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In this thesis two mathematical models of the hypothalamic-pituitary-adrenal-axis(HPAaxis) are build using 
well known physiological mechanisms. The HPA-axis controls the secretion of the hormones CRH, ACTH 
and cortisol. The regulation of these hormones are important to human health. These hormones are the 
variables in two systems of coupled non-linear differential equations that constitute the models. The models 
include a negative feedback of cortisol on ACTH. The first model has a negative feedback from cortisol on 
CRH corresponding to the ’standard biology textbook’ description of the HPA -axis. The second model 
allows a feedback from cortisol on CRH to be positive or negative depending on the cortisol concentration 
by including mechanisms from hippocampus. 
For parameter values in a physiologically relevant range it is investigated if the models are capable of 
guaranteeing solutions with reasonable levels in hormone concentration. It is investigated if the models are 
capable of producing the ultradian oscillations that are observed in data of hormone concentrations. It is 
investigated if an external imposed function on the differential equation governing the CRH concentration 
can 
cause the circadian rhythm that is seen in the concentrations of ACTH and cortisol. 
Previous papers of the HPA-axis [1] and [2] claim to make models showing ultradian oscillations. We 
analyze the two models and find significant drawbacks that must be elaborated for a successful model 
taking care of the physiological mechanisms of the HPA-axis. 
 
Results of analytical investigation of our models 
For both models the results of the investigation is that all solutions end in a trapping region in the positive 

octant of 3R , thus guaranteeing reasonable levels in hormone concentration. Within this trapping region 
there exists at least one fixed point. The first model has a unique fixed point. The unique fixed point is 
locally stable for all physiological choices of parameters. Therefore no Hopf bifurcation is possible as an 
explanation for the ultradian oscillations in data. For the second model more than one fixed point is 
possible. The stability of a fixed point is categorized depending on the sign of the feedback on CRH at the 
fixed point.  
A sufficient, easily applicable criteria for a unique, globally stable fixed point is formulated for a more 
general model. This can be applied on the two specific models. 
 
Results of numerical investigation of our models 
In the case of a unique fixed point this is asymptotically stable for all reasonable parameter values and 
initial conditions. Perturbating the parameters in the second model makes the system undergo a bifurcation 
where two new fixed points emerge. In the case of three fixed points there is one unstable fixed point and 
two asymptotically stable fixed points. For all reasonable values of parameters and initial conditions the 
solutions converge towards one of the two stable fixed points. Thus for reasonable parameter values 
neither of the models are capable of producing the ultradian oscillations.  
The analytical criteria for a globally stable fixed point is fulfilled for some set of parameters within 
physiologically relevant range for both models. 
An external input in the differential equation governing CRH is capable of showingcircadian oscillations in 
the ACTH and cortisol concentration. 
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Preface
This project report is a master thesis in mathematics for two persons at Roskilde Uni-
versity. The thesis is thus counting 20 ECTS points per person. The thesis is in
the category ’Mathematical Model Building’ and concerns deterministic models of the
hypothalamic-pituitary-adrenal (HPA)-axis.

In our early study of the literature for the thesis our eyes fell upon papers by Kyrylov
et al., [1], and by Jelíc et al., [2]. Here models reproducing the dynamics of the HPA-
axis are formulated. Therefore we appreciate that Vadim Kyrylov invited one of the
authors of this project on a visit to discuss mathematical modeling of the HPA-axis.

We thank Jan Vistisen and Lars Arvastson from the medical company H. Lundbeck
A/S for being very helpful with many aspects regarding the modeling of the HPA-axis.

The collaboration with H. Lundbeck A/S has given us the fortunate opportunity of
access to data of hormone levels in healthy and unhealthy (depressed) persons. To our
knowledge deterministic mathematical models of the HPA-axis has not previously been
compared to such data. A successful model could therefore be used on the healthy group
as well as on the unhealthy group(s). The outcome could be that some parameters of
the mathematical model are significantly different among the groups. Then the model
could be used for a better understanding of the mechanisms causing depression.

It has been very motivating to us that a successful model may help improve the
understanding of the HPA-axis that is important to human health.

A special thanks to our supervisor, Johnny Tom Ottesen, for thorough feedback,
interest and relevant suggestions through the project.
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1 Method and readers guide

In this chapter we seek to give the reader an insight into the structure of this thesis.
First we introduce the reader to the rather complex biology of the HPA-axis in

chapter 2. This introduction serve as the platform for our mathematical model. The
standard biology textbook description of the HPA-axis regards a system where three
hormones interact and two negative feedbacks are present. Some mathematical models
of the HPA-axis include more mechanisms that may be of importance. We aim at the
simplest model showing the desired behaviour. Therefore we will construct and analyze
two models. One only including the ’standard biology textbook’ mechanisms of the
HPA axis and a more advanced model.

Our two models are deterministic. For a deterministic model a solution can be found
numerically given a set of initial conditions and parameters. Perturbing a parameter
may lead to qualitatively different dynamics which can be investigated numerically and
analytically (locally). The included mechanisms of the HPA-axis result in expressions
including parameters in the mathematical model. This means the behaviour of the
mathematical model can be analyzed as different mechanisms of the physiology are
given more or less weight. Since the three kinds of hormones of the HPA axis are
coupled it is hard to distinguish cause and effect in for the physiology of the HPA-axis.
However for a deterministic model it may be possible to describe the effect of e.g. a
malfunctioning feedback.

In chapter 2 we also show masked data kindly provided by H. Lundbeck A/S. This
should give the reader an idea of the dynamics a model should be able to reproduce. A
brief presentation of two state of the art models (paper [2] and paper [1]) of the HPA
axis is also given in this chapter. Here we focus on categorizing the arguments regarding
physiology and mathematical modeling. We focus here on the advantages of the two
models.

In chapter 3 we introduce the most widely used mathematical theory in this the-
sis. We focus on deterministic models. Therefore this chapter mainly concerns theory
regarding ordinary differential equations.

Since the mathematical theory is now introduced we can in chapter 4 give a more in
depth analysis of [2] and [1]. This analysis reveals problematic parts of each model that
must be improved. The purpose of this chapter is to show typical models of the HPA-
axis. Also this chapter shows that modeling of the HPA-axis is incomplete justifying
that more work is needed.

In chapter 5 the first of our two models is constructed and analyzed. An important
part of the model relies on receptor dynamics that are crucial for feedback mechanisms.
The analytical investigation does not constitute a complete investigation of the system
dynamics (which is often the case for non linear systems of differential equations). How-
ever the analysis does not give reason to expect the system has the desired dynamics.

1



2 Method and readers guide

The second model is constructed and analyzed in chapter 8. The use of receptor
dynamics is also in focus for the second model.

The two mathematical models are analyzed and some important properties are com-
mon for both systems. The arguments for this is also quite similar in the two cases.
However this emphasize the potential in a formulation a more general model where the
same results apply. This is interesting since a wider range of models is then covered.
This is explored in chapter 9. Here a criteria is formulated that guaranties global sta-
bility, thus outruling the existence of limit cycles. This arguments is easy to use for a
specific system where parameters are known.

Some results of this projects hold solely by knowing the sign of the included param-
eters. However some results are a categorization of system dynamics. This depends
on the actual values of the parameters of the system. Therefore chapter 10 concerns
estimation of parameters. This leads to a set of default parameters for our two models.
However it is a general problem when modeling the HPA-axis to get reliable parameters.

In chapter 11 the dynamics of our two models are investigated numerically using
Matlab. First using the default parameters. Then typically one parameter is perturbed
and the rest of parameters are fixed at default values. This is valuable information
since the parameter estimation leaves room for improvement. Therefore the behaviour
of the model using perturbed parameters are of interest.

It is a common assumption of the papers modeling the HPA-axis that a circadian
pattern can be separated from a faster dynamics. In chapter 11 we will include this
circadian input in simulations. All Matlab codes can be found in appendix B.

Chapter 12 summarize the results of this project. Here we start with the most
general results for our models and proceed with the results that characterize specific
models. The results are compared to state of the art models.

Since no successful model is found chapter 13 concerns including time delay in the
model. This is justified by a ’transport time’ for a hormone to reach its place of action.
Models (paper [3] and [4]) including time delay have rejected that time delay explains
the physiologic observed behaviour. However we point out a crucial shortcoming of
their argumentation. We therefore suggest further studies should be made on a model
including time delay.
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2 Introduction

2.1 Introduction to the physiology of the
hypothalamic-pituitary-adrenal axis

A hormone is a ’messenger molecule’ released into the bloodstream where it flows with
the blood and then binds to a specific target receptor in the body tissue. This thesis
will concern a mathematical model with hormone concentrations as variables. More
precisely the hormones of the hypothalamic-pituitary-adrenal (HPA) axis. The HPA
axis is a biological system connecting three areas in the human body by mainly three
hormones, this is illustrated in figure 2.1 and figure 2.2.

The HPA axis plays an important role under stressed conditions by raising the con-
centration of the HPA axis hormones which leads to energy directed to the organism[4].
The return to the basal hormone levels after a while is an important feature of the
system when it is working properly.

We will now give a short description of the HPA axis, see figure 2.2. Corticotropin
releasing hormone (CRH) is secreted in hypothalamus and reaches another area in the
brain - the anterior pituitary. Here CRH stimulates the secretion of adrenocorticotropic
hormone (ACTH) from the pituitary gland. ACTH moves with the bloodstream and
when it reaches the adrenal glands it stimulates secretion of cortisol. The standard
textbook description is that cortisol inhibits the secretion of CRH in the pituitary
(performs a negative feedback). Cortisol also performs a negative feedback on the
secretion of ACTH in the hypothalamus as shown in figure 2.2[5]. It has been suggested
that there can be a struggle between a resulting positive and a negative feedback on
the CRH secretion from cortisol[2, 6] which will be discussed later.

Stress causes the body to increase the level of cortisol which stimulates e.g. forma-
tion and secretion of glucose that is important ’fuel’ for the body[5]. Keeping cortisol
concentration within a certain range is important for various reasons. As an example
a maintained, high level of cortisol (hypercortisolism) can cause depression, diabetes,
visceral obesity or osteoporosis[6]. Too low concentration is neither desirable since it
can result in a disturbed memory formation or life-threatening adrenal crisis[6]. The
regulation of the HPA axis is thus important to be healthy. More factors influence the
system but the three hormones mentioned constitute the backbone of the HPA axis[5]
and will therefore constitute the variables of the model considered in this project.

The cortisol concentration has a daily pattern. It is typically low between 8 p.m. and
2 a.m. and rises to peak in the period 6-10 a.m.[2]. CRH is secreted in a pattern with
a frequency of one to three secretory periods per hour (often referred to as ultradian
oscillations)[7]. Throughout the literature [8] and our data we see circadian as well as
ultradian oscillations in the hormone concentration of ACTH and cortisol. Therefore
circadian as well as ultradian oscillations are present in the system.

4



2.1 Introduction to the physiology of the hypothalamic-pituitary-adrenal axis 5

Figure 2.1: The location of the hypothalamus, the pituitary and the adrenal glands
that constitute the HPA axis along with the ACTH, CRH and cortisol interactions.

Figure 2.2: The HPA-axis from [5]. The green lines show a positive stimulation. The
red lines indicate that elevated cortisol concentration inhibits secretion of CRH as well
as a direct inhibition of secretion of ACTH.



6 Introduction

The frequency of the ultradian oscillations is rather insensitive to stress whereas the
amplitude increases[7]. Examples of data with circadian and ultradian oscillations can
be seen in the figures 2.3 and 2.4.

2.2 Mathematical modeling of the dynamics of the HPA-axis
Understanding of the interplay between the various mechanisms of the HPA axis is
interesting and important since the system has an important function. Since several
feedback mechanisms are working simultaneously in the HPA axis cause and effect may
be hard to distinguish. A mathematical model may help to separate cause and effect
and can be an important tool for pointing out different ways in which a malfunctioning
can occur.

The aim of this project is to make a mathematical model of the dynamics of the
HPA axis using mechanism based differential equations including physical interpretable
parameters. The model should be simple enough to allow computation but still suffi-
ciently advanced that it captures the important mechanisms. The approach here is to
start on solid ground with a simple model and in case of failure proceed in a detective
like manner to more complex models.

Known structures that the model should reflect are
• Feedbacks of cortisol on ACTH and CRH.
• Circadian rhythm of hormone concentrations.
• Ultradian oscillations in hormone concentration.
A differential equation model of the HPA-axis can typically be represented by a

compartment diagram where significant elements of the HPA-axis are symbolized with
boxes and the influence from one box to another is represented by arrows and a plus
or minus depending on whether the presence of a substance stimulate or inhibits the
production of another substance, see figure 2.5.

Perspectives of a useful model
If a successful model is found it is interesting to investigate the dependence on the
included parameters. Parts of the behavior of the model might be more robust to
perturbations of some parameters than others. It would be interesting to couple specific
values of parameters to measurable quantities in humans. If so the model may be used
to determine parameters that are specific to individual patients and thereby give an
indication of malfunctioning physiological mechanisms. For example the concentration
of cortisol is relevant to depression and there exists depression characterized with a high
concentration of cortisol (high cortisol depressive) and similarly a low cortisol depressive
group exists. Some values of one or more parameters may characterize one group and
values of other parameters may characterize another group. This could help identifying
the mechanisms or causes leading to depression.

A field lacking reliable data
It is a general problem to get reliable, physically reasonable parameter values for the
HPA axis since it is hard to perform measurements on for instance the CRH concen-
tration in hypothalamus. Therefore it is an ambitious but interesting goal to make a
reliable model. A reason not to consider this too ambitious is the access to data of
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Figure 2.3: Example of ACTH data of three individuals from the hypercortisol depressed
group, the low cortisol depressed group and a normal person. Time t=0 corresponds
to midnight. Data was sampled every tenth minutes through 24 hours.
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Figure 2.5: A compartment model of the HPA-axis corresponding to figure 2.2.

ACTH and cortisol concentrations of a high cortisol depressive group, a low cortisol
depressive and a normal group. Confidential data is kindly provided by H. Lundbeck
A/S and is originally from Carroll et al.[9].

This data contains 7 hypercortisol depressive persons, 5 low cortisol depressive per-
sons and 17 not depressed control persons. The measurements are performed every
tenth minute through 24 hours and the time t=0 corresponds to midnight. Meals were
given at 7.30, 12.00 and 18.00 and in waking hours the subjects were allowed to rest in
bed or chair. No sleep were allowed in waking hours but listening to radio, watching
television or reading was permitted. In order not to violate the confidentiality of the
data we have chosen to transform the data by means of fast Fourier transformation(the
Matlab code is presented in appendix B.1). The 145 different measurements give us a
total of 73 different frequencies when using fast fourier transformation. An example of
the data where only the 20 lowest frequencies is included (in order to mask the data
sufficiently) is shown in figure 2.3 and figure 2.4. The three individuals shown in figure
2.3 and figure 2.4 corresponds to individual 5, 10 and 27 in the confidential attachment.

We would like the reader to notice the circadian oscillation in ACTH and cortisol
as well as the ultradian oscillations. The original aim of the project is to form a
mathematical model with physiologically interpretable parts that results in solutions
showing these oscillations. We cannot hope to find evidence for faster oscillations than
three an hour since sampling every 10th minutes leads to the smallest observable period
of 20 minutes(using discrete Fourier analysis).
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2.3 Brief presentation of previous models
There are rather few differential equations models of the HPA axis. The various models
may be considered consisting of two parts. One is the physiology e.g. the description
of the HPA axis using biological terms and one is the modelling e.g. the translation of
the biology into mathematics and especially differential equations. Of course these two
parts are not independent but criticism or credit of a model may be categorised into
either physiology or mathematical modelling.

Papers using nonlinear, coupled differential equations to model the HPA axis are
made by Kyrylov et al.[1] and Jelic et al.[2]. These have been of great inspiration to
us and of course a project concerning the modelling of the HPA axis must include an
overview of previous models. This section serves as an overview of the two models
categorizing the parts unbique to each model into physiology or mathematical modeling.
This categorization helps determining the difference in the considered physiological
mechanisms of each model as well as helps clarifying if the mathematical model properly
describes the proposed physiological mechanisms. Both papers describe the physiology
as the standard textbook description (section 2) but also more details to the physiology
are added. We will present the reader to a more in depth critique of the two models
[1, 2] in chapter 4. Chapter 4 will therefore be a justification of why we consider neither
the model of [1] nor [2] to capture enough relevant physiological aspects of the HPA axis.
We will use what we consider the best aspects of each model and make our own model
of the HPA axis. The brief presentation in this section will not include any differential
equations since the tools for analyzing these will be illustrated in chapter 3.
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The approach of Kyrylov et al.
Here we will give an brief presentation of [1].

Physiology
A compartment formulation of the model is shown in figure 2.6. The included hor-
mones of the HPA axis are CRH, ACTH, free cortisol, albumin bound cortisol and
corticosteroid-binding-globulin (CBG) bound cortisol. The diagram has the charac-
teristics of figure 2.5 but several new mechanisms are introduced. An impact from the
central nervous system (CNS) on hypothalamus is included and used to give a circadian
input on the derivative of CRH. The cortisol dynamics is a bit more complicated than
in figure 2.5 since it can be in free form or two bound forms. The bound forms of corti-
sol only interact with the free form thus not making the system too complicated. It is
worth noting that CRH have a direct positive stimulation on cortisol. This stimulation
is passing ACTH which we have not seen elsewhere.

Mathematical modeling
The variables of the mathematical model are the five hormones. The mathematical
modeling is divided into three steps. First a linear differential model is considered,
then non linearities are imposed and finally the circadian input on the derivative of
CRH is added.

• First step.
The overall idea is that a linear systems of differential equations can be

used when the concentrations of the hormones of the model have moderate, posi-
tive values1. The linear system should show an unstable and oscillatory behaviour.
A numerical investigation of the linear system is performed, where some parame-
ters are considered known and the rest are varied within ranges given by orders
of the known parameters. The unknown parameters are varied independently
within their respective ranges in each simulation and the stability is investigated
(If there exists an eigenvalue of the linear system with positive real part the sys-
tem is unstable. If all eigenvalues are negative the system is stable). The linear
system results in unstable and oscillating behaviour in more than 90 percent of
the simulated cases. This give the system its ultradian oscillations.

• Second step.
Two artificial nonlinear mechanism are imposed on the linear system. The

first is an upper limit on hormone release rate and the second nonlinearity ensures
that the hormone concentrations can not become negative. These two physically
relevant properties are included in the model by introducing nonlinear functions
that obey these characteristics.

• Third step.
The circadian oscillations are introduced by adding a forcing function

affecting the derivative of the CRH concentration which then causes circadian
variation on the other hormones due to the coupling of the differential equations.

Kyrylov et al. consider their model successful since it represents the physiological
behavior of ultradian oscillations and a circadian(imposed) rhythm. Also they consider
1 Normally a linear approximation of a non linear system of differential equations is only useful close
to a steady state solution. However there is no investigation of steady state solution in [1]. For an
explanation of steady state solution see chapter 3
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Figure 2.6: The compartment diagram of Kyrylov et al. from [1]. The central nervous
system can stimulate the secretion of CRH from hypothalamus. A direct CRH- cortisol
stimulation is included which is not the case in diagram 2.5. The negative feedback
from this diagram is also included. Two bound forms of cortisol interacts with the free
form.

the model more robust to perturbation of the parameters which makes it more reliable
than previous models in their view. Actually their model resulted in a whole body
simulator that should be used for education of students in biology and medicine.

Some points about the approach of Kyrylov et al. should be noted.
• Physiology.

– Five hormones of the HPA axis are considered with two bound forms of
cortisol included.

– A direct CRH -cortisol stimulation is included.
• Mathematical modeling.

– The linear equations of the system shows unstable, oscillatory behavior which
is responsible for the ultradian oscillations in the system.



12 Introduction

– The non linearities are chosen to ensure the hormone release rate is bounded
and negative concentrations do not occur.

– The circadian rhythm is introduced as an external input to hypothalamus
affecting the derivative of the concentration of CRH. This is done additively
with a time varying cosine function as input. Thus the system becomes non
autonomous when this is introduced. The circadian rhythm then ’spreads’
to the ACTH and cortisol concentrations automatically since the differential
equations are coupled.

The approach of Jelic et al.
The physiology
Hormones have to bind to receptors in order to cause an effect. Taking this approach
Jelic et al. put forward a set of chemical reactions upon which their differential equations
build. A compartment diagram of the system is shown in figure 2.7. The negative feed-
back of cortisol on CRH and ACTH takes place through glucocorticoid receptors(GR)
in hypothalamus and pituitary. Stress acts on the system through hippocampus (a
component of the brain). The circadian rhythm is expressed through the hypothalamic
suprachiasmatic nucleus (SCN) that is considered an external factor influencing CRH
secretion[2]. [2] describes the dynamics associated with cortisol binding to the mineral
corticoid receptors(MR) and the GR in hippocampus. Whereas GR is present in both
hippocampus, hypothalamus and the pituitary glands, MR is present particularly in
hippocampus[10].

Cortisol binding to MR in hippocampus leads to a negative feedback on the secretion
of CRH while cortisol binding to GR in hippocampus cause a positive feedback on the
secretion on CRH[2]. Glucocorticoids have a ten fold higher affinity for MR than for GR.
Therefore Jelic et al. propose that MR regulates the HPA-axis activity under normal
conditions while both MR and GR play a role under high level cortisol conditions since
the number of MR is limited[2]. The hormones Jelic et al. suggest are governing the
dynamics of the HPA axis are CRH, ACTH, cortisol and aldosterone. Aldosterone is
a mineralocorticoid (affecting balance of minerals) whereas cortisol is a glucocorticoid.
Aldosterone and cortisol are both secreted form the adrenal glands. Cortisol can bind
to both MR and GR but aldosterone has very little affinity for GR but binds to MR
[2]. The main reason to include aldosterone in the model is its role as ’placeholder’
meaning it is occupying MR in hippocampus resulting in fewer available MR to be
occupied by cortisol. If the number of receptors is the limiting factor and the amount
of aldosterone is increased thus leading to more binding of aldosterone by hippocampal
MR then fewer MR would be available to cortisol thus weakening the negative feedback
and strengthening the positive feedback. Jelic et al. claim to be the first to include
aldosterone in a model of the HPA axis and we have not seen later models include
this. (However the dynamics of aldosterone is in the mathematical model reduced by
assuming that daldosterone/dt = 0. This means the effect on pushing the balance of
cortisol feedback is also disregarded).

Mathematical model
The approach in [2] is to write a reaction scheme for the variables. The reaction scheme
is not adjusted which can be seen from the fact that the reaction scheme is not stoichio-
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Figure 2.7: The compartment diagram from [2]. Cortisol exerts negative feedback
on ACTH and CRH through GR. Also hippocampus is included since cortisol has a
feedback on CRH acting through hippocampus. This is positive for cortisol binding to
hippocampal GR and negative for cortisol binding to hippocampal MR.

metric correct. Using the law of mass action2 the reaction scheme can be transformed
into differential equations. This means the mathematical model is crucially dependent
on the reaction scheme. However there is no reference nor derivation of the reaction
scheme in [2]. Since four hormones are considered the result is four differential equations.
The obtained differential equation for dCRH/dt only depends on CRH (and some parame-
ters). This means the feedback from cortisol is not included in the mathematical model.
A (non trivial) assumption about a slow dynamics of CRH and aldosterone compared to
the dynamics of ACTH and cortisol leads to the statement daldosterone/dt = dCRH/dt = 0
thus effectively reducing the number of differential equations from four to two, i.e re-
sulting in a two dimensional system. The crucial non linearity of the two equations (in
order to hope for oscillating solutions) comes from a reaction where one ACTH molecule
2 The law of mass action is explained in section 5.2
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reacts with two cortisol thus becoming three cortisol molecules. This should reflect the
positive feedback from cortisol acting through hippocampal GR.

The Poincaré Bendixson theorem3 can ensure existence of a stable limit cycle which
is an important tool for two dimensional systems (a stable limit cycle is a periodic solu-
tion, see chapter 3, with neighbouring solutions that are not periodic. The neighbouring
solutions must converge to the limit cycle). For the chosen set of parameters a limit
cycle exists which gives the ultradian oscillations in the system.

Important points from [2] are
• Physiology.

– Cortisol exerts negative feecback on CRH in hypothalamus and ACTH in
the pituitary through GR.

– Cortisol exerts feedback on hippocampal receptors that influence the HPA
-axis. There are two kind of receptors and one cause a positive feedback and
the other cause a negative feedback.

– Aldosterone is included but no bound forms of cortisol are included.

• Mathematical modeling.
– The reaction scheme leads directly to the final, non linear differential equa-
tions.

– The negative feedback from cortisol on CRH is not included.
– The investigated system is significantly reduced from the physiological de-
scription since only the dynamics of two hormones are considered.

– The investigated system consists of two coupled, non linear differential equa-
tions of cortisol and ACTH based on a reaction scheme and the law of mass
action.

– Parameters are chosen so that the Poincaré Bendixson Theorem guarantees
a stable limit cycle which cause the ultradian oscillations of the system.

– The circadian rhythm appears additively to the differential equation of ACTH.
First the circadian rhythm is constant but for a numerical investigation a
timedependent trigonometric function is used. Then the model becomes non
autonomous.

2.4 Our model
Our model of the HPA-axis is building on [1] and [2] and section 2.

Including relevant physiology as desribed by Jelic and Kyrylov
Comments on physiology from Kyrylov et al.
CBG binds approximately 90 percent of the cortisol and is thus the major binder of
cortisol. The binding and dissociation is very fast[10]. A saturation is visible for
concentrations above 25 µg/dl but this limit is above realistic concentration[11]. ‘Because
CBG is the major cortisol-binding protein the free cortisol in plasma is almost linearly
related to the total cortisol at normal concentrations‘[11]. About 7 percent of plasma
cortisol is bound to albumin (at 37 degrees Celcius). No saturation of albumin bound
cortisol is present. Since cortisol has a faster association and dissociation from albumin

3 The Poincaré Bendixson theorem is explained in chapter 3
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than from CBG we consider the albumin bound cortisol and the free cortisol to be in
equilibrium [11]. We can therefore disregard the dynamics of the CBG-bound cortisol
and the albumin bound cortisol. The free cortisol is considered a constant fraction of the
total amount of cortisol. Since it is only the free cortisol that is capable of interacting
with the rest of the HPA-axis it is really the free cortisol that is of most interest.

We have not been able to get good verification on the direct CRH-cortisol stimulation
which is the major reason to disregard it. We will not include this in our final model
but still some analysis is done on a system including the CRH-cortisol stimulation (in
chapter 4.2). This analysis shows that the behaviour of the system with CRH-cortisol
stimulation is in some sense controlled by the system without CRH-cortisol stimulation.
This means that we have some control with what happens by disregarding this term.

Comments on physiology from Jelic et al.
The aldosterone included in [2] will not be included in our model. This is because
[2] argues that the dynamics of this is fast compared to the rest of axis. Also in [2]
aldosterone is included as a placeholder of MR thus leaving fewer available to cortisol
though cortisol is more dominant in binding MR than aldosterone. We do not know how
many receptors are available anyway so this constant fraction of aldosterone occupying
receptors is not considered important.

We will pursue the idea from [2] that cortisol exerts negative feedback through GR in
hypothalamus and pituitary. The positive feedback of cortisol on CRH acting through
hippocampal GR and the negative feedback of cortisol on CRH through hippocampal
MR is an interesting mechanism. We have no information about possible hormones in
hippocampus i.e. if there should be included a hormone in hippocampus that acts on
hypothalamus we do not know what this should be. Therefore inclusion of hippocampal
dynamics will be as extra feedbacks on CRH in hypothalamus. However this includes
some speculation. Therefore the system without hippocampus must be investigated
thoroughly before including hippocampal dynamics. Furthermore the system without
hippocampus is the most understood and thereby more thoroughly investigated than
the system including hippocampal dynamics.

What mathematical modeling by Kyrylov and Jelic can be used in our model
Since we include three hormones the mathematical model consists of three coupled
differential equations. In both papers the ultradian oscillations of the system is a
behaviour that is caused by the dynamics within the HPA axis and not due to an
external forcing function. We will therefore purpose a system of three nonlinear, coupled,
autonomous differential equations and look for conditions such that the solutions of the
system is oscillating. These oscillations should resemble the ultradian oscillations seen
in data. In both papers the circadian input is included as a ’forcing function’ when
the analysis of the autonomous system is completed. We will follow this approach by
including a circadian input on the positive stimulation on the derivative of CRH, thus
making the system non autonomous.

Comments on Jelic et. al
According to [12] one of the parameters in [2] are wrong by a factor of 1000 to be
physiologically relevant. The physiologically relevant choice of parameters do not lead
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to a limit cycle for the system.
The interesting approach of Jelic et al. using the Poincaré Bendixson Theorem

ensured existence of a limit cycle. Unfortunately the Poincaré Bendixson Theorem is
only usable for two dimensional systems. Jelic et al. get the final differential equations
’for free’ once the reaction scheme is written. Unfortunately the reaction can not be
verified and the negative feedback from cortisol on CRH is not included which is a major
problem.

Comments on Kyrylov et. al
Since we have little trust in the reaction scheme from [2] we will pursue the approach of
Kyrylov et al. by starting with a simple model. However increased complexity should
be included as close to the physiological mechanisms as possible. Therefore another
way of introducing non linearities is desirable.

2.5 Description of included mechanisms of our model
After this motivation of how to model the HPA axis we will now shortly summarize
the compartment diagram of our model. We actually have two models. The first does
not contain hippocampal dynamics (figure 2.8) but the second adds the hippocampal
dynamics upon the first (figure 2.9).

The overall structure of the system with hippocampus is as follows. In hypothalamus
corticotropin-releasing hormone (CRH) is secreted which causes secretion of adrenocor-
ticotropic hormone (ACTH) from the pituitary gland. ACTH causes secretion of hor-
mones from the adrenal gland including cortisol. The circuit for cortisol now consists
of an amount that is distributed in body tissues but there is also a negative feedback
on the ACTH secretion from the pituitary gland as well as a negative feedback on the
CRH secretion from hypothalamus.

For the model including hippocampus two more feedbacks from cortisol are added
on the secretion of CRH. A positive feedback acting through hippocampal GR and a
negative feedback acting through hippocampal MR. Since cortisol has different affinity
for the two receptors their overall stimulation from hippocampus may depend on the
concentration of cortisol.

Now the reader has been introduced to both the physiology and previously made
mathematical models upon which we have found inspiration. Therefore the exact aim
of this thesis can be formulated as:

2.6 Problem formulation
Do our models of the HPA-axis constructed using well known physiological mechanisms
and physiological parameter values show the following behaviour.

