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In this thesis two mathematical models of the hypothalamic-pituitary-adrenal-axis(HPAaxis) are build using
well known physiological mechanisms. The HPA-axis controls the secretion of the hormones CRH, ACTH
and cortisol. The regulation of these hormones are important to human health. These hormones are the
variables in two systems of coupled non-linear differential equations that constitute the models. The models
include a negative feedback of cortisol on ACTH. The first model has a negative feedback from cortisol on
CRH corresponding to the 'standard biology textbook’ description of the HPA -axis. The second model
allows a feedback from cortisol on CRH to be positive or negative depending on the cortisol concentration
by including mechanisms from hippocampus.

For parameter values in a physiologically relevant range it is investigated if the models are capable of
guaranteeing solutions with reasonable levels in hormone concentration. It is investigated if the models are
capable of producing the ultradian oscillations that are observed in data of hormone concentrations. It is
investigated if an external imposed function on the differential equation governing the CRH concentration
can

cause the circadian rhythm that is seen in the concentrations of ACTH and cortisol.

Previous papers of the HPA-axis [1] and [2] claim to make models showing ultradian oscillations. We
analyze the two models and find significant drawbacks that must be elaborated for a successful model
taking care of the physiological mechanisms of the HPA-axis.

Results of analytical investigation of our models
For both models the results of the investigation is that all solutions end in a trapping region in the positive

octant of R?, thus guaranteeing reasonable levels in hormone concentration. Within this trapping region
there exists at least one fixed point. The first model has a unique fixed point. The unique fixed point is
locally stable for all physiological choices of parameters. Therefore no Hopf bifurcation is possible as an
explanation for the ultradian oscillations in data. For the second model more than one fixed point is
possible. The stability of a fixed point is categorized depending on the sign of the feedback on CRH at the
fixed point.

A sufficient, easily applicable criteria for a unique, globally stable fixed point is formulated for a more
general model. This can be applied on the two specific models.

Results of numerical investigation of our models

In the case of a unique fixed point this is asymptotically stable for all reasonable parameter values and
initial conditions. Perturbating the parameters in the second model makes the system undergo a bifurcation
where two new fixed points emerge. In the case of three fixed points there is one unstable fixed point and
two asymptotically stable fixed points. For all reasonable values of parameters and initial conditions the
solutions converge towards one of the two stable fixed points. Thus for reasonable parameter values
neither of the models are capable of producing the ultradian oscillations.

The analytical criteria for a globally stable fixed point is fulfilled for some set of parameters within
physiologically relevant range for both models.

An external input in the differential equation governing CRH is capable of showingcircadian oscillations in
the ACTH and cortisol concentration.
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Preface

This project report is a master thesis in mathematics for two persons at Roskilde Uni-
versity. The thesis is thus counting 20 ECTS points per person. The thesis is in
the category 'Mathematical Model Building’ and concerns deterministic models of the
hypothalamic-pituitary-adrenal (HPA)-axis.

In our early study of the literature for the thesis our eyes fell upon papers by Kyrylov
et al., [1], and by Jelic et al., [2]. Here models reproducing the dynamics of the HPA-
axis are formulated. Therefore we appreciate that Vadim Kyrylov invited one of the
authors of this project on a visit to discuss mathematical modeling of the HPA-axis.

We thank Jan Vistisen and Lars Arvastson from the medical company H. Lundbeck
A/S for being very helpful with many aspects regarding the modeling of the HPA-axis.

The collaboration with H. Lundbeck A/S has given us the fortunate opportunity of
access to data of hormone levels in healthy and unhealthy (depressed) persons. To our
knowledge deterministic mathematical models of the HPA-axis has not previously been
compared to such data. A successful model could therefore be used on the healthy group
as well as on the unhealthy group(s). The outcome could be that some parameters of
the mathematical model are significantly different among the groups. Then the model
could be used for a better understanding of the mechanisms causing depression.

It has been very motivating to us that a successful model may help improve the
understanding of the HPA-axis that is important to human health.

A special thanks to our supervisor, Johnny Tom Ottesen, for thorough feedback,
interest and relevant suggestions through the project.
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1 Method and readers guide

In this chapter we seek to give the reader an insight into the structure of this thesis.

First we introduce the reader to the rather complex biology of the HPA-axis in
chapter 2. This introduction serve as the platform for our mathematical model. The
standard biology textbook description of the HPA-axis regards a system where three
hormones interact and two negative feedbacks are present. Some mathematical models
of the HPA-axis include more mechanisms that may be of importance. We aim at the
simplest model showing the desired behaviour. Therefore we will construct and analyze
two models. One only including the ’standard biology textbook’ mechanisms of the
HPA axis and a more advanced model.

Our two models are deterministic. For a deterministic model a solution can be found
numerically given a set of initial conditions and parameters. Perturbing a parameter
may lead to qualitatively different dynamics which can be investigated numerically and
analytically (locally). The included mechanisms of the HPA-axis result in expressions
including parameters in the mathematical model. This means the behaviour of the
mathematical model can be analyzed as different mechanisms of the physiology are
given more or less weight. Since the three kinds of hormones of the HPA axis are
coupled it is hard to distinguish cause and effect in for the physiology of the HPA-axis.
However for a deterministic model it may be possible to describe the effect of e.g. a
malfunctioning feedback.

In chapter 2 we also show masked data kindly provided by H. Lundbeck A/S. This
should give the reader an idea of the dynamics a model should be able to reproduce. A
brief presentation of two state of the art models (paper [2] and paper [1]) of the HPA
axis is also given in this chapter. Here we focus on categorizing the arguments regarding
physiology and mathematical modeling. We focus here on the advantages of the two
models.

In chapter 3 we introduce the most widely used mathematical theory in this the-
sis. We focus on deterministic models. Therefore this chapter mainly concerns theory
regarding ordinary differential equations.

Since the mathematical theory is now introduced we can in chapter 4 give a more in
depth analysis of [2] and [1]. This analysis reveals problematic parts of each model that
must be improved. The purpose of this chapter is to show typical models of the HPA-
axis. Also this chapter shows that modeling of the HPA-axis is incomplete justifying
that more work is needed.

In chapter 5 the first of our two models is constructed and analyzed. An important
part of the model relies on receptor dynamics that are crucial for feedback mechanisms.
The analytical investigation does not constitute a complete investigation of the system
dynamics (which is often the case for non linear systems of differential equations). How-
ever the analysis does not give reason to expect the system has the desired dynamics.
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The second model is constructed and analyzed in chapter 8. The use of receptor
dynamics is also in focus for the second model.

The two mathematical models are analyzed and some important properties are com-
mon for both systems. The arguments for this is also quite similar in the two cases.
However this emphasize the potential in a formulation a more general model where the
same results apply. This is interesting since a wider range of models is then covered.
This is explored in chapter 9. Here a criteria is formulated that guaranties global sta-
bility, thus outruling the existence of limit cycles. This arguments is easy to use for a
specific system where parameters are known.

Some results of this projects hold solely by knowing the sign of the included param-
eters. However some results are a categorization of system dynamics. This depends
on the actual values of the parameters of the system. Therefore chapter 10 concerns
estimation of parameters. This leads to a set of default parameters for our two models.
However it is a general problem when modeling the HPA-axis to get reliable parameters.

In chapter 11 the dynamics of our two models are investigated numerically using
Matlab. First using the default parameters. Then typically one parameter is perturbed
and the rest of parameters are fixed at default values. This is valuable information
since the parameter estimation leaves room for improvement. Therefore the behaviour
of the model using perturbed parameters are of interest.

It is a common assumption of the papers modeling the HPA-axis that a circadian
pattern can be separated from a faster dynamics. In chapter 11 we will include this
circadian input in simulations. All Matlab codes can be found in appendix B.

Chapter 12 summarize the results of this project. Here we start with the most
general results for our models and proceed with the results that characterize specific
models. The results are compared to state of the art models.

Since no successful model is found chapter 13 concerns including time delay in the
model. This is justified by a 'transport time’ for a hormone to reach its place of action.
Models (paper [3] and [4]) including time delay have rejected that time delay explains
the physiologic observed behaviour. However we point out a crucial shortcoming of
their argumentation. We therefore suggest further studies should be made on a model
including time delay.






2 Introduction

2.1 Introduction to the physiology of the
hypothalamic-pituitary-adrenal axis

A hormone is a 'messenger molecule’ released into the bloodstream where it flows with
the blood and then binds to a specific target receptor in the body tissue. This thesis
will concern a mathematical model with hormone concentrations as variables. More
precisely the hormones of the hypothalamic-pituitary-adrenal (HPA) axis. The HPA
axis is a biological system connecting three areas in the human body by mainly three
hormones, this is illustrated in figure 2.1 and figure 2.2.

The HPA axis plays an important role under stressed conditions by raising the con-
centration of the HPA axis hormones which leads to energy directed to the organism[4].
The return to the basal hormone levels after a while is an important feature of the
system when it is working properly.

We will now give a short description of the HPA axis, see figure 2.2. Corticotropin
releasing hormone (CRH) is secreted in hypothalamus and reaches another area in the
brain - the anterior pituitary. Here CRH stimulates the secretion of adrenocorticotropic
hormone (ACTH) from the pituitary gland. ACTH moves with the bloodstream and
when it reaches the adrenal glands it stimulates secretion of cortisol. The standard
textbook description is that cortisol inhibits the secretion of CRH in the pituitary
(performs a negative feedback). Cortisol also performs a negative feedback on the
secretion of ACTH in the hypothalamus as shown in figure 2.2[5]. It has been suggested
that there can be a struggle between a resulting positive and a negative feedback on
the CRH secretion from cortisol[2, 6] which will be discussed later.

Stress causes the body to increase the level of cortisol which stimulates e.g. forma-
tion and secretion of glucose that is important ’fuel’ for the body[5]. Keeping cortisol
concentration within a certain range is important for various reasons. As an example
a maintained, high level of cortisol (hypercortisolism) can cause depression, diabetes,
visceral obesity or osteoporosis[6]. Too low concentration is neither desirable since it
can result in a disturbed memory formation or life-threatening adrenal crisis[6]. The
regulation of the HPA axis is thus important to be healthy. More factors influence the
system but the three hormones mentioned constitute the backbone of the HPA axis[5]
and will therefore constitute the variables of the model considered in this project.

The cortisol concentration has a daily pattern. It is typically low between 8 p.m. and
2 a.m. and rises to peak in the period 6-10 a.m.[2]. CRH is secreted in a pattern with
a frequency of one to three secretory periods per hour (often referred to as ultradian
oscillations)[7]. Throughout the literature [8] and our data we see circadian as well as
ultradian oscillations in the hormone concentration of ACTH and cortisol. Therefore
circadian as well as ultradian oscillations are present in the system.
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Figure 2.1: The location of the hypothalamus, the pituitary and the adrenal glands
that constitute the HPA axis along with the ACTH, CRH and cortisol interactions.
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Figure 2.2: The HPA-axis from [5]. The green lines show a positive stimulation. The
red lines indicate that elevated cortisol concentration inhibits secretion of CRH as well
as a direct inhibition of secretion of ACTH.
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The frequency of the ultradian oscillations is rather insensitive to stress whereas the
amplitude increases[7]. Examples of data with circadian and ultradian oscillations can
be seen in the figures 2.3 and 2.4.

2.2 Mathematical modeling of the dynamics of the HPA-axis

Understanding of the interplay between the various mechanisms of the HPA axis is
interesting and important since the system has an important function. Since several
feedback mechanisms are working simultaneously in the HPA axis cause and effect may
be hard to distinguish. A mathematical model may help to separate cause and effect
and can be an important tool for pointing out different ways in which a malfunctioning
can occur.

The aim of this project is to make a mathematical model of the dynamics of the
HPA axis using mechanism based differential equations including physical interpretable
parameters. The model should be simple enough to allow computation but still suffi-
ciently advanced that it captures the important mechanisms. The approach here is to
start on solid ground with a simple model and in case of failure proceed in a detective
like manner to more complex models.

Known structures that the model should reflect are

e Feedbacks of cortisol on ACTH and CRH.

¢ Circadian rhythm of hormone concentrations.

o Ultradian oscillations in hormone concentration.

A differential equation model of the HPA-axis can typically be represented by a
compartment diagram where significant elements of the HPA-axis are symbolized with
boxes and the influence from one box to another is represented by arrows and a plus
or minus depending on whether the presence of a substance stimulate or inhibits the
production of another substance, see figure 2.5.

Perspectives of a useful model

If a successful model is found it is interesting to investigate the dependence on the
included parameters. Parts of the behavior of the model might be more robust to
perturbations of some parameters than others. It would be interesting to couple specific
values of parameters to measurable quantities in humans. If so the model may be used
to determine parameters that are specific to individual patients and thereby give an
indication of malfunctioning physiological mechanisms. For example the concentration
of cortisol is relevant to depression and there exists depression characterized with a high
concentration of cortisol (high cortisol depressive) and similarly a low cortisol depressive
group exists. Some values of one or more parameters may characterize one group and
values of other parameters may characterize another group. This could help identifying
the mechanisms or causes leading to depression.

A field lacking reliable data

It is a general problem to get reliable, physically reasonable parameter values for the
HPA axis since it is hard to perform measurements on for instance the CRH concen-
tration in hypothalamus. Therefore it is an ambitious but interesting goal to make a
reliable model. A reason not to consider this too ambitious is the access to data of
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ACTH data presented by means of fast Fourier transformation
using the smallest 20 frequencies.
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Figure 2.3: Example of ACTH data of three individuals from the hypercortisol depressed
group, the low cortisol depressed group and a normal person. Time t=0 corresponds
to midnight. Data was sampled every tenth minutes through 24 hours.
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Figure 2.4: Example of cortisol data corresponding to the individuals represented in
figure 2.3. Time t=0 corresponds to midnight. Data was sampled every tenth minutes
through 24 hours.
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Figure 2.5: A compartment model of the HPA-axis corresponding to figure 2.2.

ACTH and cortisol concentrations of a high cortisol depressive group, a low cortisol
depressive and a normal group. Confidential data is kindly provided by H. Lundbeck
A/S and is originally from Carroll et al.[9].

This data contains 7 hypercortisol depressive persons, 5 low cortisol depressive per-
sons and 17 not depressed control persons. The measurements are performed every
tenth minute through 24 hours and the time t=0 corresponds to midnight. Meals were
given at 7.30, 12.00 and 18.00 and in waking hours the subjects were allowed to rest in
bed or chair. No sleep were allowed in waking hours but listening to radio, watching
television or reading was permitted. In order not to violate the confidentiality of the
data we have chosen to transform the data by means of fast Fourier transformation(the
Matlab code is presented in appendix B.1). The 145 different measurements give us a
total of 73 different frequencies when using fast fourier transformation. An example of
the data where only the 20 lowest frequencies is included (in order to mask the data
sufficiently) is shown in figure 2.3 and figure 2.4. The three individuals shown in figure
2.3 and figure 2.4 corresponds to individual 5, 10 and 27 in the confidential attachment.

We would like the reader to notice the circadian oscillation in ACTH and cortisol
as well as the ultradian oscillations. The original aim of the project is to form a
mathematical model with physiologically interpretable parts that results in solutions
showing these oscillations. We cannot hope to find evidence for faster oscillations than
three an hour since sampling every 10th minutes leads to the smallest observable period
of 20 minutes(using discrete Fourier analysis).
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2.3 Brief presentation of previous models

There are rather few differential equations models of the HPA axis. The various models
may be considered consisting of two parts. One is the physiology e.g. the description
of the HPA axis using biological terms and one is the modelling e.g. the translation of
the biology into mathematics and especially differential equations. Of course these two
parts are not independent but criticism or credit of a model may be categorised into
either physiology or mathematical modelling.

Papers using nonlinear, coupled differential equations to model the HPA axis are
made by Kyrylov et al.[1] and Jelic et al.[2]. These have been of great inspiration to
us and of course a project concerning the modelling of the HPA axis must include an
overview of previous models. This section serves as an overview of the two models
categorizing the parts unbique to each model into physiology or mathematical modeling.
This categorization helps determining the difference in the considered physiological
mechanisms of each model as well as helps clarifying if the mathematical model properly
describes the proposed physiological mechanisms. Both papers describe the physiology
as the standard textbook description (section 2) but also more details to the physiology
are added. We will present the reader to a more in depth critique of the two models
[1, 2] in chapter 4. Chapter 4 will therefore be a justification of why we consider neither
the model of [1] nor [2] to capture enough relevant physiological aspects of the HPA axis.
We will use what we consider the best aspects of each model and make our own model
of the HPA axis. The brief presentation in this section will not include any differential
equations since the tools for analyzing these will be illustrated in chapter 3.
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The approach of Kyrylov et al.

Here we will give an brief presentation of [1].

Physiology

A compartment formulation of the model is shown in figure 2.6. The included hor-
mones of the HPA axis are CRH, ACTH, free cortisol, albumin bound cortisol and
corticosteroid-binding-globulin (CBG) bound cortisol. The diagram has the charac-
teristics of figure 2.5 but several new mechanisms are introduced. An impact from the
central nervous system (CNS) on hypothalamus is included and used to give a circadian
input on the derivative of CRH. The cortisol dynamics is a bit more complicated than
in figure 2.5 since it can be in free form or two bound forms. The bound forms of corti-
sol only interact with the free form thus not making the system too complicated. It is
worth noting that CRH have a direct positive stimulation on cortisol. This stimulation
is passing ACTH which we have not seen elsewhere.

Mathematical modeling

The variables of the mathematical model are the five hormones. The mathematical
modeling is divided into three steps. First a linear differential model is considered,
then non linearities are imposed and finally the circadian input on the derivative of
CRH is added.

o First step.

The overall idea is that a linear systems of differential equations can be
used when the concentrations of the hormones of the model have moderate, posi-
tive values'. The linear system should show an unstable and oscillatory behaviour.
A numerical investigation of the linear system is performed, where some parame-
ters are considered known and the rest are varied within ranges given by orders
of the known parameters. The unknown parameters are varied independently
within their respective ranges in each simulation and the stability is investigated
(If there exists an eigenvalue of the linear system with positive real part the sys-
tem is unstable. If all eigenvalues are negative the system is stable). The linear
system results in unstable and oscillating behaviour in more than 90 percent of
the simulated cases. This give the system its ultradian oscillations.

e Second step.

Two artificial nonlinear mechanism are imposed on the linear system. The
first is an upper limit on hormone release rate and the second nonlinearity ensures
that the hormone concentrations can not become negative. These two physically
relevant properties are included in the model by introducing nonlinear functions
that obey these characteristics.

e Third step.

The circadian oscillations are introduced by adding a forcing function
affecting the derivative of the CRH concentration which then causes circadian
variation on the other hormones due to the coupling of the differential equations.

Kyrylov et al. consider their model successful since it represents the physiological
behavior of ultradian oscillations and a circadian(imposed) rhythm. Also they consider

I Normally a linear approximation of a non linear system of differential equations is only useful close
to a steady state solution. However there is no investigation of steady state solution in [1]. For an
explanation of steady state solution see chapter 3
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Figure 2.6: The compartment diagram of Kyrylov et al. from [1]. The central nervous
system can stimulate the secretion of CRH from hypothalamus. A direct CRH- cortisol
stimulation is included which is not the case in diagram 2.5. The negative feedback
from this diagram is also included. Two bound forms of cortisol interacts with the free
form.

the model more robust to perturbation of the parameters which makes it more reliable

than previous models in their view. Actually their model resulted in a whole body

simulator that should be used for education of students in biology and medicine.
Some points about the approach of Kyrylov et al. should be noted.

e Physiology.
— Five hormones of the HPA axis are considered with two bound forms of
cortisol included.
— A direct CRH -cortisol stimulation is included.

e Mathematical modeling.
— The linear equations of the system shows unstable, oscillatory behavior which
is responsible for the ultradian oscillations in the system.
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— The non linearities are chosen to ensure the hormone release rate is bounded
and negative concentrations do not occur.

— The circadian rhythm is introduced as an external input to hypothalamus
affecting the derivative of the concentration of CRH. This is done additively
with a time varying cosine function as input. Thus the system becomes non
autonomous when this is introduced. The circadian rhythm then ’spreads’
to the ACTH and cortisol concentrations automatically since the differential
equations are coupled.

The approach of Jelic et al.

The physiology

Hormones have to bind to receptors in order to cause an effect. Taking this approach
Jelic et al. put forward a set of chemical reactions upon which their differential equations
build. A compartment diagram of the system is shown in figure 2.7. The negative feed-
back of cortisol on CRH and ACTH takes place through glucocorticoid receptors(GR)
in hypothalamus and pituitary. Stress acts on the system through hippocampus (a
component of the brain). The circadian rhythm is expressed through the hypothalamic
suprachiasmatic nucleus (SCN) that is considered an external factor influencing CRH
secretion[2]. [2] describes the dynamics associated with cortisol binding to the mineral
corticoid receptors(MR) and the GR in hippocampus. Whereas GR is present in both
hippocampus, hypothalamus and the pituitary glands, MR is present particularly in
hippocampus[10].

Cortisol binding to MR in hippocampus leads to a negative feedback on the secretion
of CRH while cortisol binding to GR in hippocampus cause a positive feedback on the
secretion on CRH[2]. Glucocorticoids have a ten fold higher affinity for MR than for GR.
Therefore Jelic et al. propose that MR regulates the HPA-axis activity under normal
conditions while both MR and GR play a role under high level cortisol conditions since
the number of MR is limited[2]. The hormones Jelic et al. suggest are governing the
dynamics of the HPA axis are CRH, ACTH, cortisol and aldosterone. Aldosterone is
a mineralocorticoid (affecting balance of minerals) whereas cortisol is a glucocorticoid.
Aldosterone and cortisol are both secreted form the adrenal glands. Cortisol can bind
to both MR and GR but aldosterone has very little affinity for GR but binds to MR
[2]. The main reason to include aldosterone in the model is its role as ’placeholder’
meaning it is occupying MR in hippocampus resulting in fewer available MR to be
occupied by cortisol. If the number of receptors is the limiting factor and the amount
of aldosterone is increased thus leading to more binding of aldosterone by hippocampal
MR then fewer MR would be available to cortisol thus weakening the negative feedback
and strengthening the positive feedback. Jelic et al. claim to be the first to include
aldosterone in a model of the HPA axis and we have not seen later models include
this. (However the dynamics of aldosterone is in the mathematical model reduced by
assuming that daldosterone/y, = (. This means the effect on pushing the balance of
cortisol feedback is also disregarded).

Mathematical model

The approach in [2] is to write a reaction scheme for the variables. The reaction scheme
is not adjusted which can be seen from the fact that the reaction scheme is not stoichio-
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Figure 2.7: The compartment diagram from [2]. Cortisol exerts negative feedback
on ACTH and CRH through GR. Also hippocampus is included since cortisol has a
feedback on CRH acting through hippocampus. This is positive for cortisol binding to
hippocampal GR and negative for cortisol binding to hippocampal MR.

metric correct. Using the law of mass action? the reaction scheme can be transformed
into differential equations. This means the mathematical model is crucially dependent
on the reaction scheme. However there is no reference nor derivation of the reaction
scheme in [2]. Since four hormones are considered the result is four differential equations.
The obtained differential equation for ¢CRH/g, only depends on CRH (and some parame-
ters). This means the feedback from cortisol is not included in the mathematical model.
A (non trivial) assumption about a slow dynamics of CRH and aldosterone compared to
the dynamics of ACTH and cortisol leads to the statement daldosterone/;, = dCRH/y = (
thus effectively reducing the number of differential equations from four to two, i.e re-
sulting in a two dimensional system. The crucial non linearity of the two equations (in
order to hope for oscillating solutions) comes from a reaction where one ACTH molecule

2 The law of mass action is explained in section 5.2
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reacts with two cortisol thus becoming three cortisol molecules. This should reflect the
positive feedback from cortisol acting through hippocampal GR.

The Poincaré Bendixson theorem? can ensure existence of a stable limit cycle which
is an important tool for two dimensional systems (a stable limit cycle is a periodic solu-
tion, see chapter 3, with neighbouring solutions that are not periodic. The neighbouring
solutions must converge to the limit cycle). For the chosen set of parameters a limit
cycle exists which gives the ultradian oscillations in the system.

Important points from [2] are

e Physiology.

— Cortisol exerts negative feechack on CRH in hypothalamus and ACTH in
the pituitary through GR.

— Cortisol exerts feedback on hippocampal receptors that influence the HPA
-axis. There are two kind of receptors and one cause a positive feedback and
the other cause a negative feedback.

— Aldosterone is included but no bound forms of cortisol are included.

e Mathematical modeling.

— The reaction scheme leads directly to the final, non linear differential equa-
tions.

— The negative feedback from cortisol on CRH is not included.

— The investigated system is significantly reduced from the physiological de-
scription since only the dynamics of two hormones are considered.

— The investigated system consists of two coupled, non linear differential equa-
tions of cortisol and ACTH based on a reaction scheme and the law of mass
action.

— Parameters are chosen so that the Poincaré Bendixson Theorem guarantees
a stable limit cycle which cause the ultradian oscillations of the system.

— The circadian rhythm appears additively to the differential equation of ACTH.
First the circadian rhythm is constant but for a numerical investigation a
timedependent trigonometric function is used. Then the model becomes non
autonomous.

2.4 Our model
Our model of the HPA-axis is building on [1] and [2] and section 2.

Including relevant physiology as desribed by Jelic and Kyrylov
Comments on physiology from Kyrylov et al.

CBG binds approximately 90 percent of the cortisol and is thus the major binder of
cortisol. The binding and dissociation is very fast[10]. A saturation is visible for
concentrations above 25 #g/q; but this limit is above realistic concentration[11]. ‘Because
CBG is the major cortisol-binding protein the free cortisol in plasma is almost linearly
related to the total cortisol at normal concentrations‘[11]. About 7 percent of plasma
cortisol is bound to albumin (at 37 degrees Celcius). No saturation of albumin bound
cortisol is present. Since cortisol has a faster association and dissociation from albumin

3 The Poincaré Bendixson theorem is explained in chapter 3
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than from CBG we consider the albumin bound cortisol and the free cortisol to be in
equilibrium [11]. We can therefore disregard the dynamics of the CBG-bound cortisol
and the albumin bound cortisol. The free cortisol is considered a constant fraction of the
total amount of cortisol. Since it is only the free cortisol that is capable of interacting
with the rest of the HPA-axis it is really the free cortisol that is of most interest.

We have not been able to get good verification on the direct CRH-cortisol stimulation
which is the major reason to disregard it. We will not include this in our final model
but still some analysis is done on a system including the CRH-cortisol stimulation (in
chapter 4.2). This analysis shows that the behaviour of the system with CRH-cortisol
stimulation is in some sense controlled by the system without CRH-cortisol stimulation.
This means that we have some control with what happens by disregarding this term.

Comments on physiology from Jelic et al.

The aldosterone included in [2] will not be included in our model. This is because
[2] argues that the dynamics of this is fast compared to the rest of axis. Also in [2]
aldosterone is included as a placeholder of MR thus leaving fewer available to cortisol
though cortisol is more dominant in binding MR than aldosterone. We do not know how
many receptors are available anyway so this constant fraction of aldosterone occupying
receptors is not considered important.

We will pursue the idea from [2] that cortisol exerts negative feedback through GR in
hypothalamus and pituitary. The positive feedback of cortisol on CRH acting through
hippocampal GR and the negative feedback of cortisol on CRH through hippocampal
MR is an interesting mechanism. We have no information about possible hormones in
hippocampus i.e. if there should be included a hormone in hippocampus that acts on
hypothalamus we do not know what this should be. Therefore inclusion of hippocampal
dynamics will be as extra feedbacks on CRH in hypothalamus. However this includes
some speculation. Therefore the system without hippocampus must be investigated
thoroughly before including hippocampal dynamics. Furthermore the system without
hippocampus is the most understood and thereby more thoroughly investigated than
the system including hippocampal dynamics.

What mathematical modeling by Kyrylov and Jelic can be used in our model

Since we include three hormones the mathematical model consists of three coupled
differential equations. In both papers the ultradian oscillations of the system is a
behaviour that is caused by the dynamics within the HPA axis and not due to an
external forcing function. We will therefore purpose a system of three nonlinear, coupled,
autonomous differential equations and look for conditions such that the solutions of the
system is oscillating. These oscillations should resemble the ultradian oscillations seen
in data. In both papers the circadian input is included as a ’forcing function’ when
the analysis of the autonomous system is completed. We will follow this approach by
including a circadian input on the positive stimulation on the derivative of CRH, thus
making the system non autonomous.

Comments on Jelic et. al

According to [12] one of the parameters in [2] are wrong by a factor of 1000 to be
physiologically relevant. The physiologically relevant choice of parameters do not lead
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to a limit cycle for the system.

The interesting approach of Jelic et al. using the Poincaré Bendixson Theorem
ensured existence of a limit cycle. Unfortunately the Poincaré Bendixson Theorem is
only usable for two dimensional systems. Jelic et al. get the final differential equations
for free’ once the reaction scheme is written. Unfortunately the reaction can not be
verified and the negative feedback from cortisol on CRH is not included which is a major
problem.

Comments on Kyrylov et. al

Since we have little trust in the reaction scheme from [2] we will pursue the approach of
Kyrylov et al. by starting with a simple model. However increased complexity should
be included as close to the physiological mechanisms as possible. Therefore another
way of introducing non linearities is desirable.

2.5 Description of included mechanisms of our model

After this motivation of how to model the HPA axis we will now shortly summarize
the compartment diagram of our model. We actually have two models. The first does
not contain hippocampal dynamics (figure 2.8) but the second adds the hippocampal
dynamics upon the first (figure 2.9).

The overall structure of the system with hippocampus is as follows. In hypothalamus
corticotropin-releasing hormone (CRH) is secreted which causes secretion of adrenocor-
ticotropic hormone (ACTH) from the pituitary gland. ACTH causes secretion of hor-
mones from the adrenal gland including cortisol. The circuit for cortisol now consists
of an amount that is distributed in body tissues but there is also a negative feedback
on the ACTH secretion from the pituitary gland as well as a negative feedback on the
CRH secretion from hypothalamus.

For the model including hippocampus two more feedbacks from cortisol are added
on the secretion of CRH. A positive feedback acting through hippocampal GR and a
negative feedback acting through hippocampal MR. Since cortisol has different affinity
for the two receptors their overall stimulation from hippocampus may depend on the
concentration of cortisol.

Now the reader has been introduced to both the physiology and previously made
mathematical models upon which we have found inspiration. Therefore the exact aim
of this thesis can be formulated as:

2.6 Problem formulation

Do our models of the HPA-axis constructed using well known physiological mechanisms
and physiological parameter values show the following behaviour.
¢ Do the models guarantee reasonable levels in hormone concentration?
e Are the models capable of producing ultradian oscillations in hormone concentra-
tions without external, time varying input?
e Can an external imposed function cause the observed circadian rhythm?
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Figure 2.8: Compartment diagram of the HPA-axis without hippocampus included.
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Figure 2.9: Compartment diagram of the HPA-axis with hippocampus included



3 Introduction to the mathematics of
differential equations

This chapter concerns the mathematical tools mostly used throughout this project. This
chapter will therefore serve as both a mathematical introduction to general results about
systems of differential equations as well as a chapter we can refer to. If the reader is
familiar with theory concerning differential equations this chapter may be skipped.

Of interest is now a system of autonomous differential equations

x=% —f(x), x(to) =x¢, f:ECR" - R" FE open. (3.1)

First we state the following theorem about existence and uniqueness of solutions to
equation 3.1 that ensures that solution curves cannot intersect where f is sufficiently
smooth[13].

Theorem 3.1: Existence and uniqueness

Let each of the functions f1(x1,...,&n)y oy fr(T1, ..., Tn) have continuous partial deriva-
tives with respect to 1, ...,x,. Then, the initial-value problem x = fx), x(ty) = xo has
one, and only one solution x = x(t), for every xo in R™.

The solution may exist only on a finite interval. When f is a nonlinear function in
the variables z1, ..., x, one can not in general expect that explicit solution formulas for
Z1,...,Zy can be found. Therefore it is interesting to consider numerical methods to
find solutions and qualitative properties of the solutions.

A steady state solution, x4, is a solution where all the variables are constant in
time thus defined as

f(xy5) = 0. (3.2)

Xss is also called a fixed point of the system. If a solution at some time equals a steady
state solution, it must remain a steady solution for all future times. How the solutions
in the vicinity of a steady state solution behave is therefore of interest. There are
two definitions regarding stability - (Lyapunov, local) stability and asymptotical local
stability. If any solution is close to the steady state solution at some time, then they
must stay close for all future times if the fixed point should be called stable. This is
the content of the definition of stability [14].

Definition 3.1: Stability

Let x5 be a steady state solution of x = f(x). xss s called (Lyapunov, locally) stable if
for any other solution x(t) it is true that Ve > 030 > 0 such that ||xss — x(to)|| < § =
Vit > tg it is true that ||xss — x(t)]| < e.

18
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For a solution to be asymptotically stable it has to be stable and any close solution has
to converge to it as time increases. This is stated in the following definition[14].

Definition 3.2: Asymptotic stability
Let x55 be a steady state solution of x = fx). x5 4s called (locally) asymptotically stable
if xs5 is stable and there exists § > 0 such that

s = x(to) 12 < 6 = Jim [[xss — x(®)]> =0.

Steady state solutions are one kind of special solutions of interest. Another is periodic
solutions. Periodic solutions can be the mathematical explanation of behaviour with a
pattern that repeats itself. The definition is from [14].

Definition 3.3: Periodic solution

A periodic solution ¢(t) is a non-constant solution to the set of differential equations
equation 3.1 with the property 3T > 0 such that ¥t where ¢(t) is defined it holds that
o(t+T) = ¢(t). The smallest T where ¢(t) has this property is called the period of the
solution.

Thus a fixed point is not a periodic solution.

The existence and uniqueness theorem simplifies the possible dynamics especially in
two dimensions. What can happen if the solutions are caught in a bounded region where
there is no fixed point? The answer is given by the theorem of Poincaré - Bendixon and
concerns the long term behavior of a solution [13].

Theorem 3.2: Poincaré-Bendixon
Suppose that a solution x = x(t), y = y(t) of the system of differential equations

C(% :f($,y)7 (ZT?Z =g(x,y) (33)

remains in a bounded region of the plane which contains no equilibrium points of equa-
tion 3.3. Then, its orbit must spiral into a simple closed curve, which is itself the orbit
of a periodic solution of equation 3.3.

The Poincaré-Bendixon theorem gives sufficient criteria for the existence of periodic
solutions but only in two dimensions.

3.1 Method for solving a system of linear differential equations

In this section we present a way to solve a system of autonomous linear differential
equations with constant coefficients. There is a close connection between stability of
linear systems and non linear system which is the motivation for this section. Also the
focus on modeling using linear systems in [1] gives reason to focus on this. This method
for solving the system is called the eigenvalue-eigenvector method[13].

We consider a system of first order linear autonomous differential equations with
constant coefficients given as

K=~ Ax+B. x(t0) = @9
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where x = (21,29 -+ ,x,) and A is an n by n matrix with entries of real constants and
B is a vector of size n by 1 with real constant entries. The general solution of equation
3.4 is a particular solution to equation 3.4 plus the general solution of the homogeneous
system (equation 3.4 with B = 0)[15]. A simple way of finding a particular solution is
solving the fixed point equation 0 = Ax, + B which is a linear algebra problem.

The following focus on finding the general solution to the homogeneous equation

x = Ax. (3.5)
First we observe that p
ae’\tv = ety (3.6)
and
A (e”v) = eMAv. (3.7)
Dividing through with e gives
Av =)v, (3.8)
or equivalently
(A—IN)v=0. (3.9)

A nonzero vector v satisfying equation 3.8 is called an eigenvector of A with eigenvalue
A
Equation 3.9 has nonzero solutions v only if the characteristic polynomial P(\) is
zero, that is
P(A) =det(A —1I)\) =0. (3.10)

Therefore the eigenvalues of A are the roots of the characteristic polynomial. The
eigenvectors are the vectors satisfying

(A—I\)v=0 (3.11)
thus v depends on A. We now observe that if v is an eigenvector with eigenvalue A then
A(cev) = cAv = cAv = A(ev) (3.12)

for any constant ¢ # 0. Therefore any multiple of an eigenvector of A is again an
eigenvector of A.

If A is an n X n matrix with n linearly independent eigenvectors v, ....,v", with
distinct, real eigenvalues A1, ..., \,, then every solution to equation 3.5 is a linear com-
bination of solutions c;e*i'v? with i € 1,...,n [13].

1

x(t) = creMivl 4 cpetv? 4 L + cpetivi (3.13)

This is called the general solution of equation 3.5. The constant real coefficients ¢, ..., ¢,
can be found from the initial condition x(¢y) = xq.

