately we want to present a compart-
ment model that is in accordance with our rules and has a clearer correspondence with
the equations.
Firstly let us compare figure 5.2 to equations 5.6 to 5.10, and start with the most bla-
tant mismatches.
First of all the crowding terms are nowhere to be seen, secondly the apoptotic wave
is not shown, this could be because it is a short-lived event, but still it would at least
merit an explanatory remark why it is not there. Thirdly the stippled arrows identified
by f1 and f2 meet. While we do understand the meaning of this, and granted the
article is not written with compartment diagram-puritans in mind, it is still not a clear
way of setting up a compartment diagram – after the two arrows have merged it is
impossible to tell which of f1 and f2 we should assign to the arrow that continues after
the merging.
If we follow the aforementioned stippled arrows we get to the first of the two “clear-
ance” arrows. These arrows are not (directly) associated with any rate constant, as
they should be. Lastly there is the fully drawn arrow from the Ma compartment to
the cytokine compartment. This would normally imply that the active macrophages



5.6 Our Compartment Model 29

migrate to the cytokine compartment, i.e. become cytokines. This is naturally not the
case, so this is another issue we must address in the next section, where we present our
own version of compartment model.

5.6 Our Compartment Model
Now that we have touched upon what we perceive as inconsistencies in the original
model (figure 5.2), we will devise our own compartment model. But before we present
our version, we will specify how we use the fully drawn and stippled arrows, since
ambiguous use of the arrows was one of the major problems in the original model.

• Fully Drawn Arrow: is to be used only when there is an actual flow of molecules.
This means that if a fully drawn arrow points into a compartment, then the
differential equation that describes the rate of change in concentration of the
molecule in that compartment will contain a term that constitutes an inflow; e.g.
a in equation 5.6 or f1MBa in equation 5.7. If a fully drawn arrow points out of
a compartment, then the corresponding differential equation must contain a term
that signifies this outflow; e.g. −dBa in equation 5.8.

• Stippled Arrow: if a stippled arrow points into a compartment, it yields a positive
contribution in the corresponding differential equation, but without causing an
identical loss in the differential equation associated with the compartment the
arrow came from; e.g. αMaBn in equation 5.10 and AmaxC/(kc+C) in equation 5.8.

Now that these definitions are in place let us look at our compartment models. Yes,
we wrote models in plural, because we have found it necessary to divide the model
into two figures. We have split the model into a part that contains M , Ma and Ba
compartments which we call the non-necrotic part, and a part that contains M , Ma,
Bn and C compartments, which we call the necrotic or Bn-part. Had we not done so
arrows would be crossing each other, which does not facilitate the transparency of the
model. In figure 5.4 we have the non-necrotic part of our modified compartment model.
While figure 5.5 is the Bn-part of the compartment model. The compartment diagrams
are made in agreement with our definitions of full-drawn, and stippled arrows.
One feature of figure 5.4 that may seem a bit confusing is the stippled arrow that
leaves the Ma compartment to coincide with the fully drawn arrow leaving the Ba
compartment. This is done so because the apoptotic β-cells are phagocytized by the
active macrophages, which implies that the β-cells leave their compartment, hence
a full-drawn arrow. The active macrophages on the other hand do not leave their
compartment during phagocytosis (they remain activated), and they do not go to the
Ba compartment either, hence the stippled arrow from the Ma compartment points to
the fully drawn arrow.
Another feature that needs to be commented on is the stippled arrow that coincides
with the apoptosis arrow to the left of the Ba compartment. This arrow denotes the
cytokine induced apoptosis which appears as gain in equation 5.8. In figure 5.5 the same
arrow leaves the cytokine compartment. Another arrow that transcends the figures is
the arrow that represents the non-specific decay of β-cells – those that become necrotic.
This arrow enters the Bn compartment in figure 5.5, and thus entails a loss in equation
5.8 and a gain in equation 5.9.
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Figure 5.4 shows the non-necrotic part of our modified compartment model. M , Ma, and
Ba are the concentrations of macrophages, activated macrophages and apoptotic β-cells
respectively. An explanation of a, b, c, d, e1, e2, f1, f2, Amax, kc is given in table 5.1.

Besides standardizing the use of arrows we have also included the apoptotic wave, and
the crowding terms to make a compartment model that, albeit divided into two figures,
agrees with the governing equations.
Initially we wanted to rid the model of stippled arrows all together, in order to be able
to make a translation from the compartment model to a set of reaction equations, and
from there to the set of governing equations.
It is not impossible to get rid of the stippled arrows, but it requires extra compartments,
that contain intermediate combinations of, say, active macrophages that have engulfed
necrotic β-cells, and also we must introduce some extra parameters. In figure 5.6 we
have picked out a part of the original compartment model and added a compartment
containing active macrophages that have engulfed one or more necrotic β-cells. The
macrophages will either secrete a cytokine, at rate k4, or merely clear the necrotic
β-cell, at rate k5, without releasing any cytotoxic compounds – either way the active
macrophage will return to its compartment, at rate k3. If k1 and k2 are equal it means
that one macrophage engulfs one necrotic β-cell – if this engulfment is similar to the
engulfment of apoptotic β-cells, this need not be the case7 (Marée et al. (2005)).
Upon engulfment the macrophage will either consume the β-cell quietly, at rate k5, or
it will secrete a cytokine, at rate k4. We will not concern ourselves with the fate of the
cytokines in this example.
When we decompose the compartment system in figure 5.6 into mass action kinetic

7 In Marée et al. (2005) they observed that an activated macrophage could contain up to 7 apoptotic
β-cells (that were at different levels of phagocytosis), and this did not appear to be an upper bound
(Marée et al., 2005, p.542).
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Figure 5.5 shows the necrotic part of our modified compartment model. M , Ma, C and Bn
are the concentrations of macrophages, activated macrophages, cytokines and necrotic β-cells
respectively. An explanation of a, b, c, d, e1, e2, f1, f2, α, δ, Amax, kc is given in table 5.1.
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Figure 5.6 shows the compartment system corresponding to equations 5.17 to 5.20. The active
macrophages enter the MaBn-compartment at rate k1. The necrotic β-cells enter the same
compartment at rate k2. The necrotic β-cell can either be broken down quietly, at rate k5
or yield a cytokine, at rate k4. After digestion of the necrotic β-cell, the active macrophage
returns to the compartment containing these, at rate k3, i.e. k3 is a digestion rate.

equations we get

Ma +Bn
k1−→ MaBn (5.11)

MaBn
k3−→ Ma (5.12)

MaBn
k4−→ C +Ma (5.13)

MaBn
k5−→ Bn +Ma (5.14)

(5.15)
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Where Bn are necrotic cells that have been cleared quietly. Assuming that k1 = k2,
and noticing that quiet clearance or secretion of a cytokine implies that the macrophage
returns to the Ma-compartment, we require k3 = k4 + k5. Thus these equations can be
encompassed in a simple reaction equation as

Ma +Bn
k1−→ MaBn

k4−→Ma + C
↓ k5

Bn +Ma

(5.16)

equation 5.16 corresponds to the following set of differential equations

dMa

dt = k3MaBn − k1MaBn (5.17)

dBn
dt = −k1MaBn (5.18)

dMaBn
dt = k1MaBn − k3MaBn (5.19)

dC
dt = k4MaBn (5.20)

dBn
dt = k5MaBn (5.21)

Where we have used k1 = k2. If we assume that the MaBn-compartment is at a steady
state we get an expression for the concentration of the MaBn complex in terms of the
concentration of Ma and Bn thusly

MaBn = k1

k3
MaBn (5.22)

Substituting equation 5.22 into equation 5.17 we get

dMa

dt = k3
k1

k3
MaBn − k1MaBn (5.23)

If we want to add the compartments in figure 5.6 into the full system, then we must
add the right hand side of equation 5.23 to equation 5.7, but this comes to zero. Thus
we obtain

dMa

dt = f1MBa − kMa − e2Ma(M +Ma) (5.24)

for the rate of change in Ma, which is of course identical to equation 5.7. Thus we have
shown how we can avoid using stippled arrows, by introducing intermediate complexes.
We could just as well have made an extra compartment that contained MBa, MBn or
MaBa.

5.7 Discussion of Marée et al. (2006)’s Model Assumptions
To facilitate the overview we present a list of elements in the model that are either not
included or we find merits more discussion.



5.7 Discussion of Marée et al. (2006)’s Model Assumptions 33

• They do not include the constant apoptosis which occurs naturally regardless of
pathophysiological conditions.

• The apoptotic wave
• They choose a Michaelis-Menten function because they want to

avoid unrealistically high [cytokine induced] damage during the neona-
tal apoptotic wave

• Only engulfment of necrotic β-cells by active macrophages yields cytotoxic cy-
tokines.

• Clearance of necrotic β-cells does not imply any activation of the resting macrophages.
• It is assumed that macrophages are equally efficient at clearing apoptotic and

necrotic β-cells.

The role of naturally occurring apoptosis
Apoptosis of β-cells is not exclusively reserved for pathophysiological cases, but also
takes place in healthy individuals (Bouwens and Rooman (2005)). This assumption
will be dealt with in section 11.1 where it arises as a natural part of an expansion of
the DuCa model.

Significance of the Apoptotic Wave
In this short subsection we will discuss the apoptotic wave based on varying data
from the literature. We will also determine how the wave should behave if chronic
inflammation was not to occur in NOD-mice. It may be that modulating the apoptotic
wave is not a viable means of countering the ignition of the chronic inflammation, but
this is not for us as mathematicians to decide.
That an apoptotic wave occurs in neonates seems to be out of discussion when we look
at recent literature (e.g. Trudeau et al. (2000), Steer et al. (2006), and Ablamunits
et al. (2007)). Unfortunately we have not had access to the data, so we find it hard to
criticize the expression that Marée et al. (2006) use for the wave. We can however look
at how different peak-days influence the effect of the wave.
Marée et al. (2006) model the neonatal apoptotic wave by 4×107 exp(−((t−9)/3)2)cells
ml−1 d−1, which implies that the wave peaks at 9 days of age. Other results points to
that the wave peaks between 14 and 17 days of age (Steer et al., 2006, p.262)(Ablamunits
et al., 2007, p.19). Here we will first determine how low a peak-value the apoptotic wave
must have as not to be the cause of chronic inflammation under the assumption of the
9’th day being the peak day, and thereafter under the assumption of 14 to 17 days. We
will use the basic mathematical form of the wave as given by Marée et al. (2006) to
investigate these matters.8 I.e. we will change the peak value, and the number of days
after birth at which the wave peaks. In the original term (given above) the number of
days, at peak, is the number subtracted from time, t, as can be found by differentiating
the expression.
Simulations of the DuCa model with NOD parameters (not shown) reveal that the

8 Other forms could have been used, but we will not go into these matters here.
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Figure 5.7 Shows simulations of the DuCa model with a Hill function instead of the Michaelis-
Menten function. The Hill-coefficient is r = 0.855, and Balb/c phagocytosis parameters as
stated in table 5.1 are used, as are initial conditions that correspond to a healthy rest state,
i.e. (M,Ma, Ba, Bn, C) = (4.77× 105, 0, 0, 0, 0).

apoptotic wave must have a peak value of less that 2834 cells ml−1 entering apoptosis,
if inflammation is to be non-persistent, when 9 days designates the peak of the wave.
That is the wave should be modelled by 2.834×103 exp(−((t−9)/3)2)cellsml−1. When
the peak-day was increased to 14 the peak value increased to 2840, which was also the
value for 15 days – it only makes sense to work with whole cells. For 16 and 17 days
the peak value was 2841cellsml−1.
The conclusion from this quick study of the relation between peak value and peak
day shows that when we compare the minuscule increase in the number of β-cells that
can undergo apoptosis at the peak, without causing chronic inflammation, to the peak
value given by Marée et al. (2006), it seems futile to use delaying the peak day of the
apoptotic wave as a way of preventing inflammation. Therefore we also find that it is
reasonable to use the wave as modelled by Marée et al. (2006), with a peak at 9 days,
but we could just as well have used 14 or 17 days.

Michaelis-Menten versus a Hill function
Our second discussion point regards the usage of the Michaelis-Menten function. As we
mentioned in section 5.4 Hill functions can also be used to model saturation behavior.
We have made simulations of the DuCa model with a Hill function given by AmaxC

r

krc+Cr
instead of the Michaelis-Menten function; figure 5.7. For r ≥ 0.86 the behavior is qual-
itatively the same as for the Michaelis-Menten function, but for a Hill-coefficient of
r < 0.8564 some interesting things start to happen. Simulations done in matlab with
Balb/c parameters reveals a stable spiral that tends to a point that is consistent with
a state of constant inflammation, albeit the inflammation is not as severe as the one
experienced by the NOD-mice in figure 5.3; cf. figure 5.7 right subplot. The spiral is
seen as the transient period of damped oscillations in the left subplot. However before
we start to make hasty conclusions about the soundness of the DuCa model based on
figure 5.7 we must specify that Hill functions are often used to model systems in which a
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phenomenon called cooperativity occurs. Cooperativity describes the phenomenon that
an enzyme can become more (or less) prone to bind with substrates after binding with
one substrate (Murray, 2002, p.197). If the enzyme becomes more prone to bind, then
we speak of positive cooperativity, if the enzyme remains as prone to bind as before
binding to the substrate, then it is neutral cooperativity (Michaelis-Menten), and fi-
nally if it becomes less prone to bind we call it negative cooperativity (Murray, 2002,
p.201). The Hill-coefficient reveals if we are dealing with negative, neutral or positive
cooperativity.
Marée et al. (2006) do no want to model cooperativity, they just want the cytokine
induced apoptosis to be saturated, therefore we find that the use of a Michaelis-Menten
function is a sound assumption.

Implication of secretion of cytokines upon Ba phagocytosis
In Stoffels et al. (2004) they find that NOD macrophages produce cytotoxic cytokines
upon encountering necrotic as well as apoptotic cells, while Brouckaert et al. (2004)
holds that phagocytosis of neither apoptotic nor necrotic cells generates proinflamma-
tory cytokines (Brouckaert et al., 2004, p.1089). The results of Brouckaert et al. (2004)
indicates that phagocytosis of necrotic cells is less efficient than phagocytosis of apop-
totic cells – it may be so because the macrophages are better “tuned in” to the apoptotic
cells (Pociot (2009)). This is at variance with the assumption of Marée et al. (2006).
Brouckaert et al. (2004) does not dispute the fact that cytokines are observed together
with necrotic cells, but speculates that it is the necrotic cells themselves, rather than
the macrophages, that release cytokines, and speculates further that the inflammatory
effect is enhanced because the macrophages spend too much time engulfing the necrotic
cells, leaving more apoptotic cells to enter secondary necrosis (Brouckaert et al., 2004,
p.1099) thus proliferating the cytokines. Of course one could adjust the model to fit
these different result, but we must note that the macrophages studied in Brouckaert
et al. (2004) are of the so-called L929sA-type. The L929sA-type macrophage is asso-
ciated with cancer cells (Pociot (2009)), which obfuscates our ability to draw direct
parallels to NOD-macrophages.
Turning back to the results of Stoffels et al. (2004) and assuming that they are correct in
their findings, and further more assuming that the rate of secretion of cytokines based
on engulfment of apoptotic β-cells is equal to that from phagocytosis of necrotic cells,
then equation 5.10 is transformed to

dC
dt = αBnMa + αBaMa − δC (5.25)

This seemingly minor adjustment (remember that the secretion rate, α was a mere
5× 10−9 nM cell−2d−1) has a dramatic effect on the dynamics of the Balb/c mice, for
now the concentrationsMa, Ba, Bn, C do not go to zero, rendering the Balb/c mouse in
the same dire state as the NOD-mouse; see figure 5.8. This is of course at variance with
experimental observations. Thus if Stoffels et al. (2004) are correct, then the hypothesis
of Marée et al. (2006), that the onset of T1D in NOD, but not in Balb/c, mice is a
consequence of phagocytosis rate cannot hold. Something else must be involved. One
possibility is that the NOD-macrophages themselves have a predisposition for secreting
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Figure 5.8 A plot based on the findings
of Stoffels et al. (2004) that apoptotic as
well as necrotic β-cells implies cytokine
secretion. The implications of this
in terms of the model of Marée et al.
(2006) is that the Balb/c-mouse becomes
diabetic as well.

cytotoxic cytokines that the Balb/c macrophages do not have or that the NOD-β-
cells become necrotic faster than the Balb/c-β-cells; i.e. d is higher in NOD-mice.
We have, however, not been able to find any publications that report this. A totally
other possibility is that the cytokines secreted upon ingestion of an apoptotic β-cell
is not cytotoxic. As we learned in section 2.2 not all cytokines are cytotoxic, some
stimulate differentiation and stimulation, in agreement with the observation of Sreenan
et al. (1999) of increased β-cell proliferation before onset of T1D in NOD-mice (Sreenan
et al., 1999, p.992), i.e. during the preceding inflammation.
All things aside it is interesting that Marée et al. (2006) partially base their hypothesis
on the Stoffels et al. (2004) article, without mentioning that according to Stoffels et al.
(2004) phagocytosis of apoptotic cells also leads to release of cytokines.

Activation by phagocytosis of necrotic β-cells
A curious thing is that the resting macrophages do not become activated via phagocy-
tosis of necrotic β-cells. If we assume that the activation rate due to phagocytosis of
necrotic cells is equal to that due to apoptotic cells we could include activation due to
phagocytosis of necrotic cells by introducing a −f1MBn-term in equation 5.6, and a
+f1MBn-term in equation 5.7. In figure 5.9 we have done simulations with these addi-
tional terms, for NOD and Balb/c parameters. To the right we have Balb/c behavior,
on the left we have the NOD behavior. When we compare figure 5.9 to 5.3, we see that
assuming that resting macrophages become activated through phagocytosis of necrotic
cells imposes some noticeable differences during the initial face, but apart from that
there is no difference.
If we look at the graphs for the Balb/c parameters, the most obvious difference is that
the cytokines hardly make an appearance (when we use a logarithmic concentration).
At the same time, the apoptotic and necrotic cells have a significantly smaller max
concentration. This is naturally because initially there is a higher concentration of
active macrophages compared to simulations of the DuCa model without activation
from necrotic cells. With activation due to necrotic cells, the concentration of active
macrophages grows rapidly until it reaches a logarithmic concentration of approxi-
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Figure 5.9 shows simulations of the DuCa model with activation due to necrotic cells. Initial
conditions correspond to a healthy rest state, i.e. (M,Ma, Ba, Bn, C) = (4.77× 105, 0, 0, 0, 0).

mately 13, at which point the growth decreases. Without this activation, cf. figure 5.3,
the growth starts to decrease at 12. Thus with the additional activation more resting
macrophages become activated within the same time interval as without additional ac-
tivation. This implies that more apoptotic β-cells are phagocytized during the same
amount of time as before, thus less are left to become necrotic, which in turn implies
fewer necrotic cells, and thereby less cells to facilitate the detrimental cycle.
When we turn the graphs that are made based on NOD parameters, we see that there
is very little, if any, difference between the original DuCa model, and the one with
activation from necrotic cells – the concentration of apoptotic β-cells does not go to
zero. This is not very surprising, since there is no difference in the phagocytosis rate
between activated and resting macrophages in the NOD mouse.
Thus the moral of the tale is that when there is a difference between the phagocytosis
rate of a resting and an activated macrophage, it does make a slight difference in the
initial behavior to include activation due to necrotic cells.

5.8 Discussion of Parameters
Some parameter values are notoriously hard to measure, and therefore they are often
associated with estimates, or they may be known to lie within a given range. The
parameters in table 5.1 are no different. In table 5.2 we have gathered values from
different articles. It is interesting to see how much some of the values differ. An
obvious example is the difference in the efflux rate, c. Marée et al. (2006) report that
Furth and den Dulk (1984) find the turnover rate of resting macrophages to be in the
range (0.07 − 0.25) d−1, and based on this they estimate c ≈ 0.1d−1 (Marée et al.,
2006, p.1275). We have, however, not been able to locate this range in the article of
Furth and den Dulk (1984), and have based our value stated in table 5.2 on the value
that Furth and den Dulk (1984) report at the very end of their discussion (and in their
abstract), where they state that (Furth and den Dulk, 1984, p.1282)

The mean turnover time calculated with the value for the efflux of spleen
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Parameter Range/Estimate Units Source

b (0.03,0.05) d−1 Wigginton and Kirschner (2001)
c 0.011 d−1 Wigginton and Kirschner (2001)*

0.17 d−1 Furth and den Dulk (1984)
f1,Balb/c 2.57± 0.07× 10−5 ml×cell−1×d−1 Marée et al. (2005)
f1,Balb/c 1.29± 0.04× 10−5 ml×cell−1×d−1 Marée et al. (2007)†
f1,Balb/c 2.0× 10−5 ml×cell−1×d−1 Marée et al. (2006)
f1,NOD 1.10× 10−5 ml×cell−1×d−1 Marée et al. (2005)
f1,NOD 0.50× 10−5 ml×cell−1×d−1 Marée et al. (2007)†
f1,NOD 1.00× 10−5 ml×cell−1×d−1 Marée et al. (2006)
f2,Balb/c 5.11± 0.24× 10−5 ml×cell−1×d−1 Marée et al. (2005)
f2,Balb/c 5.66± 0.34× 10−5 ml×cell−1×d−1 Marée et al. (2007)†
f2,Balb/c 5.00× 10−5 ml×cell−1×d−1 Marée et al. (2006)
f2,NOD 1.02± 0.01× 10−5 ml×cell−1×d−1 Marée et al. (2007)†
f2,NOD 1.00× 10−5 ml×cell−1×d−1 Marée et al. (2006)
k (0.3,2.0) d−1 Wigginton and Kirschner (2001)*

Table 5.2 Different parameter values as found in the literature, and in the different articles of
Marée et al. An asterisk denotes that the value is an estimate. The † illustrates that this is
the most extreme value found in Marée et al. (2007) for the given rate constant; see subsection
5.8 for details. We have included the phagocytosis rates from Marée et al. (2006) for the sake
of comparison.

macrophages is 6.0 d
from which we obtain c = 0.166 d−1 = 0.17 d−1. This value differs by a factor of ten
relative to the value found in Wigginton and Kirschner (2001).
Another interesting point concerns the phagocytosis rates, which we will take a closer
look at in the next subsection.

Reversible or irreversible activation?
The NOD phagocytosis rates stated in table 5.1 are based on the Marée et al. (2005)
article. In this article they investigate various hypothetical phagocytosis models to de-
termine which one fits data obtained by in vitro assays on NOD and Balb/c macrophages
best – they determine this based on a statistical method called the Akaike Information
Criterion.9
They find that a model called the basic model fits the behavior of NOD-mice best (Marée
et al., 2005, p.546). The basic model assumes that there is no activation step after en-
gulfment of the first apoptotic cell (Marée et al., 2005, p.536), i.e. the macrophages
do not increase their phagocytic ability. This agrees with the assumption that f1 = f2
for NOD-mice in the DuCa model, though f1 can be calculated to be 1.10 × 10−5ml
cell−1d−1 from the Marée et al. (2005) article and not merely 1 as in table 5.1.
For Balb/c-mice a model called Variant I yields the best fit (Marée et al., 2005, p.546).
This model assumes an activation step, and a deactivation step that follows after di-
gestion of engulfed apoptotic bodies (Marée et al., 2005, p.537). Though the f1 and f2
values found in Marée et al. (2005) are a little higher than those given in table 5.1, see

9 In short the Akaike Information Criterion (AIC) is a way of identifying the optimal and most
parsimonious model from a set of model candidates when doing data analysis (Bozdogan, 1987, p.346).
Put another way: the AIC yields the best fit based on a notion of keeping the number of parameters
to a minimum.
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Parameter/mouse strain Value Dimensions Model type
f1,NOD 0.50× 10−5 ml cell−1d−1 Reversible
f2,NOD 0.97± 0.01× 10−5 ml cell−1d−1 Reversible
f1,NOD 0.50× 10−5 ml cell−1d−1 Irreversible
f2,NOD 1.02± 0.01× 10−5 ml cell−1d−1 Irreversible
f1,Balb/c 1.31± 0.05× 10−5 ml cell−1d−1 Reversible
f2,Balb/c 5.18± 0.30× 10−5 ml cell−1d−1 Reversible
f1,Balb/c 1.29± 0.04× 10−5 ml cell−1d−1 Irreversible
f2,Balb/c 5.66± 0.34× 10−5 ml cell−1d−1 Irreversible

Table 5.3 gives a comparison of the values as they are estimated in the most likely reversible
and irreversible models in Marée et al. (2007).

Figure 5.10 shows simulations with Balb/c phagocytosis parameters from table 5.3, and
initial conditions that correspond to a healthy rest state, i.e. (M,Ma, Ba, Bn, C) =
(4.77 × 105, 0, 0, 0, 0). On the left we have the reversible model which is tantamount to
the DuCa model. On the right is the irreversible model, i.e. with k = 0.

table 5.2 for comparison, this model still agrees with the DuCa model, and the solution
curves do not change noticeably from those presented in figure 5.3. So besides some
minor discrepancies between phagocytosis rates things seem to be in order. The inter-
esting part reveals itself when the later work done in the Marée et al. (2007) article is
taken into account. In this article they find that model variants with a deactivation step
(called reversible) and without deactivation steps, i.e. with k = 0 (called irreversible),
are statistically indistinguishable (Marée et al., 2007, p.162). Furthermore they find
that the basic model, which was used to estimate the NOD phagocytosis rates, is less
likely than models with an activation step. This of course entails that f1 6= f2 for
NOD-mice. In table 5.3 we have calculated the phagocytosis rates for the reversible
and irreversible models, based on the estimates given in Marée et al. (2007). In figure
5.10 simulations of the reversible and the irreversible model (k = 0) with Balb/c phago-
cytosis rates are presented. An obvious difference is how the concentration of active
macrophages evolves over time. The figure where we have used parameters from the
reversible model is almost interchangeable with the Balb/c behavior of the parameters
from table 5.1; though the solution curves for how the concentrations of cytokines and
apoptotic and necrotic β-cells evolve over time take on a slightly different form after
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the apoptotic wave, they all reach a (logarithmic) concentration of 0 within the same
amount of time as in figure 5.3. For the irreversible model it is another case. Here we
see the effects of setting k = 0. When we compare the behavior of the irreversible model
with figure 5.3 (the one showing Balb/c behavior) we see that it has a drastic influence
on the concentration of active macrophages. In the case of the irreversible model, there
is no natural efflux of the active macrophages, so it is the crowding term only that
provides a limitation to the growth of the concentration of active macrophages, which
as we can see in the righthand figure in figure 5.10 implies a much lengthier decline
in Ma concentration. This is in contrast with the behavior we should expect from the
concentration of active macrophages in Balb/c-mice (Marée et al., 2006, p.1279), where
it should tend to zero after the apoptotic wave has taken its toll. Thus if the DuCa
model is essentially correct, then the irreversible model cannot qualify as a model of
phagocytosis (statistically indistinguishable from the reversible model or not), and if the
irreversible model is to be taken as a good approximation of macrophage phagocytosis
in Balb/c-mice, then the DuCa model needs to be revised. Besides these observations
we must remember that the irreversible and the reversible model were statistically in-
distinguishable – a conclusion that is based on measurements without any connection
to the DuCa model. Figure 5.11 shows how the different concentrations evolve in the

Figure 5.11 shows simulations with NOD phagocytosis parameters from table 5.3. On the left
we have the reversible model, i.e. the DuCa model. To the right is the irreversible model, i.e.
with k = 0. The two figures are qualitatively indistinguishable.

reversible and the irreversible model with NOD phagocytosis rates. Relative to the
differences we observed for Balb/c rates, there is not much to speak of for the NOD
rates, except that the concentrations of apoptotic and necrotic β-cells and cytokines
stabilize at a higher concentration in the reversible model, while the resting and active
macrophages stabilize at a lower concentration. In biological terms this means that the
β-cells will be depleted faster in this scenario.
When we compare figure 5.11 to the NOD behavior in figure 5.3, we see that quali-
tatively there is no difference in how the concentrations evolve – following an initial
period of oscillations the course is set for the demise of the population of β-cells.
One very important thing to notice is that the phagocytosis rates presented in table 5.2
are based on in vitro experiments. This is naturally a much more artificial environment
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than an in vivo environment. This means that a lot of processes that occur in vivo have
been removed from the equation, so to speak. It may be that the only way of obtaining
good estimates of the phagocytosis rates is via such in vitro studies, but it implies that
we cannot readily assume that the in vivo phagocytosis rates are exactly the same.
Another thing that is interesting when we are speaking about phagocytosis rates, is the
fact that there is a major difference in the percentage of NOD-mice that develop T1D,
when one looks at female versus male specimens.
If Marée et al. (2006) are correct, i.e. if the difference between developing T1D or not
is predominantly a matter of macrophage phagocytosis rates, then this must mean that
there is a difference in these rates between male and female NOD-mice. Though we
are not capable of inferring any direct relation between the phagocytic differences in
male and female mice and their bodily attributes (such as weight) or other things that
may have an impact on their immune system or pancreas, such as living circumstances
(e.g. the female mice give birth which may have an impact on their immune system),
it would be very interesting if anyone had the expertise to make such an inference, as
this could take the model to a new level. This would mean that the model could be
used as a specimen-specific model, i.e. by adjusting the rate constants according to
some rule that relates phagocytosis rates to the attributes of the specimen at hand the
model should yield a behavior that is specific for the specimen at hand.