• Do the models guarantee reasonable levels in hormone concentration?
• Are the models capable of producing ultradian oscillations in hormone concentra-

tions without external, time varying input?
• Can an external imposed function cause the observed circadian rhythm?
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Figure 2.8: Compartment diagram of the HPA-axis without hippocampus included.
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Figure 2.9: Compartment diagram of the HPA-axis with hippocampus included



3 Introduction to the mathematics of
differential equations

This chapter concerns the mathematical tools mostly used throughout this project. This
chapter will therefore serve as both a mathematical introduction to general results about
systems of differential equations as well as a chapter we can refer to. If the reader is
familiar with theory concerning differential equations this chapter may be skipped.

Of interest is now a system of autonomous differential equations

ẋ ≡ dx
dt = f(x), x(t0) = x0, f : E ⊆ Rn → Rn, E open. (3.1)

First we state the following theorem about existence and uniqueness of solutions to
equation 3.1 that ensures that solution curves cannot intersect where f is sufficiently
smooth[13].

Theorem 3.1: Existence and uniqueness
Let each of the functions f1(x1, ..., xn), ..., fn(x1, ..., xn) have continuous partial deriva-
tives with respect to x1, ..., xn. Then, the initial-value problem ẋ = f(x), x(t0) = x0 has
one, and only one solution x = x(t), for every x0 in Rn.

The solution may exist only on a finite interval. When f is a nonlinear function in
the variables x1, ..., xn one can not in general expect that explicit solution formulas for
x1, ..., xn can be found. Therefore it is interesting to consider numerical methods to
find solutions and qualitative properties of the solutions.

A steady state solution, xss, is a solution where all the variables are constant in
time thus defined as

f(xss) = 0 . (3.2)

xss is also called a fixed point of the system. If a solution at some time equals a steady
state solution, it must remain a steady solution for all future times. How the solutions
in the vicinity of a steady state solution behave is therefore of interest. There are
two definitions regarding stability - (Lyapunov, local) stability and asymptotical local
stability. If any solution is close to the steady state solution at some time, then they
must stay close for all future times if the fixed point should be called stable. This is
the content of the definition of stability [14].

Definition 3.1: Stability
Let xss be a steady state solution of ẋ = f(x). xss is called (Lyapunov, locally) stable if
for any other solution x(t) it is true that ∀ε > 0∃ δ > 0 such that ‖xss − x(t0)‖ < δ ⇒
∀t > t0 it is true that ‖xss − x(t)‖ < ε.

18



3.1 Method for solving a system of linear differential equations 19

For a solution to be asymptotically stable it has to be stable and any close solution has
to converge to it as time increases. This is stated in the following definition[14].

Definition 3.2: Asymptotic stability
Let xss be a steady state solution of ẋ = f(x). xss is called (locally) asymptotically stable
if xss is stable and there exists δ > 0 such that

‖xss − x(t0)‖2 < δ ⇒ lim
t→∞

‖xss − x(t)‖2 = 0 .

Steady state solutions are one kind of special solutions of interest. Another is periodic
solutions. Periodic solutions can be the mathematical explanation of behaviour with a
pattern that repeats itself. The definition is from [14].

Definition 3.3: Periodic solution
A periodic solution φ(t) is a non-constant solution to the set of differential equations
equation 3.1 with the property ∃T > 0 such that ∀t where φ(t) is defined it holds that
φ(t+ T ) = φ(t). The smallest T where φ(t) has this property is called the period of the
solution.

Thus a fixed point is not a periodic solution.
The existence and uniqueness theorem simplifies the possible dynamics especially in

two dimensions. What can happen if the solutions are caught in a bounded region where
there is no fixed point? The answer is given by the theorem of Poincaré - Bendixon and
concerns the long term behavior of a solution [13].

Theorem 3.2: Poincaré-Bendixon
Suppose that a solution x = x(t), y = y(t) of the system of differential equations

dx
dt = f(x, y), dy

dt = g(x, y) (3.3)

remains in a bounded region of the plane which contains no equilibrium points of equa-
tion 3.3. Then, its orbit must spiral into a simple closed curve, which is itself the orbit
of a periodic solution of equation 3.3.

The Poincaré-Bendixon theorem gives sufficient criteria for the existence of periodic
solutions but only in two dimensions.

3.1 Method for solving a system of linear differential equations
In this section we present a way to solve a system of autonomous linear differential
equations with constant coefficients. There is a close connection between stability of
linear systems and non linear system which is the motivation for this section. Also the
focus on modeling using linear systems in [1] gives reason to focus on this. This method
for solving the system is called the eigenvalue-eigenvector method[13].

We consider a system of first order linear autonomous differential equations with
constant coefficients given as

ẋ = dx
dt = Ax+ B, x(t0) = x0. (3.4)



20 Introduction to the mathematics of differential equations

where x = (x1, x2 · · · , xn) and A is an n by n matrix with entries of real constants and
B is a vector of size n by 1 with real constant entries. The general solution of equation
3.4 is a particular solution to equation 3.4 plus the general solution of the homogeneous
system (equation 3.4 with B = 0)[15]. A simple way of finding a particular solution is
solving the fixed point equation 0 = Axp + B which is a linear algebra problem.

The following focus on finding the general solution to the homogeneous equation

ẋ = Ax . (3.5)

First we observe that
d

dt
eλtv = λeλtv (3.6)

and
A
(
eλtv

)
= eλtAv . (3.7)

Dividing through with eλt gives
Av = λv , (3.8)

or equivalently
(A− Iλ) v = 0 . (3.9)

A nonzero vector v satisfying equation 3.8 is called an eigenvector of A with eigenvalue
λ.

Equation 3.9 has nonzero solutions v only if the characteristic polynomial P (λ) is
zero, that is

P (λ) = det(A− Iλ) = 0. (3.10)
Therefore the eigenvalues of A are the roots of the characteristic polynomial. The
eigenvectors are the vectors satisfying

(A− Iλ) v = 0 (3.11)

thus v depends on λ. We now observe that if v is an eigenvector with eigenvalue λ then

A(cv) = cAv = cλv = λ(cv) (3.12)

for any constant c 6= 0. Therefore any multiple of an eigenvector of A is again an
eigenvector of A.

If A is an n × n matrix with n linearly independent eigenvectors v1, ...., vn, with
distinct, real eigenvalues λ1, ..., λn then every solution to equation 3.5 is a linear com-
bination of solutions cieλitvi with i ∈ 1, ..., n [13].

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + ......+ cne
λntvn . (3.13)

This is called the general solution of equation 3.5. The constant real coefficients c1, ..., cn
can be found from the initial condition x(t0) = x0.

When ẋ = Axss = 0, xss is called a fixed point for 3.5 and we now comment on the
stability. If λi < 0 i ∈ {1, ..., n} then from 3.13 it can easily be seen that x(t) → xss
for t → ∞ but if just one of the eigenvalues are positive this will not be the case thus
making sure that xss is unstable. Thus the eigenvalues of the matrix A play a central
role when stability is considered.
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µmax σ solution behaviour
µmax > 0 σ = 0 unstable, non-oscillating
µmax > 0 σ 6= 0 unstable, oscillating
µmax = 0 σ ∈ R stable, oscillating
µmax < 0 σ = 0 asymptotically stable, non-oscillating
µmax < 0 σ 6= 0 asymptotically stable, oscillating

Table 3.1: The system behaviour depending on the largest eigenvalue of A, λmax =
µmax + iσ, µ, σ ∈ R

There are ways to obtain a general solution even though there are repeated eigen-
values or complex eigenvalues. For a complex eigenvalue, λ = µ + iσ, µ, σ ∈ R then
eλt = eµt(cos(σt) + i sin(σt)) is complex. Since the original problem was real a real so-
lution is desired. It turns out that one can find two constant vectors with n real entries
u and w such that solutions can be formed by eµt cos(σt)u and eµt sin(σt)w [15]. This
means that for a complex eigenvalue two solutions can be found and they each have a
factor that describe growth or decay related to the real part of the eigenvalue (eµt) and
a factor describing an oscillation (cos(σt) or sin(σt)). In practice this is not a periodic
oscillation since the amplitude is typically not constant - for a decreasing amplitude it
is often called a damped oscillation. Note that the period of oscillation is 2π/σ thus the
imaginary part of a complex eigenvalue determines the period of oscillation.

It follows from equation 3.13 that the eigenvalue, λmax, with the largest real part
determines the long time behaviour of the solution meaning that it controls the stability
and whether this happens as a pure exponential decay or growth or if oscillations are
also present. If λmax has positive real part and has a nonzero imaginary part the
solution will be unstable and converging towards an oscillating solution, i. e a periodic
solution. If λmax has positive real part and zero imaginary part, the solution will be
unstable and not oscillating. If λmax has a real part equal to zero the solution will
be stable and oscillating. If λmax has negative real part the solution is asymptotically
stable and oscillating only if the imaginary part of λmax is nonzero. The different types
of system behaviour are shown in table 3.1.

3.2 Three dimensional system of linear differential equations
Since our project mainly concerns a three dimensional system of differential equations
we will now turn our attention toward this. Thus we have a vector x with nonnegative
entries defined as x = (x1, x2, x3)

We consider the system of homogeneous, linear differential equations with constant,
real coefficients given by

dx
dt

= Ax . (3.14)

The characteristic polynomium of the 3 by 3 matrix A then can be written in the
form
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PA(λ) = λ3 + α1λ
2 + α2λ+ α3 (3.15)

The solutions to this equation are the eigenvalues of the system. Using numerical
tools like Matlab, the sign of the eigenvalues for a given 3 by 3 matrix can easily be de-
termined numerically. A way to do this analytical is to use the Routh-Hurwitz Criteria
(RHC) that gives equivalence between relations on the coefficients of the characteristic
polynomial and the sign of the eigenvalues of the system. Here is RHC only stated for
a polynomial of third degree [[14]].

Theorem 3.3: Routh Hurwitz Criteria.
Let P (λ) = λ3 + α1λ

2 + α2λ + α3, α1, α2, α1 ∈ R. Then all of the roots of P (λ) are
negative or have negative real part if and only if α1 > 0, α3 > 0 and α1 · α2 > α3.

A proof of the RHC is formulated in A.

3.3 Three dimensional system of non-linear differential equations
We now wish to turn our attention to non-linear three dimensional systems of au-
tonomous differential equations. That is in general the equations

ẋ = f(x), f : R3 → R3 , x(t0) = x0. (3.16)

Important information is determination of fixed points and the behavior of solutions
close to steady state. The basic idea is that we can approximate the nonlinear system
well by a linear system for solutions close to steady state. The idea of looking at the
behaviour of the solutions close to steady state is possible because the solutions typically
depend continuously on the initial values as stated in the next theorem [16].

Theorem 3.4: Continuously dependency on initial values
Let U ⊂ Rn be open and let f : U → Rn with f ∈ C1. Let x0 ∈ U and t0 ∈ R.

Then the solutions φt(x0) of 3.1 depend continuously on the initial value x0.

In the following we demand that fi is C2 with respect to each xj with i, j ∈ {1, 2, 3}.
We call the steady state solutions xss and define the new variable z = z− xss and use
Taylors theorem[17] to linearize equation 3.16 around xss. Thus

ż = ẋ = Az+ g(z) , (3.17)

where g(z) is a polynomial of degree not less than two, and A is the Jacobian matrix,
J, evaluated at xss. The Jacobian is given by

J =




∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3


 . (3.18)

Now to evaluate the stability of equation 3.16 we look at a small perturbation from
steady state. That is small values of z. Only keeping first order terms of equation 3.17
yields

ż = Az . (3.19)
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Now this is a linear system and therefore all the results about stability presented in
section 3.2 apply to this system. The question is what the stability of the linear system
tells us about the fixed point of the original nonlinear system. This is determined from
the largest real part of the eigenvalues of A. If this is strictly positive the fixed point of
the original nonlinear system is unstable and if the largest real part of the eigenvalues
is strictly negative the original nonlinear system has a stable fixed point1. In case
the largest real part is zero there is not enough information in the linear system to
determine the stability of the non linear fixed point. This is what the next theorem is
about only stated in terms of the coefficients of the characteristic polynomial instead
of the eigenvalues directly. The theorem is from [14] and is formulated in terms of the
coefficients of the characteristic polynomial like the Routh Hurwitz Criteria thus we
name it RHC for a non linear systems. Here the theorem will only be stated for a three
dimensional system.

Theorem 3.5: Routh Hurwitz Criteria for Nonlinear System
Suppose xss is a fixed point of equation 3.16. Denote the characteristic equation of the
eigenvalues at the fixed point as 0 = λ3 + α1λ

2 + α2λ+ α3, α1, α2, α1 ∈ R.
If α1 > 0 ∧ α3 > 0 ∧ α1 · α2 > α3 then the fixed point is asymptotically stable.
If α1 < 0 ∨ α3 < 0 ∨ α1 · α2 < α3 then the fixed point is unstable.

3.4 Bifurcations
In this thesis we will be interested in the qualitative behaviour of the solutions to a
system of differential equations. A parameter often enters a differential equation as an
unspecified constant. However the system may have dramatically different behaviour if
the constant is set to one value instead of another. A bifurcation is here defined as a
qualitatively change of the solutions for any initial condition (a qualitatively change of
the phase space) as a parameter is varied. A qualitative change is for example that a
the number of fixed points or limit cycles changes or that the stability of a fixed point
changes. For a system where parameters are only known to a certain precision or may
only be estimated it is important to be aware of the different types of behaviour the
system may exhibit if different values for the parameters are chosen.

1 The Hartman-Grobman theorem can be used if no eigenvalues of the Jacobian evaluated at a fixed
point are zero. This requires the concept of topologically equivalent which requires the concept of
homeomorphism. A homeomorphism is a bijective, continuous function with a continuous inverse.
Two dynamical systems ẋ = f(x) defined on U ∈ Rn and ẋ = g(x) defined on V ∈ Rn are topologically
equivalent if there exists a homeomorphism h : U → V such that h maps the solution curves of
the vector field f onto the solution curves of g and by that keeps the orientation of the time of the
solution curve. The Hartman-Grobman theorem states that when no real part of the eigenvalues of the
linearized system at a fixed point are zero then there exist a neighbourhood of the fixed point where
the nonlinear and the linearized system are topologically equivalent[16]. Topological equivalence is
central in the definition of a structural stable vector field. The strict definition of a bifurcation value
(that we will introduce more loosely in section 3.4) is a parameter value that causes a vector field to
be not structurally stable[16].
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Examples
An example is now given where a change in one parameter leads to creation or destruc-
tion of fixed points. Consider

dx

dt
= µ− x2, x, µ ∈ R (3.20)

If µ > 0 there are two fixed points namely xss1 = −√
µ, and xss2 =

√
µ. If µ = 0

there is one fixed point xss3 = 0 and if µ < 0 there are no fixed points. Using the
earlier described method the stability of the fixed is classified using the eigenvalues of
the Jacobian evaluated at the fixed points. The Jacobian is J = −2x thus for µ > 0
the eigenvalue corresponding to xss1 is 2

√
µ > 0 thus xss1 is an unstable fixed point.

The eigenvalue for xss2 is −2
√
µ < 0 thus xss2 is a stable fixed point. When µ = 0 the

eigenvalues of the Jacobian is 0 so the linearization cannot tell us about the fixed point
here. This kind of bifurcation is called a saddle-node (fold, turning-point, blue sky)
bifurcation. The different behavior of equation 3.20 for different µ is shown in figure
3.1.

It is no coincidence that for an eigenvalue of the Jacobian equal to zero a bifurcation
occurs. According to [18] the term bifurcation was originally used to describe the
’splitting’ of equilibrium solutions of differential equations as a parameter vector is
varied. This means that for some parameter value there can exist several branches of
equilibrium solutions and a meeting point for two or more branches defines the ’splitting’.
Now the implicit function theorem[17] is very convenient to determine when f(x, µ) = 0
can be solved in terms of x(µ). When this is the case there is locally only one solution
to f(x, µ) = 0 out ruling the possibility of e.g. a saddle node bifurcation where no
fixed point of the system turns into two fixed points as a parameter is varied. If a
change in the value of a parameter cause the Jacobian at a fixed point to have a zero
eigenvalue then the parameter is at a bifurcation value[18]. This can be seen in the
saddle node bifurcation at the value (x, µ) = (0, 0) where the steady state solution in
any neighbourhood can be described by two different functions namely x+ =

√
µ and

x− = −√
µ. However it is exactly for (x, µ) = (0, 0) that the implicit function theorem

does not ensure that x can be uniquely solved as a function of µ.
A change of a stability of a fixed point may cause the existence of a limit cycle as

the next example sketches. Consider a two dimensional system including a parameter
λ

dx

dt
= f(x, y, λ),

dy

dt
= g(x, y, λ), x(0) = x0, y(0) = y0, (x, y, λ) ∈ R2. (3.21)

Let there be a bounded region where the solution curves are confined such that solutions
starting in the region stay there and let there be one fixed point in this bounded region.
It may be so that for one value of λ this fixed point is stable and for another fixed point
it is unstable. In the latter case the bounded region without the fixed point constitute a
bounded region where solution curves are confined since the flow points away from the
fixed point. Then the theorem of Poincaré -Bendixon ensures a limit cycle exists. This
example illustrates that a bifurcation can lead to sufficient conditions for the existence
of a limit cycle.



3.5 Bifurcation and stability of a fixed point 25

Figure 3.1: Diagram showing the number of fixed points and their stability parametrized
by the parameter µ of the differential equation ẋ = µ − x2. The arrows indicate if x
increase or decrease for a given (µ, x). The solid line corresponds to a stable set of fixed
points (the arrows point towards it) and the dotted line corresponds to an unstable set
of fixed points (the arrows point away from it). It can be seen that for positive µ there
exists two steady state solution - one stable and one unstable. For µ less than zero no
steady state solution exists.

Existence and uniqueness for parameter dependent system
How do the dependency of parameters interplay with the previous, important theorems
like the existence and uniqueness theorem? In other words how can we relate knowledge
about f(x) to f(x,µ), where µ is now an r-dimensional parameter vector when we want
to describe variations in the solutions as µ is varied continuously? This can be done
by expanding the original n’th dimensional system with that of an n + r dimensional
system where the parameters are now variables with a simple dynamic. Denoting
dxn+i/dt = dµi/dt = 0 with i ∈ {1, ..., r} and xn+i(t0) = µ0,i the existence and uniqueness
theorem can be applied. Also continuous dependency from parameters follow from the
theorem of continuous dependency on initial values theorem 3.4.

3.5 Bifurcation and stability of a fixed point
How can a stable fixed point become unstable when varying a parameter? This can
happen in two different ways. First all the real parts of the eigenvalues are negative
then (as the parameter is varied) either one (or more) real valued eigenvalues goes
from negative values through zero and then becomes positive. Or a pair of complex
conjugate eigenvalues with a real part that goes from negative through zero to being
positive while the remaining eigenvalues have negative real parts. The latter is defined
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as a Hopf bifurcation and is interesting because a periodic solution is the outcome of
such a bifurcation.

Following the approach of [19] we consider the autonomous system

ẋ = f(x, µ) f : Rn → Rn (3.22)

Assume a fixed point, xss, exists and all eigenvalues have negative real part. Assume
that µ is varied which causes a set of complex conjugate eigenvalues λ1,2(µ) = α(µ)±
iσ(µ), α(µ) ∈ R, σ(µ) ∈ R to vary such that the real part crosses the imaginary axis.
This means the real part of λ1,2 goes from negative to positive values causing the fixed
point going from stable state to unstable state. Denote µ = µc for α(µc) = 0 (µc is
called the Hopf bifurcation value) and assume the following holds in a neighborhood
around µc

• σ(µc) 6= 0.
• α(µ) < 0 for µ < µc.
• α(µ) > 0 for µ > µc.

Then in a small neighbourhood around µc for µ > µc the steady state is unstable by
growing oscillations and a limit cycle periodic solution exists around xss. The period
of the limit cycle is 2π/σ(µc). [19]

This is good news when modeling a biological system and sufficient criteria for a
limit cycle is desired. However note that

• The amplitude of the limit cycle may be small.
• The neighborhood of µc where the limit cycle exists may be small.

This means that this approach is more related to ’mathematical existence’ than to
observed behavior of realistic values of a biological system with sustained oscillations.
In our approach this means that if the criteria just mentioned for a limit cycle to exist is
fulfilled then simulations must be performed in order to see if the limit cycle is visible.

Existence and Uniqueness of Non Autonomous System
A system of differential equations depending explicitly on time obeys an existence and
uniqueness theorem (the theorem is from [20]). The expression maximal interval of
existence enters the theorem which we will therefore explain first. φ(t, t0, x0) is a solution
to the initial value problem equation 3.23 on an interval I containing t0 if φ is a C1

function of t on I and satisfies equation 3.23 for each t ∈ I. A function Φ(t, t0, x0) is
called a continuation of φ if Φ is a solution to equation 3.23 on a larger open interval
containing I and Φ(t, t0, x0) = φ(t, t0, x0) for t ∈ I. The interval, I, is called the
maximal interval of existence if φ has no continuation to a larger interval.

Theorem 3.6: Existence and uniqueness for non autonomous system
Let U ∈ R× Rn be open and f : U → Rn and consider the initial value problem

ẋ = f(t, x) x(t0) = x0 (3.23)

If f ∈ Ck(U,Rn) with k ≥ 1 then there exists a unique solution φ(t, t0, x0) of the
initial-value problem defined on a maximal interval of existence; moreover, φ is Ck in
(t, t0, x0).
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3.6 Banach Fixed Point Theorem
In this project the Banach Fixed Point Theorem turns out to be an important theorem
in order to guarantee global stability of a fixed point.

Definition 3.4
Suppose (D, d) is a complete metric space and H : D → D is any function If |H(x) −
H(y)| ≤ p|x− y| for 0 < p < 1 ∀x, y ∈ D then H is called a contraction.

Theorem 3.7: Banach Fixed Point Theorem
Let (D, d) be a non empty complete metric space. Let H : D → D be a contraction
mapping on D. Then there exists exactly one fixed point of H i.e. there exists exactly
one xss such that xss = H(xss). For any x0 ∈ D the sequence xn+1 = H(xn) converges
and its limit is xss.

The Banach fixed point theorem is also called the Principle of Contraction Mapping
and the theorem can be found in [21].
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In this chapter we will give an in depth discussion of two state of the art models for
modeling the HPA axis. Namely the models made by Kyrylov et al.[1] and Jelic et al.[2].
The papers were introduced in section 2.3. Now we have introduced the mathematical
tools of most need when building and analyzing models using differential equations.
Therefore it is now time for digging into more details of the two models.

4.1 Discussion of the paper of Kyrylov et al.
Now we will specify the model of Kyrylov et al.[1] that was introduced in section 2.3.
The compartment diagram for this model is shown in figure 2.6. The purpose of this
section is to focus on some points where improvement deserves to be made. Since
the model relies on some numerical test cases we later investigate parts of the model
analytically. In [1] the modeling of the HPA axis is basically separated in three steps.
First a linear model is presented and is assumed to be valid when the variables have
moderate positive values. Whenever any variable is close to zero, or approaches its upper
physiological limit nonlinearities are required. Second step is the inclusion of these
nonlinearities. When a ’reasonable’ linear model is found nonlinearities related to finite
secretion rate and a demand of non negative hormone concentrations are introduced.
The third step in the modeling is introducing a time dependent input on the CRH
concentration thus imposing the daily oscillation on the system.

The variables for the model are concentrations of CRH, ACTH, free cortisol, albu-
min bound cortisol and CBG bound cortisol. In the differential equations normalized
concentrations are used. Thus y0 represents CRH, y1 represents ACTH, y2 represents
free cortisol, y3 and y4 represents the two protein-bound forms(see figure 2.6). It should
be noticed that yi is the concentration of hormone i divided by the mean concentration
of hormone i.

The linear system
With some minor changes in the notation compared to the notation of Kyrylov et al.,
the linear differential model is given by equation 4.1

ẏ =




−a00 0 −a02 0 0
a10 −a11 −a12 0 0
a20 a21 −a22 a23 a24
0 0 a32 −a33 0
0 0 a42 0 −a44




y+




c0
0
0
0
0




(4.1)

All fifteen parameters are positive numbers. The direct cortisol-CRH stimulation by-
passing ACTH is chosen as 20% of the stimulation from ACTH on cortisol meaning that

28
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a20 = 1/5a21. Now Kyrylov et al. wisely choose to relate as many parameters as possible
to values found in literature. aii represents the self-elimination factors. These are consid-
ered known from the literature. For the value of the parameters a22, a23, a24, a32, a33, a42
and a44, they choose to use the values given by Liu et al.[22]1.

Kyrylov et al. now wishes to determine the numerical value of the remaining param-
eters. This is done by what they call logical inference. ´A logical assumption can be
made that the stimulatory action of CRH on the pituitary is possible only if the transfer
gain a10 is at least of same order of magnitude as the self-elimination factor |a11| (or
likely even greater). A similar assumption applies to a21, |a22| , a02, a12’ [1]. Our inter-
pretation of this is that since all hormones of the HPA axis are capable of increase as
well as decrease this should be contained in a mathematical model. Since we are now
considering a normalized hormone concentration the values are close to one. Therefore
the coefficients must be of same order such that the derivative of a concentration is
capable of attaining positive as well as negative values.

Kyrylov et al. assumes that the value of c0 is approximately equal to a00. The
remaining parameters can be described as

a10 = b · a11
a21 = c · a22
a12 = d · a11
a02 = e · a00 .

(4.2)

Where b, c, d, e are assumed to have values as b, c ∈ [1; 1000] and d, e ∈ [1; 100]. Kyrylov
et al. uses the above mentioned parameters in his numerical experiment. This is to
consider b, c, d, e as independent random variables from a uniform distribution in their
respective intervals and then check whether or not the solutions of the linear system
is unstable and oscillating (if the eigenvalue with largest real part is positive and the
imaginary part is non-zero). The result is, that the system is unstable and oscillating in
91.2± 2.5% of the cases. However we consider this crucially dependent on the domains
of b, c, d, e. b, c ∈ [1; 100] compared to b, c ∈ [1; 1000] is halving the number of unstable
oscillating solutions. Thus the domain of b, c, d, e deserve to be chosen with great care
and reason. We make an analytical investigation of the system without the bound forms
of cortisol in the next section showing a relation between b, c, d, e determining when the
solutions are unstable and oscillating. If ’logical interference’ can be understood as a
way of ensuring that neither the positive nor the negative term in each of the equations
in array 4.1 totally dominates there seems to be a problem. E.g. a10 and a12 can not
be chosen independently of each other as we will now discuss. First we rewrite array

1 Liu et al. investigates a model with the same variables as Kyrylov et al. but with 33 parameters.
The parameters are found using trial and error but the final equations are compared to important
physiological behaviour of the HPA axis such as hormone half life and association constants of cortisol
with proteins. Thereby some optimization of the parameter set is found though we think it is fair to
say that this approach lacks credibility.
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4.1 with the parameters given in array 4.2.

dy0/dt = a00 (−y0 − ey2) + c0 (4.3)
dy1/dt = a11 (by0 − y1 − dy2) (4.4)
dy2/dt = a22 (1/5cy0 + cy1 − y2) + a23y3 + a24y4 (4.5)
dy3/dt = a32y2 − a33y3 (4.6)
dy4/dt = a42y2 − a44y4 . (4.7)

Now considering for instance the second equation

dy1/dt = a11 (by0 − y1 − dy2) . (4.8)

We want to illustrate an undesirable consequence of the fact that Kyrylov et al. allow
the parameters to be chosen independently. We want to make a rough estimate of an
upper bound for b for a given d in order to avoid the same sign of dy1/dt for all realistic
hormone concentration. From the figures 2.3 and 2.4 it seems fair to assume that the
concentrations do not fluctuate more than a factor 5 from the mean value. Thus if we
want to make a rough estimate on an upper bound on b such that y1 is not always
increasing we solve for b in the ’best case scenario’ where the y0 attain a low value (1/5)
and y1 and y2 attain a large value (5).

dy1/dt = a11

(
bmax

1

5
− 5− 5d

)
= 0 ⇔ bmax = 25(1 + d) . (4.9)

Since d is chosen as a random number in [1;100] an outcome could be d = 9. Then by
equation 4.9 bmax = 250. However since b is a random number in [1;1000] a realization of
a simulation could be b = 500. But then dy1/dt > 0 at all times where the model applies.
Kyrylov et al. states that the negative feedback should be capable of overcoming the
forward gain but this cannot be the case for this outcome of the random numbers
b, c, d, e. Now the values of y0, y1 and y2 should rather be chosen as values closer to 1
(than 1/5 and 5) since the model only applies for moderate values of the concentrations.
Putting a more narrow bound on the concentration further stresses the problem of
choosing the parameters independently.

Introduction of non linearities
The second step in the modeling is introducing non linearities. These are introduced to
avoid negative concentrations and to ensure that the hormone release rate is bounded.
This is done by multiplying two functions - one take care of non negative concentrations
and one take care of an upper limit of the derivatives of the concentrations.

Let xi denote the concentration of the i′th hormone and ẋi denote the derivative of
the concentration. The function making sure concentrations do not become negative is
given by

ri(ẋi, x) =

{
1− exp

(
S0x

2
i

ẋi(ε−xi)2

)
, if (xi < ε) ∧ (ẋi < 0)

1, otherwise
. (4.10)

Here S0 is of order 10−2min−1 and denotes an upper limit for hormone release rate,
which is assumed to be proportional to the size of the gland. ε is a small positive
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constant later put equal to 1/2 (we consider this a fitting parameter). The non-linearity
introduced to model finite release rate is given by

hi(ẋi) =

{
ẋi

1+
ẋi
S0

(
1−exp

(
− ẋi

S0

)) , if ẋi > 0

ẋi, if ẋi ≤ 0
(4.11)

Now these nonlinearities are brought into play by defining the functions

gi(ẋi, xi) = hi (ẋi) · ri(ẋi, xi) . (4.12)

With these non-linearities Kyrylov et al. obtain the non linear equations of the HPA-
axis.

dy0/dt = g0 (a00 (−y0 − ey2) , y0) + c0 (4.13)
dy1/dt = g1 (a11 (by0 − y1 − dy2) , y1) (4.14)
dy2/dt = g2 (a22 (1/5cy0 + cy1 + y0) + a23y3 + a24y4, y2) (4.15)
dy3/dt = g3 (a32y2 − a33y3, y3) (4.16)
dy4/dt = g4 (a42y2 − a44y4, y4) . (4.17)

The inclusion of nonlinearities are imposed on the linear system. We believe that
it would be a strengthening of the model if the nonlinearity was introduced in a less
arbitrary way relying more on physiological facts. Kyrylov et al. mention that these
functions are just one of many possible functions that give the desired behaviour. Note
that if x > ε and ẋ < 0 the non linear system equals the linear system thus the non
linearities fulfill the purpose of kicking in when concentrations become too close to zero.
It is worth noting that h is only a function of ẋi and not on xi and h is positive for
positive ẋi. This means that only the release rate of a concentration is bounded - not
the concentration itself.