When x = Ax,, = 0, X, is called a fixed point for 3.5 and we now comment on the
stability. If A; < 04 € {1,...,n} then from 3.13 it can easily be seen that x(t) — x4
for ¢ — oo but if just one of the eigenvalues are positive this will not be the case thus
making sure that x,s is unstable. Thus the eigenvalues of the matrix A play a central
role when stability is considered.
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Umaz o solution behaviour

tmaz >0 o =0 unstable, non-oscillating

tmaz >0 o #0 unstable, oscillating

tmaz =0 o € R stable, oscillating

tmaz <0 o =0 asymptotically stable, non-oscillating
Pmaz <0 o0 #0 asymptotically stable, oscillating

Table 3.1: The system behaviour depending on the largest eigenvalue of A, A\jae =
Hmazx +i0—7 H,o € R

There are ways to obtain a general solution even though there are repeated eigen-
values or complex eigenvalues. For a complex eigenvalue, A = u + io, u,0 € R then
e = ett(cos(ot) + isin(ot)) is complex. Since the original problem was real a real so-
lution is desired. It turns out that one can find two constant vectors with n real entries
u and w such that solutions can be formed by e’ cos(ot)u and e sin(ot)w [15]. This
means that for a complex eigenvalue two solutions can be found and they each have a
factor that describe growth or decay related to the real part of the eigenvalue (e/!) and
a factor describing an oscillation (cos(ot) or sin(ot)). In practice this is not a periodic
oscillation since the amplitude is typically not constant - for a decreasing amplitude it
is often called a damped oscillation. Note that the period of oscillation is 27/, thus the
imaginary part of a complex eigenvalue determines the period of oscillation.

It follows from equation 3.13 that the eigenvalue, A;,q., with the largest real part
determines the long time behaviour of the solution meaning that it controls the stability
and whether this happens as a pure exponential decay or growth or if oscillations are
also present. If \,,,, has positive real part and has a nonzero imaginary part the
solution will be unstable and converging towards an oscillating solution, i. e a periodic
solution. If \,,4. has positive real part and zero imaginary part, the solution will be
unstable and not oscillating. If A, has a real part equal to zero the solution will
be stable and oscillating. If A4, has negative real part the solution is asymptotically
stable and oscillating only if the imaginary part of A4 is nonzero. The different types
of system behaviour are shown in table 3.1.

3.2 Three dimensional system of linear differential equations

Since our project mainly concerns a three dimensional system of differential equations
we will now turn our attention toward this. Thus we have a vector x with nonnegative
entries defined as x = (x1, X2, X3)

We consider the system of homogeneous, linear differential equations with constant,
real coefficients given by

dx
— = Ax. .14
a0 (3.14)

The characteristic polynomium of the 3 by 3 matrix A then can be written in the
form
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PA()\) =3 + a1/\2 + g\ + as (315)

The solutions to this equation are the eigenvalues of the system. Using numerical
tools like Matlab, the sign of the eigenvalues for a given 3 by 3 matrix can easily be de-
termined numerically. A way to do this analytical is to use the Routh-Hurwitz Criteria
(RHC) that gives equivalence between relations on the coefficients of the characteristic
polynomial and the sign of the eigenvalues of the system. Here is RHC only stated for
a polynomial of third degree [[14]].

Theorem 3.3: Routh Hurwitz Criteria.
Let P(\) = X* + aq A2 + ao\ + a3, a1,a2,a1 € R. Then all of the roots of P(\) are
negative or have negative real part if and only if oy > 0, ag > 0 and ay - as > asg.

A proof of the RHC is formulated in A.

3.3 Three dimensional system of non-linear differential equations

We now wish to turn our attention to non-linear three dimensional systems of au-
tonomous differential equations. That is in general the equations

X = f(X), f:R® - R3 s X(t()) = Xg. (316)

Important information is determination of fixed points and the behavior of solutions
close to steady state. The basic idea is that we can approximate the nonlinear system
well by a linear system for solutions close to steady state. The idea of looking at the
behaviour of the solutions close to steady state is possible because the solutions typically
depend continuously on the initial values as stated in the next theorem [16].

Theorem 3.4: Continuously dependency on initial values
Let U C R™ be open and let £: U — R™ with f€ C'. Let xo € U and ty € R.
Then the solutions ¢(xq) of 3.1 depend continuously on the initial value xq.

In the following we demand that f; is C? with respect to each x; with 4,5 € {1,2,3}.
We call the steady state solutions x,; and define the new variable z = z — x,; and use
Taylors theorem([17] to linearize equation 3.16 around x,s. Thus

z=x=Az+g(z), (3.17)

where g(z) is a polynomial of degree not less than two, and A is the Jacobian matrix,
J, evaluated at x,5;. The Jacobian is given by

ofr  Ofr Of1

32?1 8$2 3$3

— ofs 0fs Of
J= 3—;1 3—162 3—4 . (3.18)

Ofs Ofs Ofs
Oz Oz Oz
Now to evaluate the stability of equation 3.16 we look at a small perturbation from
steady state. That is small values of z. Only keeping first order terms of equation 3.17
yields
z=Az. (3.19)
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Now this is a linear system and therefore all the results about stability presented in
section 3.2 apply to this system. The question is what the stability of the linear system
tells us about the fixed point of the original nonlinear system. This is determined from
the largest real part of the eigenvalues of A. If this is strictly positive the fixed point of
the original nonlinear system is unstable and if the largest real part of the eigenvalues
is strictly negative the original nonlinear system has a stable fixed point'. In case
the largest real part is zero there is not enough information in the linear system to
determine the stability of the non linear fixed point. This is what the next theorem is
about only stated in terms of the coefficients of the characteristic polynomial instead
of the eigenvalues directly. The theorem is from [14] and is formulated in terms of the
coefficients of the characteristic polynomial like the Routh Hurwitz Criteria thus we
name it RHC for a non linear systems. Here the theorem will only be stated for a three
dimensional system.

Theorem 3.5: Routh Hurwitz Criteria for Nonlinear System
Suppose Xs5 is a fized point of equation 3.16. Denote the characteristic equation of the
eigenvalues at the fized point as 0 = \> + a1 A2 + @\ + a3, a1,a2,a1 € R.

If a1 > 0ANag > 0Aay-as > ag then the fized point is asymptotically stable.
If ap <0V asz <0Vay-ay < as then the fixed point is unstable.

3.4 Bifurcations

In this thesis we will be interested in the qualitative behaviour of the solutions to a
system of differential equations. A parameter often enters a differential equation as an
unspecified constant. However the system may have dramatically different behaviour if
the constant is set to one value instead of another. A bifurcation is here defined as a
qualitatively change of the solutions for any initial condition (a qualitatively change of
the phase space) as a parameter is varied. A qualitative change is for example that a
the number of fixed points or limit cycles changes or that the stability of a fixed point
changes. For a system where parameters are only known to a certain precision or may
only be estimated it is important to be aware of the different types of behaviour the
system may exhibit if different values for the parameters are chosen.

1 The Hartman-Grobman theorem can be used if no eigenvalues of the Jacobian evaluated at a fixed
point are zero. This requires the concept of topologically equivalent which requires the concept of
homeomorphism. A homeomorphism is a bijective, continuous function with a continuous inverse.
Two dynamical systems x = f(x) defined on U € R™ and x = g(x) defined on V' € R™ are topologically
equivalent if there exists a homeomorphism h : U — V such that A maps the solution curves of
the vector field f onto the solution curves of g and by that keeps the orientation of the time of the
solution curve. The Hartman-Grobman theorem states that when no real part of the eigenvalues of the
linearized system at a fixed point are zero then there exist a neighbourhood of the fixed point where
the nonlinear and the linearized system are topologically equivalent[16]. Topological equivalence is
central in the definition of a structural stable vector field. The strict definition of a bifurcation value
(that we will introduce more loosely in section 3.4) is a parameter value that causes a vector field to
be not structurally stable[16].
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Examples

An example is now given where a change in one parameter leads to creation or destruc-
tion of fixed points. Consider

d
d—izﬂ—x%x,uGR (3.20)

If p > 0 there are two fixed points namely 51 = —/it, and g0 = /. If p =0
there is one fixed point zss3 = 0 and if g < 0 there are no fixed points. Using the
earlier described method the stability of the fixed is classified using the eigenvalues of
the Jacobian evaluated at the fixed points. The Jacobian is J = —2x thus for u > 0
the eigenvalue corresponding to sy is 24/t > 0 thus x4, is an unstable fixed point.
The eigenvalue for x4 is —2,/p < 0 thus X, is a stable fixed point. When p = 0 the
eigenvalues of the Jacobian is 0 so the linearization cannot tell us about the fixed point
here. This kind of bifurcation is called a saddle-node (fold, turning-point, blue sky)
bifurcation. The different behavior of equation 3.20 for different p is shown in figure
3.1.

It is no coincidence that for an eigenvalue of the Jacobian equal to zero a bifurcation
occurs. According to [18] the term bifurcation was originally used to describe the
‘splitting’ of equilibrium solutions of differential equations as a parameter vector is
varied. This means that for some parameter value there can exist several branches of
equilibrium solutions and a meeting point for two or more branches defines the ’splitting’.
Now the implicit function theorem[17] is very convenient to determine when f(x, ) =0
can be solved in terms of x(u). When this is the case there is locally only one solution
to f(x,pu) = 0 out ruling the possibility of e.g. a saddle node bifurcation where no
fixed point of the system turns into two fixed points as a parameter is varied. If a
change in the value of a parameter cause the Jacobian at a fixed point to have a zero
eigenvalue then the parameter is at a bifurcation value[18]. This can be seen in the
saddle node bifurcation at the value (z, ) = (0,0) where the steady state solution in
any neighbourhood can be described by two different functions namely x = /i and
x_ = —/;. However it is exactly for (x,u) = (0,0) that the implicit function theorem
does not ensure that  can be uniquely solved as a function of u.

A change of a stability of a fixed point may cause the existence of a limit cycle as
the next example sketches. Consider a two dimensional system including a parameter

A

B F X, Y = (o, 2),2(0) = w0,(0) = yo, (r,y. ) € B2 (3.21)
Let there be a bounded region where the solution curves are confined such that solutions
starting in the region stay there and let there be one fixed point in this bounded region.
It may be so that for one value of A this fixed point is stable and for another fixed point
it is unstable. In the latter case the bounded region without the fixed point constitute a
bounded region where solution curves are confined since the flow points away from the
fixed point. Then the theorem of Poincaré -Bendixon ensures a limit cycle exists. This
example illustrates that a bifurcation can lead to sufficient conditions for the existence
of a limit cycle.
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Bifurcation diagram for du/dt= |,|.-><2

Figure 3.1: Diagram showing the number of fixed points and their stability parametrized
by the parameter u of the differential equation x = p — 2. The arrows indicate if =
increase or decrease for a given (u, z). The solid line corresponds to a stable set of fixed
points (the arrows point towards it) and the dotted line corresponds to an unstable set
of fixed points (the arrows point away from it). It can be seen that for positive u there
exists two steady state solution - one stable and one unstable. For p less than zero no

steady state solution exists.

Existence and uniqueness for parameter dependent system

How do the dependency of parameters interplay with the previous, important theorems
like the existence and uniqueness theorem? In other words how can we relate knowledge
about f(x) to f(x, u), where p is now an r-dimensional parameter vector when we want
to describe variations in the solutions as p is varied continuously? This can be done
by expanding the original n’th dimensional system with that of an n + r dimensional
system where the parameters are now variables with a simple dynamic. Denoting
dontifqy = dpifgy = 0 with ¢ € {1,...,7} and z,44(t0) = po,; the existence and uniqueness
theorem can be applied. Also continuous dependency from parameters follow from the
theorem of continuous dependency on initial values theorem 3.4.

3.5 Bifurcation and stability of a fixed point

How can a stable fixed point become unstable when varying a parameter? This can
happen in two different ways. First all the real parts of the eigenvalues are negative
then (as the parameter is varied) either one (or more) real valued eigenvalues goes
from negative values through zero and then becomes positive. Or a pair of complex
conjugate eigenvalues with a real part that goes from negative through zero to being
positive while the remaining eigenvalues have negative real parts. The latter is defined
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as a Hopf bifurcation and is interesting because a periodic solution is the outcome of
such a bifurcation.
Following the approach of [19] we consider the autonomous system

x=f(x,u) £:R* 5 R" (3.22)

Assume a fixed point, x4, exists and all eigenvalues have negative real part. Assume
that p is varied which causes a set of complex conjugate eigenvalues A\ 2(p) = a(p) £
io(p), a(un) € R, o(p) € R to vary such that the real part crosses the imaginary axis.
This means the real part of A\ 2 goes from negative to positive values causing the fixed
point going from stable state to unstable state. Denote p = p. for a(u.) = 0 (u. is
called the Hopf bifurcation value) and assume the following holds in a neighborhood
around i,

o o(pc) #0.

e a(p) <0 for u< pe.

o a(p) >0 for u > pe.

Then in a small neighbourhood around p. for p > u. the steady state is unstable by
growing oscillations and a limit cycle periodic solution exists around x45. The period
of the limit cycle is 27/5(,.). [19]

This is good news when modeling a biological system and sufficient criteria for a
limit cycle is desired. However note that

e The amplitude of the limit cycle may be small.

e The neighborhood of p, where the limit cycle exists may be small.

This means that this approach is more related to 'mathematical existence’ than to
observed behavior of realistic values of a biological system with sustained oscillations.
In our approach this means that if the criteria just mentioned for a limit cycle to exist is
fulfilled then simulations must be performed in order to see if the limit cycle is visible.

Existence and Uniqueness of Non Autonomous System

A system of differential equations depending explicitly on time obeys an existence and
uniqueness theorem (the theorem is from [20]). The expression mazimal interval of
existence enters the theorem which we will therefore explain first. ¢(¢,to,X0) is a solution
to the initial value problem equation 3.23 on an interval I containing tq if ¢ is a C*
function of ¢ on I and satisfies equation 3.23 for each ¢t € I. A function ®(¢,t9,%0) is
called a continuation of ¢ if ® is a solution to equation 3.23 on a larger open interval
containing I and ®(t,tp,x0) = &(¢,t0,%x0) for t € I. The interval, I, is called the
maximal interval of existence if ¢ has no continuation to a larger interval.

Theorem 3.6: Existence and uniqueness for non autonomous system
Let U € R x R™ be open and f: U — R™ and consider the initial value problem

x=ft,x) x(ty) = %o (3.23)

If f € CHU,R™) with k > 1 then there ewists a unique solution ¢(t,to,Xy) of the
initial-value problem defined on a mazimal interval of existence; moreover, ¢ is C* in
(tﬂf(),.%’o).
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3.6 Banach Fixed Point Theorem

In this project the Banach Fixed Point Theorem turns out to be an important theorem
in order to guarantee global stability of a fixed point.

Definition 3.4
Suppose (D, d) is a complete metric space and H : D — D is any function If |H(x) —
H(y)| <plx —y| for0 <p<1Vx,y €D then H is called a contraction.

Theorem 3.7: Banach Fixed Point Theorem

Let (D,d) be a non empty complete metric space. Let H : D — D be a contraction
mapping on D. Then there exists exactly one fixed point of H i.e. there exists exactly
one xss such that xss = H(xss). For any xg € D the sequence x,+1 = H(x,) converges
and its limit is T ..

The Banach fixed point theorem is also called the Principle of Contraction Mapping
and the theorem can be found in [21].
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In this chapter we will give an in depth discussion of two state of the art models for
modeling the HPA axis. Namely the models made by Kyrylov et al.[1] and Jelic et al.[2].
The papers were introduced in section 2.3. Now we have introduced the mathematical
tools of most need when building and analyzing models using differential equations.
Therefore it is now time for digging into more details of the two models.

4.1 Discussion of the paper of Kyrylov et al.

Now we will specify the model of Kyrylov et al.[1] that was introduced in section 2.3.
The compartment diagram for this model is shown in figure 2.6. The purpose of this
section is to focus on some points where improvement deserves to be made. Since
the model relies on some numerical test cases we later investigate parts of the model
analytically. In [1] the modeling of the HPA axis is basically separated in three steps.
First a linear model is presented and is assumed to be valid when the variables have
moderate positive values. Whenever any variable is close to zero, or approaches its upper
physiological limit nonlinearities are required. Second step is the inclusion of these
nonlinearities. When a ’reasonable’ linear model is found nonlinearities related to finite
secretion rate and a demand of non negative hormone concentrations are introduced.
The third step in the modeling is introducing a time dependent input on the CRH
concentration thus imposing the daily oscillation on the system.

The variables for the model are concentrations of CRH, ACTH, free cortisol, albu-
min bound cortisol and CBG bound cortisol. In the differential equations normalized
concentrations are used. Thus y represents CRH, y; represents ACTH, y- represents
free cortisol, y3 and y4 represents the two protein-bound forms(see figure 2.6). It should
be noticed that y; is the concentration of hormone ¢ divided by the mean concentration
of hormone 1.

The linear system

With some minor changes in the notation compared to the notation of Kyrylov et al.,
the linear differential model is given by equation 4.1

—apo 0 —ap2 0 0 Co
alp  —ai;r —ai2 0 0 0
y= a0 a1 —ag2  a23 a24 y+ 0 (4.1)
0 0 as2 —Aass 0 0
0 0 42 0 — Q44 0

All fifteen parameters are positive numbers. The direct cortisol-CRH stimulation by-
passing ACTH is chosen as 20% of the stimulation from ACTH on cortisol meaning that

28
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aso = 1/5a21. Now Kyrylov et al. wisely choose to relate as many parameters as possible
to values found in literature. a;; represents the self-elimination factors. These are consid-
ered known from the literature. For the value of the parameters ass, as3, @24, a32, as3, G4
and ay4, they choose to use the values given by Liu et al.[22]!.

Kyrylov et al. now wishes to determine the numerical value of the remaining param-
eters. This is done by what they call logical inference. A logical assumption can be
made that the stimulatory action of CRH on the pituitary is possible only if the transfer
gain ayg is at least of same order of magnitude as the self-elimination factor |ai1| (or
likely even greater). A similar assumption applies to as,|aszl, aoz,a12’[1]. Our inter-
pretation of this is that since all hormones of the HPA axis are capable of increase as
well as decrease this should be contained in a mathematical model. Since we are now
considering a normalized hormone concentration the values are close to one. Therefore
the coefficients must be of same order such that the derivative of a concentration is
capable of attaining positive as well as negative values.

Kyrylov et al. assumes that the value of ¢y is approximately equal to agg. The
remaining parameters can be described as

ap =b-a
ag1 = C- a2 (42)
a2 =d-an
Qp2 = € - aqo -

Where b, ¢, d, e are assumed to have values as b, ¢ € [1;1000] and d, e € [1;100]. Kyrylov
et al. uses the above mentioned parameters in his numerical experiment. This is to
consider b, ¢, d, e as independent random variables from a uniform distribution in their
respective intervals and then check whether or not the solutions of the linear system
is unstable and oscillating (if the eigenvalue with largest real part is positive and the
imaginary part is non-zero). The result is, that the system is unstable and oscillating in
91.2 +2.5% of the cases. However we consider this crucially dependent on the domains
of b,c,d,e. b,c € [1;100] compared to b, ¢ € [1;1000] is halving the number of unstable
oscillating solutions. Thus the domain of b, ¢, d, e deserve to be chosen with great care
and reason. We make an analytical investigation of the system without the bound forms
of cortisol in the next section showing a relation between b, ¢, d, e determining when the
solutions are unstable and oscillating. If ’logical interference’ can be understood as a
way of ensuring that neither the positive nor the negative term in each of the equations
in array 4.1 totally dominates there seems to be a problem. E.g. a1 and aq2 can not
be chosen independently of each other as we will now discuss. First we rewrite array

I Liu et al. investigates a model with the same variables as Kyrylov et al. but with 33 parameters.
The parameters are found using trial and error but the final equations are compared to important
physiological behaviour of the HPA axis such as hormone half life and association constants of cortisol
with proteins. Thereby some optimization of the parameter set is found though we think it is fair to
say that this approach lacks credibility.
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4.1 with the parameters given in array 4.2.

do/ar = aoo (Yo — €y2) + co (4.3)
Wifar = axy (byo — y1 — dy2) (4.4)
2/ = aga (Yscyo + cyr — Y2) + azsys + a2aya (4.5)
dsfar = asays — assys (4.6)
Wafar = as2y> — A4aYa - (4.7)
Now considering for instance the second equation
Wifar = ar1 (byo — y1 — dy2) - (4.8)

We want to illustrate an undesirable consequence of the fact that Kyrylov et al. allow
the parameters to be chosen independently. We want to make a rough estimate of an
upper bound for b for a given d in order to avoid the same sign of 4v1/4; for all realistic
hormone concentration. From the figures 2.3 and 2.4 it seems fair to assume that the
concentrations do not fluctuate more than a factor 5 from the mean value. Thus if we
want to make a rough estimate on an upper bound on b such that y; is not always
increasing we solve for b in the ’best case scenario’ where the y, attain a low value (1/5)
and y; and yo attain a large value (5).

1
/g = a1y (meS —5— 5d) =04 bpaz = 25(1 +d). (4.9)

Since d is chosen as a random number in [1;100] an outcome could be d = 9. Then by
equation 4.9 by,q, = 250. However since b is a random number in [1;1000] a realization of
a simulation could be b = 500. But then 4v1/4; > 0 at all times where the model applies.
Kyrylov et al. states that the negative feedback should be capable of overcoming the
forward gain but this cannot be the case for this outcome of the random numbers
b,c,d,e. Now the values of yg,y; and yo should rather be chosen as values closer to 1
(than /5 and 5) since the model only applies for moderate values of the concentrations.
Putting a more narrow bound on the concentration further stresses the problem of
choosing the parameters independently.

Introduction of non linearities

The second step in the modeling is introducing non linearities. These are introduced to
avoid negative concentrations and to ensure that the hormone release rate is bounded.
This is done by multiplying two functions - one take care of non negative concentrations
and one take care of an upper limit of the derivatives of the concentrations.

Let z; denote the concentration of the i'th hormone and 2; denote the derivative of
the concentration. The function making sure concentrations do not become negative is
given by

x? . .
ri(ds, 7) = 1—exp (7$(S€°ﬂf)2) s if (< e) A (2 <0) . (4.10)
7 1, otherwise

Here Sy is of order 1072min~! and denotes an upper limit for hormone release rate,

which is assumed to be proportional to the size of the gland. € is a small positive
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constant later put equal to /2 (we consider this a fitting parameter). The non-linearity
introduced to model finite release rate is given by

h(i) =4 Hm(en(-5)) (411)
%, if #; <0

Now these nonlinearities are brought into play by defining the functions
gi(x'i, .731') = hl (.131) . ’I“i(l"i, J}Z) . (4.12)

With these non-linearities Kyrylov et al. obtain the non linear equations of the HPA-
axis.

o/t = go (aoo (—Yo — €y2) , Yo) + o ( )
dy1/ar = g1 (a11 (byo — y1 — dy2) , 41) (4.14)
A2/ = ga (a2 (Y/5cyo + cy1 + yo) + azsys + azaya, yo) (4.15)
dys/ar = g3 (az2y2 — azzys, y3) (4.16)

( (4.17)

dyafgr = g4 (@a2y2 — G44Ya,Ya) -

The inclusion of nonlinearities are imposed on the linear system. We believe that
it would be a strengthening of the model if the nonlinearity was introduced in a less
arbitrary way relying more on physiological facts. Kyrylov et al. mention that these
functions are just one of many possible functions that give the desired behaviour. Note
that if x > € and # < 0 the non linear system equals the linear system thus the non
linearities fulfill the purpose of kicking in when concentrations become too close to zero.
It is worth noting that h is only a function of #; and not on x; and h is positive for
positive &;. This means that only the release rate of a concentration is bounded - not
the concentration itself.

Now a ’'robustness’ analysis is performed. ’In each experiment, only one parame-
ter was varied by decreasing or increasing its default value until the model behaviour
undergoes qualitative changes, such as ending in unstable or decaying oscillations’[1].
However it is unclear to us how the criteria of 'qualitative changes’ is investigated. For
the linear system the stability was determined by the eigenvalues of the system. The
meaning of stability of the non linear system is more unclear since there is no preceding
analysis of fixed points which is where ’substitution’ of the non linear system with a
linear system (given by the Jacobian) makes sense. It could be that the qualitative
changes were found from looking at the graphs of the solution curves (found numer-
ically). If the solution curves have ’nice’ oscillations the system could be considered
stable with oscillations. If this approach is used then also initial values of the system
should be varied since one set of initial values could lead to bounded oscillations and
some could lead to unbounded solutions.

Default values of the parameters must be chosen in order to perform the robustness
analysis. For some parameter values there is quite a difference between the values
considered in the linear model and the non linear model. We have previously argued
that the parameters of the linear model were chosen in a problematic way. However
the reasons to have discrepancies between the parameters of the linear model and the
parameters of the non linear model is unclear. Examples of this different choice of
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parameters will now be given. It is our belief that the default parameters should
reflect the parameters of the linear system or require a new argument if new ones
should be chosen. Especially since the linear system equals the nonlinear system when
concentrations are larger than € and decreasing. However for the linear case ¢y = agg but
for the non linear system the default parameter value of ¢q is 0.443 and agg = 0.00843
meaning that ¢y = 52.6 - agg. This discrepancy is not commented in [1]. Furthermore
Kyrylov et al. reach the conclusion that the system will not have stable oscillations
when ¢y < 0.223 =~ 26agg. This is when all other parameter values are held fixed at
their default values. This means that the system is not capable of showing the desired
behaviour when the parameter cg is more than 26 times times the value in the linear case.
This discrepancy is neither commented in [1]. Furthermore Kyrylov et al. argue in the
linear case that the parameter as; should be found as as; = ¢ - asy where ¢ € [1;1000].
However Kyrylov et al. end up with the default values a2 = 0.957 and as; = 0.0310.
Thus for the non linear case the ¢ = 0.03 is the default value of ¢. Therefore there is
quite a discrepancy between the parameter values for the linear system and the non
linear system.

Introducing diurnal rhythm

The third step in the modeling is the time dependent input on the derivative of CRH.
To model the circadian rhythm a cosine function with a 24 hour period is introduced.
This function is implemented into the external generating factor, cg.

Summary

Summarizing the criticism for the linear system as well as for the non linear system:

e The parameters of the linear system are varied independently of each other leading
to possible derivatives with constant sign for realistic concentrations.

e The differences between the parameters in the linear and the nonlinear model are
unexplained.

e The nonlinearities are not closely related to a physical mechanism but are in-
troduced as functions obeying non negative hormone concentrations and finite
secretion rate.

4.2 Applying the RHC on a linear three dimensional model of
Kyrylov et al.

Preceding the five dimensional model of Kyrylov et al. [1] a three dimensional model
was formulated without the bound forms of cortisol [23](this is an unpublished paper
from a conference). The approach is very similar to the five dimensional model. First
a linear model is considered where unknown parameters are estimated using ’logical
interference’ and domains for these parameters are considered as independent random
variables from the respective domains when simulations are performed. This means that
the half lives of CRH, ACTH and cortisol are used to estimate four other parameters.
No parameters in this model is taken from Liu et al.

A numerical investigation of the eigenvalues of the linear system is performed. One
negative real eigenvalue and a set of complex conjugate roots with positive real part is
the predominant result. Later non linearities are introduced (using different functions
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than in [1] but the approach is the same) in order to avoid negative concentrations
and to put an upper limit on hormone release rates e.g. a bound on the derivative of
the hormones. Finally a circadian rhythm is imposed on the CRH concentration that
‘spreads’ to ACTH and cortisol. The approach and results of the five dimensional model
and the three dimensional model are thus very similar. The direct CRH cortisol is not
included. However after analyzing the system without this part we can include it and
compare the case with and without CRH -cortisol stimulation. If the dynamics of the
bound forms of cortisol are fast (4¥3/q; = dva/q¢ = 0) for the five dimensional model it
reduces to the three dimensional (except for direct the CRH-cortisol stimulation). Due
to our reasoning in section 2.3 we believe it is fair to consider the dynamics of the bound
forms fast compared to the rest of the HPA-axis.

We now make an analytical investigation of the three dimensional linear system that
is numerically investigated by Kyrylov et al. This serves two purposes. Kyrylov et al is
interested in when the system is unstable and oscillating and this is investigated as four
parameters are varied independently and at the same time. We find a relation between
the four parameters expressing when the system is unstable and oscillating. It turns
out that only two parameters are important for this (the four parameters are grouped
such that there is only two degrees of freedom). The analytical result is thus halving
the number of ’important’ parameters. We stated earlier how crucial the domains of
b, c,d, g are for the stability of the linear system. With the analytical investigation we
can say exactly how the values of b, ¢, d, g influence on the stability of the system.

The analysis is based on RHC. We have x as a vector in R3 denoting the concen-
tration of CRH, ACTH and cortisol. The linear system is then given by equation 4.18
(noted the indexes now start at (1,1) where the previous model of Kyrylov the indices
began with (0,0)).

a1 0 a13 14
Xx=|ao1 a2 ao3|x+ a24(t) (418)
0 a3z as3 0

az1 = 0 since the direct path from CRH to cortisol is not included in this model. We
will in the next section estimate the stability of the system including this stimulation
(az1 > 0) using the result we are about to find for the system without the direct CRH-
cortisol stimulation. ag4(t) is only included to make external ACTH injections possible
and is thus 0 when ACTH is not injected.
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az = —b-ax
a3z = —C-a33
ai3 =d-a
az3 = ¢g-a22

Table 4.1: The off diagonal elements of A where b,c,d,g > 0

We are considering the matrix A2.

air 0 a3
A= a21 a2 A23 (419)
0 azx ass

In the work of Kyrylov[l] the diagonal elements are considered well-known compo-
nents of A. From the half lives of CRH, ACTH and cortisol, the diagonal elements can
be found from the relation a;; = —"2/ya1¢ 1ife. The half lives vary from individual to indi-
vidual but also within each individual the half lives vary for example due to functioning
of the liver. For example the half life for CRH is in the range 10-90 minutes. We will
make consequences of the choice of the half lives visible by keeping the analysis in terms
of a;; instead of inserting a numerical value. Due to the mechanisms of the system the
signs of the entries of the matrix are known. The diagonal has purely negative entries
since each element describes a self elimination effect. as; must be positive to describe
that an increase in CRH causes increase on ACTH. Using the same argument on the
ACTH impact on CRH, a3> must be positive. Since cortisol has a negative feedback
on both CRH and ACTH, a;3 and a3 must be negative. As done by Kyrylov we now
introduce four positive parameters b, ¢, d, g through table 4.1. Inserting this in A we
get

a1 0 d- a1
A= —b- a922 a9 g - a2 . (420)
0 —c-asz3  ass

Here Kyrylov et al. make a large number of numerical cases with b, c,d, g in the
domain from [1;1000] and then considers the different cases of stability outcomes.
The approach we use instead is describing the characteristic polynomial directly in
terms of b, ¢, d, g. The eigenvalues are found from the equation det (A — AI) = 0 which
is equivalent to det (\I — A) = 0. To get the equation on a form with the coefficient

2 Due to the described mechanisms of the system the signs of the entries of A are well known. This
may lead the attention to qualitative analysis of A, where the stability of all matrices having the same
signs as the entries of A are considered. So the stability of A is then guaranteed if Q4 = sign(A) is

stable, where
— 0 —
Qa=|(+ - -
0o + -

Necessary conditions for @ to be stable are given in [14]. Q4 does not meet all these conditions which
means that we cannot use this approach. For example we would need Q 4,, < 0 which is not the case.
This means that not all matrices with the same sign of the entries as A are stable. Unfortunately this
means that we can deduce nothing about the stability of A in this way.
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for A3 equal to one directly we define the characteristic polynomial of the matrix A,
Pa(A\) = det (A\I — A). This is easily calculated using equation 4.20.

Pa(N) =\% — (@11 + ag2 + as3) A+ (a11a22 + aszass + ar1as3 + Yazzass) A

— (a11a22a33 + Ya11a22a33 + da11a22a33) . (4.21)
where
v =cg (4.22)
and
5 = bed. (4.23)

Before actually using the RHC it is worth noticing the role of b, ¢, d, g. The reason
for introducing v and § is because b, ¢, d, g do not play a role individually as much as in
the terms of the products indicated by v and §. Therefore it is already obvious that the
qualitative behaviour of the system initially described by 4 parameters only depends
on two parameters. This is an interesting simplification obtained using this approach.

Describing the the characteristic polynomial as
Pa(\) = X3+ a10? + o) + a3, (4.24)

we see that the coefficients are

a1 = —(an + a2 +ass) (4.25)
Qg = G11022 + G22033 + G11033 + 7022033 (4.26)
as = —(a11a22a33 + yai1a22a033 + 0a11a22033) (4.27)

We see that a; > 0, ag > 0 and a3 > 0 are always satisfied. This is due to the fact
that all the diagonal elements of the matrix are negative and v and  are positive. For
a non negative A this means using equation 4.24

PiA) =N+ aiXN+ad+a3 >0+0+0+az >0. (4.28)

Then the there is no real, non negative root of Pj4.

The criteria determining stability is now according to RHC if o - as > ag is true.
When the inequality holds the system is stable and when the inequality is false the
system is unstable. But since there can be no real, non negative root in the case of
instability we are guaranteed that the largest real part of the eigenvalues belong to an
eigenvalue with non zero imaginary part. This means that if the system is unstable it
is guaranteed to have growing oscillations.

Expanding «; - as > ag using equation 4.25, equation 4.26 and equation 4.27 and
isolating d gives

5 <922 + ass +

ari
aga11? + ags®ass + azz?arr + 2 azzasearn + aszasn® + assarr + azzai?

(4.29)
a11G220a33
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Unstable and oscillating

Stable

Figure 4.1: The unstable, oscillating solutions of the three dimensional linear system
without direct CRH-cortisol stimulation are characterized by having (v, §) - values above
the graph.

Variable Half life, [min]  a;; = =12 2/hait tife, [Y/min)
CRH 30 -0.023
ACTH 17 -0.041
Cortisol 80 -0.009

Table 4.2: Half lives as given in [23].

Thus when inequality 4.29 holds the solutions of P4 are asymptotically stable. Using
only the qualitative information, a1; < 0, ags < 0 and a3z < 0 it can be seen that 4.29
can be written in the form

§ < cr(wi1, waz, wsz)y + c2(wir, waz, wss) , (4.30)

where ¢1 (w11, we2,w33) and co(wiy,wag, wssz) are positive constants for fixed values of
the half lives of CRH, ACTH and cortisol. This is illustrated on figure 4.1 The stable
cases are found as (y,0) below the graph. Considering the half lives of CRH, ACTH
and cortisol known and fixed (the same assumption as Kyrylov et al. ) then ¢; and
co can be calculated and inequality 4.30 are dependent only on the two parameters
and 0. An obvious advantage of this approach is that it gives one inequality with two
parameters determining the stability of the system.

Comparing RHC results to the results of Kyrylov et al.

First we try using the half lives used by Kyrylov et al.. Parameters considered known
in [23] are listed in table 4.2 with the resulting values for the diagonal elements.

Using the numerical values from table 4.2 in inequality 4.29 we get a numerical
version of inequality 4.29 to be

§ < 217y +12.07 (4.31)

Using the definitions of § and ~ and inserting in inequality (4.31) we get

bed < 2.17cg + 12.07 . (4.32)
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Thus for increasing values of b and d the system is 'more unstable’ and for increasing
value of g the system is 'more’ stable. In the numerical experiment done by Kyrylov
et al b, c,d, g are chosen randomly from a uniform distribution with values in [1;100].
This results in 96% unstable, oscillating cases. For b, ¢, d, g chosen randomly between 1
and 10 the results is 72% untable oscillating cases. This is qualitatively in agreement
with inequality 4.32.

When we build a non linear, threedimensional model of the HPA axis how can
we use the analytical results from the three dimensional system? The solutions near
fixed points are well described by a linear system given by the Jacobian of the non
linear system evaluated at the fixed point value. Any nonlinear system where cortisol
exerts negative feedback on CRH and ACTH and no direct CRH-cortisol stimulation is
present will have Jacobian with the same sign matrix as A. The stability of the fixed
point e.g. the stability of the solution close to the fixed point is now determined from
the eigenvalues of the Jacobian evaluated at the fixed point. Due to our analysis the
stability of the fixed point depends solely on the sign of ayas — ag.

Using RHC Approach on the 3D System with Direct CRH-Cortisol Link

Now RHC will be used on the three dimensional linear system including positive CRH-
cortisol stimulation since this is the only difference between the three dimensional linear
system and the five dimensional linear system for fast dynamics of the bound forms of
cortisol. The only difference from the previous system is ag; > 0 (before az; = 0). Only
changing the matrix A by changing asg; from zero to a positive number we define the
matrix A by

. all 0 d- ail
A= —b- a99 a9 g - a2 . (433)
az1 —C-asz3 a33

Since A resembles A, the comparison to already analyzed system will be stressed. When
making the characteristic polynomial one finds a determinant

det(\I — A) = 0. (4.34)

The determinant can now be found using row expansion (cofactor expansion) of the last
row. This means that

Pi(\) = det(\ — A) &
Pi(\) = (—13ag; - det ( o "“) L P e
A—az g-az
P(A) = —d-aziar (A —az) + Pa()) &
P;i(A) =d-aziarazz — d - azran A + Pa(A). (4.35)

The coefficients of the two first terms in equation 4.35 are positive and the coefficients
for P4 are positive as well. Therefore the coefficients for Pj; are positive so the real
roots of P; are negative. This means once again that unstable solutions of the linear
system is guaranteed to be oscillating.