The DuCa model with turnover of Ma

In the figures we have presented above we have blindly used the DuCa equations,
though we have set k = 0 for the simulations of the irreversible model, and changed
the phagocytosis rates. Now we would like to present some simulations we have done
with a seemingly minor alteration that addresses the fact that active macrophages in
reality also succumb to turnover (Blasio et al., 1999, p.1680), with a turnover rate that
is equal to the turnover/efflux rate of resting macrophages (Wigginton and Kirschner,
2001, p.1963). This means implementing a term of −cMa in equation 5.7.
When we use the original model parameters, given in table 5.1, this alteration does not
change the behavior of the NOD nor the Balb/c concentrations. But when we introduce
it in the reversible as well as the irreversible model with matching parameters something
interesting happens to the behavior of the Balb/c concentrations. In figure 5.12 we have
the log-concentration versus time plot on the left and a phase space plot of M versus
Ma on the right. Introducing the turnover of active macrophages in the irreversible
model entails the occurrence of a stable spiral. Obviously this is at variance with the
dynamics we would expect from Balb/c-mice.
For the reversible model the change in behavior is less interesting (there is no spiral),
but as we can see in figure 5.13 the behavior differs essentially from the behavior we
saw in figure 5.3, in the key aspect that once again inflammation persists, though the
concentration of cytokines is removed. As we mentioned earlier the original DuCa model
with parameters given in table 5.1 retained its behavior after we added the turnover of
active macrophages. However as we learned that the reversible model with matching
Balb/c phagocytosis parameters also exhibited persistent apoptosis of β-cells (when
we added the turnover of active macrophages), we found it interesting to investigate
how much the Balb/c phagocytosis rates should deviate from their original values,
f1 = 2 × 10−5, f2 = 5 × 10−5ml cell−1d−1, before the DuCa model with Ma-efflux
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Figure 5.12 shows simulations of the irreducible model made with matlab where k = 0, f1 =
1.29×10−5ml cell−1d−1, f2 = 5.66×10−5ml cell−1d−1, and the term −cMa has been added in
equation 5.7 to model turnover of active macrophages. The initial values are that of a healthy
rest state. On the left we have the log-concentration versus time plots of the concentrations.
On the right is a phase space plot of M versus Ma.

Figure 5.13 shows a simulation made
with matlab of the reversible model
where a term of −cMa has been added to
equation 5.7 to model turnover of active
macrophages. The simulation is done
with f1 = 1.31× 10−5ml cell−1d−1, f2 =
5.18 × 10−5ml cell−1d−1 and initial
conditions that simulate a healthy rest
state.

fails to exhibit Balb/c dynamics as observed in experiments. In figure 5.14 we see the
solution curves of the respective concentrations in a log-concentration versus time plot,
and a phase space portrait of the resting versus active macrophages. The phase space
portrait shows that a so-called limit cycle exists for (f1, f2) = (1.88, 5) in the DuCa
model with Ma-efflux.
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Figure 5.14 In the figures simulations of the DuCa model with turnover of the active
macrophages are presented. To the right we see sustained oscillations in the concentrations
of macrophages, active macrophages, apoptotic and necrotic β-cells, and to the left we have
a phase space plot of macrophage versus active macrophage concentration. The phase space
portrait reveals the existence of a limit cycle, which by further numerical inspection turns out
to be semi-stable.
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6 The Intermediated Model

The following section will give some insight into the origin of the DuCa model presented
in the beginning of section 5. Before Marée et al. (2006) present the DuCa model they
take a look at the (reduced) CPH model;1 see figure 6.1 and equations 6.1–6.3. The
(reduced) CPH model describes how the concentration of macrophages (M), active
macrophages (Ma), and β-cell antigens (A), depend on each other.
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Figure 6.1 A compartment representation of the CPH model. a denotes inflow of macrophages,
b is cytokine induced macrophage-inflow, c is the efflux of macrophages, f1 is the activation
rate of macrophages due to antigens, k is the deactivation rate of active macrophages, l is
cytokine induced damage that furthers the production of antigens, and lastly m is the decay
rate of antigens (Blasio et al., 1999, p.1680). The figure is a reworked version of the figure
found on page 1680 in Blasio et al. (1999).

1 For the full version of the CPH model we refer to Blasio et al. (1999).
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The differential equations that correspond to the compartment system in figure 6.1 are
dM
dt = a+ (b+ k)Ma − cM − f1MA (6.1)

dMa

dt = f1MA− kMa (6.2)

dA
dt = lMa −mA (6.3)

The purpose of the CPH model was not to give a quantitative prediction of how the
onset of T1D comes about, rather it was to illustrate that T1D is caused by multiple
factors coming together in a synergetic way, and to show that the difference between
onset and not onset depends on a threshold that incorporates these factors, i.e. the
onset of T1D implies crossing a “threshold surface” that is spanned in the parameter
space, of the model. This threshold was found through stability analysis and defined
as f0 (Blasio et al., 1999, p.1684)

f0 ≡
f1l

ck
(6.4)

Where the system is guaranteed to be stable for f0 < 1. Marée et al. (2006) wants to
illustrate that chronic inflammation can not occur for biologically reasonable parameter
values in the CPH model, and thus the CPH model needs revision if it is to be used
as a quantitative model. Therefore the DuCa model can be seen as an extension of the
CPH model that has been modified to investigate a different hypothesis.
In this section we are going to take a look at what we have dubbed the Intermediated
Model (IM). This model bridges the gap between the CPH model and the DuCa model.
The IM can be seen as a slightly modified CPH model and as a rudimentary version of
the DuCa model. Marée et al. (2006) does not, however, tell the story of how to revise
the IM model to transform it into the DuCa model. This implies that even though the
DuCa model originates from the IM there is no straight line between the imperfections
of the CPH model/IM model and the modifications done on the IM to reach the DuCa
model. However the extension of the CPH model is quite straightforward since Marée
et al. (2006) aims to investigate whether the effectiveness in phagocytosis can make
the difference between a diabetic and a non-diabetic mice. As stated in section 5.1
this hypothesis is rooted in an observed difference in phagocytosis rates for Balb/c and
NOD-mice, seen in the basal phagocytosis rate of the resting macrophages, but also in
their ability to undergo an activation step, when the first apoptotic cell is engulfed. To
investigate the effect of these differences they implement the clearance of apoptotic β-
cells done by the resting and activated macrophages into the CPH model, by including
the terms f1MBa and f2MaBa. This modification addresses another peculiar aspect
of the CPH model since there was no clearance of the antigens due to macrophage
engulfment, but only a nonspecific decay. This seems odd since one should expect
that upon engulfment of a protein, there is one less to activate the remaining resting
macrophages. This leads us to the next modification, albeit of a more conceptual
matter. Instead of monitoring the antigens – i.e. small protein fractions of the β-cells
that underwent apoptosis, they look at the clearance of an apoptotic β-cell as a whole.
These changes lead to the system of differential equations seen in 6.5 - 6.7, and the
corresponding compartment can be seen in figure 6.2.
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Figure 6.2 The figure shows the compartment system for the IM, as given by Marée et al.
(2006). M , Ma, and Ba are the concentrations of macrophages, activated macrophages, and
apoptotic β-cells respectively. An explanation of a, b, c, d, f1, f2 is given in table 5.1. Adopted
with minor changes from (Marée et al., 2006, p.1270)

dM
dt = a+ (k + b)Ma − cM − f1MBa (6.5)

dMa

dt = f1MBa − kMa (6.6)

dBa
dt = lMa − f1MBa − f2MaBa − dBa (6.7)

Notice if we set f1MBa = 0, f2MaBa = 0 and Ba = A the system of equations reduces
to the CPH model seen in 6.1,6.2 and 6.3. This is also presented in Marée et al. (2006)
under the alias “the basic model”, and it undergoes an analysis which we will review
and unfold. But first we will state what to expect from the behavior of the model from
a physiological point of view.

Model observations
The biological frame plays a twofold role in the modelling process. It sets the limit for
the dynamics the model should exhibit (e.g. no negative concentrations), but at the
same time it works as a guideline for what kind of dynamics that, at least, should be
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expected. So on that basis it is possible, before digging deeper into a mathematical
analysis, to give an outline of what kind of dynamics that is expected from the IM
model.
First of all it must allow for the existence of a stable healthy rest state, for both NOD
as well as Balb/c-mice. That is, a stable steady state where no apoptotic β-cells are
present, and hence no activated macrophages and therefore just a constant density of
resting macrophages in the tissue, given by the fraction between influx and efflux, (a/c),
of macrophages. This is a necessity since no unprovoked inflammation occurs, and when
inflammation does occur it is given that Balb/c-mice, and (in the real world) even some
NOD-mice2, return to the healthy state, so it has to be stable. This is a consequence
of the observation that not all NOD-mice develop T1D, as we stated in chapter 2.
Furthermore the model should hold the possibility for NOD-mice to acquire a chronic
inflammation, initiating the removal of pancreatic β-cells. This implies the existence
of, at least one, nontrivial fixed point, or a (at least in theory) stable limit-cycle in the
positive region, R3

+. Information about the stability of this fixed point requires further
mathematical treatment.

6.1 Fixed Points of the IM Model
We now turn to the analysis of the IM which, once again, should be pointed out to
be an unfolding of what is already presented in Marée et al. (2006). From a modelling
point of view we are only concerned about what happens in the nonnegative region
since this is the only physiologically valid domain. Therefore we are only going to look
for fixed points in the nonnegative region. An equilibrium, or a fixed point of a system,
say ẋ = f(x), where the dot denotes the derivative with respect to time, satisfies ẋ = 0,
so for the IM we have

0 = dM
dt = a+ (k + b)Ma − cM − f1MBa (6.8)

0 = dMa

dt = f1MBa − kMa (6.9)

0 = dBa
dt = lMa − f1MBa − f2MaBa − dBa (6.10)

Note that as in the full model all the parameters are positive. Looking at the healthy
rest state by setting (Ma, Ba) = (0, 0) and solving equation 6.8 with respect toM yields
M = a/c. So the healthy rest state is at

(M,Ma, Ba) = (a/c, 0, 0) (6.11)

This is furthermore a good approximation for the healthy rest state of the system where
crowding terms are included provided that e1 � c2

/a; cf. appendix A.7). Now, turning

2 When we run simulations of the DuCa model using NOD parameters, naturally, we will never
witness that the concentrations return to the healthy rest state; cf. chapter 2. We model one mouse at
a time so to speak, thus if we use NOD parameters the concentrations will stabilize at the pathological
concentrations.
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to the nontrivial fixed point where M,Ma, Ba > 03 This can be found by first solving
equation 6.9 with respect to M to obtain

M = kMa

f1Ba
for Ba 6= 0 (6.12)

Then by adding equation 6.8 and 6.9 together and rearranging, it is possible to find
another expression for M

0 = dM
dt + dMa

dt = a+ bMa − cM (6.13)

M = a+ bMa

c
(6.14)

Now setting equation 6.12 equal to 6.14 and solving with respect to Ba we get

kMa

f1Ba
= a+ bMa

c
⇔ Ba = kcMa

f1(a+ bMa) (6.15)

Note by plugging this expression for Ba into equation 6.12 gives us equation 6.14, where
it is evident that the stable rest state appears when setting Ma = 0. To obtain another
expression for Ba we add equation 6.9 and equation 6.10

0 = dMa

dt + dBa
dt = (l − k)Ma − (f2Ma + d)Ba (6.16)

Ba = (l − k)Ma

f2Ma + d
(6.17)

Equation 6.15 and 6.17 leads to an expression that solely depends on Ma

kc

f1(a+ bMa) = (l − k)
f2Ma + d

, l 6= k (6.18)

Which through some algebraic steps can be rearranged to

Ma = kdc− af1(l − k)
bf1(l − k)− kcf2

, bf1(l − k) 6= kcf2 (6.19)

By plugging this into equation 6.14 and equation 6.17, the nontrivial fixed point ex-
pressed by the parameters finally emerges

(M,Ma, Ba) =
(

k(db− af2)
f1b(l − k)− kf2c

,
kdc− af1(l − k)
bf1(l − k)− kcf2

,
kdc− af1(l − k)
f1(db− af2)

)
(6.20)

It should be emphasized that these equations are valid only for M,Ma, Ba > 0.

3 Note that for the system of differential equations given in equations 6.8 to 6.10 to be satisfied, either
all the variables are positive or both Ma and Ba are zero as in the case for the trivial fixed point.
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Stability of the fixed points
The classification of the stability of the fixed points is done by linearizing the system
of differential equations about each fixed point, i.e. calculating and evaluating the
Jacobian matrix in each fixed point (Strogatz, 2000, p.150-154). Then the eigenvalues
of the Jacobian matrix given as the solutions to the equation Det(J − λI) = 0, i.e. the
characteristic polynomial, can be used to classify the stability of each individual fixed
point.
The Jacobian matrix for the IM is

J =

−c− f1MBa k + b −f1M
f1Ba −k f1M
f1Ba l − f2MBa −f1M − f2Ma − d

 (6.21)

And when evaluated in the healthy rest state (M,Ma, Ba) = (a/c, 0, 0) we get

J =

 −c k + b − f1a
c

0 −k f1a
c

0 l − f1a
c − d

 (6.22)

Thus the characteristic polynomial is found from

0 = Det(J − λI) =

∣∣∣∣∣∣
−c− λ k + b − f1a

c

0 −k − λ f1a
c

0 l − f1a
c − d− λ

∣∣∣∣∣∣ (6.23)

Expanding the determinant by the first column we get

0 = (−c− λ)
∣∣∣∣ −k − λ f1a

c

l − f1a
c − d− λ

∣∣∣∣ (6.24)

We can see that the eigenvalue in the parentheses will always remain negative, since
−c− λ = 0⇔ λ = −c. However for the healthy rest state to be stable the eigenvalues
must have negative real parts. The general solution for the eigenvalues of the 2 × 2
matrix in equation 6.24 can be written as

λ1,2 = 1
2

(
(Tr(J(2×2))±

√
Tr2(J(2×2))− 4Det(J(2×2)))

)
(6.25)

Now since Det = λ1λ2 and Tr = λ1 +λ2 it is evident that in order for all the eigenvalues
to be negative the determinant must be larger than zero, Det > 0, and the trace must
be less than zero, Tr < 0, and vice versa for positive eigenvalues, where

Tr(J(2×2)) = −k − f1a

c
− d < 0 (6.26)

Det(J(2×2)) = kf1a

c
+ kd− lf1a

c
(6.27)

The parameters are all positive so the trace is negative. The determinant however is
positive only when (kf1a)/c + kd > (lf1a)/c, which is rearranged in the following way

a

d
<

ck

f1(l − k) (6.28)
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The parameters have to obey the constraint in equation 6.28, for the model to have a
stable healthy rest state. To elaborate a little: the inflow of resting macrophages divided
by the turnover of β-cells must be less than the turnover of the resting macrophages
times the deactivation rate of the activated macrophages, divided by the phagocyto-
sis/activation rate of resting macrophages times the result of subtracting the deactiva-
tion rate of activated macrophages from the cytokine induced damage. We see that the
threshold is not dependent on the phagocytosis rate of activated macrophages, f2, or
the recruitment rate, b. This means that we can essentially set these to e.g. zero, and
the system will still tend to the stable healthy rest state.
To link the threshold in equation 6.28 to the threshold value in the CPH model, cf.
equation 6.4, we rewrite 6.28 to obtain

a

d

(
f1l

ck
− f1

c

)
< 1 (6.29)

from this we get
a

d

(
f0 −

f1

c

)
< 1 (6.30)

or
f0 <

d

a
+ f1

c
(6.31)

So with the modifications added by Marée et al. (2006) this is the new constraint that
f0 must obey if the solutions of the IM are to converge to the healthy rest state for
t→∞.
It is possible to give the nontrivial fixed point the same treatment, by evaluating the
Jacobian in the point given in equation 6.20. This however leads to expressions for the
trace and determinant which are difficult to analyze analytically. Therefore we make
use of a different approach inspired by Marée et al. (2006). It is given that Ma > 0 for
the nontrivial fixed point so it follows from equation 6.19 that

kdc+ af1k − af1l

bf1l − bf1k − ckf2
> 0 (6.32)

This is satisfied when the numerator and denominator have the same sign. All the
parameters are positive, so this leaves two options. For reasons soon to be explained
the following restrictions are chosen

kdc+ af1k > af1l (6.33)

and
bf1l > bf1k + ckf2 (6.34)

From equation 6.33 it follows that

kdc > af1(l − k)⇔ a

d
<

ck

f1(l − k) (6.35)

Which can be recognized as the constraint that guarantees the existence of the stable
healthy rest state. This would not have been satisfied had we chosen the opposite
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restriction in equation 6.33, so the choice of restrictions is justified.
Equation 6.34 can be rearranged in a similar fashion to

bf1(l − k) > ckf2 ⇔
ck

f1(l − k) <
b

f2
(6.36)

This is the constraint for the existence of a nontrivial fixed point in addition to the
trivial stable fixed point, that corresponds to no chronic inflammation. By combining
equation 6.35 and 6.36 it follows that

a

d
<

ck

f1(l − k) <
b

f2
(6.37)

Thus when the parameters satisfy equation 6.37 a nontrivial stable fixed point will
coexist with the trivial (stable) fixed point. In other words the restriction on the
parameters, given in equation 6.37, must be satisfied if we are to observe NOD-mice
dynamics, i.e. chronic inflammation. For the Balb/c-mice, however, all inflammation
must be nonpermanent, thus leaving the healthy stable fixed point as the only one
present. If we look at equation 6.37 this implies that for the Balb/c-mice, the right-
most inequality must not be satisfied, i.e. the parameters of the Balb/c-mice must
fulfill

a

d
<

ck

f1(l − k) (6.38)

and
b

f2
<

ck

f1(l − k) (6.39)

Notice that the inequality sign is reversed when compared to equation 6.37. Equation
6.39 implies the non-existence of a stable fixed point besides the trivial one.
It is noteworthy, that the transition between Balb/c and NOD dynamics can be done
simply by tweaking f2, i.e. the activated phagocytosis rate, in accordance with the
hypothesis that impaired phagocytosis by the macrophages can make the difference
between health and disease.
We now arrive at the challenge of evaluating the stability of the nontrivial fixed point.
A glims at the Jacobian matrix in equation 6.21 together with the fixed points in
equation 6.20 reveals that the expression for the characteristic polynomial, trace and
determinant are going to be hard to analyze analytically, due to the mere size of them.
So to approach this practically we define the parameters to be equal to some arbitrary
values, let us say: a = 0.04, f1 = 0.8, k = 0.3 and c = b = l = d = f2 = 1, that satisfy
the constraints given in equation 6.37

0.04
1 <

1 · 0.3
0.8(1− 0.3) <

1
1 (6.40)

0.04 < 0.536 < 1 (6.41)

The Jacobian matrix evaluated in the point (M,Ma, Ba) = (1.11, 1.07, 0.36) is

0 = Det(J − λI) =

 −1.32− λ 1.3 −0.89
0.29 −0.3− λ 0.886
0.29 0.6 −2.95− λ

 (6.42)
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The characteristic polynomial is given by

0 = Det(J − λI) = λ3 − Tr(J)λ2 + (pm1 + pm2 + pm3)λ−Det(J) (6.43)

where pmi designates the principal minors.4 These are calculated to be pm1 = 0.02,
pm2 = 0.36 and pm3 = 4.16 while the trace and determinant are obtained to be
Tr(J) = −4.57 and Det(J) = 0.74. The conditions for Re(λ) < 0, and thus a sta-
ble fixed point, are given by the Routh-Hurwitz criteria; Tr(J) < 0, Det(J) < 0 and
Det(J) − Tr(J)(pm1 + pm2 + pm3) < 0 (Murray, 2002, p.508). This is not satisfied
since Det(J) = 0.74 > 0. The fixed point is therefore unstable for the chosen parameter
values. We cannot, however, accept this as a general statement at this point, since there
might be other parameter values that satisfy the constraints but do not yield the same
type of stability for the fixed point. In the next section we, among other things, strive
to give a more general stability analysis of the nontrivial fixed point, albeit through a
more qualitative approach using phase plane analysis.

Downfall of the IM
So far we have discussed what kind of behavior that at least should be expected from
the IM based upon the observational knowledge of how the inflammatory response
progresses in NOD and Balb/c-mice. This led to the conclusion that a stable healthy
steady state must exist for both NOD and Balb/c-mice, since Balb/c-mice are prone to
return to the healthy rest state, and also some NOD-mice return to a noninflammatory
state. In addition the model should also hold the possibility for a state of chronic
inflammation for the NOD-mice, which implies the existence of a physiologically valid
nontrivial stable fixed point. The fixed points of the IM have been located, their stability
evaluated and through this the constraints given in equation 6.37, 6.38 and 6.39 were
derived. These constraints clearly state how the relation between the parameters must
be for the model to exhibit either NOD or Balb/c behavior. The question is now: will
these constraints be satisfied when using the parameter-estimates shown in table 5.1,
in section 5.4? To be able to answer this the estimated parameters for Balb/c-mice are
substituted into the constraints that satisfy Balb/c dynamics. First equation 6.38 (the
question mark indicates that we are checking if the given inequality holds)

5× 104

0.5
?
<

0.1× 0.4
2× 10−5(0.41− 0.4) (6.44)

1× 105 < 2× 105 (6.45)

And then equation 6.39

0.09
5× 10−5

?
<

0.1× 0.4
2× 10−5(0.41− 0.4) (6.46)

1.8× 103 < 2× 105 (6.47)

4 The principal minors are the determinants that are obtained from the 2× 2 matrix we get when we
remove the first column together with the first row, the second column with the second row, and the
third column with the third row – the determinant of each of these matrices is called a principal minor.
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We see that Balb/c-parameters satisfy both conditions. To see if this is also the case
when using NOD parameters these are substituted into equation 6.37

1× 10−5

0.5
?
<

0.1× 0.4
1× 10−5(0.41− 0.4)

?
<

0.09
5× 10−5 (6.48)

1× 105 < 4× 105 ≮ 9× 103 (6.49)

We see that NOD parameters satisfy the conditions for a stable healthy rest state, but
not the constraints for a nontrivial fixed point. That is, for both the estimated NOD
and Balb/c parameters the IM will exhibit Balb/c dynamics – in both cases the in-
flammation will be nonpermanent. Based on this Marée et al. (2006) conclude that the
CPH model is quantitatively incorrect (Marée et al., 2006, p.1280), and as a solution
suggest adding necrotic β-cells and cytokines.

Phase plane analysis
Before we turn to the analysis of the DuCa model we will resort to a phase plane
analysis of the IM. We have found this to be, a very useful tool to achieve a conceptual
understanding of – what we believe to be – the kind of dynamics that Marée et al.
(2006) aimed for, when modifying the CPH model. There is but one problem. In
the end of last section we saw that the estimated NOD parameters do not satisfy the
constraints for a nontrivial fixed point. This means that the use of the estimated NOD
parameters do not bring the system to exhibit NOD dynamics. So for the purpose of
providing qualitative illustrations we choose to use some arbitrary positive parameter
values. Thus in the following assume that the parameters are chosen so that we have
a set of NOD parameters that satisfy the constraints for NOD dynamics, and a set of
Balb/c parameters that satisfy the constraints for Balb/c dynamics.
A phase plane analysis implies looking at nullclines, and how the flow behaves around
these. To specify what nullclines are, assume that we have a system ẋ = f(x, y), ẏ =
g(x, y), where ẋ means dx/dt. Then the nullclines of this system are the curves given
by ẋ = 0 and ẏ = 0. I.e. the nullclines define where the flow is horizontal or vertical
(Lynch, 2004, p.186), and an intersection between nullclines defines a steady state also
called a fixed point. The IM consists of three equations, and a phase plane analysis is as
the name hints a two-dimensional undertaking. However because we are only interested
in the nullclines, when we do the analysis, this does not pose a problem.5 We simply
pick one of the equations 6.5, 6.6 or 6.7 and equate it to zero – let us choose 6.5, so we
set dM/dt = 0. Then we isolate M in this equation to obtain

M = a+ (k + b)Ma

c+ f1Ba
(6.50)

5 We do not have to restrict ourselves to the plane! We could do a phase space analysis, but since we
are interested in the nullclines we can do a phase plane analysis.
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and substitute the expression for M into the two other equations.6 So we get

dMa

dt = f1

(
a+ (k + b)Ma

c+ f1Ba

)
Ba − kMa (6.51)

dBa
dt = lMa − f1

(
a+ (k + b)Ma

c+ f1Ba

)
Ba − f2MaBa − dBa (6.52)

Linearizing and evaluating the Jacobian Matrix of this reduced system atMa = Ba = 0
yields

J =
(
−k f1a

c

l − f1a
c − d

)
Which is similar to the 2×2 matrix shown in equation 6.24, thus the stability behavior
and criteria for the healthy rest state is the same for the two dimensional system as the
three dimensional system.
The nullclines are found analytically by setting dMa/dt = 0 and dBa/dt = 0 in equation
6.51 and 6.52 and then solving with respect to Ma (or Ba)

Ma nullcline : Ma = Baf1a

ck −Babf1
(6.53)

Ba nullcline : Ma = − dc+ af1 + f1dBa

f2c+ f1(b+ k)− lf1 + f1f2Ba − lc
Ba

(6.54)

As it turns out, the nullcline for Ma is fairly easy to analyze whereas the nullcline for
Ba is a little more tricky.
They both approach the point (Ba,Ma) = (0, 0). To convince oneself of this in the case
of the Ba-nullcline, let Ba → 0. Then the term lc/Ba →∞. Thus the entire fraction will
approach zero as Ba → 0. Now, by differentiating the two expressions for the nullclines
(equations 6.53 and 6.54) we get the slope of the Ma nullcline:

dMa

dBa
= af1

ck − bf1Ba
+ abf2

1Ba
(ck − bf1Ba)2 (6.55)

and the slope of the Ba nullcline:

dMa

dBa
= (cdBa + af1Ba + df1B

2
a)(f1(b+ k) + cf2 − f1l + 2f1f2Ba)

(f1Ba(b+ k)− cl + cf2Ba − f1f2B2
a)2

− (cd+ af1 + 2df1Ba)(f1Ba(b+ k)− cl + cf2Ba − f1f2B
2
a)

(f1Ba(b+ k)− cl + cf2Ba − f1f2B2
a)2

(6.56)

By setting Ba = 0, the initial slope is found to be af1/ck for the Ma-nullcline and
(dc+af1)/lc for the Ba-nullcline. Remember that we are working with arbitrary (positive)

6 Here we are lucky enough that we are able to separate Ba from the other variables, which is not
always the case. The implicit function theorem, see e.g. (Abraham et al., 1988, p.121), always tells us
if such a separation is possible (in a given interval), and can be applied, if it is not apparent if it is
possible to isolate one variable from the others.
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parameters so let us assume the initial slope of the Ma-nullcline is less than the initial
slope of the Ba nullcline. That is

af1

ck
<
dc+ af1

lc
(6.57)