Now a ’robustness’ analysis is performed. ’In each experiment, only one parame-
ter was varied by decreasing or increasing its default value until the model behaviour
undergoes qualitative changes, such as ending in unstable or decaying oscillations’[1].
However it is unclear to us how the criteria of ’qualitative changes’ is investigated. For
the linear system the stability was determined by the eigenvalues of the system. The
meaning of stability of the non linear system is more unclear since there is no preceding
analysis of fixed points which is where ’substitution’ of the non linear system with a
linear system (given by the Jacobian) makes sense. It could be that the qualitative
changes were found from looking at the graphs of the solution curves (found numer-
ically). If the solution curves have ’nice’ oscillations the system could be considered
stable with oscillations. If this approach is used then also initial values of the system
should be varied since one set of initial values could lead to bounded oscillations and
some could lead to unbounded solutions.

Default values of the parameters must be chosen in order to perform the robustness
analysis. For some parameter values there is quite a difference between the values
considered in the linear model and the non linear model. We have previously argued
that the parameters of the linear model were chosen in a problematic way. However
the reasons to have discrepancies between the parameters of the linear model and the
parameters of the non linear model is unclear. Examples of this different choice of
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parameters will now be given. It is our belief that the default parameters should
reflect the parameters of the linear system or require a new argument if new ones
should be chosen. Especially since the linear system equals the nonlinear system when
concentrations are larger than ε and decreasing. However for the linear case c0 = a00 but
for the non linear system the default parameter value of c0 is 0.443 and a00 = 0.00843
meaning that c0 = 52.6 · a00. This discrepancy is not commented in [1]. Furthermore
Kyrylov et al. reach the conclusion that the system will not have stable oscillations
when c0 < 0.223 ≈ 26a00. This is when all other parameter values are held fixed at
their default values. This means that the system is not capable of showing the desired
behaviour when the parameter c0 is more than 26 times times the value in the linear case.
This discrepancy is neither commented in [1]. Furthermore Kyrylov et al. argue in the
linear case that the parameter a21 should be found as a21 = c · a22 where c ∈ [1; 1000].
However Kyrylov et al. end up with the default values a22 = 0.957 and a21 = 0.0310.
Thus for the non linear case the c = 0.03 is the default value of c. Therefore there is
quite a discrepancy between the parameter values for the linear system and the non
linear system.

Introducing diurnal rhythm
The third step in the modeling is the time dependent input on the derivative of CRH.
To model the circadian rhythm a cosine function with a 24 hour period is introduced.
This function is implemented into the external generating factor, c0.

Summary
Summarizing the criticism for the linear system as well as for the non linear system:

• The parameters of the linear system are varied independently of each other leading
to possible derivatives with constant sign for realistic concentrations.

• The differences between the parameters in the linear and the nonlinear model are
unexplained.

• The nonlinearities are not closely related to a physical mechanism but are in-
troduced as functions obeying non negative hormone concentrations and finite
secretion rate.

4.2 Applying the RHC on a linear three dimensional model of
Kyrylov et al.

Preceding the five dimensional model of Kyrylov et al. [1] a three dimensional model
was formulated without the bound forms of cortisol [23](this is an unpublished paper
from a conference). The approach is very similar to the five dimensional model. First
a linear model is considered where unknown parameters are estimated using ’logical
interference’ and domains for these parameters are considered as independent random
variables from the respective domains when simulations are performed. This means that
the half lives of CRH, ACTH and cortisol are used to estimate four other parameters.
No parameters in this model is taken from Liu et al.

A numerical investigation of the eigenvalues of the linear system is performed. One
negative real eigenvalue and a set of complex conjugate roots with positive real part is
the predominant result. Later non linearities are introduced (using different functions
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than in [1] but the approach is the same) in order to avoid negative concentrations
and to put an upper limit on hormone release rates e.g. a bound on the derivative of
the hormones. Finally a circadian rhythm is imposed on the CRH concentration that
’spreads’ to ACTH and cortisol. The approach and results of the five dimensional model
and the three dimensional model are thus very similar. The direct CRH cortisol is not
included. However after analyzing the system without this part we can include it and
compare the case with and without CRH -cortisol stimulation. If the dynamics of the
bound forms of cortisol are fast (dy3/dt = dy4/dt = 0) for the five dimensional model it
reduces to the three dimensional (except for direct the CRH-cortisol stimulation). Due
to our reasoning in section 2.3 we believe it is fair to consider the dynamics of the bound
forms fast compared to the rest of the HPA-axis.

We now make an analytical investigation of the three dimensional linear system that
is numerically investigated by Kyrylov et al. This serves two purposes. Kyrylov et al is
interested in when the system is unstable and oscillating and this is investigated as four
parameters are varied independently and at the same time. We find a relation between
the four parameters expressing when the system is unstable and oscillating. It turns
out that only two parameters are important for this (the four parameters are grouped
such that there is only two degrees of freedom). The analytical result is thus halving
the number of ’important’ parameters. We stated earlier how crucial the domains of
b, c, d, g are for the stability of the linear system. With the analytical investigation we
can say exactly how the values of b, c, d, g influence on the stability of the system.

The analysis is based on RHC. We have x as a vector in R3 denoting the concen-
tration of CRH, ACTH and cortisol. The linear system is then given by equation 4.18
(noted the indexes now start at (1,1) where the previous model of Kyrylov the indices
began with (0,0)).

ẋ =



a11 0 a13
a21 a22 a23
0 a32 a33


 x+




a14
a24(t)

0


 (4.18)

a31 = 0 since the direct path from CRH to cortisol is not included in this model. We
will in the next section estimate the stability of the system including this stimulation
(a31 > 0) using the result we are about to find for the system without the direct CRH-
cortisol stimulation. a24(t) is only included to make external ACTH injections possible
and is thus 0 when ACTH is not injected.
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a21 = −b · a22
a32 = −c · a33
a13 = d · a11
a23 = g · a22

Table 4.1: The off diagonal elements of A where b, c, d, g > 0

We are considering the matrix A2.

A =



a11 0 a13
a21 a22 a23
0 a32 a33


 (4.19)

In the work of Kyrylov[1] the diagonal elements are considered well-known compo-
nents of A. From the half lives of CRH, ACTH and cortisol, the diagonal elements can
be found from the relation aii = −ln2/half life. The half lives vary from individual to indi-
vidual but also within each individual the half lives vary for example due to functioning
of the liver. For example the half life for CRH is in the range 10-90 minutes. We will
make consequences of the choice of the half lives visible by keeping the analysis in terms
of aii instead of inserting a numerical value. Due to the mechanisms of the system the
signs of the entries of the matrix are known. The diagonal has purely negative entries
since each element describes a self elimination effect. a21 must be positive to describe
that an increase in CRH causes increase on ACTH. Using the same argument on the
ACTH impact on CRH, a32 must be positive. Since cortisol has a negative feedback
on both CRH and ACTH, a13 and a23 must be negative. As done by Kyrylov we now
introduce four positive parameters b, c, d, g through table 4.1. Inserting this in A we
get

A =




a11 0 d · a11
−b · a22 a22 g · a22

0 −c · a33 a33


 . (4.20)

Here Kyrylov et al. make a large number of numerical cases with b, c, d, g in the
domain from [1; 1000] and then considers the different cases of stability outcomes.
The approach we use instead is describing the characteristic polynomial directly in
terms of b, c, d, g. The eigenvalues are found from the equation det (A− λI) = 0 which
is equivalent to det (λI−A) = 0. To get the equation on a form with the coefficient

2 Due to the described mechanisms of the system the signs of the entries of A are well known. This
may lead the attention to qualitative analysis of A, where the stability of all matrices having the same
signs as the entries of A are considered. So the stability of A is then guaranteed if QA = sign(A) is
stable, where

QA =



− 0 −
+ − −
0 + −




Necessary conditions for Q to be stable are given in [14]. QA does not meet all these conditions which
means that we cannot use this approach. For example we would need QA12 < 0 which is not the case.
This means that not all matrices with the same sign of the entries as A are stable. Unfortunately this
means that we can deduce nothing about the stability of A in this way.
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for λ3 equal to one directly we define the characteristic polynomial of the matrix A,
PA(λ) = det (λI−A). This is easily calculated using equation 4.20.

PA(λ) =λ3 − (a11 + a22 + a33)λ
2 + (a11a22 + a22a33 + a11a33 + γa22a33)λ

− (a11a22a33 + γa11a22a33 + δa11a22a33) . (4.21)

where
γ = cg (4.22)

and
δ = bcd . (4.23)

Before actually using the RHC it is worth noticing the role of b, c, d, g. The reason
for introducing γ and δ is because b, c, d, g do not play a role individually as much as in
the terms of the products indicated by γ and δ. Therefore it is already obvious that the
qualitative behaviour of the system initially described by 4 parameters only depends
on two parameters. This is an interesting simplification obtained using this approach.

Describing the the characteristic polynomial as

PA(λ) = λ3 + α1λ
2 + α2λ+ α3 , (4.24)

we see that the coefficients are

α1 = − (a11 + a22 + a33) (4.25)
α2 = a11a22 + a22a33 + a11a33 + γa22a33 (4.26)
α3 = − (a11a22a33 + γa11a22a33 + δa11a22a33) (4.27)

We see that α1 > 0, α2 > 0 and α3 > 0 are always satisfied. This is due to the fact
that all the diagonal elements of the matrix are negative and γ and δ are positive. For
a non negative λ this means using equation 4.24

PA(λ) = λ3 + α1λ
2 + α2λ+ α3 ≥ 0 + 0 + 0 + α3 > 0 . (4.28)

Then the there is no real, non negative root of PA.

The criteria determining stability is now according to RHC if α1 · α2 > α3 is true.
When the inequality holds the system is stable and when the inequality is false the
system is unstable. But since there can be no real, non negative root in the case of
instability we are guaranteed that the largest real part of the eigenvalues belong to an
eigenvalue with non zero imaginary part. This means that if the system is unstable it
is guaranteed to have growing oscillations.

Expanding α1 · α2 > α3 using equation 4.25, equation 4.26 and equation 4.27 and
isolating δ gives

δ <
a22 + a33

a11
γ+

a22a11
2 + a33

2a22 + a33
2a11 + 2 a33a22a11 + a33a22

2 + a22
2a11 + a33a11

2

a11a22a33
(4.29)
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Figure 4.1: The unstable, oscillating solutions of the three dimensional linear system
without direct CRH-cortisol stimulation are characterized by having (γ, δ) - values above
the graph.

Variable Half life, [min] aii = − ln 2/half life, [1/min]

CRH 30 -0.023
ACTH 17 -0.041
Cortisol 80 -0.009

Table 4.2: Half lives as given in [23].

Thus when inequality 4.29 holds the solutions of PA are asymptotically stable. Using
only the qualitative information, a11 < 0, a22 < 0 and a33 < 0 it can be seen that 4.29
can be written in the form

δ < c1(w11, w22, w33)γ + c2(w11, w22, w33) , (4.30)

where c1(w11, w22, w33) and c2(w11, w22, w33) are positive constants for fixed values of
the half lives of CRH, ACTH and cortisol. This is illustrated on figure 4.1 The stable
cases are found as (γ, δ) below the graph. Considering the half lives of CRH, ACTH
and cortisol known and fixed (the same assumption as Kyrylov et al. ) then c1 and
c2 can be calculated and inequality 4.30 are dependent only on the two parameters γ
and δ. An obvious advantage of this approach is that it gives one inequality with two
parameters determining the stability of the system.

Comparing RHC results to the results of Kyrylov et al.
First we try using the half lives used by Kyrylov et al.. Parameters considered known
in [23] are listed in table 4.2 with the resulting values for the diagonal elements.

Using the numerical values from table 4.2 in inequality 4.29 we get a numerical
version of inequality 4.29 to be

δ < 2.17γ + 12.07 (4.31)

Using the definitions of δ and γ and inserting in inequality (4.31) we get

bcd < 2.17cg + 12.07 . (4.32)



4.2 Applying the RHC on a linear three dimensional model of Kyrylov et al. 37

Thus for increasing values of b and d the system is ’more unstable’ and for increasing
value of g the system is ’more’ stable. In the numerical experiment done by Kyrylov
et al b, c, d, g are chosen randomly from a uniform distribution with values in [1; 100].
This results in 96% unstable, oscillating cases. For b, c, d, g chosen randomly between 1
and 10 the results is 72% untable oscillating cases. This is qualitatively in agreement
with inequality 4.32.

When we build a non linear, threedimensional model of the HPA axis how can
we use the analytical results from the three dimensional system? The solutions near
fixed points are well described by a linear system given by the Jacobian of the non
linear system evaluated at the fixed point value. Any nonlinear system where cortisol
exerts negative feedback on CRH and ACTH and no direct CRH-cortisol stimulation is
present will have Jacobian with the same sign matrix as A. The stability of the fixed
point e.g. the stability of the solution close to the fixed point is now determined from
the eigenvalues of the Jacobian evaluated at the fixed point. Due to our analysis the
stability of the fixed point depends solely on the sign of α1α2 − α3.

Using RHC Approach on the 3D System with Direct CRH-Cortisol Link
Now RHC will be used on the three dimensional linear system including positive CRH-
cortisol stimulation since this is the only difference between the three dimensional linear
system and the five dimensional linear system for fast dynamics of the bound forms of
cortisol. The only difference from the previous system is a31 > 0 (before a31 = 0). Only
changing the matrix A by changing a31 from zero to a positive number we define the
matrix Â by

Â =




a11 0 d · a11
−b · a22 a22 g · a22
a31 −c · a33 a33


 . (4.33)

Since Â resembles A, the comparison to already analyzed system will be stressed. When
making the characteristic polynomial one finds a determinant

det(λI − Â) = 0 . (4.34)

The determinant can now be found using row expansion (cofactor expansion) of the last
row. This means that

PÂ(λ) = det(λI − Â) ⇔

PÂ(λ) = (−1)3+1a31 · det
(

0 d · a11
λ− a22 g · a22

)
+ PA(λ) ⇔

PÂ(λ) = −d · a31a11 (λ− a22) + PA(λ) ⇔
PÂ(λ) = d · a31a11a22 − d · a31a11λ+ PA(λ) . (4.35)

The coefficients of the two first terms in equation 4.35 are positive and the coefficients
for PA are positive as well. Therefore the coefficients for PÂ are positive so the real
roots of PÂ are negative. This means once again that unstable solutions of the linear
system is guaranteed to be oscillating.

Inserting the expression of PA(λ) from equation 4.21 in terms of the three α’s from
4.25, 4.26 and 4.27 we get
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PÂ(λ) = d · a31a11a22 − d · a31a11λ+ λ3 + α1λ
2 + α2λ+ α0 , (4.36)

which can be written as

PÂ(λ) = λ3 + α1λ
2 + (−d · a31a11 + α2)λ+ (d · a31a11a22 + α3) , (4.37)

Before applying Theorem 3.3 we first we make some new names for the coefficients:

β1 = α1 (4.38)
β2 = −d · a31a11 + α2 (4.39)
β3 = d · a31a11a22 + α3 . (4.40)

Since α1 > 0, α3 > 0, d > 0, a31 > 0 we have β1 > 0 and β3 > 0 so the two first
conditions of Theorem 3.3 are satisfied. The third condition requires β1β2 > β3 which
can be expanded using equation 4.38, equation 4.39 and equation 4.40.

α1 (−d · a31a11 + α2) > d · a31a11a22 + α3 . (4.41)

This can be rewritten as

α1α2 + da31a11 (−α1 − a22) > α3 . (4.42)

Now it is time to use the definition of α1 from equation 4.25 which then reduces the
parenthesis so equation 4.42 can be written

α1α2 + da31a11 (a33 + a11) > α3 . (4.43)

The second term da31a11 (a33 + a11) is strictly positive. The asymptotic stability of
the solution of A is guaranteed if and only if α1α2 > α3. Therefore we see that any
stable case for A guarantees the stability of Â. This means that the stable cases for A
constitute a subset of the stable cases for the matrix Â. This does not mean that the
unstable cases for A guarantees Â to be unstable. We see that changing the system from
A to Â expands the number of stable cases which means that this change in the system
increases the ’chance’ of being stable. This may be valuable information even if it is
really the system described by Â that is the more interesting. Especially because PA

can be described with only two parameters (γ and δ) while PÂ also has d as parameter.

4.3 Discussion of the paper by Jelic et al.
Since the paper made by Jelic et al.[2] have been a great inspiration to us we will in
this section present their approach of modeling the HPA-axis. This shall serve to the
reader both as an insight in the modeling of the HPA axis and a justification of some
of our later reasoning. In the last section of this chapter we will give a brief critique of
this approach.

The compartment diagram of the system is shown in figure 2.7.To make it easier for
the reader to relate this model to previous information about the HPA axis we have
chosen to use our notation of the variables.
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The following chemical reactions to model the HPA-axis are assumed to be valid in
the paper.

k0→ x1 (4.44)
km→ A (4.45)

x1
k1→ x2 (4.46)

x2
k2→ x3 (4.47)

x2
k3→ A (4.48)

x2 + 2x3
k4→ 3x3 (4.49)

A+ 2x3
k5→ x3 (4.50)

x2
k6→ P1 (4.51)

x3
k7→ P2 . (4.52)

Where x1 represents CRH, x2 represents ACTH, x3 represents cortisol A represents
aldosterone. P1 and P2 represents the products of ACTH and cortisol elimination.

Here equation 4.49 is modeling the positive feedback through hippocampal GR since
two cortisol molecules are involved in a reaction where three cortisol molecules is the
outcome. Equation 4.50 is modeling the overall negative feedback through hippocampal
MR. These two reactions leads to the non linearities of the mathematical model. Thus
the mathematical model depends heavily on these two reactions.

By means of the law of mass action3 the reaction scheme is used to write the following
differential equations for the system 4 (a denotes the concentration of aldosterone).

dx1

dt
= k0 − k1x1 (4.53)

dA

dt
= km + k3x2 − k5Ax2

3 (4.54)

dx2

dt
= k1x1 − k2x2 − k3x2 − k4x2x

2
3 − k6x2 (4.55)

dx3

dt
= k2x2 + k4x2x

2
3 − k5Ax

2
3 − k7x3 . (4.56)

Note that the derivative of CRH only contains parameters and the CRH concentra-
tion. This means that the feedback from cortisol on CRH is not included which we
consider very problematic. Jelic et al. assume that CRH and aldosterone have much
slower dynamics than ACTH and cortisol e.g. they assume dx3/dt = 05 and dA/dt = 0.

3 The concept of law of mass action will be elaborated in chapter 5.2.
4 The Jacobian of this system has obviously continuous entries. This guarantees existence and unique-
ness of solutions by the existence and uniqueness theorem, theorem 3.1
5 It seems very unnecessary to assume dx1

dt
= 0 since the differential equation for CRH is uncoupled to

the rest of the equations and is solvable since it is a linear differential equation with constant coefficient
and a constant inhomogeneous term. Solving the differential equation using the tools from chapter 3
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Thus the overall dynamics of the two-dimensional "faster" system can be modeled by

dx2

dt
= k0 − k2x2 − k3x2 − k4x2x

2
3 − k6x2 (4.58)

dx3

dt
= k2x2 + k4x2x

2
3 − km − k3x2 − k7x3 . (4.59)

Then the number of parameters is reduced by putting the differential equations
into dimensionless form. Through mathematical analysis the number and stability of
fixed points is investigated. Jelic et al. demand an oscillating behaviour of the cortisol
concentration. As a function of the parameters the a fixed point is capable of undergoing
a Hopf bifurcation. The Poincaré-Bendixon theorem ensures that there exists a limit
cycle. This give the desired oscillations of the solutions. Finally the circadian rythm is
included by changing k0 from a konstant to a periodic function with a 24 hour period.

Criticism of Jelic et al.
We find overall approach to model the HPA axis through chemical reactions interesting.
The detailed description of the biology within the HPA axis is impressive. Jelic et al.
point out different feedback mechanisms (MR, GR) throughout the HPA-axis and try to
model these. However the reaction scheme lacks validation especially the parts leading
to the crucial equation 4.49 and equation 4.50.

The argument that CRH is not oscillating with an amplitude and frequency that
is comparable to that of ACTH and cortisol is not in correspondence to what we have
read in the literature. [1, 5, 24] argue for oscillations between twenty minutes and two
hours. This is with a relative amplitude that is comparable with that of ACTH and
cortisol. We therefore consider dx1/dt = 0 a problematic assumption.

A previous project investigating this system[12] have done simulations with the
parameter values proposed by Jelic et al.. These simulations leads to concentration
levels of ACTH that are wrong by a factor of 1000. This must be noticed as problematic.

The overall critique of the article can be summarized in the following points.
• The chemical reactions leading to the mathematical model is not validated.
• No feedback from cortisol on CRH is present in the mathematical model.
• The assumption that leads to a two dimensional system is problematic.
• The outcome when scaling the equations numerically is wrong by up to a factor

of 1000. Thus the interesting dynamics (explaining the ultradian oscillations)
happens in parameter range far away from what is considered physiologically
relevant.

and the initial condition x1(0) = x10 we get

x1(t) = x10e
−k1t +

k0

k1

(
1− e−k1t

)
. (4.57)
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5 Modeling the HPA-axis

In the introduction we introduced the reader to the physiology of the HPA-axis. Fur-
thermore we have introduced the reader to how previous state of the art models have
been made. The information we have gathered through our studies in literature will
now be combined to make our own mathematical model of the HPA-axis.

?k0

Hypothalamus

CRH, [x1]

?k1

Pituitary gland

ACTH, [x2]

?k2

Adrenal gland

Cortisol, [x3]

¾

¾

¾

w1

w2

w3

Figure 5.1: HPA-axis
without feedback mecha-
nisms

As seen in the previous models the standard approach
to model the HPA-axis is not to include hippocampus. We
have chosen to pursue this approach in our first model of
the HPA-axis. We have chosen to build the model step by
step because we believe that this gives the reader the best
insight in the process of building the model1.

When the model is complete it will be somehow com-
plex. To be able to compute relevant analytic results about
parts of the model we will try to reduce the number of pa-
rameters by means of physiological reasoning.

We follow the approach of [1, 2] searching for criteria
such that the HPA-axis show an oscillatory behaviour with-
out the external circadian rhythm. Therefore we will inves-
tigate the obtained system for oscillations when the cir-
cadian input is constant. If this is achieved we will mimic
the circadian rhythm with a periodic function of time which
has also been the approach in previous works [1–3, 6]. That
is that the input to the system through k0 will no longer
be constant but time dependent thus turning the resulting

differential equations into non autonomous differential equations. Since the system is
non linear this decoupling of input to the system and inherent system dynamics may
however be problematic.

5.1 Modeling the HPA-axis without hippocampus
This model is based on the negative feedback mechanisms in hypothalamus and in the
pituitary glands through the glucocorticoid receptors(GR) located here. In this chapter
we will account for the way we include these feedback mechanisms in our mathematical
model. Without the feedback mechanisms the model looks as in figure 5.1 and a simple

1 If the reader wants to skip the modeling, the final differential equations of the HPA axis not including
hippocampus is array 5.33. A short description of the obtained model is found in section 5.5.
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system of linear differential equations is given by equation array 5.1.

dx1

dt
= k0 − w1x1

dx2

dt
= k1x1 − w2x2

dx3

dt
= k2x2 − w3x3 . (5.1)

All the k’s and w’s are positive constants and the k’s model positive stimulation of the
hormone concentration while the wi’s model the elimination of the hormone concentra-
tion.

Now we will implement the feedback mechanisms. Let us start with the negative
feedback from the cortisol concentration to hypothalamus. When we implement this in
figure 5.1 it will look as in figure 5.2. This feedback mechanism should be modeled in
such a way that the higher concentration of cortisol the larger feedback on the system.
In other words the body is telling itself to produce less cortisol, if there is plenty. We
have chosen to model this effect in the following way. In the differential equations 5.1
k0 is the parameter that feeds the system from hippocampus. It would therefore be
natural to multiply k0 with a function of the cortisol concentration, f(x3), that for high
concentrations reduce or perhaps even shut down the feed-forward into hypothalamus.
This will in time reduce the amount of cortisol. It is clear that the function should be
constructed in such a way that when the concentration of cortisol decreases it opens
up the pathway again working like a kind of valve. Let us for now implement this in
equation 5.1 through the function f(x3)

?k0

Hypothalamus

CRH, [x1]
GR

?k1

Pituitary gland

ACTH, [x2]

?k2

Adrenal gland

Cortisol, [x3]

¾−¾

¾

¾

w1

w2

w3

Figure 5.2: The feedback mechanism in hypothalamus included
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dx1

dt
= k0f(x3)− w1x1

dx2

dt
= k1x1 − w2x2

dx3

dt
= k2x2 − w3x3 . (5.2)

The criteria that f(x3) gives a negative feedback is that df(x3)/dx3 < 0 for all x3 >
0[19]. In a similar way we will include the other feedback mechanisms. It will be
our assumption that a feedback in a compartment works directly on the input to this
compartment. These are all shown on figure 5.3 and the differential equations for this
system is written in equation 5.3.

dx1

dt
= k0f(x3)− w1x1

dx2

dt
= k1x1g(x3)− w2x2

dx3

dt
= k3x2 − w3x3 . (5.3)

Now we have the differential equations with both feedback mechanisms. So now it is
time to see how the feedback functions can be reasonably defined.

?k0

Hypothalamus

CRH, [x1]
GR

?k1

Pituitary gland

ACTH, [x2]
GR

?k2

Adrenal gland

Cortisol, [x3]
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¾

−

−

?

¾

¾

¾

w1

w2

w3

Figure 5.3: All feedback mechanisms included
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5.2 Hill function
The basic assumption for the feedback functions is that a feedback must be implemented
through a receptor. These receptors form the bottleneck of the process and the result
is a feedback function where a saturation is present.

In this section we will assume that the chemical law known as the law of mass
action is valid[25]. This law states that the rate which a chemical reaction occurs is
proportional to the product of concentration of reactants and the rate constant. As an
illustration of this we give the following example. Given the chemical stoichiometric
balanced reaction scheme

aA+ bB k→ C , (5.4)

where bold capital letters denote the reactants, small letters denote the number of
reactants and k denote the rate constant. Then the rate of change of the concentration
of product C will be given as

dC

dt
= kAaBb , (5.5)

where the capital letters denote the concentration of the reactants.
Now let us concentrate on a system of a specific kind of receptors. In this system

there is a concentration of free receptors, X(t) ≥ 0, and occupied receptors, Y (t) ≥ 0.
These receptors are not allowed to leave the system meaning thatX(t)+Y (t) is constant.
Into the system is a flow of molecule concentration, A(t) ≥ 0, that are able to be caught
by the free receptors which then become occupied receptors with rate constant k1. The
occupied receptors shall only be thought of as being occupied by this single kind of
molecule which it can release to become a free receptor again. This will happen at
a different rate constant, k−1. Furthermore the occupied receptors shall be able to
transform the incoming molecules to a new molecule, B(t) ≥ 0, with rate constant
k2 and then release it to leave the system. The occupied receptor will then become
unoccupied. As a chemical reaction this can be written as

αA+X
k1→ Y

αA+X
k−1← Y (5.6)

Y
k2→ βB +X ,

where α is the number of molecules that are reacting with one free receptor, and β is
the number of new molecules that are produced by the receptor.

Using the law of mass action we can write up the differential equations describing
the change in concentrations.

dA

dt
= −k1A

αX + k−1Y

dX

dt
= −k1A

αX + k−1Y + k2Y

dY

dt
= k1A

αX − k−1Y − k2Y

dB

dt
= βk2Y . (5.7)
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We will now use the fact that the sum of the free and occupied receptors are constant
thus X(t) + Y (t) = r where r is a constant. Substituting this into equation array 5.7
we end up with the following equations

dA

dt
= −k1A

αr + (k1A
α + k−1)Y

dY

dt
= k1A

αr − (k1A
α + k−1 + k2)Y

dB

dt
= βk2Y . (5.8)

In a biological system such as a gland or a cell the number of incoming molecules is
usually much larger than the number of receptors. Therefore it is reasonable to think
of the receptors as working at maximum capacity so that their occupancy rate is ap-
proximately constant (dY/dt = 0). This is known as the quasi-equilibrium hypothesis[14].
Solving dY/dt = 0 in the second equation of array 5.8 and isolating Y we get

Y =
k1A

αr

k1Aα + k2 + k−1
. (5.9)

Putting this expression into the third equation of array 5.8 we obtain the rate of outgoing
molecules

dB

dt
= k2Y =

k1A
αrk2

k1Aα + k2 + k−1
. (5.10)

Since the rate constants are positive we can simplify this to

dB

dt
= β

Aαrk2

Aα + k2+k−1

k1

= β
Aαrk2

Aα +

(
α

√
k2+k−1

k1

)α . (5.11)

Substituting in the following quantities kmax = βrk2 and kn = α
√

(k2+k−1)/k1, gives the
following expression for the products rate of change as a function of incoming molecules

dB

dt
= kmax

Aα

Aα + kαn
. (5.12)

The supremum of equation 5.12 is kmax. This is the limit as the incoming concen-
tration tends to infinity. Furthermore it is seen that dB/dt = kmax/2 for A = kn.

In figure 5.4 the Hill function is seen for different values of kmax.

Affinity
In biology and chemistry dissociation constants or affinity is used to describe how likely
a chemical/biological reaction takes place[26].

Given concentrations of reactants and products as for example in equation array 5.6
the association constant(affinity constant) is defined as the ratio between concentrations
in equilibrium[26]. That is in a simple chemical reaction such as

2H +O  H2O , (5.13)
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Figure 5.4: The Hill function shown with different values of kmax. The values of α and
kn is: α = 4 and kn = 2

the association constant, Ka, for 2H and O, and thereby the affinity of 2H and O
becoming H2O, is given by

Ka =
[H2O]

[H2] · [O]
. (5.14)

The demand for the occupied receptors to be in equilibrium (the quasi-steady state
hypothesis) is from array 5.7

k1A
αX − (k−1 + k2)Y = 0 ⇔ Y

Aα ·X =
k1

k−1 + k2
. (5.15)

The affinity for αA to occupy the receptor is according to previous definition therefore
given by

Ka =
Y

Aα ·X =
k1

k−1 + k2
=

1

kαn
, (5.16)

since kn = α
√

(k2+k−1)/k1 (in equation 5.12). Obviously kαn determines the affinity.
In figure 5.5 the Hill function is shown for different values of kn.