Inserting the expression of P4 () from equation 4.21 in terms of the three a’s from
4.25, 4.26 and 4.27 we get
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PA(/\) =d-asiai1a2 — d - az1a11 A+ A3 + a1/\2 + g\ + ap, (436)

which can be written as
PA()‘) = )\3 + 051>\2 + (—d a31d11 + 042) A + (d 3111022 + 043) s (437)

Before applying Theorem 3.3 we first we make some new names for the coefficients:

B = o (4.38)
B2 = —d-azan+az (4.39)
B3 = d-azaiaz +az. (4.40)

Since a; > 0,a3 > 0,d > 0,a31 > 0 we have 51 > 0 and B3 > 0 so the two first
conditions of Theorem 3.3 are satisfied. The third condition requires 3182 > 3 which
can be expanded using equation 4.38, equation 4.39 and equation 4.40.

(o731 (—d -aziail + 042) >d-az1a11a2 + a3 . (441)
This can be rewritten as
aias + dagiaqy (—0[1 — a22) > Q3. (442)

Now it is time to use the definition of a; from equation 4.25 which then reduces the
parenthesis so equation 4.42 can be written

aias + daziaqr (a33 + (111) > Q3. (443)

The second term dasjai; (ass + ai1) is strictly positive. The asymptotic stability of
the solution of A is guaranteed if and only if ;g > ag. Therefore we see that any
stable case for A guarantees the stability of A. This means that the stable cases for A
constitute a subset of the stable cases for the matrix A. This does not mean that the
unstable cases for A guarantees A to be unstable. We see that changing the system from
A to A expands the number of stable cases which means that this change in the system
increases the ’chance’ of being stable. This may be valuable information even if it is
really the system described by A that is the more interesting. Especially because Py
can be described with only two parameters (7 and 0) while P also has d as parameter.

4.3 Discussion of the paper by Jelic et al.

Since the paper made by Jelic et al.[2] have been a great inspiration to us we will in
this section present their approach of modeling the HPA-axis. This shall serve to the
reader both as an insight in the modeling of the HPA axis and a justification of some
of our later reasoning. In the last section of this chapter we will give a brief critique of
this approach.

The compartment diagram of the system is shown in figure 2.7.To make it easier for
the reader to relate this model to previous information about the HPA axis we have
chosen to use our notation of the variables.
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The following chemical reactions to model the HPA-axis are assumed to be valid in
the paper.

LI 4.44

Sy 4.45
L 4.46
P 4.47
2o 8

To + 2x3 g 3x3
A+2.133 g T3
To g Pl

l’ggpg.
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oo
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Where x7 represents CRH, x5 represents ACTH, x3 represents cortisol A represents
aldosterone. P; and P, represents the products of ACTH and cortisol elimination.

Here equation 4.49 is modeling the positive feedback through hippocampal GR since
two cortisol molecules are involved in a reaction where three cortisol molecules is the
outcome. Equation 4.50 is modeling the overall negative feedback through hippocampal
MR. These two reactions leads to the non linearities of the mathematical model. Thus
the mathematical model depends heavily on these two reactions.

By means of the law of mass action® the reaction scheme is used to write the following
differential equations for the system # (a denotes the concentration of aldosterone).

dx

7dt1 = k‘o — k‘lxl (453)
A

L;t =k, + kzxo — ]415141‘% (454)

dl?g 2

E = /4}1.731 - le‘g - k‘3$2 — k‘4.7321‘3 — k‘ﬁxz (455)

d

% = koo + k4x2x§ — k‘5Al‘§ — krxs. (456)

Note that the derivative of CRH only contains parameters and the CRH concentra-
tion. This means that the feedback from cortisol on CRH is not included which we
consider very problematic. Jelic et al. assume that CRH and aldosterone have much
slower dynamics than ACTH and cortisol e.g. they assume d3/g; = 0° and d4/4 = 0.

3 The concept of law of mass action will be elaborated in chapter 5.2.

4 The Jacobian of this system has obviously continuous entries. This guarantees existence and unique-
ness of solutions by the existence and uniqueness theorem, theorem 3.1
5 It seems very unnecessary to assume dstl = 0 since the differential equation for CRH is uncoupled to
the rest of the equations and is solvable since it is a linear differential equation with constant coefficient

and a constant inhomogeneous term. Solving the differential equation using the tools from chapter 3
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Thus the overall dynamics of the two-dimensional "faster" system can be modeled by

% = k‘o - k2x2 - /C3.732 — k4$2l‘§ — k‘6.132 (458)
dxg 2
% = koxo + k‘4.732],‘3 — ky, — k3xo — k723 (459)

Then the number of parameters is reduced by putting the differential equations
into dimensionless form. Through mathematical analysis the number and stability of
fixed points is investigated. Jelic et al. demand an oscillating behaviour of the cortisol
concentration. As a function of the parameters the a fixed point is capable of undergoing
a Hopf bifurcation. The Poincaré-Bendixon theorem ensures that there exists a limit
cycle. This give the desired oscillations of the solutions. Finally the circadian rythm is
included by changing ko from a konstant to a periodic function with a 24 hour period.

Criticism of Jelic et al.

We find overall approach to model the HPA axis through chemical reactions interesting.
The detailed description of the biology within the HPA axis is impressive. Jelic et al.
point out different feedback mechanisms (MR, GR) throughout the HPA-axis and try to
model these. However the reaction scheme lacks validation especially the parts leading
to the crucial equation 4.49 and equation 4.50.

The argument that CRH is not oscillating with an amplitude and frequency that
is comparable to that of ACTH and cortisol is not in correspondence to what we have
read in the literature. [1, 5, 24] argue for oscillations between twenty minutes and two
hours. This is with a relative amplitude that is comparable with that of ACTH and
cortisol. We therefore consider 9#1/4, = 0 a problematic assumption.

A previous project investigating this system[12] have done simulations with the
parameter values proposed by Jelic et al.. These simulations leads to concentration
levels of ACTH that are wrong by a factor of 1000. This must be noticed as problematic.

The overall critique of the article can be summarized in the following points.

e The chemical reactions leading to the mathematical model is not validated.

e No feedback from cortisol on CRH is present in the mathematical model.

e The assumption that leads to a two dimensional system is problematic.

e The outcome when scaling the equations numerically is wrong by up to a factor
of 1000. Thus the interesting dynamics (explaining the ultradian oscillations)
happens in parameter range far away from what is considered physiologically
relevant.

and the initial condition z1(0) = z10 we get

k
x1(t) = x10e M1t 4 k7(1) (1 - efklt) . (4.57)
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5 Modeling the HPA-axis

In the introduction we introduced the reader to the physiology of the HPA-axis. Fur-
thermore we have introduced the reader to how previous state of the art models have
been made. The information we have gathered through our studies in literature will
now be combined to make our own mathematical model of the HPA-axis.

As seen in the previous models the standard approach
to model the HPA-axis is not to include hippocampus. We

o have chosen to pursue this approach in our first model of
Hypothalamus the HPA-axis. We have chosen to build the model step by
] step because we believe that this gives the reader the best
CRH, [x] insight in the process of building the model®.
A %' When the model is complete it will be somehow com-
wp | FHeitery gland plex. To be able to compute relevant analytic results about
ACTH, [x,] parts of the model we will try to reduce the number of pa-
Tes rameters by means of physiological reasoning.
Adrenal gland We follow the approach of [1, 2] searching for criteria

such that the HPA-axis show an oscillatory behaviour with-
out the external circadian rhythm. Therefore we will inves-
tigate the obtained system for oscillations when the cir-
cadian input is constant. If this is achieved we will mimic
Figure 5.1: HPA-axis the circadian rhythm with a periodic function of time which
without feedback mecha- has also been the approach in previous works [1-3, 6]. That
nisms is that the input to the system through kg will no longer

be constant but time dependent thus turning the resulting
differential equations into non autonomous differential equations. Since the system is
non linear this decoupling of input to the system and inherent system dynamics may
however be problematic.

Cortisol, [x3]

5.1 Modeling the HPA-axis without hippocampus

This model is based on the negative feedback mechanisms in hypothalamus and in the
pituitary glands through the glucocorticoid receptors(GR) located here. In this chapter
we will account for the way we include these feedback mechanisms in our mathematical
model. Without the feedback mechanisms the model looks as in figure 5.1 and a simple

L If the reader wants to skip the modeling, the final differential equations of the HPA axis not including
hippocampus is array 5.33. A short description of the obtained model is found in section 5.5.
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system of linear differential equations is given by equation array 5.1.

dx

ditl = ko — w11

T2 o

praE 2%2

dx

7dt3 = k‘gl‘g — Ws3T3 . (51)

All the k’s and w’s are positive constants and the k’s model positive stimulation of the
hormone concentration while the w;’s model the elimination of the hormone concentra-
tion.

Now we will implement the feedback mechanisms. Let us start with the negative
feedback from the cortisol concentration to hypothalamus. When we implement this in
figure 5.1 it will look as in figure 5.2. This feedback mechanism should be modeled in
such a way that the higher concentration of cortisol the larger feedback on the system.
In other words the body is telling itself to produce less cortisol, if there is plenty. We
have chosen to model this effect in the following way. In the differential equations 5.1
ko is the parameter that feeds the system from hippocampus. It would therefore be
natural to multiply k¢ with a function of the cortisol concentration, f(z3), that for high
concentrations reduce or perhaps even shut down the feed-forward into hypothalamus.
This will in time reduce the amount of cortisol. It is clear that the function should be
constructed in such a way that when the concentration of cortisol decreases it opens
up the pathway again working like a kind of valve. Let us for now implement this in
equation 5.1 through the function f(z3)

ko
Hypothalamus
wq _
-~ IR—
CRH, [x,]
Ty
Pituitary gland
wa
ACTH, [x3]
IS

Adrenal gland
w3

Cortisol, [x3]

Figure 5.2: The feedback mechanism in hypothalamus included
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dx

7; = kof(xg,) — W11

dx

7; = k1x1 — WaT2

dx

7; = kgxg — ws3x3 . (52)

The criteria that f(z3) gives a negative feedback is that df(z3)/4,, < 0 for all z3 >
0[19]. In a similar way we will include the other feedback mechanisms. It will be
our assumption that a feedback in a compartment works directly on the input to this

compartment. These are all shown on figure 5.3 and the differential equations for this
system is written in equation 5.3.

dx

dftl = kof(z3) —wizy

dx

7; = k1x1g(x3) — WaT2

dx

d7t3 = kg],‘g — wsx3 . (53)

Now we have the differential equations with both feedback mechanisms. So now it is
time to see how the feedback functions can be reasonably defined.

lkn

Hypothalamus
wy _

R

CRH, [x,]

I

Pituitary gland

2 GR-—

ACTH, [x,]

I

Adrenal gland

Cortisol, [x3]

|

Figure 5.3: All feedback mechanisms included
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5.2 Hill function

The basic assumption for the feedback functions is that a feedback must be implemented
through a receptor. These receptors form the bottleneck of the process and the result
is a feedback function where a saturation is present.

In this section we will assume that the chemical law known as the law of mass
action is valid[25]. This law states that the rate which a chemical reaction occurs is
proportional to the product of concentration of reactants and the rate constant. As an
illustration of this we give the following example. Given the chemical stoichiometric
balanced reaction scheme

aA+B 5 C, (5.4)

where bold capital letters denote the reactants, small letters denote the number of
reactants and k denote the rate constant. Then the rate of change of the concentration
of product C will be given as

d
d—f =kA°B®, (5.5)

where the capital letters denote the concentration of the reactants.

Now let us concentrate on a system of a specific kind of receptors. In this system
there is a concentration of free receptors, X (t) > 0, and occupied receptors, Y (t) > 0.
These receptors are not allowed to leave the system meaning that X (¢)+Y (¢) is constant.
Into the system is a flow of molecule concentration, A(t) > 0, that are able to be caught
by the free receptors which then become occupied receptors with rate constant k1. The
occupied receptors shall only be thought of as being occupied by this single kind of
molecule which it can release to become a free receptor again. This will happen at
a different rate constant, k_;. Furthermore the occupied receptors shall be able to
transform the incoming molecules to a new molecule, B(t) > 0, with rate constant
ks and then release it to leave the system. The occupied receptor will then become
unoccupied. As a chemical reaction this can be written as

aA+ X By
ad+ X'y (5.6)
v8Bsp+x,

where « is the number of molecules that are reacting with one free receptor, and S is
the number of new molecules that are produced by the receptor.

Using the law of mass action we can write up the differential equations describing
the change in concentrations.

dA
— =k A*X + kY
It 1 + K1

dx
dt
dy
B ACX — kY — kY
dt
dB

— = BkaY . (5.7)

=~k AYX + k1Y + kY
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We will now use the fact that the sum of the free and occupied receptors are constant
thus X (t) + Y (t) = r where r is a constant. Substituting this into equation array 5.7
we end up with the following equations

% = 7]431140‘1" + (klAa + k_l) Y

% = A% — (A% + k4 k)Y

dB

— = BkyY . .
B _ i 6.9

In a biological system such as a gland or a cell the number of incoming molecules is
usually much larger than the number of receptors. Therefore it is reasonable to think
of the receptors as working at maximum capacity so that their occupancy rate is ap-
proximately constant (4Y/q; = 0). This is known as the quasi-equilibrium hypothesis[14].
Solving @Y /4 = 0 in the second equation of array 5.8 and isolating Y we get

klAaT’

Y = .
k1A% + ko + k_q

(5.9)

Putting this expression into the third equation of array 5.8 we obtain the rate of outgoing
molecules

dB k1 A%rko
— =kyY = . 5.10
dt T kA 4 ky+ ko (5.10)
Since the rate constants are positive we can simplify this to
dB A%rk A%rk
2 _p 2 (5.11)

7:5 a
dt Ao Fethos Ao 4 (a/kQ—Zk_l)
1

Substituting in the following quantities kyq. = Srks and k, = {/(k2tk-1)/;. | gives the
following expression for the products rate of change as a function of incoming molecules

B _ . A*
dt T Ao+ ke

(5.12)
The supremum of equation 5.12 is k4. This is the limit as the incoming concen-
tration tends to infinity. Furthermore it is seen that dB/q; = kmaz/y for A = k,.
In figure 5.4 the Hill function is seen for different values of k4.

Affinity

In biology and chemistry dissociation constants or affinity is used to describe how likely
a chemical/biological reaction takes place[26].

Given concentrations of reactants and products as for example in equation array 5.6
the association constant(affinity constant) is defined as the ratio between concentrations
in equilibrium[26]. That is in a simple chemical reaction such as

2H + O = H,0, (5.13)
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The Hill function for different values of kmax. kn:Z, a=4.
3 T T T T T

25 .

051

—k =1
max
— k=2
max
k =3
max
0 i 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 5.4: The Hill function shown with different values of k,,4,. The values of o and
k,is: a=4and k,, =2

the association constant, K,, for 2H and O, and thereby the affinity of 2H and O
becoming H->O, is given by
[H20]

Re =T 01

(5.14)
The demand for the occupied receptors to be in equilibrium (the quasi-steady state
hypothesis) is from array 5.7

Y k1
= . .1
< A . X k_1+ ko (5 5)

ki AX — (/{5_1 + kz)Y =0

The affinity for A to occupy the receptor is according to previous definition therefore
given by

Y kq 1
Ae X 71€_1+k’2 ko

n

K, (5.16)

since ky, = {/(k2+k-1)/p, (in equation 5.12). Obviously k% determines the affinity.
In figure 5.5 the Hill function is shown for different values of k,.

Inflection point

In mathematics this kind of function is an example of a sigmoid function and in biology
it is called a Hill function. In certain cases it is of some interest to know at which value
the rate of change of a function of this type changes from growing to decreasing. These
inflection points will occur when the second derivative is zero. For oo > 2 the second
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The Hill function for different values of k". k

k=1
n

k=24
n

k =3
n

Figure 5.5: The Hill function shown with different values

and oo = 4.

The Hill function for different values of a. k__ =2, k =2
max n

. kmar and a i8: Kz = 2

16

141

0.8
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021
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Figure 5.6: The Hill function shown with different values of a. The values of k4, and

ky, is: kmas = 2 and k,, = 2.
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derivative of equation 5.12 is
d? A~ (a—1) (A% + k%) — 2aA”
—— | kmaz——— ) = kpmagak® A2 L . 5.17
A2 < 1Ty T k%) wax QR (Aa n k%)g ( )

Equating this expression to zero (and using A; to denote the inflection point value of
A) gives that

(a—1) (AT + k) — 2aAT =0, (5.18)
which occur when )
Ay =k (01 " (5.19)
I — hn a+ 1 . .

As seen from this expression the inflection point, will converge toward k,, for large values
of a.

A possible way to gather information about the constants would be to look at the
gradient of the Hill function at the inflection point. As seen on figure 5.5 it is possible
to get a fairly accurate estimate of the largest gradient. It is obvious that the largest
gradient occur at the inflection point. Now we know the value of the concentration A
from equation 5.19. The gradient is calculated from equation 5.12 as

ddB_ d AN AT
dA dt B dA maIAO‘ —l—k% max (Aa —|—k70{)2 :

Inserting the concentration of A from equation 5.19 into equation 5.20 we obtain

(kn (g;})%‘yl ko

(5.20)

id—B = kmazQ
dA dt aciy e e o\ ¢ 2
kvb(a+1) ((kn (%) ) + k%)
1/@
kmaz ; o a+1
= Bz (2 ) (a_1> . (5.21)

This means that « is determining the place of the inflection point and the magnitude
of the gradient at the inflection point. An illustration of this is seen in figure 5.6. As
seen in equation 5.21 the magnitude of the gradient at the inflection point also depends
on the values of k4, and k,. This can be seen in figure 5.4 and figure 5.5.

5.3 Implementing the feedback functions

The previous section gave an indication about how a receptor works on a microscopic
level. But in fact we do not know exactly how the chemical process is throughout the
HPA-axis. Therefore we will implement the feedback functions in a more phenomeno-
logical way.

We will assume that a feedback in a compartment works in a way that reduces gain
pathway (the term corresponding to positive stimuli of the hormone) at that specific
compartment. Furthermore we assume that the processes in the HPA-axis are irre-
versible meaning that any flow shown on the compartment diagrams are not allowed
to be reverted. Furthermore we assume that a negative feedback can not become a
positive feedback.
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5.4 Jelic-like approach

As explained in the introduction there are several receptors in the brain that are regulat-
ing the hormone secretion. We will now implement the Hill-functions into the feedback
mechanisms. To do this we look at the compartment with CRH and write up the chem-
ical reactions similar to the way Jelic et al.[2] write up their reactions. We assume
cortisol is reacting with the receptors and substance B is produced. B reacts with CRH
to form the neutral substance C which is no longer able to contribute to the dynamics
of the HPA-axis. Then the chemical reactions would look like in equation array 5.22

]3 I
1+ B a0
P (5.22)

The law of mass action then states that change in x; is given by

d
_ ko —cix1 B —wizy . (5.23)
dt
As described in the previous section the amount of produced B is given by
1.(1
Fmazr—5—— - 5.24
g + k2 (5:24)
And the amount that is used is
clxlB . (525)
This leads to the following differential equation for A
dB xg
= = kppaw——2— — B. 5.26
dt 2g + ke (5.26)

Now we use the quasi-equilibrium hypothesis. This means we assume the reaction be-
tween x1 and B is fast compared to the other dynamics of the HPA-axis. Then B is
used in approximately the same rate as it is produced.

dB x§
— =0& knag——3— = B. 5.27
dt o + ke M (5.27)
Inserting this result in equation 5.23 gives
dxq g
— =ko— kmagz———— — . 5.28
at " wg + ko (5.28)

To avoid a feedback function reverting the flow in the system k,,.. is not allowed to

attain values larger than kg.
kmaz = //ka 3 (529)

with p € [0, 1]. Inserting in equation 5.28.

dxry x§
— =k (1 —p—=— | — . 5.30
dt 0 ( Fre kg) e (5.30)
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This kind of approach to model a feedback mechanism has been widely used throughout
literature[3, 4, 27]. We should check explicitly that the feedback function does fulfill
the criteria for a negative feedback meaning that the derivative with respect to zs takes

only negative values.
d g akexg!
—(1- 3) = —p—0n3 5.31

das < gy Mg + k2) (531
Thus for x5 > 0 this is indeed negative.

In a similar way we model the negative feedback in the pituitary gland which gives
the equations in array 5.32

d «
T :k_o (1 _Mx?’) — wiTq

dt x§ +cf

dzo z?

—_— :kl 1-— p73 1 — WaX2

dt ( zd +

des (5.32)
—= =koxg — w33 . )

ar 2T2 373

Now c¢1, ¢2, a and B are determined by the stoichiometric chemical reaction scheme.
Since both feedbacks correspond to cortisol binding to GR we assume ¢; = ¢; = ¢
and o« = . p is dependent on the stoichiometric chemical reaction, kg and the size of
the receptor of which we do not have any information. The same is the case with p.
Therefore these parameters will still be included in the final equations given by array

5.33
% =ko (1 — ﬂx‘;x—gca) —wix1
% =k (1 — pmngca> T1 — Waka
% =koxo — w3x3. (5.33)

Actually there will most certainly be more than one receptor in each compartment.
Therefore one could argue that it would be more reasonable to assume many receptors
are controlling each feedback at the same time. But if many small receptors obey
the same chemical reactions and the receptors have different capacities, a;, then the
differential equation for CRH would look as

d Ja; 1§
don (1_3& xB)—wlml

dt ko x§ +c*

Denoting >; @i/, = p we end up with the same differential equations as in array 5.33.
Therefore nothing is lost by modeling all receptors as one big receptor.

5.5 Description of the obtained system of nonlinear differential
equations

The system of differential equations 5.33 with strictly positive ko, k1, k2, w1, we, ws and
i, p €]0,1] and « as an integer value will be in focus for the next section. Since it has
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taken some pages to end up with this system it may help summarizing the mechanisms
J;%) where
a negative feedback from cortisol (z3) inhibits the positive stimulation for increasing
cortisol. There is a similar negative feedback mechanism from cortisol in the equation
describing the derivative of ACTH (x2) where the positive term is ’proportional’ to
the CRH concentration. Again increasing concentration of cortisol inhibits the positive
stimulation. The positive stimulation on the derivative of cortisol is linear in ACTH
thus the more ACTH the more cortisol is produced. The change in all the hormone
concentrations have a loss depending linearly on the concentration itself. This descrip-
tion of our model match well the qualitative description of the HPA axis as shown in
figure 2.2.

of the system. The derivative of CRH (z1) has a positive term kg (1 —u

5.6 Existence and uniqueness of solutions, trapping region, existence
and number of fixed points

Our model without hippocampus(equation array 5.33) is given by three coupled, non
linear, autonomous differential equations. In this section we will show results about
existence and uniqueness of solutions, bounded region for the solutions, the existence
and number of fixed points.

Existence and uniqueness of solutions

To use the existence and uniqueness theorem (theorem 3.1) we should calculate all the
partial derivatives of the right hand sides of the equations 5.33 and investigate whether
these are continuous. Since we are only caring about non negative concentrations this
is the case and quite simple to show so we will omit the calculations. Therefore the
existence and uniqueness theorem apply and we are guaranteed that there is one and
only one solution for a given initial condition.

Guarantee of non negative concentrations

Let us start with some observations regarding existence of an invariant solution set
of array 5.33. By invariant solution set is meant that if a solution is in the set at
some time then it will stay in there for all future times. Since non negative hormone
concentrations as well as infinite concentrations are unphysiological it is a criterion that
reasonable initial conditions does not lead to solutions with negative concentrations or
solutions diverging to infinity. This can be avoided if solutions starting in a bounded
region in the non negative octant of R? stay in that region for all future time. Let us
start with an argument that solutions starting with non negative concentrations stay
non negative for all future time and deal with the boundedness afterwards. We are
going to use that Vrz > 0 then 1 — ,uw;% > 0 for p € [0,1]. Similarly 1 — ngm-gca
always positive for p € [0;1]. If 21 is zero there is only a positive term in the differential
equation governing x1 no matter the values of x5 and x3. Therefore for any nonnegative
initial value of 1, x1 never become negative. Similar reasoning applies for the two other
differential equations where the only negative term of the derivative vanishes when the
concentration considered is zero. Thus the octant in R3 with nonnegative entries is an
invariant solution set.

is
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Existence of trapping region(s)

Now we argue that there exists a bounded subset of the non negative octant of R? that is
an invariant solution set to the equations 5.33. This is called a trapping region meaning
that no solution can ’escape’ from this region if it is once in it. This is also needed when
two dimensional systems are considered and one wants to use the Poincaré Bendixon
theorem. It may be the hardest part in applying the theorem and sometimes requires
‘good ideas’ in how to construct boundaries where the flow does not point out of set.
Here it seems more straightforward fortunately. For dynamical systems in general there
could be a trapping region but this would not rule out interesting dynamics outside the
trapping region. However for our system there exists a trapping region and all solutions
enter the trapping region in finite time which means the trapping region contains the
interesting part of the system dynamics. We will start showing the existence of trapping
region(s) given by equation 5.34 and a 'minimal’ trapping region given by equation 5.35.

Since 0 < 1 — ;LI;ECQ < 1 then from the first equation of array 5.33 we have
dei/g; < ko — wyxzy. Therefore if z1 > ko/y, then d@1/g; < 0 and if x; = ko/y,, then
dz1/g, < 0. Thus a bound, M,,, for z; can be chosen as M,, = ko/,,, +€; VYe; > 0. This
is very convenient because then x; is bounded no matter what values x5 and x3 attains.
But the fact that x; is bounded can be used to make a bound on T and after that on
x3. Carrying out the argument in detail we see that 0 < 1 — pmgf_icu <1 and d22/g < 0
if ko > F1/,21 (and dz2/q, < 0 if 29 = k1/4,21). Since x; is bounded this means that xo
is also bounded. A bound for 3 is M,, = %1/, M,, + €2 Vea > 0. If x5 > ws/p,xo then
des/g < 0. Defining My, = *2/w, My, + €3 Yeg > 0 then dz3/g < 0 for x4 € [0; kok1/y, ]
and z3 = M, (and 23 <0 for x3 = ws/p, M, and x € [0; kok1/y, w,]).

This shows there exists a bounded set in which solutions will stay in if they are once
in there - a ’trapping region’.

W(€1, €2, 63) = [07 M-'L'l (61)] X [07 sz (62)] X [07 Ml’s (63)]

k kok k kokik kik k
{0;°+61}X[0; 01+1€1+€2:|X|:0§ ORI™2 L ™2 e e
w1 wi1wW2 w2 W1wWaW3 wo W3 ws

= Il(e) X 12(61,62) X 13(61,62,63) V61,€2,63 > 0. (534)

For any €; > 0,€e3 > 0,€3 > 0 we have shown that the flow is pointing into W (e, €2, €3)
on the boundaries where no concentration is zero. Now we were a bit strict demanding
that the derivative of a variable should be negative for sufficiently large values of the
variable. It is sufficient for the derivative to be zero. If this is used one can omit the €’s
from the estimation of boundaries. This means that W (0,0, 0) is also a trapping region
as well as e.g. W(e1,0,0) Ve; > 0. We denote this trapping region by V' = W (0,0,0)
thus

V= [Oa ko/wl] X [07 kok1/w1w2] X [Oa kokle/wlwzum] . (535)

Note that the argumentation for the trapping region is such that I;(e;) is a trapping
region for z(t) for all non negative values of z9 and x3. I1(€1) X Iz(€1, €2) is a trapping
region for x1(t) and z5(t) for all non negative values of x3.

It has now been shown that for initial conditions in the nonnegative octant the
system have solutions living in a bounded region with nonnegative hormone concentra-
tions. This is physiological correct and a problem that other models such as [1] have
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to fix with additional non-linearities. We have now shown existence of several trapping
regions of our system and now we focus on showing that all solutions enter the trapping
region in finite time.

5.7 x3(t) > 0 after finite time and for all future time.

In order to show that any non negative solution outside V enters V in finite time we
need that z3(t) > 0 after finite time and for all future time. This section is dedicated
to show x3(t) > 0 after finite time and for all future time.

Assume we have an arbitrary nonnegative initial condition x(¢g) = x¢ = (210, €20, Z30)-
We now want to construct a trapping region for the solution with initial condition
Xg. Here there are two cases that needs to be considered regarding x1y5. These are
X109 > *o/fuw, or 0 < 19 < ko/y,,. We take care of this by defining ¢; = max{z19—*0/w,, 0}.
Then the solution with initial condition xq is trapped in the region W (e, 0,0). In this
trapping region we can now make an estimation for the differential equations using
linear differential equations. Since I3(e7,0,0) is compact, 1 — pcagf’;g and 1 — ucagf’;g
attains minimum and maximum values by the extreme value theorem [17]. Since the
expressions are decreasing in x3 the minimum L, and Ly are found as the expression
evaluated at the right endpoint of I3(eq, 0,0).

c* + Mg
L 1 7M§3 0 (5.36)
= — > . .
2 pc"—i—M‘%

We construct a linear system of differential equations that will be used for a bound on
the solutions of the non linear system.

fll :leo — w1$/1

352/ ZLgk‘lJJ/l — ng’g

3?.3/ Zkgx/z — ’ngg . (537)
and x'(tg) = xo Using this to compare the original, non linear coupled system of differ-
ential equations restricted to W (ey,0,0) we obtain.

s/

T1" <2
zy < 2y
i3 < 3. (5.38)

The idea of comparing the non linear system with a linear system that can be solved is
contained in the following lemma

Lemma 5.1
Let f :R - R, g: R —
df () /g < d9(t) /gy then f(t) <

R and f,g € C! and f(ty) = g(to). If Vto < t < oo
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Proof
Since 4f(*)/q¢ and 49(t)/4; are continuous, they are integrable on a closed, bounded interval
[17]. Using the comparison theorem for integrals [17] we get

/t %dw < /t0 dgli(;)dm. (5.39)

0

Using the fundamental theorem of calculus [17] this equals
f@t) = f(to) < g(t) — g(to) - (5.40)
Since by assumption f(tg) = g(to) we have
ft)<g(t), vi=to. (5.41)

Then lemma 5.2 trivially

Lemma 5.2
If ' (to) = x(to) = 2" (to) and 1" < 21 < 2" for all t > to then 2'(t) < z(t) < 2”(t)
vVt > to.

Solving the linear system (array 5.37) we get

k
w1(t) =dire"" 4+ =Ly

w1
kok
xg(t)/ :dzle_wlt + d22€_w2t + 0™ LiLy
wi1Wo
/ —wit —wat —wst kOkle
l‘g(t) :dgle . +d32€ 2 +d33€ 3" 4 7L1L2. (542)
w1Wa2wWs

where the d;;’s are real constants that can be found from the initial conditions and the
eigenvectors of the homogeneous system of array 5.37.

Since %LlLQ > 0 and all terms involving exponentials are converging to 0 for
increasing ¢ then there exists a Ty < oo such that z5(¢) > 0 Vt > Ty (actually any
infinitesimal small time is sufficient since we only allow non negative initial conditions).

By bounding z3(t) using z4(¢) it is clear that z3(t) > 0 Vt > Tj.

All non negative initial conditions lead to solutions entering V' in finite time
for 1, p €]0;1].

The two lemmas 5.1 and 5.3 can be used to show that if a differential equation can
be bounded by another differential equation and the solution to the latter attains a
certain value in finite time then the same holds for the original differential equation.
This means that the lemmas are used to ’squeeze’ the solution of a differential equation
with a solution of another differential equation.

Lemma 5.3

Let f:R— R, g:R—Rand f,g € C* and f(ty) = g(to). Let ty <T' < a < oo and
Yt € [to,a] f(t) < g(t) and g(T" + to) = b and g(t) decreasing on [0;T']. Then there
exists T with the property that 0 < T < T’ such that f(T + ty) = b.
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Proof

Since f(t) < g(t) Vt € [to, a] then first consider f(T” +ty) = g(T" +to) = b. This means
we can choose T = T". Secondly we have to consider f(T" +tg) < g(T" +to) = b. Since
f(to) = g(to) > b and since f is continuous we have by the intermediate theorem [17]
that there exists 7" such that 0 < T < T" with f(T +¢p) = . O

The two lemmas are 'very intuitive understandable’ if figure 5.7 is considered.

2

— g == z1 g(1)=2
f ()= - £, f(1)=2
1.8F ht)=1 [l

16 b

1.4 B

121 b

> 1

0.8 q

0.6 B

0.4 q

0.2 B

0 L L
1 15 2 25
t
Figure 5.7: Illustration of lemma 5.1 and lemma 5.3. The derivative of f is smaller
than that of g. If the two functions are equal at some ¢y (here at (1,2)) and if g has
the value b = 1 at some later, finite time then there also exists a finite time such that

f has the value 1.

For u,p €]0;1] we will show that all solutions with non negative initial conditions
that are not contained in V' will enter V in finite time. Since we have shown V is a
trapping region any solution entering V stays in there. Assume an initial condition
x(tp) = x0 = (%10, T20,T30) is given. From the argument above we know that there
exists a finite time Ty such that z3(t) > 0 for ¢ > Ty. Therefore we consider x(¢) for
t > Tp.

The proof that any solution enters V' in finite time is now split in steps. First it is
shown that z1(t) enters I1(0) in finite time and z; is then trapped. Then we can show
that it takes finite time for zo to be trapped in I5(0,0) and then it can be shown that
x3 is trapped after finite time in I3(0,0,0).

o Proof that z1(Ty + T1) € [0; *0/w,] for some 0 < Ty + T < oo.
If z1(Tp) € [0;%0/w,] then for T3 = 0 the proof is finished. For z1(Tp) > *o/w,
consider the closed, bounded interval 1 € [ko/y,,x1(Tp)]. Since 3 > 0, u > 0
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«
T3

srtes < L. Therefore de1/q; < 0 for x1 € [Fo/y,; 21(To)] (see array 5.33).
This is sufficient to ensure that () enters the desired region in finite time, but
it takes a little more work to prove it.

Since d21/4; is a continuous function on the closed, bounded interval [Fo/y,,; 21(T0)]
then dz1/4; obtains a maximum by the extreme value theorem [17]. Denote the
maximum by M. Since 921/ < 0 for all 21 in the considered interval then M; < 0.
Now we have that Yz € [ko/y,; 21 (T0)] then dz1/q < My < 0. Now we define the
function y; by y1(To) = z1(Tp) and 41/ = M;. Solving the differential equation
we get y(t) = Myt + z1(To) — M1Ty. Now we can calculate when y; enters I7(0)
by solving y(T] + Tp) = *0/uw,

then 1 —p

ko/w, — 21(To)
M,

Thus in finite time y1(To + T7) € [0;%0/w,]. By lemma 5.1 and lemma 5.3 there
exist a finite time Ty such that z1(to + T1) € [0;%0/y,]. Since I;(0) is a trapping
region for x; for all non negative values of x5 and x3 then we can now proceed
looking at x5 considering x; trapped.

o Proof that x5 € [0;k0k1/y, 4,] in finite time.

For all non negative initial conditions of x5 we consider dzz/q; after the time
To+ Ty If 2o(To + Th) € [0;k0k1/y,0,] then we are done. Thus consider the
case that xo > kok1/y 0, x3(t) > 0, p €]0,1] s0 0 < 1 — p*5/a 4 < 1 s0
Vag € [koki/y wy;xa(Ty + Th)] then de2/gy < 0. We just repeat the argument
from the case with x; that dz2/4 thus has a maximum, Ms, on the closed interval
[kok1 /w1 ws; T2 (To+T1 )] by the extreme value theorem and My is strictly less than 0.
Defining ya(To +T1) = 22(To +711) and y2 = My we solve the differential equation
for Ya. yg(t) = M2t+132(T0+T1)7M2(T0+T1). Solving yQ(To+T1+T2/) = kokl/wlw2
for T} we get

T = >0. (5.43)

Ty = koks [y, — 22(To + T1)
My

This means that after the finite time Tp + Ty + Ty then ya(t) € [0; koF1/y, w,]. 22(t)
enters the set as least as fast as yo by lemma 5.1 and lemma 5.3. This meams there
exists 0 < T5 < TQI such that l‘g(TO + 717 + Tz) S [O;kﬂkl/wlwz} Vit > Ty + 11 + Ts.
Since @3 < 0 for xg = kok1/y, w, then xo(t) € [0;kok1/y w,[ for t > To+T1 + T2 + 9,
Vo > 0.

o Proof that xzg € [0;kokik2/y, wow,] after finite time. If x3(To + T4 + 1o +0) €
[0; kok1kz/y, wwows] then we are done. If x5(To + 11 + To + 6) > kokik2/y 1w, then
we have that dz3/4; < 0 for x5 € [Fokikz/y, wows; T3 (To+T1+T2+0)]. By the extreme
value theorem M3 < 0 is the minimum of 3 on [kok1k2/y wows; T3 (To+T1+T2+9)]
so we can once again make a differential equation in y3 with solutions enterering
[0; kokik2/y, wwows] 0 finite time. Since z3 decreases faster than ys it takes a finite
time for x3 to enter [0;kokik2/, y,u,]. The details are similar to the case with z
and xs.

>0. (5.44)

Now it has been shown that any solution enters V' in finite time for u, p €]0;1]. For
x1 ¢ I;(0) it may be that #2 > 0 and &3 > 0. This shows dist(z2,12(0,0)) may be
increasing for some time until z; € I;3(0). Thus even though all solutions outside V
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enter V in finite time this does not mean that any coordinate of a solution approach
the trapping region for all times.