This can be rearranged to the familiar expression

a

d
<

ck

f1(l − k) (6.58)

The constraints for a stable healthy rest state reappears, which means that in order
for the model to show a physiological realistic behavior (see chapter 6) the relation
between the initial slopes must in fact be as stated in equation 6.57. Another feature
of the nullclines is that they both exhibit asymptotic behavior. This occurs when the
denominator in the expression of the nullclines tend towards zero which happens at

Ma nullcline asymptote:
Ba(Asymp1) = ck

bf1
(6.59)

Ba nullcline asymptote:

Ba(Asymp2) = −(f1(b+ k − l) + f2c) +
√

(f1(b+ k − l) + f2c)2 + 4f1f2cl

2f1f2
(6.60)

Where the term on the right hand side is the positive root f1f2B
2
a + (f1(b + k − l) +

f2c)Ba − cl Assuming that Ba(Asymp1) < Ba(Asymp2) together with the initial slope-
relation (slope of Ma-nullcline must be less that slope of Ba-nullcline) leads to an
intersection of the nullclines and hence a nontrivial fixed point;7 cf. figure 6.3. This
configuration implies the healthy rest state to be stable and the direction of the slope
field is easily determined and indicated by a few arrows. Once the direction of the slope
field is in place it is evident that the nontrivial fixed point at the intersection of the
nullclines is a saddle point, which corresponds to what we found numerically to be the
case for the IM without setting dM/dt = 0; cf. the subsection titled “Stability of the
fixed points.” However for the IM with dM/dt = 0 we can claim it as a general state-
ment. That is, as long as the parameters fits the constraints given in equation 6.37 the
nontrivial fixed point must be a saddle. It is interesting to note that the stable manifold
of the saddle point comprises a separatrix that when exceeded results in a escalating
inflammation or, in the case of points below, a damped inflammation. So the saddle
point separates the healthy regime from the inflamed regime. It should also be noted
that the extensiveness of the inflammation is independent of the size of the apoptotic
wave that is implemented in the IM to trigger the inflammation as long as it pushes
the system above the given separatrix! In that case the densities of the macrophages
and apoptotic β-cells will tend towards infinity.
Now let us consider the phase plane where parameters that satisfy Balb/c dynamics

7 Under the assumption that the nullclines are otherwise well behaved; i.e. continuous between 0 and
the aymptotes.
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Figure 6.3 Sketch of the nullclines and some representative arrows that indicate the flow for
the IM with dM/dt = 0. For the healthy rest state, (Ba,Ma) = (0, 0), to be stable the initial
slope of the Ma-nullcline must be less than the initial slope of the Ba-nullcline. Then by
assuming that the nullcline of Ma reaches its asymptotic point before the nullcline of Ba
introduces a nontrivial fixed point at the intersection of the nullclines characteristic for the
NOD dynamics. By the knowledge of the stability of the healthy rest state it is a simple
matter to determine the direction of the slope field. This reveals that the nontrivial fixed
point must be a saddle.

are used. We have already concluded that the initial slope of the Ma nullcline must
be less than the initial slope of the Ba nullcline for the healthy rest state to be sta-
ble. Thus this must still be the case when using Balb/c parameters. However unlike
the NOD configuration there should be no nontrivial fixed point which implies that
Ba(Asymp1) > Ba(Asymp2) so no intersection of the nullclines occur. This leads to the
nullclines and slope field as seen on the sketch in figure 6.4. Here it is evident that any
stimulated inflammation will be nonpermanent.
Before we continue with the next subsection we would like to make a brief remark.
Usually at the point where one is conducting a phase plane analysis the model under
scrutiny has been recast in a dimensionless form, since this eases the job of deciding
if some terms in the model can be disregarded, if some of the parameters are (rela-
tively) significantly smaller than others or some parameters hold a greater impact on
the behavior of the dynamic. This is often helpful if some or none of the parameters are
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Ḃa < 0
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Figure 6.4 Sketch of the nullclines and some representative arrows that indicate the flow for
for the IM with dM/dt = 0. For the healthy rest state, (Ba,Ma) = (0, 0), to be stable the
initial slope of the Ma-nullcline must be less than the initial slope of the Ba-nullcline. Then
by assuming that the nullcline of Ba reaches its asymptotic point before the nullcline of Ma
leaves the stable healthy rest state to be the only existing physiological relevant fixed point.
This means that any stimulated inflammation will be nonpermanent.
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unknown, and it also reduces the number of parameters to keep track of. Per automa-
tion we also nondimensionalized the IM (including crowding terms) – cf. appendix A.6
– but since we are in the rare situation of having estimates of all the parameters, we
have chosen not to work with the nondimensional version.

A brief note on linearizing
Some newcomers to the field of mathematical modelling may think that we oversimpli-
fied things by linearizing the system when we analyzed the stability of the fixed points
because we casually threw away the higher order nonlinear terms without making any
remarks about these. So what gave us the right to do so?
Hartman-Grobman’s theorem8 informally states that the flow of a nonlinear system
is topologically equivalent to that of a linear system in the neighborhood of a steady
state solution, provided that the eigenvalues of the Jacobian of the linear system are
not purely imaginary or take on zero value.9 The equivalence here being a homeo-
morphism, i.e. a continuous deformation with a continuous inverse, that preserves the
sense of time (Guckenheimer and Holmes (2002)). More so the eigenspaces attributable
to the eigenvectors, of the linearized system, where the eigenvalues are subject to the
behavior given above, are tangent to the invariant manifolds of the fixed points of the
nonlinear system (Guckenheimer and Holmes (2002)) – provided that the fixed points
are hyperbolic. This last statement is the essence of the theorem known as The Stable
Manifold Theorem for a Fixed Point; see e.g. Guckenheimer and Holmes (2002) page
13. When we are in three or less dimensions this fact should lend a helping hand to the
intuitive understanding of the situation.
Let us recapitulate in (pseudo) laymen terms: when the eigenvalues of the Jacobian
does not take on zero or purely imaginary values, the behavior obtained from the linear
system is in qualitative agreement with that of the nonlinear system.
One could hope that as long as we knew all the eigenvalues we could precisely deter-
mine what kind of behavior is in play, and in fact it is so when we are in R2. But when
we enter R3 and higher dimensions there are no theorems such as e.g. the Poincaré-
Bendixson theorem, that yield guarantees about the dynamical behavior, when we are
dealing with systems that evolve in more than two dimensions (Strogatz (2000)) – the
Poincaré-Bendixson theorem states that given a trajectory confined to a compact subset
of the plane, R2, that does not contain any fixed points, then said trajectory will either
approach a closed orbit, or it is itself a closed orbit (Strogatz, 2000, p.203). When
dealing with systems that evolve in R3 and above a plethora of dynamics, including
chaos, can arise.10
Now that we have elaborated a little on the relationship between a nonlinear system
and the linearized version thereof we will return to the analysis of the intermediate
model for that story is not completely over.

8 For a formal statement of the Theorem cf. appendix A.3.
9 Note that we are not given any promises regarding the size of said neighborhood.

10 Actually we would find it boring if there was no more to the study of systems of differential equations
than determining the eigenvalues.
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6.2 The IM Including Crowding-Terms
Marée et al. (2006) extends the IM by including the terms e1M(M+Ma) and e2Ma(M+
Ma) to simulate the outflow of resting and activated macrophages due to overcrowding
in the compartment. This addition is made to counter the unlimited growth that is
possible in the CPH model (Marée et al., 2006, p.1270) and also in the IM without the
crowding terms as we can see in figure 6.3. To get an idea of the effect of the crowding
terms we now include them in the IM.
The system of differential equations for the IM including crowding terms is

dM
dt = a+ (k + b)Ma − cM − f1MBa − e1M(M +Ma) (6.61)

dMa

dt = f1MBa − kMa − e2Ma(M +Ma) (6.62)

dBa
dt = lMa − f1MBa − f2MaBa − dBa (6.63)

As a first observation the crowding terms are included such that they decrease the rate
of change for M and Ma quadratically. To get a feel for what difference the crowding
terms have on the flow we will, again, make use of a phase plane analysis, and as before
we set dM/dt = 0, so we have

0 = −e1M
2 − (e1Ma + c+ f1Ba)M + a+ (k + b)Ma (6.64)

This means that M is found as the positive root of the second degree polynomial in
equation 6.64, i.e. M is

M = −(e1Ma + c+ f1Ba) +
√

(e1Ma + c+ f1Ba)2 + 4e1(a+ (k + b)Ma)
2e1

(6.65)

The negative root is disregarded since it leads to a negative concentration of resting
macrophages which makes no sense from a physiological point of view. To proceed from
here one should insert the expression for M into equation 6.62 and 6.63 and then the
nullclines are found by setting dMa/dt = 0, and dBa/dt = 0 and then solving for Ma.
However these are difficult to solve analytically, because of the the nonlinear crowding
terms. Therefore it is necessary to engage in a more subtle argument.
Let us assume that the parameters are chosen such that the system exhibits NOD
dynamics, and let us imagine that the nontrivial fixed point is relatively close to the
stable healthy rest state, and finally let the crowding parameters e1 and e2 be relatively
small (we are still working with arbitrary parameters), so that the crowding terms
are negligible near the nontrivial fixed point. Under these assumptions the phase plane
would look similar to what is seen in figure 6.3 up to the nontrivial fixed point. However
beyond the nontrivial fixed point the concentrations ofMa and Ba have grown to a size
where the crowding terms cannot be neglected. Now, since the expression for dMa/dt
(equation 6.62) is directly affected by the inclusion of the crowding terms – a crowding
term appears in the expression – and implicitly through the revised expression for M
(equation 6.65). The expression for dBa/dt (equation 6.63) on the other hand is only
affected implicitly; through the expression for M . The first question that needs to be
answered is then: what is the relative difference between the expression for M derived
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from the IM without crowding terms (equations 6.50 and the expression for M derived
from the IM including crowding terms (equation 6.65)? Let us approach this matter in
an intuitive fashion by looking at the nullsurface of equation 6.61 (setting dM/dt = 0).

0 = a+ (k + b)Ma − cM − f1MBa − e1M(M +Ma) (6.66)

Then from a given point (M,Ma, Ba) on the nullsurface we increase Ma and Ba by a
small amount |δMa| and |δBa|. From this we see thatM has to increase less, relative to
the equation without the crowding terms, to maintain the equilibrium. If this argument
seems strange, picture the system as a leaky bucket, where the volume of water is kept
constant by pouring water into it. That is, the inflow of water from the top of the
bucket is the same as the outflow through the holes in the bottom of the bucket. Then
suddenly some additional holes appear in the bottom but the equilibrium remains. This
means that the outflow have more outlets to be distributed among and therefore less
flow through every single outlet. However, in the case above we defined the change of
Ma and Ba so only M was allowed to vary. This leads to the crucial observation that
for a given concentration of Ma and Ba, the concentration of M can be considered to
be “less” relative to if the crowding terms were excluded.
Continuing in the same direction we now take a look at the nullclines11 of Ma

0 = f1MBa − kMa − e2Ma(M +Ma) (6.67)

This time letMa increase with at small amount |δMa|. Then because of the inclusion of
the quadratic crowding terms causing a greater efflux and the relatively smallerM , there
must be a greater increase of Ba relatively to the equation without the crowding terms.
In other words, dMa

dBa must be less in the case where the crowding terms are included
compared to when they are not. This is interesting since it reveals that the slope of
the Ma-nullcline must decrease when the crowding terms are no longer negligible. To
complete the analysis let us turn to the nullcline of Ba

0 = lMa − f1MBa − f2MaBa − dBa (6.68)

As mentioned the only difference here in respect to the model without the crowding
terms is the decrease ofM . This implies that if we increase Ba by a small amount |δBa|
thenMa must increase less, relative to the case where the crowding terms are excluded.
Thus the slope of the nullcline dMa

dBa is again gradually reduced when the crowding terms
are no longer negligible, so that the asymptotic behavior fails to happen. However the
reduction is less for the nullcline of Ba compared to the nullcline of Ma such that
an inevitable third intersection of the nullclines takes place; cf. figure 6.5. From the
slopefield we see that the fixed point is stable, which makes it an upper bound for
the inflammation as claimed by Marée et al. (2006). Note that when the system is
stimulated above the separatix the concentrations of the macrophages and apoptotic
β-cells will tend towards the concentrations that represent the coordinate of the upper
stable fixed point.

11 We now consider them as nullclines instead of nullsurfaces since M is considered to be a constant
of a size that is less than if the crowding terms were excluded.
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Ḃa > 0

@@R

]�
�

�
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Figure 6.5 Sketch of the nullclines and arrows that indicate the flow for the IM including
crowding terms with dM/dt = 0. It is assumed that the inclusion of crowding terms only have
a minuscule effect on the position of the saddle point compared to figure 6.3, in the limit case
close to the healthy rest state. Beyond the saddle point the crowding terms start to effect the
behavior of the nullclines. Through analysis we have found that the crowding terms gradually
reduce the slope of the nullclines, albeit more effectively for the nullcline of Ma. Thereby the
asymptotic behavior fails to happen and instead the continuity and the relation between the
slope of the nullclines causes a third intersection to take place. This additional nontrivial
fixed point is stable and works as an upper bound for the inflammation.
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6.3 Recapitulation of The Analysis of the IM
On the basis of the analysis of the IM we have reached an understanding of what kind
of dynamics that the people of Marée et al. (2006) were looking for when modifying the
CPH model and at the same time gained insight into the problems they were facing in
this process. To summarize: the CPH model was extended to the IM for the purpose of
testing the hypothesis that impaired phagocytosis makes the difference between health
and disease. For the hypothesis to be confirmed the model should be able to exhibit
two kinds of dynamics by changing the values of the parameters f1 and f2. The two
types of dynamics were dubbed Balb/c and NOD dynamics respectively and refers to
the classification of the mice that are prone to develop T1D (NOD-mice) and those who
are not (Balb/c-mice). In the case where the estimated Balb/c phagocytosis rates were
applied, the model was expected to show Balb/c dynamics. This implies the existence
of a healthy rest state, where there is no activated macrophages and no apoptotic β-
cells, as the only fixed point in the physiological relevant region of the phase space.
This fixed point should furthermore be stable such that any stimulated inflammation
will be nonpermanent. When using the estimated phagocytosis rates for NOD-mice
the model was expected to exhibit NOD dynamics which is more eventful than the
former. Here the possibility for a permanent and nonpermanent inflammation should
be open, since not all NOD-mice develop T1D. In addition the chronic inflammation
should be bounded such that the concentration of neither the activated macrophages
nor the apoptotic β-cells tends towards infinity. These expectations are reached when,
besides the stable healthy rest state, there is a saddle point that together with its stable
manifold comprises a separatrix. Below the separatrix the inflammation is damped, i.e.
nonpermanent, whereas, if the separatrix is traversed, the inflammation will escalate.
The escalating inflammation needs to be bounded, so a third fixed point must exist
that has to be stable.
These are the two types of dynamics that the model should be able to exhibit when
using the estimated Balb/c and NOD parameters. However as discussed in section
6.1 this is not the case, since the IM also exhibits Balb/c dynamics when applying
the estimated NOD parameters. By this realization the people of Marée et al. (2006)
suggest to implement the role of necrosis in the model. We will proceed by embarking
on an analysis of this model, i.e. the DuCa model, in the following sections.
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7 A Brief Introduction to Bifurcation
Analysis and Numerical Methods

A natural question to ask one self when working with models of physiological phenom-
ena is how sensitive the model is to changes in parameter values. This is interesting from
a purely mathematical point of view, because an analysis of how the stability depends
on one or several parameter values is a bifurcation analysis. A bifurcation analysis also
provides insight into the behavior of the mathematical model, which of course should
reflect the biology it models. Thus the bifurcation analysis is also interesting from the
modelling/biological perspective.
In this chapter we provide the reader with an introduction to (local) bifurcations in
general, and proceed on to choose bifurcation parameters and appertaining intervals.
After this we briefly describe how we have found, and determined the stability of, the
eigenvalues. All of these pieces are combined into bifurcation diagrams in chapter 8
where we also perform an analysis of the DuCa model.
But first let us introduce the concept of bifurcation, and shed some light on its signifi-
cance in modelling of biological system in general and the DuCa model in particular.

7.1 Generic Bifurcations
Assume that we have a one-parameter system of differential equations, f(x, r), where
r ∈ R is the parameter, and f(x) := ẋ ∈ Rn, where the dot denotes d/dt. We want to
find out what happens to the behavior for different values of r.
Case 1 is: different values of r shifts the location of the equilibria, but does not change
their stability or create new ones. Like changing p ∈ R+\0 in g(x) = x2− p will change
the roots for g, but not the number of solutions. In this case the flows corresponding
to different r’s are topologically equivalent.
Case 2 is: different values of r does induce a change in the flow, i.e. change in stability
of, or creation of, equilibria. In this case there is no longer a topological equivalence
between the flows that arise for the different r values, and we say that a bifurcation
has occurred. It may be easier to think of a bifurcation as a sudden change in the
qualitative behavior of the solutions to a system of differential equations.1
Thus a bifurcation analysis is the investigation of how the qualitative behavior of a
system depends on a parameter.
When a bifurcation occurs upon shifting only one parameter, the bifurcation is some-
times called a codimension one bifurcation. Similarly if two parameters must be varied

1 Here system is used in the general sense, so one differential equation alone can be a system.
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to induce a bifurcation, we speak of a codimension two bifurcation, and so forth up to
n parameters.
An instructive one-dimensional example is:

ẋ = r + x2 (7.1)

For r < 0 there are two fixed points (x∗ = ±
√
r). One is stable and one is unstable, as

one can see by plotting ẋ in a ẋx-coordinate system. For r → 0 the two fixed points will
approach each other. Finally at r = 0 they will coalesce to become a half-stable point or
a saddle-point, i.e. a point that is attracting from one side and repelling from the other
– the flow is in one direction. Immediately after r becomes positive the fixed points
(on the real line) no longer exist. They have annihilated; a bifurcation has occurred.
r∗ = 0 is called the bifurcation point or bifurcation value, and r is in this case called the
bifurcation parameter . More specifically the bifurcation value is defined as a value r∗ for
which the flow of the system in equation 7.1 is not structurally stable (Guckenheimer
and Holmes, 2002, p.119).
This was an example of a so-called saddle-node bifurcation, which is one of the generic
or archetypical local bifurcations. The other generic one-dimensional bifurcations are
(Guckenheimer and Holmes, 2002, p.145-148)
The transcritical bifurcation this one arises from the system ẋ = rx − x2. When r is

negative there are two fixed points – one stable (at the origin) and one unstable
(at r). For r = 0 there is only one half-stable fixed point (at the origin), and for
r > 0 there is once again two fixed points, but now the the fixed point at the
origin is unstable, while x∗ = r is stable – an exchange of stability has occurred.

The pitchfork bifurcation this one comes in two categories, a subcritical (arises from
ẋ = rx + x3), and a supercritical (arises from ẋ = rx − x3). These two are
qualitatively different, but what they have in common is that one fixed point
branches into three fixed points as r crosses 0.

There is one additional bifurcation that can be categorized as generic, namely the
Andronov-Hopf bifurcation or more commonly simply the Hopf bifurcation. This bi-
furcation type merits a little more explanation, so we have endowed it with its own
section. Introducing the Hopf bifurcation also allows us to give a brief description of
how some of the more interesting behaviors a system can exhibit come about, i.e. why
complex eigenvalues entail spirals or closed orbits.

7.2 The Hopf bifurcation
The Hopf bifurcation differs from the other bifurcations in that it cannot occur in one-
dimensional systems, so let us start by supposing that we have a system of autonomous
nonlinear differential equations that depend on a bifurcation parameter r ∈ R, and that
we have linearized the system around a fixed point, i.e. we have disposed of the higher
order nonlinear terms. The linear system can be written in the from

ẋ = Ax (7.2)

with initial condition x(0) = x0, and A is the Jacobian. Now suppose that we find the
corresponding characteristic polynomial from which we obtain the eigenvalues. Then
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the general solution to equation 7.2 is given by

x(t) =
n∑
i=1

cie
λitvi (7.3)

where ci are constants that are found by invoking the initial condition, λi ∈ C are the
eigenvalues, t is time, and vi are the corresponding eigenvectors, which are found by
solving (A− λI)v = 0 (Braun, 1993, p.333-334).2
If we take a step back now, and think about how our solution curves should behave if
we wanted to observe spirals or closed orbits in phase space, the solution curves should
exhibit some kind of oscillatory motion – the motion may be dampened, growing or
sustained, either way yields one of the mentioned dynamics. One obvious way such
motions could arise is if (some of) the eigenvalues are complex, i.e. we have at least
one pair of eigenvalues on the the form

λ1,2 = α± iβ (7.4)

By remembering Euler’s formula – e(α±βi)t = eαt(cos(βt) ± i sin(βt)) – we see why
complex eigenvalues imply oscillations. The term eαt is the amplitude of the motion,
and it determines the qualitative behavior of the oscillations: for α < 0 the oscillations
are damped, and vice versa for α > 0. If the oscillations are damped, then we have
stable spirals (in phase space), while growing oscillations are a trait of unstable spirals.
But what happens at α = 0? Assume that 7.4 can be rewritten as λ(r)1,2 = α(r)±iβ(r),
so that these two eigenvalues of our system, 7.2, are smooth functions of the bifurcation
parameter r. Now suppose that we vary r continuously, then at some value of r, denoted
by r∗, the real part of the eigenvalues is zero. This is naturally the instance where the
value of the real part changes sign. Actually we will also require that(

dRe(λ(r))
dr

)
r=r∗

6= 0 (7.5)

so that the eigenvalue cross the complex axis with non-zero velocity. When these
criteria3 are fulfilled a Hopf bifurcation occurs at r = r∗. The Hopf bifurcation comes in
three very different variations (Allen, 2007, p.202), but before we present these we must
introduce a phenomenon that is an inherent feature of many real-life, and nonlinear,
systems (Strogatz, 2000, p.196-197). This phenomenon is the limit cycle. Limit cycles
are closed solution curves that can be 1. stable: all nearby trajectories will approach
the cycle for t → ∞, 2. unstable: all nearby trajectories will approach the cycle as
t → −∞, and finally 3. semi-stable: the cycle is attracting from some directions, and
repelling in other (Strogatz, 2000, p.196-197). Limit cycles differ from periodic solutions
of linear systems in that they are not regular ellipses, and that (in stable limit cycles)
any disturbance will die out over time contrary to the periodic solution curve, x(t),
which, if perturbed by ε > 0, becomes a new solution, xε(t).
Now we are ready to present the three types of Hopf bifurcations (cf. figure 7.2), which
are

2 We have assumed that the algebraic and geometric multiplicity is equal.
3 Actually we need a bit more. Confer Guckenheimer and Holmes (2002) for a thorough introduction.
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I The supercritical Hopf bifurcation. Stable spirals exist for r < r∗ as α(r) < 0,
up until r = r∗ where α(r) = 0. At the bifurcation point, r = r∗, the spiral is
still stable but very weakly so (Strogatz, 2000, p.250). For r > r∗ the spirals are
unstable, with stable limit cycles surrounding them, i.e. α(r) > 0.

II The subcritical Hopf bifurcation. For r < r∗ we have α(r) < 0 thus stable spirals
coexists with unstable limit cycles. As r → r∗ the radius of the unstable limit
cycles decrease. Ultimately, at r = r∗, the limit cycle engulfs the fixed point that
was the focus of the stable spiral, and for r > r∗ the fixed point is unstable, thus
making the spirals unstable.

III The degenerate Hopf bifurcation. This type of Hopf bifurcation is characterized by
stable spirals for r < r∗, and unstable spirals for r > r∗, while at r = r∗ infinitely
many neutrally stable concentric closed orbits encircle the fixed point that is the
focus of the spirals.

Figure 7.2 provides an example in R2 of the three bifurcation types. The limit cycles
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r<r* r=r* r>r*

I

II

III

Figure 7.1 A supercritical (I), a subcritical (II) and degenerate Hopf bifurcation (III). From
Zeeman (1990) with minor modifications. The dashed lines denote unstable fixed points or
limit cycles.

that arise from the supercritical version (I) are easiest identified by means of computer-
generated phase plots. The unstable limit cycle that exists before the bifurcation point
in the subcritical case (II) can in theory be found by reversing the time when one does
simulations of the system of interest. This is tantamount to multiplying the right-hand-
side of the differential equations in question by minus one. At the instance where the
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focus of the stable spiral in case II changes stability, from attracting to repelling, the
flow will make a sudden jump, possibly to another stable fixed point, another limit
cycle or it may even diverge. This extreme change in behavior is known as hysteresis.
Hysteresis also implies that we cannot make the system return to the behavior before
the bifurcation point by simply turning the bifurcation parameter back to before the
bifurcation value (Strogatz, 2000, p.252). In other words the behavior is irreversible in
regards to changes in the bifurcation parameter.

7.3 Biological Relevance of Bifurcation Analysis
Now returning to the biological relevance of bifurcation analysis. What biological con-
clusions can we draw from a model that exhibits bifurcations? The answer is, naturally,
that this depends on what the model is supposed to model! If we have data that suggests
that our biological system goes from having, say, one to two stable states as a given
parameter value is changed, then it is natural that our mathematical model exhibits a
bifurcation. But if the stable states in the mathematical model appear at a parameter
value that is completely irreconcilable with the actual value, then we must reassess the
model. On the other hand if some behavior, that is biologically reasonable, is observed
in a mathematical model, then one can use this to make predictions/conclusions about
the biological system.
In our case it is particularly interesting to see if the qualitative behavior of the system
changes close to, or maybe within the span of uncertainties associated with the para-
meter values; cf. sections 5.8 and 5.8. Should the qualitative behavior change within,
or close to, the parameter range of a given parameter then the model is parameter
sensitive. This does not necessarily indicate that the model is ill-conceived, e.g. not
all NOD mice develop diabetes, so these mice may have a slightly different parameter
composition.

7.4 Choice of Bifurcation Parameters
The DuCa model contains 12 parameters which makes it a daunting task to conduct
a thorough investigation. This amount of parameters also opens up the possibility of
co-dimension 12 bifurcations4, which is way beyond the scope of this work. Thus we
must limit our analysis to a few important parameters. We have gone with f1 and f2
for two reasons:

1. Wang et al. (2006) (see section 1) remark that an analogue of our phagocytosis
rates is the most important for the stability in their model

2. The other, and perhaps most important, reason is that the model was originally
intended to investigate whether the difference in the values of f1 and f2 alone,
could lead to different dynamics of the system – permanent or nonpermanent
inflammation

Now that we have chosen our bifurcation parameters we must decide what intervals
we want f1 and f2 to take values in. Of course the whole negative range of R is out

4 The amount of parameters could naturally be brought down by nondimensionalizing the system,
but even after this 9 dimensionless groups remain, which are still too many.
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of the question, and so is very large positive values. To determine these intervals we
must naturally look at the magnitude of the parameters. We have already discussed the
values and uncertainties of f1 and f2; cf. section 5.8. So just as a reminder the resting
and activated macrophage phagocytosis rates were found to be the same for NOD-mice,
f1 = f2 = 1×10−5.5 While for Balb/c-mice the resting phagocytosis rate was estimated
to be f1 = 2 × 10−5, whereas the phagocytosis rate of the activated macrophages was
f2 = 5× 10−5. These estimated values are associated with uncertainties in the area of
10-20%. The scale (10−5) defines the magnitude of our interval, and the uncertainties
tell us what parameter range to investigate as a minimum. This minimum range is very
small, and since we are interested in the bigger picture we have decided to let f1 take
values in interval from 0 to 4× 10−5 while f2 is in the interval from 0 to 10× 10−5.
Naturally we need fixed points to conduct a bifurcation analysis. How we came about
these is the subject of the next section.