Inflection point
In mathematics this kind of function is an example of a sigmoid function and in biology
it is called a Hill function. In certain cases it is of some interest to know at which value
the rate of change of a function of this type changes from growing to decreasing. These
inflection points will occur when the second derivative is zero. For α ≥ 2 the second
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Figure 5.5: The Hill function shown with different values of kn. kmax and α is: kmax = 2
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derivative of equation 5.12 is
d2

dA2

(
kmax

Aα

Aα + kαn

)
= kmaxαk

α
nA

α−2 (α− 1) (Aα + kαn)− 2αAα

(Aα + kαn)
3 . (5.17)

Equating this expression to zero (and using AI to denote the inflection point value of
A) gives that

(α− 1) (Aα
I + kαn)− 2αAα

I = 0 , (5.18)
which occur when

AI = kn

(
α− 1

α+ 1

)1/α

. (5.19)

As seen from this expression the inflection point, will converge toward kn for large values
of α.

A possible way to gather information about the constants would be to look at the
gradient of the Hill function at the inflection point. As seen on figure 5.5 it is possible
to get a fairly accurate estimate of the largest gradient. It is obvious that the largest
gradient occur at the inflection point. Now we know the value of the concentration A
from equation 5.19. The gradient is calculated from equation 5.12 as

d

dA

dB

dt
=

d

dA

(
kmax

Aα

Aα + kαn

)
= kmaxα

Aα−1kαn

(Aα + kαn)
2 . (5.20)

Inserting the concentration of A from equation 5.19 into equation 5.20 we obtain

d

dA

dB

dt

∣∣∣∣
kn(α−1

α+1 )
1/α

= kmaxα

(
kn

(
α−1
α+1

)1/α
)α−1

kαn

((
kn

(
α−1
α+1

)1/α
)α

+ kαn

)2

=
kmax

4αkn

(
α2 − 1

)(α+ 1

α− 1

)1/α

. (5.21)

This means that α is determining the place of the inflection point and the magnitude
of the gradient at the inflection point. An illustration of this is seen in figure 5.6. As
seen in equation 5.21 the magnitude of the gradient at the inflection point also depends
on the values of kmax and kn. This can be seen in figure 5.4 and figure 5.5.

5.3 Implementing the feedback functions
The previous section gave an indication about how a receptor works on a microscopic
level. But in fact we do not know exactly how the chemical process is throughout the
HPA-axis. Therefore we will implement the feedback functions in a more phenomeno-
logical way.

We will assume that a feedback in a compartment works in a way that reduces gain
pathway (the term corresponding to positive stimuli of the hormone) at that specific
compartment. Furthermore we assume that the processes in the HPA-axis are irre-
versible meaning that any flow shown on the compartment diagrams are not allowed
to be reverted. Furthermore we assume that a negative feedback can not become a
positive feedback.
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5.4 Jelic-like approach
As explained in the introduction there are several receptors in the brain that are regulat-
ing the hormone secretion. We will now implement the Hill-functions into the feedback
mechanisms. To do this we look at the compartment with CRH and write up the chem-
ical reactions similar to the way Jelic et al.[2] write up their reactions. We assume
cortisol is reacting with the receptors and substance B is produced. B reacts with CRH
to form the neutral substance C which is no longer able to contribute to the dynamics
of the HPA-axis. Then the chemical reactions would look like in equation array 5.22

k0→ x1

x1 +B
c1→ C

x1
w1→ . (5.22)

The law of mass action then states that change in x1 is given by

dx1

dt
= k0 − c1x1B − w1x1 . (5.23)

As described in the previous section the amount of produced B is given by

kmax
xα
3

xα
3 + kαn

. (5.24)

And the amount that is used is
c1x1B . (5.25)

This leads to the following differential equation for A

dB

dt
= kmax

xα
3

xα
3 + kαn

− c1x1B . (5.26)

Now we use the quasi-equilibrium hypothesis. This means we assume the reaction be-
tween x1 and B is fast compared to the other dynamics of the HPA-axis. Then B is
used in approximately the same rate as it is produced.

dB

dt
= 0 ⇔ kmax

xα
3

xα
3 + kαn

= c1x1B . (5.27)

Inserting this result in equation 5.23 gives

dx1

dt
= k0 − kmax

xα
3

xα
3 + kαn

− w1x1 . (5.28)

To avoid a feedback function reverting the flow in the system kmax is not allowed to
attain values larger than k0.

kmax = µk0 , (5.29)
with µ ∈ [0, 1]. Inserting in equation 5.28.

dx1

dt
= k0

(
1− µ

xα
3

xα
3 + kαn

)
− w1x1 . (5.30)
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This kind of approach to model a feedback mechanism has been widely used throughout
literature[3, 4, 27]. We should check explicitly that the feedback function does fulfill
the criteria for a negative feedback meaning that the derivative with respect to x3 takes
only negative values.

d

dx3

(
1− µ

xα
3

xα
3 + kαn

)
= −µ

αkαnx
α−1
3

(xα
3 + kαn)

2 . (5.31)

Thus for x3 > 0 this is indeed negative.
In a similar way we model the negative feedback in the pituitary gland which gives

the equations in array 5.32
dx1

dt
=k0

(
1− µ

xα
3

xα
3 + cα1

)
− w1x1

dx2

dt
=k1

(
1− ρ

xβ
3

xβ
3 + cβ2

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (5.32)

Now c1, c2, α and β are determined by the stoichiometric chemical reaction scheme.
Since both feedbacks correspond to cortisol binding to GR we assume c1 = c2 ≡ c
and α = β. µ is dependent on the stoichiometric chemical reaction, k0 and the size of
the receptor of which we do not have any information. The same is the case with ρ.
Therefore these parameters will still be included in the final equations given by array
5.33

dx1

dt
=k0

(
1− µ

xα
3

xα
3 + cα

)
− w1x1

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (5.33)

Actually there will most certainly be more than one receptor in each compartment.
Therefore one could argue that it would be more reasonable to assume many receptors
are controlling each feedback at the same time. But if many small receptors obey
the same chemical reactions and the receptors have different capacities, ai, then the
differential equation for CRH would look as

dx1

dt
= k0

(
1−

∑
i ai
k0

xα
3

xα
3 + cα

)
− w1x1

Denoting
∑

i ai/k0 = µ we end up with the same differential equations as in array 5.33.
Therefore nothing is lost by modeling all receptors as one big receptor.

5.5 Description of the obtained system of nonlinear differential
equations

The system of differential equations 5.33 with strictly positive k0, k1, k2, w1, w2, w3 and
µ, ρ ∈]0, 1] and α as an integer value will be in focus for the next section. Since it has
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taken some pages to end up with this system it may help summarizing the mechanisms
of the system. The derivative of CRH (x1) has a positive term k0

(
1− µ

xα
3

xα
3 +cα

)
where

a negative feedback from cortisol (x3) inhibits the positive stimulation for increasing
cortisol. There is a similar negative feedback mechanism from cortisol in the equation
describing the derivative of ACTH (x2) where the positive term is ’proportional’ to
the CRH concentration. Again increasing concentration of cortisol inhibits the positive
stimulation. The positive stimulation on the derivative of cortisol is linear in ACTH
thus the more ACTH the more cortisol is produced. The change in all the hormone
concentrations have a loss depending linearly on the concentration itself. This descrip-
tion of our model match well the qualitative description of the HPA axis as shown in
figure 2.2.

5.6 Existence and uniqueness of solutions, trapping region, existence
and number of fixed points

Our model without hippocampus(equation array 5.33) is given by three coupled, non
linear, autonomous differential equations. In this section we will show results about
existence and uniqueness of solutions, bounded region for the solutions, the existence
and number of fixed points.

Existence and uniqueness of solutions
To use the existence and uniqueness theorem (theorem 3.1) we should calculate all the
partial derivatives of the right hand sides of the equations 5.33 and investigate whether
these are continuous. Since we are only caring about non negative concentrations this
is the case and quite simple to show so we will omit the calculations. Therefore the
existence and uniqueness theorem apply and we are guaranteed that there is one and
only one solution for a given initial condition.

Guarantee of non negative concentrations
Let us start with some observations regarding existence of an invariant solution set
of array 5.33. By invariant solution set is meant that if a solution is in the set at
some time then it will stay in there for all future times. Since non negative hormone
concentrations as well as infinite concentrations are unphysiological it is a criterion that
reasonable initial conditions does not lead to solutions with negative concentrations or
solutions diverging to infinity. This can be avoided if solutions starting in a bounded
region in the non negative octant of R3 stay in that region for all future time. Let us
start with an argument that solutions starting with non negative concentrations stay
non negative for all future time and deal with the boundedness afterwards. We are
going to use that ∀x3 ≥ 0 then 1 − µ

xα
3

xα
3 +cα > 0 for µ ∈ [0, 1]. Similarly 1 − ρ

xα
3

xα
3 +cα is

always positive for ρ ∈ [0; 1]. If x1 is zero there is only a positive term in the differential
equation governing x1 no matter the values of x2 and x3. Therefore for any nonnegative
initial value of x1, x1 never become negative. Similar reasoning applies for the two other
differential equations where the only negative term of the derivative vanishes when the
concentration considered is zero. Thus the octant in R3 with nonnegative entries is an
invariant solution set.
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Existence of trapping region(s)
Now we argue that there exists a bounded subset of the non negative octant of R3 that is
an invariant solution set to the equations 5.33. This is called a trapping region meaning
that no solution can ’escape’ from this region if it is once in it. This is also needed when
two dimensional systems are considered and one wants to use the Poincaré Bendixon
theorem. It may be the hardest part in applying the theorem and sometimes requires
’good ideas’ in how to construct boundaries where the flow does not point out of set.
Here it seems more straightforward fortunately. For dynamical systems in general there
could be a trapping region but this would not rule out interesting dynamics outside the
trapping region. However for our system there exists a trapping region and all solutions
enter the trapping region in finite time which means the trapping region contains the
interesting part of the system dynamics. We will start showing the existence of trapping
region(s) given by equation 5.34 and a ’minimal’ trapping region given by equation 5.35.

Since 0 < 1 − µ
xα
3

xα
3 +cα ≤ 1 then from the first equation of array 5.33 we have

dx1/dt ≤ k0 − w1x1. Therefore if x1 > k0/w1 then dx1/dt < 0 and if x1 = k0/w1 then
dx1/dt ≤ 0 . Thus a bound, Mx1 , for x1 can be chosen as Mx1 = k0/w1 + ε1 ∀ε1 ≥ 0. This
is very convenient because then x1 is bounded no matter what values x2 and x3 attains.
But the fact that x1 is bounded can be used to make a bound on x2 and after that on
x3. Carrying out the argument in detail we see that 0 < 1− ρ

xα
3

xα
3 +cα ≤ 1 and dx2/dt < 0

if x2 > k1/w2x1 (and dx2/dt ≤ 0 if x2 = k1/w2x1). Since x1 is bounded this means that x2

is also bounded. A bound for x2 is Mx2 = k1/w2Mx1 + ε2 ∀ε2 ≥ 0. If x3 > w3/k2x2 then
dx3/dt < 0. Defining Mx3 ≡ k2/w3Mx2 + ε3 ∀ε3 > 0 then dx3/dt < 0 for x2 ∈ [0; k0k1/w1w2]
and x3 = Mx3 (and ẋ3 ≤ 0 for x3 = w3/k2Mx2 and x2 ∈ [0; k0k1/w1w2]).

This shows there exists a bounded set in which solutions will stay in if they are once
in there - a ’trapping region’.

W (ε1, ε2, ε3) = [0;Mx1(ε1)]× [0;Mx2(ε2)]× [0;Mx3(ε3)]

=

[
0;

k0
w1

+ ε1

]
×
[
0;

k0k1
w1w2

+
k1
w2

ε1 + ε2

]
×
[
0;

k0k1k2
w1w2w3

+
k1k2
w2w3

ε1 +
k2
w3

ε2 + ε3

]

≡ I1(ε)× I2(ε1, ε2)× I3(ε1, ε2, ε3) ∀ε1, ε2, ε3 > 0. (5.34)

For any ε1 > 0, ε2 > 0, ε3 > 0 we have shown that the flow is pointing into W (ε1, ε2, ε3)
on the boundaries where no concentration is zero. Now we were a bit strict demanding
that the derivative of a variable should be negative for sufficiently large values of the
variable. It is sufficient for the derivative to be zero. If this is used one can omit the ε’s
from the estimation of boundaries. This means that W (0, 0, 0) is also a trapping region
as well as e.g. W (ε1, 0, 0) ∀ε1 > 0 . We denote this trapping region by V = W (0, 0, 0)
thus

V = [0; k0/w1]× [0; k0k1/w1w2]× [0; k0k1k2/w1w2w3] . (5.35)
Note that the argumentation for the trapping region is such that I1(ε1) is a trapping
region for x1(t) for all non negative values of x2 and x3. I1(ε1)× I2(ε1, ε2) is a trapping
region for x1(t) and x2(t) for all non negative values of x3.

It has now been shown that for initial conditions in the nonnegative octant the
system have solutions living in a bounded region with nonnegative hormone concentra-
tions. This is physiological correct and a problem that other models such as [1] have
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to fix with additional non-linearities. We have now shown existence of several trapping
regions of our system and now we focus on showing that all solutions enter the trapping
region in finite time.

5.7 x3(t) > 0 after finite time and for all future time.
In order to show that any non negative solution outside V enters V in finite time we
need that x3(t) > 0 after finite time and for all future time. This section is dedicated
to show x3(t) > 0 after finite time and for all future time.

Assume we have an arbitrary nonnegative initial condition x(t0) = x0 = (x10, x20, x30).
We now want to construct a trapping region for the solution with initial condition
x0. Here there are two cases that needs to be considered regarding x10. These are
x10 > k0/w1 or 0 ≤ x10 ≤ k0/w1. We take care of this by defining ε1 = max{x10−k0/w1, 0}.
Then the solution with initial condition x0 is trapped in the region W (ε1, 0, 0). In this
trapping region we can now make an estimation for the differential equations using
linear differential equations. Since I3(ε1, 0, 0) is compact, 1 − ρ

xα
3

cα+xα
3
and 1 − µ

xα
3

cα+xα
3

attains minimum and maximum values by the extreme value theorem [17]. Since the
expressions are decreasing in x3 the minimum L1 and L2 are found as the expression
evaluated at the right endpoint of I3(ε1, 0, 0).

L1 = 1− µ
Mα

x3

cα +Mα
x3

> 0

L2 = 1− ρ
Mα

x3

cα +Mα
x3

> 0 . (5.36)

We construct a linear system of differential equations that will be used for a bound on
the solutions of the non linear system.

ẋ1
′ =L1k0 − w1x

′
1

ẋ2
′ =L2k1x

′
1 − w2x

′
2

ẋ3
′ =k2x

′
2 − w2x

′
3 . (5.37)

and x′(t0) = x0 Using this to compare the original, non linear coupled system of differ-
ential equations restricted to W (ε1, 0, 0) we obtain.

ẋ1
′ ≤ ẋ1

ẋ2
′ ≤ ẋ2

ẋ3
′ ≤ ẋ3 . (5.38)

The idea of comparing the non linear system with a linear system that can be solved is
contained in the following lemma

Lemma 5.1
Let f : R → R, g : R → R and f, g ∈ C1 and f(t0) = g(t0). If ∀t0 ≤ t < ∞
df(t)/dt ≤ dg(t)/dt then f(t) ≤ g(t) ∀t ≥ t0.
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Proof
Since df(t)/dt and dg(t)/dt are continuous, they are integrable on a closed, bounded interval
[17]. Using the comparison theorem for integrals [17] we get

∫ t

t0

df(x)

dx
dx ≤

∫ t

t0

dg(x)

dx
dx . (5.39)

Using the fundamental theorem of calculus [17] this equals

f(t)− f(t0) ≤ g(t)− g(t0) . (5.40)

Since by assumption f(t0) = g(t0) we have

f(t) ≤ g(t), ∀t ≥ t0 . (5.41)

Then lemma 5.2 trivially

Lemma 5.2
If x′(t0) = x(t0) = x′′(t0) and ẋ1

′ ≤ ẋ1 ≤ ẋ1
′′ for all t ≥ t0 then x′(t) ≤ x(t) ≤ x′′(t)

∀t ≥ t0.

Solving the linear system (array 5.37) we get

x1(t)
′ =d11e

−w1t +
k0
w1

L1

x2(t)
′ =d21e

−w1t + d22e
−w2t +

k0k1
w1w2

L1L2

x3(t)
′ =d31e

−w1t + d32e
−w2t + d33e

−w3t +
k0k1k2
w1w2w3

L1L2 . (5.42)

where the dij ’s are real constants that can be found from the initial conditions and the
eigenvectors of the homogeneous system of array 5.37.

Since k0k1k2

w1w2w3
L1L2 > 0 and all terms involving exponentials are converging to 0 for

increasing t then there exists a T0 < ∞ such that x′
3(t) > 0 ∀t > T0 (actually any

infinitesimal small time is sufficient since we only allow non negative initial conditions).
By bounding x3(t) using x′

3(t) it is clear that x3(t) > 0 ∀t > T0.

All non negative initial conditions lead to solutions entering V in finite time
for µ, ρ ∈]0; 1].
The two lemmas 5.1 and 5.3 can be used to show that if a differential equation can
be bounded by another differential equation and the solution to the latter attains a
certain value in finite time then the same holds for the original differential equation.
This means that the lemmas are used to ’squeeze’ the solution of a differential equation
with a solution of another differential equation.

Lemma 5.3
Let f : R → R, g : R → R and f, g ∈ C1 and f(t0) = g(t0). Let t0 ≤ T ′ ≤ a < ∞ and
∀t ∈ [t0, a] f(t) ≤ g(t) and g(T ′ + t0) = b and g(t) decreasing on [0;T ′]. Then there
exists T with the property that 0 ≤ T ≤ T ′ such that f(T + t0) = b.
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Proof
Since f(t) ≤ g(t) ∀t ∈ [t0, a] then first consider f(T ′+ t0) = g(T ′+ t0) = b. This means
we can choose T = T ′. Secondly we have to consider f(T ′ + t0) < g(T ′ + t0) = b. Since
f(t0) = g(t0) > b and since f is continuous we have by the intermediate theorem [17]
that there exists T such that 0 < T < T ′ with f(T + t0) = b.

The two lemmas are ’very intuitive understandable’ if figure 5.7 is considered.
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g´(t)= − 1, g(1)=2

f´(t)= − t2, f(1)=2
h(t)=1

Figure 5.7: Illustration of lemma 5.1 and lemma 5.3. The derivative of f is smaller
than that of g. If the two functions are equal at some t0 (here at (1,2)) and if g has
the value b = 1 at some later, finite time then there also exists a finite time such that
f has the value 1.

For µ, ρ ∈]0; 1] we will show that all solutions with non negative initial conditions
that are not contained in V will enter V in finite time. Since we have shown V is a
trapping region any solution entering V stays in there. Assume an initial condition
x(t0) = x0 = (x10, x20, x30) is given. From the argument above we know that there
exists a finite time T0 such that x3(t) > 0 for t ≥ T0. Therefore we consider x(t) for
t ≥ T0.

The proof that any solution enters V in finite time is now split in steps. First it is
shown that x1(t) enters I1(0) in finite time and x1 is then trapped. Then we can show
that it takes finite time for x2 to be trapped in I2(0, 0) and then it can be shown that
x3 is trapped after finite time in I3(0, 0, 0).

• Proof that x1(T0 + T1) ∈ [0; k0/w1] for some 0 ≤ T0 + T1 < ∞.
If x1(T0) ∈ [0; k0/w1] then for T1 = 0 the proof is finished. For x1(T0) > k0/w1

consider the closed, bounded interval x1 ∈ [k0/w1, x1(T0)]. Since x3 > 0, µ > 0
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then 1−µ
xα
3

xα
3 +cα < 1. Therefore dx1/dt < 0 for x1 ∈ [k0/w1;x1(T0)] (see array 5.33).

This is sufficient to ensure that x1(t) enters the desired region in finite time, but
it takes a little more work to prove it.

Since dx1/dt is a continuous function on the closed, bounded interval [k0/w1;x1(T0)]
then dx1/dt obtains a maximum by the extreme value theorem [17]. Denote the
maximum byM1. Since dx1/dt < 0 for all x1 in the considered interval thenM1 < 0.
Now we have that ∀x1 ∈ [k0/w1;x1(T0)] then dx1/dt ≤ M1 < 0. Now we define the
function y1 by y1(T0) = x1(T0) and dy1/dt = M1. Solving the differential equation
we get y(t) = M1t + x1(T0) −M1T0. Now we can calculate when y1 enters I1(0)
by solving y(T ′

1 + T0) = k0/w1

T ′
1 =

k0/w1 − x1(T0)

M1
> 0 . (5.43)

Thus in finite time y1(T0 + T ′
1) ∈ [0; k0/w1]. By lemma 5.1 and lemma 5.3 there

exist a finite time T1 such that x1(t0 + T1) ∈ [0; k0/w1]. Since I1(0) is a trapping
region for x1 for all non negative values of x2 and x3 then we can now proceed
looking at x2 considering x1 trapped.

• Proof that x2 ∈ [0; k0k1/w1w2] in finite time.
For all non negative initial conditions of x2 we consider dx2/dt after the time

T0 + T1. If x2(T0 + T1) ∈ [0; k0k1/w1w2] then we are done. Thus consider the
case that x2 > k0k1/w1w2. x3(t) > 0, ρ ∈]0, 1] so 0 < 1 − ρx

α
3/xα

3 +cα < 1 so
∀x2 ∈ [k0k1/w1w2;x2(T0 + T1)] then dx2/dt < 0. We just repeat the argument
from the case with x1 that dx2/dt thus has a maximum, M2, on the closed interval
[k0k1/w1w2;x2(T0+T1)] by the extreme value theorem and M2 is strictly less than 0.
Defining y2(T0+T1) = x2(T0+T1) and ẏ2 = M2 we solve the differential equation
for y2. y2(t) = M2t+x2(T0+T1)−M2(T0+T1). Solving y2(T0+T1+T ′

2) = k0k1/w1w2

for T ′
2 we get

T ′
2 =

k0k1/w1w2 − x2(T0 + T1)

M2
> 0 . (5.44)

This means that after the finite time T0+T1+T ′
2 then y2(t) ∈ [0; k0k1/w1w2]. x2(t)

enters the set as least as fast as y2 by lemma 5.1 and lemma 5.3. This meams there
exists 0 ≤ T2 < T ′

2 such that x2(T0 + T1 + T2) ∈ [0; k0k1/w1w2] ∀t > T0 + T1 + T2.
Since ẋ2 < 0 for x2 = k0k1/w1w2 then x2(t) ∈ [0; k0k1/w1w2[ for t > T0 +T1 +T2 + δ,
∀δ > 0.

• Proof that x3 ∈ [0; k0k1k2/w1w2w3] after finite time. If x3(T0 + T1 + T2 + δ) ∈
[0; k0k1k2/w1w2w3] then we are done. If x3(T0 + T1 + T2 + δ) > k0k1k2/w1w2w3 then
we have that dx3/dt < 0 for x3 ∈ [k0k1k2/w1w2w3;x3(T0+T1+T2+δ)]. By the extreme
value theorem M3 < 0 is the minimum of ẋ3 on [k0k1k2/w1w2w3;x3(T0+T1+T2+δ)]
so we can once again make a differential equation in y3 with solutions enterering
[0; k0k1k2/w1w2w3] in finite time. Since x3 decreases faster than y3 it takes a finite
time for x3 to enter [0; k0k1k2/w1w2w3]. The details are similar to the case with x1

and x2.

Now it has been shown that any solution enters V in finite time for µ, ρ ∈]0; 1]. For
x1 /∈ I1(0) it may be that ẋ2 > 0 and ẋ3 > 0. This shows dist(x2, I2(0, 0)) may be
increasing for some time until x1 ∈ I1(0). Thus even though all solutions outside V
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enter V in finite time this does not mean that any coordinate of a solution approach
the trapping region for all times.

Existence and number of fixed points
Now we investigate the existence and number of the fixed points of the system. There
exists one and only one steady state solution which we will now show from array 5.33.
The conditions for steady state is given by equations 5.45-5.47

x1ss =
k0
w1

(
1− µ

xα
3ss

xα
3ss + cα

)
(5.45)

x2ss =
k0k1
w1w2

(
1− µ

xα
3ss

xα
3ss + cα

)(
1− ρ

xα
3ss

xα
3ss + cα

)
(5.46)

x3ss =
k0k1k2
w1w2w3

(
1− µ

xα
3ss

xα
3ss + cα

)(
1− ρ

xα
3ss

xα
3ss + cα

)
. (5.47)

The right hand side of equation 5.47 has the value k0k1k2

w1w2w3
> 0 for x3ss = 0 and is

decreasing as a function of x3ss. The left hand side has the value 0 for x3ss = 0 and is
increasing linearly as a function of x3ss. This guarantees the existence of a unique x3ss.
Then there is exactly one fixed point since equation 5.45 and equation 5.46 determines
x1ss and x2ss from x3ss. Since x1ss, x2ss, x3ss are non negative we are guaranteed that
the fixed point is contained in V since all solutions enter V in finite time.

Note that we have used no assumptions regarding the numerical values of the in-
cluded parameters. Only the sign of the parameters have been used for the argument.
This means a unique fixed point exists for any numerical values of the parameters. As
parameters may be varied no additional fixed points is created. This means there can
be no saddle node bifurcation for this system. In terms of bifurcations of fixed points
the only thing left to happen is a change of the stability of the fixed point in terms of
the parameters. This will be in focus for the next sections.
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6 Analytic analysis of the system without
hippocampus

In this chapter we will simplify the system by scaling the variables and thereby re-
ducing the number of parameters from nine to six. We will then perform an analytic
investigation of this system. The investigation treat local stability of the fixed point.

6.1 Scaling of the system of differential equations
Scaling of differential equations may be convenient in order to reduce the number of
parameters by grouping the original parameters. Here we will allow the time and the
three time dependent variables to be scaled with a scaling constant that we will specify
later in order to get a system with fewer parameters. Let d0, d1, d2, d3 be constants that
we will later specify and define θ,X1, X2, X3 by the equations

θ ≡ d0t

x1 ≡ d1X1

x2 ≡ d2X2 (6.1)
x3 ≡ d3X3 .

This is substituted into array 5.33 and the chain rule is used. Using the first equation
of array 5.33 as example we first look at the left side

dx1

dt
= d1

dX1

dt
= d1

dX1

dθ

dθ

dt
= d1d0

dX1

dθ
. (6.2)

Substituting on the right side of the first equation of array 5.33 gives

dx1

dt
= k0

(
1− µ

dα3X
α
3

cα + dα3X
α
3

)
− w1d1X1 (6.3)

Now it is just a matter of setting the two expressions 6.2, 6.3 equal to each other and
isolate dX1/dθ

dX1

dθ
=

k0
d0d1

(
1− µ

dα3X
α
3

cα + dα3X
α
3

)
− w1

d0
X1 . (6.4)
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This approach is used on the two other differential equations as well.

dX1

dθ
=

k0
d0d1

(
1− µ

dα3X
α
3

cα + dα3X
α
3

)
− w1

d0
X1

dX2

dθ
=

k1d1
d0d2

(
1− ρ

dα3X
α
3

cα + dα3X
α
3

)
X1 − w2

d0
X2 (6.5)

dX3

dθ
=

k2d2
d0d3

X2 − w3

d0
X3 .

Now this may not seem simpler than the original system 5.33 but remember we still
have the option of choosing d0, d1, d2 and d3 in an appropriate manner. It seems to be
a good idea to choose d3 = c in order to simplify the fractions with x3 involved. We
can use the last three degrees of freedom to make the first coefficient in each equation
equal unity.

1 =
k0
d0d1

1 =
k1d1
d0d2

(6.6)

1 =
k2d2
d0d3

.

Solving for d0, d1, d2 we get

d0 =

(
k0k1k2

c

)1/3

d1 =

(
ck0

2

k1k2

)1/3

(6.7)

d2 =

(
c2k0k1
k22

)1/3

d3 = c .

All the scalings constants are thus positive. What about the dimensions of d0, d1, d2?.
From array 5.33 we see that c has dimension of concentration, k0 has dimension con-
centration divided by time and k2 and k3 have dimension inverse time. Considering
array 6.7 this means d0 has dimension of inverse time, d1, d2, d3 have dimension of
concentration. Recalling the defining equations for the scaled variables 6.1 we get

θ =
(
k0k1k2

c

)1/3
t

x1 =
(

ck0
2

k1k2

)1/3
X1

x2 =
(

c2k0k1

k2
2

)1/3
X2 (6.8)

x3 = cX3 .

Since the concentrations are all non negative and the scaling factors are positive we
have that X1, X2, X3 are non negative. The time is scaled by a positive constant thus
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an increase in time corresponds to an increase in θ. Note that X1, X2, X3 and θ are all
dimensionless. Now we can write array 6.5 in a way with fewer parameters by defining
positive parameters w̃1, w̃2, w̃3 by

w̃1 ≡ w1

d0

w̃2 ≡ w2

d0
(6.9)

w̃3 ≡ w3

d0
.

This means w̃1, w̃2 and w̃3 are dimensionless. Putting all the substitutions into array
6.5 we obtain the dimensionless system

dX1

dθ
= 1− µ

Xα
3

1 +Xα
3

− w̃1X1

dX2

dθ
=

(
1− ρ

Xα
3

1 +Xα
3

)
X1 − w̃2X2 (6.10)

dX3

dθ
= X2 − w̃3X3 .

Comparing to 5.33 we see that this version of the system has 6 parameters which is 3
less than the original system. We are now interested in finding the stability of the fixed
point of this system for different parameter values. To simplify notation we introduce
Y as

Y ≡ Xα
3

1 +Xα
3

. (6.11)

We have X3 non negative and thus Y ∈ [0, 1[. Now the steady state condition is that
all the left hand sides in 6.10 equal zero leading to (using the notation Yss ≡ Xα

3ss

1+Xα
3ss

)

X1ss =
1

w̃1
(1− µYss)

X2ss =
1

w̃2
(1− ρYss)X1ss =

1

w̃1w̃2
(1− ρYss) (1− µYss) (6.12)

X3ss =
1

w̃3
X2ss =

1

w̃1w̃2w̃3
(1− ρYss) (1− µYss) .