Existence and number of fixed points

Now we investigate the existence and number of the fixed points of the system. There
exists one and only one steady state solution which we will now show from array 5.33.
The conditions for steady state is given by equations 5.45-5.47

]{50 l‘g
s = — |1 —p—25— 5.45
= (s ) (545
k k [e% [0}
Lo, = —0F1L (1 —u T3ss ) (1 _px.?)ss) (5.46)
w1 We T +C¢ T + ¢
koklkg .Z‘g .Z‘g‘
= — 1= p—255 1—p—22 . 5.47
Taas = o Poa oo (5.47)

The right hand side of equation 5.47 has the value % > 0 for z3,s = 0 and is
decreasing as a function of x3ss. The left hand side has the value 0 for z3ss = 0 and is
increasing linearly as a function of x3ss. This guarantees the existence of a unique z3gs-
Then there is exactly one fixed point since equation 5.45 and equation 5.46 determines
T1ss and Togs from 3. Since x14s, Toss, L35 are non negative we are guaranteed that
the fixed point is contained in V' since all solutions enter V in finite time.

Note that we have used no assumptions regarding the numerical values of the in-
cluded parameters. Only the sign of the parameters have been used for the argument.
This means a unique fixed point exists for any numerical values of the parameters. As
parameters may be varied no additional fixed points is created. This means there can
be no saddle node bifurcation for this system. In terms of bifurcations of fixed points
the only thing left to happen is a change of the stability of the fixed point in terms of
the parameters. This will be in focus for the next sections.
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6 Analytic analysis of the system without
hippocampus

In this chapter we will simplify the system by scaling the variables and thereby re-
ducing the number of parameters from nine to six. We will then perform an analytic
investigation of this system. The investigation treat local stability of the fixed point.

6.1 Scaling of the system of differential equations

Scaling of differential equations may be convenient in order to reduce the number of
parameters by grouping the original parameters. Here we will allow the time and the
three time dependent variables to be scaled with a scaling constant that we will specify
later in order to get a system with fewer parameters. Let dy, d1, d2, d3 be constants that
we will later specify and define 0, X1, X5, X3 by the equations

0= dot
= diX1
To =  doXso (6.1)
r3 = d3X3.

This is substituted into array 5.33 and the chain rule is used. Using the first equation
of array 5.33 as example we first look at the left side

dil?l o dX1 - dX1 do - dX1
@ g T Mg (6:2)

Substituting on the right side of the first equation of array 5.33 gives

da L, d3Xg
dt

— =k ——2_ | —wid1 X 6.3

0 Hca—&-dg“Xg) wiai Al ( )
Now it is just a matter of setting the two expressions 6.2, 6.3 equal to each other and
isolate 4X1/49

dX, ko dz X3 w1
- 1- YUy, 6.4
0~ dod; ( Feabdgxg ) o ! (6-4)

60
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This approach is used on the two other differential equations as well.
W an (1-rata) T @9
dX kod
d—; - ﬁxz _ Z—Z’Xg.

Now this may not seem simpler than the original system 5.33 but remember we still
have the option of choosing dy, d;,ds and d3 in an appropriate manner. It seems to be
a good idea to choose d3 = ¢ in order to simplify the fractions with x3 involved. We
can use the last three degrees of freedom to make the first coeflicient in each equation

equal unity.

1

kid
1= fd

Solving for dy, d;,ds we get

~ dody

 dods
 kady
 dods

All the scalings constants are thus positive. What about the dimensions of dgy, d;,ds?.
From array 5.33 we see that ¢ has dimension of concentration, kg has dimension con-
centration divided by time and ks and k3 have dimension inverse time. Considering
array 6.7 this means dy has dimension of inverse time, d,ds,ds have dimension of
concentration. Recalling the defining equations for the scaled variables 6.1 we get

0= (7’“0’21’“2)1/3 t
cho? 3
xr1 = (kle) Xl
s
2y = (%) X, (6.8)
T3 = CX3 .

Since the concentrations are all non negative and the scaling factors are positive we

have that X, X5, X3 are non negative.

The time is scaled by a positive constant thus
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an increase in time corresponds to an increase in 6. Note that X, X5, X3 and 6 are all
dimensionless. Now we can write array 6.5 in a way with fewer parameters by defining
positive parameters ws, ws, w3 by

~ w1
w; = —
1 do
- w2
= — 6.9
Wy = (6.9)
- w3
w3z = — .
3 do

This means w, ws and w3 are dimensionless. Putting all the substitutions into array
6.5 we obtain the dimensionless system

dX, Xg i

SR 8 X

do Fiyxg —

e Xg N

22 _ (1= X, — X 6.10
o < p1+Xg) 1T WA (6.10)
dX i

T;:Xg—ngg.

Comparing to 5.33 we see that this version of the system has 6 parameters which is 3
less than the original system. We are now interested in finding the stability of the fixed
point of this system for different parameter values. To simplify notation we introduce
Y as
_ X5
T+ Xg
We have X3 non negative and thus Y € [0,1]. Now the steady state condition is that

(6.11)

all the left hand sides in 6.10 equal zero leading to (using the notation Y4 = %)

3ss

1
Xiss = — (1 - ,LLYSb)

w1
1 1
Xogs = — (1 — pYss) Xiss = —— (1 — pYss) (1 — pYs 6.12
2 w2(p)1 wle(p)(u) (6.12)
1 1
Xiss = —Xogs = === (1 — p¥iss) (1 — u¥ss)
w3 W1WaW3

This is equivalent to array 5.47 thus we are sure that exactly one fixed point exists.
Now we make the Jacobian of 6.10 where we use that 4Y/4x, = @X5 'J14x0)> =
QY2 X5t (for X3 #0)

—n 0 —paY2x ;!
J=| 1-pY —ip —apX,V2Xx;7! (6.13)
0 1 —1ii3

In order to determine the stability of the fixed point we need to find the eigenvalues
of the Jacobian, matrix 6.13, evaluated at the fixed point given by the equations 6.12.
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The algebra is easier if we wait with actually inserting the steady state values but just
denote with ss that the variables are evaluated at the steady state.

—det(Jes — M) = X3 + 1 \? 4+ a) + asz, (6.14)
where

041:1151+U72+U73

a2 = paX1ss Y2 X327 4 o + iz + wotls (6.15)
a3 = MQYESX?)_S?_l - ﬂpaytsiXéz_l + OéplﬁlessYiX:;;;_l + Wi waws3.

Since the sign matrix of J is the same as a model previously described in section 4.2
then aq, a2 and ag must be strictly positive to guarantee stabillity. This can also be
seen by inspection since the only negative term entering is for a3. Rewriting ag

as = paY2 X301 = pYis) + apis X146 Y2 X507 + 61103, (6.16)

3ss 3ss

Since 0 <Y;s <1land 0 < p <1 then1— pYss; > 0. This means ag > 0. Therefore the
fixed point is asymptotically stable if a;as — ag > 0 and unstable if ayas — az < 0 by
theorem 3.5.

2
S5

(g + 1W3) + W1 tiis? + Wpiz? + 211 Wt

o o o L. auY?

+ o 21l + W92 + Wy 2aiy + 1y 2 + %(—1 + pYss) . (6.17)
3ss

The last term is negative since pYss < 1 and it is the only negative term. We now focus
on this term and denote it by H

S (1 4 pYiy). (6.18)

Now it is time to use the condition given by the steady state 6.12 thus replacing
X3ss by an expression in Y, leading to

Y2
H = QP g - (—1+pY;S)<:>
(wl'u%gu?g (1 - pY‘?S) (1 - ,UYGS))
0110620 )1 Y2
Ho - Lol (6.19)

(1 - sts)a (1 - M)/:ss)a+l

The question is how small H can get? We have that x4 and p can vary in [0,1]. But since
Yss € [0,1] it can be seen directly from 6.19 that u = p = 1 makes the denominator
closest to zero in terms of p and p and at the same time maximizing the numerator
in terms of x4 and p. Thus the 'worst case scenario’ is when p and p equals one. This
scenario will therefore be considered in section 6.2.
o o () ey, (0a0s)" eV (6.20)
(1= pYee)™ (1= p¥e,)* ™ (1-Y,,)" "
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Note that if the negative feedback on CRH from cortisol is disregarded this corre-
sponds to = 0. But then H = 0 so the stability analysis simplifies since ajas — a3 is
always positive then. This means the fixed point is stable for all non negative values of
a.

6.2 The system with py=1,p=1

As mentioned in the previous section the fixed point is most likely to be unstable for
= p=1. Therefore we will in this section investigate this scenario. We investigate if
realistic values of o cause an unstable fixed point i.e. ayas — az > 0.

Inserting p = p =1 in equation 6.17

aXiss Y ~ N .
Q1o — Qg ZW(’LUQ + w3) + wiw3” + wawsz” + 2wy Wt
3ss
~ 2~ So=2 =2 s S 2 aYy
+ wo w3 + wiwe” + w1 wo + Wy ’LU3+W(71+YQQ) (621)
3ss
Since the first term on the right side is non negative !
Qg — ag >iis? + Watlis® + 211 iatis
<2 = P R I S 2 = aYy
+ w2 w3 + wiwe” + w1 we + w1 W3 + o1 (=14 Yss). (623)
X3ss
Introduce the variable Z,
1
1 1—2z\"
Z=——Xg=|—— . 6.24
1+Xg K < Z ) (6:24)

Since X3 € [0,00) then Z € (0,1]. Since Y = X5'/11 xo then Z = 1—Y. Inserting for Z
in terms of Y, and X34, in equation 6.23.

Qg — a3 > W3y + Wzt + 210zt + Watha? 4+ wWo by + Wz
T oty — a0 Zy 2 (1 — Zyg) (6.25)

Consider again the steady state condition array 6.12 with p = p = 1.

LIt is sufficient for our argument to throw away the first term in inequality 6.21. However note that
2
if the first and last term is combined we get %(Xlss (W2 4+ w3) — 14 Yss). If the expression in the
3ss
brackets is non negative then the fixed point is stable. Using X155 = /@, (1 — Yss) the fixed point is
stable if : y
M(l _Yss) - 1+Yss Z 0
w1
Since 1 — Y > 0 then if

Wg + W3 > W1, (6.22)

the fixed point is stable for all non negative values of «.
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1
X ss — < 1-— Y;s
s = & ( )
X fi(lfY)Xf ! (1 —Yis)? (6.26)
2ss — u72 ss 1 — 11711172 55 .
1 1 )
XSss = TXQ = =< < ~ (1 —Yss) .
3 w1 w2ws
The parameter « is defined
1
wW1WaW3

Now the steady state condition will be used. Expressing the last equation in array
6.26 in terms of Z using equation 6.24 we have

1
fa
1—Zgs 9
_— =~ZZ, . 6.28
(F52=) =2 (6.25)
This is equivalent to

1—Zgs

gl
Inserting equation 6.29 in equation 6.25

= (1= Zyy)' ™ Vo 2% e (6.29)

Qrag — a3 > Wz by + Way + 21zt + Wzt + ey + Wzt
o 1-Z
+ gty 2 — a—2 (6.30)
Y

Since0< Z<1& —-1<—-1+2Z<0wehave — (1 —Zs) =—14 Zss > —1 thus
we can write
g — Qg > ”(17327172 + '(1732’(171 + 21153’[[72151 —+ ’117371722 + u722u71 + ’11.7371712
1
+ gty 2 — a— . (6.31)
Y

Using the definition of v from equation 6.27 this is equivalent to
a1 Qg — Qg > 1/5321172 + u732u71 + 2 wzwowq + 117311722 + 117221151 + 117311712
+ Wt 2 — i iz . (6.32)
The right hand side is symmetric in w;,ws and ws. We want to find out if there are
some « for which there are only stable solutions meaning the right hand side is positive.
Due to symmetry of the right side of equation 6.32 we can assume w; > Wy > ws. Then
01 and §, are defined through the equations
w1 = d103 (6.33)
Wy = dotl3 , (6.34)
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where §; > d > 1. Inserting in equation 6.32 and a few rearrangements give
aron — ag > W3 (62 4 01 + 65 + 67 + 0261 (61 + 62 — (a — 2))) . (6.35)
Thus we define
F (61,09) = 62 + 61 + 05 + 67 + 6261 (61 + 62 — (v — 2)) . (6.36)

For what values of o is F > 0?7 Obviously if « < 2 F is always positive since it
is then a sum of positive and non negative terms. For large §; or Jo it is true that
01 + 92 — (a — 2) > 0. Thus we restrict our attention to (d1,02) € [1,a — 2] x [1,a — 2].
A minimum exists by the extreme value theorem [17] and should be found at a critical
point or boundary point. First we calculate the value at the boundary point (1,1)

F(1,1) =8 —a < 0 if and only if o > 8. (6.37)

So we know that for values of a larger than 8, the system may be unstable. But what
about values between 2 and 8?7 Calculating F at one boundary line

F(61,1) =267 + (4 —a)d +2. (6.38)
This gives a second order polynomial in §;. Calculating the discriminant
d=(@4—-a)’-4-2.2=a(a—28), (6.39)

so for a € (0,8),d < 0 meaning F'(d1,1) > 0. Since F' is symmetric in d; and do the
same holds on the boundary line F'(1,d2). On the two remaining boundary lines F is
always positive.

The critical points are found

F

27:1+261+26162+6§—(a—2)6220 (6.40)
1

OF ,
2

Multiplying equation 6.40 by ¢; and multiplying equation 6.41 by d> and subtracting
61— 02 +2 (67 — 63) 4+ 8162 (61 — 62) = 0. (6.42)

If §; > §2 equation 6.42 is obviously never satisfied. If 6; = do then equation 6.42
always holds. This is now used in equation 6.40

oF
— =30 —(a—4)5, +1=0. (6.43)
001

Calculating the discriminant
dy=(a—4)>—-4.3=0>—8a+4. (6.44)

This gives a new second order polynomial with a as variable with solutions trivially
found as
a=4-2V3 or a =4+2V3. (6.45)
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4 —24/3 < 2 then the first solution is not interesting since we already found the system
to be stable for values of & < 2. 8 > 4+ 2v/3 > 7. Thus amn = 4 + 2v/3 in order
to have a critical point (we have not argued that the critical point necessarily is where
F obtains its minimum value). Using integer values for o we have now shown for
a < 8 F is positive. If we should consider all positive, real values for «, we would
still require o > 7 in order to have a chance that F' could be negative. This means
that for a € {1,...,7} the unique fixed point of array 6.10 is stable. This means that
the system has only stable solutions of the linearized system close to the unique steady
state solution.

Therefore we can conclude that the system 5.33 has exactly one fixed point and it
is stable for u, p € [0,1], € [1,7]. For larger values of « the fixed point could be stable
as well as unstable?.

Summary of chapter 6

The results of this chapter can be summarized as

e The system without hippocampus is scaled. The scaled system have six parame-
ters which is three less than the original system.

o If there is no feedback from cortisol of the production of CRH(u=0) the unique
fixed point will be locally stable for all values of a.

o The fixed point is most likely to be locally unstable if 4 = p = 1. In this 'worst
case scenario’ we have showed that the unique fixed point is guaranteed to be
locally stable for a € {1,...,7}. For values of @ > 7 the unique fixed point can be
stable as well as unstable.

2 A more general proof of this result can be seen in [28]



7 Stability of a fixed point for a system
with positive feedback from cortisol on CRH

Including hippocampal mechanisms in the differential equation governing CRH may
lead to positive feedback from cortisol on CRH at a fixed point. In this section we will
analyze the stability of a fixed point if the cortisol exerts a positive feedback on CRH. In
case of multiple feedbacks from cortisol on CRH this means that at the steady state point
the positive feedback dominates the negative feedback. Recall that a positive feedback
from cortisol to CRH means 9/1/p,, > 0 and a negative feedback means 9/1/g,, < 0.
Thus a dominating positive feedback at a fixed point means that 9f1/gy, > 0. The
Jacobian at the fixed point is on the form

—ai 0 a3
J = a21 —ag2 —a23 . (71)
0 agz  —ass

Here all a;;’s are positive and the positive feedback from cortisol to CRH means that
a13 > 0. Forming the characteristic polynomial we have

PO =AM +ai 2 +ax)+as. (7.2)
The coefficients equal
Q1 =aiy + a2 + as3 (7.3)
Q2 =a11a22 + (11033 + A22033 + 32023 7.4
Q3 =011022033 + 411023032 — 13021032 - -5)

We see that a3 > 0, a2 > 0 but we do not know in general if ag is positive or negative.
In order to use theorem 3.5 we need to calculate the sign of ajas — ag as well.

ajog — ag = (a2 + asz) ag + afl(am + as3) + a1zaz1a32. (7.6)

Therefore avyas — ag > 0. Thus for all the systems on the form 7.1 the stability can
be determined solely by looking at the sign of ag. Instability is thus guaranteed for
ag < 0 and stability is guaranteed for ag > 0. If a3 < 0 then P(0) < 0 and since the
leading coefficient of P()) is positive, then P()\) is positive for sufficiently large A, say
for A > M. Now P(\) is continuous and P(0) < 0 and P(M) > 0 so by the intermediate
value theorem [17] there exists X’ €]0, M| such that P(\") = 0. This means that in the
case of instability P()\) has a positive, real root. What about the other roots? Could it
be that the system also has complex roots with non zero imaginary part and positive
real part such that oscillations are present of solutions close to the fixed point? The
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answer is no which we will now show. The situation is vy > 0, a9 > 0 and a3 < 0 and
there exists a positive real root, A; of P()\). Factorizing P we get

P(Y) = (A= A)(A = M) (A= Ag) &
P =2 = (A1 + X+ A) A2+ (Ada + MAs +Ads) A= Mdads.  (7.7)

What can be said about Ay and A3? Expanding P(\) and comparing to equation 7.2
we see that
*(/\1+)\2+>\3)i011<:>>\2+/\3:70117>\1<0. (7.8)

Considering the case Ay complex with non zero imaginary part then also the complex
conjugate is root. Since Ap is real then A3 must be the complex conjugate of A\o. Then
A2+ A3 = 2Re(A\2) = 2Re(A3). By inequality 7.8 then if complex eigenvalues exist with
non zero imaginary part then the real part must be negative. If Ay and A3 are real then
at least one of them is negative by inequality 7.8.

Summary of a positive feedback from cortisol on CRH at the fixed point.

e If g > 0 then the fixed point is stable.

e If a3 < 0 then at least 1 eigenvalues of the Jacobian at the steady state is real and
positive. If complex roots with non zero imaginary parts exists then they have
negative real part.

e No Hopf bifurcation occurs for a3 going from negative to positive values.

Note that the case with no feedback from cortisol on CRH corresponds to a3 = 0.

This will always give a stable system since then oy > 0, a3 > 0, a1 — ag > 0.



8 A model including the mechanisms from
hippocampus

Now we have shown a range of models that do not account for the dynamics of the HPA

axis. @ L+
Hippocampus It is therefore time to include the mechanisms of hippocam-
e pus. Here cortisol binding to GR in hippocampus cause a
T positive stimulation on the production of CRH in hypotha-
Hypothalamus lamus while cortisol binding to MR in hippocampus cause
- GR- a inhibition of the production of CRH in hypothalamus|2].
CRH, [x] Still the direct negative feedback from cortisol on CRH in
I hypothalamus is also present. The model is shown in fig-
w, | Fiuitary gland | ure 8.1. Since there is no known hormone in hippocampus
T aom [xa] e we will not include an extra variable. We keep modeling
& the feedback as a factor influencing the positive input on
Advenal gland the compartment where the feedback occurs. This means
s - that all the three feedbacks modeled at CRH from cortisol
Cortisol, [x] should be introduced as a factor acting on ky. This means

that we get koF'(x3), where F(z3) is a function taking care
of the three feedbacks. We add the three feedbacks similar

Figure 8.1: Compartment to the approach of e.g. Conrad et al.[6]. We choose F'(z3)

diagram with hippocam- as
pus included
B o
x§ x T
F(zz)=1-— 3 4 S - 8.1
g Y g Y 5

Here the negative feedback acting directly on hypothalamus through GR is still on
the form —p—3—, where u € [0;1]. —p is the limit corresponding to the largest

xg.‘Jrci" ?
negative feedback. c{ is the affinity for cortisol and GR in hypothalamus, and « is

an integer. Similar interpretations apply for the two other feedbacks. ¢

B8
= is the
T3 +Cy

positive feedback acting through hippocampal GR. — is the negative feedback

Z3
zq+cq
acting through hippocampal MR. All parameters entering F' are positive but will later
be specified such that F' > 0. Note that ¢ = 1) = 0 corresponds to the model without
hippocampal mechanisms. Implementing F(z3) into the set of differential equations

gives
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dz g z2 zd
1=k‘o<1—u 3 +¢53 — =2 >—w19€1

dt g + ¢ z3+c§ z3 +cl

dzo a:g

— =k (1—p——~ | 1 — wox

dt 1( pa:g—kci ! 2

dng

—— =koxo — w3x3. 8.2
5 ks — wos (52)

From section 5.2 it is clear that «, 3, 7, §, ¢1, co and c3 are determined from the
chemical stoichiometric equations and the fractions u, ¢, 1 and p depend on the size of
the receptors as well.

When we define the function in this way we satisfy the demand that the process is
irreversible. Furthermore the overall response to the feedback mechanisms now depend
on the chemical stoichiometric equations and on the size of the receptors, which sounds
reasonable. But we accept that a function that satisfy the demand of being irreversible
can be constructed differently seen from a mathematical point of view.

For example one could introduce an unknown substance concentration xg in hip-
pocampus. Modeling the system in analogy with the previous model one would get

dzo ) zq

— =koo (1+¢ - — WoZo
(0%
3

dxq T
e (1= 3
dt 0 ( Prs e

dx x5

22 k(1= —

dt ! < pxg + cfl) o1
dzs
dt

:k}gl‘g — w3xs3 . (83)

Assuming a quasi steady state in xy one would get

dl’l kooko .’ﬁg ZL’? QC;/
dt wo ng + ¢ B ¢xﬂ + cg wx}f +c3 i

3
d §
i =k (1 —p at ) T1 — Wak2

dt acg + ci
dx
d7t3 Zkz.rg — wW3xT3 . (84)

Neglecting higher order terms of the Hill functions the system in array 8.4 corresponds
to the system in array 8.2. This means that for small values of cortisol these are ap-
proximately identical. For simplicity we will model the mechanisms from hippocampus
as in array 8.2.
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8.1 Simplifications using physiological reasoning

The number of independent parameters for the equations in array 8.2 will now be
reduced using physiological reasoning. First we assume that the chemical stoichiometric
equations are the same for the identical GR in hippocampus, hypothalamus and in the
adrenal gland. This assumption gives in accordance with equation 5.12 that, ¢; = ¢o =
cs and o = 8 = §. We define ¢ = ¢;. Furthermore it has been suggested that cortisol
have ten times higher affinity for MR than for GR throughout the entire HPA-axis[29],
meaning that ¢* = lch . This is found in rats so we will allow this number to vary thus
keeping c3 as a parameter for now. The model including hippocampal mechanisms can
be written

dxy z§ x§ z3

(1= _ _

a < 'u:cngca +¢x§‘+ca w:cngcg i

dzo x§

@2 (1= —

i 1 ( ng +CO‘> T1 — W22

d

% :kgfﬂz — wsx3 . (85)

Now we have not been very specific about all the domains for the parameters. If we
let € [0; 1], we see that for ¢ = 1 = 0 the model is the one already investigated in detail
in the previous sections and the hippocampus model is then indeed a generalization of
the previous considered model. However we must be careful that 1— ,um;% +¢$;% —

1&% > 0 in order to make sure that an initial condition with positive concentrations
cannot result in solutions with negative concentrations. A way to make sure this is
the case could be to make sure that the negative feedbacks does not add up to more
than 1. This could be done by having p € [0;1] and ¢ € [0;1 — u]. Now we have a
model where we require kg, k1, k2, w1, ws, w3, ¢, c3 positive, ¢ non negative and « and
0 are integers. Mathematically the positive feedback in hippocampus and the negative
feedback in hypothalamus can be combined since the two expressions have the same
functional form but with different coefficient. Defining ¢ as € = ¢ — u. Since p € [0;1]
and ¢ > 0 then £ > —1. The set of equations can then be written are

drzq z§ xg

it S 1 — _

e ( +§x§+ca wxg—kcg i

dza g

— =k (1l—p———— -

p 1 ( ng n Ca> Tl — W22

dl‘g

7dt :kgxz — Ww3x3 . (86)

8.2 Scaling of the differential equations

We use the same scaling as in section 6.1. Defining ¢3 = ¢3/4, the equations in array 8.6
becomes
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dx Xg X7
1:(1+§ 3__ 2 )—wlxl

df 1+ X8 Y+ Xg

dX, X N

—==(1- X, — W X .
a9 < p1+X§‘) LA ®.7)
dX -

T;:ng’w:;Xg.

Thus the dynamics of the autonomous system is governed by nine parameters. The
cost of including hippocampal feedbacks is three extra parameters.

8.3 Existence and uniqueness of solutions, non negative
concentrations, confining set and existence of fixed points

A lot of the same reasoning applies for the system with as well as without hippocampal
mechanisms. The system of coupled differential equations 8.7 obeys the criteria posed
for existence and uniqueness of solutions (theorem 3.1) for non negative variables.

In order to make sure negative concentrations can not occur for non negative ini-
tial conditions we require that 1 4+ & — 1 > 0. This is fulfilled for the previous stated
restrictions on ¢ and ¢ that for £ € [—1;0] then ¥ € [0;1 + £] and for £ > 0 then
¥ € [0;1]. Then all derivatives have only non negative terms when the respective con-
centration equal zero. Thereby non negative initial conditions cannot lead to solutions
with negative concentrations.

Even though there is now a positive feedback on CRH this is still included through
a saturation mechanism. This means we can still find an upper bound for z; where
dz1/q, > 0. If we have a trapping region for x; we also have one for o and x3 as in the
case without hippocampus. We look at two cases £ € [—1;0] and £ > 0 to determine a
trapping region.

o £€[-1;0].

£e[-1;,0] = (1 +e —wégﬁxg) < 1. For X; > 1, then dX1/4 < 0.
Having Xo > 5,4, and X € [0;1/5,] means dX2/5 < 0. For X3 > /5,450, and
Xo € [0;Yw5,45,) and X7 € [0;/5,] then dXs/q, < 0. Initial conditions with values
in (X1, Xo, X3) € [0; Yw5,] X [0; Vesyain] X [05 gy 60055) Will lead to solutions staying
in this set for all future time.

e £>0.

€>0= (1+63% ~arig) < 1+€ Then for X1 > (46, then
dX1/4; < 0. Using similar reasoning as for £ € [0;1] we get the trapping region
(X17X27X3> € [Oa (1+E)/u71] X [07 (H_g)/wﬂﬂz] X [07 (1+£)/U71U72U73]'

Existence of fixed points

Setting all the left hand sides of the equations 8.7 equal to zero give the following
criteria for a fixed point

X X
_|_§ 3ss _L/)~

1 X3,
Xggs = —— (1 3ss 1—p—23ss )| 8.8
T s < 1+ X5, ~&+ X§55> ( T+ X:?ss> (88)
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We form the functions

L(X3) = X3 (8.9)
and
1 X X7 X
X3)=—— (1 3 _ 3 1-— 3 . 1
R(Xs) w1w2w3< Xy w537+X;)< p1+X§) (8.10)

If a value of X3 obeys L(X3) = R(X3) then this value of X3 is a fixed point value
and denoted X3ss. R(X3) is non negative and equals 1/, .5 for X3 = 0. Since each
of the terms of R(X3) are bounded then the right hand side is bounded. L(X3) is
obviously zero for X3 = 0 and has no bound for increasing X3. By the intermediate
value theorem [17] there now exists at least one X% such that the L(X%) = R(X}). This
means there exists at least one steady state solution of the system of equations 8.7.

Number of fixed points

How can we know how many steady state solutions there are? One way is for a given
set of parameters to plot L(X3) and R(X3) for X3 in its trapping region. The number
of intersections of the two graphs corresponds to the number of fixed points. For some
realizations of this approach it seems that L(X3) grows faster than R(X3). This means
we can form a criteria for the existence of a unique fixed point. If L(X3) always has
a larger slope than R(X3) then for values of X3 larger than a steady state value, then
L(X3) will always be greater than R(X3) which means there can only be one steady
state value. Thus dR(Xs)/qx, < 1 for X3 in its confining region is a sufficient criteria for
a unique existence of a fixed point.

dR 1 xot X1 X
= Sa : 5 — VY : p) <1 P . oz)
dXs wiwews (1+X9) (67 + XJ) 1+ X3

X¢ X7 xo-t
+ (14 3 _gp—3 ) —pa—3 8.11
( 51+X§‘ wc3”+X; pa(1+X;;)2 (8.11)

A rough estimate on 8.11 can give sufficient criteria for a unique steady state solution.

dR 1 X5yt 1Xy! X§
<—— (ea—"8 B8 <1p 3 a) (8.12)
dX3 T wiwas 1+ Xg) (37 + XJ) 1+ X3
If the expression in the first set of brackets are non positive then dR/gx, < 0 < 1. If
the expression in the first set of brackets is positive (this require & > 0) then since

0<1—prz <1

dR 1 Xg! Xyt
<——— o~y (8.13)
dX3 = wiwaws 1+ Xg) (7 + X3)

Considering the expression in the brackets (we already considered X3 = 0 so now
X3>O) with £ > 0

a—1 -1 a—1
NN C N
2 —

Curxs? e ex? S aexe (814
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This leads to a bound for j—)i solely expressed by parameters for £ > 0.

dR Ea
S b 8.15
dX3 u71u72u?3 ( )

Therefore if
!
Lo oy, (8.16)
wW1Wa2wWs
for ¢ > 0 a unique fixed point is guaranteed. If £ € [—1;0] then by inequality 8.12
j—)i < 0 so ¢ < 0 guarantees a unique fixed point. This case is equivalent to the system
without hippocampus since R(X3) is then a decreasing function and L(X3) is increasing.

This means there can be no more than one fixed point.

8.4 Stability of fixed point(s)

To find the stability of a fixed point of the system of differential equations 8.7 we need
the Jacobian evaluated at the fixed point. We define a3 as

a—1 Y vy—1
XBss _ C3 X3ss

—OBss gy B03ss (8.17)
1+ Xg,)° (e} + X3.,)°

a3 = afl/ax3|ss = ga

We know from the previous analysis that the sign of ai3 is crucial for the type of
instability that may occur as well as whether we should look at the sign of ag or the
sign of a; e — a3 to determine the stability. The Jacobian at steady state of the system

8.7 can be written (recall Y = %)
—w1 0 ais
J=| 1-pYy —w2 —apXiX52 V2 (8.18)
0 1 —3
We form the characteristic polynomial as
P =X+ A+ an) + a3 (8.19)

where

(65} :1151 +U72 +U73

~ o~ ~ o~ ~ o~ —a—1y,2
g =W We + W1 W3 + Woz + paXissXayy Y

a3 = a3 + apiiy X16s X320 Y2 — a3 (1 — pYas) . (8.20)

3ss

Here —aq3 (1 — pYss) is the only term entering oy, as and ag that may be negative.
Leaning on the knowledge from the general case we split the analysis in the cases
a1z >0, a3 < 0 and a3 = 0.
e If a;3 > 0.
— If ag > 0 then the fixed point is stable
— If ag < 0 then the fixed point is unstable and there exists a positive, real
eigenvalue of the Jacobian at the fixed point. If the remaining two eigenvalues
are complex with non zero imaginary part then their real part is negative.
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e If a13 <0.

— If ayas — a3 > 0 then the system is stable.

— If ;g — ag < 0 then the system is unstable with a set of complex conjugate
eigenvalues with positive real part and non vanishing imaginary part and the
last eigenvalue is real and negative.

ooy — ag =(wa + W3) (WiWs + W1 W3 + Watls
+ paX15 X507 Y62 + w1 ? (o + 1i3)
Xll
1—p——3ss )| 8.21
v (1) (s.21)

3ss
Here the last term is the only negative term.

We can make a lower bound for a; g — 3. If this turns out to be positive
then no Hopf bifurcation is possible. Since we are in the situation ai3 < 0
we can make the following estimate

a0 — ag > (o + ws3) (Wi + Wiz + Watls)
+ a1 ? (wz + ws) + a13 - (8.22)

Considering a13 from equation 8.17 with the restriction a;3 < 0 we can make
an estimate dependent on the sign of &.

a1z = =y = —fe, for £>0, (8.23)

and
a13 > o — Py > —a — Ve, for £<0, (8.24)

Using this in the estimation of ayas — a3 we get
oy — ag > (W + Ws) (Wi Wy + Wiz + wWats3)

+ 1 ? (W +1i3) — Yfey for €>0. (8.25)

a1 — ag > (W + Ws) (Wiwe + Wiz + wWatl3)
+ 1012 (g + 13) — YVfey + € for € <0. (8.26)

In order to have ajas — a3 < 0 we have the necessary condition (using
inequalities 8.25 and 8.26). For £ > 0

Ves > VV/ey > (W2 + W3) (W1 + W1z + Watlz) + i (s + w3) . (8.27)
And for £ < 0

Vs + 0 > ey — Ea0 > (1 + 1033) (W1l + W1t 4 Watls) + Wy * (Wy + 103) .

(8.28)
Thus when a numerical estimate for w,ws and w3 are found inequalities
8.27 and 8.28 give a lower bound on 7 or v + «. It is a necessary condition
for a Hopf bifurcation to occur that ~ respectively v 4 « is larger than this
lower bound.

o If a3 = 0.

The fixed point is stable.
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9 Considerations regarding general
systems with bounded feedback functions

Now we have considered a model of the HPA axis including as well as excluding hip-
pocampal mechanisms. Quite a lot of similar arguments were used to analyze the two
models. This gives inspiration to impose some criteria on a very general system of
differential equations governing the HPA axis. Only imposing some rather mild condi-
tions on the general feedback functions from cortisol on ACTH and CRH we can state
some general results. After a scaling of the concentrations and time the general system
of differential equations (excluding circadian input on the derivative on CRH) can be
written in dimensionless form

dX,

— =F(X3) —u X

dt 1( 3) wy1Aq

dX

d7t2 =F5(X3) X1 — we Xo

dXs3

— =Xy —w3X3. 9.1
dt 2 — W3A3 ( )

with constants wy,we, w3 > 0, F1, Fy : Ry U {0} — Ry U {0}, F1,F, € CL, VX3 €
R4 U {0}, sup(F1(X3)) < My, sup(F2(X3)) < Mo, F1(0) > 0, F5(0) > 0. This means
Fy and F5 are bounded functions mapping non negative real numbers into non negative
real numbers. For the HPA axis F; and Fy are general feedbacks functions and the
posed criteria for these functions is fulfilled for the feedback functions considered in
this project. The criteria that F} and F5 are bounded can be justified by saturation of
receptors. When no cortisol is present then the feedbacks must not close the stimulation
of hormone production. This justifies F;(0) > 0 and F5(0) > 0. Note that our models
with as well as without hippocampus satisfies the criteria posed for this general model.
This section shows that many results found for our two models are characteristic for all
models on the form 9.1. Also a criteria for a globally stable fixed point is found which
has not been mentioned for the previous models.

Existence and uniqueness of solutions

Since F1(X3), F2(X3) € C! the system given in array 9.1 fulfills the criteria for the
existence an uniqueness (theorem 3.1) for non negative values of X7, Xo, X3 so we are
guaranteed that no solution curves cross.

All non negative initial values lead to non negative solutions

For i € {1,2, 3} there is only one negative term in the expression for X; and this negative
term has X; as a factor. Therefore X; > 0 for X; = 0 and the other two hormones are
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non negative. This ensures that non negative initial conditions lead to solutions that
are non negative for all future time.

Existence of a fixed point

The fixed point condition is

Xlss :Fl (X3SS) (92)
w1
)(2sS :Fl(XSSs)FZ(XSSs) (93)
w1W2
ngs :Fl(X3ss)F2(X3ss) ) (94)
wWi1wo2wWs

This means that for each fixed point value of X3 the steady state value of X; and X5

can be calculated using equation 9.2 and equation 9.3. The equation that may be hard

to solve is 9.4 since this may not be explicitly solvable for X3. However we can say

something about existence of a solution and then approximate the solution numerically.
First we define the functions

L(X3) = X3 (9.5)
and
R(Xy) = % . (9.6)

If a value X4 has the property that L(X%}) = R(X}) then X; = X35,. Finding steady
states values is equivalent to find intersections between the graphs of L and R. Note
that since F; and F5 are bounded this means we have a bound for R as

M; M,

VX320 R(X3) < ———=Ms. (9.7)
wWLw2ws

Now choose P = M3 + € for any € > 0. Then
L(P)=Ms+¢e> M3 > R(P) (9.8)
Now define the function h: Ry U{0} —» R
h(X3) = L(X3) — R(X3). (9.9)

Note that since L and R are continuous so is h and note that h(0) = L(0) — R(0) < 0
and h(P) = L(P) — R(P) > 0. Then by the intermediate theorem[17] there exists a
X4 €]0; P[ such that h(X%) = 0 & L(X}) = R(X}). This means that we are sure
there exists at least one fixed point of the system. Since R(X35) < M5 and R(0) > 0
we are guaranteed that any non negative fixed point value of X3 is in the interval

10; M3] =]0; wj\ﬁ)g{js] Then any fixed point is in the set ]0; %]X]O; Jgii\f]x]o; 1%;2/{53]
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Sufficient criteria for only one fixed point

We now discuss a sufficient criteria that there only exists one fixed point of the system.
Let X}, denote the smallest existing fixed point for now. If L(X3) is increasing faster
than R(X3) for all non negative X3 this means that for values of X3 larger than X7,
then L(X3) > R(X3) which ensures that there can only be one fixed point. Since
dL(X3)/g; = 1 a sufficient criteria for only one fixed point is dR(Xs)/g; < 1 which is
equivalent to

dFy dFy
X3 > —I + Fy— . 1
VX3>0 X 2 + 1dX3 < Wwiwows (9 0)

dF
ix; <

0 and 422 < 0. Since Fy and F, only takes non negative values this means that
dX3

jf;ls Fy + Fy jf;i < 0 < wiwows so purely negative feedbacks guarantee there exists

exactly one fixed point.