7.5 Locating the Fixed Points
The application of the Newton-Raphson method has proven fruitful for finding fixed
points. The Newton-Raphson method is a numerical method that, through iterations,
computes the zeros of a vector-valued function x, based on the following equation

xk+1 = xk − (J(f(x)))−1f(xk) (7.6)

where xk and xk+1 are the approximations of the zero, x∗, after k and k+ 1 iterations
respectively, (J(f(x)))−1 is the inverted Jacobian6, and f(x) = ẋ. The iteration con-
tinues until ||xk+1 − xk|| = ||∆x|| < ε where ε is a user defined error-tolerance on the
estimated value of x∗ compared to the analytical value. The partial derivatives of the
Jacobian matrix J(f(x)) are approximated as the finite difference.7
The procedure of Newton-Raphson requires one to make a guess on the initial condi-
tions from where to start the iteration. This determines what fixed point the function
converges to – if it converges at all! However, to begin with, it is not in anyway evident
what initial conditions to use when searching for nontrivial fixed points, so this tends
to be a process of trial and error based on an “educated guess”, that is based on sim-
ulations of the DuCa model. Despite this guideline, there is no guarantee that we see
the “full picture” when less than five fixed points are found – there may be non-relevant
fixed points located outside 1. quadrant, but undetected fixed points in the 1. quadrant
may also exist. The procedure is easiest in the case where the first fixed point for a
given value of the bifurcation parameter is found, and the position of the fixed point
changes very little for small changes of the bifurcation parameter. Then it is possible
to use the coordinates of the located fixed point as an initial guess, when searching for
fixed points at values of the bifurcation parameter close to the initial value.
The stability of the fixed points has been determined by computing the eigenvalues, of
the Jacobian, in each point. Plots of the eigenvalues with respect to f1 and f2 can be
seen in appendices B.1 to B.5.

5 From here on we will drop the dimensions for the sake of convenience.
6 We have tacitly assumed that the Jacobian has a non-zero determinant.
7 For a derivation of the Newton-Raphson method and a more detailed description of the procedure
applied see appendix A.5.
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Evaluation of stability of the fixed points and detection of bifurcations
The method we have used for detection of bifurcations is to look for fixed points and
evaluating their stability for different values of the chosen bifurcation parameter.8 E.g.
when we have looked for Hopf bifurcations we have made use of their defining charac-
teristic, i.e. two complex eigenvalues that cross the imaginary axis. Using these traits
of the Hopf bifurcation we use the numerical estimates of the fixed points found by the
Newton-Raphson method. This eases the job of evaluating the Jacobian in each fixed
point since this is already done, albeit as an approximation, by the Newton-Raphson
method.
The eigenvalues of the Jacobian were computed in order to plot the real and imaginary
part of the eigenvalues as a function of the bifurcation parameter. Furthermore a plot of
the imaginary part as a function of the real part will be shown. This is the “traditional”
way of presenting the behavior of eigenvalues during a Hopf bifurcation.

8 It should be mentioned that this approach limits us to the detection of only local bifurcations since
global bifurcations involve large regions of the phase space, and therefore cannot be detected solely by
looking at the stability of local fixed points (Lynch, 2004, p.330-333).
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8 Bifurcation Diagrams and Analysis

Bifurcation diagrams provide a nice overview of how the stable and unstable solutions
change as a bifurcation parameter changes. We have used matlab to produce our
bifurcation diagrams for the DuCa model.1 Please note that we have not included
the apoptotic wave in the simulations behind these bifurcation diagrams since we are
interested in investigating other regions besides those the apoptotic wave pushes the
system into. We are aware that the apoptotic wave is the initiator of inflammation so
in lieu of the wave as a catalyst we apply appropriate initial conditions to stimulate the
system.
The bifurcation diagrams are plotted with the fixed points of the activated macrophages
M∗a as a function of the phagocytosis rate constants; f1 or f2 (e.g figure 8.1). From a
mathematical point of view we could have chosen any of the variablesM,Ma, Ba, Bn, C
to be the dependent variable in the bifurcation diagram. However from a medical point
of view the presence of activated macrophages – which implies an activated immune
system – is a more direct measure of inflammation in the DuCa model, and thus the
development of T1D.

8.1 Codimension One Bifurcations
In the next two sections we deal with codimension one bifurcations based on f1 first
and f2 second. One thing this analysis can tell us is: given that f2 (or f1), is kept at
a given value. Can we make the flow in NOD-mice approach the healthy stable rest
state? And if so: what should the value of f1 (or f2) be before this happens? Such an
event will imply some kind of bifurcation, so in other words, this analysis can provide
us with (an approximation of) such a bifurcation value of f1, respectively f2.
The bifurcation diagrams based on NOD values will be given the most extensive scrutiny.
Dealing with the Balb/c bifurcation diagram to the same extent as these would not yield
any fundamentally new knowledge – had there been some interesting behavior associ-
ated with the Balb/c diagram, then we would naturally have presented this, but the
behavior is qualitatively similar to the bifurcation diagrams based on NOD parameters.
Furthermore, from a physiological point of view, it is most interesting to find out if we
can induce a healthy state in NOD-mice by simply tweaking the phagocytosis rates, or
the amount of active macrophages.2
The bifurcation analysis is primarily done on the full DuCa model, but in section 8.4
we also look at a bifurcation diagram (figure 8.18) that is based on a reduced three

1 A template of the matlab code for the bifurcation diagrams can be found in appendix C.1.
2 As mathematicians doing mathematical modelling of biological systems we are allowed to dream up
solutions to problems, unaffected by the applicability of said solutions to the real world – though we
are not inimical to solutions that are readily applicable.
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dimensional version of it, suggested by Marée et al. (2006), to see if making the QSS
assumptions

dBn
dt = 0 (8.1)

dC
dt = 0 (8.2)

has any influence on the behavior of the detected fixed points. This is interesting to
determine, because it is, ceteris paribus, easier to analyze a three dimensional rather
than a 5 dimensional system.

8.2 Using f1 as the bifurcation parameter
Figure 8.1 is the bifurcation diagram of the DuCa model with NOD parameters, using
f1 as the bifurcation parameter (seen on the x-axis), and Ma as the variable (seen on
the y-axis). Let us start by dealing with the obvious features, and then get into more
subtle things after that.

Basic features of the NOD bifurcation diagram

Figure 8.1 Bifurcation diagram for the DuCa model using f1 as the bifurcation parameter and
NOD parameters; cf. appendix B.1 for auxiliary figures. The solid and dashed lines illustrate
fixed points that have only negative and mixed, i.e. positive and negative, eigenvalues
respectively. The system is bistable up to f∗1 ≈ 2.57× 10−5. The NODf1 -LUB separates the
two stable domains. For f1 > 2.57× 10−5 only the HRS remains stable.
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First of all, we notice two kinds of curves: there are dashed, and then there are fully
drawn curves. Dashed curves are associated with fixed points whose eigenvalues are
not purely negative, while a fully drawn curve signifies fixed points that have strictly
negative eigenvalues (or complex eigenvalues with negative real parts). At some point
(f1 ≈ 2.57 × 10−5) the fully drawn curve that is increasing from the origin becomes
dashed, and then proceeds to meet with the dashed curve from beneath it. The curve
that starts out being fully drawn will be referred to as the NODf1 upper stable branch,
NODf1 -USB3 for “short”. The lower dashed line will be referred to as the NODf1 lower
unstable branch, or NODf1 -LUB (both of these names turn out to be somewhat of a
couple of misnomers, but it eases the matter of explaining what is going on). Near
the x-axis, or rather through Ma = 0 is another curve, which is colored green, this one
is also fully drawn and is referred to as the healthy rest state (HRS). The HRS is the
situation where no inflammation is present, hence healthy rest state – the HRS is the
same in all the bifurcation diagrams, so we will not give it a prefix. Just as a reminder
we state that each branch is actually a line of fixed points.
Figure 8.1 tells us that for f1 ∈ (0 : 2.57) × 10−5 the system is bistable4 with at least
three stability branches in all.5
The most interesting branches are the NODf1 -USB and the NODf1-LUB – the HRS
remains stable for all values of f1, i.e. the eigenvalues associated with it are negative
for all f1 ∈ R+.
Along the NODf1-USB the concentration of active macrophages increases as f1 is in-
creased. This is naturally because f1 is also the activation rate of resting macrophages.
The concentration ceases to increase at f1 ≈ 2.067× 10−5, the curve flattens, and then
slowly decreases (which may be because the amount of apoptotic β-cells stabilizes at a
lower concentration, due to the initial faster phagocytosis). As f1 is increased beyond
≈ 2.57×10−5 the fixed points on the NODf1-USB become unstable, and the HRS is the
only stable state that remains. The point where the transition occurs is the point where
the eigenvalues shown in the bottom left subplot of figure 8.2 have zero real value, i.e.
it is a Hopf bifurcation point. After the NODf1-USB has become unstable it descends
until it coalesces with the NODf1 -LUB. This happens at f1 ≈ 3.45× 10−5 where they
annihilate each other in what, to some extent, resembles a saddle-node bifurcation.
From the look of figure 8.1 it does not seem as though there is anything interesting go-
ing on with the NODf1 -LUB, but in a moment when we look closer at the eigenvalues
associated with it, we will learn that this is not true.

Eigenvalues, manifolds and behavior of the fixed points on the NODf1-USB
The NODf1 -USB has five distinct, real, and negative, eigenvalues until f1 ≈ 3.4×10−7.
Here two large and negative eigenvalues become complex conjugates. This implies that
we should observe spirals, but because the real part of the eigenvalues is large (com-

3 It may be a cumbersome acronym, but it is necessary to avoid confusion when we get to the other
bifurcation diagrams

4 Notice that the phagocytosis rate for resting macrophages in NOD-mice, f1 = 1 × 10−5, lies well
within the bistable region on both NOD-based bifurcation diagrams (figure 8.1 and 8.12). This accounts
for the development of a chronic inflammation for NOD-mice, because the apoptotic wave stimulates
the system to exceed the unstable fixed points along the NODf1 -LUB.

5 Please be aware that other fixed points can exist, as we pointed out in section 7.5.
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Figure 8.2 The figure is divided into four subplots that shows the real and imaginary parts
of the eigenvalues plotted with respect to f1. We see that for two of the complex eigenvalues
the real part of the eigenvalues goes from being negative to positive with nonzero speed (seen
from the slope of the curve), at f∗1 ≈ 2.57× 10−5.

pared to the rest of the eigenvalues) and negative, these spirals approach the stable
fixed points very quickly, without much actual spiraling.6 Or put another way, the
motion is very dampened.
After the advent of these complex eigenvalues nothing happens qualitatively before we
get near f1 ≈ 2.15 × 10−5, here two more of the eigenvalues become complex. In the
bottom left subplot of figure 8.2, which shows eigenvalue plots based on initial values
that are near the NODf1-USB, we see the two real eigenvalues coalesce at this approx-
imate point, thus spawning the additional set of complex eigenvalues.
At this point we have a stable situation with a 5-dimensional stable manifold, that

has two oscillatory directions. This second pair of complex eigenvalues should, natu-
rally, also imply the existence of stable spirals, up until the real part of the eigenvalues
becomes positive. Indeed we do find stable spirals when the real part is negative. One
such spiral is depicted in figure 8.3, where the spiral is portrayed in MMaBa-phase
space – f1 = 2.570039 × 10−5 and f2 = 1 × 10−5 have been used. In appendix B.6 we
have gathered a series of figures that show how the spiral evolves as f1 is increased,
while f2 is kept at 1 × 10−5. As long as we have stable spirals we still have a stable

6 The existence of stable spirals has been revealed by plots done in matlab. However portraying the
spirals requires one to zoom in extensively on the area around the stable fixed points, and do not make
very illustrative figures, therefore we have left them out.
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5-dimensional manifold, but this is about to change.
The real parts become positive at some point just after f1 has exceeded 2.570039×10−5,

Figure 8.3 On the left we have a 3D phase space plot of M , Ma and Ba with f1 = 2.570039×
10−5. The initial conditions are (M,Ma, Ba, Bn, C) = (4.77× 105, 0.001, 4× 107, 0.001, 0.001).
This confirms the presence of stable spirals before the bifurcation point. To the right we have
a plot of the concentrations as functions of time, made by using the ode15s-solver in matlab
with the same initial conditions. NOD parameters are used except for f1 = 2.570039× 10−5.
The dynamic of the system displays damped oscillations, constituting the spiral seen in the
3D plot in the figure to the right.

when unstable spirals are found; cf. figure 8.4 for an example. Looking at the bottom
left subplot of figure 8.2 we see that dα/df1 > 0 when the real part of the complex eigen-
values becomes positive – the imaginary parts of these eigenvalues are shown in the
bottom right subplot. Thus a Hopf bifurcation occurs at the point where the real part
of the eigenvalues intersects the f1-axis transversally.7 The Hopf bifurcation theorem
tells us that one or more limit cycles should exist before, or after, the bifurcation point
(depending on the type of Hopf bifurcation). We tried to locate the limit cycles numer-
ically. However we only observed a stable spiral (cf. figures 8.3, 8.8 and appendix B.6),
while very close to- and after the bifurcation point the spiral changes to an unstable
spiral that terminates at the HRS; cf. figure 8.4. We have not been able to detect any
stable nor unstable limit cycles near or at the bifurcation point.8 This does not however
imply that they do not exist. The Hopf bifurcation theorem is an existence theorem and
so does not provide us with any exact interval around the bifurcation point in which to
look. In reality the interval could be an epsilon to each side of the bifurcation point,
where epsilon is arbitrarily small but positive.
Upon closer inspection we discovered that there is more going on near the Hopf bifur-
cation, than figure 8.1 reveals. We will return to this when we have concerned ourselves
with the NODf1-LUB. At that time we will also comment on the criticality of the Hopf

7 The system fulfills the remaining conditions of the Hopf bifurcation theorem; cf. section 7.2 and
Guckenheimer and Holmes (2002).

8 The method applied for searching for unstable limit cycles uses the principle that a point in phase
space will tend towards the unstable fixed point as t → −∞, by reversing (i.e. changing the sign of)
dM/dt, dMa/dt, dBa/dt, dBn/dt and dC/dt.
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bifurcation.
After the Hopf bifurcation we find unstable spirals that tend to the HRS, as figure
8.4 shows. To produce the simulations in figure 8.4 we needed initial values that were

Figure 8.4 The upper figure shows the, initially oscillating, solution curves. The oscillations
suddenly die out after t ≈ 775, and the solution curves all tend to zero except for the
curve describing the concentration of resting macrophages. The lower figure shows the
unstable spiral just after the Hopf bifurcation has occurred. The initial conditions are
(M,Ma, Ba, Bn, C) = (1.06× 106, 5.45× 106, 9× 104, 550, 0.6).

close to the unstable fixed point for f1 = 2.574× 10−5. We used (M,Ma, Ba, Bn, C) =
(1.06 × 106, 5.45 × 106, 9 × 104, 550, 0.6). because these were the approximate values
that the concentrations stabilized at when we did simulations with f1 = 2.570039; i.e.
the fixed point that was the focus of the stable spiral shown in figure 8.3. This was
done based on the intuitive notion that even though several branches can potentially
arise from the bifurcation point, each of these is continuous, i.e. they will not be too
far away from the unstable focus, and as we can see in figure 8.4 it worked.
The upper subplot in figure 8.4 shows the solution curves, while the lower subplot
presents the unstable spiral in MMa-phase space. We see that the oscillations endure
a shift in behavior at t ≈ 775 days. After this amount of time the oscillations that
appeared to be sustained and growing converge to the HRS.9 In terms of the flow we
can understand this behavior by noting that as t → ∞ the flow (that does not lie

9 We have done simulations where f1 was even closer to the bifurcation value – to narrow the bifur-
cation value down – in which the oscillations continued to grow to t ≈ 100000.
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directly on the manifold) diverges more and more from the unstable manifold of the
NODf1 -USB, and it is eventually attracted to the stable manifold of the HRS.
The fixed points on the NODf1 -USB for f1 values bigger than the Hopf bifurcation
value have a three-dimensional stable,W s, and a two-dimensional unstable manifold,
Wu, associated with them. The biological significance of these findings is that if we
could somehow increase f1 beyond the Hopf bifurcation value of f1, while keeping f2 at
1× 10−5, the NOD mice would be able to overcome the initial, otherwise pathological,
inflammation of the pancreatic β-cells, rendering it healthy.
Looking at the bottom left subplot of figure 8.2, we see that shortly after the real part of
the complex eigenvalues has become positive, these eigenvalues return to being strictly
real and positive. As this happens we have two positive eigenvalues, one negative and
two complex with negative real part. Thus the five-dimensional fixed points that ex-
ist for these values of f1, have a stable manifold, of dimension three, and an unstable
manifold of dimension two, associated with them. We can add to the analysis of these
points by looking at the magnitude of the eigenvalues. In the bottom left subplot of
figure 8.2 we see that, after the two eigenvalues have become real, one of the positive
eigenvalues is close to zero, thus the points are weakly repelling in the direction of the
corresponding eigenvector. The fixed points are a little more repelling in the direction
of the eigenvector associated with the other positive eigenvalue.
The remaining eigenvalues are negative. The eigenvalues that became complex at
f1 ≈ 3.4× 10−7 have large negative real part, see top left subplot in figure 8.2, thus the
fixed points are “very attracting” from these eigendirections, i.e. the flow will tend fast
to the fixed points from these directions. The last negative eigenvalue is comparable in
magnitude to the largest of the positive eigenvalues, and will not attract the flow quite
as fast as the two complex eigenvalues. This basically means that, suppose we have
some initial values, at a given f1, that yield a flow that starts near the fast attracting
eigendirection. Then this flow will quickly approach the slow attracting eigendirection
as to become tangent to this direction – far away from the fixed point when we are near
the attracting eigendirections, the fixed point looks like a stable fixed point. As the
flow nears the fixed point the fixed point will become more and more repelling, so the
flow will start to diverge from the attracting direction, and for t → ∞ it will tend to
the unstable manifold, Wu, spanned by the two positive eigenvectors. Of course if we
started near the unstable manifold we would simply be repelled from the fixed point.
Table 8.1 summarizes the behavior along the NODf1-USB at different intervals of f1.

Eigenvalues, manifolds and behavior of the fixed points on the NODf1-LUB
Returning to the NODf1-LUB, cf. figure 8.5, we notice that the eigenvalues are almost
as interesting as in the case of the NODf1 -USB. We also see why it was a misnomer to
name this line of fixed points the lower unstable branch – only one eigenvalue is pos-
itive throughout the investigated interval, as compared to the NODf1-USB which has
two positive eigenvalues after the Hopf bifurcation. The figure is unfortunately a little
smothered in the area close to the x-axis, but for the NODf1 -LUB the most interesting
behavior comes from the two eigenvalues that become complex at f1 ≈ 1.165 × 10−5.
The complex eigenvalues have negative real parts, so in theory if we chose the initial val-
ues just right, so the solution curve would be exactly on the stable manifold, we should
actually be able to observe a stable spiral that would converge to the NODf1-LUB as
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NODf1 -USB
f1 ∈ (0;3.4× 10−2) (3.4× 10−2; 2.15) (2.15; 2.57) (2.57; 2.8) (2.8; 3.45)
Nr. λ ∈ R+ 0 0 0 0 2
Nr. λ ∈ R− 5 3 1 1 1
Nr. λ ∈ C(Re(λ)) 0 2(-) 4(-) 2(-),2(+) 2(-)
Fixed pt. S S SS USS SP
Dim(W s) 5 5 5 3 3
Dim(Wu) 0 0 0 2 2

Table 8.1 Gives an overview of the eigenvalues, and the behavior of the fixed points on the
NODf1 -USB. By C(Re(λ)) we mean the sign of the real part of the complex eigenvalues. “S”
stands for stable, “SS” stands for stable spiral, “USS” stands for unstable spiral, and “SP”
stands for saddle-point. Dim(W s) is the dimension of the stable manifold, and Dim(Wu) is
the dimension of the unstable manifold. All intervals are in the order of 10−5, and all values
are approximate.

Figure 8.5 In the upper figure we see (real) values of the eigenvalues of the NODf1 -LUB.
At f1 ≈ 1.165 × 10−5 two of the eigenvalues become complex, and stay complex up until
f1 = 3.45 × 10−5 where the NODf1 -LUB coalesces with the NODf1 -USB (that consists of
saddle-points at this point); cf. figure 8.1. The values of the complex part of these two
eigenvalues are plotted in the lower figure. The complex eigenvalues retain negative real parts
through the entire interval.



8.2 Using f1 as the bifurcation parameter 81

NODf1-LUB
f1 ∈ (0;1.165) (1.165; 3.45)
Nr. λ ∈ R+ 1 1
Nr. λ ∈ R− 4 2
Nr. λ ∈ C(Re(λ)) 0 2(-)
Fixed pt. SP SP
Dim(W s) 4 4
Dim(Wu) 1 1

Table 8.2 Gives an overview of the eigenvalues, and thus the behavior of the DuCa model
with NOD parameters on the NODf1 -LUB; cf table 8.1 for an explanation of C(Re(λ)) and
“SP”. Dim(W s) is the dimension of the stable manifold, and Dim(Wu) is the dimension of the
unstable manifold. All intervals are in the order of 10−5, and all values are approximate.

t→∞ (Strogatz, 2000, p.128-134). This is because the stable manifold (as well as the
unstable manifold) is invariant. We must be aware that any slight deviation from the
stable manifold would make the flow tend to the unstable one-dimensional manifold,
thus making the flow tend to the NODf1 -USB or the HRS. The behavior along the
NODf1 -LUB is summarized in table 8.2.
Now that we have dealt with the NODf1-USB and the NODf1-LUB separately let

us touch upon some of the more interesting mathematical aspects of the bifurcation
diagram (figure 8.1), as a whole.

Combining the analysis of the NODf1-USB and LUB
The first thing that came to mind was that, when f1 takes on values in the interval
where the system is bistable, the flow seems similar to the flow displayed by the inter-
mediate model (IM) including crowding terms in figure 6.5; cf. section 6.2. That is,
a stable healthy rest state and a stable nontrivial fixed point, that serves as an upper
bound for the inflammation. This comparison with the IM seemed even more justified
as the NODf1-LUB consists of saddle-points, just as the “middle” fixed point is in figure
6.5. Unfortunately a discovery, that will be introduced soon, ruined what looked like
an interesting turn of events, but at the same entailed some interesting consequences
for the health of NOD-mice that will be elaborated on in the discussion.
In general, when we look at the bifurcation diagram, before the Hopf bifurcation occurs,
it resembles that of a saddle-node bifurcation; cf. e.g. page 150 of Guckenheimer and
Holmes (2002) or (Strogatz, 2000, p.242-243). We must not let the fact that there are
three lines of fixed points (that we see) fool us. Ma = 0 remains stable for all f1, and
all of the interesting (change in) behavior revolves around the NODf1 -USB and the
NODf1 -LUB.
After the Hopf bifurcation both the NODf1 -USB and NODf1-LUB are unstable. This
is very interesting, since usually one should, at least locally, be able to reduce any bifur-
cation to one of the generic, or archetypical, types we encountered in section 7.1. But
the bifurcation from two stable points and one unstable in the middle to two unstable
fixed points with one stable fixed point, that is not between them is hard to reconcile
with any of the generic (1-dimensional) bifurcation types. However we must remember
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Figure 8.6 Simulation of the DuCa model setting f1 = 2.7 × 10−5 and f2 = 1 × 10−5,
corresponding to the region where all the nontrivial fixed points are unstable (see figure 8.1).
We see that the activated macrophages exhibit a burst of growth from their initial conditions.
This large inflammatory response eventually goes down towards the HRS.

that, at any given f1, we only see a one-dimensional slice of something that happens in
five dimensions, and that we are only doing a codimension one analysis, so what we are
witnessing may be something that is actually a codimension two (or higher) bifurcation.
By doing simulations using values of f1, and initial values ofMa, in the region with two
unstable nontrivial fixed points, we have observed that the concentration of activated
macrophages exhibits a growth burst from its initial conditions, cf. figure 8.6, until it
peaks after which it returns to the HRS. Some might have expected that we would see
a continuously growing concentration because we are above the repelling NODf1 -LUB,
but when we think about this in terms of the biological system the behavior is not sur-
prising. When the system suddenly contains a large number of activated macrophages,
it does not matter if they have a slow phagocytosis rate, i.e. f2 = 1× 10−5, since they
have strength in numbers, adding to this is the fact that the resting macrophages have
a high phagocytosis rate – it is after all this rate we increase to induce bifurcations.
This means that the concentration of apoptotic β-cells is quickly depleted to the point
of extinction, and when there are no apoptotic β-cells around the resting macrophages
can no longer become activated. Hence we observe a drop in the concentration of active
macrophages.
We can also think about it mathematically. After the Hopf bifurcation the NODf1-
USB has three negative eigenvalues. Which implies that it is attracting from these
eigendirections – this could explain the growth towards a higher concentration that
occurs initially. But when the flow nears the fixed points on the NODf1 -USB it will be
repelled from them after which it (the flow) will go toward the only stable fixed point
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that is left, i.e. the HRS. We could also look at the equation that describes the rate
of change in the concentration of activated macrophages; cf. equation 5.8. There we
see the damping term given by −e2Ma(M +Ma) which becomes dominating when Ma

becomes high – this prevents the concentration from diverging.

As mentioned there is a theoretical possibility that other branches of fixed points
could exist in-between the NODf1-USB and the NODf1 -LUB though the flow seems to
speak against it. Even so, we have done many simulations with different initial values
for Ma, and different values of f1 in the area that is bordered by the unstable NODf1-
USB and the NODf1-LUB, and every single one of them exhibit a behavior that is in
qualitative agreement with figure 8.6, so we find it to be unlikely that there are any
additional fixed points in this area.
The fact that we find it unlikely that any stable fixed points exist in the area mentioned
above, and the behavior seen in figure 8.6 led us to wonder what else could be going
under in the area under scrutiny. We suspect that so-called heteroclinic orbits – that
is an orbit, that connects one saddle-point with another saddle-point – inhabits this
domain. Heteroclinic orbits arise when the stable manifold of a saddle-point intersects
the unstable manifold of another saddle-point (Guckenheimer and Holmes, 2002, p.22).
The behavior of the concentration of active macrophages shown in figure 8.6 corrob-
orates the existence of such orbits. Let us assume that there are indeed heteroclinic
orbits connecting the fixed points on the NODf1-LUB to those on the unstable part
of the NODf1 -USB, and let us further assume that we could start our flow directly
on the unstable manifold of the fixed points on the NODf1 -LUB then for t → ∞ the
flow would approach the unstable fixed points on the NODf1 -USB. This is because the
unstable manifold is invariant, so the flow cannot leave it when it has started there
We have tried to illustrate this in figure 8.7. The figure represents a slice of the 5-
dimensional phase space.10 The stable fixed point, HRS, is represented by the full dot
while the saddle-points, NODf1 -LUB and NODf1 -USB, are represented as black circles
with white interior. There is a heteroclinic orbit from the NODf1-LUB to the NODf1-
USB, along with some representative manifolds, and arrows designating the flow. On
the orbit is a point that represents an optimal starting condition; i.e the point represents
a set of initial conditions that would let us establish the existence of heteroclinic orbits
graphically. But since we are not able to determine the unstable manifold analytically
it is next to impossible to start precisely on the unstable manifold of the NODf1 -LUB,
therefore the flow initially tends to the unstable fixed points on the NODf1 -USB, and
then becomes repelled from them11 the nearer it comes, and is led down to the HRS
along the unstable manifold of the NODf1-USB, which is depicted by the dashed line.
We have made the line dashed to illustrate that its path may not be in the 2-dimensional
plane.
The existence of heteroclinic orbits would be very interesting for one reason in particu-
lar: the existence of heteroclinic orbits opens up for the possibility of a global bifurcation
(Guckenheimer and Holmes, 2002, p.290). Furthermore heteroclinic orbits would act as
a constant reminder that the flow is not 1-dimensional
10 Please be aware that this figure is for illustrative purposes only, and does not represent an exact
slice of the phase space! I.e. the figure only gives a qualitative gist of how the flow might behave.
11 To avoid confusion we would like to restate, that for each f1 there is only one fixed point on the
USB!
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Figure 8.7 An illustrative figure of the flow in phase space after the Hopf bifurcation has
occurred. The point named “optimal initial condition” would flow along the unstable manifold
of the NODf1 -LUB to the USB.

After the saddle-node bifurcation where the two nontrivial unstable fixed points collide,
and annihilate, only the HRS remains.