This is equivalent to array 5.47 thus we are sure that exactly one fixed point exists.
Now we make the Jacobian of 6.10 where we use that dY/dX3 = αXα−1

3 /(1+Xα
3 )2 =

αY 2X−α−1
3 (for X3 6= 0)

J =




−w̃1 0 −µαY 2X−α−1
3

1− ρY −w̃2 −αρX1Y
2X−α−1

3

0 1 −w̃3


 (6.13)

In order to determine the stability of the fixed point we need to find the eigenvalues
of the Jacobian, matrix 6.13, evaluated at the fixed point given by the equations 6.12.
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The algebra is easier if we wait with actually inserting the steady state values but just
denote with ss that the variables are evaluated at the steady state.

− det(Jss − λI) = λ3 + α1λ
2 + α2λ+ α3 , (6.14)

where

α1 = w̃1 + w̃2 + w̃3

α2 = ραX1ssY
2
ssX

−α−1
3ss + w̃1w̃2 + w̃1w̃3 + w̃2w̃3 (6.15)

α3 = µαY 2
ssX

−α−1
3ss − µραY 3

ssX
−α−1
3ss + αρw̃1X1ssY

2
ssX

−α−1
3ss + w̃1w̃2w̃3.

Since the sign matrix of J is the same as a model previously described in section 4.2
then α1, α2 and α3 must be strictly positive to guarantee stabillity. This can also be
seen by inspection since the only negative term entering is for α3. Rewriting α3

α3 = µαY 2
ssX

−α−1
3ss (1− ρYss) + αρw̃1X1ssY

2
ssX

−α−1
3ss + w̃1w̃2w̃3. (6.16)

Since 0 ≤ Yss < 1 and 0 ≤ ρ ≤ 1 then 1− ρYss ≥ 0. This means α3 > 0. Therefore the
fixed point is asymptotically stable if α1α2 − α3 > 0 and unstable if α1α2 − α3 < 0 by
theorem 3.5.

α1α2 − α3 =
αρX1ssY

2
ss

Xα+1
3ss

(w̃2 + w̃3) + w̃1w̃3
2 + w̃2w̃3

2 + 2w̃1w̃2w̃3

+ w̃2
2w̃3 + w̃1w̃2

2 + w̃1
2w̃2 + w̃1

2w̃3 +
αµY 2

ss

Xα+1
3ss

(−1 + ρYss) . (6.17)

The last term is negative since ρYss < 1 and it is the only negative term. We now focus
on this term and denote it by H

H ≡ αµY 2
ss

Xα+1
3ss

(−1 + ρYss) . (6.18)

Now it is time to use the condition given by the steady state 6.12 thus replacing
X3ss by an expression in Yss leading to

H =
αµY 2

ss(
1

w̃1w̃2w̃3
(1− ρYss) (1− µYss)

)α+1 (−1 + ρYss) ⇔

H =− (w̃1w̃2w̃3)
α+1αµY 2

ss

(1− ρYss)
α
(1− µYss)

α+1 . (6.19)

The question is how small H can get? We have that µ and ρ can vary in [0,1]. But since
Yss ∈ [0, 1[ it can be seen directly from 6.19 that µ = ρ = 1 makes the denominator
closest to zero in terms of µ and ρ and at the same time maximizing the numerator
in terms of µ and ρ. Thus the ’worst case scenario’ is when µ and ρ equals one. This
scenario will therefore be considered in section 6.2.

H = − (w̃1w̃2w̃3)
α+1αµY 2

ss

(1− ρYss)
α
(1− µYss)

α+1 ≥ − (w̃1w̃2w̃3)
α+1αY 2

ss

(1− Yss)
2α+1 . (6.20)
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Note that if the negative feedback on CRH from cortisol is disregarded this corre-
sponds to µ = 0. But then H = 0 so the stability analysis simplifies since α1α2 − α3 is
always positive then. This means the fixed point is stable for all non negative values of
α.

6.2 The system with µ = 1, ρ = 1

As mentioned in the previous section the fixed point is most likely to be unstable for
µ = ρ = 1. Therefore we will in this section investigate this scenario. We investigate if
realistic values of α cause an unstable fixed point i.e. α1α2 − α3 > 0.

Inserting µ = ρ = 1 in equation 6.17

α1α2 − α3 =
αX1ssY

2
ss

Xα+1
3ss

(w̃2 + w̃3) + w̃1w̃3
2 + w̃2w̃3

2 + 2w̃1w̃2w̃3

+ w̃2
2w̃3 + w̃1w̃2

2 + w̃1
2w̃2 + w̃1

2w̃3 +
αY 2

ss

Xα+1
3ss

(−1 + Yss) . (6.21)

Since the first term on the right side is non negative 1

α1α2 − α3 ≥w̃1w̃3
2 + w̃2w̃3

2 + 2w̃1w̃2w̃3

+ w̃2
2w̃3 + w̃1w̃2

2 + w̃1
2w̃2 + w̃1

2w̃3 +
αY 2

ss

Xα+1
3ss

(−1 + Yss) . (6.23)

Introduce the variable Z,

Z ≡ 1

1 +Xα
3

⇔ X3 =

(
1− Z

Z

)1/α

. (6.24)

Since X3 ∈ [0,∞) then Z ∈ (0, 1]. Since Y = Xα
3/1+Xα

3
then Z = 1− Y . Inserting for Z

in terms of Yss and X3ss in equation 6.23.

α1α2 − α3 ≥ w̃3
2w̃2 + w̃3

2w̃1 + 2 w̃3w̃2w̃1 + w̃3w̃2
2 + w̃2

2w̃1 + w̃3w̃1
2

+ w̃2w̃1
2 − αZss

2+1/α (1− Zss)
1−1/α . (6.25)

Consider again the steady state condition array 6.12 with µ = ρ = 1.

1 It is sufficient for our argument to throw away the first term in inequality 6.21. However note that
if the first and last term is combined we get αY 2

ss

Xα+1
3ss

(X1ss(w̃2 + w̃3)− 1 + Yss). If the expression in the
brackets is non negative then the fixed point is stable. Using X1ss = 1/w̃1(1 − Yss) the fixed point is
stable if

w̃2 + w̃3

w̃1
(1− Yss)− 1 + Yss ≥ 0 .

Since 1− Y > 0 then if
w̃2 + w̃3 ≥ w̃1 , (6.22)

the fixed point is stable for all non negative values of α.
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X1ss =
1

w̃1
(1− Yss)

X2ss =
1

w̃2
(1− Yss)X1 =

1

w̃1w̃2
(1− Yss)

2 (6.26)

X3ss =
1

w̃3
X2 =

1

w̃1w̃2w̃3
(1− Yss)

2 .

The parameter γ is defined

γ ≡ 1

w̃1w̃2w̃3
. (6.27)

Now the steady state condition will be used. Expressing the last equation in array
6.26 in terms of Z using equation 6.24 we have

(
1− Zss

Zss

)1/α

= γZ2
ss . (6.28)

This is equivalent to

1− Zss

γ
= (1− Zss)

1−1/α Z2+1/α
ss . (6.29)

Inserting equation 6.29 in equation 6.25

α1α2 − α3 ≥ w̃3
2w̃2 + w̃3

2w̃1 + 2 w̃3w̃2w̃1 + w̃3w̃2
2 + w̃2

2w̃1 + w̃3w̃1
2

+ w̃2w̃1
2 − α

1− Zss

γ
. (6.30)

Since 0 < Z ≤ 1 ⇔ −1 < −1 + Z ≤ 0 we have − (1− Zss) = −1 + Zss > −1 thus
we can write

α1α2 − α3 > w̃3
2w̃2 + w̃3

2w̃1 + 2 w̃3w̃2w̃1 + w̃3w̃2
2 + w̃2

2w̃1 + w̃3w̃1
2

+ w̃2w̃1
2 − α

1

γ
. (6.31)

Using the definition of γ from equation 6.27 this is equivalent to

α1α2 − α3 > w̃3
2w̃2 + w̃3

2w̃1 + 2 w̃3w̃2w̃1 + w̃3w̃2
2 + w̃2

2w̃1 + w̃3w̃1
2

+ w̃2w̃1
2 − w̃1w̃2w̃3α . (6.32)

The right hand side is symmetric in w̃1, w̃2 and w̃3. We want to find out if there are
some α for which there are only stable solutions meaning the right hand side is positive.
Due to symmetry of the right side of equation 6.32 we can assume w̃1 ≥ w̃2 ≥ w̃3. Then
δ1 and δ2 are defined through the equations

w̃1 = δ1w̃3 (6.33)
w̃2 = δ2w̃3 , (6.34)
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where δ1 ≥ δ2 ≥ 1. Inserting in equation 6.32 and a few rearrangements give

α1α2 − α3 > w̃3
3
(
δ2 + δ1 + δ22 + δ21 + δ2δ1 (δ1 + δ2 − (α− 2))

)
. (6.35)

Thus we define

F (δ1, δ2) ≡ δ2 + δ1 + δ22 + δ21 + δ2δ1 (δ1 + δ2 − (α− 2)) . (6.36)

For what values of α is F > 0? Obviously if α ≤ 2 F is always positive since it
is then a sum of positive and non negative terms. For large δ1 or δ2 it is true that
δ1 + δ2 − (α− 2) > 0. Thus we restrict our attention to (δ1, δ2) ∈ [1, α− 2]× [1, α− 2].
A minimum exists by the extreme value theorem [17] and should be found at a critical
point or boundary point. First we calculate the value at the boundary point (1, 1)

F (1, 1) = 8− α < 0 if and only if α > 8 . (6.37)

So we know that for values of α larger than 8, the system may be unstable. But what
about values between 2 and 8? Calculating F at one boundary line

F (δ1, 1) = 2δ21 + (4− α) δ1 + 2 . (6.38)

This gives a second order polynomial in δ1. Calculating the discriminant

d = (4− α)
2 − 4 · 2 · 2 = α (α− 8) , (6.39)

so for α ∈ (0, 8), d < 0 meaning F (δ1, 1) > 0. Since F is symmetric in δ1 and δ2 the
same holds on the boundary line F (1, δ2). On the two remaining boundary lines F is
always positive.
The critical points are found

∂F

∂δ1
= 1 + 2δ1 + 2δ1δ2 + δ22 − (α− 2) δ2 = 0 (6.40)

∂F

∂δ2
= 1 + 2δ2 + 2δ1δ2 + δ21 − (α− 2) δ1 = 0 . (6.41)

Multiplying equation 6.40 by δ1 and multiplying equation 6.41 by δ2 and subtracting

δ1 − δ2 + 2
(
δ21 − δ22

)
+ δ1δ2 (δ1 − δ2) = 0 . (6.42)

If δ1 > δ2 equation 6.42 is obviously never satisfied. If δ1 = δ2 then equation 6.42
always holds. This is now used in equation 6.40

∂F

∂δ1
= 3δ21 − (α− 4) δ1 + 1 = 0 . (6.43)

Calculating the discriminant

d2 = (α− 4)
2 − 4 · 3 = α2 − 8α+ 4 . (6.44)

This gives a new second order polynomial with α as variable with solutions trivially
found as

α = 4− 2
√
3 or α = 4 + 2

√
3 . (6.45)
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4− 2
√
3 < 2 then the first solution is not interesting since we already found the system

to be stable for values of α ≤ 2. 8 > 4 + 2
√
3 > 7. Thus αmin = 4 + 2

√
3 in order

to have a critical point (we have not argued that the critical point necessarily is where
F obtains its minimum value). Using integer values for α we have now shown for
α < 8 F is positive. If we should consider all positive, real values for α, we would
still require α > 7 in order to have a chance that F could be negative. This means
that for α ∈ {1, ..., 7} the unique fixed point of array 6.10 is stable. This means that
the system has only stable solutions of the linearized system close to the unique steady
state solution.

Therefore we can conclude that the system 5.33 has exactly one fixed point and it
is stable for µ, ρ ∈ [0, 1], α ∈ [1, 7]. For larger values of α the fixed point could be stable
as well as unstable2.

Summary of chapter 6
The results of this chapter can be summarized as

• The system without hippocampus is scaled. The scaled system have six parame-
ters which is three less than the original system.

• If there is no feedback from cortisol of the production of CRH(µ=0) the unique
fixed point will be locally stable for all values of α.

• The fixed point is most likely to be locally unstable if µ = ρ = 1. In this ’worst
case scenario’ we have showed that the unique fixed point is guaranteed to be
locally stable for α ∈ {1, ..., 7}. For values of α > 7 the unique fixed point can be
stable as well as unstable.

2 A more general proof of this result can be seen in [28]



7 Stability of a fixed point for a system
with positive feedback from cortisol on CRH

Including hippocampal mechanisms in the differential equation governing CRH may
lead to positive feedback from cortisol on CRH at a fixed point. In this section we will
analyze the stability of a fixed point if the cortisol exerts a positive feedback on CRH. In
case of multiple feedbacks from cortisol on CRH this means that at the steady state point
the positive feedback dominates the negative feedback. Recall that a positive feedback
from cortisol to CRH means ∂f1/∂x3 > 0 and a negative feedback means ∂f1/∂x3 < 0.
Thus a dominating positive feedback at a fixed point means that ∂f1/∂x3 > 0. The
Jacobian at the fixed point is on the form

J =



−a11 0 a13
a21 −a22 −a23
0 a32 −a33


 . (7.1)

Here all aij ’s are positive and the positive feedback from cortisol to CRH means that
a13 > 0. Forming the characteristic polynomial we have

P (λ) = λ3 + α1λ
2 + α2λ+ α3 . (7.2)

The coefficients equal

α1 =a11 + a22 + a33 (7.3)
α2 =a11a22 + a11a33 + a22a33 + a32a23 (7.4)
α3 =a11a22a33 + a11a23a32 − a13a21a32 . (7.5)

We see that α1 > 0, α2 > 0 but we do not know in general if α3 is positive or negative.
In order to use theorem 3.5 we need to calculate the sign of α1α2 − α3 as well.

α1α2 − α3 = (a22 + a33)α2 + a211(a22 + a33) + a13a21a32. (7.6)

Therefore α1α2 − α3 > 0. Thus for all the systems on the form 7.1 the stability can
be determined solely by looking at the sign of α3. Instability is thus guaranteed for
α3 < 0 and stability is guaranteed for α3 > 0. If α3 < 0 then P (0) < 0 and since the
leading coefficient of P (λ) is positive, then P (λ) is positive for sufficiently large λ, say
for λ ≥ M . Now P (λ) is continuous and P (0) < 0 and P (M) > 0 so by the intermediate
value theorem [17] there exists λ′ ∈]0,M [ such that P (λ′) = 0. This means that in the
case of instability P (λ) has a positive, real root. What about the other roots? Could it
be that the system also has complex roots with non zero imaginary part and positive
real part such that oscillations are present of solutions close to the fixed point? The
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answer is no which we will now show. The situation is α1 > 0, α2 > 0 and α3 < 0 and
there exists a positive real root, λ1 of P (λ). Factorizing P we get

P (λ) = (λ− λ1)(λ− λ2)(λ− λ3) ⇔
P (λ) = λ3 − (λ1 + λ2 + λ3)λ

2 + (λ1λ2 + λ1λ3 + λ2λ3)λ− λ1λ2λ3 . (7.7)

What can be said about λ2 and λ3? Expanding P (λ) and comparing to equation 7.2
we see that

−(λ1 + λ2 + λ3) = α1 ⇔ λ2 + λ3 = −α1 − λ1 < 0 . (7.8)

Considering the case λ2 complex with non zero imaginary part then also the complex
conjugate is root. Since λ1 is real then λ3 must be the complex conjugate of λ2. Then
λ2+λ3 = 2Re(λ2) = 2Re(λ3). By inequality 7.8 then if complex eigenvalues exist with
non zero imaginary part then the real part must be negative. If λ2 and λ3 are real then
at least one of them is negative by inequality 7.8.

Summary of a positive feedback from cortisol on CRH at the fixed point.
• If α3 > 0 then the fixed point is stable.
• If α3 < 0 then at least l eigenvalues of the Jacobian at the steady state is real and

positive. If complex roots with non zero imaginary parts exists then they have
negative real part.

• No Hopf bifurcation occurs for α3 going from negative to positive values.
Note that the case with no feedback from cortisol on CRH corresponds to a13 = 0.

This will always give a stable system since then α1 > 0, α3 > 0, α1α2 − α3 > 0.



8 A model including the mechanisms from
hippocampus

Now we have shown a range of models that do not account for the dynamics of the HPA
axis.

Hippocampus

?k0

MR

GR

Hypothalamus

CRH, [x1]
GR

?k1

Pituitary gland

ACTH, [x2]
GR

?k2

Adrenal gland

Cortisol, [x3]

¾

¾

¾

¾

+

−

−

−
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w1

w2

w3

Figure 8.1: Compartment
diagram with hippocam-
pus included

It is therefore time to include the mechanisms of hippocam-
pus. Here cortisol binding to GR in hippocampus cause a
positive stimulation on the production of CRH in hypotha-
lamus while cortisol binding to MR in hippocampus cause
a inhibition of the production of CRH in hypothalamus[2].
Still the direct negative feedback from cortisol on CRH in
hypothalamus is also present. The model is shown in fig-
ure 8.1. Since there is no known hormone in hippocampus
we will not include an extra variable. We keep modeling
the feedback as a factor influencing the positive input on
the compartment where the feedback occurs. This means
that all the three feedbacks modeled at CRH from cortisol
should be introduced as a factor acting on k0. This means
that we get k0F (x3), where F (x3) is a function taking care
of the three feedbacks. We add the three feedbacks similar
to the approach of e.g. Conrad et al.[6]. We choose F (x3)
as

F (x3) = 1− µ
xα
3

xα
3 + cα1

+ φ
xβ
3

xβ
3 + cβ2

− ψ
xγ
3

xγ
3 + cγ3

(8.1)

Here the negative feedback acting directly on hypothalamus through GR is still on
the form −µ

xα
3

xα
3 +cα1

, where µ ∈ [0; 1]. −µ is the limit corresponding to the largest
negative feedback. cα1 is the affinity for cortisol and GR in hypothalamus, and α is
an integer. Similar interpretations apply for the two other feedbacks. φ

xβ
3

xβ
3+cβ2

is the

positive feedback acting through hippocampal GR. −ψ
xγ
3

xγ
3+cγ3

is the negative feedback
acting through hippocampal MR. All parameters entering F are positive but will later
be specified such that F ≥ 0. Note that φ = ψ = 0 corresponds to the model without
hippocampal mechanisms. Implementing F (x3) into the set of differential equations
gives
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dx1

dt
=k0

(
1− µ

xα
3

xα
3 + cα1

+ φ
xβ
3

xβ
3 + cβ2

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

dx2

dt
=k1

(
1− ρ

xδ
3

xδ
3 + cδ4

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (8.2)

From section 5.2 it is clear that α, β, γ, δ, c1, c2 and c3 are determined from the
chemical stoichiometric equations and the fractions µ, φ, ψ and ρ depend on the size of
the receptors as well.

When we define the function in this way we satisfy the demand that the process is
irreversible. Furthermore the overall response to the feedback mechanisms now depend
on the chemical stoichiometric equations and on the size of the receptors, which sounds
reasonable. But we accept that a function that satisfy the demand of being irreversible
can be constructed differently seen from a mathematical point of view.

For example one could introduce an unknown substance concentration x0 in hip-
pocampus. Modeling the system in analogy with the previous model one would get

dx0

dt
=k00

(
1 + φ

xβ
3

xβ
3 + cβ2

− ψ
xγ
3

xγ
3 + cγ3

)
− w0x0

dx1

dt
=k0

(
1− µ

xα
3

xα
3 + cα1

)
x0 − w1x1

dx2

dt
=k1

(
1− ρ

xδ
3

xδ
3 + cδ4

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (8.3)

Assuming a quasi steady state in x0 one would get

dx1

dt
=
k00k0
w0

(
1− µ

xα
3

xα
3 + cα1

)(
1 + φ

xβ
3

xβ
3 + cβ2

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

dx2

dt
=k1

(
1− ρ

xδ
3

xδ
3 + cδ4

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (8.4)

Neglecting higher order terms of the Hill functions the system in array 8.4 corresponds
to the system in array 8.2. This means that for small values of cortisol these are ap-
proximately identical. For simplicity we will model the mechanisms from hippocampus
as in array 8.2.
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8.1 Simplifications using physiological reasoning
The number of independent parameters for the equations in array 8.2 will now be
reduced using physiological reasoning. First we assume that the chemical stoichiometric
equations are the same for the identical GR in hippocampus, hypothalamus and in the
adrenal gland. This assumption gives in accordance with equation 5.12 that, c1 = c2 =
c4 and α = β = δ. We define c ≡ c1. Furthermore it has been suggested that cortisol
have ten times higher affinity for MR than for GR throughout the entire HPA-axis[29],
meaning that cα = 10cβ3 . This is found in rats so we will allow this number to vary thus
keeping c3 as a parameter for now. The model including hippocampal mechanisms can
be written

dx1

dt
=k0

(
1− µ

xα
3

xα
3 + cα

+ φ
xα
3

xα
3 + cα

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (8.5)

Now we have not been very specific about all the domains for the parameters. If we
let µ ∈ [0; 1], we see that for φ = ψ = 0 the model is the one already investigated in detail
in the previous sections and the hippocampus model is then indeed a generalization of
the previous considered model. However we must be careful that 1−µ

xα
3

xα
3 +cα +φ

xα
3

xα
3 +cα −

ψ
xγ
3

xγ
3+cγ3

≥ 0 in order to make sure that an initial condition with positive concentrations
cannot result in solutions with negative concentrations. A way to make sure this is
the case could be to make sure that the negative feedbacks does not add up to more
than 1. This could be done by having µ ∈ [0; 1] and ψ ∈ [0; 1 − µ]. Now we have a
model where we require k0, k1, k2, w1, w2, w3, c, c3 positive, φ non negative and α and
δ are integers. Mathematically the positive feedback in hippocampus and the negative
feedback in hypothalamus can be combined since the two expressions have the same
functional form but with different coefficient. Defining ξ as ξ ≡ φ− µ. Since µ ∈ [0; 1]
and φ ≥ 0 then ξ ≥ −1. The set of equations can then be written are

dx1

dt
=k0

(
1 + ξ

xα
3

xα
3 + cα

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (8.6)

8.2 Scaling of the differential equations
We use the same scaling as in section 6.1. Defining c̃3 ≡ c3/d3 the equations in array 8.6
becomes
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dX1

dθ
=

(
1 + ξ

Xα
3

1 +Xα
3

− ψ
Xγ

3

c̃3
γ +Xγ

3

)
− w̃1X1

dX2

dθ
=

(
1− ρ

Xα
3

1 +Xα
3

)
X1 − w̃2X2 (8.7)

dX3

dθ
= X2 − w̃3X3 .

Thus the dynamics of the autonomous system is governed by nine parameters. The
cost of including hippocampal feedbacks is three extra parameters.

8.3 Existence and uniqueness of solutions, non negative
concentrations, confining set and existence of fixed points

A lot of the same reasoning applies for the system with as well as without hippocampal
mechanisms. The system of coupled differential equations 8.7 obeys the criteria posed
for existence and uniqueness of solutions (theorem 3.1) for non negative variables.

In order to make sure negative concentrations can not occur for non negative ini-
tial conditions we require that 1 + ξ − ψ ≥ 0. This is fulfilled for the previous stated
restrictions on ξ and ψ that for ξ ∈ [−1; 0] then ψ ∈ [0; 1 + ξ] and for ξ > 0 then
ψ ∈ [0; 1]. Then all derivatives have only non negative terms when the respective con-
centration equal zero. Thereby non negative initial conditions cannot lead to solutions
with negative concentrations.

Even though there is now a positive feedback on CRH this is still included through
a saturation mechanism. This means we can still find an upper bound for x1 where
dx1/dt ≥ 0. If we have a trapping region for x1 we also have one for x2 and x3 as in the
case without hippocampus. We look at two cases ξ ∈ [−1; 0] and ξ > 0 to determine a
trapping region.

• ξ ∈ [−1; 0].
ξ ∈ [−1; 0] ⇒

(
1 + ξ

Xα
3

1+Xα
3
− ψ

Xγ
3

c̃3γ+Xγ
3

)
≤ 1. For X1 ≥ 1/w̃1 then dX1/dt ≤ 0.

Having X2 ≥ 1/w̃1w̃2 and X1 ∈ [0; 1/w̃1] means dX2/dt ≤ 0. For X3 ≥ 1/w̃1w̃2w̃3 and
X2 ∈ [0; 1/w̃1w̃2] and X1 ∈ [0; 1/w̃1] then dX3/dt ≤ 0. Initial conditions with values
in (X1, X2, X3) ∈ [0; 1/w̃1]× [0; 1/w̃1w̃2]× [0; 1/w̃1w̃2w̃3] will lead to solutions staying
in this set for all future time.

• ξ > 0.
ξ > 0 ⇒

(
1 + ξ

Xα
3

1+Xα
3
− ψ

Xγ
3

c̃3γ+Xγ
3

)
≤ 1 + ξ Then for X1 ≥ (1+ξ)/w̃1 then

dX1/dt ≤ 0. Using similar reasoning as for ξ ∈ [0; 1] we get the trapping region
(X1, X2, X3) ∈ [0; (1+ξ)/w̃1]× [0; (1+ξ)/w̃1w̃2]× [0; (1+ξ)/w̃1w̃2w̃3].

Existence of fixed points
Setting all the left hand sides of the equations 8.7 equal to zero give the following
criteria for a fixed point

X3ss =
1

w̃1w̃2w̃3

(
1 + ξ

Xα
3ss

1 +Xα
3ss

− ψ
Xγ

3ss

c̃3
γ +Xγ

3ss

)(
1− ρ

Xα
3ss

1 +Xα
3ss

)
. (8.8)
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We form the functions
L(X3) = X3 (8.9)

and

R(X3) =
1

w̃1w̃2w̃3

(
1 + ξ

Xα
3

1 +Xα
3

− ψ
Xγ

3

c̃3
γ +Xγ

3

)(
1− ρ

Xα
3

1 +Xα
3

)
. (8.10)

If a value of X3 obeys L(X3) = R(X3) then this value of X3 is a fixed point value
and denoted X3ss. R(X3) is non negative and equals 1/w̃1w̃2w̃3 for X3 = 0. Since each
of the terms of R(X3) are bounded then the right hand side is bounded. L(X3) is
obviously zero for X3 = 0 and has no bound for increasing X3. By the intermediate
value theorem [17] there now exists at least one X ′

3 such that the L(X ′
3) = R(X ′

3). This
means there exists at least one steady state solution of the system of equations 8.7.

Number of fixed points
How can we know how many steady state solutions there are? One way is for a given
set of parameters to plot L(X3) and R(X3) for X3 in its trapping region. The number
of intersections of the two graphs corresponds to the number of fixed points. For some
realizations of this approach it seems that L(X3) grows faster than R(X3). This means
we can form a criteria for the existence of a unique fixed point. If L(X3) always has
a larger slope than R(X3) then for values of X3 larger than a steady state value, then
L(X3) will always be greater than R(X3) which means there can only be one steady
state value. Thus dR(X3)/dX3 < 1 for X3 in its confining region is a sufficient criteria for
a unique existence of a fixed point.

dR

dX3
=

1

w̃1w̃2w̃3

((
ξα

Xα−1
3

(1 +Xα
3 )

2 − ψγ
cγXγ−1

3

(c̃3
γ +Xγ

3 )
2

)(
1− ρ

Xα
3

1 +Xα
3

)

+

(
1 + ξ

Xα
3

1 +Xα
3

− ψ
Xγ

3

c̃3
γ +Xγ

3

)(
−ρα

Xα−1
3

(1 +Xα
3 )

2

))
(8.11)

A rough estimate on 8.11 can give sufficient criteria for a unique steady state solution.

dR

dX3
≤ 1

w̃1w̃2w̃3

(
ξα

Xα−1
3

(1 +Xα
3 )

2 − ψγ
cγ3X

γ−1
3

(c̃3
γ +Xγ

3 )
2

)(
1− ρ

Xα
3

1 +Xα
3

)
(8.12)

If the expression in the first set of brackets are non positive then dR/dX3 ≤ 0 < 1. If
the expression in the first set of brackets is positive (this require ξ > 0) then since
0 < 1− ρ

Xα
3

1+Xα
3
≤ 1

dR

dX3
≤ 1

w̃1w̃2w̃3

(
ξα

Xα−1
3

(1 +Xα
3 )

2 − ψγ
cγXγ−1

3

(c̃3
γ +Xγ

3 )
2

)
(8.13)

Considering the expression in the brackets (we already considered X3 = 0 so now
X3 > 0) with ξ > 0

ξα
Xα−1

3

(1 +Xα
3 )

2 − ψγ
cγXγ−1

3

(c̃3
γ +Xγ

3 )
2 ≤ ξα

Xα−1
3

(1 +Xα
3 )

2 < ξα (8.14)
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This leads to a bound for dR
dX3

solely expressed by parameters for ξ > 0.

dR

dX3
<

ξα

w̃1w̃2w̃3
(8.15)

Therefore if
ξα

w̃1w̃2w̃3
≤ 1 , (8.16)

for ξ > 0 a unique fixed point is guaranteed. If ξ ∈ [−1; 0] then by inequality 8.12
dR
dX3

≤ 0 so ξ ≤ 0 guarantees a unique fixed point. This case is equivalent to the system
without hippocampus since R(X3) is then a decreasing function and L(X3) is increasing.
This means there can be no more than one fixed point.

8.4 Stability of fixed point(s)
To find the stability of a fixed point of the system of differential equations 8.7 we need
the Jacobian evaluated at the fixed point. We define a13 as

a13 = ∂f1/∂X3|ss = ξα
Xα−1

3ss

(1 +Xα
3ss)

2 − ψγ
cγ3X

γ−1
3ss

(cγ3 +Xγ
3ss)

2 (8.17)

We know from the previous analysis that the sign of a13 is crucial for the type of
instability that may occur as well as whether we should look at the sign of α3 or the
sign of α1α2−α3 to determine the stability. The Jacobian at steady state of the system
8.7 can be written (recall Y =

Xα
3

1+Xα
3
)

J =




−w̃1 0 a13

1− ρYss −w̃2 −αρX1ssX
−α−1
3ss Y 2

ss

0 1 −w̃3


 (8.18)

We form the characteristic polynomial as

P (λ) = λ3 + α1λ
2 + α2λ+ α3 (8.19)

where

α1 =w̃1 + w̃2 + w̃3

α2 =w̃1w̃2 + w̃1w̃3 + w̃2w̃3 + ραX1ssX
−α−1
3ss Y 2

ss

α3 =w̃1w̃2w̃3 + αρw̃1X1ssX
−α−1
3ss Y 2

ss − a13 (1− ρYss) . (8.20)

Here −a13 (1− ρYss) is the only term entering α1, α2 and α3 that may be negative.
Leaning on the knowledge from the general case we split the analysis in the cases
a13 > 0, a13 < 0 and a13 = 0.