If the feedback functions, F; and Fs, corresponds to negative feedbacks then

Trapping region
We see that for X; = 1;/1711 then X; < 0. This means that [0; Ig—j] is a trapping region
for X;. Using this region for X; we can find a trapping region for X, and after that

we can find one for X3. For X; € [0; %—11] = J; and Xy = % then X5 < 0. For
Xs € [0; %ii\u/f] = Jy and X3 = w]\ﬁg{ia then X5 < 0 so for X; € J; and X5 € Jo and
X5 € [0; wj‘l/[;];{ﬁs} = Js then X;(t), Xo(t) and X3(t) are trapped in Jy, Jo and Js. This

means we have the trapping region U
U= J1 X J2 X J3 . (911)

Note that any fixed point is contained in the trapping region.

9.1 Expansion of trapping region

This section concerns that we can expand the trapping region which is needed in the
next section. Here it is shown that any solution with non negative initial conditions
get arbitrarily close to U in finite time. Therefore we make a larger box by for each
1 € (1,2,3) we add an amount to each positive end point of J;.

Ve > 0 define es(€) and e3(€) as

Mo,
=2— 9.12
() =202 (912
. M
e3(e) = 3w2w3€. (9.13)

and define

~ M My M. M, M-
Wi(e) = {0; s e} X {0; 12 4 62(6):| X {0; —L2 4 eg(e)
w1 w1 W2 W1 WaW3

= I1(e) x Io(e) x I3(e) Ve >0. (9.14)
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It is clear that U = W (0). Now we want to show that W (e) is a trapping region. Since
it is already clear that W(O) is a trapping region we will now only consider € > 0. For
€ > 0 (in contrast to € > 0) it turns out that the flow points into the trapping region
whereas if € = 0 there could be zero speed on the boundary.

The argument is very similar to the argument that U is a trapping region. For

Xim = max{[i(e)} = Au/)[—ll + € then Xy, < M; — w; (f—f—ﬁ—e) = —wie < 0. For
X1 € Ii(e) we get for Xa,, = max{lz(e)} = % + €5 that Xo, < Mo (%1 —|—e) -
Wa (M +€2(6)) = —Mse < 0. For X3, = max{I3(e)} = MM 4 c;(¢) and X, €

w1 w2 w1 w2w3

I(e) then X5 < (% + 62(6)) — w3 (% + 63(6)) = ez(€) —wses(e) = —%26 <0.

Note that there is a 'hierarchy’ that can not be reversed when the trapping region
is found. I;(€) is a trapping region for X for all values of X5 and X5. A trapping
region for X5 exists when X; is bounded, and similarly we need a bound for X5 in
order to construct a trapping region for Xs. So for X7 € I;(€) then X; is trapped. For
(X1, X5) € I1(€) x I(e) then X; and X, are trapped and for X € W(e) then X1, X,

and X3 are trapped.

All solutions get arbitrarily close to U in finite time and then they stay close
to U.

For any § > 0 we can choose € > 0 such that the distance between points in W(e) and
U is less than 6. We can prove that for any € > 0 any solution enters W (e) in finite time
(however the time depends on the initial condition). Since W (e) is a trapping region
this means the solution stays less than ¢ from U for all future time. This outlines the
content of this section.

A solution is arbitrary close to U and stays close to U means for any § > 0 and a
finite time Ty < oo exists such that for ¢ > T} it is true that dist(X(¢),U) < 6. The
infinity norm (or the sub-norm) is defined as[17]

X0 EmaX{|X1\»\X2|7|X3\} . (9.15)

Proposition 9.1 ~
For a fized ¢ there exists € such that if X(t) € W(e) then the distance between X(t) and
U is at most 6.

Proof

: _ M, o M
Fix § > 0. Define m = max{1,272,3,72-}. Then choose € = 8/m > 0. Now
we have that the maximal distance between U and X(t) € W(e) is dist(X(t), W) <
dist(U, W (€)) = max{e, €2, €3} = me = §1. O

Since W (¢) is at trapping region then if the solution is once in W (e) it stays in there
for all future time.

Proposition 9.2 ~
For any € > 0 then any initial condition leads to a solution in W (€) after finite time.

1 Similar reasoning could have been used to show the same result using other norms
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Proof
Fix € > 0. Assume we have an arbitrary non negative initial condition X(ty) = Xo =
(Xlo,Xgo,Xgo). If X10 > %11 + € form the compact interval K1 = [% + 6;X10]. ‘We

see that X1 < 0 on K.

Since X is continuous then by the extreme value theorem [17] X; has a maximum
mp < 0 on K;. Using lemma 5.1 and lemma 5.3 there exists a finite time T; such
that X (to + T1) € I1(e) and then X; stays in this region for all future time. The
worst case is that Xs(to + T1) is not yet in W and then we will have to repeat the
argument. If X,(tg + T1) € Ix(e) it will stay in this interval. Therefore consider
Xo(to +Th) > MM; 4 ¢, Then Ko = [M1M2 + €9; Xo(to + T1)] is compact. It is

w1 w2 wiws2
clear that X5 < 0 on Ks. By the extreme value theorem then X5 has a minimum
mo < 0 on K5. Then by lemma 5.1 and lemma 5.3 there exists a finite time 75 such
that Xo(tg + 11 + T2) € I2(€) and then X5 stays in this region for all future time.

The similar argument for X3 is that if X3(to + 11 + 1) > MliMz + €3 form the

w1 wa2w
compact interval K3 as K3 = [X3(to + 11 + T>); w]\ﬁ]ﬁ; + €3]. Since X5 € I(e) then
X3 < 0 for X5 > MMz Thig means X3 < 0 on K3 and by the extreme value theorem

w1 w2w3 .
there exists a maximum mg3 of X3 with m3 < 0 on K3. Then by lemma 5.1 and lemma
5.3 there exists a finite time T5 such that for X3(tg + 71 + T + T3) € I3(e).
This means that for any € > 0 for any non negative initial condition, it takes finite
time, Ty = to + T1 + T + T3, until the solution is contained in W (e). Since W (e) is a
trapping region the solution will stay in W (e) for all future time. O

This shows that the dynamics of the system is somewhat simple for solutions outside U
but note that Xs and X3 may be increasing for some time for some initial conditions
outside U.

9.2 Bounding of solutions inside trapping region using solutions of
linear systems

For the general model of the HPA axis (array 9.1) we consider W(g).NWe have shown
that any solution enters the trapping region W (9) in finite time. Fix ¢ > 0. Denote

= 1
) 31D2w3 (9.16)
and
~ M7 M.
Iy (5) - {o; L2 +§] = Dy. (9.17)
wW1WaW3

Assume Fy(X3) > 0 F5(X3) > 0, VX3 € Dy. Since VT/(S) is compact the continuous
functions F;(X3) and F5(X3) attain maximum and minimum values by the extreme
value theorem [17].
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For X3 € Dy

Uy = max{F(X3)} < M,

Ly = min{F(X3)} >0

Us = max{F5(X3)} < My

Ly = min{F»(X3)} > 0.
Here the assumption F;(X3) > 0 F»(X3) > 0, VX3 € Dy assures Ly > 0, Ly > 0. Now
we make a bound of the solutions of the system using linear differential equations. The

approach is very similar to approach in section 5.7 why we will not go into too many
details again.

Xll = Ll — 12)1X{
X, = LoX| — iy X},
X5 = X} — 03X} (9.18)

7 ~
X1 = U1 — le{'

X" = o X) — XY

X' = XY — w3 XY (9.19)

The initial conditions are X(tg) = X'(¢to) = X"(¢9). Using this to compare the original,
non linear coupled system of differential equations by a linear system given by array
5.33 restricted to W (9).

X <X <x)”
Xz/ <X, < le/
s . o
X3 <X3< X3 . (9.20)
Solving the linear system (array 9.18) we get
- 1
X{(t) =dne”™" + —L,
w1
1

X4(t) =dare™™"" + dage "2 + —— L1 Ly
wi1wo
. - . 1
X3(t) =dzie” """ + dgoe™ " + dgze” "' + ———— Ly Lo (9.21)
wi1w2wWs
Similarly the linear system (array 9.19) is solved
- 1
Xl/ t) = —wqt 7U
1 (t) =ciie + oy 1
. - 1
Xé/(t) 2621€7w1t + 62267w2t + ——U,U
w1 W2
. . . 1
Xé’(t) :C3le—w1t + 032€_w2t + 033€_w3t + ———U,U5. (922)

W1 WaWs3
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All ¢;;’s and d;;’s are constants that depends on the initial conditions and the eigenvec-
tors of the homogeneous part of array 9.18 and array 9.19. By lemma 5.2

X1(t) < Xu(t) < XY(t) fort >t
X5(t) < Xo(t) < X5 (t) for t > to

X5(t) < X3(t) < XY(t) fort >to. (9.23)
This means for any €; > 0 there exists a 71 < oo such that
1 1
Xg(t) €|l—eg+ ———L1Lo;¢61 + ————U Uy | for t>1T7. (9.24)
W1 WaW3 wW1wa2ws

9.3 Sulfficient criteria for a globally stable fixed point

Define the function H P XE (X
H(Xy) = D)) (9.25)
w1 Wa2wW2
H:Dyg+— Dyg. (926)
This means H(X3) is the restriction of R(X3) to Dy. Now we assume H is a contraction
on Dy (and still H is positive on Dg) which means we assume there exists 1 > p > 0
such that |H (y1) — H(y2)| < ply1 — y2| Yy1,y2 € Dy. This ensures a unique fixed point
of the non linear system of differential equations. Moreover any solution in Dy converge
to the unique fixed point of the system which will be proven in this section. Defining

MMy — U Uy 1

1
0<c:7.5 < = 7~~~LL7 9.27
€ len{ + TG s 1 gt 2} (9.27)
then
1 1
Di=|-e1+ ———LiLy;e1 + ————U1Us| €Dy, 0<e; <e. (9.28)
wi1Wa2ws W1WawW3

The choice of ¢, ensures D; C Dy.

Thus from equation 9.24 there exists a finite time 7 such that X3(¢t) € D; C Dy
vt > Ty.

Now a sequence of sets is defined by D,,

up, = max{H(xz,) : x, € Dy}

l, =min{H (z,) : x, € Dy} (9.29)
And
Dpyi1=[—en+lsen+tuy], 0<e,<e, neNp. (9.30)
D,, is well defined and compact and D,, C Dy.
Proof

The proof is done by induction. ug and [y are given by the expressions

ug = max{H (zg) : xo € Do}
lo =min{H (zg) : zg € Do} (9.31)
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Since Dy is compact and H is continuous then by the extreme value theorem [17] ug
and [y are well defined and finite. This guarantees that D; is compact. Since ¢y < €,
then D; C Dgy. Now assume D,, C Dg is compact. Then

up, = max{H (z,) : xn € Dy}
l, =min{H(z,) : xz, € Dy} (9.32)

are well defined and finite by the extreme value theorem. Then D,,; is compact.
Dpi1=[—€n+lnjen+uy], 0<e, <e, neNy, (9.33)
Since by assumption D,, C Dg then [,, > Iy and u,, < ug. This means
Dpi1 Cl—€n+losen +ugl, 0<e, <e., mneNy, (9.34)
This ensures D,,+1 C Dy. O

Due to the bounding of the solutions using linear systems we have shown that if
X3(to) € Dy then there exists 71 < oo such that X3(¢) € D; for t > T1. Now we repeat
the argument with bounding the solutions of the non linear differential equations by
solutions to a linear system of differential equations. This means VN < oo there exists
TN < oo such that if Xg(to) € Dy then X3(t> € Dy for t > Ty.

We now want to prove that D,, converges to {X35s5}. The idea of the proof is based
on the convergence of y,+1 = H"(yo), Yyo € Dy by the Banach Fixed Point Theorem.
However there is also a large number of ’errors terms’ that we have to control. This is
done by using the contraction property of H as well as a a decreasing, positive sequence
of €,. This guarantees that any X3 comes arbitrarily close to the unique fixed point
defined by y,+1 = H™(yo). This means that all solutions of the non linear differential
equations converge to the unique fixed point of the system. We need the following two
lemmas to prove this main result.

Lemma 9.1
Let p be the contraction constant for H. Then

H(a) —ple| < H(y) < H(a) +ple|, Yy € [a;a+|e]] € Do . (9.35)

Proof
This is straightforward using the contraction property and the triangle inequality. Since
H has non negative range

H(y) — H(a) = [H(y)| — [H(a)|. (9.36)
Using the triangle inequality [17]

|H(y)| = [H(a)| < |H(y) — H(a)]. (9.37)
Since y € Dy and a € Dy we use the contraction property

|H(y) — H(a)| < pla—y| < ple]. (9.38)
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Thus from 9.36, 9.37, 9.38

—plel < H(y) — H(a) < ple|. (9.39)
Adding H(a) completes the proof. O
Then it follows similarly

Lemma 9.2
Let p be the contraction constant for H. Then

H(a) —ple| < H(y) < H(a) +ple|, Vy € [a —|e[;a] € Do. (9.40)

Lemma 9.1 and 9.2 means we can bound the maximum and minimum of H applied
on a compact set by H evaluated at an end point of the set and the maximum distance
between any two points in the set.

Introducing €.

0 < eg < pee. (9.41)
Fix €. Then we can define €, > 0.
en=(1—plen—1=(1—p)"€. (9.42)
To simplify notation we use
b=1-p. (9.43)

Since p €]0; 1] then b €]0; 1[. Then we have
€c > €, =b"¢g >0 (9.44)
We introduce

n—1
Ap=e€n Y bip" 17> 0. (9.45)
=0

Since b, p €]0; 1[ then bp™ < b for n € Ny. This means

n—1 n—1 1 b 1
0 bz n—1 < bz _ — < 9.46
LTER T sy 040
Usingb=1—1p
n—1
S 1

0<An=¢6 Y bp"' < - (9.47)

=0

Define

i, = max{H" " (xg) : xo € Dy}

l, = min{ H" "' (2¢) : x¢ € Dp}. (9.48)
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@y, and [, are well defined since repeated use of a continuous function on a compact set
map into a compact set. The maximum and minimum of bounded sets exist and are
finite by the extreme value theorem [17].

I, and u, are crucial for the range of D, ;. Now we want to make bounds on [,
and wu,, using l,, and @, since we know the latter converges. In D,, ’error terms’ (e,,) are
introduced at each step in the sequence. The following lemma helps bounding D,, by a
series in the ’error terms’ and a sequence H"(Dy) (corresponding to the span between
l,, and uy). This means the ’error terms’ are separated from H™(Dg) and we can then
estimate the two separately.

Lemma 9.3
If H is a contraction on Dy and H is positive on Dq then

D, C [—An + 10 Ay + an] , neN. (9.49)

Proof
The proof is by induction.

Dy = [—€o+lose0 +uo] , 0 <€ <ec. (9.50)

Since Iy = Iy and ug = iip and A; = € a basis for the induction is justified. Now assume

D, C {fAn + 1y A + an] , nmneN. (9.51)
We need to show
Dyir C [—Anﬂ lpins Ay + anﬂ} , neN. (9.52)
Note by 9.47
[—An o An o+ un} c {—eo; e eo% + un} (9.53)

Because H : Dy — Dy then u,, < g and Zn > io due to the contraction property of H.
Therefore

[—An N ﬂn} C {—An +lo; Ay + ao} ) (9.54)

From inequality 9.47
- ~ 1 - 1 .
[—An + 1 Ap + un} - [—60 + lo; €0~ + uO] C Dy (9.55)
p p

We can therefore apply H on {—An + l~n; A, + ﬂn} and use the contraction property.
Now we consider H(D,,) and using 9.51

H(D,) CH ({—An 4l A+ unD , neN (9.56)
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Then
H(D,) C H ([—An + Zn;ZnD UH ([lnun}) UH ([Gn; Ap +in]), neN  (9.57)

Since H is continuous on the compact set [—An + an; A, + ﬁn} bounded extrema

exist for each of the sets in equation 9.57. The simplest estimation is

H ([in,ﬂn}) = H ([min{H""" (o) }; max{H" " (20)}])

= [min{H"2(z) }; max{ H"+2(z0)}] = [znﬂ;anﬂ] ‘ (9.58)

We can use the contraction property as shown in lemma 9.1 for bounding the two
other sets of 9.57.

—pA, + H(ﬁn) < H(y2) < pA, + H(ﬂn)v Vys € [ﬁn§An + ﬂn] . (959)

Using the definitions of 1,,, uy,, I, Uy,

g1 = max{H"2(Dy)} > H (z) = H(min{H"(Dy)}) > min{ H"*(Dy)
py1 = max{H" (Do)} > H (ii,) = H(max{H""(Dy)}) > min{ H"*2(Dy)

Now we have an upper and a lower bound on each of the sets H ({—An +[n;in]),
H ([Zn; uD H ([in; Ay + n]) , n € N. From 9.60, 9.59 and 9.57 we get

I, = min{H (Dn)} > —pAn + l~n+1
tu, = max{H (D,)} < pA, + tUnt1 - (9.61)

We have by definition
Dpi1=[—€en+lnjentuy], 0<e, <e, neNy, (9.62)
Now we can bound D,y (equation 9.62)
Doyt € =60 = pAn + s n + pAn + finia | (9.63)

Using the expressions for €, (equation 9.42) and A,, (equation 9.45)

n—1 n
€, + pA, = 0"y + €9 Z bipn Tt = ¢ Z bip" Tt = Ay . (9.64)
i=0 1=0
Inserting in 9.63
Dyy1 C [*Am-l +lng1; Ang1 + ftn+1] ; (9.65)

which completes the proof. O
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By equation 9.47
7 ~ €0 > €0 .
[_An +ln; A, + un] - |:_p + In; ; + Up (966)

Lemma 9.4
If H is a contraction on Do and H is positive on Dg then a unique fived point exists of
the system of differential equations. All solutions in W (§) converge to the fixed point.

Proof

There exists T,, < oo such that X3 € D,, for t > T,,. Since H is a contraction on a
complete metric space the Banach Fixed Point Theorem applies. This means that a
unique fixed point exists of y,+1 = H(y,) for any yo € Dy i.e.

Jim H™(Do) = {X3ss} - (9.67)

Fix € > 0. We need to show that for any X3(tg) € Dy there exists a T;, < oo such
that | X3(t) — X3ss| < €, V& > T,,. Choose

€0 = min{%é, pe} > 0. (9.68)
For any N < oo there exists a Ty < oo such that X5(¢t) € Dy, Vt > T,. By 9.67

there exists N < oo such that |[H"(X3(to)) — X3ss| < €, for t > T,, (corresponding to
VYn > N), VX5(to) € Do. This means

—g F Xaeo <1, < % 4 Xaeo fort>T,. (9.69)
and similarly } }
,g F Xgow < iy < g t Xgoo fort>T,. (9.70)
Now we have by lemma 9.3
1 - 1
X3 e D, C |:€0p + 1y 60;) + un] fort > T, , VXg(to) € Dyg. (971)
And 9.69 gives
X3 €Dy C {g§+xgss;g+§+xgss} for t > T}, . (9.72)

But now X3 is contained in an interval of lenght less than € and the interval contains
X3ss. Therefore | X3 — X3.4| < € for t > T, for a T, < co. Now we have proved that
X3 converges to X34 for any Xs(to) € Dy.

When X3 converges to X3, then Fy (X3) converge to Fy(Xsss) and F5(X3) converge
to Fy(X3sss) since Fy and Fy are continuous. Considering array 9.21 and array 9.22 this
means that X} and X4 converge towards the same limit.

lim xp = Do) o)y (9.73)

t— o0 W1 Wa t—o0
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Since X» is squeezed between the limit of X} and X7

Fi(X: ss Fy(X: ss
lim X, = 1(Xass) Fo(Xass) (9.74)
t—o00 w1 W2
Similar reasoning for X; means that
Fi (X355
lim X; = M (9.75)
t—o0 w1

This means that all solutions with initial conditions in W converge to the unique
fixed point of the non linear system of differential equations. O

Since all solutions outside W (4) enter 1 (4) in finite time we are sure that if H is a
contraction and positive on Dg then all solutions converge to the fixed point solution.

This means that no periodic solution exists which we will now prove. There must
be a positive distance between the fixed point and the periodic solution (if a periodic
solution exists) because if a periodic solution ever equals the fixed point solution it will
stay at the fixed point for all future time. Denote the infimum of the distance between
the periodic solution and the fixed point by é;. Since we have just proved that any
solution converge to the fixed point then after some time all solutions are less than the
distance 7 from the fixed point. This is a contradiction which means there cannot exist
any periodic solutions in the trapping region.

9.4 Sufficient criteria for using Banach Fixed Point Theorem

How can we be sure that a given H is a contraction? This section focus on a sufficient
criteria for applying Banach Fixed Point Theorem (theorem 3.6).

Lemma 9.5

Let f : R U{0} — R, U{0} and let f be bounded by M and let f be Ct. Then for any
¢ >0 let f, denote the restriction of f to D, = [0; M +¢]. If |4fe/4s| < 1, Yz € D, then
fc is a contraction and T, = fc(xn) converge to the unique fixed point of fc for any
zg € D,.

Proof

Fix ¢ > 0 and assume |dfe/qs| < 1, Yz € D,. Note f : D, — D, since f(D.) C [0; M].
Since ¢f¢/4, is continuous on the compact set D, then by the extreme value theorem
there exists a minimum, p;, and maximum, py, of 4f¢/4;. Defining d

d = max{|p1|, |p2|} - (9.76)
Fix any two points, xg,y9 € D.. By symmetry we can assume yy > xg. Define
hi(zo) = ha(xg) = f(xo) and dr1(2)/q, = d and dh2(2)/q, = —d. Then we can solve the
two differential equations.
hi(z) =d(z — x0) + f(20)
ho(z) = — d(x — x0) + f(x0) . (9.77)

By lemma 5.2
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hi(z) > f(z) > ha(z) Vo > 20 . (9.78)
Since yg > xo this holds especially for yo

hi(yo) = f(yo) = h2(yo) - (9.79)
Subtracting f(zg)

hi(yo) — f(zo) > f(yo) — f(x0) > h2(yo) — f(z0) - (9.80)

Inserting hi(yo) and ha(yo) using array 9.77

d(yo — o) > f(yo) — f(z0) > —d(yo — 7o) - (9.81)

By [17] this means
£ (yo) — f(o)| < dlyo — o - (9.82)

By assumption d < 1. Then we have shown that f is a contraction.

fe : Do — D, and (dg2,D.) is a complete metric space with metric given by the
2-norm and fc is a contraction. Then by the Banach Fixed Point Theorem fc has
exactly one fixed point, zss, and the sequence x,+1 = fc(xn) converge to xgs for all
zg € D,. O

We have now proved that if [4H/;x,| < 1, VX3 € Dy = |0; 2 M2y (5] for any § > 0

) 11)111721213
then all solutions of the system of differential equations converge to the unique fixed
point. However since H € C* it is sufficient that |[4H/4x,| < 1, VX3 € [0' M, Mo } for

) Wi Wa 12)3
this conclusion.

Proof
Define
9(X3) 1 Ry U{0} — R, U {0} (9.83)
9(Xs) = [H/ax,]. (9.84)
g(X3) is continuous and we assume ¢g(X3) < 1, VX3 € [O; wl‘l/[llbg/{u?J We choose
1 — g(ALAM,
€= M > 0. (9.85)
Since g(X3) is continuous there exists § > 0 such that \% — X3| < ¢ guarantees
lg (é‘ﬂ%ﬁ%g) — g(X3)| < e. This means VX3 that satisfies |% — X3| < 6 then

M1M2
M M. )Tl 141
1M ) 9( 3) +1_ 1 (9.86)

X
9 3)<6+g(w1m2w3 2 <73

Thus VX3 that satisfies | 222 X,| < § then |4H/4x,| < 1. This ensures there

W1 W2 W3

exists d > 0 such that |4H/qx,| < 1, VX3 € [0' MM, 5]

7 W1 W2W3

O
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Summary of chapter 9

Existence and uniqueness of solutions are guaranteed for the system 9.1 for non
negative concentrations.

A trapping region, U, exists. The trapping region can be expanded such that
W () is a trapping region and U C W (8) for 6 > 0.

All solutions of the non linear differential equations enter W (4) in finite time for
§ > 0. Then any solution get arbitrarily close to U in finite time. This outrules
limit cycles outside U. (By similar reasoning that limit cycles do not exist when
the fixed point is globally stable.)

At least one fixed point exists and all fixed points are contained in U.

If Yy wpwsF1F2) Jgx, < 1, VX3 € [0; MiMa/y 0m,] then a unique fixed

point exists. This implies a unique fixed point exists if I} and F5 are negative
feedback functions.
If H = Fu(X3)F2(Xs)/p, 4,5 18 a contraction and positive VX5 € Dy then a unique
fixed point exists of the system of differential equations. Any solution in W (0)
converge to the fixed point. This means the fixed point is globally stable which
outrules the possibility of limit cycles.

|[9H jax,| < 1, VX35 € [O; 15\141171];%3} is a sufficient criteria for the existence a unique,

globally stable fixed point of the differential equations. Whether this criteria is
fulfilled or not depends on the parameters of the system.
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10 Estimation of parameters

In this section we will give an estimate of the parameters in our models. This is
important since for a given set of parameters we can categorize the behaviour of the
systems due to our previous analysis. The overall idea is to assume that our model is
realistic. Some parameters are well known. Other parameters are less known. The rest
is almost totally unknown. We will present the three different categories of parameters
below. Also we will make physiological reasoning to give a first estimate of the less
known parameters.

Since we have been dealing mainly with two models one including the feedback
mechanisms to hippocampus and a model that does not involve the mechanisms of
hippocampus we will estimate parameters for both models. Since the latter of the two
is the most common way of describing the HPA axis these parameters will be easiest to
compare to the parameters of previously made models.

In the end of this section a first estimate will be given of all parameters of the two
models. Then the idea is to make various simulations of the system and investigate the
system dynamics with special focus on existence of limit cycles.

Many of the parameters are the same in the two models. We will start by giving
an estimate of the model without hippocampus. Only the parameters that are not the
same will be discussed when estimating parameters for the system with hippocampus.

The parameters will be compared to parameters of other model. However this may
not be possible if two models are too dissimilar.

Parameters of the model without hippocampus

To remind the reader of the parameters in the system without hippocampus we have
rewritten the system of unscaled differential equations (array 5.33) in array 10.1

dzq §

— =k |l —p———— | —

dt o( ng—i—c@) w121

dzo x§

22 ke (1= 2 —

dt 1 ( ng +CO‘> L1 — W22

d

% :k‘QJZQ — ws3x3 . (10.1)

e Well known parameters
From literature we have an estimate of the elimination constants from the
half lives of the concentrations. We define w; as m2)/pqif1ife. This is widely
used in modeling the HPA axis[1] although we realize that this is only a good
approximation when the concentration of a given hormone z; is much larger than
the concentration of the other hormones x; entering the differential equation.
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When this is the case the differential equation for hormone z; is approximately
equal to

We have not deeply investigated how the half lives are measured but one way of
pursuing this idea would be to measure the concentration of hormone x; when a
large dose of this hormone is injected into a person and if these measurements
can be approximated by an exponential then calculate the half time for that.

From [10] the half life of human CRH in plasma is given to be about 4 min.
This gives wy = n(2)/4 = 0.17.

The data provided by H. Lundbeck A/S can be used to estimate hormone half
lives. The data originates from [9]. Here the hormone half life is calculated for
different groups (healthy, high cortisol depressive, low cortiol depressive). We will
estimate the parameters by using the data from the healthy group. The half life
of ACTH for the healthy group is 19.9 min+4.2 min(mean+standard deviation).
The same have been done for cortisol and the result is 76.4 min4+16.2 min !.
Because of the difficulties in measuring the concentration of CRH we have not
been able to find a standard deviation in this hormone. But since the standard
deviation is about 1/5 of the mean value for ACTH and cortisol we let the relative
standard deviation be similar for CRH. So that the half life of CRH is given by
4+1.

We assume the half life of a given hormone is normally distributed. A normal
distribution with mean p and standard deviation o has 68% of the probalility
density located in the interval [u—o; p+o]. 99% of the probality density is located
in [p — 205 u + 20]. We choose the default half life to be the mean value. Since
the standard deviation for the half lives are close to 1/5 of the mean value then
varying the deafult value by +40% covers the majority (99%) of physiologically
relevant cases.

e Less known parameters

As explained in section 5.2 the exponents in the various Hill functions indicate
how many cortisol molecules that react with one free receptor. [19] argues it would
be unphysiological for such a parameter to attend values larger than eight. Savic
et al.[3] model the HPA axis using a = 1. We will make a first guess of o = 3+ 2.

In [11] it is explained that GR is the most important receptor in regulating
the HPA-axis. This suggests ¢* has a value that ensures that the receptor is
around the inflection point of the Hill function for reasonable values of cortisol
concentration. We denote the mean value of free cortisol as Z3 and we choose
¢ = T3 as a first estimate.

e Unknown parameters

The saturation parameters p and p are somehow unknown. The way the
model is created gives that p € [0;1] and p € [0;1]. To be able to investigate the
possibility of a change in receptor capacity we will set 4 = p = 0.5 as a first guess
for these parameters.

1 The half lives of the two other groups are given in meanzstandard deviation: Half life ACTH
hypercortisolemic 15.741.95, half life ACTH non-hypercortisolemic 14.54+1.1, half life cortisol hyper-
cortisolemic 7947.9 and half life non-hypercortisolemic 60.84+13.
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Now we have determined a first estimate for the values of some of the parameters. We
still need to give an estimate on k;. To do this we will use the following reasoning.

The overall idea is that the system should be able to oscillate for physiologically
reasonable values of parameters. This means that all the derivatives of the concentra-
tions should be capable of changing sign for physiologically relevant hormone values.
We therefore assume that the fixed point of the equations is located at the mean value
of the concentrations. Therefore we are able to give an estimate of k;. This is done by
inserting the mean values of hormone concentrations and the values of the above men-
tioned parameters and equating the system of differential equations to zero. Letting z;
denote the mean concentration of hormone i, k; will be given by array 10.3

ko = wl—f;
(1~ nii)
b=
(1-raiz)
ky = 2373 (10.3)

T2
Note that for fixed p, p, ¢, a then i/, is constant. This means that perturbating w; 41
by a factor changes k; by the same factor.

The data of cortisol is the sum of bound and free cortisol. We are only interested in
the free cortisol which in [10] is stated to be 3.9% of the total concentration in normal
humans. And in [11] 3-10% of the total concentration is stated to be free. We will
estimate the free cortisol to be 5% of the total amount.

The mean values of ACTH and cortisol come from our data[9]. We will use the data
from the healthy control people and use the mean values of these. These values are
given in array 10.4

To = 21pg/ml
3 = 0.05 - 6.1119/4 = 3.05579/,1 (10.4)

Since we have no data of CRH we take the mean of this hormone from the literature.
From an investigation of plasma CRH we get that the mean plasma CRH level in
normal subjects (26 individuals) was 1.64 & 0.43pmol/[30]. From this we take the mean
value of CRH to be 1.64pmol/;. The molecular weight of CRH in sheep is found to be
46708/mo1[11]. Doing the calculations we get that

@1 = 1.64 - 4670 = 7.6588P9/pn1 . (10.5)

Estimated parameters

Using the above parameters and reasoning we get our first guess of the parameters.
The estimated parameters are given in table 10.1. They are calculated from the Matlab
file given in appendix B.2. Along with our own parameters we have also gathered
information of parameters used in other models. Where it is possible to compare any of
these parameters to our own this is done. Two models are made by Liu et al. The first
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| Parameter | Default value | Liu et al.(1990)[31] | Liu et al.(1999)[22] | Savic et al.[4] |

ko 1.7696P8/m1. min 0.001917 - -
k1 0.127341/min - - -
ko 0.0013198/min - - -
w1 0.173291/min 0.0598 0.059 -
Wo 0.0348321/min 0.053 0.028 -
w3 0.0090726/min 0.0138 0.67 -
P 0.5 - - 0.72
I 0.5 - - 0.98
« 3 - - 1

c 3.05518/m,1 - - -

Table 10.1: Default parameter values of the system without hippocampus.

model[31] only contains three concentrations. In [31] Liu et al. are assuming the free
cortisol is always a constant fraction of the total amount of cortisol. This is leading to
the use of total cortisol half life. In [22] Liu et al. have included the two bound forms
of cortisol into the model thus leading to a five dimensional model. The decay constant
given in table 10.1 is therefore now the decay constant for free cortisol which they allow
much larger values than that of the total amount of cortisol.

In [22] 33 parameters are included. We do not consider differential equations of the
model sufficiently related to physiological mechanisms as well as the huge number of
parameters make the estimation quite doubtful. In both models Liu et al. is making
the assumption that there are a constant input to the differential equations that is not
influenced by the feedback from cortisol. In general we have not been able to compare
this to our model. But in the case of [31] we can conclude that the number we relate
to our kg is corresponding to the input on CRH when there is no cortisol in [31]. Our
ko can be interpreted in the same way. In [22] they include multiple fast feedbacks on
the concentrations. This leads to five coupled autonomous differential equations with
33 parameters. We have not been able to compare any of these except the half life
coefficients.

Comparison to parameter values of Kyrylov et al.

As explained in section 4.1 Kyrylov et al. build a model from a linear system and
impose non linearities. The linear system dominates for positive concentrations above
a threshold value and nonincreasing concentrations. Since our system is defined to have
steady state in the mean value of the concentrations we linearize our system around
these values. This means that the values at the entries of the Jacobian taken in steady
state can be compared to parameter values of Kyrylov et al..

—0.1733 0 —0.2172 apo Qo1 ap2
Jss = 0.0955 —0.0348 —0.1197 | =1 a1 a1 al2 |. (10.6)
O 00013 700091 a0 a1 a99

Now we can directly compare our values with those of Kyrylov et al. This is done in
table 10.2 There is quite a difference between the parameters of the two models. Since
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Parameter | Our value | Kyrylov et al.[1] |

—apo 0.1733 0.00843
aopi 0 0
—ap2 0.2172 0.440
aio 0.0955 0.082
—ai 0.0348 0.004
—a12 0.1197 0.0668
a0 0 0.0164
as 0.0013 0.031
—a22 0.0091 0.0957

Table 10.2: Comparison between our values and them of Kyrylov et al.[1].

we have already discussed how we consider the model of Kyrylov et al. problematic we
will not elaborate further on this comparison.

10.1 The parameter values in the scaled system without hippocampus

In section 6.1 we scaled the system into dimensionless units. The scaled system is given
by array 10.7

dX, Xg X

il R — i X

df Fiyxg —

dXo X3 _

22 _ (g X, — s X 10.7
0 ( p1+X§3) 1T WA (10.7)
dx

T3 Xy — i X

dé
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The parameters u, p and a have the same value as in the unscaled system. The remain-
ing variables and parameters are given by

eEdot
T Elel
T2 EdQXQ
T3 Engg
w :ﬂ
1= dO
- W2
Wo = —=
2 dO
flﬁ :%
P dy
1
kokks ) 7
do:( oy 2>
C]fo
d =
' (k1k2)
kok
d2:( 0 1)
d3:C

These values can all be calculated using the parameters of the unscaled system given
above, i.e

1
koki ks \ 7®
0 = dot = (“2) ¢ =0.046003 - . (10.8)
C

In table 10.3 the parameters of the scaled system are given

Parameter ‘ Default values

wi 3.7669
Wy 0.75716
w3 0.19722
p 0.5
n 0.5
« 3

Table 10.3: Parameter values for the scaled system without hippocampus.
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10.2 Parameters of the model including hippocampus

To remind the reader of the parameters in the system including the mechanisms from
hippocampus, the system is presented in array 10.9 (equal to array 8.6)

d a 24
L1 :]{,‘0 (1 +§ 3 - ’l/J ,ng ) — W11

dt x§ + ¢ z3 +c3

dzo x§

— =k (1l—p——— —

! 1 < ng T CO‘> L1 — Wal2

d

% :kQIQ — W3Ts3 . (109)

o Parameters that can be reused from the system without hippocampus

The parameters that we have no reason to believe is changing from the system
without hippocampus is the half life of the different hormones «, (£ = ¢ — u), p
and the mean value of the concentrations.

o Parameters still needed to estimated

Since nothing is indicating that the coefficients relating cortisol binding to
MR and GR should be different a first guess will be that they are equal. The
same reasoning that was applied to « will therefore also apply to . Therefore
we believe that o = v = 3 £ 2 would be good guess for a first estimate of these
parameters.