Hidden features in figure 8.1
We promised earlier in this section that we would return to the events surrounding the
Hopf bifurcation. We intend to do this now. For we discovered that there is actually
more to the story than figure 8.1 reveals! The discovery came about when we wanted to
determine if the stable part of the NODf1-USB was attracting for arbitrarily large ini-
tial values ofMa. We also wanted to make sure that there was no pathological behavior
when we used initial values that were lower than the concentration at the NODf1 -USB.
In short: we wanted some insight into the basin of attraction of the (stable part of the)
NODf1 -USB in terms of Ma.
We found that initial values for Ma that are beneath the stable concentration induced
the behavior we had expected. This is not the interesting part, the interesting part
comes from initial value ofMa that is slightly above the stable concentration, combined
with an f1 that is close to the Hopf bifurcation point. Here we found that the phase
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Figure 8.8 To the left we see a stable spiral, that settles down to the NODf1 -USB. The
simulation is based the initial values (M,Ma, Ba, Bn, C) = (4.77 × 105, 5.503307 × 105, 4 ×
107, 0.001, 0.001) and f1 = 2.566305 × 10−5. To the right the initial value for Ma has been
changed to 5.503308× 105, which makes the flow go to the HRS.

space curve does not exhibit stable spirals, rather it converges to the healthy rest state;
cf. figure 8.8.
This observation spawned an investigation of how large an initial value Ma should have
at a given f1 if we wanted the flow to go to the HRS. The investigation was done
simply by choosing a value for f1, e.g. f1 = 0.5 × 10−5, and then determining the
approximate initial value of Ma that would make the flow go to the HRS rather than
the NODf1 -USB. The value was approximated, in a very pedestrian way, by choosing
a very high initial value, e.g. Ma = 25× 106 for f1 = 0.5× 10−5, that would make the
flow go to the HRS. Then we would know that the demarcation value of Ma would be
somewhere between this value, and the value associated with the NODf1-USB for that
given f1. Then it was merely a matter of making guesses that were closer and closer to
the concentration at the NODf1 -USB, and run simulations in matlab, until at some
point the flow would converge to the NODf1 -USB again. When the demarcation value
of Ma had been approximated to a satisfactory amount of decimals for one value of f1,
the procedure was repeated for a new value of f1 up to the value of f1 at which the
flow undergoes a Hopf bifurcation. Initially we thought that what we had found was a
new line of unstable fixed points hence we called it the upper unstable branch (UUB).
However we cannot be certain of this. The line we call UUB may be a separatrix since
it separates two regions of phase space in which the flow behaves qualitatively different.
Nonetheless we will keep the name in the following.
We discovered that for smaller and smaller f1’s we need to make the initial value of Ma

larger and larger – which is not a big surprise when we think about it biologically. For
f1 close to the bifurcation value the UUB is very near to the NODf1-USB. We found
that the concentration needed to make the flow tend to the HRS decreases approxi-
mately exponentially with f1.
In figure 8.9 we have modified the original bifurcation diagram, figure 8.1, to include
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Figure 8.9 Shows a modified version of figure 8.1, where we have added a curve that
approximates the UUB. We have also added legends to facilitate the overview.

a curve that approximates the UUB.12 We have also added text to explain how the
flow behaves for different initial Ma-concentrations. We see that the UUB and the
NODf1 -USB ultimately coincide. This appears in the eigenvalues of the NODf1 -USB
approximately with the advent of positive eigenvalues. We dare not state that it is
exactly when the eigenvalues become positive. If the UUB is in fact a line of unstable
fixed points then the collision between the NODf1 -USB and the UUB is basically a
(presumably degenerate) sub-critical pitchfork bifurcation – an unstable and a stable
fixed point coalesce to produce one unstable fixed point.
We have speculated if the UUB constitutes a section of the unstable limit cycle that

12 Notice that though we used matlab to approximate the demarcation values, the UUB-curve shown
in figure 8.9 is not made with matlab it was drawn using Adobe Illustrator CS3.
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should surround the stable spirals that arise at f1 ≈ 2.15× 10−5, but we have not been
able to verify this through simulations. When we discovered the UUB we realized that

USB

HRS

LUB

USB

LUB

HRS

f_1 is increased

Figure 8.10 The flow of Ma represented on a circle with two stable and two unstable fixed
points. The fixed point without a label is the UUB. As f1 increases the NODf1 -USB and the
UUB draw closer together (depicted on the right circle).

the flow in terms of Ma, can be envisioned as the flow on a circle with four fixed points.
Two stable and two unstable. We have depicted this in figure 8.10. From the left circle
to the right f1 is increased. Increasing f1 further would make the NODf1-USB and the
UUB meet, to become a saddle-point, that is repelling in the direction of the HRS, and
attracting from the side of the NODf1-LUB.
A final thing that should be mentioned about figure 8.1 is that it tells us that the
system is irreversible with respect to changes in f1. In other words hysteresis occurs.
This happens as f1 exceeds a threshold value that is identical to the Hopf bifurcation
value. This suggests that we have a subcritical Hopf bifurcation (Strogatz, 2000, p.252).
However, if we want to make sure that this is indeed the case we must bring our system
to normal-form and find the adhering coefficients. This is a substantial undertaking for
a 5-dimensional system which we have not ventured, though it is not impossible; cf.
e.g. Yu (1997).

The Balb/c bifurcation diagram
Now let us turn to the bifurcation diagram in which f2 = 5 × 10−5. This bifurcation
diagram differs from figure 8.1 (as well as those to come) by having two additional
unstable curves of fixed points, illustrated by the dotted line (black) and the dashed-
dotted line (magenta). Figures B.8 and B.9 in appendix B.2 provide the eigenvalue
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Figure 8.11 Bifurcation diagram for the DuCa model using f1 as the bifurcation parameter
and Balb/c parameters. The solid and dashed lines represent stable and unstable fixed points
respectively. The system is bistable in the range (0; 1.206 × 10−5) with the Balb/cf1 -LUB
separating the region where the flow will approach the Balb/cf1 -USB and the region where it
will tend to the HRS. For f1 > 1.206× 10−5 only the healthy rest state remains stable.

diagrams for the black and magenta lines respectively. The fixed points illustrated by
the dotted line exist only for negative values of M , Ba and Bn and C. For the fixed
points illustrated by the dashed-dotted line it is mostly M and Ba that have negative
values. In other words these curves are physiological irrelevant, but we have included
them nonetheless to illustrate that (in this one case) we have succeeded in finding more
than three solutions, with matlab. Please be aware that the curves do not intersect
the Balb/cf1-USB – it seems so because we are projecting something that occurs in
a 6-dimensional space (the five concentrations and f1) onto the Maf1-plane. What it
does tell us is that there are two different fixed points associated to the value of Ma

where the magenta curve crosses the Balb/cf1 -USB – one where all the concentrations
are positive and f1 is approximately 0.5 × 10−5, and one where Ma, Bn and C are
positive while M and Ba are negative.
According to Marée et al. (2006) f1 lies in the monostable region (f1 = 2 × 10−5 for
Balb/c-mice), in agreement with the nonpermanent inflammation observed in Balb/c-
mice.

8.3 Using f2 as the bifurcation parameter
Figure 8.12 shows the bifurcation diagram for f1 = 1× 10−5, and f2 as the bifurcation
parameter. First of all we remark that f2 is estimated to be within the bistable region
(f2 = 1 × 10−5 for NOD-mice), so it agrees with the fact that a chronic inflammation
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for NOD-mice is reached, when the apoptotic wave stimulates the system to exceed the
threshold concentration that corresponds to unstable fixed points. We notice that the

Figure 8.12 Bifurcation diagram for the DuCa model using f2 as the bifurcation parameter
and NOD parameters. The solid and dashed lines illustrate stable and unstable fixed points
respectively. The x-axis has been chosen such that the change in stability is apparent –
leaving out the monotonic part for f2 < 4×10−5. The system is bistable in the (approximate)
range [0; 8.5 × 10−5] with a “line” of unstable fixed points to separate the two regions. For
f2 > 8.5× 10−5 only the healthy rest state remains stable.

behavior has some similarities as well as differences from its f1-counterpart in figure
8.1. Let us start with the resemblances.
Again we start out by having three stability branches; two stable and one unstable –
Ma = 0 being one of the stable branches. These change into two unstable and one
stable (at f2 ≈ 8.5 × 10−5), and eventually the two unstable branches coalesce in a
saddle-node bifurcation (at f2 ≈ 9.25 × 10−5) after which only the healthy rest state
remains. Finally both figures exhibit hysteresis. These are the superficial similarities
we can gather from a quick glance at figure 8.12.
The dissimilarities are easily spotted. First of all, the nontrivial line of stable fixed
points decreases as f2 is increased, and changes stability at a much lowerMa-value than
was observed when we used f1 as the bifurcation parameter. If we return to the biolog-
ical setting for a moment then this makes excellent sense. The active macrophages still
come from the pool of resting macrophages. Now, since f2 is the phagocytosis rate of the
active macrophages, turning up f2 means that a fewer amount of active macrophages
are needed to handle the same amount of apoptotic β-cells, but during the initial apop-
totic wave a significant recruitment of active macrophages from the resting pool will
still take place. This together with the enhanced phagocytic ability implies that the
apoptotic β-cells will be decimated quickly, thus leading to a drop in the number of
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Figure 8.13 Gives an overview of how the real and imaginary parts of the eigenvalues behave
on the NODf2 -USB as f2 is increased.

resting macrophages that become activated. However due to the slow initial activation
of the resting macrophages and the, though increased, insufficient phagocytic ability
of the activated macrophages, the population of apoptotic β-cells, and hence necrotic
β-cells, have already established themselves due to the cytokine-induced β-cell death,
though the populations become stable at a lower concentration than for f2 = 1× 10−5.
Ultimately as f2 attains a certain value the increased phagocytic ability of the activated
macrophages becomes sufficient to compensate for the slow activation.
Looking at figure 8.13, which provides the behavior of the real and imaginary parts of
the eigenvalues along the upper stable branch of the f2-bifurcation diagram, NODf2-
USB, we find similarities additional to the superficial ones. Again two real eigenvalues
coalesce with the emergence of two complex eigenvalues, that maintain a negative real
part throughout the entire interval, for the fixed points along the upper stable branch;
seen on the upper left subplot.13 And again an additional pair of complex eigenvalues
arise. A pair that ultimately cross the imaginary axis to become eigenvalues with pos-
itive real parts. Thus a Hopf bifurcation also occurs when we use f2 as the bifurcation
parameter. The behavior of the eigenvalues, the type of fixed point, and the dimension
of the stable unstable manifolds for f2 in different intervals is given in table 8.3.
The lower unstable branch of the f2-bifurcation diagram (NODf2-LUB) also displays

13 This may be impossible to make out from the subplot, but the real part of the eigenvalues is the
one that start at approximately minus 20 which is also the approximate final value of the real part.
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NODf2 -USB
f2 ∈ (0;1.4× 10−1) (1.4× 10−1; 2.15) (2.15; 8.544) (8.544; 9.184) (9.184; 9.2205)
Nr. λ ∈ R+ 0 0 0 0 2
Nr. λ ∈ R− 5 3 1 1 1
Nr. λ ∈ C(Re(λ)) 0 2(-) 4(-) 2(-),2(+) 2(-)
Fixed pt. S SS SS SP SP
Dim(W s) 5 5 5 3 3
Dim(Wu) 0 0 0 2 2

Table 8.3 Gives an overview of the eigenvalues, and the behavior of the fixed points on the
NODf2 -USB. “S” stands for stable, “SS” stands for stable spiral, and “SP” stands for saddle-
point. Dim(W s) is the dimension of the stable manifold, and Dim(Wu) is the dimension of
the unstable manifold. All intervals are in the order of 10−5, and all values are approximate.

Figure 8.14 The real (upper subplot) and imaginary (lower subplot) parts of the eigenvalues
of the fixed point along the NODf2 -LUB.

features similar to the NODf1 -LUB. The behavior of the eigenvalues is less erratic for
the eigenvalues along the NODf2 -LUB, than along the NODf2 -USB, as we see when we
compare table 8.4 to table 8.3. The bifurcation diagram for f2 with Balb/c parameters
is given in figure 8.15. We clearly see that for the value of f2 that Balb/c-mice have
inflammation is non-persistent, in agreement with what we would expect. The way the
concentration of active macrophages decreases along the Balb/cf2 -USB makes it look
similar to figure 8.12, but we see that the shift between a stable and an unstable USB
comes at a much lower f2-value when we use the Balb/c-value for f1.
As we did in the case of the NOD-mice we have also searched for additional fixed
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NODf2-LUB
f2 ∈ (0;5.255) (5.255; 9.2205)
Nr. λ ∈ R+ 1 1
Nr. λ ∈ R− 4 2
Nr. λ ∈ C(Re(λ)) 0 2(-)
Fixed pt. SP SP
Dim(W s) 4 4
Dim(Wu) 1 1

Table 8.4 Gives an overview of the eigenvalues, and the behavior of the fixed points on the
NODf2 -LUB. “S” stands for stable, “SS” stands for stable spiral, “USS” stands for unstable
spiral, and “SP” stands for saddle-point. Dim(W s) is the dimension of the stable manifold,
and Dim(Wu) is the dimension of the unstable manifold. All intervals are in the order of
10−5, and all values are approximate.

Figure 8.15 Bifurcation diagram for the DuCa model using f2 as the bifurcation parameter
and Balb/c parameters. The solid and dashed lines illustrate stable and unstable fixed points
respectively. The system is bistable in the (approximate) range (0; 1.21 × 10−5) where the
Balb/cf2 -LUB separates the two regions. For f1 > 1.21× 10−5 only the HRS remains stable.
f2 is estimated to be within the monostable region (f2 = 5 × 10−5 for Balb/c-mice) so the
diagram agrees with the nonpermanent inflammation observed for Balb/c-mice.
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Figure 8.16 Simulation of the DuCa model setting f1 = 2 × 10−5 and f2 = 2.54 × 10−5,
corresponding to the region where all the nontrivial fixed points are unstable; cf. figure 8.15.
It can be seen that the activated macrophages exhibit a burst of growth from their initial
conditions. This large inflammatory response eventually goes down towards the stable healthy
rest state.

points in the region where the Balb/cf2-USB is also unstable. Figure 8.16 shows one of
these simulations. We see that the behavior is similar to the behavior we witnessed in
figure 8.6.

8.4 Reducing the DuCa-model
Marée et al. (2006) suggests using a QSS assumption on dBn/dt and dC/dt. Setting
dC/dt = 0 leads to the following expression for the cytokines

C(QSS) = α

δ
BnMa (8.3)

And the QSS on dBn/dt leads to the expression for Bn

Bn(QSS) = dBa
f1M + f2Ma

(8.4)

By plugging equation 8.3 and 8.4 into the equation for dBa/dt reduces the number of
equations to three
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Figure 8.17 On the left we have the original five dimensional DuCa model, on the right the
reduced three dimensional DuCa model. We see that despite some minor initial differences
differences the curves are interchangeable.

dM
dt = a+ (k + b)Ma − cM − f1MBa − e1M(M +Ma) (8.5)

dMa

dt = f1MBa − kMa − e2Ma(M +Ma) (8.6)

dBa
dt = W (t) + AmaxdBaMa

kb(f1M + f2Ma) − f1MBa − f2MaBa − dBa (8.7)

Figure 8.18 shows a bifurcation diagram of this reduced model with f1 as the bifurca-
tion parameter. The similarities with figure 8.1 are striking, but this may not come as
a surprise since the positions of the fixed points are expected to be the same because
the QSS assumption of course holds in the fixed points. The real test is to see if the
solution curves ofM,Ma and Ba change under this assumption. As we can see in figure
8.17 there is not much difference, if any.
But how else could we justify making a QSS assumption. The answer lies in the eigen-
values of the full system versus those of the reduced system. Let us digress to the
example where we looked at the general solution to 7.2; given by equation 7.3.
For the sake of argument let us assume that we have a two-dimensional system, and
that both the eigenvalues are negative and not too different in magnitude. We know
that in reality another component play a part in the behavior of system. Thus in reality
we need an extra equation, which describes this extra component. At the same time we
are aware that this makes the stability analysis more cumbersome. Thus we would like
to know if it would be reasonable to make a QSS assumption on the extra equation, so
we would be back in 2D land. To figure this out we add the extra equation, and take
a look at the corresponding characteristic polynomial for the now three-dimensional
system. If the new eigenvalue is significantly more negative than the others, then the
solution curve associated with this eigenvalue will stabilize much faster than the two
others. In fact the solution curve associated with this very negative eigenvalue will tend
to the stable manifold spanned by the eigenvectors of the two other eigenvalues as an
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Figure 8.18 Bifurcation diagram for the three dimensional version of the full model using NOD
parameters (see table 5.1). The diagram shows the fixed points of Ma when using f1 as the
bifurcation parameter. The solid and dashed lines illustrates stable and unstable fixed points
respectively. We see that the system is bistable in the approximate range (0 − 2.57 × 10−5)
with a “line” of unstable fixed points to separate the two regions. For f1 > 2.57× 10−5 only
the healthy rest state remains stable.

exponential function raised to the power of the eigenvalue. This means that adding the
extra equation does not contribute any new information about the system after a given
amount of time (which depends on the magnitude of the eigenvalue) has transpired. By
then the dynamics of the system will be governed by the two other eigenvalues. Thus
when this is the case we can justify applying a QSS to the equation that describes the
rate of change of the variable we introduced lastly.
In our case this is exactly the case, though the story is reversed. We started out with
5 equations in the DuCa model, and wanted to know if three would suffice; using QSS
assumptions on the last two.
Furthermore the value of the remaining fixed points do not change significantly which
again indicates that the QSS assumptions are sound approximations.
The stability analysis of the fixed points reveals that the behavior of the eigenvalues
are less complicated than in the five dimensional case; cf. figures B.18-B.22 in appendix
B.5. The unstable fixed points in the LUB are now rid of complex eigenvalues, while
the set of large, negative and complex eigenvalues that were associated with USB have
also gone. The LUB still serves as a separatrix that divides the region of nonperma-
nent inflammation from the region of chronic inflammation. The Hopf bifurcation still
happens as the stable nontrivial fixed points become unstable and the saddle-node bi-
furcation is also present.
Now that we have learned that the behavior of the reduced DuCa model is very much
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like the full DuCa model a natural question comes to mind: why did we devote so much
of our time to analyzing the full DuCa model rather than the reduced 3-dimensional
version? The answer is that in order to compare the reduced DuCa model to the
full DuCa model we needed to produce bifurcation diagrams for the full DuCa model.
These were immensely time-consuming to produce, especially due to the trial-and-error
approach we used to make initial guesses when using the Newton-Raphson method.
Another question one might ask is: why did we not use the reduced model to perform
an analytical analysis based on f.x. the Routh-Hurwitz criteria? We actually tried to
do this, but the Michaelis-Menten term in the reduced DuCa model makes it extremely
hard to obtain anything that will provide new information.



9 Discussion of the Bifurcation Analysis

In chapter 8.1 we presented bifurcation diagrams and some diagrams showing how the
eigenvalues behaved with increasing f1 and f2 in the NOD-bifurcation diagrams. In
this chapter we will give a summary of our analysis, discuss our findings, relate them to
the underlying biological system and comment on question I-III of the thesis statement.
Finally we will touch upon subjects for future work.
By conducting a bifurcation analysis we obtained information about how much f1 and
f2 needed to be tweaked to induce bifurcations. Both the NOD- and Balb/c-diagrams
revealed the existence of (what inspection of the eigenvalues revealed to be) a Hopf-
bifurcation, which indirect results, e.g. hysteresis, suggest is sub-critical. In addition
all figures also contained a bifurcation that consisted of two branches of saddle-points
amalgamating, as well as the possibility of bistability – the Hopf-bifurcation point serves
as the demarcation point between bi- and mono stability.

When using NOD parameters the chosen bifurcation parameter, f1 or f2, lies within
the parameter span where the model shows bistability: a stable healthy rest state (the
HRS) and a stable upper nontrivial fixed point (the USB) that is associated with the
chronic inflammation that is observed in NOD-mice; cf. figure 8.1 and 8.12. Between
these is an unstable nontrivial fixed point (the LUB). This configuration accounts for
the NOD behavior, i.e. they develop a chronic inflammation because the unstable fixed
point is exceeded during the apoptotic wave, thus making the flow tend to the USB.
The phagocytosis rates Marée et al. (2006) have used in the DuCa model come from
several experiments. We discussed this in section 5.8 where we also provided different
values of f1 and f2 as given in the different articles of Marée et al.; cf. table 5.2. The
different values along with their standard errors are important in determining if any
qualitative change occurs for physiologically realistic parameter-values. The standard
error for f1 was < 0.005 × 10−5 (not included in table 5.2), and the most extreme
f2-value we could come across was 1.02×10−5 in NOD-mice. This value was associated
with a standard error of 0.01 × 10−5. When we compare these values to the f1- and
f2-values at which the Hopf-bifurcations, ∼ 2.57× 10−5 and ∼ 8.5× 10−5 respectively,
take place we find that no NOD-mouse that have phagocytosis rates in the intervals
given in table 5.2 will escape chronic inflammation following the apoptotic wave.
We know that not all NOD-mice become diabetic. But how can that be if the standard
errors do not permit any NOD-mouse to supersede the Hopf-bifurcation value? For
one thing the macrophages used in the various experiments of Marée et al. were from
female mice – we learned in chapter 2 that 80 % of the female mice develop T1D against
only 20 % of the male mice. In addition O’Brien et al. (2002) find that macrophages
from male NOD-mice have a higher phagocytic capacity during the first 2 weeks of life
(O’Brien et al., 2002, p.2483). At week 3 the phagocytic ability of the female NOD-mice
is leading, but at this point the apoptotic wave has already set things in motion, and
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the inflammation is irreversible. Besides these results the experiments that were used
to obtain the phagocytosis rates were in vitro experiments, how this exactly affects the
macrophages we do not know. It would be interesting to obtain f1- and f2-values from
male NOD-mice to see if their mean value is above the Hopf-bifurcation value.
Hence when we compare the phagocytosis rates to the values at which the Hopf-
bifurcations occur, we find that based on the parameter values from (female) NOD-mice
the DuCa-model is sound in the sense that no bifurcations occur within a physiologi-
cally reasonable range.
So far we have used the NOD-bifurcation diagrams to discuss if bifurcations occur in f1-
and f2-intervals that are close to the estimated f1- and f2-values, and found that this is
not the case. Now, let us see what extra information we can gather from the diagrams.
For instance, from a medical point of view, it would be interesting to know which of the
phagocytosis rates it is most opportune to manipulate with stopping the inflammation
in mind. Comparing figure 8.1 to 8.12 we conclude that, if we can only adjust one of
the phagocytosis rates in the NOD bio-model, enhancing f1 is most efficient. By this
we mean that f1 needs “only” be changed to little more than 2.57× 10−5 to arrest and
reverse any inflammation, whereas f2 must exceed a staggering 8.544× 10−5 to induce
the same effect. Furthermore, due to the irreversibility, we would only need to enhance
the phagocytic ability of the resting macrophages until they had phagocytized enough
apoptotic β-cells, as to make the concentration of activated macrophages drop beneath
the NODf1 -LUB.
While we are in the area of inferring treatment strategies from the bifurcation diagram,
we saw in figure 8.9 that there was more to figure 8.1 than had revealed itself from our
method of producing bifurcation-diagrams. What did not reveal itself was the so-called
upper unstable branch, or the UUB. The existence of the UUB (be it an unstable fixed
point or a separatrix) opens up for a completely novel approach to curing T1D (in
NOD-mice).1 The mathematical analysis tells us, that if the inflammation has reached
a chronic/stable stage, then by adding an extra amount of activated macrophages to
the inflamed islets we can exceed the UUB thus making the flow tend to the HRS. The
specific amount will depend on f1. Thus if we are not able to make f1 exceed the Hopf-
bifurcation value, we can (hypothetically) add active macrophages, to achieve a positive
outcome, where by positive we mean that the chronic inflammation seizes. On this basis
we would like to establish an approximative relation between f1 and the UUB. Let M+

a

denote the UUB-curve in figure 8.9, f1,h be the f1-value at which the Hopf-bifurcation
occurs and Ma,h be the Ma-concentration at the Hopf-bifurcation, then we find that

M+
a (f1,h) ≈Ma,h (9.1)

Furthermore we hypothesize that

M+
a (0) = M+

a,0 (9.2)

where M+
a,0 is the Ma-value that is needed to make the flow tend to the HRS if we set

f1 = 0. We remind the reader that based on calculations done with matlab, we found
that the UUB decreases approximately exponentially for f1 < f1,h. Thus we guess that

1 The approach is novel in as much as we have not come across it in our literature studies.
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there is an exponential relation between f1 and the concentration of active macrophages
that must be exceeded to induce a non-inflammatory state. We propose

M+
a (f1) ≈Ma,h + (M+

a,0 −Ma,h)× exp(−h(f1)) (9.3)

For h(f1) we require
lim

f1→f1,h
h(f1) =∞, lim

f1→0
h(f1) = 0 (9.4)

A suitable candidate is

M+
a (f1) ≈Ma,h + (M+

a,0 −Ma,h)× exp
(
−
(

pf1,h

f1,h − f1
− p
))

(9.5)

where p ∈ R+\0 and f1 ∈ [0; f1,h[. The slope of the M+
a (f1)-curve is determined by

which values we use for p.2 Based on equation 9.5 we can estimate the concentration that
must be added to an NOD-mouse to overcome chronic inflammation; at least in theory.
We find the concentration to be ∆Ma := M+

a (f1)−M(f1). Looking at figure 8.9 we find
that at f1 = 1×10−5 we have M+

a ≈ 10×106cells ml−1 and Ma ≈ 5×106cells ml−1, so
at the estimated NOD-value of f1 we need to add at least 5× 106cells ml−1, or double
the concentration of activated macrophages, to stop the inflammation. However if we
were able to turn the value of f1 up to, say, 1.5×10−5, then we find ∆Ma ≈ 1×106cells
ml−1; i.e. a fifth of what was needed at the estimated f1-value for NOD-mice.
There are two problems with the expression given in equation 9.5; . First have assumed
that M+

a,0 is finite, secondly, even though this may be the case, there is still the matter
of fitting all the cells into the volume available. If the former is the case, then our
mathematical relation between M+

a and f1 is wrong, and the M+
a -curve would in this

case better be approximated by a hyperbola. However in reality NOD-mice are never
born with a phagocytosis rate of 0, so we can more or less disregard this problem,
and accept equation 9.5 as a reasonable approximation for the cases where f1 is not
unreasonably small. This allows us to address the second problem. From Poulter and
Turk (1975) we obtain an estimate of the volume of a macrophage to be 1450µm3

(Poulter and Turk, 1975, p.198) which converts to 1.45 × 10−9ml. Hence based on
the result of Poulter and Turk (1975) there is room for 689655172 macrophages within
1 ml. So, depending on the volume of the other cells, we will not rule out adding
supplementary activated macrophages as a viable mean of inducing health in NOD-
mice with chronic islet inflammation; especially if it can be combined with some way of
enhancing the phagocytic ability of the macrophages. However it is up to readers with
a medical background to check it experimentally.
Please be aware that we under no circumstances claim that the expression for M+

a (f1)
given in equation 9.5 is canonical. We could just as well have chosen a function of the
form

M+
a (f1) = Ma,h + (M+

a,0 −Ma,h)× exp(−kf1) (9.6)
where k is a constant much greater than 1.
This much we learned from the NOD-bifurcation diagrams. Now let us look at what
information can be extracted from the Balb/c-diagrams.

2 By using matlab to better approximate the UUB-curve at several values of f1 we could fit equation
9.5 to these data points to obtain to a value for p; i.e. be more meticulous with the method we used
to estimate the UUB in the first place.
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The bifurcation diagrams compiled from Balb/c parameters (figures 8.11 and 8.15)
reveal that, for the estimated Balb/c-values of f1 and f2, there is only one fixed point,
namely the HRS. In essence the macrophages of the Balb/c-mice should be able to
overcome any apoptotic wave! This may seem like ludicrous since we could just imagine
a wave that would wipe out all of the β-cells thus inducing a very severe case of T1D.
However we must remember that such a wave would (probably) never occur, and we
should always judge a model based on what it is intended to model, hence, not based
on some extreme event that is science-fiction rather than science.