• If a13 > 0.
– If α3 > 0 then the fixed point is stable
– If α3 < 0 then the fixed point is unstable and there exists a positive, real
eigenvalue of the Jacobian at the fixed point. If the remaining two eigenvalues
are complex with non zero imaginary part then their real part is negative.
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• If a13 < 0.
– If α1α2 − α3 > 0 then the system is stable.
– If α1α2−α3 < 0 then the system is unstable with a set of complex conjugate
eigenvalues with positive real part and non vanishing imaginary part and the
last eigenvalue is real and negative.

α1α2 − α3 =(w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3

+ ραX1ssX
−α−1
3ss Yss

2
)
+ w̃1

2 (w̃2 + w̃3)

+ a13

(
1− ρ

Xα
3ss

1 +Xα
3ss

)
. (8.21)

Here the last term is the only negative term.
We can make a lower bound for α1α2−α3. If this turns out to be positive

then no Hopf bifurcation is possible. Since we are in the situation a13 < 0
we can make the following estimate

α1α2 − α3 ≥(w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3)

+ w̃1
2 (w̃2 + w̃3) + a13 . (8.22)

Considering a13 from equation 8.17 with the restriction a13 < 0 we can make
an estimate dependent on the sign of ξ.

a13 ≥ −ψγ/c3 ≥ −γ/c3 for ξ ≥ 0 , (8.23)
and

a13 ≥ ξα− ψγ/c3 > −α− γ/c3 for ξ < 0 , (8.24)
Using this in the estimation of α1α2 − α3 we get

α1α2 − α3 ≥(w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3)

+ w̃1
2 (w̃2 + w̃3)− ψγ/c3 for ξ ≥ 0 . (8.25)

α1α2 − α3 ≥(w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3)

+ w̃1
2 (w̃2 + w̃3)− ψγ/c3 + ξα for ξ < 0 . (8.26)

In order to have α1α2 − α3 < 0 we have the necessary condition (using
inequalities 8.25 and 8.26). For ξ ≥ 0

γ/c3 ≥ ψγ/c3 ≥ (w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3) + w̃1
2 (w̃2 + w̃3) . (8.27)

And for ξ < 0

γ/c3 + α ≥ ψγ/c3 − ξα ≥ (w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3) + w̃1
2 (w̃2 + w̃3) .

(8.28)
Thus when a numerical estimate for w̃1, w̃2 and w̃3 are found inequalities
8.27 and 8.28 give a lower bound on γ or γ + α. It is a necessary condition
for a Hopf bifurcation to occur that γ respectively γ + α is larger than this
lower bound.

• If a13 = 0.
The fixed point is stable.
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9 Considerations regarding general
systems with bounded feedback functions

Now we have considered a model of the HPA axis including as well as excluding hip-
pocampal mechanisms. Quite a lot of similar arguments were used to analyze the two
models. This gives inspiration to impose some criteria on a very general system of
differential equations governing the HPA axis. Only imposing some rather mild condi-
tions on the general feedback functions from cortisol on ACTH and CRH we can state
some general results. After a scaling of the concentrations and time the general system
of differential equations (excluding circadian input on the derivative on CRH) can be
written in dimensionless form

dX1

dt
=F1(X3)− w1X1

dX2

dt
=F2(X3)X1 − w2X2

dX3

dt
=X2 − w3X3 . (9.1)

with constants w1, w2, w3 > 0, F1, F2 : R+ ∪ {0} 7→ R+ ∪ {0}, F1, F2 ∈ C1, ∀X3 ∈
R+ ∪ {0}, sup(F1(X3)) ≤ M1, sup(F2(X3)) ≤ M2, F1(0) > 0, F2(0) > 0. This means
F1 and F2 are bounded functions mapping non negative real numbers into non negative
real numbers. For the HPA axis F1 and F2 are general feedbacks functions and the
posed criteria for these functions is fulfilled for the feedback functions considered in
this project. The criteria that F1 and F2 are bounded can be justified by saturation of
receptors. When no cortisol is present then the feedbacks must not close the stimulation
of hormone production. This justifies F1(0) > 0 and F2(0) > 0. Note that our models
with as well as without hippocampus satisfies the criteria posed for this general model.
This section shows that many results found for our two models are characteristic for all
models on the form 9.1. Also a criteria for a globally stable fixed point is found which
has not been mentioned for the previous models.

Existence and uniqueness of solutions
Since F1(X3), F2(X3) ∈ C1 the system given in array 9.1 fulfills the criteria for the
existence an uniqueness (theorem 3.1) for non negative values of X1, X2, X3 so we are
guaranteed that no solution curves cross.

All non negative initial values lead to non negative solutions
For i ∈ {1, 2, 3} there is only one negative term in the expression for Ẋi and this negative
term has Xi as a factor. Therefore Ẋi ≥ 0 for Xi = 0 and the other two hormones are
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non negative. This ensures that non negative initial conditions lead to solutions that
are non negative for all future time.

Existence of a fixed point
The fixed point condition is

X1ss =
F1(X3ss)

w1
(9.2)

X2ss =
F1(X3ss)F2(X3ss)

w1w2
(9.3)

X3ss =
F1(X3ss)F2(X3ss)

w1w2w3
. (9.4)

This means that for each fixed point value of X3 the steady state value of X1 and X2

can be calculated using equation 9.2 and equation 9.3. The equation that may be hard
to solve is 9.4 since this may not be explicitly solvable for X3. However we can say
something about existence of a solution and then approximate the solution numerically.

First we define the functions
L(X3) ≡ X3 (9.5)

and

R(X3) ≡ F1(X3)F2(X3)

w1w2w3
. (9.6)

If a value X ′
3 has the property that L(X ′

3) = R(X ′
3) then X ′

3 = X3ss. Finding steady
states values is equivalent to find intersections between the graphs of L and R. Note
that since F1 and F2 are bounded this means we have a bound for R as

∀X3 ≥ 0 R(X3) ≤ M1M2

w1w2w3
≡ M3 . (9.7)

Now choose P = M3 + ε for any ε > 0. Then

L(P ) = M3 + ε > M3 ≥ R(P ) (9.8)

Now define the function h : R+ ∪ {0} 7→ R

h(X3) = L(X3)−R(X3) . (9.9)

Note that since L and R are continuous so is h and note that h(0) = L(0)− R(0) < 0
and h(P ) = L(P ) − R(P ) > 0. Then by the intermediate theorem[17] there exists a
X ′

3 ∈]0;P [ such that h(X ′
3) = 0 ⇔ L(X ′

3) = R(X ′
3). This means that we are sure

there exists at least one fixed point of the system. Since R(X3) ≤ M3 and R(0) > 0
we are guaranteed that any non negative fixed point value of X3 is in the interval
]0;M3] =]0; M1M2

w1w2w3
]. Then any fixed point is in the set ]0; M1

w1
]×]0; M1M2

w1w2
]×]0; M1M2

w1w2w3
].
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Sufficient criteria for only one fixed point
We now discuss a sufficient criteria that there only exists one fixed point of the system.
Let X ′

3ss denote the smallest existing fixed point for now. If L(X3) is increasing faster
than R(X3) for all non negative X3 this means that for values of X3 larger than X ′

3ss

then L(X3) > R(X3) which ensures that there can only be one fixed point. Since
dL(X3)/dt = 1 a sufficient criteria for only one fixed point is dR(X3)/dt < 1 which is
equivalent to

∀X3 ≥ 0
dF1

dX3
F2 + F1

dF2

dX3
< w1w2w3 . (9.10)

If the feedback functions, F1 and F2, corresponds to negative feedbacks then dF1

dX3
<

0 and dF2

dX3
< 0. Since F1 and F2 only takes non negative values this means that

dF1

dX3
F2 + F1

dF2

dX3
≤ 0 < w1w2w3 so purely negative feedbacks guarantee there exists

exactly one fixed point.

Trapping region
We see that for X1 = M1

w1
then Ẋ1 ≤ 0. This means that [0; M1

w1
] is a trapping region

for X1. Using this region for X1 we can find a trapping region for X2 and after that
we can find one for X3. For X1 ∈ [0; M1

w1
] ≡ J1 and X2 = M1M2

w1w2
then Ẋ2 ≤ 0. For

X2 ∈ [0; M1M2

w1w2
] ≡ J2 and X3 = M1M2

w1w2w3
then Ẋ3 ≤ 0 so for X1 ∈ J1 and X2 ∈ J2 and

X3 ∈
[
0; M1M2

w1w2w3

]
≡ J3 then X1(t), X2(t) and X3(t) are trapped in J1, J2 and J3. This

means we have the trapping region U

U ≡ J1 × J2 × J3 . (9.11)

Note that any fixed point is contained in the trapping region.

9.1 Expansion of trapping region
This section concerns that we can expand the trapping region which is needed in the
next section. Here it is shown that any solution with non negative initial conditions
get arbitrarily close to U in finite time. Therefore we make a larger box by for each
i ∈ (1, 2, 3) we add an amount to each positive end point of Ji.

∀ε ≥ 0 define ε2(ε) and ε3(ε) as

ε2(ε) ≡ 2
M2

w2
ε (9.12)

ε3(ε) ≡ 3
M2

w2w3
ε . (9.13)

and define

W̃ (ε) ≡
[
0;

M1

w1
+ ε

]
×
[
0;

M1M2

w1w2
+ ε2(ε)

]
×
[
0;

M1M2

w1w2w3
+ ε3(ε)

]

≡ I1(ε)× I2(ε)× I3(ε) ∀ε ≥ 0 . (9.14)
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It is clear that U = W̃ (0). Now we want to show that W̃ (ε) is a trapping region. Since
it is already clear that W̃ (0) is a trapping region we will now only consider ε > 0. For
ε > 0 (in contrast to ε ≥ 0) it turns out that the flow points into the trapping region
whereas if ε = 0 there could be zero speed on the boundary.

The argument is very similar to the argument that U is a trapping region. For
X1m ≡ max{I1(ε)} = M1

w1
+ ε then Ẋ1m ≤ M1 − w1

(
M1

w1
+ ε

)
= −w1ε < 0. For

X1 ∈ I1(ε) we get for X2m ≡ max{I2(ε)} = M1M2

w1w2
+ ε2 that Ẋ2m ≤ M2

(
M1

w1
+ ε

)
−

w2

(
M1M2

w1w2
+ ε2(ε)

)
= −M2ε < 0. For X3m = max{I3(ε)} = M1M2

w1w2w3
+ ε3(ε) and X2 ∈

I2(ε) then Ẋ3 ≤
(

M1M2

w1w2
+ ε2(ε)

)
−w3

(
M1M2

w1w2w3
+ ε3(ε)

)
= ε2(ε)−w3ε3(ε) = −M2

w2
ε < 0.

Note that there is a ’hierarchy’ that can not be reversed when the trapping region
is found. I1(ε) is a trapping region for X1 for all values of X2 and X3. A trapping
region for X2 exists when X1 is bounded, and similarly we need a bound for X2 in
order to construct a trapping region for X3. So for X1 ∈ I1(ε) then X1 is trapped. For
(X1, X2) ∈ I1(ε) × I2(ε) then X1 and X2 are trapped and for X ∈ W̃ (ε) then X1, X2

and X3 are trapped.

All solutions get arbitrarily close to U in finite time and then they stay close
to U .
For any δ > 0 we can choose ε > 0 such that the distance between points in W̃ (ε) and
U is less than δ. We can prove that for any ε > 0 any solution enters W (ε) in finite time
(however the time depends on the initial condition). Since W (ε) is a trapping region
this means the solution stays less than δ from U for all future time. This outlines the
content of this section.

A solution is arbitrary close to U and stays close to U means for any δ > 0 and a
finite time T4 < ∞ exists such that for t > T4 it is true that dist(X(t), U) ≤ δ. The
infinity norm (or the sub-norm) is defined as[17]

‖X‖∞ ≡ max {|X1|, |X2|, |X3|} . (9.15)

Proposition 9.1
For a fixed δ there exists ε such that if X(t) ∈ W̃ (ε) then the distance between X(t) and
U is at most δ.

Proof
Fix δ > 0. Define m ≡ max{1, 2M2

w2
, 3 M2

w2w3
}. Then choose ε = δ/m > 0. Now

we have that the maximal distance between U and X(t) ∈ W̃ (ε) is dist(X(t), W̃ ) ≤
dist(U, W̃ (ε)) = max{ε, ε2, ε3} = mε = δ1.

Since W̃ (ε) is at trapping region then if the solution is once in W̃ (ε) it stays in there
for all future time.

Proposition 9.2
For any ε > 0 then any initial condition leads to a solution in W̃ (ε) after finite time.

1 Similar reasoning could have been used to show the same result using other norms
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Proof
Fix ε > 0. Assume we have an arbitrary non negative initial condition X(t0) = X0 =
(X10, X20, X30). If X10 > M1

w1
+ ε form the compact interval K1 ≡ [M1

w1
+ ε;X10]. We

see that Ẋ1 < 0 on K1.
Since Ẋ1 is continuous then by the extreme value theorem [17] Ẋ1 has a maximum

m1 < 0 on K1. Using lemma 5.1 and lemma 5.3 there exists a finite time T1 such
that X1(t0 + T1) ∈ I1(ε) and then X1 stays in this region for all future time. The
worst case is that X2(t0 + T1) is not yet in W̃ and then we will have to repeat the
argument. If X2(t0 + T1) ∈ I2(ε) it will stay in this interval. Therefore consider
X2(t0 + T1) > M1M2

w1w2
+ ε2. Then K2 ≡ [M1M2

w1w2
+ ε2;X2(t0 + T1)] is compact. It is

clear that Ẋ2 < 0 on K2. By the extreme value theorem then Ẋ2 has a minimum
m2 < 0 on K2. Then by lemma 5.1 and lemma 5.3 there exists a finite time T2 such
that X2(t0 + T1 + T2) ∈ I2(ε) and then X2 stays in this region for all future time.

The similar argument for X3 is that if X3(t0 + T1 + T2) > M1M2

w1w2w3
+ ε3 form the

compact interval K3 as K3 ≡ [X3(t0 + T1 + T2);
M1M2

w1w2w3
+ ε3]. Since X2 ∈ I2(ε) then

Ẋ3 < 0 for X3 > M1M2

w1w2w3
. This means Ẋ3 < 0 on K3 and by the extreme value theorem

there exists a maximum m3 of Ẋ3 with m3 < 0 on K3. Then by lemma 5.1 and lemma
5.3 there exists a finite time T3 such that for X3(t0 + T1 + T2 + T3) ∈ I3(ε).

This means that for any ε > 0 for any non negative initial condition, it takes finite
time, T4 = t0 + T1 + T2 + T3, until the solution is contained in W̃ (ε). Since W̃ (ε) is a
trapping region the solution will stay in W̃ (ε) for all future time.

This shows that the dynamics of the system is somewhat simple for solutions outside U
but note that X2 and X3 may be increasing for some time for some initial conditions
outside U .

9.2 Bounding of solutions inside trapping region using solutions of
linear systems

For the general model of the HPA axis (array 9.1) we consider W̃ (δ̃). We have shown
that any solution enters the trapping region W̃ (δ̃) in finite time. Fix δ̃ > 0. Denote

δ ≡ 3
M2

w̃2w̃3
δ̃ . (9.16)

and

I3

(
δ̃
)
=

[
0;

M1M2

w̃1w̃2w̃3
+ δ

]
≡ D0 . (9.17)

Assume F1(X3) > 0 F2(X3) > 0, ∀X3 ∈ D0. Since W̃ (δ̃) is compact the continuous
functions F1(X3) and F2(X3) attain maximum and minimum values by the extreme
value theorem [17].
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For X3 ∈ D0

U1 ≡ max{F1(X3)} ≤ M1

L1 ≡ min{F1(X3)} > 0

U2 ≡ max{F2(X3)} ≤ M2

L2 ≡ min{F2(X3)} > 0 .

Here the assumption F1(X3) > 0 F2(X3) > 0, ∀X3 ∈ D0 assures L1 > 0, L2 > 0. Now
we make a bound of the solutions of the system using linear differential equations. The
approach is very similar to approach in section 5.7 why we will not go into too many
details again.

Ẋ1
′ ≡ L1 − w̃1X

′
1

Ẋ2
′ ≡ L2X

′
1 − w̃2X

′
2

Ẋ3
′ ≡ X ′

2 − w̃3X
′
3 (9.18)

Ẋ1
′′ ≡ U1 − w̃1X

′′
1

Ẋ2
′′ ≡ U2X

′′
1 − w̃2X

′′
2

Ẋ3
′′ ≡ X ′′

2 − w̃3X
′′
3 . (9.19)

The initial conditions are X(t0) = X′(t0) = X′′(t0). Using this to compare the original,
non linear coupled system of differential equations by a linear system given by array
5.33 restricted to W̃ (δ̃).

Ẋ1
′ ≤ Ẋ1 ≤ Ẋ1

′′

Ẋ2
′ ≤ Ẋ2 ≤ Ẋ2

′′

Ẋ3
′ ≤ Ẋ3 ≤ Ẋ3

′′
. (9.20)

Solving the linear system (array 9.18) we get

X ′
1(t) =d11e

−w̃1t +
1

w̃1
L1

X ′
2(t) =d21e

−w̃1t + d22e
−w̃2t +

1

w̃1w̃2
L1L2

X3(t)
′ =d31e

−w̃1t + d32e
−w̃2t + d33e

−w̃3t +
1

w̃1w̃2w̃3
L1L2 . (9.21)

Similarly the linear system (array 9.19) is solved

X ′′
1 (t) =c11e

−w̃1t +
1

w̃1
U1

X ′′
2 (t) =c21e

−w̃1t + c22e
−w̃2t +

1

w̃1w̃2
U1U2

X ′′
3 (t) =c31e

−w̃1t + c32e
−w̃2t + c33e

−w̃3t +
1

w̃1w̃2w̃3
U1U2 . (9.22)
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All cij ’s and dij ’s are constants that depends on the initial conditions and the eigenvec-
tors of the homogeneous part of array 9.18 and array 9.19. By lemma 5.2

X ′
1(t) ≤ X1(t) ≤ X ′′

1 (t) for t ≥ t0

X ′
2(t) ≤ X2(t) ≤ X ′′

2 (t) for t ≥ t0

X ′
3(t) ≤ X3(t) ≤ X ′′

3 (t) for t ≥ t0 . (9.23)

This means for any ε1 > 0 there exists a T1 < ∞ such that

X3(t) ∈
[
−ε1 +

1

w̃1w̃2w̃3
L1L2; ε1 +

1

w̃1w̃2w̃3
U1U2

]
for t > T1 . (9.24)

9.3 Sufficient criteria for a globally stable fixed point
Define the function H

H(X3) ≡ F1(X3)F2(X3)

w̃1w̃2w̃2
. (9.25)

H : D0 7→ D0 . (9.26)
This means H(X3) is the restriction of R(X3) to D0. Now we assume H is a contraction
on D0 (and still H is positive on D0) which means we assume there exists 1 > p > 0
such that |H(y1)−H(y2)| ≤ p|y1 − y2| ∀y1, y2 ∈ D0. This ensures a unique fixed point
of the non linear system of differential equations. Moreover any solution in D0 converge
to the unique fixed point of the system which will be proven in this section. Defining

0 < εc =
1

2
min{δ + M1M2 − U1U2

w̃1w̃2w̃3
,

1

w̃1w̃2w̃3
L1L2} , (9.27)

then

D1 ≡
[
−ε1 +

1

w̃1w̃2w̃3
L1L2; ε1 +

1

w̃1w̃2w̃3
U1U2

]
⊆ D0 , 0 < ε1 ≤ εc . (9.28)

The choice of εc ensures D1 ⊆ D0.
Thus from equation 9.24 there exists a finite time T1 such that X3(t) ∈ D1 ⊆ D0

,∀t > T1.
Now a sequence of sets is defined by Dn

un ≡ max{H(xn) : xn ∈ Dn}
ln ≡ min{H(xn) : xn ∈ Dn} (9.29)

And
Dn+1 ≡ [−εn + ln; εn + un] , 0 < εn ≤ εc , n ∈ N0 . (9.30)

Dn is well defined and compact and Dn ⊆ D0.

Proof
The proof is done by induction. u0 and l0 are given by the expressions

u0 = max{H(x0) : x0 ∈ D0}
l0 = min{H(x0) : x0 ∈ D0} (9.31)
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Since D0 is compact and H is continuous then by the extreme value theorem [17] u0

and l0 are well defined and finite. This guarantees that D1 is compact. Since ε0 ≤ εc
then D1 ⊆ D0. Now assume Dn ⊆ D0 is compact. Then

un = max{H(xn) : xn ∈ Dn}
ln = min{H(xn) : xn ∈ Dn} (9.32)

are well defined and finite by the extreme value theorem. Then Dn+1 is compact.

Dn+1 ≡ [−εn + ln; εn + un] , 0 < εn ≤ εc , n ∈ N0 , (9.33)

Since by assumption Dn ⊆ D0 then ln ≥ l0 and un ≤ u0. This means

Dn+1 ⊆ [−εn + l0; εn + u0] , 0 < εn ≤ εc , n ∈ N0 , (9.34)

This ensures Dn+1 ⊆ D0.

Due to the bounding of the solutions using linear systems we have shown that if
X3(t0) ∈ D0 then there exists T1 < ∞ such that X3(t) ∈ D1 for t > T1. Now we repeat
the argument with bounding the solutions of the non linear differential equations by
solutions to a linear system of differential equations. This means ∀N < ∞ there exists
TN < ∞ such that if X3(t0) ∈ D0 then X3(t) ∈ DN for t > TN .

We now want to prove that Dn converges to {X3ss}. The idea of the proof is based
on the convergence of yn+1 = Hn(y0), ∀y0 ∈ D0 by the Banach Fixed Point Theorem.
However there is also a large number of ’errors terms’ that we have to control. This is
done by using the contraction property of H as well as a a decreasing, positive sequence
of εn. This guarantees that any X3 comes arbitrarily close to the unique fixed point
defined by yn+1 = Hn(y0). This means that all solutions of the non linear differential
equations converge to the unique fixed point of the system. We need the following two
lemmas to prove this main result.

Lemma 9.1
Let p be the contraction constant for H. Then

H(a)− p|ε| ≤ H(y) ≤ H(a) + p|ε| , ∀y ∈ [a; a+ |ε|] ⊆ D0 . (9.35)

Proof
This is straightforward using the contraction property and the triangle inequality. Since
H has non negative range

H(y)−H(a) = |H(y)| − |H(a)| . (9.36)

Using the triangle inequality [17]

|H(y)| − |H(a)| ≤ |H(y)−H(a)| . (9.37)

Since y ∈ D0 and a ∈ D0 we use the contraction property

|H(y)−H(a)| ≤ p|a− y| ≤ p|ε| . (9.38)
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Thus from 9.36, 9.37, 9.38

−p|ε| ≤ H(y)−H(a) ≤ p|ε| . (9.39)

Adding H(a) completes the proof.

Then it follows similarly

Lemma 9.2
Let p be the contraction constant for H. Then

H(a)− p|ε| ≤ H(y) ≤ H(a) + p|ε| , ∀y ∈ [a− |ε|; a] ⊆ D0 . (9.40)

Lemma 9.1 and 9.2 means we can bound the maximum and minimum of H applied
on a compact set by H evaluated at an end point of the set and the maximum distance
between any two points in the set.

Introducing ε0.
0 < ε0 ≤ pεc . (9.41)

Fix ε0. Then we can define εn > 0.

εn ≡ (1− p)εn−1 = (1− p)nε0 . (9.42)

To simplify notation we use
b ≡ 1− p . (9.43)

Since p ∈]0; 1[ then b ∈]0; 1[. Then we have

εc > εn = bnε0 > 0 (9.44)

We introduce

An ≡ ε0

n−1∑

i=0

bipn−1−i > 0 . (9.45)

Since b, p ∈]0; 1[ then bpn ≤ b for n ∈ N0. This means

0 <

n−1∑

i=0

bipn−i ≤
n−1∑

i=0

bi =
1− bn

1− b
≤ 1

1− b
, (9.46)

Using b = 1− p

0 < An = ε0

n−1∑

i=0

bipn−i ≤ ε0
1

p
. (9.47)

Define

ũn = max{Hn+1(x0) : x0 ∈ D0}
l̃n = min{Hn+1(x0) : x0 ∈ D0} . (9.48)
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ũn and l̃n are well defined since repeated use of a continuous function on a compact set
map into a compact set. The maximum and minimum of bounded sets exist and are
finite by the extreme value theorem [17].

ln and un are crucial for the range of Dn+1. Now we want to make bounds on ln
and un using l̃n and ũn since we know the latter converges. In Dn ’error terms’ (εn) are
introduced at each step in the sequence. The following lemma helps bounding Dn by a
series in the ’error terms’ and a sequence Hn(D0) (corresponding to the span between
ln and un). This means the ’error terms’ are separated from Hn(D0) and we can then
estimate the two separately.

Lemma 9.3
If H is a contraction on D0 and H is positive on D0 then

Dn ⊆
[
−An + l̃n;An + ũn

]
, n ∈ N . (9.49)

Proof
The proof is by induction.

D1 = [−ε0 + l0; ε0 + u0] , 0 < ε0 ≤ εc . (9.50)

Since l0 = l̃0 and u0 = ũ0 and A1 = ε0 a basis for the induction is justified. Now assume

Dn ⊆
[
−An + l̃n;An + ũn

]
, n ∈ N . (9.51)

We need to show

Dn+1 ⊆
[
−An+1 + l̃n+1;An+1 + ũn+1

]
, n ∈ N . (9.52)

Note by 9.47 [
−An + l̃n;An + ũn

]
⊆

[
−ε0

1

p
+ l̃n; ε0

1

p
+ ũn

]
(9.53)

Because H : D0 7→ D0 then ũn ≤ ũ0 and l̃n ≥ l̃0 due to the contraction property of H.
Therefore

[
−An + l̃n;An + ũn

]
⊆

[
−An + l̃0;An + ũ0

]
. (9.54)

From inequality 9.47
[
−An + l̃n;An + ũn

]
⊆

[
−ε0

1

p
+ l̃0; ε0

1

p
+ ũ0

]
⊆ D0 (9.55)

We can therefore apply H on
[
−An + l̃n;An + ũn

]
and use the contraction property.

Now we consider H(Dn) and using 9.51

H(Dn) ⊆ H
([

−An + l̃n;An + ũn

])
, n ∈ N (9.56)
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Then

H(Dn) ⊆ H
([

−An + l̃n; l̃n

])
∪H

([
l̃n; ũn

])
∪H ([ũn;An + ũn]) , n ∈ N (9.57)

Since H is continuous on the compact set
[
−An + l̃n;An + ũn

]
bounded extrema

exist for each of the sets in equation 9.57. The simplest estimation is

H
([

l̃n; ũn

])
= H

([
min{Hn+1(x0)}; max{Hn+1(x0)}

])

=
[
min{Hn+2(x0)};max{Hn+2(x0)}

]
=

[
l̃n+1; ũn+1

]
. (9.58)

We can use the contraction property as shown in lemma 9.1 for bounding the two
other sets of 9.57.

−pAn +H(l̃n) ≤ H (y1) ≤ pAn +H(l̃n) , ∀ y1 ∈
[
−An + l̃n; l̃n

]

−pAn +H(ũn) ≤ H (y2) ≤ pAn +H(ũn) , ∀ y2 ∈ [ũn;An + ũn] . (9.59)

Using the definitions of ln, un, l̃n, ũn,

ũn+1 = max{Hn+2(D0)} ≥ H
(
l̃n

)
= H(min{Hn+1(D0)}) ≥ min{Hn+2(D0)} = l̃n+1

ũn+1 = max{Hn+2(D0)} ≥ H (ũn) = H(max{Hn+1(D0)}) ≥ min{Hn+2(D0)} = l̃n+1 .
(9.60)

Now we have an upper and a lower bound on each of the sets H
([

−An + l̃n; l̃n

])
,

H
([

l̃n; ũn

])
, H ([ũn;An + ũn]) , n ∈ N . From 9.60, 9.59 and 9.57 we get

ln = min{H (Dn)} ≥ −pAn + l̃n+1

un = max{H (Dn)} ≤ pAn + ũn+1 . (9.61)

We have by definition

Dn+1 ≡ [−εn + ln; εn + un] , 0 < εn ≤ εc , n ∈ N0 , (9.62)

Now we can bound Dn+1 (equation 9.62)

Dn+1 ⊆
[
−εn − pAn + l̃n+1; εn + pAn + ũn+1

]
. (9.63)

Using the expressions for εn (equation 9.42) and An (equation 9.45)

εn + pAn = bnε0 + ε0

n−1∑

i=0

bipn−i = ε0

n∑

i=0

bipn−i = An+1 . (9.64)

Inserting in 9.63
Dn+1 ⊆

[
−An+1 + l̃n+1;An+1 + ũn+1

]
, (9.65)

which completes the proof.
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By equation 9.47
[
−An + l̃n;An + ũn

]
⊆

[
−ε0

p
+ l̃n;

ε0
p

+ ũn

]
(9.66)

Lemma 9.4
If H is a contraction on D0 and H is positive on D0 then a unique fixed point exists of
the system of differential equations. All solutions in W̃ (δ̃) converge to the fixed point.

Proof
There exists Tn < ∞ such that X3 ∈ Dn for t > Tn. Since H is a contraction on a
complete metric space the Banach Fixed Point Theorem applies. This means that a
unique fixed point exists of yn+1 = H(yn) for any y0 ∈ D0 i.e.

lim
n→∞

Hn(D0) = {X3ss} . (9.67)

Fix ε̃ > 0. We need to show that for any X3(t0) ∈ D0 there exists a Tn < ∞ such
that |X3(t)−X3ss| < ε̃, ∀t > Tn. Choose

ε0 = min{p
5
ε̃, pεc} > 0 . (9.68)

For any N < ∞ there exists a TN < ∞ such that X3(t) ∈ DN , ∀t > Tn. By 9.67
there exists N < ∞ such that |Hn(X3(t0)) −X3ss| < ε̃

5 , for t > Tn (corresponding to
∀n ≥ N), ∀X3(t0) ∈ D0. This means

− ε̃

5
+X3ss ≤ l̃n ≤ ε̃

5
+X3ss for t > Tn. (9.69)

and similarly
− ε̃

5
+X3ss ≤ ũn ≤ ε̃

5
+X3ss for t > Tn. (9.70)

Now we have by lemma 9.3

X3 ∈ Dn ⊆
[
−ε0

1

p
+ l̃n; ε0

1

p
+ ũn

]
for t > Tn , ∀X3(t0) ∈ D0 . (9.71)

And 9.69 gives

X3 ∈ Dn ⊆
[
− ε̃

5
− ε̃

5
+X3ss;

ε̃

5
+

ε̃

5
+X3ss

]
for t > Tn . (9.72)

But now X3 is contained in an interval of lenght less than ε̃ and the interval contains
X3ss. Therefore |X3 −X3ss| < ε̃ for t > Tn for a Tn < ∞. Now we have proved that
X3 converges to X3ss for any X3(t0) ∈ D0.