As explained in the introduction it has been shown that cortisol has a ten
times higher affinity for MR than for GR in mice, we will assume that this also
applies to humans. This gives us that ¢ = 1/10¢®. Furthermore in [10] it is stated
that the MR receptors in humans is nearly fully occupied at normal levels of
corticosterone. Under the assumption that normal levels of cortisol imply normal
levels of corticosterone. This is in good agreement with ¢ = ¢/1o.

The values of the parameters £ and ¥ are unknown. The way the model is
created gives that ¢ € [0;1]. Furthermore we would like the positive feedback to
be able to overcome the negative feedback, thus ¢ > p. If this is not the case
it may be that a simpler model where the overall feedback is modeled as one
negative feedback mechanism would apply as well. So for a first guess of these
parameters we set ¢ = p = 0.5 and £ = 2.

To give an estimate of k; we will use the same reasoning as when estimating these
parameters in the system without hippocampus. Using the same notation k; will be
given by array 10.10

ko — wlfl
N 1 zg T3
et ~ Vg
o Wo Lo
ky = 1 T2 _
_ pw T

fy = 2303 (10.10)

T2

As in the previous section the parameters are given in table 10.4. These are also
calculated using the Matlab file that can be seen in appendix B.2.
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‘ Parameter ‘ Our values ‘
]{?0 0.85876Pg/m1. min
k1 0.12734/min
ko 0.0013198/min
w1 0.173291/min
w2 00348321/m1n
w3 0.0090726/min
p 0.5
P 0.5
& 2
« 3
¥ 3
c 3.05518/1m1
C3 1_418ng/m1

Table 10.4: Parameter values for the system including hippocampus.

Parameters for the scaled system including hippocampus

As done in the system without hippocampus we will calculate the parameters in the
scaled system from the parameters in the original system. To remind the reader the
scaled system with hippocampus is given in array 10.11 (equal to array 8.7)

X X§ X7
d 1:<1+€ 3 _w~ 3 )_wlxl

do 1+ X¢ Y’ + XJ

dXs Xg i

W = (1 pl T X??‘) X1 ’LUQXQ (1011)
dX: .

Ted = X2 — ’U)ng .

The only scaled variables and parameters that are not defined in the same way as
in the system without hippocampus is

G = <3/, . (10.12)

Again we have calculated the scaled parameters using the Matlab file presented in
appendix B.2. These are given in table 10.5
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Parameter | Default values

w1 4.7934
Wo 0.9635
w3 0.2510
C: 0.4642
P 0.5
p 0.5

& 2

¥ 3

« 3

Table 10.5: Parameter values for the scaled system including hippocampus.
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11 Numerical investigations

In this chapter we make various simulations of our system. The idea is to investigate
the system for the possibility of oscillations of the solutions to the system. For the
model with as without hippocampal mechanisms we use the default parameter values
from chapter 10 as a basis for the numerical investigations. For each model we change
one parameter while keeping the other fixed at default values. When perturbing a
parameter we investigate if oscillating solutions of the system emerge. The numerical
investigation is split into three different parts.

The first part concerns the system without hippocampus. In the second part we in-
vestigate the consequences of including the hippocampal feedback mechanisms. Finally
we investigate how to include the circadian rhythm into the model.

All numerical investigations made in this chapter have been carried out using the
matlab file given in appendix B.3. This file loads several other files. These files are
presented in appendix B.4.

11.1 The system without hippocampus

In this section we will investigate the possibility of oscillations for the system without
hippocampus.

First we investigate the system with parameter values given by the default param-
eters. On the graphs 11.1, 11.2 and 11.3 the different concentrations are plotted as a
function of time. The initial conditions is given as z1(0) = 247, z2(0) = 0.522 and
23(0) = 1.523. The parameters are chosen such that the steady state is at the mean
value of each concentration(#y, @2, #3) = (7.6588,21,3.055). As seen on the figures the
concentrations converge to steady state.

In figure 11.4 we have shown a three dimensional plot of the system with default
parameter values. In figure 11.5 a three dimensional plot of the scaled system with
default parameter values is shown. As expected the dynamics of the scaled and the
original system is similar. For this reason we will only investigate the scaled system.
For the default parameter values the steady state solution of the scaled system will be
given by array 11.1

Xiss = =1 =0.1991

dy dy
T2ss Ta
Xogs = — = — =0.1972
2 dy — dy
T3ss T3
X356 = —— = —=1. 11.1
o= 2 (1.1

104
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CRH plottet as a function of time
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Figure 11.1: The CRH concentration plotted as a function of time. The parameters used
are the default parameter values. The initial conditions are 1 (0) = 2471, 22(0) = 0.575
and z3(0) = 1.523.

ACTH plottet as a function of time
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Figure 11.2: The ACTH concentration plotted as a function of time. The parameters
used are the default parameter values. The initial conditions are z1(0) = 227, 22(0) =
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Cortisol plottet as a function of time
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Figure 11.3: The cortisol concentration plotted as a function of time. The parameters

used are the default parameter values. The initial conditions are x1(0) = 247, 22(0) =
0.5.f2 and Ig(O) = 1556_3

Three dimensional plot of the solution curve

Solution curve
O  Starting value
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Figure 11.4: Three dimensional plot of concentrations. The parameters used are the

default parameter values. The initial conditions are z1(0) = 247, 22(0) = 0.5 and
iEg(O) = 1.5x3.
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Three dimensional plot of the solution curve in the reduced system
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Figure 11.5: Three dimensional plot of the scaled system using the default parameter
values. The initial conditions are X;(0) = 2#1/4,, X5(0) = 0-522/4, and X3(0) = 1-5¢3/4,.

In section 9.2 we have shown that all solutions of the system with the default pa-
rameter values will always enter the trapping region. The trapping region is given
by

V= [0’ 1/1171] X [0, 1/’5111172] X [Ov 1/’1171?1721713] : (112)

Using the default parameter values the trapping region is given by [0; 0.2655] x [0; 0.3506] x
[0; 1.7778]. This means that the steady state solution is contained in the trapping region
which is in accordance to previous results.

In figure 11.6 there is a plot of H(X3) alongside with L(X3). As shown in chapter
9 the intersection between H(X3) and L(X3) defines the unique steady state solution
for X3.

In section 9.2 we showed that the system is globally stable if H(x3) is a contraction.
We have also showed that if |H'(X3)| < 1 for all X3 € [0; /@, @.a,) then H is a con-
traction on [0; /g, @,@,). For the model not including hippocampus H'(X3) < 0 since
H is a product of two functions that corresoinds to negative feedback. The green ring
in figure 11.6 is at max |H’(z3)|. Furthermore the value of min H'(X3) is shown in the
legend box. The value is less than -1. For this reason we cannot outrule the existence of
limit cycles analytically. We cannot be sure that there are no limit cycles even though
the steady state solution is stable. Therefore we have made a grid investigation of dif-
ferent initial conditions. This means we have made a grid of initial conditions in the
region [0;2] x [0;2] x [0;2]. The mask of the grid is 0.1. There are 20® different initial
conditions inside this region illustrated with a green dot.

The differential equations was solved numerically and the last value (after what
corresponds to three days) of the solutions was plotted as a blue dot. The steady state
solution is plotted as a red ring. The grid investigation is shown in figure 11.7. Here
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Figure 11.6: H(X3) shown along side L(X3) for the scaled system without hippocampus

using the default parameter values.
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Figure 11.7: Grid investigation in the region [0;2] x [0;2] x [0;2]. The trapping region

is given by [0;0.2655] x [0;0.3506] x [0; 1.7778]
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we see that initial conditions outside the trapping region lead to solutions entering
the trapping region in accordance to previous mentioned results. Furthermore we see
that all solutions converge to the steady state solution. This is no guarantee that no
limit cycles exists inside the trapping region but the result seen in figure 11.7 gives an
indication that it is unlikely.

11.2 Variation of parameters in the system without hippocampus

In this section we will make a variation in one parameter keeping the other fixed at their
default value'. Doing this for all the parameters will give an indication of the effect the
parameter has on the solutions of the system. Since we know from section 5.6 that there
exists only one steady state solution and that this is guaranteed to be locally stable this
analysis will mainly concern which parameters that makes the system globally stable.
That is we wish to investigate which parameters that makes |H'(z3)| < 1. Furthermore
it is clear that when we change the value of one parameter the steady state solution
will change. Also an investigation of this change will be done.

Investigation of a change in w;

We will start by investigating what will happen if we vary only the decay constants, w;.
Since w; = wi/q, changing w; by a fraction will cause the same fractional change in ;.
Since

1
H(X3) = ——F(X3)F5( X 11.
(X3) A 1(X3)F2(X3), (11.3)
we know that
dH(X3) 1 dFy(X3) dF(X3)
= Fy( X — (X . 114
dXs W1 WaW3 dXs 2(Xs) + dXs 1(Xs) (L4

If we now denote the default parameters as @ we know that for X3 inside the trapping

region

0H(X3,0)
0X3

Since only w; is changing when w; is changed we can make an equation that gives the

fraction that w; is allowed to change for the system to be guaranteed globally stable.
Denoting the new set of parameters 6 = («, u, p, w1, W, u73)2 we investigate the case

max

’ — 1.267. (11.5)

~

dH(X3,0)
— L =—1. 11.6
he (11.6)
This gives that for R
w; > 1.267w; (11.7)

1 A more thorough investigation must include an investigation of the dynamics in the nine dimensional
parameter space. This is left to do for another project since we also investigate the behaviour for
different initial conditions. Combining a variation of parameters with variation of initial condition is a
huge task

2 We denote the default parameters by the usual symbol e.g. p, and we denote a perturbed parameter
by adding a ’hat’ on top e.g. p .



110 Numerical investigations

3 T
H(x,)
L(xg)
257 Minimum grad=-0.99761|
2F 4
1.5 1
l - -
0.5 1
0 .
0 0.5 1 15 2 25 3

Figure 11.8: H(X3) plotted where w; = 1.27w;. All other parameter values are fixed
at their default parameter values.

the system is globally stable. For now we assumed that only one parameter is varied.
It is clear that this can also apply for the product of decay constants i.e. wjwstis >
1.267Twywows. A graphical illustration of this H(X3) is shown in figure 11.8 where
wy = 1.27w;.

Investigation of a change in «

As explained in section 5.2 the parameter a affects the magnitude of the gradient in
the Hill function. Therefore we would expect that increasing « increases max |H'(X3)|.
For o # 1 this is indeed the case. When a = 1 the Hill function changes shape from
a sigmoid function to a function with no inflection point and steepest derivative in
X3 = 0. The effect on H'(X3) when varying « is written in table 11.1. It is seen that
we do not get that max|H’(X3)| < 1 when changing a among positive integers. Thus

Table 11.1: H'(X3) as a function of . All other parameters are fixed at their default
values.
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it is not possible for us to guarantee global stability.

Since the steady state of X3 is defined to be at X3.,5 = 1 the steady state solution
does not change when we change the parameter «. In the not scaled system this
corresponds to that the steady state solution of x3 and the parameter ¢ is defined to be
equal. This assures that the fraction in Hill function always take the value 1/2 for all
values of a.

Investigation of a perturbation to p or p

Last we analyze the effect of changes in the parameters p or p. Because they enter into
the equation of H(X3) in the same way we will treat them both at the same time.

We know from section 5.2 that these parameters also influence the steepness of the
Hill function. Therefore we expect that the larger u,p the larger a absolute value of
H'(X3). This is indeed the case and we see that the largest absolute value of H'(X3)
inside trapping region is 1.8033 when p or u equal one and the other parameters are
fixed at their default values. Also we see that we are guaranteed global stability when
p or i have values p, p < 0.24.

The effect of increasing p or p on the steady state solution is a bit different. Since
X1 is a function of p only through Xsss and X34, is decreasing for increasing values
of both p and p it should be clear that the steady state solution for X; is increasing for
increasing p. It is more subtle with Xs4, since this is a function of both of X355 and
p. Numerical investigation show that also Xs4, is decreasing for increasing values of p.
The case of varying p is also subtle since all steady states depend explicitly on p and
the steady state of X; and X also depend implicitly on p through Xsss. A numerical
investigation was also made for variation in this parameter and the result is that for
increasing p all steady state values is decreasing. The results of variation in g or p
when all other parameters are fixed at their default values is shown in table 11.2.

©w=0.6 | (0.1897,0.1909, 0.9681
w=0.7 | (0.1813,0.1852,0.9391)

I ‘ Steady state H P ‘ Steady state ‘
©w=0.3 | (0.2215,0.2116,1.0731 p=0.3 1 (0.1921,0.2116,1.0731
@ =04 | (0.2096,0.2041, 1.0349 p=04 1] (0.1957,0.2041, 1.0349
p=0.5

( ) ( )
( ) ( )
p=10.5 | (0.1991,0.1972,1.0000) (0.1991,0.1972, 1.0000)
( ) || p=0.6 | (0.2023,0.1909,0.9681)
( ( )
)

p=0.7 | (0.2053,0.1852,0.9391

Table 11.2: The effect on steady state(Xiss, Xo2ss, X3ss) When varying p or p while all
other parameter values are fixed at their default values.

This ends the investigation of the parameters of the scaled system without hippocam-
pus. Finally we wish to make some comments on the effect on the scaled parameters
when changing the parameters in the unscaled system.

Since w

~ K3
W; = — 11.8
? dO ( )

s
do = (k°k1k2> (11.9)

and

c
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We see from the above analysis that an increase in k; will lead to an increase in steady
state concentrations in all variables X; since all of w; is decreased. This is of course
expected since this corresponds to a larger input to the system.

Investigation of worst case scenario

We know that the system is locally stable for all reasonable parameter values and glob-
ally stable for max|H'(X3)|. One could think that the most chance of finding limit
cycles in other areas of trapping region would be best if we change all the parameters
in such a way that max|H'(X3)| is much larger than one. We have mapped the influ-
ence on H'(X3) by changing one parameter at a time. Therefore we investigate the
above mentioned by using the parameter values given in table 11.3. For the use of

Worst parameters

Wy = 0.6,
wo = 0.6
ws = 0.613
p=1
i

1
5

joN
Il

Table 11.3: Worst case scenario of parameters.

the parameter values given in table 11.3 we have made a plot of H(X3) in figure 11.9.
As seen max |H'(X3)| = 14.4498. The steady state solution is (X1iss, Xoss, X3ss) =
(0.1628,0.1319,1.1143) and the trapping region is given by [0;0.4425] x [0;0.9739] x
[0;8.2305]. We have made a grid investigation in the region [0;10] x [0;10] x [0;10]
using a grid mask of 0.4 and a numerical integration corresponding to three days. The
investigation is seen in figure 11.10.

Summary of system without hippocampus

We have shown analytically that the unique fixed point is always locally stable for
reasonable values of a which is also found in the simulations.

From the grid investigation we see that initial conditions ’far’ from the fixed point
converge to the fixed point. Thus it seems that the fixed point is globally stable from
the simulations. Thus it is not likely that limit cycles exists.

When varying one parameter and keeping the other parameters fixed at their default
values we can define a subspace of the parameter space where the fixed point system is
globally stable. These parameters are w; > 1.27w; or if p or u have values u, p < 0.24.
We can also conclude that decreasing o decreases the gradient of H (except when av = 1).
Furthermore we have determined the behaviour of the value of the fixed point. Because
T3ss = ¢ perturbing o does not influence the value of the fixed point.
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H(xe)
L(x3) b
O Minimum grad=-14.4498

Figure 11.9: H’(X3) using the parameter values given in table 11.3 corresponding to
the ’worst case scenario’.

Ending values as a function of initial conditions

O  Steady state
Ending values
Initial conditions

X3 (Cortisol)

XZ (ACTH) 00 X]_ (CRH)

Figure 11.10: Grid investigation of the scaled system without hippocampal mechanisms.
This figure shows the ending value as a function of initial conditions using the parameter
values given in table 11.3 corresponding to the "worst case scenario’. All initial conditions
lead to solutions converging to the fixed point. The investigated region is [0; 10] x[0; 10] x
[0; 10] and the trapping region is [0;0.4425] x [0;0.9739] x [0; 8.2305].
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11.3 The system including mechanisms from hippocampus

In this section we will use the same approach as in the previous section. We will start by
investigating the system with hippocampus with the default parameter values for this
system as they are given in chapter 10. Then we will investigate the consequences of
changing one parameter while keeping the other parameter values fixed at their default
values. Since the behaviour of the scaled system is the same as the unscaled system we
will only investigate the scaled system.
The trapping region of the scaled system including hippocampal mechanisms is given
by
V= [0; 048/, ] x [0; A+8)/g,.5,] X [0; A0/, 5] - (11.10)

Using the default parameters this gives [0;0.6259] x [0;0.6496] x [0;2.5882].

To start with we plot L(X3) and H(X3) using the default parameter values. This is
shown in figure 11.11. One intersection occurs. The unique steady state of the system
using the default parameter values is Xss = (0.3324,0.2510,1). Note H(Xsss)/gx, > 0.
This assures F1(Xsss)/gx, > 0. This means the fixed point may be stable or unstable with
at least one positive eigenvalue and no complex eigenvalue with positive real part and
non zero imaginary part exists. Written in the legend box is also the maximum gradient
and the minimum gradient. The largest absolute value of the two is 0.57142 < 1. We
conclude that the system including hippocampal mechanisms has a globally stable fixed
point and therefore no limit cycles exists when default parameters are used.

Because of the global stability we will now investigate the effect of changing the
parameters. In this investigation we will focus mainly on how to maximize the possibility
of ultradian oscillations. This requires max |H'(X3)| > 1 on [0; A8/ g, wyd,)-

3 T
H(x,)
L(x;)
2.5} Minimum grad=-0.38374] |
O Maximum grad=0.57142
2r ]
15¢ b
1r ]
051 b
0 .
0 0.5 1 15 2 25 3
X3

Figure 11.11: H(X3) plotted as a function of X5 using the default parameter values for
the scaled system with hippocampus i.e. the parameters given in table 10.4.
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Investigation of a change in w;

An increase in w; will decrease the trapping region V' (from equation 11.10). Further-
more we see in analogy to the calculations made for the system without hippocampal
mechanisms that when all other parameters are fixed at their default values we are
guarantied global stability for

Wy w3 > 0.5714215) 1a1i3 . (11.11)

Investigation of a change in «

First we will investigate the effect that o has on max|H'(X3)|. Since « still has an
effect on the maximum gradient in the Hill functions we expect the maximum gradient
will increase when « increases. But now it is not as simple as in the system without
hippocampus. For the system including hippocampus « figures in both the negative
feedback in the pituitary gland as well as in the negative feedback in hypothalamus and
in the positive feedback in hippocampus. On figure 11.12 we have shown H(X3) with
a=1,2,3,4,5.

We have investigated max |[H'(X3)| as a function of o for @ = 1,2, 3,4, 5. The results
of the numerical investigations are given in table 11.4. For a € 2,3,4 the fixed point
is guaranteed globally stable. As in the system without hippocampus changing the
parameter a does not change the steady state solution of the system. This is also seen
in figure 11.12 where the steady state of X3 corresponds to the intersection between
L(X3) and H(X3). It is worth noting there is only one intersection meaning there is
only one fixed point for a € {1,2,3,4,5}.

15
.
1f ]
\ /
\_/
05F L(X){1
a=1
a=2
a=3
a=4
oa=5
0 . .
0 0.5 1 15

X3

Figure 11.12: L(X3) and H(X3) for five different values of a. All other parameters are
fixed at their default values.
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| o |
1| 12041
2 | 0.30161
3 057142
4| 081411
5| 1.0395

Table 11.4: max |H'(X3)| as a function of « in the scaled system including hippocampal
mechanisms. When all other parameters are fixed at their default values.

Investigation of a change in ~

Now we turn our attention to . This parameter also determines the steepness of a
Hill function. But where « figured in both a positive feedback and a negative feedback
function v only figures in the negative feedback function in hippocampus. Therefore
one would expect that the higher the value of v the steeper decent in the beginning
of H(X3) because v is the power entering the Hill function with highest affinity. On
figure 11.13 we have shown the graph of H(X3) with v € 1,2,3,4,5. In figure 11.13
it is seen that both max |H'(X3)| and the intersection between L(X3) and H(X3) and
thereby the steady state values is changing as a function of . Table 11.5 summarizes
the investigation of these changes. It is worth noting that an increase in v gives a
decrease in the steady state concentrations. Fixing all other parameters at default
values then for all reasonable values of v we are guaranteed that H is a contraction.

15
i L(Xy) |
1.4 V=1
L y=2 |
13 3
12} y=4 1
y=5
1.1} _
1t A
0.9} / ]
osf N ‘
0.7} A
0.6} g
0.5 ‘
0 0.5 1 15

X3

Figure 11.13: L(X3) and H(X3) for five different values of 4. When all other parameters
are fixed at their default values.
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| max |H'(X3)| | Steady state |

0.92936 (0.4065,0.2844, 1.1333)
0.5914 (0.3620,0.2672, 1.0646)
0.57142 (0.3224, 0.2510, 1.0000)
( )
( )

0.59729 0.1768,0.1716, 0.6837
0.63876 0.1617,0.1598, 0.6369

U W N~ |2

Table 11.5: max |H'(X3)| and the steady state solution as a function of v in the scaled
system including hippocampal mechanisms. All other parameters are fixed at their
default values.

This guarantees a globally stable fixed point.

Investigation of a change in c3

In figure 11.11 there is a characteristic well in H (X3) with a minimum for X3 ~ 0.5. This
valley comes from the negative feedback in hippocampus. The parameter ¢z determines
the affinity for the negative feedback in hippocampus and thereby the value of X3 for
where the before mentioned valley is situated. A decrease in the parameter ¢ would
mean an increasing affinity and thereby move this valley to the left. In figure 11.14 we
show H(X3) when varying ¢3. Denoting the changed parameter by ¢5 we have changed
the parameter such that c:g, = 1/563, 023 = ¢3 and 023 = 2¢3. This corresponds to the
affinity for cortisol binding to MR being respectively 20, 10 and 5 times that of GR. As
seen on figure 11.14 ¢3 is also determining the depth of the well. This is because the
Hill functions enter into the overall feedback additively.

It can also be seen that ¢3 has an effect on H'(X3) and the steady state solution.
The effect is shown in table 11.6.

‘ Cs ‘ max |H'(X3)] ‘ Steady state ‘
1/acs 1.4265 (0.2979,0.2380,0.9483)
C3 0.57142 (0.3224,0.2510, 1.0000)
2¢3 0.4271 (0.3881,0.2837,1.1306)

Table 11.6: max |H'(X3)| and the steady state solution as a function of ¢ in the scaled
system including hippocampal mechanisms. All other parameters are fixed at their
default values.

Moreover the steady state solutions are locally stable.

Investigation of a change in p, 1) and ¢

As seen in the investigation of p and p in the system without hippocampus the pa-
rameters in front of the Hill functions affect the steepness of H'(X3). Including the
hippocampal mechanisms include a positive feedback with prefactor £ thus an increase
in £ increase the largest positive gradient of H(X3) whereas an increase in ¢ and p
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give an increase in the absolute value of the largest negative gradient. Furthermore
an increase in £ cause an increase in the trapping region whereas the trapping region
does not depend on 9 and p. To illustrate this we have made four graphs of H(X3)
on figure 11.15. One where all values are at the default values. The rest only have on
parameter perturbed: £ =4, p =1 and 1) = 1. The effect of changing these parameters
on max |H'(X3)| and the steady state solution is written in table 11.7. Some combina-
tions guarantees globally stable fixed points and some do not. However all steady state
solutions are locally stable.

| Parameter values | max |H'(X3)| | Steady state |
(&, p) = (2,0.5,0.5) 0.57142 (0.3224,0.2510,1)
(&, p) = (4,0.5,0.5) 1.5988 (0.8404,0.4883,1.9455)
(&9, p) =(2,1,0.5) 1.0921 (0.1379,0.1337,0.5327)
(&, p) = (2,0.5,1) 0.559 (0.2403,0.1812,0.722)

Table 11.7: The effect on max |H’(X3)| and steady state when changing the parameters
&, 1 or p. All other parameters are fixed at their default values.

Three steady state solutions

In this section we have investigated the behaviour of changing the parameters in the
system including hippocampal mechanisms. It is obvious that we are able to change

15

0.5 ]
L(X3)
~03:O.503
~c,=¢,
~03:2c3

0 .
0 0.5 1 15

X3

Figure 11.14: H(X3) shown when varying ¢3. All other parameters are fixed at their
default values. Because of notational difficulties in matlab c3 corresponds to ¢3 and c3
corresponds to cs.
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H(X3) for different parameter values

3 ,
L(Xy)
— (&W.p)=(2,0.5,0.5)
250 —— (§,4,p)=(4,0.5,0.5) ]
— Ey.p)=(21,0.5)
— (E.W,p)=(2,0.5,1)
2 i -
15f |
1 i -
]
0.5} e |
0 ‘
0 0.5 1 15 2 25 3
X3

Figure 11.15: H(X3) for different values of (£,vp). All other parameters are fixed at
their default values.

the parameters in such a way that there will be one, two or three intersections between
H(X3) and L(X3). For what we believe to be reasonable parameter values we see only
one intersection and thereby only one steady state solution which has been locally stable
for all choice of parameter values. We will now investigate what dynamics that occur
when there are three steady state solutions.

We start by using the default parameters and then use the knowledge about the effect
of changing one parameter while keeping the rest at default values. The first thing we
need to do is to move the minimum of the previously mentioned well down and/or to
the right. From figure 11.12, 11.13 and 11.15 we know that an increase in «, v and
have this effect. Thus by using the parameter values of (a,v,v) = (5,5, 1) and all other
parameters fixed at their default values we obtain the graph of H(X3) shown in figure
11.16. The steady state solution is given by (X5, Xoss, X3ss) = (0.1133,0.1164,0.4637)
and it is locally stable.

Now we wish to increase max H'(X3). From figure we know that an increase in £
will give the desired effect. Using the parameters (a,v,¢,&) = (5,5,1,4) we obtain
three intersections and thereby three three steady state solutions. This is shown in
figure 11.17.

So we see that with a continuous change in parameters additional fixed points will
emerge i.e a bifurcation occurs. A qualitative bifurcation diagram can be seen in figure
11.18. In this figure the qualitative change in number of fixed points and their local
stability is seen as a function of &.

If we denote the steady state solutions as X4 where ¢ € {1,2,3} and letting the
lowest value of ¢ correspond to the lowest value of X3 that appears in the steady state
solution we get that X.s; = (0.1170,0.1199,0.4779), X2 = (0.2223,0.2018,0.8039)
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LX)
H(X,)

151 1

0.5 b

Figure 11.16: H(X3) for choice of parameters (a,v,) = (5,5,1) and all other param-
eters fixed at their default values.

LX)
H(X,)

151 1

0.5 b

Figure 11.17: H(X3) for choice of parameters («,v,%,£) = (5,5,1,4) and all other
parameters fixed at their default values.
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Qualitative bifurcation diagram

Stable steady state
551 +  Unstable steady state

Figure 11.18: Qualitative bifurcation diagram. The number of fixed points and their
local stability as a function of €.

and X3 = (0.7827,0.4315,1.7194). The eigenvalues of Jacobian evaluated at the three
different steady state solutions are given in array 11.12.

det (J[x_, —IN) =0 < X € {—4.8810, —0.5635 4 0.5096i, —0.5635 — 0.50961 }
det (J|x, , —IN) =0 & X € {—4.5500, —1.7146,0.2567}
det (J[x_ —IN) =0 & X e {—4.7727,—-1.0010, —0.2342} . (11.12)

Thus from array 11.12 we see that the local stability of the three steady state solutions
is such that X4 is stable, X45 is unstable and X3 is locally stable.

To investigate the dynamics for these values of the parameters we have made a
grid investigation of this system. The trapping region for this choice of parameters is
[0;1.0431] x [0;1.0826] x [0;4.3137).

First we will investigate if all solutions enters the trapping region. This is done by
making a grid investigation in the region [0;10] x [0;10] x [0; 10] with a grid mask in
the initial conditions of 1. The time of the simulation corresponds to three days. Four
different colors are used to represent the different ending values as a function of initial
conditions. Initial conditions with solutions converging towards Xss; are marked by a
green dot. Initial conditions with solutions converging towards Xsso are marked by a
black dot and initial conditions with solutions converging towards Xs3 are marked by a
yellow dot. The three steady state solutions are marked by a red ring and the solution
value of the last simulated time are marked by a blue dot. The grid investigation is
shown in figure 11.19.

As seen on figure 11.19 all solutions converge towards one of the two stable steady
state solutions. Most of the solutions converge towards X s3. We expect this to be
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Figure 11.19: Investigation of points of convergence for different initial conditions. The
initial conditions are marked by a yellow dot if the solution have converged to X,43 and
a green dot if the solutions have converged to Xs1. For all solutions the last solution
value was plotted as a blue dot. As seen these are all situated in the two stable steady
states.
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Figure 11.20: Investigation of points of convergence for different initial conditions. The
initial conditions are marked by a yellow dot if the solution have converged to X,s3 and
a green dot if the solutions have converged to Xs1. For all solutions the last solution
value was plotted as a blue dot. As seen these are all situated in the two stable steady
states.
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because most of the initial conditions are situated at much larger values for each com-
ponent than the components of X 3. In figure 11.19 we see that very few solutions
converge to X,41. Furthermore there are no solutions that do not converge to one of
the two stable steady states. For this reason it does not seem likely that oscillations
should occur even in the case of three steady state solutions.

Since the steady state solutions are situated close to each other and the solutions
seems to converge towards these we have decided to make a smaller grid investigation.
We make this in the region [0; 1] x [0; 1] x [0;2] with a grid masking of 0.1. This can be
seen in figure 11.20

As seen the different initial conditions now cause the solutions to converge towards
either X 41 or X,s3 which are locally stable. Still there is no sign of oscillations.

In section 8.4 we presented a demand for a Hopf bifurcation to occur when £ > 0.
The demand was

Vs > fay > (W2 + 1i3) (W1t + Wi ls + Watd) + 1 (Wa + 1W3) . (11.13)
If we insert the default parameter values we get
v > 20.15. (11.14)

This is an unreasonable high value of ~.

11.4 Summary of numerical analysis of the system including
hippocampal mechanisms

The default parameters give max|H’(X3)] < 1 on the part of the trapping region
corresponding to X3. This guarantees that a unique fixed point exists and it is globally
stable. By varying one parameter at a time and keeping all other parameters fixed at
their default values global stability of the unique fixed point 1s guaranteed for w, wg’LUg >
0.57142u a3, € {2,3,4}, v € {1,2,3,4,5}, p=1 and é3 = 265.

Perturbing one parameter within (what we consider as) reasonable values does not
result in an unstable steady state. No limit cycles are detected within the trapping
region.

Perturbing several parameters at the same time cause a bifurcation and thereby
three steady state solutions. Two of the steady state solutions are locally stable and one
is unstable with no complex eigenvalue with positive real part and non zero imaginary
part. The grid investigation inside the trapping region for the system using these specific
parameter values showed that solutions within the trapping region converge to one of
the two stable fixed points.

The overall conclusion is that the chances of ultradian oscillations of the system
seems to be minimal.

11.5 Including external function to model the circadian rhythm

In this section we wish to investigate how to model the circadian rhythm. In previous
work this has been done by introducing a trigonometric function additively to the
differential equation governing the concentration of CRH.
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Since we are not able to achieve the desired ultradian oscillations this section will
not be an in depth analysis but more an investigation out of interest.

In the following we have used the same approach as previously work. Since we do
not have CRH data we will assume the circadian rhythm of ACTH to be the same as
the circadian rhythm of CRH. We use fast Fourier transformation on our data to get
the amplitudes of the first frequency. These frequencies and amplitudes will be our
first guess to model the circadian rhythm. Since the previous work on estimation of
parameters have been done on the healthy control people from the confidential data we
will also use the mean circadian rhythm from these people.

To illustrate how to include the circadian rhythm we have chosen individual number
eight from the confidential attachment. Using fast Fourier transformation we have
masked the data. On figure 11.21 the data is presented using only the first 20 frequencies.
Furthermore the circadian rhythm is shown. The circadian rhythm of this individual is

ACTH data from individual number 8 in the confidential attachment.
Data is presented by means of fast Fourier transformation using the smallest 20 frequencies
The circadian rhythm is presented as the first frequency of the transformation.
65 T T T T T T T T T T T
Data
60 Circadian rhythm|
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Figure 11.21: Masked data and circadian rhythm.

given as
f(t) = 28.8118 — 8.4992 cos (27/1440t) + 5.5438 sin (27/1440t) . (11.15)

The units of the circadian rhythm is concentration. 28.8118 represents the mean value
of ACTH. Since we wish to model the circadian rhythm on CRH and not on ACTH we
express equation 11.15 in terms of the mean value @5, that is

f(t) = 29 — 0.29525 cos (2'”/144075) + 0.192425 sin (277/144015) . (11.16)

Since we are now dealing with a single individual we wish to determine the specific
parameters of this individual. We will use default parameters for all parameters except
k;. These parameters will be determined from the mean hormone level of this specific
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individual. This is done as in chapter 10. The specific mean hormone concentrations
of this individual is

Tp = 28.8118P9/1py

i3 = 0.05 - 5.0945 = 0.254719/qy = 2.54779 1 . (11.17)
(11.18)

The reader should remember that we only model the free cortisol but our data present
the total amount of cortisol, both free and bound.

Since we do not have any data on CRH we will use the mean value of CRH that
was presented in chapter 10. Estimating the parameters for this individual we get table
11.8.

‘ Parameter ‘ Our values ‘
ko 0.85876Pg/m1. min
k1 0.17471 /min
ko 8.0202:107*1/min
w1 0.173291/min
wo 00348321/m1n
w3 0.0090726/min
p 0.5
P 0.5
13 2
« 3
¥ 3
c 2.547n8/ 11
c3 1.1822n8/1

Table 11.8: Parameter values for the system including hippocampus for individual
number 8 in the confidential attachment.

As we have seen in the previous sections a unique, stable fixed point exists. Then
we investigate the effect of adding the circadian rhythm in the differential equations
governing x1. The parameter A is the amplitude and the unit of A must be 1/min. This
parameter is necessary to avoid negative concentration.

So we achieve the following non autonomous system of differential equations

dzq z§ xg

M (1 _ _

dt 0 < Jrgxg‘j—i—co‘ wgcg—&—cg .
+A (0.295 cos (27"/144ot) + 0.1924 sin (2""/1440t))

d a
2 =k (1—/) 3 >SE1—U/2£U2

dt g +c*
dx
ditg :Ifg.’ﬂQ — WsTs3 . (1119)

We have simulated this system with A = 0.11. The result for the concentration of
ACTH is shown in figure 11.22 the simulation has been run for what corresponds to
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three days. As seen it takes about a day for the system to be governed only of the time
dependent input function.

On figure 11.23 the simulation of day three is shown, also the fitted circadian rhythm
of ACTH is shown. We find the result reasonable compared to only changing the
parameter A.

It seems that the peak of the circadian is shifted a little to the left. Therefore it
seems as if the effect in hypothalamus does not affect the pituitary gland immediately.
From figure 11.23 we see that the circadian rhythm seems to be shifted about 90 min.
This means that if a phase difference about 90 min is reasonable we can model the
circadian rhythm as

dz; x§ osg
k(1 _ —
7 0( +£w§+ca ¢x§+c§ w1
+A (0.295 cos (27/1440 (t + 90)) + 0.1924 sin (27/1440 (¢t + 90)))
dxo x5
— =k |1 - p——— —
i 1 ( ng n ca> T1 — W22
dx
7; :kgxg — ws3x3 . (1120)

If one wanted of course variation in amplitudes of both the sine and cosine function
could give a better match.

In figure 11.24 and figure 11.25 we have plotted twenty first frequencies of the fast
Fourier transformed data of person number eight along with the fitted diurnal rhythm
and the simulation carried out using the above mentioned parameters for both ACTH
and cortisol. These figures are without phase difference.

As seen in figure 11.24 and 11.25 the peak of the circadian rhythm seems to be
shifted approximately 90 min. Therefore we have chosen to show the simulations from
the system where there was a phase difference on 90 min on the external input in
hypothalamus. These simulations are seen in figure 11.26 and 11.27.

As seen the amplitude of the simulated circadian rhythm of cortisol is too small.
Maybe this can be improved by decreasing the value of the parameter p.

We find that the circadian rhythm imposed on the derivative of CRH in hypothala-
mus seems to give a good representation of the circadian rhythm in both cortisol and
ACTH. We are a bit puzzled about the fact that a phase difference of 90 minutes gives a
better fit of the position of the peak in the circadian rhythm. Furthermore there seems
to be a delay of the circadian peak in cortisol compared to that of ACTH on around
90 minutes. This is seen in both the data and our simulation. We find it surprising
that there seems to be an inherent delay between the two compartments. We have not
studied enough data to know if this is a characteristic that the HPA axis is supposed
to have. We therefore leave this for further studies.
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ACTH plottet as a function of time.
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Figure 11.22: The circadian rhythm from fast Fourier transformation and the solution
curve to array 11.19 of ACTH using the parameters given in table 11.8 and A = 0.11.