If we are to learn anything from the Balb/c-diagrams, it must be how low the two
phagocytosis rates should be (from birth) if chronic inflammation were to appear in
Balb/c-mice. Again the phagocytosis rates of the resting macrophages is the one that
needs to be modified the least to induce this detrimental change. The difference between
chronic inflammation or not appears at f1 ≈ 1.2× 10−5 when f2 is kept at 5× 10−5.3

An interesting question to raise is: suppose we were mad scientists, and we had
found a way of engineering the phagocytosis rates to be higher or lower at birth as we
saw fit. Would it then be easier to induce NOD-like behavior in a Balb/c-mouse or
could we sooner save an NOD-mouse from the dire future of it’s unengineered peers?
The bifurcation diagram that reveals the smallest margin between NOD and Balb/c
behavior is the one compiled using the Balb/c-value of f2 with f1 as the bifurcation
parameter (figure 8.11). Here the Hopf bifurcation takes place at f1 = 1.21 × 10−5

which is 0.79 × 10−5 from the estimated value of f1 = 2 × 10−5. If we take f1-values
from other articles into account we find that we are close to loosing our job as mad
scientists. In the 2007 article of Marée et al. (Marée et al. (2007)) they give estimates
f1 = 1.31± 0.05× 10−5 and f1 = 1.29± 0.04× 10−5 for their reversible and irreversible
models respectively; cf. table 5.3 and the subsection titled “Reversible or irreversible
activation?” in section 5.8. Even with these intervals of deviation we are still a little
above the bifurcation value, but we must remember that the deviations of ±0.05 and
±0.04 are based on several measurements, so it is not entirely impossible that some of
the Balb/c-macrophages had a phagocytosis rate that was ≤ 1.21.4 Furthermore there
is an uncertainty associated with the step size of f1 or f2 when locating the bifurcation
value which could shift the result either way.

All in all the DuCa model corresponds well its underlying biological system and it
fully works on the premises that were made with it, and it also provides an answer to
the hypothesis that is was constructed to investigate. An answer that does not change
if the phagocytosis rates are changed within a sensible range. Naturally you can always
criticize the choice of assumptions and/or simplifications in a mathematical model, but,
without repeating our thoughts from chapter 4 we will state that, fact of the matter is
that these are necessary means if you want to be able to model anything.

3 Interestingly enough this is very close to the value at which chronic inflammation occurs upon
tweaking f2.

4 This is also in agreement with the fact that some Balb/c mice develop diabetes.
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9.1 Future Work
One thing we unfortunately did not finish in time, and which therefore has been left
out, is a codimension two analysis. The purpose of the codimension two analysis was to
understand what happens to the stability as f1 and f2 are varied simultaneously. From
a medical point of view this is interesting because: from figure 8.1 and the adhering
eigenvalue plots we know that at the Hopf-bifurcation value of f1 (f1,h) the inflamma-
tion becomes non-persistent in the NOD-mouse. Now suppose that biologically we are
able to induce an increase in f1 but we are unable to achieve f1,h. Then it would be
interesting to know how much f2 should be changed before we obtain the same effect
as if f1 had been changed to f1,h. We should also be able to achieve a (at least in
theory) continuous set of points (f1, f2), i.e. a curve, that defines the transition from
multistability to only one stable point, namely the healthy rest state.
Needless to say the codimension two analysis is interesting in its own right from a math-
ematical point of view. However the bifurcation that happens, in all the bifurcation
diagrams, as the USB and the LUB amalgamate would be particularly interesting.5
More effort could also be put into trying to bring, if not the 5-dimensional DuCa model
then, the 3-dimensional DuCa model (not to be confused with the intermediate model)
into normal form in order to determine if the Hopf-bifurcation is indeed sub-critical. A
couple of articles exist in online form where they provide Mathematica code, albeit a
code that is 10 years old, that can put up to 7-dimensional systems into normal form.
Furthermore a thorough inspection of the area in the Maf1-plane that is bordered by
f1 = f1,h, the LUB and the unstable part of the USB would be interesting – but proba-
bly time-consuming. Special attention should be devoted to establishing wether or not
heteroclinic orbits exist. This is interesting mathematically due to their implications
for the global flow.

Before we round of this first section of the thesis we would like to comment on the
availability of usable data, which we found was scarce – or we may just be inexperienced
in finding. We found it hard to procure usable data to which we could compare the
simulations of Marée et al. (2006). 6 Access to data would also better modelling of,
e.g., the apoptotic wave. How a different expression for the apoptotic wave would
influence the DuCa model we cannot precisely determine, but we suspect that it will
not make much difference in this model, since it is an “all-or-nothing model.” Either the
mouse develops T1D or it does not, all it takes is the right composition of parameters
and some initial spark that drives the concentration of apoptotic β-cells up, and thus
increases the concentration of activated macrophages above the NODf1-LUB. However
for “patient-specific” model we hypothesize that a better model of the apoptotic wave
will be important.

5 Should anyone perform this analysis in the future, please let us know.
6 This is also a problem when it comes to the expanded model which will be presented in chapter 11.
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10 Conclusion 1

For convenience we restate the research questions that we stated in the thesis statement.
The questions are

I Are the parameter values given in Marée et al. (2006) reasonable?
II Do bifurcations occur when a suitable parameter is varied within a physiologically

reasonable range?
III Is the model sound?
As for question I we discussed the different parameter values in section 5.8, and we find
that, the parameters are indeed reasonable.
Question II was treated in the discussion in the previous chapter and we find that we
cannot give an exact answer; it depends on how much of an error is associated with
the bifurcation-values and which of the phagocytosis rates we choose to stick to. If we
answer based on the estimated values from Marée et al. (2006) then the answer is: No,
bifurcations do not occur within such a range. However if we choose a Balb/c-f1 value
from one of the other articles, then the answer is: probably some (Balb/c-)mice have
phagocytosis rates that lead to T1D, but it is a small portion.
Overall we find that the answer to the third question is: Yes. Indeed some of the
assumptions could have used a little more explanation and discussion and we could
force unnatural behavior out of the model. But this merited modifications that were
unnatural e.g. a Hill coefficient less than 1. So overall we find that the model is sound.
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11 Expanding and Modifying the DuCa
model

Thus far we have given a thorough description, analysis and critique of the DuCa model.
In this next section is we will expand the DuCa model in two steps. First by including
a compartment of healthy β-cell, and second, by incorporating some recent findings.
Instead of just presenting the last model as though it was the first we came up with,
we have chosen to include them all as this constitutes a more accurate reflection of the
modelling-process.

11.1 Including a Compartment of Healthy β-cells
A natural extension of the DuCa model would be a compartment constituting healthy
β-cells, with according changes in the system of differential equations. Including such a
compartment also addresses one of the major discrepancies between the progression of
diabetes in NOD-mice and how the DuCa model behaves. Remember that in the DuCa
model, the reservoir for apoptotic β-cells is de facto infinite, but in the NOD-mice there
will eventually be no more β-cells left, if no prophylactic measures are taken – the same
is in essence true for Balb/c-mice given that they could live long enough.
An equation describing the change in concentration in β-cells should naturally reflect
the “real-life” behavior associated with the population of β-cells, so before we try to
construct such an equation, let us first define some criteria an expanded model must
fulfill and next discuss how we should go about putting together the additional equation
based on these criteria.

Model criteria
A mathematical model’s ability to fit data is a necessary but not sufficient gauge for the
model’s applicability and soundness. Thus we need a bit more to validate the model(s)
to come.
As stated in chapter 4 there must be a correspondence between the physiological system
we aim to model and the mathematical model we construct. In our case this correspon-
dence consists of four key-features that our expanded model(s) must live up to (besides
the three guidelines stated in chapter 4)

I In the NOD-mice the β-cells should not be removed at the time where T cells come
into play – there must be room for T cells to play an active part in the depletion
of β-cells though this will not be included in this thesis.
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II When the amount of β-cells do tend to 0, due to persistent inflammation or natural
apoptosis, after a while so must the concentrations of cytokines, apoptotic- and
necrotic β-cells as well as the active macrophages.

III The concentration of β-cells in NOD-mice must die out quicker than in Balb/c-
mice.

IV In the Balc/c-mice, the depletion of β-cells must be due to natural apoptosis only,
after the neonatal phase.

I is based on the fact that macrophages, cytokines and apoptotic-, necrotic- and healthy
β-cells are not the only cell/protein-types that are involved in the pathogenesis of T1D,
as T cells also play a significant part. In NOD-mice they enter the scene after about 4-5
weeks (Trudeau et al., 2003, p.219), and symptoms of T1D become apparent at about
30 weeks of age (Sreenan et al., 1999, p.989). II is a result of the causal relationship
between the components of the model – if there are no apoptotic β-cells then resting
macrophages cannot become activated, and no apoptotic β-cells can become necrotic –
there will be some residual apoptotic cells after the healthy β-cells are gone, so to be
very precise it is not until these cells have been phagocytized that all concentrations will
tend to zero (except for the resting macrophages). Thus once the deleterious process of
β-cells has been completed, the NOD-mice, too, will tend to what we called the HRS in
the bifurcation analysis, i.e. (M,Ma, Ba, Bn, C) = (a/c, 0, 0, 0, 0), but in this case it will
obviously not be a sign of health, quite the contrary. III serves as a necessary, though
not sufficient, condition for the validity of the model. IV is explained below.
Because T cells become significant at 4-5 weeks of age, the expanded models, presented
below, become more or less unrealistic at the same time; they will not include T cells.
However, including several weeks more than 5 in our simulations (and in the adhering
figures) makes us more able to determine if the models comply with the criteria.

11.2 First approximation to a governing equation – Model A
At the neonatal stage the behavior of the β-cell mass in NOD-mice is a little more
complex than a simple depletion from day one. The pancreas is still undergoing remod-
eling (Steer et al., 2006, p.262), e.g. the apoptotic wave. But even after these early
events and after the perpetual inflammation has begun, data exists that suggests that
the inflammation itself stimulates β-cell regeneration (Akirav et al., 2008, p.2883). This
could be because some of the cytokines produced in the inflammatory process are anti-
inflammatory or benign growth factors (Souza et al. (2008)). This has been disputed by
others, whose data indicates a more linear decline in the β-cell population after insuli-
tis has been established (Akirav et al., 2008, p.2883). However a decrease in the β-cell
population is not reserved for those destined to become diabetic. Everybody would be
become diabetic at some point, given that they live long enough (Pociot (2009)), due
to the natural occurring apoptosis. This is why we have the fourth criterion.
One thing that all parts can agree on is that the β-cells are being removed, so as a first
approximation we will use a simple linearly decreasing model for the β-cell population.
The equation for the β-cell population, at this stage, is given by

dB
dt = −x1 (11.1)
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with the initial condition B(0) = 1 × 109cells ml−1.1 Making the β-cell population
decline linearly implies that the population will become negative, but it suffices as a
first approximation. Notice that x1 is the naturally occurring apoptosis. By “naturally
occurring” we mean that it will go unaffected by factors that will tend to increase the
overall apoptosis. Factors that contribute to the overall apoptosis will be added as
terms on their own.
As a first approximation to the natural apoptosis we set x1 = 106cells d−1ml−1, i.e. a
million cells terminate through apoptosis every day. This means that if no other factors
bare influence on the population, the β-cells will be totally depleted after 1000 days,
in comparison a normal laboratory mouse (e.g. Balb/c or C57BL/6J) has a median
lifespan of 30 months (Blüher et al., 2003, p.573).
Another thing that has come to be generally accepted is that an apoptotic wave occurs
at the neonatal stage in several bio-models (Rooman and Bouwens (2004)), including
the NOD- and Balb/c-mouse. However we have to adjust the wave a little to fit into
our program. We define

W0(t) = W (t)
B(0) (11.2)

to be the adjusted apoptotic wave – Marée et al. (2006) could not make use a wave
that was dependent on the concentration of β-cells since they did not include such a
concentration. Adding (or rather subtracting) the wave, as given in equation 11.2, we
get

dB
dt = −x1 −

4× 107 exp(−((t− 9)/3)2)
B(0) B = −x1 −W0(t)B (11.3)

Besides this addition we must include the term that describes the death induced by
cytokines. Again we need to recast it to fit our model. We redefine the cytokine
induced apoptosis to be

A′maxC

kc + C
B (11.4)

where A′max = Amax/B(0). All in all the change in the concentration of healthy β-cells is
given by

dB
dt = −x1 −W0(t)B − A′maxC

kc + C
B (11.5)

Adding this equation to the DuCa model (cf. equations 5.6-5.10), and adding the term
x1 to the equation describing the change in concentration of apoptotic β-cells, as well

1 Here we have chosen the initial condition to be in the high end as readers, endowed with a good
memory, may agree to; cf. chapter 2.
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as substituting W0(t)B and A′maxC/(kc+C)B we get

dM
dt = a+ (k + b)Ma − cM − f1MBa − e1M(M +Ma) (11.6)

dMa

dt = f1MBa − kMa − e2Ma(M +Ma) (11.7)

dBa
dt = x1 +W0(t)B + A′maxC

kc + C
B − f1MBa − f2MaBa − dBa (11.8)

dBn
dt = dBa − f1MBn − f2MaBn (11.9)

dC
dt = αBnMa − δC (11.10)

dB
dt = −x1 −W0(t)B − A′maxC

kc + C
B (11.11)

with initial conditions (M(0),Ma(0), Ba(0), Bn(0), C(0), B(0)) = (4.77×105, 0, 0, 0, 0, 1×
109). For future reference we shall call this version of the expanded DuCa model, sim-
ply, Model A. Figure 11.1 shows simulations done in matlab of Model A – please notice

Figure 11.1 Simulation of Balb/c- and NOD-mice with the inclusion of a compartment of
healthy β-cells, i.e. equations 11.6-11.11, where the natural apoptosis has been assumed
to be constant. Left: the behavior of the concentrations in Balb/c-mice. Right: the
behavior of the concentrations in NOD-mice. Initial values are (M,Ma, Ba, Bn, C,B) =
(4.77× 105, 0, 0, 0, 0, 1× 109).

the difference in scale on the y-axis. On the left we see how the concentrations behave
in Balb/c-mice, while on the right we see the concentrations in NOD-mice. The first
feature we should take notice of is how many days it takes before the healthy β-cells
have all died out. In the Balb/c-mice the β-cells are gone after approximately 800 days,
while it only takes about 200 days in an NOD-mouse, after which the concentration
becomes negative. This is already a hint that Model A is not the most optimal candi-
date – the β-cells should ceteris paribus not be depleted at 800 days in a Balb/c-mouse,
and there should still be some β-cells left in the NOD-mouse at the time when T1D
becomes apparent. In addition to this Model A fails to live up to the second guideline
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from chapter 4. Nevertheless, let us look at how the other concentrations behave, to
see if we find anything instructive or other problems.
The Balb/c-behavior is different from before the compartment of healthy β-cells was
added; cf. figure 5.3 for comparison. In particular the concentration of activated
macrophages and apoptotic β-cells remains elevated.
The behavior of the concentrations in the NOD-mice has some similarities to the orig-
inal DuCa model: there is a transient spike in Bn-concentration, the Ba-concentration
peaks at ≈ 3.5cells ml−1. We also see that β-cells still remain at the point where T
cells would start contributing to the deleterious process (had they been included in
the model). However the β-cell concentration reaches a zero-concentration without the
“aid” of T cells, so criterion I is not fulfilled.
Thus there are two immediate reasons why we should discard Model A: 1. the β-cells
die out after too few days, 2. the Ma- and Ba-concentrations never tend to zero, which
is in breach with criterion II. But we should have expected this! By adding the x1-term
to equation 11.8 we supply a constant inflow of apoptotic β-cells, which never stops.
This in turn provokes the activation of resting macrophages. However, no matter how
we add a compartment of healthy β-cells (that undergo apoptosis) we will always ob-
serve prolonged elevation of Ba-and Ma-concentration in the Balb/c-mice (as well as in
NOD-mice), when we compare it to the original DuCa model.
We should not be discouraged by this result, rather it is an indication that expanding
the DuCa model with a compartment of healthy β-cells makes it more akin to what
we would observe in vivo, since biological systems are seldom in equilibrium (Reynolds
et al., 2006, p.224).2 This leads us to an important lesson which Model A teaches us.
We must redefine what can be interpreted as healthy behavior, so we can use this as a
gauge for the validity of future expanded models; i.e. we need an addendum to our four
criteria, that describes how the different concentrations should behave in the Balb/c-
mouse.
We are not in search of a stable healthy state as in the DuCa model, because, though
the cellular concentrations, save for the resting macrophages, should eventually reach
0 as stated in the second criterion, this is no longer a sign of health.
We will define healthy behavior based on what is not healthy behavior. Non-healthy
behavior is observed when the existence of necrotic β-cells and cytokines is not an arti-
fact of the neonatal phase only.3 Thus if the concentration of necrotic β-cells and hence
also cytokines tends to zero after the apoptotic wave has occurred and Ma and Ba tend
to zero when B → 0, we shall call it healthy behavior.
Model A also suffers the problem of the natural apoptosis being constant, which, as
stated entails a non-physiological concentration of β-cells. Thus in the following we
will strive to reconstruct the apoptosis-term so that: 1. the concentrations will obey
criterion II, and 2. the concentration of healthy β-cells will not become negative due
to the way we model the natural apoptosis.

2 The healthy rest state of the original DuCa model (M,Ma, Ba, Bn, C) = (a/c, 0, 0, 0, 0) is a highly
idealized view of how the state of things are in the pancreas.

3 Notice that this may still be an oversimplification, but it will make due for our needs.
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11.3 Modifying the governing equation – Model B
Based on the insights we obtained from Model A, we will now modify the apoptosis-
term to obtain a more realistic behavior.
Verchere (2009) and Pociot (2009) reports that a rule of thumb is that approximately
0.1%, or 1 in 1000, β-cells become apoptotic per day in adult mice; i.e. the number of
β-cells that become apoptotic at a given time, depends on how many are left.4 Thus we
must adjust the governing equation accordingly. This is done simply by changing the
term that describes the natural apoptosis from x1 to x2B in equation 11.8 and 11.11.
The new constant, x2, has the dimension “’per day” (d−1) and a value of 0.001. We
will refer to this model as Model B.
In figure 11.2 we present a simulation of the Balb/c- mouse based on Model B, while
figure 11.3 shows the NOD-simulation.

Model B – Balb/c-simulation
We see that making the amount of β-cells, that enter natural apoptosis per day, de-
pendent on the concentration of β-cells has improved the Balb/c-behavior in that the
concentrations of apoptotic β-cells and activated macrophages tend toward zero as
t → ∞, and the concentration of β-cells also exhibits a more natural behavior. The
Balb/c-simulation is in agreement with criteria II and IV, and if we compare the plots
portraying the concentrations of healthy β-cells in figures 11.2 and 11.3 we see that the
third criterion is also fulfilled.

Figure 11.2 Behavior of the concentrations for Balb/c-mice with the inclusion of a compartment
of healthy β-cells; based on Model B. Left: the concentrations ofM,Ma, Ba, Bn, C. Right: the
concentration of B. Initial values are (M,Ma, Ba, Bn, C,B) = (4.77× 105, 0, 0, 0, 0, 1× 109)

4 Teta et al. (2005) give an apoptosis rate of 0.0011 percent per day in one year old mice (Teta et al.,
2005, p.2562).



11.3 Modifying the governing equation – Model B 111

Model B – NOD-simulation
Superficially speaking the NOD-simulation agrees with criteria I – there are still plenty
of β-cells left when the T cells would start to take affect (not included in the model).
We will discuss this further in chapter 12. Criteria II and III are also satisfied.
When we compare figure 11.2 and 11.3 we see that as a consequence of the increased

Figure 11.3 Behavior of the concentrations for NOD-mice with the inclusion of a compartment
of healthy β-cells; based on Model B. Left: the concentrations ofM,Ma, Ba, Bn, C. Right: the
concentration of B. Initial values are (M,Ma, Ba, Bn, C,B) = (4.77× 105, 0, 0, 0, 0, 1× 109)

pathological β-cell apoptosis in NOD-mice the Ba-concentration has an initial peak
at approximately 3.4 × 106 cells ml−1 compared to around 0.7 × 106 cells ml−1 in
Balb/c-mice. This in turn implies that the NOD Ma-concentration reaches a signifi-
cantly higher value than the Balb/c Ma-concentration. We also notice that the peak
in Ma-concentration occurs earlier in Balb/c-mice because f1 is higher in this type of
mouse compared to NOD-mice. As stated the healthy β-cells in Balb/c-mice die out
due, only, to natural apoptosis after the initial remodelling phase. This can be seen as
the sudden change in the slope of the B-concentration curve in figure 11.2. The NOD
β-cells do not experience this change in the slope and continue the steep slope that
the initial phase has appointed for them. After 500 days the NOD B-concentration
is less than 1 × 108, compared to nearly four times that amount in Balb/c-mice. To
get a sense of how well Model B does when compared to actual data, we would like to
remind the reader that diabetes becomes overt at approximately 30 weeks of age in the
NOD-mouse (Sreenan et al., 1999, p.989). In humans T1D becomes overt when about
60-90% of the β-cells are gone (Seeley et al., 2008, p.636). Assuming that it is the same
for NOD-mice we find that the B-concentration should be 1× 108 to 4× 108 cells ml−1

at 30 weeks of age; cf. chapter 2. Looking at figure 11.3 we find that the concentration
reaches 4 × 108 cells ml−1 after 80-100 days, and 1 × 108 just before 500 days. This
speaks for the soundness of Model B, since B(0) may vary from mouse to mouse and it
is not unlikely that the apoptosis rate may do the same. We must also recall, that T
cells play an important role after about 4-5 weeks in the development of T1D, and by
the same token the depletion of β-cells. All in all it could seem as though Model B is
a suitable model – at least for the NOD-mouse.
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Now let us see how well Model B models the Balb/c-mouse. The Balb/c-simulation of
Model B reveals that a B-concentration of 4× 108 cells ml−1 is reached shortly before
500 days have transpired. This speaks against the soundness of Model B. B = 1× 108

is reached some time after 1500 days, which must be regarded as a Methuselan age for
a mouse.

Thus on one hand Model B appears to fit the NOD-mouse. On the other the hand
the Balb/c-mouse also becomes diabetic, when we adapt the assumption that removing
60% of the β-cells implies diabetes. But before we start making any final conclusions
there is something we have left out in these first two models, namely the regeneration
and replication of healthy β-cells that is concurrent with apoptosis – in young rodents
at least. Adding a replication-term to the model may save the Balb/c-mouse from its
ill-fated lab-colleague. The next subsection will deal with this aspect.

11.4 Adding β-cell growth – Model C
As we hinted earlier, there is experimental evidence that suggests that the β-cells do
not simply die out linearly or according to an exponential law (Bouwens and Rooman
(2005), Steer et al. (2006), Akirav et al. (2008), Saisho et al. (2008)), after the apop-
totic wave has done its damage – even during the initial phase where the apoptotic
wave occurs the β-cell mass may actually expand. In this subsection we add a growth-
or replication term to equation 11.11. We will also do yet another modification of the
apoptosis term.
Saisho et al. (2008) find the replication rate in islets of 1 month old rats to be 0.15%
per hour, which can be calculated to be approximately 3.6% per day or 0.036d−1. In
order to obtain this estimate they use an assay where they add a growth-medium to
their Langerhanian islets, which stimulates an increase in replication.5 Thus the value
of 0.036d−1 should not be taken at face-value, nonetheless it is the only estimate of the
replication rate in young rodents we have been able to find.
From the same article the apoptosis rate at 1 month of age can be calculated to ap-
proximately 0.018d−1 (Saisho et al., 2008, p.E90-E91). This differs from the apoptosis
rate we used in Model A and B. One reason for this discrepancy could be the same as
the reason why the replication rate estimated by Saisho et al. (2008) is inflated, i.e. we
speculate that the growth-medium may attenuate the apoptosis rate. Another reason
is that Saisho et al. (2008) use young rodents whereas the estimate given by Verchere
(2009) and Pociot (2009) is for adult rodents.
Besides providing an estimate for the replication – and apoptosis – rate of young ro-
dents, Saisho et al. (2008) also reports that in 10 week old rats replication is a rare
phenomenon in agreement with the findings of Teta et al. (2005) who estimate the
number of β-cells that undergo replication per day, in one year old mice of the so-called
c57BL/6×129Sv type, to be 1 in 1400, or ≈ 0.07% per day (Teta et al., 2005, p.2561).
Teta et al. (2005) further reports that the rate eventually drops to 0 (Teta et al., 2005,
p.2563), and provide an estimate for the replication rate of 8 month old male and female
Balb/c-mice, which they find to be ≈ 0.679% per day for the males and ≈ 0.242% per

5 The purpose of the article by Saisho et al. (2008) is not specifically to obtain a value for the
replication rate, so this does not constitute tampering with the results.
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day for the females. The average then becomes 0.461% per day, or a replication rate
of 0.005 per day. The results of Saisho et al. (2008) were obtained from rats, which
could lead one to speculate (as we did) that they are not applicable to a mathematical
model that is based on mice, and as such could not be used in conjunction with the
results of Teta et al. (2005). However Teta et al. (2005) comment on this issue in their
discussion. They find it unlikely that results should differ (drastically) between rodent
species (Teta et al., 2005, p.2565). Thus in the following we will make use of the results
from Saisho et al. (2008) and Teta et al. (2005).
An important thing that the results of Saisho et al. (2008) can teach us, which has also
been established by others (e.g. (Finegood et al. (1995))), is that the replication rate
is not constant throughout the lifespan of a rat or other rodents (Saisho et al., 2008,
p.E90) – this is true even without the growth medium-induced increase in replication
rate. This provides an interesting extra feature of the dynamic of the β-cell population
that we will attempt to incorporate in Model C.
If we assume that the replication rate decreases linearly from day 1 we get an equation
for the replication rate that is approximately given by

r(t) = −1× 10−4t+ 0.0392 (11.12)

Thus the replication rate at birth would be 0.0392 and the replication rate would reach
zero after approximately 392 days. However, Saisho et al. (2008) reports that the
replication is stable for at least 48 hours in 1 month old rat islets, which is incompatible
with a linear decline. This prompted us to think about alternatives to the linear decline.
Particularly the 48 hour stable period led us to speculate that maybe the replication
rate declines slowly during the early period of life, and then decreases more or less
rapidly as the rodent gets older, ultimately reaching a state where the replication rate
again decreases slowly until it ultimately reaches 0. Based on this we propose using a
time-dependent replication rate that is described by a logistic function.
A suitable candidate for the replication rate is

r(t) = r0

1 + exp(p1(t− t′1)) (11.13)

where r0 is the replication rate at birth, t′ is the time at which the replication rate has
dropped to half its original value, and p1 determines the steepness of the logistic curve
as the replication rate decreases. Though we do not know the values of r0, p1 and t′, we
do know that r(30) = 0.036d−1 and that r(365) ≈ 0.0007d−1. Based on these values we
can obtain a relationship between t′1 and r0, so we can see how different r0’s influences
the day where the replication rate has been halved compared to t = 0. Through some
tedious calculations we find

t′1 =
365 ln

(
r0−0.036

0.036
)
− 30 ln

(
r0−0.0007

0.0007
)

ln
(

0.0007(r0−0.036)
0.036(r0−0.0007)

) (11.14)

Of course we can also determine a relation between p1 and r0, as given in equation
11.15

p1 =
ln
(
r0−0.036

0.036
)

30− t′1
(11.15)
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where t′1 is given by equation 11.14.
Because we have found different values for the apoptosis rate in young and adult animals,
we hypothesize that the (natural) apoptosis rate might also decline with age. Again we
choose a logistic function to describe the apoptosis rate as a function of time, but this
time we do not want the rate to tend to zero as the animal ages. Instead we want it to
reach the constant value given by Verchere (2009); 0.001d−1. Thus we find

x3(t) = x3,0

1 + exp(p2(t− t′2)) + x2 (11.16)

As before we can relate p2 and x3,0 as well as t′2 and x3,0, as seen in equations 11.17
and 11.18.

t′2 =
365 ln

(
x3,0−0.018

0.018

)
− 30 ln

(
x3,0−0.001

0.001

)
ln
(

0.001(x3,0−0.018)
0.018(x3,0−0.001)

) (11.17)

p2 =
ln
(
x3,0−0.018

0.018

)
30− t′2

(11.18)

t′2 in equation 11.18 is given by 11.17.
By now we have altered the governing equations for the healthy and apoptotic β-cells
so many times that we find it appropriate to restate them

dBa
dt = x3(t)B +W0(t)B + A′maxC

kc + C
B − f1MBa − f2MaBa − dBa (11.19)

dB
dt = −x3(t)B −W0(t)B − A′maxC

kc + C
B + r(t)B (11.20)

The other equations remain as given in equation 11.6, 11.7, 11.9 and 11.10.
We could avoid the use of the non-autonomous apoptosis and replication terms by
adding two additional differential equations to the system of equations (one describing
the change in the apoptosis-rate and one describing the change in the replication-rate),
and assume that x3,0 ≈ x3(30) and r(0) ≈ r(30).
If we estimate r0 = 0.040d−1 we obtain t′1 ≈ 148d and p1 ≈ 0.019. While by estimating
x3,0 = 0.022d−1 we get t′2 ≈ 141d and p2 ≈ 0.014. Based on these estimates, and
x2 = 0.001d−1, the simulations in figure 11.4 and 11.5 were produced.6 As with Model
B we will compare Model C to the data that is available to us. However we will save
the discussion of Model C for the next chapter.