When X3 converges to X3ss then F1(X3) converge to F1(X3ss) and F2(X3) converge
to F2(X3ss) since F1 and F2 are continuous. Considering array 9.21 and array 9.22 this
means that X ′

2 and X ′′
2 converge towards the same limit.

lim
t→∞

X ′
2 =

F1(X3ss)F2(X3ss)

w̃1w̃2
= lim

t→∞
X ′′

2 . (9.73)
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Since X2 is squeezed between the limit of X ′
2 and X ′′

2 .

lim
t→∞

X2 =
F1(X3ss)F2(X3ss)

w̃1w̃2
. (9.74)

Similar reasoning for X1 means that

lim
t→∞

X1 =
F1(X3ss)

w̃1
. (9.75)

This means that all solutions with initial conditions in W̃ converge to the unique
fixed point of the non linear system of differential equations.

Since all solutions outside W̃ (δ̃) enter W̃ (δ̃) in finite time we are sure that if H is a
contraction and positive on D0 then all solutions converge to the fixed point solution.

This means that no periodic solution exists which we will now prove. There must
be a positive distance between the fixed point and the periodic solution (if a periodic
solution exists) because if a periodic solution ever equals the fixed point solution it will
stay at the fixed point for all future time. Denote the infimum of the distance between
the periodic solution and the fixed point by δ1. Since we have just proved that any
solution converge to the fixed point then after some time all solutions are less than the
distance δ1 from the fixed point. This is a contradiction which means there cannot exist
any periodic solutions in the trapping region.

9.4 Sufficient criteria for using Banach Fixed Point Theorem
How can we be sure that a given H is a contraction? This section focus on a sufficient
criteria for applying Banach Fixed Point Theorem (theorem 3.6).

Lemma 9.5
Let f : R+ ∪{0} → R+ ∪{0} and let f be bounded by M and let f be C1. Then for any
c ≥ 0 let f̃c denote the restriction of f to Dc = [0;M + c]. If |df̃c/dx| < 1, ∀x ∈ Dc then
f̃c is a contraction and xn+1 = f̃c(xn) converge to the unique fixed point of f̃c for any
x0 ∈ Dc.

Proof
Fix c ≥ 0 and assume |df̃c/dx| < 1, ∀x ∈ Dc. Note f̃ : Dc → Dc since f̃(Dc) ⊆ [0;M ].
Since df̃c/dx is continuous on the compact set Dc then by the extreme value theorem
there exists a minimum, p1, and maximum, p2, of df̃c/dx. Defining d

d ≡ max{|p1|, |p2|} . (9.76)
Fix any two points, x0, y0 ∈ Dc. By symmetry we can assume y0 ≥ x0. Define
h1(x0) = h2(x0) = f(x0) and dh1(x)/dx = d and dh2(x)/dx = −d. Then we can solve the
two differential equations.

h1(x) =d(x− x0) + f(x0)

h2(x) =− d(x− x0) + f(x0) . (9.77)

By lemma 5.2
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h1(x) ≥ f(x) ≥ h2(x) ∀x ≥ x0 . (9.78)

Since y0 ≥ x0 this holds especially for y0

h1(y0) ≥ f(y0) ≥ h2(y0) . (9.79)

Subtracting f(x0)

h1(y0)− f(x0) ≥ f(y0)− f(x0) ≥ h2(y0)− f(x0) . (9.80)

Inserting h1(y0) and h2(y0) using array 9.77

d(y0 − x0) ≥ f(y0)− f(x0) ≥ −d(y0 − x0) . (9.81)

By [17] this means
|f(y0)− f(x0)| ≤ d|y0 − x0| . (9.82)

By assumption d < 1. Then we have shown that f̃ is a contraction.
f̃c : Dc → Dc and (d2, Dc) is a complete metric space with metric given by the

2-norm and f̃c is a contraction. Then by the Banach Fixed Point Theorem f̃c has
exactly one fixed point, xss, and the sequence xn+1 = f̃c(xn) converge to xss for all
x0 ∈ Dc.

We have now proved that if |dH/dX3| < 1, ∀X3 ∈ D0 =
[
0; M1M2

w̃1w̃2w̃3
+ δ

]
for any δ > 0

then all solutions of the system of differential equations converge to the unique fixed
point. However since H ∈ C1 it is sufficient that |dH/dX3| < 1, ∀X3 ∈

[
0; M1M2

w̃1w̃2w̃3

]
for

this conclusion.

Proof
Define

g(X3) : R+ ∪ {0} 7→ R+ ∪ {0} (9.83)

g(X3) ≡ |dH/dX3| . (9.84)

g(X3) is continuous and we assume g(X3) < 1, ∀X3 ∈
[
0; M1M2

w̃1w̃2w̃3

]
. We choose

ε ≡ 1− g( M1M2

w̃1w̃2w̃3
)

2
> 0 . (9.85)

Since g(X3) is continuous there exists δ > 0 such that | M1M2

w̃1w̃2w̃3
−X3| < δ guarantees

|g
(

M1M2

w̃1w̃2w̃3

)
− g(X3)| < ε. This means ∀X3 that satisfies | M1M2

w̃1w̃2w̃3
−X3| < δ then

g(X3) < ε+ g

(
M1M2

w̃1w̃2w̃3

)
=

g( M1M2

w̃1w̃2w̃3
) + 1

2
<

1 + 1

2
= 1 . (9.86)

Thus ∀X3 that satisfies | M1M2

w̃1w̃2w̃3
− X3| < δ then |dH/dX3| < 1. This ensures there

exists δ > 0 such that |dH/dX3| < 1, ∀X3 ∈
[
0; M1M2

w̃1w̃2w̃3
+ δ

]
.
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Summary of chapter 9
• Existence and uniqueness of solutions are guaranteed for the system 9.1 for non

negative concentrations.
• A trapping region, U , exists. The trapping region can be expanded such that

W̃ (δ̃) is a trapping region and U ⊂ W̃ (δ̃) for δ̃ > 0.
• All solutions of the non linear differential equations enter W̃ (δ̃) in finite time for

δ̃ > 0. Then any solution get arbitrarily close to U in finite time. This outrules
limit cycles outside U . (By similar reasoning that limit cycles do not exist when
the fixed point is globally stable.)

• At least one fixed point exists and all fixed points are contained in U .
If 1/w̃1w̃2w̃3

d(F1F2)/dX3 < 1, ∀X3 ∈ [0;M1M2/w̃1w̃2w̃3] then a unique fixed
point exists. This implies a unique fixed point exists if F1 and F2 are negative
feedback functions.

• If H = F1(X3)F2(X3)/w̃1w̃2w̃3 is a contraction and positive ∀X3 ∈ D0 then a unique
fixed point exists of the system of differential equations. Any solution in W̃ (δ̃)
converge to the fixed point. This means the fixed point is globally stable which
outrules the possibility of limit cycles.

• |dH/dX3| < 1, ∀X3 ∈
[
0; M1M2

w̃1w̃2w̃3

]
is a sufficient criteria for the existence a unique,

globally stable fixed point of the differential equations. Whether this criteria is
fulfilled or not depends on the parameters of the system.
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10 Estimation of parameters

In this section we will give an estimate of the parameters in our models. This is
important since for a given set of parameters we can categorize the behaviour of the
systems due to our previous analysis. The overall idea is to assume that our model is
realistic. Some parameters are well known. Other parameters are less known. The rest
is almost totally unknown. We will present the three different categories of parameters
below. Also we will make physiological reasoning to give a first estimate of the less
known parameters.

Since we have been dealing mainly with two models one including the feedback
mechanisms to hippocampus and a model that does not involve the mechanisms of
hippocampus we will estimate parameters for both models. Since the latter of the two
is the most common way of describing the HPA axis these parameters will be easiest to
compare to the parameters of previously made models.

In the end of this section a first estimate will be given of all parameters of the two
models. Then the idea is to make various simulations of the system and investigate the
system dynamics with special focus on existence of limit cycles.

Many of the parameters are the same in the two models. We will start by giving
an estimate of the model without hippocampus. Only the parameters that are not the
same will be discussed when estimating parameters for the system with hippocampus.

The parameters will be compared to parameters of other model. However this may
not be possible if two models are too dissimilar.

Parameters of the model without hippocampus
To remind the reader of the parameters in the system without hippocampus we have
rewritten the system of unscaled differential equations (array 5.33) in array 10.1

dx1

dt
=k0

(
1− µ

xα
3

xα
3 + cα

)
− w1x1

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (10.1)

• Well known parameters
From literature we have an estimate of the elimination constants from the

half lives of the concentrations. We define wi as ln(2)/halflife. This is widely
used in modeling the HPA axis[1] although we realize that this is only a good
approximation when the concentration of a given hormone xi is much larger than
the concentration of the other hormones xj entering the differential equation.
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When this is the case the differential equation for hormone xi is approximately
equal to

ẋi ≈ −wixi . (10.2)

We have not deeply investigated how the half lives are measured but one way of
pursuing this idea would be to measure the concentration of hormone xi when a
large dose of this hormone is injected into a person and if these measurements
can be approximated by an exponential then calculate the half time for that.

From [10] the half life of human CRH in plasma is given to be about 4 min.
This gives w1 = ln(2)/4 = 0.17.

The data provided by H. Lundbeck A/S can be used to estimate hormone half
lives. The data originates from [9]. Here the hormone half life is calculated for
different groups (healthy, high cortisol depressive, low cortiol depressive). We will
estimate the parameters by using the data from the healthy group. The half life
of ACTH for the healthy group is 19.9 min±4.2 min(mean±standard deviation).
The same have been done for cortisol and the result is 76.4 min±16.2 min 1.
Because of the difficulties in measuring the concentration of CRH we have not
been able to find a standard deviation in this hormone. But since the standard
deviation is about 1/5 of the mean value for ACTH and cortisol we let the relative
standard deviation be similar for CRH. So that the half life of CRH is given by
4±1.

We assume the half life of a given hormone is normally distributed. A normal
distribution with mean µ and standard deviation σ has 68% of the probalility
density located in the interval [µ−σ;µ+σ]. 99% of the probality density is located
in [µ − 2σ;µ + 2σ]. We choose the default half life to be the mean value. Since
the standard deviation for the half lives are close to 1/5 of the mean value then
varying the deafult value by ±40% covers the majority (99%) of physiologically
relevant cases.

• Less known parameters
As explained in section 5.2 the exponents in the various Hill functions indicate

how many cortisol molecules that react with one free receptor. [19] argues it would
be unphysiological for such a parameter to attend values larger than eight. Savic
et al.[3] model the HPA axis using α = 1. We will make a first guess of α = 3± 2.

In [11] it is explained that GR is the most important receptor in regulating
the HPA-axis. This suggests cα has a value that ensures that the receptor is
around the inflection point of the Hill function for reasonable values of cortisol
concentration. We denote the mean value of free cortisol as x̄3 and we choose
c = x̄3 as a first estimate.

• Unknown parameters
The saturation parameters µ and ρ are somehow unknown. The way the

model is created gives that µ ∈ [0; 1] and ρ ∈ [0; 1]. To be able to investigate the
possibility of a change in receptor capacity we will set µ = ρ = 0.5 as a first guess
for these parameters.

1 The half lives of the two other groups are given in mean±standard deviation: Half life ACTH
hypercortisolemic 15.7±1.95, half life ACTH non-hypercortisolemic 14.5±1.1, half life cortisol hyper-
cortisolemic 79±7.9 and half life non-hypercortisolemic 60.8±13.
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Now we have determined a first estimate for the values of some of the parameters. We
still need to give an estimate on ki. To do this we will use the following reasoning.

The overall idea is that the system should be able to oscillate for physiologically
reasonable values of parameters. This means that all the derivatives of the concentra-
tions should be capable of changing sign for physiologically relevant hormone values.
We therefore assume that the fixed point of the equations is located at the mean value
of the concentrations. Therefore we are able to give an estimate of ki. This is done by
inserting the mean values of hormone concentrations and the values of the above men-
tioned parameters and equating the system of differential equations to zero. Letting x̄i

denote the mean concentration of hormone i, ki will be given by array 10.3

k0 =
w1x̄1(

1− µ
x̄α
3

x̄α
3 +cα

)

k1 =
w2x̄2(

1− ρ
x̄α
3

x̄α
3 +cα

)
x̄1

k2 =
w3x̄3

x̄2
. (10.3)

Note that for fixed µ, ρ, c, α then ki/wi+1 is constant. This means that perturbating wi+1

by a factor changes ki by the same factor.
The data of cortisol is the sum of bound and free cortisol. We are only interested in

the free cortisol which in [10] is stated to be 3.9% of the total concentration in normal
humans. And in [11] 3-10% of the total concentration is stated to be free. We will
estimate the free cortisol to be 5% of the total amount.

The mean values of ACTH and cortisol come from our data[9]. We will use the data
from the healthy control people and use the mean values of these. These values are
given in array 10.4

x̄2 = 21pg/ml

x̄3 = 0.05 · 6.11µg/dl = 3.055ng/ml . (10.4)

Since we have no data of CRH we take the mean of this hormone from the literature.
From an investigation of plasma CRH we get that the mean plasma CRH level in
normal subjects (26 individuals) was 1.64± 0.43pmol/l[30]. From this we take the mean
value of CRH to be 1.64pmol/l. The molecular weight of CRH in sheep is found to be
4670g/mol[11]. Doing the calculations we get that

x̄1 = 1.64 · 4670 = 7.6588pg/ml . (10.5)

Estimated parameters
Using the above parameters and reasoning we get our first guess of the parameters.
The estimated parameters are given in table 10.1. They are calculated from the Matlab
file given in appendix B.2. Along with our own parameters we have also gathered
information of parameters used in other models. Where it is possible to compare any of
these parameters to our own this is done. Two models are made by Liu et al. The first
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Parameter Default value Liu et al.(1990)[31] Liu et al.(1999)[22] Savic et al.[4]
k0 1.7696pg/ml· min 0.001917 - -
k1 0.127341/min - - -
k2 0.00131981/min - - -
w1 0.173291/min 0.0598 0.059 -
w2 0.0348321/min 0.053 0.028 -
w3 0.00907261/min 0.0138 0.67 -
ρ 0.5 - - 0.72
µ 0.5 - - 0.98
α 3 - - 1
c 3.055ng/ml - - -

Table 10.1: Default parameter values of the system without hippocampus.

model[31] only contains three concentrations. In [31] Liu et al. are assuming the free
cortisol is always a constant fraction of the total amount of cortisol. This is leading to
the use of total cortisol half life. In [22] Liu et al. have included the two bound forms
of cortisol into the model thus leading to a five dimensional model. The decay constant
given in table 10.1 is therefore now the decay constant for free cortisol which they allow
much larger values than that of the total amount of cortisol.

In [22] 33 parameters are included. We do not consider differential equations of the
model sufficiently related to physiological mechanisms as well as the huge number of
parameters make the estimation quite doubtful. In both models Liu et al. is making
the assumption that there are a constant input to the differential equations that is not
influenced by the feedback from cortisol. In general we have not been able to compare
this to our model. But in the case of [31] we can conclude that the number we relate
to our k0 is corresponding to the input on CRH when there is no cortisol in [31]. Our
k0 can be interpreted in the same way. In [22] they include multiple fast feedbacks on
the concentrations. This leads to five coupled autonomous differential equations with
33 parameters. We have not been able to compare any of these except the half life
coefficients.

Comparison to parameter values of Kyrylov et al.
As explained in section 4.1 Kyrylov et al. build a model from a linear system and
impose non linearities. The linear system dominates for positive concentrations above
a threshold value and nonincreasing concentrations. Since our system is defined to have
steady state in the mean value of the concentrations we linearize our system around
these values. This means that the values at the entries of the Jacobian taken in steady
state can be compared to parameter values of Kyrylov et al..

Jss =




−0.1733 0 −0.2172
0.0955 −0.0348 −0.1197

0 0.0013 −0.0091


 =




a00 a01 a02
a10 a11 a12
a20 a21 a22


 . (10.6)

Now we can directly compare our values with those of Kyrylov et al. This is done in
table 10.2 There is quite a difference between the parameters of the two models. Since
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Parameter Our value Kyrylov et al.[1]
−a00 0.1733 0.00843
a01 0 0
−a02 0.2172 0.440
a10 0.0955 0.082
−a11 0.0348 0.004
−a12 0.1197 0.0668
a20 0 0.0164
a21 0.0013 0.031
−a22 0.0091 0.0957

Table 10.2: Comparison between our values and them of Kyrylov et al.[1].

we have already discussed how we consider the model of Kyrylov et al. problematic we
will not elaborate further on this comparison.

10.1 The parameter values in the scaled system without hippocampus

In section 6.1 we scaled the system into dimensionless units. The scaled system is given
by array 10.7

dX1

dθ
= 1− µ

Xα
3

1 +Xα
3

− w̃1X1

dX2

dθ
=

(
1− ρ

Xα
3

1 +Xα
3

)
X1 − w̃2X2 (10.7)

dX3

dθ
= X2 − w̃3X3 .
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The parameters µ, ρ and α have the same value as in the unscaled system. The remain-
ing variables and parameters are given by

θ ≡d0t

x1 ≡d1X1

x2 ≡d2X2

x3 ≡d3X3

w̃1 ≡ w1

d0

w̃2 ≡ w2

d0

w̃3 ≡ w3

d0

d0 =

(
k0k1k2

c

)1/3

d1 =

(
ck0

2

k1k2

)1/3

d2 =

(
c2k0k1
k22

)1/3

d3 = c .

These values can all be calculated using the parameters of the unscaled system given
above, i.e

θ = d0t =

(
k0k1k2

c

)1/3

t = 0.046003 · t . (10.8)

In table 10.3 the parameters of the scaled system are given

Parameter Default values
w̃1 3.7669
w̃2 0.75716
w̃3 0.19722
ρ 0.5
µ 0.5
α 3

Table 10.3: Parameter values for the scaled system without hippocampus.
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10.2 Parameters of the model including hippocampus
To remind the reader of the parameters in the system including the mechanisms from
hippocampus, the system is presented in array 10.9 (equal to array 8.6)

dx1

dt
=k0

(
1 + ξ

xα
3

xα
3 + cα

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (10.9)

• Parameters that can be reused from the system without hippocampus
The parameters that we have no reason to believe is changing from the system

without hippocampus is the half life of the different hormones α, µ(ξ = φ− µ), ρ
and the mean value of the concentrations.

• Parameters still needed to estimated
Since nothing is indicating that the coefficients relating cortisol binding to

MR and GR should be different a first guess will be that they are equal. The
same reasoning that was applied to α will therefore also apply to γ. Therefore
we believe that α = γ = 3 ± 2 would be good guess for a first estimate of these
parameters.

As explained in the introduction it has been shown that cortisol has a ten
times higher affinity for MR than for GR in mice, we will assume that this also
applies to humans. This gives us that cγ3 = 1/10cα. Furthermore in [10] it is stated
that the MR receptors in humans is nearly fully occupied at normal levels of
corticosterone. Under the assumption that normal levels of cortisol imply normal
levels of corticosterone. This is in good agreement with cγ3 = cα/10.

The values of the parameters ξ and ψ are unknown. The way the model is
created gives that ψ ∈ [0; 1]. Furthermore we would like the positive feedback to
be able to overcome the negative feedback, thus φ > µ. If this is not the case
it may be that a simpler model where the overall feedback is modeled as one
negative feedback mechanism would apply as well. So for a first guess of these
parameters we set ψ = ρ = 0.5 and ξ = 2.

To give an estimate of ki we will use the same reasoning as when estimating these
parameters in the system without hippocampus. Using the same notation ki will be
given by array 10.10

k0 =
w1x̄1

1 + ξ
x̄α
3

x̄α
3 +cα − ψ

x̄γ
3

x̄γ
3+cγ3

k1 =
w2x̄2(

1− ρ
x̄α
3

x̄α
3 +cα

)
x̄1

k2 =
w3x̄3

x̄2
. (10.10)

As in the previous section the parameters are given in table 10.4. These are also
calculated using the Matlab file that can be seen in appendix B.2.
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Parameter Our values
k0 0.85876pg/ml· min
k1 0.127341/min
k2 0.00131981/min
w1 0.173291/min
w2 0.0348321/min
w3 0.00907261/min
ρ 0.5
ψ 0.5
ξ 2
α 3
γ 3
c 3.055ng/ml
c3 1.418ng/ml

Table 10.4: Parameter values for the system including hippocampus.

Parameters for the scaled system including hippocampus
As done in the system without hippocampus we will calculate the parameters in the
scaled system from the parameters in the original system. To remind the reader the
scaled system with hippocampus is given in array 10.11 (equal to array 8.7)

dX1

dθ
=

(
1 + ξ

Xα
3

1 +Xα
3

− ψ
Xγ

3

c̃3
γ +Xγ

3

)
− w̃1X1

dX2

dθ
=

(
1− ρ

Xα
3

1 +Xα
3

)
X1 − w̃2X2 (10.11)

dX3

dθ
= X2 − w̃3X3 .

The only scaled variables and parameters that are not defined in the same way as
in the system without hippocampus is

c̃3 ≡ c3/d3 . (10.12)

Again we have calculated the scaled parameters using the Matlab file presented in
appendix B.2. These are given in table 10.5
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Parameter Default values
w̃1 4.7934
w̃2 0.9635
w̃3 0.2510
c̃3 0.4642
ψ 0.5
ρ 0.5
ξ 2
γ 3
α 3

Table 10.5: Parameter values for the scaled system including hippocampus.
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11 Numerical investigations

In this chapter we make various simulations of our system. The idea is to investigate
the system for the possibility of oscillations of the solutions to the system. For the
model with as without hippocampal mechanisms we use the default parameter values
from chapter 10 as a basis for the numerical investigations. For each model we change
one parameter while keeping the other fixed at default values. When perturbing a
parameter we investigate if oscillating solutions of the system emerge. The numerical
investigation is split into three different parts.

The first part concerns the system without hippocampus. In the second part we in-
vestigate the consequences of including the hippocampal feedback mechanisms. Finally
we investigate how to include the circadian rhythm into the model.

All numerical investigations made in this chapter have been carried out using the
matlab file given in appendix B.3. This file loads several other files. These files are
presented in appendix B.4.

11.1 The system without hippocampus
In this section we will investigate the possibility of oscillations for the system without
hippocampus.

First we investigate the system with parameter values given by the default param-
eters. On the graphs 11.1, 11.2 and 11.3 the different concentrations are plotted as a
function of time. The initial conditions is given as x1(0) = 2x̄1, x2(0) = 0.5x̄2 and
x3(0) = 1.5x̄3. The parameters are chosen such that the steady state is at the mean
value of each concentration(x̄1, x̄2, x̄3) = (7.6588, 21, 3.055). As seen on the figures the
concentrations converge to steady state.

In figure 11.4 we have shown a three dimensional plot of the system with default
parameter values. In figure 11.5 a three dimensional plot of the scaled system with
default parameter values is shown. As expected the dynamics of the scaled and the
original system is similar. For this reason we will only investigate the scaled system.
For the default parameter values the steady state solution of the scaled system will be
given by array 11.1

X1ss =
x1ss

d1
=

x̄1

d1
= 0.1991

X2ss =
x2ss

d2
=

x̄2

d2
= 0.1972

X3ss =
x3ss

d3
=

x̄3

d3
= 1 . (11.1)
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Figure 11.1: The CRH concentration plotted as a function of time. The parameters used
are the default parameter values. The initial conditions are x1(0) = 2x̄1, x2(0) = 0.5x̄2

and x3(0) = 1.5x̄3.
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Figure 11.2: The ACTH concentration plotted as a function of time. The parameters
used are the default parameter values. The initial conditions are x1(0) = 2x̄1, x2(0) =
0.5x̄2 and x3(0) = 1.5x̄3.
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Figure 11.3: The cortisol concentration plotted as a function of time. The parameters
used are the default parameter values. The initial conditions are x1(0) = 2x̄1, x2(0) =
0.5x̄2 and x3(0) = 1.5x̄3.
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Figure 11.4: Three dimensional plot of concentrations. The parameters used are the
default parameter values. The initial conditions are x1(0) = 2x̄1, x2(0) = 0.5x̄2 and
x3(0) = 1.5x̄3.
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Figure 11.5: Three dimensional plot of the scaled system using the default parameter
values. The initial conditions are X1(0) = 2x̄1/d1, X2(0) = 0.5x̄2/d2 and X3(0) = 1.5x̄3/d3.

In section 9.2 we have shown that all solutions of the system with the default pa-
rameter values will always enter the trapping region. The trapping region is given
by

Ṽ ≡ [0; 1/w̃1]× [0; 1/w̃1w̃2]× [0; 1/w̃1w̃2w̃3] . (11.2)

Using the default parameter values the trapping region is given by [0; 0.2655]×[0; 0.3506]×
[0; 1.7778]. This means that the steady state solution is contained in the trapping region
which is in accordance to previous results.

In figure 11.6 there is a plot of H(X3) alongside with L(X3). As shown in chapter
9 the intersection between H(X3) and L(X3) defines the unique steady state solution
for X3.

In section 9.2 we showed that the system is globally stable if H(x3) is a contraction.
We have also showed that if |H ′(X3)| < 1 for all X3 ∈ [0; 1/w̃1w̃2w̃3] then H is a con-
traction on [0; 1/w̃1w̃2w̃3]. For the model not including hippocampus H ′(X3) < 0 since
H is a product of two functions that corresoinds to negative feedback. The green ring
in figure 11.6 is at max |H ′(x3)|. Furthermore the value of minH ′(X3) is shown in the
legend box. The value is less than -1. For this reason we cannot outrule the existence of
limit cycles analytically. We cannot be sure that there are no limit cycles even though
the steady state solution is stable. Therefore we have made a grid investigation of dif-
ferent initial conditions. This means we have made a grid of initial conditions in the
region [0; 2]× [0; 2]× [0; 2]. The mask of the grid is 0.1. There are 203 different initial
conditions inside this region illustrated with a green dot.

The differential equations was solved numerically and the last value (after what
corresponds to three days) of the solutions was plotted as a blue dot. The steady state
solution is plotted as a red ring. The grid investigation is shown in figure 11.7. Here
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Figure 11.6: H(X3) shown along side L(X3) for the scaled system without hippocampus
using the default parameter values.
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Figure 11.7: Grid investigation in the region [0; 2]× [0; 2]× [0; 2]. The trapping region
is given by [0; 0.2655]× [0; 0.3506]× [0; 1.7778]
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we see that initial conditions outside the trapping region lead to solutions entering
the trapping region in accordance to previous mentioned results. Furthermore we see
that all solutions converge to the steady state solution. This is no guarantee that no
limit cycles exists inside the trapping region but the result seen in figure 11.7 gives an
indication that it is unlikely.

11.2 Variation of parameters in the system without hippocampus
In this section we will make a variation in one parameter keeping the other fixed at their
default value1. Doing this for all the parameters will give an indication of the effect the
parameter has on the solutions of the system. Since we know from section 5.6 that there
exists only one steady state solution and that this is guaranteed to be locally stable this
analysis will mainly concern which parameters that makes the system globally stable.
That is we wish to investigate which parameters that makes |H ′(x3)| < 1. Furthermore
it is clear that when we change the value of one parameter the steady state solution
will change. Also an investigation of this change will be done.

Investigation of a change in wi

We will start by investigating what will happen if we vary only the decay constants, wi.
Since w̃i = wi/d0 changing wi by a fraction will cause the same fractional change in w̃i.
Since

H(X3) =
1

w̃1w̃2w̃3
F1(X3)F2(X3) , (11.3)

we know that

dH(X3)

dX3
=

1

w̃1w̃2w̃3

(
dF1(X3)

dX3
F2(X3) +

dF2(X3)

dX3
F1(X3)

)
. (11.4)

If we now denote the default parameters as θ we know that for X3 inside the trapping
region

max

∣∣∣∣
∂H(X3,θ)

∂X3

∣∣∣∣ = 1.267 . (11.5)

Since only w̃i is changing when wi is changed we can make an equation that gives the
fraction that wi is allowed to change for the system to be guaranteed globally stable.
Denoting the new set of parameters θ̂ = (α, µ, ρ, ˆ̃w1, w̃2, w̃3)

2 we investigate the case

dH(X3, θ̂)

dX3
= −1 . (11.6)

This gives that for
ˆ̃wi > 1.267w̃i (11.7)

1 A more thorough investigation must include an investigation of the dynamics in the nine dimensional
parameter space. This is left to do for another project since we also investigate the behaviour for
different initial conditions. Combining a variation of parameters with variation of initial condition is a
huge task
2 We denote the default parameters by the usual symbol e.g. ρ, and we denote a perturbed parameter
by adding a ’hat’ on top e.g. ρ̂ .
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Figure 11.8: H(X3) plotted where ˆ̃w1 = 1.27w̃1. All other parameter values are fixed
at their default parameter values.

the system is globally stable. For now we assumed that only one parameter is varied.
It is clear that this can also apply for the product of decay constants i.e. ŵ1ŵ2ŵ3 >
1.267w1w2w3. A graphical illustration of this H(X3) is shown in figure 11.8 where
ˆ̃w1 = 1.27w̃1.

Investigation of a change in α

As explained in section 5.2 the parameter α affects the magnitude of the gradient in
the Hill function. Therefore we would expect that increasing α increases max |H ′(X3)|.
For α 6= 1 this is indeed the case. When α = 1 the Hill function changes shape from
a sigmoid function to a function with no inflection point and steepest derivative in
X3 = 0. The effect on H ′(X3) when varying α is written in table 11.1. It is seen that
we do not get that max |H ′(X3)| < 1 when changing α among positive integers. Thus

α max |H ′(X3)|
1 1.7778
2 1.0242
3 1.267
4 1.5699
5 1.8909

Table 11.1: H ′(X3) as a function of α. All other parameters are fixed at their default
values.
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it is not possible for us to guarantee global stability.
Since the steady state of X3 is defined to be at X3ss = 1 the steady state solution

does not change when we change the parameter α. In the not scaled system this
corresponds to that the steady state solution of x3 and the parameter c is defined to be
equal. This assures that the fraction in Hill function always take the value 1/2 for all
values of α.