ACTH plottet as a function of time.
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Figure 11.23: The circadian rhythm from fast Fourier transformation and the solution
curve to array 11.19 of ACTH using the parameters given in table 11.8 and A = 0.11.
Here we only show day three.
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ACTH as a function of time.
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Figure 11.24: The twenty first frequencies of the fast Fourier transformed ACTH data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11.
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Figure 11.25: The twenty first frequencies of the fast Fourier transformed cortisol data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11.
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ACTH as a function of time.
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Figure 11.26: The twenty first frequencies of the fast Fourier transformed ACTH data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11. There has
been implemented a phase difference of 90 min in the external function.

Cortisol plottet as a function of time
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Figure 11.27: The twenty first frequencies of the fast Fourier transformed ACTH data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11. There has
been implement a phase difference of 90 min in the external function.
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First we summarize some of the main results of our models. We have expanded the com-
plexity of our models of the HPA axis and tried to generalize the arguments along with
this. Quite often the same kind of arguments were used. However reusing arguments
on different systems emphasize some common properties of the systems. Therefore it
became possible to generalize after these special cases has been considered. In this
overview we will revert the order and start with the most general results.

12.1 Most general results

With a scaling making concentrations and time dimensionless all our models are con-
tained in the following differential equations 12.1. The autonomous system of differential
equations is without circadian stimulation on the derivative of CRH.

X1 =F(X3) — i1 X,
Xy =F»(X3)X| — w2 X5 (12.1)
X3 =Xo5 — w03 X3.

with 01,9, w3 > 0 and with the following criteria on Fj(X3), Fo(X3) (using D =

Ry U{0})

F\,Fy: D — D, F1(0) >0, F5(0) > 0, sup(Fy (D)) < M; € D, sup(Fy(D)) < My €
D, Fy,F, € C*, VX5 € D.

Fy and Fy are bounded functions mapping non negative numbers to non negative
numbers. The boundedness of the feedback functions can be justified by a saturation
mechanism of the receptors that cortisol must occupy in order to perform a feedback.
When there is no cortisol the feedback functions must not totally inhibit positive stim-
ulation of hormone production. Therefore F;(0) > 0 and F5(0) > 0.

From this very general model we can conclude

« FExistence and uniqueness of solutions is guaranteed by theorem 3.1.

Trapping region

e Non negative initial conditions lead to solutions that stay non negative for all
future time.

o A trapping region exists V = I1(0) x I3(0) x I3(0) meaning that solutions in U
stay the region stay bounded for all future time.

e Solutions with non negative initial conditions outside the trapping region converge
to or enter the trapping region with increasing time. This assures the ’interesting’
dynamics of the system is contained in the trapping region since e.g. fixed points
and limit cycles cannot exist outside the trapping region.

130
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Fixed points

e At least one fixed point exists within the trapping region.

ﬁ)@lﬂ.% A (XdS))(fQ(XE‘)) < 1 on I5(0) then only one fixed point exists.

* AM(Xs)/yx, < 0and 42(X3)/yx, < 0, VX3 € I5(0) guarantees w1£2u~)3 d(Fl()if’))(?(XB)) <

1, VX5 € I5(0). Therefore if F;(X3) and F»(X3) corresponds to a nega-
tive feedback for all concentrations then the fixed point is unique.

Stability of fixed point(s)
e Assume 4F2(X3)/yx, < 0, VX3 € D. This corresponds to a negative feedback from
cortisol on ACTH. This assumption is used for the following characterization of
fixed points and for our two models this assumption is also used.

The characteristic polynomial at the fixed point is on the form
P()\) :/\3+041/\2+042)\—|-Oé3.

o If dFi(Xsss)/yx, < O the stability of the fixed point is determined by sign(ajos —
043).

— If ayas — ag > 0 the fixed point is stable.

— If ayag — a3 < 0 the fixed point is unstable and the roots of the characteristic
polynomial have one real, negative root and a set of complex conjugate roots
with positive real part and non zero imaginary part.

— If a continuous change in a parameter leads to continuous change in ay g — a3
from negative to positive values then a Hopf bifurcation occurs where a limit
cycle is guaranteed (however it may be of physiologically irrelevant size).

o If dF1(Xsss)/yx, = 0 the fixed point is stable.
o If dF(Xss5)/qx, > 0 the stability of the fixed point is determined by sign of as.

— If g3 > 0 the fixed point is stable.

— If ag < 0 the fixed point is unstable. There is at least one real, positive
root of the characteristic polynomial. In case of complex roots with nonzero
imaginary part then the real part is negative.

— A Hopf bifurcation is impossible if a continuous change in a parameter leads
to ag continuously changing from negative to positive values.

This listing of different cases will now proceed as we make some further restrictions
on the feedback functions.

o If 1 |d(F1()if'))(F2(X3))| < 1, VX3 € I5(0) then only one fixed point exists
1Ww2w3 3

and the fixed point is globally asymptotically stable. This is a major result that

eliminates the possibility of existence of limit cycles of systems where cortisol can

exert positive as well as negative feedback on CRH.

12.2 Results of model including hippocampal dynamics

Now we focus on the results of our model including hippocampal mechanisms where four
feedbacks occur. One negative feedback from cortisol on ACTH, a negative feedback
from cortisol on CRH in hypothalamus and a negative as well as a positive feedback
from cortisol on CRH acting through hippocampal receptors. This lead to the feedback
functions
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with p € [0; 1].

X X7
Fi(X3) =1 3 — 3 12.2
1(X3) +£1+X§“ ¢€37+Xg’ (12.2)
with € > —1, ¢ € [0; 14+ & N[0;1], & > 0 and «,y are a positive integers.
Xa
Fy(X3)=1- 3 12.
2( 3) pl—f—Xél ) ( 3)
If

Loy (12.4)

w1Wa2wWs

then exactly one fixed point exists.

For small values of £ only one fixed point exists. However increasing the value of
& make more steady state solutions possible.

A necessary condition for a Hopf bifurcation is dF1(Xsss)/3x, < 0 at some fixed
point and

Veg = Py > (o + b3) (Wrtde + wWrtds + wietiz) + w12 (W +w3) for € >0.

(12.5)

This condition requires unphysiologically large values of v for physiologically val-

ues of ¢3, w1, wo and ws.

Simulations show that in the case of one fixed point this is stable. Another

observed case is three fixed points. In this case the larger and lower value of X34

corresponds to stable fixed points and the one in the middle is unstable with one

real, positive root of the characteristic polynomium and no complex roots with

nonzero imaginary parts have a positive real part. This means at this fixed point
dF1 (X3ss)
ax, — > 0.

For all simulations the long term behavior of solutions showed ’convergence’ to
a fixed point. This was investigated for one and three fixed points of the system.
Therefore the possibility of existence of limit cycles seems minimal. In the case
of three fixed points the trapping region seemed to be divided into one bassin of
attraction for each stable fixed point.

Moreover we were able to determine conditions for each parameter that guar-
anteed global stability of a unique fixed point. This was determined when all
other parameters were fixed at their default values. Using default values for all
parameters guarantee a globally stable fixed point.

12.3 Results of the model excluding hippocampal mechanisms

Now we focus on our model not including hippocampal mechanisms which means that
there is a negative feedback on CRH from cortisol

%);3) < 0 on D ensures exactly one fixed point.
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We have considered some specific choices of Fj(X3) and F»(X3) based on receptor
dynamics.

Xg
Fi(Xo) =1 - iy (12.6)
3
Xa
Fy(Xs) = 1= pp—icz (12.7)
3

with p, ¢ € [0;1] and « is an integer value.

o All solutions enter the trapping region in finite time.

e The fixed point is asymptotically stable for a < 8 which means the fixed point is
stable for reasonable values of v and a Hopf bifurcation of the fixed point is thus
impossible.

o Physiologically relevant parameters are found from literature. The remaining
parameters are estimated from an assumption that the fixed point value is at the
mean value of the hormone levels.

— All simulations show solution curves converging to the unique fixed point.

However max L d(F1(Xs) Fa(X5))
w1w27f)3 dXS

were able to determine the size of perturbation to one of the default pa-

rameters that caused max‘ 1 d(Fl()?))(?(X“)

> 1 using default parameters. We

Fr— < 1 which analytically
1W2wW3

guarantees a globally stable fixed point.
— All simulations of the long term behaviour of solutions converged to the fixed

point. Therefore existence of limit cycles seem unlikely.

12.4 Comparing the results to state of the art models

This discussion aim trelate the results of this projecte to state of the art models of
the HPA axis especially the models of Kyrylov et al and Jelic et al. that have already
been described. Kyrylov et al. investigate a five dimensional model of the HPA axis
[1]. Assuming fast dynamics between the bound forms of cortisol the model can be
reduced to a three dimensional model. Except for the direct CRH -cortisol stimulation
bypassing ACTH the model without bound forms of cortisol has also been investigated
in a previous work of Kyrylov et al [23]. The idea of investigating a linear system first
is used. Using (problematic) parameters the predominant result is a set of complex
conjugate eigenvalues with non zero imaginary part and one real negative eigenvalue.
Then non linearities are added. The non linearities ensure that hormones do not become
negative and make sure that the derivative of the concentrations have an upper bound.
No argument that the concentrations are bounded is used. Comparing to our model with
or without hippocampus the saturation mechanisms from receptor dynamics make sure
that the concentrations are bounded and also it is evident from the differential equations
that the concentrations cannot become negative when the initial conditions are non
negative. This means a trapping region exists for our system which is a physiological
desirable property that makes sure solutions having 'reasonable’ values at some time
stay ’'reasonable’ for all future time. Thus in our model the non linearities are an
inherent part of the model build on physiological reasoning.

Jelic et al. [2] describes the mechanisms of hippocampus that we have used in one of
our models. However Jelic et al. disregards the feedback from cortisol on CRH and the
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system of differential equations follow from a reaction scheme that lacks justification.
The system is non trivially reduced from a four dimensional system to a two dimensional.
Then a limit cycles exists due to the assumptions of the values of parameters and by use
of Theorem of Poincaré-Bendixon that may only be applied on twodimensional systems.

The conclusion of our work is thus inconsistent with the conclusions in [2] and [1].

In our view the field in general is characterized by diverging papers. For example
[6] argues that ACTH and CRH can be pooled in one compartment since the two
concentrations ’have a strong and fast synchrony’. This is inconsistent with [2] where
the CRH dynamics is considered slow compared to the ACTH dynamics thus leading to
the assumption dCRH/;, = 0 while still considering the dynamics of ACTH. Nevertheless
[6] cites [2] without pointing out this important difference in the approaches. Another
problem in general is the description of the ultradian oscillations of the system. Some
authors [1, 2] argue that these should be inherent to the system. Other authors [3, 6]
argue that the fixed points are stable. In case ultradian oscillations are considered this
behavior is simply a response to an outer, ultradian stimuli (a forcing function with
ultradian frequency) as in [3].

12.5 Typical mathematical approaches when non linear differential
equations are used for modeling

Only rarely can a non linear system of differential equations be solved. However often
it is still possible to show existence and uniqueness of solutions using theorem 3.6. In
the two dimensional case the Poincaré Bendixson theorem may be used to guarantee
existence of limit cycles. Comparing the model to reality can be done using numerical
integration of the differential equations. This requires choice of parameters as well as
initial conditions. This approach give a finite number of solutions of the differential
equations for specific parameters and initial conditions. If e.g. no periodic solutions are
observed then one may be tempted to say there is no periodic solutions of the system
in general. However investigating a finite number of solution curves in a continuum of
solution curves can never constitute a proof. Then what can be done? Some look for
Hopf bifurcation of fixed points since this guarantees existence of a limit cycle (however
the limit cycle may be so small that it is not physiologically relevant). This resembles
the approach of Kyrylov et al. where the interesting results for the linear system is a
set of complex conjugate eigenvalues with real part and one negative real eigenvalue.

Savic and Jelic [3] make models of the HPA axis using CRH, ACTH and cortisol as
variables. They make models of increasing complexity as the model fail to show oscilla-
tions. Since the fixed point of their models are stable no Hopf bifurcations are possible.
From this they conclude that no periodic solutions are present and the ’systems’ are sta-
ble. However there is quite a long way from a fixed point being locally stable to globally
stable. Their analysis showed that the system is locally stable and no simulations were
used to show that initial conditions ’far’ from the fixed point would be attracted to the
fixed point. Because stability of fixed points is one of the few things that often can be
analyzed rigorously then failure of limit cycles through Hopf bifurcations may wrongly
be converted to an argument that no limit cycles exists for the system in general.
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12.6 Inclusion of circadian rhythm

In analogy with previous work we decided to model the circadian rhythm additively
in the differential equation governing CRH. Under the assumption that the circadian
rhythm is caused by external factors like sunlight etc. a splitting of the dynamics of
circadian and ultradian oscillations seems physiologically relevant.

Because of our access to data of ACTH and cortisol we reasoned that the circadian
rhythm could be presented as the first component of the fast Fourier transformation.
A hypothesis that the circadian rhythm in CRH could be modeled by a scaling of
the circadian rhythm in ACTH gave reasonable results. Although we did not make
an in depth analysis of the circadian rhythm we were able to conclude that adding a
trigonometric function in the differential equation governing CRH was able to show
the circadian rhythm in ACTH and cortisol. When reaching this conclusion we found
it puzzling that a delay of 90 minutes lead to almost perfect fit in the peaks of the
circadian rhythm in both ACTH and cortisol.

12.7 Conclusion

We have made two deterministic models of the HPA axis containing well known phys-
iological mechanisms. A trapping region is found for both models and all solutions
outside the trapping region converge to or enter the trapping region. This guarantees
that solutions to the system correspond to reasonable levels in hormone concentration.
All fixed points of the systems are located inside the trapping regions.

For the model without hippocampus a unique fixed point exists. For physiologically
reasonable parameters it is analytically shown that this fixed point is stable thus a Hopf
bifurcation causing a limit cycle is impossible.

We have made a thorough investigation of fixed points and stability of fixed points
searching for ultradian oscillations. We put forward an easily applicable criteria on the
feedback functions and parameters that guarantee existence of a globally stable fixed
point. This criteria is fulfilled for some sets of physiologically reasonable parameter
values for both models.

Using physiologically reasonable parameter values for both models no oscillating
solutions are found. In some cases analytical arguments are applied and in some cases
numerical investigations are used. All simulations showed the long term behaviour of a
solution is convergence to a fixed point.

The generality of many of our results rules out existence of periodic solutions in a
range of three dimensional models with feedback functions.

We can conclude that an external imposed function on CRH is able to produce the
circadian rhythm in both ACTH and cortisol.



13 Discussion: Modeling of HPA axis
including time delay

In the models of the HPA axis considered in this project the derivative of the cortisol
concentration depends on the instant value of the ACTH concentration. However it
takes some time for ACTH to move with the bloodstream and stimulate the adrenal
glands to create cortisol. Therefore it makes sense to include a time delay 7 which
is needed before ACTH stimulate the cortisol production such that the derivative of
cortisol depends on ACTH(t — 7) instead of ACTH(¢). The argument for a time delay
from ACTH to cortisol can be made to all cites where one hormone is affecting another
hormone. Either by a delay caused by the transport with the bloodstream and/or time
of receptor binding.

Including a time delay in differential equations may have a destabilizing effect [19].
Therefore inclusion of time delays may force a stable fixed point into an unstable fixed
point which may lead to a limit cycle.

Including time delays the system of differential equations with no diurnal input on
the CRH derivative can be written (modifying array 8.5 by including time delays)

dry _ (st — 1))~ (z3(t —72))°
o (1 (@t -+ e Pt —m)e + e
(@t =) —wiw
w(JTs(t—Ts))”‘f'Cg) o
dl‘g - _ (IS(th‘l))a T — ) — wox
o (1 "’(x3<t—u>>a+ca> 1E =) — et
dl‘g
@

Zkgxg(t - T6) — W3T3 . (131)

Since a fixed point solution has the property that x.s(t1) = x4s(t2) for any ¢; and
to we can find the fixed points for the simpler case with 7 = 79 = 173 = 74 = 75 =
76 = 0. This means that there exists at least one fixed point due to our previous
analysis. However when finding the stability of the fixed points the time delays cannot
be neglected. It can be much more difficult to analyze this than the corresponding
system without time delay.

The time delay model of Savic et al.

A model without hippocampal mechanisms has been investigated analytically by Savic
et al. in[4]. The model corresponds to array 13.1 with the choice of parameters ¢ =
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Y=0and a=1.

dxy x3(t —71)
— =k |l —p—7— ] —
dt 0 ( ul‘g(t*T1)+C e

@ :k‘l (]_ — xS(t_T4) ) xl(t—ng) — WaT2

dt pxg(t—u)—i—c
d
% :kzmg(t — Tg) — wsx3 . (132)

The analysis of Savic et al. can be categorized as

o The system with all time delays equal zero result in a stable fixed point (this also
follows from our previous analysis).

o Rouché’s theorem! is used to compare the eigenvalues of the system with zero

time delays to the system with arbitrary, positive values of the time delays. This
smart approach requires a choice of a contour that defines the domain where the
eigenvalues from the two systems are compared.

e Savic et. al finds a sufficient criteria for the system to have a stable fixed point,
that is B > 0 with

B = abXi,, + (b(1+2a) — u) X2, + (a + 2b — ub) X3zes + 1. (13.3)

Here a = 1 — p and b = 1 — p. The value of X355 = #3ss/k, is estimated from
X3ss = 10n9/qr, = 276nmol/ K, = 18nmol/y giving X5.; = 15. Inserting this in
13.3 Savic et al. claims that B > 0. This means that no time delays can force the
stable fixed point into an unstable fixed point.

We investigate the condition B > 0 by inserting for a and b.

(L= =p)+ (@ —p)+ (1 —p)Xses +1. (13.4)

For uy = p =1 we get By1 = —X3,, + 1. Since X355 ~ 15 then B;; < 0. Thus for
large values of 1 and p the conditions for applying Rouche s theorem are not fulfilled
by the argument of Savic et al. It is worth noting that Savic et al. assumea < 1, b < 1
meaning that g and p are close to 1.

It should be noted that for p = 74 = 74 = 75 = 0, u = 1 the system 13.2 is
mathematically equivalent to a system modeling the testosterone production [19]. Here
sufficiently large values of 74 leads to a Hopf bifurcation. Since this choice of parameters
give a subset of the cases considered by [4] it should be clear that the argumentation
of the asymptotic stable fixed point in [4] is deficient. However it may be the case that
the fixed point in array 13.2 is stable for physiologically relevant parameters and time
delays. It just means we have no knowledge about it.

! In [32] Rouché s theorem is stated for a complex variable z as: 'If two functions f(z) and g(z), are
analytic inside and on the closed contour C, f(z) has no zeros on C and |f(z) — g(2)| < |f(2)| on C,
then g(z) and f(z) have the same number of zeros inside C".
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A simpler model including delay differential equations by Savic and Jelic

Savic and Jelic [3] have investigated a system very similar to the model of testosterone
but with the conclusion that physiologically relevant parameters does not lead to a
Hopf bifurcation. We will discuss this now since we disagree with their reasoning and
conclusion.

The model in [3] is contained in the model in [4] since array 13.2 reduce to the model
in [3] by a restriction of parameters 71 = 74 = 75 = 0.

dxl :kio (1 — K 3 ) — W11

dt

xr3 +c¢
dl‘g I3
22 ke 1= _
i 1 ( pxg +C) L1 — W22
d
% =koxa(t — 76) — w33 . (13.5)

One fixed point exists and it is stable for 74 = 0. The question is whether 74 > 0 can
lead to a Hopf bifurcation when the parameters of the model have reasonable values.
Savic and Jelic conclude that the fixed point is stable for all time delays and reasonable
choice of parameters which is consistent with their conclusion in [4]. However we do not
consider this conclusion valid. We will not go through the entire paper but jump to the
problematic part. We have from [3] (but using our notation from previous chapters)

T3ss

X3ss =

a =14+ X3.(1—p)
b=14 X3.(1 —p)
X3ss(pa + pb)
FP=———_"-_1. 13.6
(1 + ngs)ab ( )
Jelic and Savic formulate the condition that there exists a time delay, 7¢ causing a Hopf
bifurcation as F' > 0. F' < 0 guarantees that no Hopf bifurcation occurs for any time
delay. They find for = 0.98 and p = 0.72 F < 0 for all X555 > 0 and this guarantee
their conclusion. However there is no discussion of why p and p should have these
values though p is assumed to be close to one. Inserting in F' for array 13.6.

X?)ss M p )
F= + —1. 13.7
1+ Xass <1+X333(1,u,) 1+X333(17p) ( )
) . . . 2Xs..
With p1,p € [0,1] we have F' is increasing in p and p and F(p,p) € [-1; 755 — 1].

This means F'(u, p, X3ss) < F(1,1, X355). This makes sense compared to our analysis
of the system without hippocampus where u = p = 1 gave the case with largest chance
of instability and Hopf bifurcation. Using = p = 1 we get a bound for what values of
X3ss that can lead to Hopf bifurcation

X3ss 1 1
—1>0& X35 > 1. 13.8
1+ Xass <1+ng5(1—1) i 1+X355(1—1>> ” 3ss = (13.8)

This means that for 4 = p = 1 then a Hopf bifurcation occurs for some 75 > 0 at
the fixed point for Xs.s > 1. In [3] Savic and Jelic state that Xs,5 € [50;100] and
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in [4] Savic and Jelic state that X355 = 15. In either case X355 > 1 which means a
Hopf bifurcation occurs for some time delay which contradicts the conclusion of [3] and
[4].However this is a promising outcome for future modeling of the HPA-axis using delay
differential equations since a limit cycle is then guaranteed. Of course the time delay(s)
cannot attain physically irrelevant size(s) which must be investigated in depth in future
research. However the analysis above show that when the remaining parameters have
physiologically relevant size then a Hopf bifurcation is possible when a time delay is
included.

13.1 Inclusion of time delay in our system

In this section we will show that introducing a time delay in our model will give an
unstable steady state. The solutions are showing oscillations like the diurnal oscillations
that are seen in data. The aim of this thesis have not been to include time delay so
this section could serve as an appetizer for future work.

Since it seems as if an inclusion of hippocampal mechanisms have a stabilizing effect
on the system we will not include hippocampal mechanisms in this section.

A time delay can be explained as the hormones have to move with the bloodstream
in order to reach receptors in different parts of the body. Furthermore it could take
some time from the hormone reach the receptor until the receptor delivers the effect of
a feedback.

Throughout this work we have gathered knowledge of the effect each parameter has
on the stability of the system. We know that large «, 1 and p have a destabilizing effect
(This is at least true when considering global stability). Therefore we will set « = 5 and
p = = 1. w; is not changed and k; will be determined in the same way as in chapter 10.
This gives the following values of the parameters ky = 2.6543, k1 = 0.191, ko = 0.0013
and ¢ = 3.055. The steady state will be given as xg5 = (7.6508P9/ 1, 2129/ 1, 3.05579/m1).
The system simulated is given as

= (1w e ) e

R O Y k) L W
2= (1 ”ca+<x3<t—f)>a> L
ng = kgl‘g(t - 7') — ws3x3 . (139)

Simulating this system with a time delay (7 = 19 min) we are capable of producing
oscillations in the system. The Matlab file used for producing this simulation can be
seen in appendix B.4. These are seen on figure 13.1.

Thus it is possible to obtain inner oscillations in the system. Furthermore a lot of
different time delays could be implemented. Surely a time delay of 19 minutes can not
be explained by the time it takes for the hormones to travel with the bloodstream. But
we see that oscillations are possible. If anyone can give a reasonable explanation of why
a delay of this magnitude is reasonable this could be an idea to pursue. But this must
be left for future work.
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System without hippocampus and a timedelay of 19 min.
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Figure 13.1: The system given in array 13.9 simulated with a time delay of 19 min
and the parameters mentioned in this section. The figure shows oscillations in all three
hormones. The unit of CRH is P&/ the unit of ACTH is P&/ and the units of cortisol
is ng/ml.
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A Proof of the Routh Hurwitz Criteria

The RHC for a third order polynomial is often used in this project so here is a proof.
In general a RHC is valid for an n"th degree polynomial but for the third order case
the proof can be based on ’brute force’. First the theorem is restated from chapter 3.

Theorem A.1
Routh Hurwitz Criteria
Given
P()\):)\3+CY1)\2+O[2)\+OZ3, a1, a9,1 €R (Al)

Then all of the roots of P(\) are megative or have negative real part if and only if
ay >0, a3 >0 and ay - as > as.

Proof

Using complex numbers any third order polynomial has three roots (not necessarily
distinct). These can be used to factorize the polynomial. A third order polynomial
has at least one real root. This is due to the fact that for a large absolute value of A,
the term A3 dominates in the expression for P. Thus for a sufficiently large A, P is
positive, and for a sufficiently small A, P is negative. Since P is continuous in A by
the intermediate value theorem [17, p. 75] there must exist a A; such that P (A1) = 0.
Factorizing P using this solution one gets

PA)=A=X) (AN +br+c), bceR (A.2)
Finding the roots of the second factor in equation A.2 one gets

:M,)\_:M,dzlﬁfélac. (A.3)

A
+ 2 2

If d is negative A_ is the complex conjugate of A, which is seen from splitting equation
A.3 in real and imaginary parts . In that case we define y = —b/2 and w = v—=d/5 and
then the roots can be written Ay = p + 4w and A_ = p — iw where w is not zero. For
d > 0 the two real roots are named Ao and A3. Thus we are left with two different ways
of factorizing P depending on the sign of d.

Pizo = (A= A1) (A= A2) (A= A3) (A4)
Pico=A=AM)(A—p—iw) (A= p+iw) , (A.5)

where A1, Ao, A3, 1, € R,w € Ry
This proof is simply a brute force comparison of equation A.4 and equation A.5 with
the statements a; > 0 Aag >0 A ajas — ag > 0 resulting in table A.1 which will now
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be justified. We begin with the case of only real roots, Py>¢. Expanding equation A.4

one gets

Piso = XN — (A1 + X2+ A3) A2+ (A da + Az + dadz) A — Aoz

Now it is straightforward to identify a;, s and ag
ap = —()\1—|—)\2+)\3)

Qg = ()\1)\2 + A3+ )\2)\3)
a3 = 7)\1)\2A3 .

109 — g = — (Al + )\2 + )\3) ()\1/\2 + )\1)\3 + /\2)\3) + )\1)\2)\3 <~
aras —ag = — (A2 + A3) (M2 + Aidg + Aadz) — AT (A2 + A3) .

(A.6)

o If A, A2, A3 < 0 we see that aq,a3 > 0 and from equation A.11 it can be seen

that ajas — ag consists of two positive terms such that a;as — ag > 0.
e If one or more roots are zero then ajg is zero and thus cannot be positive.

If exactly one root is non negative, cg cannot be positive.

If exactly two roots are positive and one negative, say A\; < 0, A2, A3 > 0 then

as > 0. In general if we require a; > 0, ag > 0 and ajas — ag > 0 this clearly
leads to as > 0 as a necessary condition. If g > 0 we look at the expression for

ayag — g in equation A.11 remembering that the second factor is as.

Q10 — Qg = —()\2 +)\3)O£2 — )\% ()\2 +)\3) .

(A.12)

Since we assumed Ay < 0, A2, A3 > 0 we have ajay — a3 < 0. The proof should
also be done in the case Ay < 0, A1, A3 > 0 and also when A3 < 0, A1, Ao > 0 but
since oy, ao, ag are symmetric in A1, Ao and A3 then so is ajas — ag, and all

cases are thus covered by covering one.
o If all three roots are positive then agz < 0.

For the case of real roots of P we have now been through all relevant scenarios showing
that RHC holds in each case. Now we just need to do the same when there is one real

root and two complex conjugate roots of P. Expanding equation A.5 one gets

Pico =N = 2u+ X)) N + (12 + 0 +2p00) A = My (1° +w?)

(A.13)

Identifying the coefficients of the polynomials now with a prime not to be confused with

the case d > 0.

ap = —(2p+ A1)

oy = p? +w? + 2u\

o = =\ (1 +w?)
ahahy —ah = —(2u—+ A1) (12 +w? 4+ 2uN) + A1 (0 +w?) &
ahaoh —aly = —2u (p* 4+ w® +2uA + A7) &

ajah — ol = —2p ((N +M)? +w2> '

Now the real part of the roots are only two numbers, A; and pu.

(A.14)
(A.15)
(A.16)

(A.17)
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Proof of the Routh Hurwitz Criteria

P, Real part of roots a1 >0ANa3>0AN ajas —az >0
d>0 M <O0AXM<OAAN<O true
dZO /\120\//\2:0\/)\320 false
d >0 Exactly one root > 0 false
d >0 Exactly two roots > 0 false
d>0 XM >0AX>0AA3>0 false
d<0 M<0Ap<O true
d<0 X >0 false
d<0 pu>0 false

Table A.1: Proof of RHC

o If £ < 0, A\ < 0 then «a; consists of two positive terms and is thus guaranteed
positive. g is positive since it is a product of two positive factors. Regarding
a1ag —ag the factor in the brackets is a sum of a positive and a non negative term
and is thus positive. Multiplied with a positive factor makes g — ag positive.

o If A\; is nonnegative then a5 cannot be positive.

e If 4 >0 then

ajal, —af <0, (A.18)

since it is a result of a negative number multiplied by a positive. The equality
sign only applies for g = 0.
Now all the different classes of roots of P have been considered and the result is proving
the RHC summarized in table A.1.
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B Matlab codes

In this appendix the various Matlab codes used throughout this thesis is presented.

B.1 Fast Fourier transformation

Listing B.1: Main file transforming the confidential raw data by means of fast Fourier
transformation.

function [x z X Z y|=fourierACTH (h)
%Enkeltpersoner

close all

clear x y XY z x1 X1 D

%forst hentes data
Carroll__data_som_ matrix;

%Nu defineres hvilket af gennemsnittene vi vil undersgge (data fra
enkeltpersoner kan ligeledes benyttes)

%For y=mean(*’)’, hvor * kan vere HyperACTH, HyperCortisol, ControlACTH,

%ControlCortisol, LowACTH, LowCortisol. Husk at endre figurtekster!

%h giver person nummer. h=1:29

h=5;

y=ACTH(: ,h);

%when doing fft of a discontinous point, the average has to be used.
%Important for endpoints

x(1,1)=(y (145)+y (1)) /2;

x(145,1)=x(1,1);

x(2:144)=y(2:144);

%Nu er y det onskede dataset, og = er identisk med y bortset fra i
Z%endepunkterne

%diskret ,endelig fouriertransformation udregnes
X=fft (x);

%Nu komstrueres en form for filter i frekvensdomenet. Z dannes som en
%73x145 matrice. I forste sgjle medtages 1 frekvens, i naste 2 osv.

Z=zeros (73,145);

for 1=0:72;

Z(i+1,1:i+42)=X(1:14+2);

Z(i+1,145—1:145)=X(145—1:145);

%z er en 78xz145 matrice hvor den i 'te sdjle er den i 'te inverse fourier
%trasnformerede af den i’'te sgjle i Z

z(i+1,1:145)=ifft (Z(i+1,1:145));

end

t=1:145;

%test af z er ren reel. da er imag_del lig nul=0
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imag del lig nul=sum(sum(imag(z)."2));

k1=0;
if kl==

Z%Nu plottes = mod de forskelllige sgjler i z. Dvs nu kommer (en tegneserie

)

%en folge af grafer hvor et stigende antal frekvenser medtages

plot (t.%x10,z(20,:),’b.—")
%ZD(i) er den summerede, kvadrerede afstand mellem dataset og z(i,:)
D(i) = sqrt(sum((x’—z(i,:))."2));

pause (0.1)
end

hold on
h=10;
y=ACTH(: ,h);

Y%when doing fft of a discontinous point, the average has to be used.
%Important for endpoints

x(1,1)=(y(145)+y (1)) /2;

x(145,1)=x(1,1);

x(2:144)=y (2:144);

%Nu er y det ognskede dataset, og z er identisk med y bortset fra i
%endepunkterne

%diskret ,endelig fouriertransformation udregnes
X=fft (x);

%Nu konstrueres en form for filter i frekvensdomenet. Z dannes som en
%73x145 matrice. I forste sgjle medtages 1 frekvens, i neste 2 osv.

Z=zeros (73,145);

for i=0:72;

Z(i4+1,1:i+2)=X(1:i42);
Z(i+1,145—1:145)=X(145—1:145);

%z er en 73z145 matrice hvor den i te sgjle er den i’te inverse fourier
Jtrasnformerede af den i 'te sgjle i Z
z(i+41,1:145)=ifft (Z(i+1,1:145));

end

t=1:145;

%test af z er ren reel. da er imag_del_lig_nul=0
imag del lig nul=sum(sum(imag(z)."2));

k1=0;
if kl==

%Nu plottes = mod de forskelllige sgjler i z. Dvs nu kommer (en tegneserie
%en folge af grafer hvor et stigende antal frekvenser medtages

plot (t.%x10,z(20,:),’r.—")
%D(i) er den summerede, kvadrerede afstand mellem dataset og z(i,:)
D(i) = sart (sum((x'—7(i,:))."2));

pause (0.1)

end
h=27;
y=ACTH(: ,h);
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J%when doing fft of a discontinous point, the average has to be used.
%Important for endpoints

x(1,1)=(y(145)+y (1)) /2;

x(145,1)=x(1,1);

x(2:144)=y (2:144);

%Nu er y det gnskede dataset, og = er identisk med y bortset fra 1
%endepunkterne

%diskret ,endelig fouriertransformation wudregnes
X=fft (x);

%Nu konstrueres en form for filter i frekvensdomenet. Z dannes som en
%73x145 matrice. I forste sgjle medtages 1 frekvens, i neste 2 osv.

Z=zeros (73,145);

for i=0:72;

Z(i+1,1:i42)=X(1:i+2);
Z(i4+1,145—1:145)=X(145—1:145);

%z er en 78x145 matrice hvor den i 'te sgjle er den i te inverse fourier
%trasnformerede af den i’te sgjle i Z
2(i41,1:145)=ifft (Z(i+1,1:145));

end

t=1:145;

%test af z er ren reel. da er imag_del_ lig_nul=0
imag_del_lig_nul=sum(sum(imag(z)."2));

k1=0;
if kl==

%Nu plottes = mod de forskelllige sgjler i z. Dvs nu kommer (en tegneserie
%en folge af grafer hvor et stigende antal frekvenser medtages

plot (t.%x10,2z(20,:),’g.—")
%D(i) er den summerede, kvadrerede afstand mellem dataset og z(i,:)
D(i) = sqrt (sum((x'~2(i,:))."2));

pause (0.1)

end

%title ({ 'ACTH data presented by means of fast Fourier transformation ’;
using the smallest 20 frequencies.’})

xlabel (’time, , [min] )

ylabel (’ACTH concentration ,  [pg/ml] )

legend ('Hypercortisol depressive’,’Normal’,’ Lowcortisol depressive ’)

axis ([0 1440 0 60])

set (gca, ’XTick’,0:120:1440)

set (gca, 'XMinorTick’,’on’)

s

%Tilsvarende laves for cortisol

h=5;

y=Cortisol (:,h);

J%when doing fft of a discontinous point, the average has to be used.
ZImportant for endpoints

x(1,1)=(y (145)+y (1)) /2;

x(145,1)=x(1,1);

x(2:144)=y(2:144);

%Nu er y det onskede dataset, og = er identisk med y bortset fra i
F%endepunkterne
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%diskret ,endelig fouriertransformation udregnes
X=fft (x);

%Nu konstrueres en form for filter i frekvensdomenet. Z dannes som en
%73x145 matrice. I forste sgjle medtages 1 frekvens, i neste 2 osv.

Z=zeros (73,145);

for i=0:72;

Z(i+1,1:i+42)=X(1:142);
Z(i+41,145—1:145)=X(145—1:145);

%z er en 731145 matrice hvor den i te sgjle er den i~
Y%trasnformerede af den i te sgjle i Z
z(i+1,1:145)=ifft (Z(i+1,1:145));

end

t=1:145;

%test af z er ren reel. da er imag_del_lig _nul=0
imag del lig nul=sum(sum(imag(z)."2));

te inverse fourier

k1=0;
if k1==0

Z%Nu plottes = mod de forskelllige sgjler i z. Dvs nu kommer (en tegneserie

%en folge af grafer hvor et stigende antal frekvenser medtages

figure
plot (t.x10,z(20,:),’b.—")
%ZD(i) er den summerede, kvadrerede afstand mellem dataset og z(i,:)
D(i) = sqrt (sum((x'—a(i,:))."2));

pause (0.1)

end

hold on

h=10;

y=Cortisol (:,h);

Y%when doing fft of a discontinous point, the average has to be used.
%Important for endpoints

x(1,1)=(y (145)+y (1)) /2;

x(145,1)=x(1,1);

x(2:144)=y(2:144);

%Nu er y det ognskede dataset, og z er identisk med y bortset fra i
%endepunkterne

%diskret ,endelig fouriertransformation udregnes
X=fft (x);

%Nu konstrueres en form for filter i frekvensdomenet. Z dannes som en
%73x145 matrice. I forste sgjle medtages 1 frekvens, i neste 2 osv.