Model C – Balb/c-simulation
Figure 11.4 shows that, after the β-cell population has endured the initial remodelling,
it grows to a concentration of nearly 3.5 × 109 before it starts to decline. After 1500
days the concentration is still above 3 × 108, and at 30 months the concentration is
above what would be considered diabetic. The elevated number of β-cells, compared to

6 In appendix C.3 we have included the code that was used to do the simulations.
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Figure 11.4 Simulations of Balb/c-concentrations based on Model C. Left: the concentrations
ofM,Ma, Ba, Bn, C. Right: the concentration of B. Initial values are (M,Ma, Ba, Bn, C,B) =
(4.77× 105, 0, 0, 0, 0, 1× 109)

Model B, implies that the Ba-concentration is also elevated (Ba(50) < Ba(150)), this
in turn results in an increased level in Ma-concentration (Ma(150) ≈ 6.5 × 106) thus
yielding a reduction inM -concentration (M(150) < M(50)). After the B-concentration
has peaked it declines due to natural apoptosis, which then leads to a drop in the other
concentrations save for the M -concentration (M(150) < M(50) < M(250)).

Model C – NOD-simulation
Looking at figure 11.5 we find that the B-concentration reaches 4 × 108 cells ml−1

after about 250 days, and, 1 × 108 just before 500 days. This tells us that in terms of

Figure 11.5 Simulations of NOD-concentrations based on Model C. Left: the concentrations of
M,Ma, Ba, Bn, C. Right: the concentration of B. Initial values are (M,Ma, Ba, Bn, C,B) =
(4.77× 105, 0, 0, 0, 0, 1× 109)
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the healthy β-cells adding the replication-term shifts the number of days that transpire
before we reach a B-concentration that is associated with overt T1D. Furthermore figure
11.5 shows that after the apoptotic wave has taken its toll, there is a brief increase in
β-cell mass, before the concentration starts to diminish again. It is this difference
between Model B and C that yields the different number of days that pass before
diabetic conditions are reached. (If we imagine cutting out the part of the B-curve
from where it starts to increase to after it has peaked and move the right-most part of
the curve to the left, we get a sense of the influence of the effect of the short period of
growth.)
Based on the models presented in this chapter we will proceed to our final discussion
– this is why we have not treated Model C as thoroughly as the other models in this
chapter. The discussion will provide a brief summary of what we have discovered in
this chapter, a comparison of Model B and C and a discussion of how well Model C fits
our criteria, our (limited) data, and the guidelines provided in chapter 4.
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Just as Marée et al. (2006) modified the qualitative Copenhagen model to obtain a
model that was more quantitatively correct so we have modified the DuCa model to
make it do better in terms of realistic properties, i.e. we changed it so that there is
no longer an infinite supply of healthy β-cells.1 In short we expanded the DuCa model
based on the fact that the β-cell population is not infinite. This last step was taken
in chapter 11 where we started out by stating some criteria that an expanded model
should live up to. Then we made some basic assumptions about what influenced the
concentration of β-cells based on recent literature, incorporated this into a differential
equation that described the change in β-cell concentration, and altered the equation
describing the change in concentration of apoptotic β-cells accordingly. Matlab sim-
ulations were then done, and we analyzed the figures that were the product of these
simulations. Based on the figures we were able to determine how well the different
models complied with our criteria. In the following we will compare the model to the
data given below, and compare Model B and Model C to each other.
Perhaps the most important step towards validating one’s model(s) is to compare it to
data. The only readily useable data we have is
i The age at which symptoms of T1D becomes overt in the NOD-mouse – 30 weeks
ii The number of β-cells that are left when symptoms of T1D present themselves (in

NOD-mice) – 10-40 % of the initial β-cell mass
iii The time at which T cells become significant in the depletion of β-cells in NOD-mice

– 4-5 weeks
iv The median lifespan of a laboratory mouse – 30 months
which is not an overwhelming amount of data. It is, however, some of the most impor-
tant data that we could have hoped for, since it allows us to determine if our addition
to the DuCa model behaves realistically, i.e. lets us answer questions ii and iii of the
thesis statement; cf. section 1.1. Question i will be answered based on the simulations
presented in the previous chapter.

Based on the simulations of the first expanded model, Model A, we found that it did
not agree with model criteria I and II nor with the second guideline from chapter 4 (it
exhibited nonphysiological behavior), and almost by implication it is at variance with
the third guideline as well. We concluded that we needed to formulate an addendum,
regarding what we would consider healthy behavior, to our criteria. This addendum
had not previously occurred to us even though, looking back, it seems obvious.
A little wiser we proceeded to alter Model A slightly, so that we would avoid negative

1 This should not be interpreted as though the DuCa model is irrelevant or wrong. It was not
constructed to mimic Langerhanian Islets over long periods of time, only to analyze the hypothesis of
Marée et al. (2006).
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B-concentrations, the result of which was Model B. Based on the Balb/c-simulation of
Model B (cf. figure 11.2) we found that the second and fourth criterion were fulfilled.
When we compared figure 11.2 to figure 11.3 we found that Model B could also live up
to the third criterion. But there was a problem with the B-concentration in the Balb/c-
simulation. Though the concentration is declining due to natural apoptosis (criterion
IV), we cannot neglect the fact that B reaches a level that is consistent with T1D
during the lifetime of an average laboratory mouse (albeit the highest concentration of
remaining β-cells that has been associated with T1D-symptoms). This discrepancy was
avoided in Model C as will be discussed below.
The NOD-simulations revealed that Model B was able to meet the criteria that were
specific to this type of mouse. However, the fulfillment of the first criterion is debateable.
On one hand there are plenty of β-cells left at 4-5 weeks (where the T cells usually take
effect). On the other hand a B-concentration that should result in overt T1D-symptoms
is reached between 80 and 500 days of age (B(∼ 80) ≈ 0.4×B(0), B(500) < 0.1×B(0))
without the influence of T cells – symptoms become overt at ∼ 210 days. So we must
simply accept that criterion I is only partially fulfilled.
Though Model B was clearly a more suitable model than Model A we were not satisfied,
and we wanted to add the feature of β-cell replication to the model. Furthermore we
redid the apoptosis-term once more to make it more consistent with data found in the
literature. Both the apoptosis and replication rates were made time-dependent, so that
they would decrease over time; the replication rate ultimately reaching 0 while the
apoptosis rate ultimately reached a rate of 0.1 % per day; cf. equation 11.13 and 11.16
respectively.

In Model C the B-concentration, in the Balb/c-mouse, reaches an unnaturally high
value of 3.5×109. This is a result of choosing B(0) = 1×109, which is the concentration
found in adult nondiabetic animals. In hindsight it would have been prudent of us to
choose a smaller initial B-concentration. The choice of r0 and x3,0 also plays a part in
how the concentrations behave, and as we pointed out, the replication rate was enhanced
by the assay used by Saisho et al. (2008), while we speculate that the apoptosis rate
was attenuated. One could try adjusting these values together with a lower B(0) to
get a more realistic Balb/c-behavior, and then compare the values that yield realistic
behavior to values found in the (future) literature.

Compared to Model B there is a delay in the number of days that transpire after
birth before the B-concentration in NOD-mice becomes less than 40 % of B(0). This is
not a cause for critique of Model C, rather it speaks in its favor. According to the first
criterion the concentration of β-cells should be such that T cells are needed to induce
diabetes by approximately 30 weeks of age. In terms of the B-concentration this means
that with the inclusion of T cells, B should be between 0.1 − 0.4 times B(0) at week
30. We speculate that by adding the effect of T cells the B-concentration should reach
levels that are consistent with diabetes within 30 weeks.
Thus Model C provides a better NOD-model compared to Model B when it comes to
the first criterion. As far as the second criterion goes it is hard to determine if Model
B or Model C is more correct, since we have no data to judge from.
If we turn to the research questions we stated in section 1.1, we find that we can answer
positively to i and ii based on both Model B and Model C. But what about iii? The
only data that we can use to answer this question is how the level of β-cells should be
(or rather not be) at 30 weeks of age in NOD-mice. Based on this we find that Model
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Question Model A Model B Model C
i ÷ X X
ii ÷ X X
iii ÷ ÷ X

Guideline
1 X X X
2 ÷ X X
3 - - -

Criteria
I ÷ ÷/X X
II ÷ X X
III X X X
IV X X X

Data
i+ii ÷ ÷ X
iii ÷ ÷ X

Table 12.1 The “-” indicates that we have not had the time to analyze how the expanded
models respond when we vary significant parameters. Under “Data” it only made sense to
compare our simulations to point ii and iii.

C does agree with the experimental data.
To sum up all of the results we have obtained and conclusions we have drawn through
our work with the expanded model we give table 12.1. It provides an overview of
how the different models did compared to the questions from the thesis statement, the
guidelines, our criteria and the data. It is divided into three categories: 1, a question-
category, 2, a guideline-category, and 3, a data-category. A ÷ underneath e.g. Model
A and to the right of e.g. question i, indicates that Model A did not provide for a
natural extension of the DuCa model. Similarly a check mark under e.g. Model B
and to the right of question ii signifies that Model B yielded more realistic behavior,
than the DuCa model. In the guideline category all the spots to the right of guideline
number 3 are marked with a dash. This is to show that we have not analyzed how the
models behave when we tweak significant parameters.
The data-category merits a little more explanation. The best way is to provide an

example of how it should be interpreted. Let us look at the third data point, which tells
us that T cells become significant in the depletion of healthy β-cells, in NOD-mice, at
approximately 4-5 weeks of age. Under Model A there is a ÷-sign to the right of this
point. This signifies that Model A is unfit to incorporate T cells – it would only serve
to kill off the β-cells even quicker. From the NOD-simulations of Model C we saw that
diabetic B-concentrations were not reached at 30 weeks, leaving room for T cells to
have an effect. Thus there is a check mark underneath Model C. We should also make
clear what is to be understood by i+ii in the data-category. This comes from the fact
that i and ii are intertwined (the NOD-mice show signs of diabetes at 30 weeks of age
when 60-90 % of the β-cells are gone), but when we listed the data we found it more
convenient to split them in two. In table 12.1 they are taken together, and a check
mark signifies that at 30 weeks there is more than 40 % of the initial β-cell mass left
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in the NOD-mouse (seen from the simulations).

12.1 Future Work
Had we had more time we would have rerun our simulations with a smaller initial β-cell
concentration, and tried several combinations of x3,0 and r0. A smaller initial con-
centration of β-cells should bring down the concentration of active macrophages which
reaches very high values in Model C. This was especially the case in the Balb/c-mouse,
due to the higher f1-value. Though we do not have any data that tell us what Ma-
concentrations are realistic (except that we have a number for the maximum number
that can fit within a milliliter), we still thought about how we could keep the Ma-
concentration down if those displayed in the simulations are unrealistic.
One natural way to control the supply of activated macrophages (besides the crowd-
ing term), would be to take a step back and limit the supply of resting macrophages.
This could be achieved by adding an additional compartment of resting macrophages,
that would play the part of the surrounding tissue, from where the inflow of rest-
ing macrophages (given by a and b in the equation describing the change in M -
concentration) comes from.

IL-1 induction of primary necrosis
When we researched the literature to get information on how the concentration of β-
cells should behave, we came across some interesting articles. The article that is most
interesting in the light of the DuCa model is an article by Steer et al. (2006). They find
that the cytokine interleukin-1, when secreted by macrophages in the pancreatic islets,
induces necrosis in the islet β-cells. In other words: some of the β-cells, become necrotic
“straight away”, i.e. without first enduring apoptosis. Some of the other cytokines that
are released induce death by apoptosis.2 We must remark that the findings of Steer
et al. (2006) are based on Sprague Dawley rats, which is another animal model that is
widely used in diabetes research. Whereas the model of Marée et al. (2006) is based on
results obtained from experiments performed on NOD- and Balb/c-mice.
One could investigate how this influences the model by letting a fraction of the β-
cells that would usually go to the compartment of apoptotic β-cells go directly to the
compartment of necrotic β-cells. This would be most interesting in terms of simulations
with Balb/c parameters, since it would imply a larger concentration of cytokines.

Adding T cells
As we pointed out earlier T cells play a vital role in the development of T1D, and
they would make an interesting addition to Model C as far as NOD-simulations go.
Those interested in pursuing this idea should read the interesting article by Mahaffy
and Edelstein-Keshet (2007).

2 This article is from the same year as the article by Marée et al. (2006), so it is possible that they
have not been aware of the results.
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Adding treatment to Model C
Our initial goal was to modify the DuCa model as presented in chapter 11 and then
proceed to analyze, mathematically, what would be the opportune way of reversing
or arresting the deleterious process in NOD-mice. Based on the analysis we would
determine if any of the treatment strategies presented in chapter 3 would fit the role
laid out by the analysis. And if they could readily be implemented into the model.
E.g. an easy way to implement a drug that reduces the rate of apoptosis (such as GLP-
1) would be to modify the apoptosis term. But if we for a moment think in terms of
humans, then the deleterious process does not become known until quite a large number
of the β-cells are gone. So the term should be modified in such a way as not to take effect
right from birth. Rather the term should take effect at a time that coincides with the
time when the B-concentration is small enough such that symptoms become evident.
A function that comes to mind is hyperbolic tangent – assuming that infusion of the
drug becomes more or less steady after its first application. We could also conceive
of wanting to add a drug such as that initiates β-cell regeneration, replication and/or
differentiation. Again GLP-1 is a prime candidate as we learned in chapter 3. Here we
could add an additional replication term is zero at t = 0 and then grows to whatever
value we can justify based on data.

Regardless of the possible effects of such a drug, accessibility of supporting data is
imperative. In years to come, we hope to see that relevant medical data in this field
will become more readily available to all researchers interested in finding solutions to
major health issues.
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13 Conclusion 2

The primary objective of this thesis was to find out if
i we could add a natural expansion to the DuCa model
ii the expansion induced a more realistic behavior
iii the (natural) expansion would agree with experimental data
Based on Model C we conclude that:

we were able to expand the DuCa model in a way that yielded more realistic
simulations, and did not disagree with experimental data.

Furthermore we hypothesize that Model C can easily be modified/expanded to investi-
gate different treatment strategies; as outlined in the discussion (chapter 12).
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A Mathematical Appendices

This appendix is dedicated to rigoristic statements of the important theorems that
have been casually stated in different sections of the thesis. Other important concepts
that pertain to mathematics will also be dealt with in the following sections; e.g. the
Newton-Raphson method.

A.1 Existence and Uniqueness Theorem
A very important thing to determine when working with (systems of) differential equa-
tions, is wether the solution is unique, and in what interval the solution exist. I.e.
given a set of initial conditions on the DuCa model (equations 5.6-5.10), we would like
to know if the solution is unique, and if it exists for all time, t. To determine this we
first need to introduce the property of Lipschitz continuity

Definition 1
Given a function g(x), g : Rn → Rn, and a domain U ⊂ Rn, suppose that

‖g(x1)− g(x2)‖ ≤ L‖x1 − x2‖ (A.1)

where x1,x2 ∈ U , and L is the Lipschitz constant. Then we say that g is Lipschitz

When g fulfills this condition we say that g is Lipschitz continuous, or that it is con-
tinuously Lipschitz.
Now for the existence and uniqueness theorem itself

Theorem A.1
Suppose that g is Lipschitz continuous. Given an initial point x0 ∈ U , the autonomous
differential equation

ẋ = g(x) (A.2)

has a unique solution, φt(x0), that is defined on the maximal interval of existence.

Basically as long as g ∈ C1(U), where U is a compact set, we need not be concerned
about pathological behavior of the solution (Lynch, 2004, p.176). Loosely put the C1

condition guarantees that pathological behavior will not occur.
One thing that may concern the reader is the fact that we need the differential equation
to be autonomous, i.e. not explicitly dependent on time, which the DuCa model is not;
cf. equation 5.8. The apoptotic wave depends explicitly on time, but we can remedy
this by introducing another dimension, and an additional equation, into the system of
equations, by setting t equal to, say, X. By this little trick we have made the DuCa
model autonomous. In our case we have not been able to provide a analytic expression of
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the compact set, but our simulations (with varying initial conditions) seem to verify that
as long as we stick to choosing initial conditions in at least max ‖(M,Ma, Ba, Bn, C)‖
we are on the safe side (due to the crowding terms and the Micahelis-Menten function
these concentrations will never exceed ∞ and the concentrations cannot be negative).
By these means the solutions to the DuCa model will be unique, and the maximal
interval of existence is 0 ≤ t <∞.

A.2 The Implicit Function Theorem
The implicit function theorem1 is the theorem at the heart of bifurcation analysis, since
it provides sufficient conditions for an equilibrium to exist as a parameter is varied.
Formally the theorem can be stated as

Theorem A.2
Let r ∈ R and x ∈ Rn, then, if g(r,x) is a C1 function on R× Rn with the properties

g : R× Rn → Rn, g(0,0) = 0 (A.3)

and
Det(Dxg(0,0)) 6= 0 (A.4)

there exists a unique differentiable function G(r), defined on a neighborhood, U ⊂ R, of
r = 0, such that

G : U → Rn, G(0) = 0 (A.5)

and
g(r,G(r)) = 0, for r ∈ U (A.6)

This theorem promises us that: given an equilibrium for a system of differential equa-
tions that depends on a parameter, then if the Jacobian of the system evaluated in that
equilibrium is invertible, i.e. has a nonzero determinant, the equilibrium will persist (in
a neighborhood of the parameter value) as the parameter is changed.
The theorem can be generalized to an m-dimensional parameter, and a general equilib-
rium other than (0,0).

A.3 The Hartman-Grobman Theorem
The Hartman-Grobman theorem provides the link between the behavior of a nonlinear
system and the behavior of its linearized counterpart, when the eigenvalues of the
Jacobian are not purely imaginary or zero. The following formal statement of the
theorem is based on Guckenheimer and Holmes (2002).

Theorem A.3
Let (r,x) be as in Theorem A.2, and let g(r,x) = ẋ be a system of ordinary differential
equations. Assume that (0,0) is an equilibrium, then if Dxg(0,0) has no zero or purely
imaginary eigenvalues there is a homeomorphism, h, defined on some neighborhood, V ,

1 The following is loosely based on Crawford (1991).
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of (0,0) in Rn locally taking orbits of the nonlinear flow generated by the vector field g
to those of the linear flow

As with the implicit function theorem it can be stated for an arbitrary equilibrium,
but through a change of variables we can always move the equilibrium to the origin
(Crawford, 1991, p.993).

A.4 Michaelis-Menten Kinetics
This appendix2 serves to introduce the idea behind the Michaelis-Menten function which
Marée et al. (2006) uses in their model, to make the cytokine-induced apoptosis more
realistic, i.e. saturated. It all comes from the fact that saturation is a feature inherent
to all biological systems, and therefore it is important to incorporate saturation when
modelling such systems – The Michaelis-Menten saturation function is one way of doing
so.
To arrive at the Michaelis-Menten saturation function let us imagine that we have some
kind of bacteria in a petri dish, that grows when supplied with a nutrient of sorts. In
fact its growth rate depends on the availability of nutrient. How should one go about
modelling such a growth rate? To begin with we could ask ourselves how the bacteria
consumes the nutrient – as it turns out, the nutrient is mediated into the bacterial cell
via receptors. Thus a receptor can either be occupied or it can be available for business.
Sometimes the nutrient is broken down to a product and sometimes it is “set free”. If
we denote an external nutrient molecule with N , an occupied receptor with Ro, an
available receptor with Ra, and the product with P , we can write the reactions as

N +Ra
k1


k−1

Ro
k2−→ P +Ra (A.7)

where k1, k−1, k2 are reaction rates. This equation should be read as: an external nu-
trient molecule, N , comes into contact with an available receptor, Ra, thus constituting
the nutrient-receptor complex, Ro. Either the nutrient is relinquished, at rate k−1, or
it is broken down, at rate k2, yielding a reaction product, P , and an available receptor.
Denoting concentrations by appropriate lower-case letters we can transform this equa-
tion into the following system of nonlinear autonomous differential equations

dn
dt = k−1ro − k1nra (A.8)

dra
dt = k−1ro − k1nra + k2ro (A.9)

dro
dt = k1nra − k−1ro − k2ro (A.10)

dp
dt = k2ro (A.11)

With initial conditions: n(0) = n0, ra(0) = ra,0, ro(0) = 0, p(0) = 0. The observant
reader may have noticed that if we add equations A.9 and A.10 a little miracle happens,

2 This appendix is based on Edelstein-Keshet (1988) and Murray (2002).
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in that
dra
dt + dro

dt = 0 (A.12)

but before we start calling in people from the Vatican, we should note that, this tells
us that the total concentration of receptors remains constant – as it should since no
receptors are destroyed or created during the process. By equation A.12 we can write
the sum of the receptors as a constant, which we could call r. Further noticing that
equations A.8, A.9 and A.10 do not depend on A.11 we neglect this equation (we can
always solve it once we have solved the others). Making the substitution ra = r − ro
leaves us with two equations

dn
dt = −k1rn+ (k−1 + k1n)ro (A.13)

dro
dt = k1nr − (k−1 + k2 + k1n)ro (A.14)

If we assume that the number of occupied receptors remains constant over the course of
time we are interested in, i.e. making a quasi-steady-state assumption, we can isolate
ro in equation A.14 by which we get

ro(t) = k1n(t)r
k−1 + k2 + k1n(t) = n(t)r

Km + n(t) (A.15)

Where Km = (k−1+k2)/k1 is the Michaelis constant. Substituting equation A.15 into
equation A.13 we obtain

dn
dt = − Kmaxn(t)

Km + n(t) (A.16)

Where Kmax = k2r. Equation A.16 can be solved explicitly to yield an implicit in terms
of n(t), given by

n(t) = n0 +Km ln
(
n0

n(t)

)
(A.17)

Which obeys the initial condition on n(t). However when we substitute equation A.17
into the approximated result for ro(t), and look at t = 0 we have

ro(0) = k1rn0

k−1 + k2 + k1n0
(A.18)

which is obviously not in agreement with the initial conditions for ro(t). This illustrates
the fact that we are dealing with an approximation, that may suffice at a transient time,
when the amount of nutrient is abundant, and the number of occupied receptors can
be taken to be constant. But on a longer timescale the nutrient will start to run out,
and the number of occupied receptors will start to decrease.

A.5 Newton-Raphson Method
The Newton-Raphson method is a numerical method, that can be used for finding the
roots of an equation or even system of equations (Shampine et al. (2003)). Having
a system of differential equations, this of course means, finding the fixed points of a
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system, ẋ = 0. The method uses a simple and a fast convergent algorithm provided
that the initial guess value is close to the root (Eldén et al. (2004)). When we walk
through the derivation and the applications it will be evident that the method is based
on differential calculus and the simple idea of linear approximation.
In order to derive it we start with the Taylor series expansion and since we applied the
method on a system of differential equations the derivation will be based here on.
Now let

ẋ = f(x) (A.19)

And then let f(x) be a n-dimensional vector f = (f1, f2, ..., fn)T , x = (x1, x2, . . . , xn).
Then starting with the Taylor series expansion of the function fi(x) about the point x

fi(x + ∆x) = fi(x) +
n∑
j=1

∂fi
∂xj

∆xj +O(∆x2
j ) (A.20)

where the “big O” notation is an abbreviated way of writing the next terms in the series,
i.e. the quadratic and higher order terms, and denotes that they are small, since ∆x is
expected to be small. So by ignoring them we have the linearized version of equation
A.20, which we write using vector notation

f(x + ∆x) ≈ f(x) + J(f(x))∆x (A.21)

here J(f(x)) is the jacobian matrix. Since MATLAB is build to process calculations
numerically the elements in the Jacobian can not be derived analytically. Instead
we rewrite equation A.20 (again without the quadratic terms) to the form of a finite
difference which then can be used as an approximation of the elements in the Jacobian

∂fi
∂xj
≈ fi(x + hx̂j)− fi(x)

h
(A.22)

where x̂j is a unit vector pointing in the direction of xj and h is the small increment of
x. Now, the purpose remains to find the roots of the function f(x) and the way of doing
it will be through iterative steps. Lets assume that x is the initial approximation of the
root x∗ and hence solution to f(x) = 0. Then let x + ∆x be a better approximation.
To find the increment ∆x, and thereby the improved approximation for the root, we
set f(x + ∆x) = 0 in equation A.21

0 = f(x) + J(f(x))∆x (A.23)

Since ∆x = xk+1 − xk, where k is the number of iterations, we can rewrite equation
A.23 in the following way

xk+1 = xk − J(f(x))−1f(x)k (A.24)

the procedure now repeats itself by setting xk+1 equal to xk until the increment |∆x| <
ε, where ε is a user defined error tolerance on the estimated value of x∗ compared to
the analytical value. This is the essence in the Newton-Raphson method.
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A.6 Dimensionless Form of the Intermediate Model Including
Crowding Terms

In the following we nondimensionalize the three dimensional system including the
crowding terms. We start out by reminding the reader how this version of the sys-
tem looks

dM
dt = a+ (k + b)Ma − cM − gMBa − e1M

2 − e1MMa (A.25)

dMa

dt = gMBa − kMa − e2M
2
a − e2MMa (A.26)

dBa
dt = W (t) + lMa − f1MBa − f2MaBa − dBa (A.27)

We set mM̃ = M,maM̃a = Ma, baB̃a = Ba, and obtain the following for the change in
macrophage concentration

dM̃
dτ = aT

m
+ (k + b)T

m
maM̃a − cTm̃− gTbaM̃B̃a − e1TmM̃

2 − e1TmaM̃M̃a (A.28)

We choose T,m,ma, ba in a fashion such that we obtain

dM̃
dτ = 1 + k + b

c
M̃a − M̃B̃a − M̃ −

e1a

c2 M̃
2 − e1a

c2 M̃M̃a (A.29)

For the change in concentration of active macrophages we get

dM̃a

dτ = gT

ma
mbaM̃B̃a − kTM̃a − e2TmaM̃a

2 − e2TmM̃aM̃ ⇔ (A.30)

= M̃B̃a −
k

c
M̃a −

e2a

c2 M̃a
2 − e2a

c2 M̃aM̃ (A.31)

And for the change in apoptotic β-cells

dB̃a
dτ = T

ba
W (t) + lT

ba
maM̃a − f1TmB̃aM̃ − f2TmaB̃aM̃a − dTB̃a ⇔ (A.32)

= g

c2W (t) + alg

c3 M̃a −
af1

c2 B̃aM̃ −
af2

c2 B̃aM̃a −
d

c
B̃a (A.33)

Noting that e1 = e2, and f1 = f2 for NOD mice, we define the following dimensionless
groups. So the dimensionless equations become

dM̃
dτ = 1 + αM̃a − B̃aM̃ − M̃ − βM̃(M̃ + M̃a) (A.34)

dM̃a

dτ = M̃B̃a − γM̃a − βM̃a(M̃ + M̃a) (A.35)

dB̃a
dτ = ω(t) + δM̃a − εB̃a(M̃ + M̃a)− κB̃a (A.36)
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Letter Dimensionless group NOD Balb/c
α k+b

c
4.9 4.9

β aei
c2 0.01 0.01

γ k
c

4 4
δ alg

c3 41 81
ε af1

c2 10 20
φ af2

c2 – 50
κ d

c
5 5

ω(t) g
c2W (t) 40000× exp(−((10τd− 9d)/(3d))2) 40000× exp(−((10τd− 9d)/(3d))2)

for the NOD mice, and

dM̃
dτ = 1 + αM̃a − B̃a)M̃ − M̃ − βM̃(M̃ + M̃a) (A.37)

dM̃a

dτ = M̃B̃a − γM̃a − βM̃a(M̃ + M̃a) (A.38)

dB̃a
dτ = ω(t)δM̃a − εB̃aM̃ − φB̃aM̃a − κB̃a (A.39)

for the balb/c mice.

A.7 Fixed Point for the IM Including Crowding Terms
Looking at the healthy rest state Ma, Ba = 0 and solving equation 5.6 with respect to
M

M = −c+
√
c2 + 4e1a

2e1
(A.40)

An approximated expression can be obtained, using Taylor series expansion (about
e1 = 0)

M = 1
2e1

(
−c+ c

√
1 + 4ae1

c2

)
(A.41)

for 0 < e1 � 1 we obtain

≈ 1
2e1

(
−c+ c

(
1 + 2ae1

c2

)
− 2a

2(e1)2

c3

)
(A.42)

M ≈ a

c
− a2

c3 e1 = a

c

(
1− ae1

c2

)
(A.43)

So provided that e1 � c2
/a then M ≈ a/c defines the healthy rest state to be

(M,Ma, Ba) = (a/c, 0, 0) (A.44)
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B Additional Figures

In this appendix we have gathered some figures that were not presented in the text
because, they were either not interesting to the analysis or because they would take
up too much space compared to their relevance. The once that were deemed “not
interesting” have been gathered here for the purpose of documentation.

B.1 Eigenvalue-Plots Used to Evaluate Stability of the Fixed Points
Shown in Figure 8.1

The following figures were all done with f2 = 1×10−5. Figure B.1 shows the eigenvalues

Figure B.1 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the upper
inflamed region.

of the Jacobian evaluated in the fixed points that correspond to a chronic inflammation,
i.e. the USB. Figure B.2 shows the eigenvalues of the Jacobian evaluated in the fixed
points on the LUB. The eigenvalues appear to make sudden jumps. However, this is a
figment of matlab’s way of representing elements by magnitude, and as such does not
represent a de facto change in the respective values of the eigenvalues. Figure B.3 shows
the eigenvalues of the Jacobian evaluated in the HRS. This figure serves to document

139
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Figure B.2 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the lower
inflamed region.

Figure B.3 Plot of the eigenvalues for the Jacobian evaluated in the healthy rest state.

that the state is in fact stable (all eigenvalues are negative) as we claimed in the analysis.
Figure B.4 is a plot of the eigenvalues that become complex at f1 ≈ 2.15× 10−5 in the
complex plane.
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Figure B.4 A classical diagram of the imaginary part versus real part of the eigenvalues for
the Jacobian evaluated in fixed points in the upper inflamed region.
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B.2 Eigenvalue-Plots Used to Evaluate Stability of the Fixed Points
Shown in Figure 8.11

The following figures were all done with f2 = 5× 10−5.

Figure B.5 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the upper
inflamed region.
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Figure B.6 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the lower
inflamed region.

Figure B.7 Plot of the eigenvalues for the Jacobian evaluated in the healthy rest state.
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Figure B.8 Plot of the eigenvalues for the Jacobian evaluated in the fixed points along the
dotted (black) line seen in figure 8.11.

Figure B.9 Plot of the eigenvalues for the Jacobian evaluated in the fixed points along the
dashed-dotted (magenta) line seen in figure 8.11.
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Figure B.10 A classical diagram of the imaginary part versus real part of the eigenvalues for
the Jacobian evaluated in fixed points in the upper inflamed region.
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B.3 Eigenvalue-Plots Used to Evaluate Stability of the Fixed Points
Shown in Figure 8.12

The following figures were all done with f1 = 1× 10−5.

Figure B.11 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the upper
inflamed region.
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Figure B.12 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the lower
inflamed region.

Figure B.13 Plot of the eigenvalues for the Jacobian evaluated in the healthy rest state.
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Figure B.14 A classical diagram of the imaginary part versus real part of the eigenvalues for
the Jacobian evaluated in fixed points in the upper inflamed region.
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B.4 Eigenvalue-Plots used to Evaluate Stability of the Fixed Points
Shown in Figure 8.15

The following figures were all done with f1 = 2× 10−5.

Figure B.15 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the upper
inflamed region.
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Figure B.16 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the lower
inflamed region.

Figure B.17 Plot of the eigenvalues for the Jacobian evaluated in the healthy rest state.
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Figure B.18 A classical diagram of the imaginary part versus real part of the eigenvalues for
the Jacobian evaluated in fixed points in the upper inflamed region.
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B.5 Eigenvalue-plots Used to Evaluate Stability of the Fixed Points
Shown in Figure 8.18

These figures pertain to figure 8.18 in section 8.4. In all of them f2 is set to 1× 10−5.

Figure B.19 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the upper
inflamed region.
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Figure B.20 Plot of the eigenvalues for the Jacobian evaluated in fixed points in the lower
inflamed region.

Figure B.21 Plot of the eigenvalues for the Jacobian evaluated in the healthy rest state.
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Figure B.22 A classical diagram of the imaginary part versus real part of the eigenvalues for
the Jacobian evaluated in fixed points in the upper inflamed region (setting f2 = 1× 10−5).
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B.6 Stable Spirals for f1 near the Bifurcation Point
Here we present a series of phase space plots that show how the stable spiral behaves as
f1 nears the bifurcation point. f1 grows from left to right in every figure and also as we
go down through the figures. In figure B.25 f1 changes very little from the figure on the
left to the right; f1 = 2.5663× 10−5 on the left, f1 = 2.566305× 10−5 on the right. We
have made such minuscule changes because this is very close to the bifurcation point.
For f1 = 2.574× 10−5 the spiral has vanished, and the phase space curve tends to the
healthy rest state; cf. figure 8.4.
The figures should be self-explanatory so we will not bother with a lot of repetitive
caption.

Figure B.23

Figure B.24
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Figure B.25



C matlab Code

In the following appendix we provide the most important code that has been used in
this thesis

C.1 Code for the Bifurcation Diagrams in Chapter 8
Sample-code used to produce the Hopf bifurcation. The code presented here are for Hopf
bifurcation diagram shown in 8.1 and the associated eigenvalue plots seen in appendix
B.1.

clear all
close all

format long e

global g;
global E;

%--------------------------------------------------------------------

%n=1283; %number of simulations
n=430;
w=0; %initial value for w
dw=0.002e-05; %step size

s=zeros(1,n);
V=zeros(n,5);
Q=zeros(n,5);
%initial values for M
ini_1 =[1.270545352258887e+006 2.176041550288973e+006...
7.441465343929523e+005 1.615186732129120e+004...
7.031245923372193e+000];

%

for r=1:n;

157
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w(r+1)=w(r)+dw;

g=w(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_1);

M=M’;

s(r)=M(end,2,:);
Q(r,:)=M(end,:);

V_1(r)=E(1);
V_2(r)=E(2);
V_3(r)=E(3);
V_4(r)=E(4);
V_5(r)=E(5);

end

w(1)=[];
%
% %--------------------------------------------------------------------
%
n=855;
w_2=8.6e-6;
dw_2=0.002e-05;

s_2=zeros(1,n);
Q_2=zeros(n,5);
V=zeros(n,5);

ini_2 =[1.177753840657023e+006 5.017144005834548e+006...
1.967867544648059e+005 1.588274974061828e+003...
1.593754564310941e+000]

for r=1:n;

w_2(r+1)=w_2(r)+dw_2;

g=w_2(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_2);

M=M’;

Q_2(r,:)=M(end,:);
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s_2(r)=M(end,2,:);

V_6(r)=E(1);
V_7(r)=E(2);
V_8(r)=E(3);
V_9(r)=E(4);
V_10(r)=E(5);

end

w_2(1)=[];

% %--------------------------------------------------------------------

%n=330;
n=1300;

%w_3=3.21e-5;
w_3=2.57e-5

dw_3=0.0005e-05;
Q_3=zeros(n,5);
s_3=zeros(1,n);

ini_3 =[1.116505900837692e+006 5.392570475033534e+006...
8.740562819326353e+004 5.289622803983940e+002...
5.704932751365578e-001];

%ini_3 =[1.328372622370533e+006 3.067127736673758e+006...
3.193345211780306e+004 2.177913256243388e+002...
1.335987631258712e-001];

for r=1:n;

w_3(r+1)=w_3(r)+dw_3;

g=w_3(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_3);

M=M’;

s_3(r)=M(end,2,:);
Q_3(r,:)=M(end,:);
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V_11(r)=E(1);
V_12(r)=E(2);
V_13(r)=E(3);
V_14(r)=E(4);
V_15(r)=E(5);

end

w_3(1)=[];

% %--------------------------------------------------------------------

n=311;
%n=1300;

w_8=3.22e-5;
%w_8=2.57e-5;

dw_8=0.0005e-05;
Q_8=zeros(n,5);
s_8=zeros(1,n);

ini_8 =[1.328372622370533e+006 3.067127736673758e+006...
3.193345211780306e+004 2.177913256243388e+002 1.335987631258712e-001];

for r=1:n;

w_8(r+1)=w_8(r)+dw_8;

g=w_8(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_8);

M=M’;

s_8(r)=M(end,2,:);
Q_8(r,:)=M(end,:);

V_36(r)=E(1);
V_37(r)=E(2);
V_38(r)=E(3);
V_39(r)=E(4);
V_40(r)=E(5);
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end

w_8(1)=[];

% %--------------------------------------------------------------------

n=369;
w_4=3.375e-5;

dw_4=0.00005e-05;
s_4=zeros(1,n);
Q_4=zeros(n,5);

ini_4 =[1.039297813007866e+006 1.114781993794900e+006...
1.339725328517090e+004 1.449162575570958e+002...
3.231000690655891e-002];

for r=1:n;

w_4(r+1)=w_4(r)+dw_4;

g=w_4(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_4);

M=M’;

s_4(r)=M(end,2,:);
Q_4(r,:)=M(end,:);

%
V_16(r)=E(1);
V_17(r)=E(2);
V_18(r)=E(3);
V_19(r)=E(4);
V_20(r)=E(5);

end

w_4(1)=[];

% %---------------------------------------------------------------------
%
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n=675;
w_5=0;

dw_5=0.005e-05;
s_5=zeros(1,n);
Q_5=zeros(n,5);

ini_5 =[9.330299576072529e+005 8.242650262704889e+005...
1.087081707245666e+004 1.362102268102312e+002...
2.245466523600889e-002];

for r=1:n;

w_5(r+1)=w_5(r)+dw_5;

g=w_5(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_5);

M=M’;

s_5(r)=M(end,2,:);
Q_5(r,:)=M(end,:);

%
V_21(r)=E(1);
V_22(r)=E(2);
V_23(r)=E(3);
V_24(r)=E(4);
V_25(r)=E(5);

end

w_5(1)=[];
%
% %---------------------------------------------------------------------

n=923;
w_6=3.375e-5;

dw_6=0.00002e-05;
s_6=zeros(1,n);
Q_6=zeros(n,5);

ini_6 =[8.418272915816533e+005 6.159233005050864e+005
8.987431430737131e+003 1.299854844090522e+002
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1.601221771499518e-002 ];

for r=1:n;

w_6(r+1)=w_6(r)+dw_6;

g=w_6(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_6);

M=M’;

s_6(r)=M(end,2,:);
Q_6(r,:)=M(end,:);

%
V_26(r)=E(1);
V_27(r)=E(2);
V_28(r)=E(3);
V_29(r)=E(4);
V_30(r)=E(5);

end

w_6(1)=[];

% %---------------------------------------------------------------------

n=80;
w_7=0;

dw_7=0.05e-05;
s_7=zeros(1,n);
Q_6=zeros(n,5);

ini_7 =[4.772255750458808e+005 0 5.600225683160789e-007 0 0];

for r=1:n;

w_7(r+1)=w_7(r)+dw_7;

g=w_7(end);

[M]=newtonRaphson2(@eqdefT1D_full,ini_7);
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M=M’;

s_7(r)=M(end,2,:);
Q_7(r,:)=M(end,:);

%
V_31(r)=E(1);
V_32(r)=E(2);
V_33(r)=E(3);
V_34(r)=E(4);
V_35(r)=E(5);

end

w_7(1)=[];

%--------------------------------------------------------------------

k=w(1):0.0005e-05:w_7(end);

%--------------------------------------------------------------------

%--------------------------------------------------------------------

figure
plot(w,s,’-b’,w_2,s_2,’-b’,w_3,s_3,’--r’,w_4,s_4,’--r’,w_5,s_5,’--r’,...
w_6,s_6,’--r’,w_7,s_7,’-g’,w_8,s_8,’--r’)%

axis([0 4e-5 -0.1e6 6e6])
xlabel(’f_1’)
ylabel(’M_a(t)*’)

%ini=[ini_1;ini_2;ini_3;ini_4;ini_5;ini_6;ini_7;ini_8];

%legend([repmat(’ini = ’,size(ini,1),1) num2str(ini)])

Title(’Numerical bifurcation diagram’)
%-----------------------------------------------------
% figure
%
% subplot(2,1,1);plot(w,real(V_1),’.b’,w,real(V_2),’.b’,w,
real(V_3),’.b’,w,real(V_4),’.b’,w,real(V_5),’.b’,
w_2,real(V_6),’.b’,w_2,real(V_7),’.b’,w_2,real(V_8),’.b’,
w_2,real(V_9),’.b’,w_2,real(V_10),’.b’,w_3,real(V_11),
’.b’,w_3,real(V_12),’.b’,w_3,real(V_13),’.b’,w_3,real(V_14),’.b’,
w_3,real(V_15),’.b’,w_4,real(V_16),’.b’,w_4,real(V_17),’.b’,



C.1 Code for the Bifurcation Diagrams in Chapter 8 165

w_4,real(V_18),’.b’,w_4,real(V_19),’.b’,w_4,real(V_20),’.b’,
w_8,real(V_36),’.b’,w_8,real(V_37),’.b’,
w_8,real(V_38),’.b’,w_8,real(V_39),’.b’,w_8,real(V_40),’.b’,k,0,’black’)
% axis([0 3.5e-5 -4 4 ])
% Title(’Plot of eigenvalues for the Jacobian evaluated in the upper inflamed region’)
% xlabel(’f_1’)
% ylabel(’real(eig)’)
%
% subplot(2,1,2);plot(w,imag(V_1),’.b’,w,imag(V_2),’.b’,
w,imag(V_3),’.b’,w,imag(V_4),’.b’,w,imag(V_5),’.b’,
w_2,imag(V_6),’.b’,w_2,imag(V_7),’.b’,w_2,imag(V_8),’.b’,
w_2,imag(V_9),’.b’,w_2,imag(V_10),’.b’,w_3,imag(V_11),’.b’,
w_3,imag(V_12),’.b’,w_3,imag(V_13),’.b’,w_3,imag(V_14),’.b’,
w_3,imag(V_15),’.b’,w_4,imag(V_16),’.b’,w_4,imag(V_17),’.b’,
w_4,imag(V_18),’.b’,w_4,imag(V_19),’.b’,w_4,imag(V_20),’.b’,
w_8,imag(V_36),’.b’,w_8,imag(V_37),’.b’,w_8,imag(V_38),’.b’,
w_8,imag(V_39),’.b’,w_8,imag(V_40),’.b’,k,0,’black’)
% xlabel(’f_1’)
% ylabel(’imag(eig)’)
%

% ---------------
figure

subplot(2,1,1);plot(w_5,real(V_21),’.b’,w_5,real(V_22),’.b’,
w_5,real(V_23),’.b’,w_5,real(V_24),’.b’,
w_5,real(V_25),’.b’,w_6,real(V_26),’.b’,w_6,real(V_27),’.b’,
w_6,real(V_28),’.b’,w_6,real(V_29),’.b’,
w_6,real(V_30),’.b’,k,0,’black’)
axis([0 3.5e-5 -2 2 ])
Title(’Plot of eigenvalues for the Jacobian evaluated in the lower inflamed region ’)
xlabel(’f_1’)
ylabel(’real(eig)’)

subplot(2,1,2);plot(w_5,imag(V_21),’.b’,w_5,imag(V_22),’.b’,
w_5,imag(V_23),’.b’,w_5,imag(V_24),’.b’,
w_5,imag(V_25),’.b’,w_6,imag(V_26),’.b’,w_6,imag(V_27),’.b’,
w_6,imag(V_28),’.b’,w_6,imag(V_29),’.b’,
w_6,imag(V_30),’.b’,k,0,’black’)
xlabel(’f_1’)
ylabel(’imag(eig)’)

%---------------
figure

plot(w_7,V_31,’.b’,w_7,V_32,’.b’,w_7,V_33,’.b’,



166 matlab Code

w_7,V_34,’.b’,w_7,V_35,’.b’,k,0,’black’)
axis([0 3.5e-5 -2 2 ])
Title(’Plot of eigenvalues for the Jacobian evaluated in the stable healthy rest state ’)

xlabel(’f_1’)
ylabel(’real(eig)’)
%------------------

figure

subplot(2,1,1); plot(w,real(V_1),’.b’,w,real(V_2),’.b’,
w,real(V_3),’.b’,w,real(V_4),’.b’,w,real(V_5),’.b’,
w_2,real(V_6),’.b’,w_2,real(V_7),’.b’,w_2,real(V_8),’.b’,
w_2,real(V_9),’.b’,w_2,real(V_10),’.b’,
w_3,real(V_11),’.r’,w_3,real(V_12),’.r’,w_3,real(V_13),’.r’,
w_3,real(V_14),’.r’,w_3,real(V_15),’.r’,w_4,
real(V_16),’.r’,w_4,real(V_17),’.r’,w_4,real(V_18),’.r’,
w_4,real(V_19),’.r’,w_4,real(V_20),’.r’,
w_8,real(V_36),’.r’,w_8,real(V_37),’.r’,w_8,real(V_38),’.r’,
w_8,V_39,’.r’,w_8,real(V_40),’.r’,k,0,’black’)

axis([0 3.5e-5 -4 4 ])
Title(’Plot of the eigenvalues for the Jacobian evaluated in...
the upper inflamed region’)

xlabel(’f_1’)
ylabel(’real(eig)’)

subplot(2,1,2); plot(w,imag(V_1),’.b’,w,imag(V_2),’.b’,
w,imag(V_3),’.b’,w,imag(V_4),’.b’,w,imag(V_5),’.b’,
w_2,imag(V_6),’.b’,w_2,imag(V_7),’.b’,w_2,imag(V_8),’.b’,
w_2,imag(V_9),’.b’,w_2,imag(V_10),’.b’
,w_3,imag(V_11),’.r’,w_3,imag(V_12),’.r’,w_3,imag(V_13),’.r’,
w_3,imag(V_14),’.r’,w_3,imag(V_15),’.r’,
w_4,imag(V_16),’.r’,w_4,imag(V_17),’.r’,w_4,imag(V_18),’.r’,
w_4,imag(V_19),’.r’,w_4,imag(V_20),’.r’,
w_8,imag(V_36),’.r’,w_8,imag(V_37),’.r’,w_8,imag(V_38),’.r’,
w_8,V_39,’.r’,w_8,imag(V_40),’.r’,k,0,’black’)%
%axis([0 3.5e-5 -4 4 ])
axis([2e-5 3e-5 -1 1 ])
xlabel(’f_1’)
ylabel(’img(eig)’)

figure
%
plot(real(V_4),imag(V_4),’*b’,real(V_5),imag(V_5),’*b’,
real(V_9),imag(V_9),’*b’, real(V_10),imag(V_10),’*b’,
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real(V_14),imag(V_14),’*b’,real(V_15),imag(V_15),’*b’,
real(V_19),imag(V_19),’*b’,real(V_20),imag(V_20),’*b’,
real(V_39),imag(V_39),’*b’,
real(V_40),imag(V_40),’*b’)%k,0,’b’...
axis([-1 1 -0.5 0.5 ])

Title(’Plot of eigenvalues for the Jacobian evaluated in
the upper inflamed region’)

xlabel(’real(eig)’)
ylabel(’img(eig)’)

%--------------------------------------

C.2 Code for the Newton-Raphson Method
The code for the Newton-Raphson method. This is adapted from Shampine et al.
(2003).

function root = newtonRaphson2(func,M,tol)
% Newton-Raphson method of finding a root of simultaneous
% equations fi(x1,x2,...,xn) = 0, i = 1,2,...,n.
% USAGE: root = newtonRaphson2(func,x,tol)
% INPUT:
% func = handle of function that returns[f1,f2,...,fn].
% x = starting solution vector [x1,x2,...,xn].
% tol = error tolerance (default is 1.0e4*eps).
% OUTPUT:
% root = solution vector.

%define global

%global g;

Q=M;

if nargin == 2; tol = 1.0e7*eps; end %NARGIN defines the
number of input arguments that were used to call the function
(M,tol). %Tol is the error tolerance for the computation
here set to 1.0e4*eps = 2.2204e-012

%if size(M,1) == 1; M = M’; end % M must be column vector
(ctranspose - Complex conjugate transpose [’] ). if 3==1??

%for i = 1:50
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M=M’; % M must be column vector

for i = 1:1e7
[jac,F0] = jacobian(func,M);
if sqrt(dot(F0,F0)/length(M)) < tol %where sqrt to scalar
product of f0 are the length of f0

root = M; return

end

dM = jac\(-F0); % mldivide - Backslash or left matrix divide
\. This is the Newton-Raphson formular J(x)*dx=-f(x)

M = M + dM; if sqrt(dot(dM,dM)/length(M)) < tol*max(abs(M),1.0) %
For vectors, MAX(X) is the largest element in X

root = M; return
end
end
error(’Too many iterations’) % if the value doesnt subside the error
tolerance during the end i’th iteration and error messags is displayed

%--------------------------------

Code for Approximation of the Jacobian
The following code was used to approximate the Jacobian by the finite difference
method. This is adapted from Shampine et al. (2003).

function [jac,F0] = jacobian(func,M)
% Returns the Jacobian matrix and f(x).

global E;

h = 1.0e-4;
n = length(M);
jac = zeros(n);
F0 = feval(func,M);
for i =1:n;
temp = M(i);
M(i) = temp + h;
F1 = feval(func,M);
M(i) = temp;

jac(:,i) = (F1 - F0)/h;
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end
E=eig(jac);
%-----------------------------------------

%The code to "call" when solving the system
of differential equations by ode45.

function Mdot = eqdefT1D_full(M)

global g;

b = 0.09; %defines the parameter values
c = 0.1;
d = 0.5;
e = 1e-8;

f2=1e-5;
f1=1e-5
a = 5e4;
k = 0.4;
alpha=5e-9;
delta=25;
kc=1;
Amax = 2e7;
kb=(delta/alpha)*kc;

%DuCa model without apoptotic wave

Mdot = [a + (b + k) * M(2) - c * M(1) -
f1 * M(1) * M(3) - e * M(1) * ( M(1) + M(2) );
;f1 * M(1) * M(3) - k * M(2) - e * M(2) * ( M(1) + M(2) );
;(( Amax * M(5) )./( kc + M(5) )) - f1 * M(1) * M(3)
- f2 * M(2) * M(3) - d * M(3);
;d * M(3) - f1 * M(1) * M(4) - f2 * M(2)* M(4);
;alpha * M(4) * M(2) - delta * M(5)];
%------------------------------

%A sample code used for solving the system of differential
%equations by ode15s

clear all
close all
% initial values
M = [4e3 10e6 2e3 2e3 2e3];
% time span
tspan = [0 200];
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%options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6);

[t,M] = ode15s(@modelT1DmareeG_full,tspan,M);

figure
plot(t,M)
xlabel(’t’)
ylabel(’M(t), Ma(t), Ba(t), Bn(t),C(t)’)
legend(’M(t)’,’Ma(t)’,’Ba(t)’,’Bn(t)’,’C(t)’,2)

C.3 The Function-File for Model C
The following is the function-file that contains Model C.

function Mdot = mareemodelfuld6C(t,M)
Mdot = zeros(6,1);
global A b c d e f1 f2 a k k_c l x2 x3 x4
%defines parameter values
A = 2*10^7/(1e9);
a = 5*10^4;
b = 0.09;
c = 0.1;
d = 0.5;
e = 1*10^-8;
f1 = 1*10^-5;
f2 = 1*10^-5;
h = 5*10^-9;
k = 0.4;
k_c = 1;
l = 0.41;
m = 25;
r0 = 0.04;
a0 = 0.022;
t1 = (365*log((r0-0.036)/0.036)-30*log((r0-0.0007)/0.0007))/(log((0.0007*(r0-0.036))...
/(0.036*(r0-0.0007))))
p1 = log((r0-0.036)/0.036)/(30-t1)
t2 = (365*log((a0-0.018)/0.018)-30*log((a0-0.001)/0.001))/(log((0.001*(a0-0.018))...
/(0.018*(a0-0.001))))
p2 = log((a0-0.018)/0.018)/(30-t2)
x5 = 1*10^7;
Mdot(1,1) = a + (b + k) * M(2,1) - c * M(1,1) - f1 * M(1,1) * M(3,1)...
- e * M(1,1) * (M(1,1) + M(2,1));

Mdot(2,1) = f1 * M(1) * M(3) - k * M(2) - e * M(2) * (M(1) + M(2));
Mdot(3,1) = (a0*(1+exp(-p2*t2))/(1+exp(p2*(t-t2)))+0.001)*M(6)...
+ (4*10^7 *exp(-((t-9)/3)^2)/(1e9))*M(6) + (A*M(5)/(k_c + M(5)))*M(6)...

- f1 * M(3) * M(1) - f2 * M(2) * M(3) - d * M(3);
Mdot(4,1) = d*M(3) - f1*M(1)*M(4) - f2*M(2)*M(4);
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Mdot(5,1) = h*M(4)*M(2) - m*M(5);
Mdot(6,1) = -(a0*(1+exp(-p2*t2))/(1+exp(p2*(t-t2))) + 0.001)*M(6)...
- (4*10^7 *exp(-((t-9)/3)^2)/(1e9))*M(6) - (A*M(5)/(k_c + M(5)))*M(6) ...
+ r0*(1+exp(-p1*t1))/(1+exp(p1*(t-t1)))*M(6);

Simulation Code for Model C
The following code was used to produce the simulations of Model C.

clear all
close all
figure
hold on
M = [4.77e5,0,0,0,0,1e9];...
tspan = [0;5000];
options = odeset(’Reltol’,1e-20,’AbsTol’,1e-20);
[t,M] = ode15s(@mareemodelfuld6C,tspan,M);
Mtilde=M(:,6);
Mtilde(find(Mtilde<=0))=0;
M(:,6)=Mtilde;
plot(t,M)
grid
title(’Concentrations versus time for Balb/c-mice’)
xlabel(’Time(d)’)
ylabel(’Concentration’)
figure
hand=plot(t,M);
set(hand, ’LineWidth’, 2);
axis([0 125 0 6.5e6])
legend(’Resting Macrophages’,’Active Macrophages’,’Apoptotic \beta-cells’...
,’Necrotic \beta-cells’,’Cytokines’,’\beta-cells’)
%axis([0 500 0 1.65e6])
hand1=title(’Concentrations versus time for NOD-mice; x_{3,0} = 0.022, r_0 = 0.04’);
set(hand1,’FontSize’,10)
set(hand1,’FontWeight’,’Bold’)
hand2=xlabel(’Time(d)’);
set(hand2,’FontSize’,10)
set(hand2,’FontWeight’,’Bold’)
hand3=ylabel(’Concentration’);
set(hand3,’FontSize’,10)
set(hand3,’FontWeight’,’Bold’)
hold off
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