Z=zeros (73,145);

for 1i=0:72;

Z(i+1,1:i+2)=X(1:i+2);
Z(i4+1,145—1:145)=X(145—1:145);

%z er en 73x145 matrice hvor den i te sgjle er den i’te inverse fourier
Jtrasnformerede af den i 'te sgjle i Z
z(i+1,1:145)=ifft (Z(i+1,1:145));

end

t=1:145;

%test af z er ren reel. da er imag_del_lig _nul=0
imag del lig_ nul=sum(sum(imag(z)."2));
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k1=0;
if k1==0

%Nu plottes = mod de forskelllige sgjler i z. Dvs nu kommer (en tegmeserie
%en folge af grafer hvor et stigende antal frekvenser medtages

plot (t.%x10,z(20,:),’r.—")
%D(i) er den summerede, kvadrerede afstand mellem dataset og z(i,:)
D(i) = sart (sum((x'~2(i,:))."2));

pause (0.1)

end

h=27;

y=Cortisol (:,h);

Y%when doing fft of a discontinous point, the average has to be used.
%Important for endpoints

x(1,1)=(y (145)+y (1)) /2;

x(145,1)=x(1,1);

x(2:144)=y (2:144);

%Nu er y det dgnskede dataset, og z er identisk med y bortset fra i
%endepunkterne

%diskret ,endelig fouriertransformation wudregnes
X=fft (x);

%Nu konstrueres en form for filter i frekvensdomenet. Z dannes som en
%73x145 matrice. I forste sgjle medtages 1 frekvens, i neste 2 osv.

Z=zeros (73,145);

for i=0:72;

Z(i+1,1:i42)=X(1:i+2);
Z(i4+1,145—1:145)=X(145—1:145);

%z er en 78x145 matrice hvor den i te sgjle er den i te inverse fourier
%trasnformerede af den i’te sgjle i Z
2(i41,1:145)=ifft (Z(i+1,1:145));

end

t=1:145;

%test af z er ren reel. da er imag_del_ lig_nul=0
imag_del_lig_nul=sum(sum(imag(z)."2));

k1=0;
if k1==0

Z%Nu plottes = mod de forskelllige sojler i z. Dvs nu kommer (en tegneserie

%en folge af grafer hvor et stigende antal frekvenser medtages
plot (t.%x10,z(20,:),’g.—")
%ZD(i) er den summerede, kvadrerede afstand mellem dataset og z(i,:)
D(i) = sqrt(sum((x’—z(i,:)).72));

pause (0.1)

end

%title ({ " Cortisol data presented by means of fast Fourier transformation
’; using the smallest 20 frequencies.’})

xlabel (’time. ,  [min] )

ylabel (’Cortisol concentration , [\mug/dl]’)

legend ("Hypercortisol depressive’,’Normal’,’Lowcortisol depressive ’)




267
268
269

© 00~ U WN -

B.2 Calculation of parameters 151

axis ([0 1440 0 20])
set (gca, ’XTick’,0:120:1440)
set (gca , ’XMinorTick’,’on”)

B.2 Calculation of parameters

Listing B.2: File calculating the default parameter values.

%%This m—file gives an approzimate value for unknown parameters
%First we define the parameters we know
clear all

%The mean value of the concentrations

x1=7.6588; %pg,/ml
x2=21; %pg/ml
x3=3.055; %ng/ml

%The half lifes

half life. CRH=4; %min

half life. ACTH=19.9; %min
half_life_ Cortisol=76.4; %min

%The elimination constants
wl=log (2) /half_life. CRH;
w2=log (2) /half life ACTH;
w3=log (2)/half life Cortisol;

%The parameters in the feedback functions

mu=1; %hypothalamic feedback
phi=0; %hippocampal feedforward
psi=0; %hippocampal feedback

xi=phi—-mu; %sum of hippocampal and hypothalamic GR potential

rho=1; %pituary feedback

alpha=5; %GR exponent

gamma=3; MR exponent

c=x3; % GR affinity
¢3=(1/10)"(1/gamma)*c " (alpha/gamma); % MR affinity

%Defining steady state to be im the meanvalues gives the k’s
g Y g

kO=wl*x1/(1+xi*(x3 alpha/(c alphat+x3 alpha))—psi#*(x3 gamma/(x3 gamma+tc3”~
gamma) ) )

kl=w2%x2/((1—rho*(x3"alpha/(c alpha+x3"alpha)))*x1)

k2=w3%x3/x2

%The parameters in the reduced system can now be determined

d0=(k0xk1xk2/c) " (1/3)
dl=(c*k072/(klxk2))™(1/3)
d2=(c"2xk0xk1/k272)"(1/3)
d3=c

wltilde=wl/d0
w2tilde=w2/d0
w3tilde=w3/d0
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c3tilde=c3/d3
theta=d0

B.3 Main file used for the numerical analysis

Listing B.3: Main file used for numerical analysis.

%% This file shows the dynamics of a parameterset in the model with and
without hippocampal dynamics

close all

clear all

run k_ values from mean values

%1. The system without reduction

%2. The reduced system

%loading the parametervalues

%k_values__from__mean__values

%% Additional cell used to plot circadian rhythm
ta=0:0.001:3%x1440;

a=28.8118—-8.4592%cos (2xpi/1440.4ta)+5.5438«sin (2xpi/1440%ta);
b=(5.0945—-4.5157«cos (2+pi /1440.xta)+0.42192*sin (2*xpi/1440xta)) /2;

%% Define the initial values as fractions of the mean values
al=2;

a2=1;

a3=1;

xstart=[al*xl a2xx2 a3%x3];

tspan=[0 3%1440];

%% This cell evaluates the Jacobian at a given point

System_ steady_state_matrix=System_ Jacobian ([x1 x2 x3], xi, kO, kl, k2, psi
, tho, alpha, gamma, c, c¢3, wl, w2, w3)

Eigenvalues of System Steady_ state Jacobian_ SS=eig (
System__steady_ state__matrix);

%% This cell makes a one— and a three dimensional plot of the

%% solutioncurves of the unreduced system

%This solves the full system

Options = odeset (’Jacobian’,@System__Jacobian, 'RelTol’,1le—8,’AbsTol’ ,1e—8);

[t, x] = odelbs(@Ikke reduceret_ system med hippocampus, tspan, xstart,
Options, kO, k1, k2, wl, w2, w3, xi, psi, rho, alpha, gamma, c, c3, xI1
E

figure

plot(t,x(:,1),’b")
%legend ("CRH’)

title ('CRH.plottet as,a function of time’)
xlabel (’Time,  [min] ")

ylabel (’CRH,  [pg/ml] ")

figure

plot (t,x(:,2),’b’ ,ta,a,’g’,10%xTk,Z, 'r.— )
title (’ACTH as. a function_ of, time. ")
legend ( ’Simulation of JACTH’,’ Circadian rhythm’, ’Data’)
xlabel (’Time,_ [min] )

ylabel (’ACTH, . [pg/ml] )

set (gca, 'XLim’ ,[2%x1440 3%1440])

set (gca, 'XTick’,2%1440:120:3%1440)

set (gca, 'XMinorTick’,’on’)
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figure

plot (t,x(:,3),’b’,ta,b,’g’,10%xTk, ZCortisol /2, ’r.—")

title (’Cortisol plottet as,a function_of time’)

legend ( ’Simulation of jcortisol’,’ Circadian rhythm’, ’Data’)

set (gca, 'XLim’ ,[2%1440 3%1440])

set (gca, "XTick’,2%1440:120:3%x1440)

set (gca, 'XMinorTick’,’on’)

xlabel ( 'Time,  [min] )

ylabel (’Cortisol ,,[ng/ml] )

figure

%Tredimensionelt plot af alle concentrationer

plot3(x(:,1),x(:,2),x(:,3),’=b’ ,xstart(1),xstart (2),xstart(3), or’,x1,x2,
x3,’0g")

title (’Three,dimensional plot of the solution curve’)

xlabel (’CRH, . [pg/ml] )

ylabel (’ACTH, , [pg/ml] *)

zlabel (’Cortisol ,  [ng/ml] )

legend ( ’Solution curve’,’Starting, value’,’Steady state’)
grid on

%% This cell does the same as the previous cell but for the reduced system
xstart=[alxx1/dl a2%x2/d2 a3*x3/d3]

tspan=[0 10%xd0%1440];

%This solves the reduced system

alpha=61;

%’ Jacobian ’, @QReduced__system__Jacobian ,

Options = odeset (’RelTol’,1e—8, AbsTol’ ,1e—8); %Options = odeset(’ RelTol
7,1e—8,’AbsTol’,1e—10);

[t, x] = odelbs(@QReduceret_system_ med hippocampus, tspan, xstart, Options
, xi, psi, rho, alpha, gamma, c3tilde, wltilde, w2tilde, w3tilde);

figure

plot (t,x(:,1),"b")

%legend (’X 1 (CRH)’)

title ("X _1.plottet asya function of \theta’)

xlabel (’\theta,(time) )

ylabel (’X 1,(CRH) ")

figure

plot (t,x(:,2),'1")

%legend ("ACTH’)

title ("X 2 plottet asya function of \theta’)

xlabel (’\theta,(time) )

ylabel (’X_2,(ACTH) )

figure

plot (t,x(:,3),’g")

title ("X 3.plottet asya function of \theta’)

legend (’Cortisol )

xlabel (’\theta,(time) )

ylabel (’X 3. (Cortisol)”)

figure

%Tredimensionelt plot af alle concentrationer

%, or’,z1,22,23, "og’

plot3 (x(:,1),x(:,2),x(:,3),’=b’,xstart (1) ,xstart (2),xstart(3))

title (’Three dimensional plot of the solution curve, in the reduced system’

)
xlabel (X 1,(CRH) )
ylabel (X 2, (ACTH) )
zlabel (’X_3,(Cortisol) )
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) )

legend ( ’Solution,curve’,’ Starting,value’,’Steady_ state’)

grid on

%% Here it is grapically shown where the intersection(s) of the two curves

%% that determine the steady state solution(s) of cortisol is.

%Define tmazx (The length of the desired interval)

xi=2.98

psi=1

%rho=0.5

alpha=5

gamma=5

Jok=k+1

tmax=3;

t=0:.001:tmax;

y=(1/(wltildexw2tildexw3tilde))*(1+xix(t." (alpha)./(1+t. (alpha)))—psix*(t
."(gamma) ./ (c3tilde gamma+t .  (gamma)))).*(1—rhox*(t.  (alpha)./(14+t."(
alpha))))

yprime=(1/(wltildexw2tildexw3tilde))*((xi*alpha*t.” (alpha—1)./((14+t.7(
alpha)).”2)—psi*gammaxc3tilde gammaxt .  (gamma—1)./(( c3tilde gamma+tt."
gamma) . 2)).x(1—rhox*(t.  (alpha)./(14+t."(alpha))))—(rhoxalphaxt.” (alpha
—1)./((1+t."7alpha).72)).%(1+xi*(t." (alpha)./(1+t." (alpha)))—psi*(t."(
gamma)./( c3tilde "gamma+tt .  (gamma)))));

maxgradient=max (yprime)

mingradient=min (yprime)

%This is only interesting when positve feedback is included

tmaxgradient=fsolve (Q(t) ((1/(wltildexw2tildexw3tilde))*((xi*alphaxt. (
alpha—1)./(14+t.7 (alpha)).”2—psi*gammaxc3tilde “gammasxt .  (gamma—1)./(
c3tilde “gammatt . gamma).”2).x(1—rhox(t. (alpha)./(1+t.  (alpha))))—(rho
xalphaxt.” (alpha—1)./(1+t. 7 alpha).”2) .x(1+xi*(t. " (alpha)./(1+t." (alpha
)))—psi*(t.  (gamma)./(c3tilde gamma+t.  (gamma)))))—maxgradient) ,1)

tmingradient=fsolve (@(t) ((1/(wltildexw2tildexw3tilde))*((xi*alphaxt. (
alpha—1)./(14+t. 7 (alpha)).”2—psixgammaxc3tilde gammaxt .  (gamma—1)./(
c3tilde “gammatt . gamma) . 2).x(1—rhox*(t.  (alpha)./(1+t." (alpha))))—(rho
*alphaxt.” (alpha—1)./(14+t. alpha).72).%x(1+xi*(t." (alpha)./(14+t." (alpha
)))—psi*(t.  (gamma)./(c3tilde gamma+t.  (gamma)))))—mingradient) ,0.5)

y_maxgradient=(1/(wltildexw2tildexw3tilde))*(14+xi*(tmaxgradient” (alpha)
/(1+tmaxgradient " (alpha)))—psi*(tmaxgradient” (gamma) /( c3tild e gamma+
tmaxgradient " (gamma))))*(l—rhox(tmaxgradient” (alpha)/(1+tmaxgradient ™ (
alpha))));

y_mingradient=(1/(wltildexw2tildexw3tilde))*(1+xi*(tmingradient”(alpha)
/(1+tmingradient " (alpha)))—psi*(tmingradient ™ (gamma) /( c3tilde gamma+
tmingradient ~(gamma))))*(1—rho*(tmingradient " (alpha)/(1+tmingradient ~(
alpha))));

figure

plot (t,t,’b’ ,t,y, 1r7);

%, tmazgradient ,y__mazgradient , 'mo’

%, [’ Mazimum grad=",num2str (mazgradient) ,]

%legend ("H(X_3) 7, ’L(X_8) ’,[’Minimum grad=",num2str(mingradient) ,],[’
Mazimum grad=",num2str (mazgradient) ,])

%title ("H(X _3) for different parameter wvalues ’)

legend ( 'L(X_3)’,’H(X_3)’,2)

xlabel (’X_3")

%figure

Tplot (t,t,t,y)

Zlegend ('L(X_3) 7, ~c_8=0.5¢_83", ~c_8=c_8’, ~c_8=2c_8",4)

%zlabel (X _37)

%azis ([0 1.5 0 1.5])

%Investigate this figure for number of intersections. If there are one go

%to the cells evaluating for one solution. If there are three solutions go

%to the cells evaluating for three solutions.
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%% These cells evaluate the solutions for one solution
%go to file Reduced_system__Jacobian and remove t to evaluate this cell

%Give an estimate of the steady state solution

%for c3tilde=[0.5%frank frank 2x*frank]

L_R_equal_zero=1;

z3=fzero (Q(x) ZerosofRx3Lx3 (x, xi, psi, rho, alpha, gamma, c3tilde, wltilde
, w2tilde, w3tilde),L_R_equal_zero);

z1=(14xi%(z3"alpha /(1423 alpha) )—psi*(z3 gamma/( c3tilde "gamma+z3 gamma)) )/
wltilde;

z2=(1—rhox(z3 alpha/(14+z3 alpha)))*zl/w2tilde;

%Then the steady state wvector is given as

SteadyStateVector=[z1 2z2 23]

%The Jacobian at steady state is evaluated and the eigenvalues is computed

Jacobian__SS=Reduced__system__Jacobian ([z1 z2 z3], xi, psi, rho, alpha, gamma
, c3tilde , wltilde, w2tilde, w3tilde);

Eigenvalues_of_Jacobian_SS=eig (Jacobian_SS)

Fend

%% This cell will evaluate how the ending positions depend on the starting

%% positions. On the reduced system.

figure

gridstart =0;

gridmask =.2;

gridend =4.6;

%This solves the reduced system

for x0l=gridstart: gridmask: gridend;
for x02=gridstart: gridmask: gridend;

for x03=gridstart: gridmask: gridend;

xstart = [x01 x02 x03];

%Tidsintervallet der skal simuleres bestemmes

tspan=[0 d0*1440];

%Her lgses differential ligningerne

Options = odeset(’Jacobian’,@QReduced_system__Jacobian,  RelTol’,1e—8,  AbsTol
’1e—8); %Options = odeset( RelTol’ ,1e—8,’AbsTol’,1e—10);

[t, x] = odelbs(@QReduceret_system_ med_ hippocampus, tspan, xstart, Options
, xi, psi, rho, alpha, gamma, c3tilde, wltilde, w2tilde, w3tilde);

plot3 (SteadyStateVector (1) ,SteadyStateVector (2),SteadyStateVector(3),’or’,
x(numel(t),1) ,x(numel(t),2) ,x(numel(t),3),’.b’,x01,x02,x03,’g.")

hold on

end

end

end

title (’Ending values as a function of initial conditions’)

xlabel (’X_1,(CRH) ")

ylabel (’X_2,(ACTH) )

zlabel (’X_3,(Cortisol) )

legend ( ’Steady state’,’Ending,,values’,’ Initial conditions’)

grid on

%% These cells evalate the solutions for three steady state solutions.
%go to file Reduced__system__Jacobian and remowve t to evaluate this cell

% Define minimum and mazimum(gradient=0)
grad__L__equal_to_zero_min=0.1;
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grad_L_equal_to_zero_ max=1;

%Here the exact wvalue is calculated

zmin=fminsearch (@Q(x)ZerosofRx3Lx3(x, xi, psi, rho, alpha, gamma, c3tilde,
wltilde, w2tilde, w3tilde),grad_L_equal_to_zero_min)

zmax=fminsearch (@(x)minusZerosofRx3Lx3 (x, xi, psi, rho, alpha, gamma,
c3tilde , wiltilde, w2tilde, w3tilde),grad_L_equal to_zero_max)

%Here we are finding the intersection of R(z_3) og L(z3)

z31=fzero (Q(x)ZerosofRx3Lx3(x, xi, psi, rho, alpha, gamma, c3tilde,
wltilde, w2tilde, w3tilde) ,[0 zmin]);

z32=fzero (Q(x)ZerosofRx3Lx3(x, xi, psi, rho, alpha, gamma, c3tilde ,
wltilde, w2tilde, w3tilde) ,[zmin zmax]) ;

z33=fzero (Q(x) ZerosofRx3Lx3 (x, xi, psi, rho, alpha, gamma, c3tilde,
wltilde, w2tilde, w3tilde) ,[zmax tmax]) ;

z=y—*t ;

plot (t,z,’b’ ,zmin, ZerosofRx3Lx3 (zmin, xi, psi, rho, alpha, gamma, c3tilde,
wltilde , w2tilde, w3tilde),’ro’,zmax, ZerosofRx3Lx3(zmax, xi, psi, rho
, alpha, gamma, c3tilde, wltilde, w2tilde, w3tilde),’ro’)

legend ( 'L(x_3)—R(x_3)’, ’Minimum’ , ’Maximum’) ;

xlabel (’cortisol ’);

%% This cell finds the steady state concentrations of all wvariables and
for

%% all fizpoints

%First we calculate the other staedy state concentrations

%For CRH

z11=(14+xi*(z31 alpha/(1+z31 alpha))—psi*(z31 gamma/(c3tilde gammatz31~
gamma) ) )/wltilde;

z12=(1+xi=*(z32 alpha/(1+z32 alpha) )—psi*(z32 gamma/(c3tilde “gammatz32~
gamma) ))/wltilde;

z13=(14+xi*(z33 alpha/(14+2z33 alpha))—psi*(z33 gamma/(c3tilde gamma+z33~
gamma) ) )/wltilde;

%For ACTH

z21=(1-rhox*(z31 alpha/(1+z31 alpha)))*2z11/w2tilde;

z22=(1-rhox*(z32 alpha/(1+z32 alpha)))*2z12/w2tilde;

z23=(1—rhox(z33 alpha/(14+z33 alpha)))*z13/w2tilde;

%A matricz is computed with the steady state concentrations as column

vectors

SteadyStateMatrix=[z11 z12 z13; 221 222 223; 231 232 z33]

%The Jacobian is computed

Jacobian SS1=Reduced_system_Jacobian ([z11 z21 z31], xi, psi, rho, alpha,
gamma, c3tilde , wltilde, w2tilde, w3tilde)

Eigenvalues of Jacobian SSl=eig(Jacobian SS1)

Jacobian_SS2=Reduced_system_ Jacobian ([z12 2z22 z32], xi, psi, rho, alpha,
gamma, c3tilde , wltilde, w2tilde, w3tilde)

Eigenvalues_of_Jacobian_SS2=eig (Jacobian_SS2)

Jacobian__SS3=Reduced_system__Jacobian ([z13 223 z33], xi, psi, rho, alpha,
gamma, c3tilde , wltilde, w2tilde, w3tilde)

Eigenvalues_of__Jacobian_SS3=eig (Jacobian__SS3)

%% This cell will evaluate how the ending positions depend on the starting

%% positions. On the reduced system.

x__gridstart=0;

x__gridmask=.1;

x_ gridend=1;

y_gridstart=0;

y_ gridmask=.1;

y_gridend=1;

z__gridstart=0;

z__gridmask=.1;

z__gridend =2;
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%This solves the reduced system

for x0l=x_ gridstart: x_gridmask: x_ gridend;
for x02=y__gridstart: y_gridmask: y_ gridend;

for x03=z_ gridstart: z_gridmask: z_gridend;

xstart = [x01 x02 x03];

%Tidsintervallet der skal simuleres bestemmes

tspan=[0 d0*2%1440];

%Define the size of the small omegn around steady state.

epsilon=0.1;

%Her lgses differential ligningerne

Options = odeset(’Jacobian’,@QReduced_system_ Jacobian,  RelTol’,1e—8, AbsTol
’,1e—8); %Options = odeset( RelTol’ ,1e—8,’AbsTol’,1e—10);

[t, x] = odelbs(@QReduceret_system_ med_ hippocampus, tspan, xstart, Options
, xi, psi, rho, alpha, gamma, c3tilde, wltilde, w2tilde, w3tilde);

if x(numel(t),1)>SteadyStateMatrix(1l,1)—epsilon & x(numel(t) ,1)<
SteadyStateMatrix (1,1)+epsilon & x(numel(t) ,2)>SteadyStateMatrix(2,1)—
epsilon & x(numel(t) ,2)<SteadyStateMatrix(2,1)+epsilon & x(numel(t)
,3)>SteadyStateMatrix (3,1)—epsilon & x(numel(t) ,3)<SteadyStateMatrix
(3,1)+epsilon

plot3 (SteadyStateMatrix (1,1),SteadyStateMatrix (2,1),SteadyStateMatrix(3,1)
,or’ SteadyStateMatrix (1,2) ,SteadyStateMatrix (2,2) ,SteadyStateMatrix
(3,2),’0or’,SteadyStateMatrix (1,3),SteadyStateMatrix (2,3),
SteadyStateMatrix (3,3), or’ ,x(numel(t) ,1),x(numel(t),2) ,x(numel(t),3),
".b’7,x01,x02,x03,g.")

xlabel (’CRH’)

ylabel ( ’ACTH’)

zlabel (’Cortisol’”)

legend ( ’Steady . state 1’ , ’Steady state 2’ , Steady state 3’ , Ending, value’,’
Initial, condition’)

hold on

grid on

elseif x(numel(t),1)>SteadyStateMatrix(1,2)—epsilon & x(numel(t) , 1)<
SteadyStateMatrix (1,2)+epsilon & x(numel(t),2)>SteadyStateMatrix (2,2)—
epsilon & x(numel(t) ,2)<SteadyStateMatrix(2,2)+epsilon & x(numel(t)
,3)>SteadyStateMatrix (3,2)—epsilon & x(numel(t) ,3)<SteadyStateMatrix
(3,2)+epsilon

plot3 (SteadyStateMatrix (1,1),SteadyStateMatrix (2,1),SteadyStateMatrix(3,1)
, or’ ,SteadyStateMatrix (1,2) ,SteadyStateMatrix (2,2) ,SteadyStateMatrix
(3,2), or’,SteadyStateMatrix (1,3) ,SteadyStateMatrix (2,3),
SteadyStateMatrix (3,3), or’ ,x(numel(t),1) ,x(numel(t),2) ,x(numel(t) ,3),
’.b’,x01,x02,x03, k. ")

xlabel (’CRH’)

ylabel (’ACTH’)

zlabel (’ Cortisol’”)

legend ( 'Steady. state_1’, ’Steady._state 2’ ,’Steady_ state 3’ , Ending values’,
"Initial condition’)

elseif x(numel(t),1)>SteadyStateMatrix(1,3)—epsilon & x(numel(t) , 1)<
SteadyStateMatrix (1,3)+epsilon & x(numel(t) ,2)>SteadyStateMatrix(2,3)—
epsilon & x(numel(t) ,2)<SteadyStateMatrix(2,3)+epsilon & x(numel(t)
,3)>SteadyStateMatrix (3,3)—epsilon & x(numel(t) ,3)<SteadyStateMatrix
(3,3)+epsilon

plot3 (SteadyStateMatrix (1,1),SteadyStateMatrix (2,1),SteadyStateMatrix (3,1)
, or’ ,SteadyStateMatrix (1,2) ,SteadyStateMatrix (2,2) ,SteadyStateMatrix
(3,2),’0or’,SteadyStateMatrix (1,3),SteadyStateMatrix (2,3),
SteadyStateMatrix (3,3), or’ ,x(numel(t) ,1),x(numel(t),2) ,x(numel(t),3),
b’ ,x01,x02,x03, y.")

xlabel (’X_1,(CRH) ")

ylabel (X 2, (ACTH) )

zlabel (’X_3,(Cortisol) )
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legend ( ’Steady state 1’ , ’Steady state 2’ , ’Steady,state 3’ , Ending, values’,
"Initial condition values’)
else
plot3 (SteadyStateMatrix (1,1) ,SteadyStateMatrix (2,1) ,SteadyStateMatrix
(3,1),’or’,SteadyStateMatrix (1,2),SteadyStateMatrix (2,2),
SteadyStateMatrix (3,2), or’,SteadyStateMatrix (1,3),
SteadyStateMatrix (2,3) ,SteadyStateMatrix(3,3), or’ ,x(numel(t) ,1) ,x(
numel (t) ,2) ,x(numel(t),3),’.b’,x01,x02,x03, ’m0”)
end
hold on
end
end
end

%% In this cell we wish to investigate the effect of a time delay in the

%% reduced system

%Definition of the starting wvalues making these the same as previous

%starting values.

%xstartl=zstart (1);

%xstart2=zstart (2);

%rstart3=zstart (8);

%Define the timespan

tspan=[0, d0%1440];

%sincematlab canmnot solve for a timedelay equal to zero. A timedelay equal

Z%to zero will be defined as le—16

alpha=>5;

taul=200xtheta; %min (Time for cortisol to activate GR in hypothalmus)

tau2=200«theta; %min (Time for cortisol to activate GR in hippocampus)

tau3=400«theta; %min (Time for cortisol to activate MR in hippocampus)

taud=20xtheta; %min (Time for cortisol to activate GR in adrenal glands)

taub=1xtheta; %min (Time for CRH give positive stimulus in adrenal glands)

tau6=400xtheta; %min (Time for ACTH give positive stimulus in pituary
gland)

timedelay=[taul, tau2, tau3, taud4, taub, tau6];

options =[];

sol = dde23 (@QReduced_system_Delaymodel, timedelay ,
@QReduced__System__delaymodel History, tspan, options, mu, phi, psi, rho,
alpha, gamma, c3tilde, wltilde, w2tilde, w3tilde);

figure

plot (sol.x,sol.y)

%azis ([1430 2870 0 3])

%title ([ All graphs with a timedelay of ’,num@str(tidsforsinkelse),’
minuttes, k_0=",num2str(k_0),’, k_1=",num2str(k_1),’, k_2=",num2str(
k_2),’, my=",num2str(my),’, rho=",num2str(rho) ,]);

xlabel (’Time in minuttes’);

ylabel (’Solutions’);

legend ('CRH’ ,’ACTH’ , > Cortisol )

%% In this cell we investigate the effect of a time delay in the unreduced

%% system including hippocampal mecanisms.

tspan=[0, 14400];

alpha=5;

rho=1;

xi=—1;

psi=0;

taul=19; %min (Time for cortisol to activate GR receptors)
tau2=19; %min (Time for cortisol to activate MR receptors)

tau3=19; Jmin (Time for ACTH to activate release of cortisol)
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timedelay=[taul, tau2, tau3];

options =][];

sol = dde23(@unreduced_system__med__hippocampus_ delay__model, timedelay ,
@Qunreduced__System__med__hippocampus_ delaymodel_History, tspan, options,
k0, k1, k2, wl, w2, w3, xi, psi, rho, alpha, gamma, c, c3, x1);

figure

plot (sol.x,sol.y)

title (’System_without_hippocampus_and_a timedelay of 19 min. ")

legend ( 'CRH’ ,’ACTH’ ,’ Cortisol ’)

set (gca, 'XLim’ ,[2%1440 3%1440])

set (gca, 'XTick’,2%1440:120:3%1440)

set (gca, ’XMinorTick’, ’on’)

xlabel ( 'Time,  [min] )
%dette er brugt til lundbeck presentation og artikel 1.
figure

plot (sol.x,2xs0l.y(2,:))

%legend ("ACTH’)

set (gca, 'XLim’,[2%1440—30 3%1440-—30])
set (gca, 'XTick’,2%1440—30:120:3%1440—30)
set (gca, 'XMinorTick’,’on’)

ylabel (’ACTH, . [pg/ml] )

xlabel ( 'Time,  [min] )

figure

plot (sol.x,2xs0l.y(3,:))
%legend (" Cortisol 7)

set (gea, 'XLim’ ,[2%1440 —30 3%1440—30])
set (gca, 'XTick’,2%1440—30:120:3%1440—30)
set (gca, ’XMinorTick’, ’on’)

ylabel (’Cortisol , [\mug/dl] ")

xlabel (’Time,  [min] )

Iny vektor defineres sdledes at nulpunktet er hvor man gnsker
sol . X=sol.x—(2%1440—-30);

figure

plot (sol . X,2xs0l.y(2,:))

%legend ("ACTH’)

set (gca, 'XLim’ ,[0 1440])

set (gca, XTick’,0:120:3%x1440)

set (gca, 'XMinorTick’,’on’)

ylabel (’ACTH, . [pg/ml] )

xlabel ( ’Time,  [min] )

figure

plot (sol.X,2xs0l.y(3,:))

%legend (’Cortisol ’)

set (gca, ’XLim’ ,[0 1440])

set (gca, "XTick’,0:120:1440)

set (gca, 'XMinorTick’,’on’)

ylabel (’Cortisol , . [\mug/dl] ")

xlabel ( 'Time,  [min] )

figure

plot (sol .X,sol.y)

title (’System without hippocampus and a timedelay of 19 min. ")
legend ( 'CRH’ ,’ACTH’ , > Cortisol )

set (gca, ’XLim’ ,[0 1440])

set (gca, "XTick’,0:120:1440)

set (gca, 'XMinorTick’,’on’)

xlabel (’Time, [min] )
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B.4 Files loaded by the main file used for numerical analysis

Listing B.4: The Jacobian of the unreduced system.

function F=System_ Jacobian(t, x, xi, kO, kl, k2, psi, rho, alpha, gamma, c
, €3, wl, w2, w3, x1);

F=[-wl 0 kOx(xixalpha=(x(3) (alpha—1)%c alpha/(c alphat+x(3) alpha)”™2)—
psi*gammasxc3 gammasx* (x(3) " (gamma—1) /(c3 gamma+x (3) “gamma) "2))
kl%(1—rho#(x(3) alpha/(c alpha+x(3) alpha))) —w2 —klxrhoxalphax(x(3)

“(alpha—1)*c alpha/(c alpha+x(3) alpha)™2)*x (1)
0 k2 —w3];

Listing B.5: The differential equations of the unreduced system.

function xdot=Ikke_reduceret_system__med__hippocampus(t, x, kO, k1, k2, wl,
w2, w3, xi, psi, rho, alpha, gamma, c, c3, x1)

%De afledte til tiden nul bestemmes

xdot=zeros (3,1);

%Systemet defineres

xdot (1)=k0*(1+xi*(x(3) alpha/(c alpha+x(3) alpha))—psi*(x(3) gamma/(x(3)"
gamma+c3 gamma) ) )—wlxx (1) 4+0.11%(—0.295%x1*cos (2*xpi/1440x(t+90))
+0.1924%x1*sin (2% pi/1440%(t+90)));

xdot (2)=klx(1—rhox(x(3) alpha/(c alpha+x(3) alpha)))*x(1)—w2xx(2);

xdot (3)=k2xx(2)—w3*x(3) ;

%axdot (1)=(1+zi*(z(3) alpha/(1+x(8) "alpha))—psix(z(8) gamma/( c3tilde gamma+
z(3) gamma) ) )—wlitildexz(1);

%xdot (2)=(1—rho*(z(3) "alpha/(1+x(8) alpha)))*xz(1)—wltildexx(2);

%rdot (8)=z(2)—w3tildexz(8);

KkO0=wlxxl/(1+xi*(xz3 alpha/(c alpha+z3 alpha))—psi*(z8 gamma/(x3 gammatc3™
gamma) ) )

Fk1=w2xx2/((1—rho*(xz3 alpha /(c alpha+z38 alpha)))xxzl)

%k2=w3+x3 /12

Listing B.6: The Jacobian of the reduced system.

function F=Reduced_system_ Jacobian(x, t, xi, psi, rho, alpha, gamma,
c3tilde , wltilde, w2tilde, w3tilde);

F=[-wltilde 0 xixalphax*(x(3) (alpha—1)/(14+x(3) alpha)”~2)—psixgammasx
c3tilde "gammax(x(3) " (gamma—1)/(c3tilde “gamma+x (3) gamma) ~2)
(1—rho*(x(3) alpha/(14x(3) alpha))) —w2tilde —rhoxalpha=(x(3) (alpha

—1)/(14x(3) "alpha) "2)xx (1)
0 1 —w3tilde ];

Listing B.7: The differential equations of the reduced system.

function xdot=Reduceret_system_ med_hippocampus(t, x, xi, psi, rho, alpha,
gamma, c3tilde , wltilde, w2tilde, w3tilde)

%De afledte til tidem mnul bestemmes

xdot=zeros (3,1);

%Systemet defineres

xdot (1)=(1+xi=*(x(3) alpha/(14+x(3) alpha))—psi*(x(3) gamma/(c3tilde gamma+tx
(3) gamma) ) )—wltildexx(1);

xdot (2)=(1-rho=*(x(3)  alpha/(1+x(3) alpha)))*x(1)—w2tilde*x(2);

xdot (3)=x(2)—w3tildexx(3);
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Listing B.8: The function H(X3) — L(X3).

function f=ZerosofRx3Lx3(x, xi, psi, rho, alpha, gamma, c3tilde, wltilde,
w2tilde , w3tilde)

f=(1/(wltildexw2tildexw3tilde))*(1+xix*(x"(alpha)/(14+x"(alpha)))—psix(x"(
gamma) /(c3tilde “gammatx " (gamma) ) ) )*(1—rhox*(x"(alpha)/(1+x " (alpha))))—x

)

Listing B.9: The function L(X3) — H(X3).

function f=minusZerosofRx3Lx3(x, xi, psi, rho, alpha, gamma, c3tilde,
wltilde, w2tilde, w3tilde)

f=—1%((1/(wltildexw2tildexw3tilde))*(1+xi*(x" (alpha)/(14+x"(alpha)))—psix*(x
“(gamma) /(c3tilde gamma+tx” (gamma))))*(1—rhox*(x"(alpha)/(14+x"(alpha))))
—x);

Listing B.10: The differential equations for the system including timedelays.

function ydot=unreduced_system_med_hippocampus_delay_ model(t, y, Z, kO, kl
, k2, wl, w2, w3, xi, psi, rho, alpha, gamma, ¢, c3, x1)

%De afledte til tidem mnul bestemmes

ylagl=Z(:,1);

ylag2=Z(:,2);

ylag3=Z(:,3);

%The system with time delay is defined

ydot=[k0*(1+xix*(ylagl (3) alpha/(c alpha+ylagl (3) alpha))—psix*(ylag2(3)”
gamma /(ylag2 (3) gammatc3 gamma) ) )—wlxy (1) %+0.7x(—0.295xx1*cos (2% pi
J1440%(t+90))+0.1924+x1*sin (2xpi/1440%(t+90)))
kl#(1—rhox(ylagl (3) alpha/(c alpha+ylagl(3) alpha)))*y(1)—w2xy(2)
k2xylag3 (2)—w3xy (3) ];

%rdot (1)=(1+zi*(z(3) alpha/(1+z(3) alpha))—psi*(z(3) gamma/(c3tilde gamma+
z(3) gamma) ) )—wlitildexz(1);

%xdot (2)=(1—rho*(x(3) alpha/(1+z(3) alpha)))*z(1)—w2tildex*x(2);

%rdot (8)=z(2)—wStildexz(3);

kO0=wlxx1/(1+zi*(xz3 alpha/(c alpha+z3 alpha))—psi*(z8 gamma/(x3 gammatc3”™
gamma) ) )

Fk1=w2xx2/((1—rho*(z3 alpha /(c alpha+xz8 alpha)))xxz1)

%k2=w3*z8 /12

Listing B.11: The history file used in the differential equations for the system including
timedelays.

function s = unreduced System_ med_ hippocampus_delaymodel History (t, kO, kl
, k2, wl, w2, w3, xi, psi, rho, alpha, gamma, c, c¢3, x1)

% Der skal defineres en historiefunktion , her er den bare konstant.

s = [2,21,11];
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