Investigation of a perturbation to ρ or µ

Last we analyze the effect of changes in the parameters µ or ρ. Because they enter into
the equation of H(X3) in the same way we will treat them both at the same time.

We know from section 5.2 that these parameters also influence the steepness of the
Hill function. Therefore we expect that the larger µ, ρ the larger a absolute value of
H ′(X3). This is indeed the case and we see that the largest absolute value of H ′(X3)
inside trapping region is 1.8033 when ρ or µ equal one and the other parameters are
fixed at their default values. Also we see that we are guaranteed global stability when
ρ or µ have values µ, ρ ≤ 0.24.

The effect of increasing ρ or µ on the steady state solution is a bit different. Since
X1ss is a function of ρ only through X3ss and X3ss is decreasing for increasing values
of both µ and ρ it should be clear that the steady state solution for X1 is increasing for
increasing ρ. It is more subtle with X2ss since this is a function of both of X3ss and
ρ. Numerical investigation show that also X2ss is decreasing for increasing values of ρ.
The case of varying µ is also subtle since all steady states depend explicitly on µ and
the steady state of X1 and X2 also depend implicitly on µ through X3ss. A numerical
investigation was also made for variation in this parameter and the result is that for
increasing µ all steady state values is decreasing. The results of variation in µ or ρ
when all other parameters are fixed at their default values is shown in table 11.2.

µ Steady state ρ Steady state
µ = 0.3 (0.2215, 0.2116, 1.0731) ρ = 0.3 (0.1921, 0.2116, 1.0731)
µ = 0.4 (0.2096, 0.2041, 1.0349) ρ = 0.4 (0.1957, 0.2041, 1.0349)
µ = 0.5 (0.1991, 0.1972, 1.0000) ρ = 0.5 (0.1991, 0.1972, 1.0000)
µ = 0.6 (0.1897, 0.1909, 0.9681) ρ = 0.6 (0.2023, 0.1909, 0.9681)
µ = 0.7 (0.1813, 0.1852, 0.9391) ρ = 0.7 (0.2053, 0.1852, 0.9391)

Table 11.2: The effect on steady state(X1ss, X2ss, X3ss) when varying µ or ρ while all
other parameter values are fixed at their default values.

This ends the investigation of the parameters of the scaled system without hippocam-
pus. Finally we wish to make some comments on the effect on the scaled parameters
when changing the parameters in the unscaled system.

Since
w̃i =

wi

d0
(11.8)

and

d0 =

(
k0k1k2

c

)1/3

(11.9)
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We see from the above analysis that an increase in ki will lead to an increase in steady
state concentrations in all variables Xi since all of w̃i is decreased. This is of course
expected since this corresponds to a larger input to the system.

Investigation of worst case scenario
We know that the system is locally stable for all reasonable parameter values and glob-
ally stable for max |H ′(X3)|. One could think that the most chance of finding limit
cycles in other areas of trapping region would be best if we change all the parameters
in such a way that max |H ′(X3)| is much larger than one. We have mapped the influ-
ence on H ′(X3) by changing one parameter at a time. Therefore we investigate the
above mentioned by using the parameter values given in table 11.3. For the use of

Worst parameters
ˆ̃w1 = 0.6w̃1

ˆ̃w2 = 0.6w̃2

ˆ̃w3 = 0.6w̃3

ρ̂ = 1
µ̂ = 1
α̂ = 5

Table 11.3: Worst case scenario of parameters.

the parameter values given in table 11.3 we have made a plot of H(X3) in figure 11.9.
As seen max |H ′(X3)| = 14.4498. The steady state solution is (X1ss, X2ss, X3ss) =
(0.1628, 0.1319, 1.1143) and the trapping region is given by [0; 0.4425] × [0; 0.9739] ×
[0; 8.2305]. We have made a grid investigation in the region [0; 10] × [0; 10] × [0; 10]
using a grid mask of 0.4 and a numerical integration corresponding to three days. The
investigation is seen in figure 11.10.

Summary of system without hippocampus
We have shown analytically that the unique fixed point is always locally stable for
reasonable values of α which is also found in the simulations.

From the grid investigation we see that initial conditions ’far’ from the fixed point
converge to the fixed point. Thus it seems that the fixed point is globally stable from
the simulations. Thus it is not likely that limit cycles exists.

When varying one parameter and keeping the other parameters fixed at their default
values we can define a subspace of the parameter space where the fixed point system is
globally stable. These parameters are ˆ̃wi > 1.27w̃i or if ρ or µ have values µ, ρ ≤ 0.24.
We can also conclude that decreasing α decreases the gradient of H(except when α = 1).
Furthermore we have determined the behaviour of the value of the fixed point. Because
x3ss = c perturbing α does not influence the value of the fixed point.
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Figure 11.9: H ′(X3) using the parameter values given in table 11.3 corresponding to
the ’worst case scenario’.
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Figure 11.10: Grid investigation of the scaled system without hippocampal mechanisms.
This figure shows the ending value as a function of initial conditions using the parameter
values given in table 11.3 corresponding to the ’worst case scenario’. All initial conditions
lead to solutions converging to the fixed point. The investigated region is [0; 10]×[0; 10]×
[0; 10] and the trapping region is [0; 0.4425]× [0; 0.9739]× [0; 8.2305].



114 Numerical investigations

11.3 The system including mechanisms from hippocampus
In this section we will use the same approach as in the previous section. We will start by
investigating the system with hippocampus with the default parameter values for this
system as they are given in chapter 10. Then we will investigate the consequences of
changing one parameter while keeping the other parameter values fixed at their default
values. Since the behaviour of the scaled system is the same as the unscaled system we
will only investigate the scaled system.

The trapping region of the scaled system including hippocampal mechanisms is given
by

V = [0; (1+ξ)/w̃1]× [0; (1+ξ)/w̃1w̃2]× [0; (1+ξ)/w̃1w̃2w̃3] . (11.10)

Using the default parameters this gives [0; 0.6259]× [0; 0.6496]× [0; 2.5882].
To start with we plot L(X3) and H(X3) using the default parameter values. This is

shown in figure 11.11. One intersection occurs. The unique steady state of the system
using the default parameter values is Xss = (0.3324, 0.2510, 1). Note H(X3ss)/dX3 > 0.
This assures F1(X3ss)/dX3 > 0. This means the fixed point may be stable or unstable with
at least one positive eigenvalue and no complex eigenvalue with positive real part and
non zero imaginary part exists. Written in the legend box is also the maximum gradient
and the minimum gradient. The largest absolute value of the two is 0.57142 < 1. We
conclude that the system including hippocampal mechanisms has a globally stable fixed
point and therefore no limit cycles exists when default parameters are used.

Because of the global stability we will now investigate the effect of changing the
parameters. In this investigation we will focus mainly on how to maximize the possibility
of ultradian oscillations. This requires max |H ′(X3)| > 1 on [0; (1+ξ)/w̃1w̃2w̃3].
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Figure 11.11: H(X3) plotted as a function of X3 using the default parameter values for
the scaled system with hippocampus i.e. the parameters given in table 10.4.
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Investigation of a change in wi

An increase in w̃i will decrease the trapping region V (from equation 11.10). Further-
more we see in analogy to the calculations made for the system without hippocampal
mechanisms that when all other parameters are fixed at their default values we are
guarantied global stability for

ˆ̃w1
ˆ̃w2

ˆ̃w3 > 0.57142w̃1w̃2w̃3 . (11.11)

Investigation of a change in α

First we will investigate the effect that α has on max |H ′(X3)|. Since α still has an
effect on the maximum gradient in the Hill functions we expect the maximum gradient
will increase when α increases. But now it is not as simple as in the system without
hippocampus. For the system including hippocampus α figures in both the negative
feedback in the pituitary gland as well as in the negative feedback in hypothalamus and
in the positive feedback in hippocampus. On figure 11.12 we have shown H(X3) with
α = 1, 2, 3, 4, 5.

We have investigated max |H ′(X3)| as a function of α for α = 1, 2, 3, 4, 5. The results
of the numerical investigations are given in table 11.4. For α ∈ 2, 3, 4 the fixed point
is guaranteed globally stable. As in the system without hippocampus changing the
parameter α does not change the steady state solution of the system. This is also seen
in figure 11.12 where the steady state of X3 corresponds to the intersection between
L(X3) and H(X3). It is worth noting there is only one intersection meaning there is
only one fixed point for α ∈ {1, 2, 3, 4, 5}.
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Figure 11.12: L(X3) and H(X3) for five different values of α. All other parameters are
fixed at their default values.
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α max |H ′(X3)|
1 1.2941
2 0.30161
3 0.57142
4 0.81411
5 1.0395

Table 11.4: max |H ′(X3)| as a function of α in the scaled system including hippocampal
mechanisms. When all other parameters are fixed at their default values.

Investigation of a change in γ

Now we turn our attention to γ. This parameter also determines the steepness of a
Hill function. But where α figured in both a positive feedback and a negative feedback
function γ only figures in the negative feedback function in hippocampus. Therefore
one would expect that the higher the value of γ the steeper decent in the beginning
of H(X3) because γ is the power entering the Hill function with highest affinity. On
figure 11.13 we have shown the graph of H(X3) with γ ∈ 1, 2, 3, 4, 5. In figure 11.13
it is seen that both max |H ′(X3)| and the intersection between L(X3) and H(X3) and
thereby the steady state values is changing as a function of γ. Table 11.5 summarizes
the investigation of these changes. It is worth noting that an increase in γ gives a
decrease in the steady state concentrations. Fixing all other parameters at default
values then for all reasonable values of γ we are guaranteed that H is a contraction.
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Figure 11.13: L(X3) andH(X3) for five different values of γ. When all other parameters
are fixed at their default values.
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γ max |H ′(X3)| Steady state
1 0.92936 (0.4065, 0.2844, 1.1333)
2 0.5914 (0.3620, 0.2672, 1.0646)
3 0.57142 (0.3224, 0.2510, 1.0000)
4 0.59729 (0.1768, 0.1716, 0.6837)
5 0.63876 (0.1617, 0.1598, 0.6369)

Table 11.5: max |H ′(X3)| and the steady state solution as a function of γ in the scaled
system including hippocampal mechanisms. All other parameters are fixed at their
default values.

This guarantees a globally stable fixed point.

Investigation of a change in c3

In figure 11.11 there is a characteristic well inH(X3) with a minimum forX3 ≈ 0.5. This
valley comes from the negative feedback in hippocampus. The parameter c̃3 determines
the affinity for the negative feedback in hippocampus and thereby the value of X3 for
where the before mentioned valley is situated. A decrease in the parameter c̃3 would
mean an increasing affinity and thereby move this valley to the left. In figure 11.14 we
show H(X3) when varying c̃3. Denoting the changed parameter by ˆ̃c3 we have changed
the parameter such that ˆ̃c3 = 1/2c̃3, ˆ̃c3 = c̃3 and ˆ̃c3 = 2c̃3. This corresponds to the
affinity for cortisol binding to MR being respectively 20, 10 and 5 times that of GR. As
seen on figure 11.14 c̃3 is also determining the depth of the well. This is because the
Hill functions enter into the overall feedback additively.

It can also be seen that c̃3 has an effect on H ′(X3) and the steady state solution.
The effect is shown in table 11.6.

ˆ̃c3 max |H ′(X3)| Steady state
1/2c̃3 1.4265 (0.2979, 0.2380, 0.9483)
c̃3 0.57142 (0.3224, 0.2510, 1.0000)
2c̃3 0.4271 (0.3881, 0.2837, 1.1306)

Table 11.6: max |H ′(X3)| and the steady state solution as a function of c̃3 in the scaled
system including hippocampal mechanisms. All other parameters are fixed at their
default values.

Moreover the steady state solutions are locally stable.

Investigation of a change in ρ, ψ and ξ

As seen in the investigation of µ and ρ in the system without hippocampus the pa-
rameters in front of the Hill functions affect the steepness of H ′(X3). Including the
hippocampal mechanisms include a positive feedback with prefactor ξ thus an increase
in ξ increase the largest positive gradient of H(X3) whereas an increase in ψ and ρ
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give an increase in the absolute value of the largest negative gradient. Furthermore
an increase in ξ cause an increase in the trapping region whereas the trapping region
does not depend on ψ and ρ. To illustrate this we have made four graphs of H(X3)
on figure 11.15. One where all values are at the default values. The rest only have on
parameter perturbed: ξ = 4, ρ = 1 and ψ = 1. The effect of changing these parameters
on max |H ′(X3)| and the steady state solution is written in table 11.7. Some combina-
tions guarantees globally stable fixed points and some do not. However all steady state
solutions are locally stable.

Parameter values max |H ′(X3)| Steady state
(ξ, ψ, ρ) = (2, 0.5, 0.5) 0.57142 (0.3224,0.2510,1)
(ξ, ψ, ρ) = (4, 0.5, 0.5) 1.5988 (0.8404,0.4883,1.9455)
(ξ, ψ, ρ) = (2, 1, 0.5) 1.0921 (0.1379,0.1337,0.5327)
(ξ, ψ, ρ) = (2, 0.5, 1) 0.559 (0.2403,0.1812,0.722)

Table 11.7: The effect on max |H ′(X3)| and steady state when changing the parameters
ξ, ψ or ρ. All other parameters are fixed at their default values.

Three steady state solutions
In this section we have investigated the behaviour of changing the parameters in the
system including hippocampal mechanisms. It is obvious that we are able to change
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Figure 11.14: H(X3) shown when varying c̃3. All other parameters are fixed at their
default values. Because of notational difficulties in matlab c3 corresponds to ˆ̃c3 and c3
corresponds to c̃3.
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Figure 11.15: H(X3) for different values of (ξ, ψρ). All other parameters are fixed at
their default values.

the parameters in such a way that there will be one, two or three intersections between
H(X3) and L(X3). For what we believe to be reasonable parameter values we see only
one intersection and thereby only one steady state solution which has been locally stable
for all choice of parameter values. We will now investigate what dynamics that occur
when there are three steady state solutions.

We start by using the default parameters and then use the knowledge about the effect
of changing one parameter while keeping the rest at default values. The first thing we
need to do is to move the minimum of the previously mentioned well down and/or to
the right. From figure 11.12, 11.13 and 11.15 we know that an increase in α, γ and ψ
have this effect. Thus by using the parameter values of (α, γ, ψ) = (5, 5, 1) and all other
parameters fixed at their default values we obtain the graph of H(X3) shown in figure
11.16. The steady state solution is given by (X1ss, X2ss, X3ss) = (0.1133, 0.1164, 0.4637)
and it is locally stable.

Now we wish to increase maxH ′(X3). From figure we know that an increase in ξ
will give the desired effect. Using the parameters (α, γ, ψ, ξ) = (5, 5, 1, 4) we obtain
three intersections and thereby three three steady state solutions. This is shown in
figure 11.17.

So we see that with a continuous change in parameters additional fixed points will
emerge i.e a bifurcation occurs. A qualitative bifurcation diagram can be seen in figure
11.18. In this figure the qualitative change in number of fixed points and their local
stability is seen as a function of ξ.

If we denote the steady state solutions as Xssi where i ∈ {1, 2, 3} and letting the
lowest value of i correspond to the lowest value of X3 that appears in the steady state
solution we get that Xss1 = (0.1170, 0.1199, 0.4779), Xss2 = (0.2223, 0.2018, 0.8039)
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Figure 11.16: H(X3) for choice of parameters (α, γ, ψ) = (5, 5, 1) and all other param-
eters fixed at their default values.
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Figure 11.17: H(X3) for choice of parameters (α, γ, ψ, ξ) = (5, 5, 1, 4) and all other
parameters fixed at their default values.
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Figure 11.18: Qualitative bifurcation diagram. The number of fixed points and their
local stability as a function of ξ.

and Xss3 = (0.7827, 0.4315, 1.7194). The eigenvalues of Jacobian evaluated at the three
different steady state solutions are given in array 11.12.

det
(
J|Xss1

− Iλ
)
= 0 ⇔ λ ∈ {−4.8810,−0.5635 + 0.5096i,−0.5635− 0.5096i}

det
(
J|Xss2

− Iλ
)
= 0 ⇔ λ ∈ {−4.5500,−1.7146, 0.2567}

det
(
J|Xss1

− Iλ
)
= 0 ⇔ λ ∈ {−4.7727,−1.0010,−0.2342} . (11.12)

Thus from array 11.12 we see that the local stability of the three steady state solutions
is such that Xss1 is stable, Xss2 is unstable and Xss3 is locally stable.

To investigate the dynamics for these values of the parameters we have made a
grid investigation of this system. The trapping region for this choice of parameters is
[0; 1.0431]× [0; 1.0826]× [0; 4.3137].

First we will investigate if all solutions enters the trapping region. This is done by
making a grid investigation in the region [0; 10] × [0; 10] × [0; 10] with a grid mask in
the initial conditions of 1. The time of the simulation corresponds to three days. Four
different colors are used to represent the different ending values as a function of initial
conditions. Initial conditions with solutions converging towards Xss1 are marked by a
green dot. Initial conditions with solutions converging towards Xss2 are marked by a
black dot and initial conditions with solutions converging towards Xss3 are marked by a
yellow dot. The three steady state solutions are marked by a red ring and the solution
value of the last simulated time are marked by a blue dot. The grid investigation is
shown in figure 11.19.

As seen on figure 11.19 all solutions converge towards one of the two stable steady
state solutions. Most of the solutions converge towards Xss3. We expect this to be
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Figure 11.19: Investigation of points of convergence for different initial conditions. The
initial conditions are marked by a yellow dot if the solution have converged to Xss3 and
a green dot if the solutions have converged to Xss1. For all solutions the last solution
value was plotted as a blue dot. As seen these are all situated in the two stable steady
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Figure 11.20: Investigation of points of convergence for different initial conditions. The
initial conditions are marked by a yellow dot if the solution have converged to Xss3 and
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because most of the initial conditions are situated at much larger values for each com-
ponent than the components of Xss3. In figure 11.19 we see that very few solutions
converge to Xss1. Furthermore there are no solutions that do not converge to one of
the two stable steady states. For this reason it does not seem likely that oscillations
should occur even in the case of three steady state solutions.

Since the steady state solutions are situated close to each other and the solutions
seems to converge towards these we have decided to make a smaller grid investigation.
We make this in the region [0; 1]× [0; 1]× [0; 2] with a grid masking of 0.1. This can be
seen in figure 11.20

As seen the different initial conditions now cause the solutions to converge towards
either Xss1 or Xss3 which are locally stable. Still there is no sign of oscillations.

In section 8.4 we presented a demand for a Hopf bifurcation to occur when ξ > 0.
The demand was

γ/̃c3 ≥ ψγ/̃c3 ≥ (w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3) + w̃1
2 (w̃2 + w̃3) . (11.13)

If we insert the default parameter values we get

γ > 20.15 . (11.14)

This is an unreasonable high value of γ.

11.4 Summary of numerical analysis of the system including
hippocampal mechanisms

The default parameters give max |H ′(X3)| < 1 on the part of the trapping region
corresponding to X3. This guarantees that a unique fixed point exists and it is globally
stable. By varying one parameter at a time and keeping all other parameters fixed at
their default values global stability of the unique fixed point is guaranteed for ˆ̃w1

ˆ̃w2
ˆ̃w3 >

0.57142w̃1w̃2w̃3, α ∈ {2, 3, 4}, γ ∈ {1, 2, 3, 4, 5}, ρ = 1 and ˆ̃c3 = 2c̃3.
Perturbing one parameter within (what we consider as) reasonable values does not

result in an unstable steady state. No limit cycles are detected within the trapping
region.

Perturbing several parameters at the same time cause a bifurcation and thereby
three steady state solutions. Two of the steady state solutions are locally stable and one
is unstable with no complex eigenvalue with positive real part and non zero imaginary
part. The grid investigation inside the trapping region for the system using these specific
parameter values showed that solutions within the trapping region converge to one of
the two stable fixed points.

The overall conclusion is that the chances of ultradian oscillations of the system
seems to be minimal.

11.5 Including external function to model the circadian rhythm
In this section we wish to investigate how to model the circadian rhythm. In previous
work this has been done by introducing a trigonometric function additively to the
differential equation governing the concentration of CRH.
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Since we are not able to achieve the desired ultradian oscillations this section will
not be an in depth analysis but more an investigation out of interest.

In the following we have used the same approach as previously work. Since we do
not have CRH data we will assume the circadian rhythm of ACTH to be the same as
the circadian rhythm of CRH. We use fast Fourier transformation on our data to get
the amplitudes of the first frequency. These frequencies and amplitudes will be our
first guess to model the circadian rhythm. Since the previous work on estimation of
parameters have been done on the healthy control people from the confidential data we
will also use the mean circadian rhythm from these people.

To illustrate how to include the circadian rhythm we have chosen individual number
eight from the confidential attachment. Using fast Fourier transformation we have
masked the data. On figure 11.21 the data is presented using only the first 20 frequencies.
Furthermore the circadian rhythm is shown. The circadian rhythm of this individual is
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ACTH data from individual number 8 in the confidential attachment.
Data is presented by means of fast Fourier transformation using the smallest 20 frequencies.

The circadian rhythm is presented as the first frequency of the transformation.

Data
Circadian rhythm

Figure 11.21: Masked data and circadian rhythm.

given as

f(t) = 28.8118− 8.4992 cos (2π/1440t) + 5.5438 sin (2π/1440t) . (11.15)

The units of the circadian rhythm is concentration. 28.8118 represents the mean value
of ACTH. Since we wish to model the circadian rhythm on CRH and not on ACTH we
express equation 11.15 in terms of the mean value x̄2, that is

f(t) = x̄2 − 0.295x̄2 cos (2π/1440t) + 0.1924x̄2 sin (2π/1440t) . (11.16)

Since we are now dealing with a single individual we wish to determine the specific
parameters of this individual. We will use default parameters for all parameters except
ki. These parameters will be determined from the mean hormone level of this specific
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individual. This is done as in chapter 10. The specific mean hormone concentrations
of this individual is

x̄2 = 28.8118pg/ml

x̄3 = 0.05 · 5.0945 = 0.2547µg/dl = 2.547ng/ml . (11.17)
(11.18)

The reader should remember that we only model the free cortisol but our data present
the total amount of cortisol, both free and bound.

Since we do not have any data on CRH we will use the mean value of CRH that
was presented in chapter 10. Estimating the parameters for this individual we get table
11.8.

Parameter Our values
k0 0.85876pg/ml· min
k1 0.174711/min
k2 8.0202·10−41/min
w1 0.173291/min
w2 0.0348321/min
w3 0.00907261/min
ρ 0.5
ψ 0.5
ξ 2
α 3
γ 3
c 2.547ng/ml
c3 1.1822ng/ml

Table 11.8: Parameter values for the system including hippocampus for individual
number 8 in the confidential attachment.

As we have seen in the previous sections a unique, stable fixed point exists. Then
we investigate the effect of adding the circadian rhythm in the differential equations
governing x1. The parameter A is the amplitude and the unit of A must be 1/min. This
parameter is necessary to avoid negative concentration.

So we achieve the following non autonomous system of differential equations
dx1

dt
=k0

(
1 + ξ

xα
3

xα
3 + cα

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

+A (0.295 cos (2π/1440t) + 0.1924 sin (2π/1440t))

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (11.19)

We have simulated this system with A = 0.11. The result for the concentration of
ACTH is shown in figure 11.22 the simulation has been run for what corresponds to
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three days. As seen it takes about a day for the system to be governed only of the time
dependent input function.

On figure 11.23 the simulation of day three is shown, also the fitted circadian rhythm
of ACTH is shown. We find the result reasonable compared to only changing the
parameter A.

It seems that the peak of the circadian is shifted a little to the left. Therefore it
seems as if the effect in hypothalamus does not affect the pituitary gland immediately.
From figure 11.23 we see that the circadian rhythm seems to be shifted about 90 min.
This means that if a phase difference about 90 min is reasonable we can model the
circadian rhythm as

dx1

dt
=k0

(
1 + ξ

xα
3

xα
3 + cα

− ψ
xγ
3

xγ
3 + cγ3

)
− w1x1

+A (0.295 cos (2π/1440 (t+ 90)) + 0.1924 sin (2π/1440 (t+ 90)))

dx2

dt
=k1

(
1− ρ

xα
3

xα
3 + cα

)
x1 − w2x2

dx3

dt
=k2x2 − w3x3 . (11.20)

If one wanted of course variation in amplitudes of both the sine and cosine function
could give a better match.

In figure 11.24 and figure 11.25 we have plotted twenty first frequencies of the fast
Fourier transformed data of person number eight along with the fitted diurnal rhythm
and the simulation carried out using the above mentioned parameters for both ACTH
and cortisol. These figures are without phase difference.

As seen in figure 11.24 and 11.25 the peak of the circadian rhythm seems to be
shifted approximately 90 min. Therefore we have chosen to show the simulations from
the system where there was a phase difference on 90 min on the external input in
hypothalamus. These simulations are seen in figure 11.26 and 11.27.

As seen the amplitude of the simulated circadian rhythm of cortisol is too small.
Maybe this can be improved by decreasing the value of the parameter ρ.

We find that the circadian rhythm imposed on the derivative of CRH in hypothala-
mus seems to give a good representation of the circadian rhythm in both cortisol and
ACTH. We are a bit puzzled about the fact that a phase difference of 90 minutes gives a
better fit of the position of the peak in the circadian rhythm. Furthermore there seems
to be a delay of the circadian peak in cortisol compared to that of ACTH on around
90 minutes. This is seen in both the data and our simulation. We find it surprising
that there seems to be an inherent delay between the two compartments. We have not
studied enough data to know if this is a characteristic that the HPA axis is supposed
to have. We therefore leave this for further studies.
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Figure 11.22: The circadian rhythm from fast Fourier transformation and the solution
curve to array 11.19 of ACTH using the parameters given in table 11.8 and A = 0.11.
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Figure 11.23: The circadian rhythm from fast Fourier transformation and the solution
curve to array 11.19 of ACTH using the parameters given in table 11.8 and A = 0.11.
Here we only show day three.
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Figure 11.24: The twenty first frequencies of the fast Fourier transformed ACTH data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11.
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Figure 11.25: The twenty first frequencies of the fast Fourier transformed cortisol data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11.
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Figure 11.26: The twenty first frequencies of the fast Fourier transformed ACTH data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11. There has
been implemented a phase difference of 90 min in the external function.
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Figure 11.27: The twenty first frequencies of the fast Fourier transformed ACTH data
from person number 20 in the confidential attachment. Along with the circadian rhythm
and the simulation using the parameters given in table 11.8 and A=0.11. There has
been implement a phase difference of 90 min in the external function.
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First we summarize some of the main results of our models. We have expanded the com-
plexity of our models of the HPA axis and tried to generalize the arguments along with
this. Quite often the same kind of arguments were used. However reusing arguments
on different systems emphasize some common properties of the systems. Therefore it
became possible to generalize after these special cases has been considered. In this
overview we will revert the order and start with the most general results.

12.1 Most general results
With a scaling making concentrations and time dimensionless all our models are con-
tained in the following differential equations 12.1. The autonomous system of differential
equations is without circadian stimulation on the derivative of CRH.

Ẋ1 =F1(X3)− w̃1X1

Ẋ2 =F2(X3)X1 − w̃2X2 (12.1)
Ẋ3 =X2 − w̃3X3 .

with w̃1, w̃2, w̃3 > 0 and with the following criteria on F1(X3), F2(X3) (using D̃ ≡
R+ ∪ {0})

F1, F2 : D̃ → D̃, F1(0) > 0, F2(0) > 0, sup(F1(D̃)) ≤ M1 ∈ D̃, sup(F2(D̃)) ≤ M2 ∈
D̃, F1, F2 ∈ C1, ∀X3 ∈ D̃.

F1 and F2 are bounded functions mapping non negative numbers to non negative
numbers. The boundedness of the feedback functions can be justified by a saturation
mechanism of the receptors that cortisol must occupy in order to perform a feedback.
When there is no cortisol the feedback functions must not totally inhibit positive stim-
ulation of hormone production. Therefore F1(0) > 0 and F2(0) > 0.

From this very general model we can conclude
• Existence and uniqueness of solutions is guaranteed by theorem 3.1.

Trapping region
• Non negative initial conditions lead to solutions that stay non negative for all

future time.
• A trapping region exists V = I1(0) × I2(0) × I3(0) meaning that solutions in U

stay the region stay bounded for all future time.
• Solutions with non negative initial conditions outside the trapping region converge

to or enter the trapping region with increasing time. This assures the ’interesting’
dynamics of the system is contained in the trapping region since e.g. fixed points
and limit cycles cannot exist outside the trapping region.

130
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Fixed points
• At least one fixed point exists within the trapping region.

– If 1
w̃1w̃2w̃3

d(F1(X3)F2(X3))
dX3

< 1 on I3(0) then only one fixed point exists.
∗ dF1(X3)/dX3 < 0 and dF2(X3)/dX3 < 0, ∀X3 ∈ I3(0) guarantees 1

w̃1w̃2w̃3

d(F1(X3)F2(X3))
dX3

<
1 , ∀X3 ∈ I3(0). Therefore if F1(X3) and F2(X3) corresponds to a nega-
tive feedback for all concentrations then the fixed point is unique.

Stability of fixed point(s)
• Assume dF2(X3)/dX3 < 0, ∀X3 ∈ D̃. This corresponds to a negative feedback from

cortisol on ACTH. This assumption is used for the following characterization of
fixed points and for our two models this assumption is also used.

The characteristic polynomial at the fixed point is on the form

P (λ) = λ3 + α1λ
2 + α2λ+ α3 .

• If dF1(X3ss)/dX3 < 0 the stability of the fixed point is determined by sign(α1α2 −
α3).

– If α1α2 − α3 > 0 the fixed point is stable.
– If α1α2−α3 < 0 the fixed point is unstable and the roots of the characteristic
polynomial have one real, negative root and a set of complex conjugate roots
with positive real part and non zero imaginary part.

– If a continuous change in a parameter leads to continuous change in α1α2−α3

from negative to positive values then a Hopf bifurcation occurs where a limit
cycle is guaranteed (however it may be of physiologically irrelevant size).

• If dF1(X3ss)/dX3 = 0 the fixed point is stable.
• If dF1(X3ss)/dX3 > 0 the stability of the fixed point is determined by sign of α3.

– If α3 > 0 the fixed point is stable.
– If α3 < 0 the fixed point is unstable. There is at least one real, positive
root of the characteristic polynomial. In case of complex roots with nonzero
imaginary part then the real part is negative.

– A Hopf bifurcation is impossible if a continuous change in a parameter leads
to α3 continuously changing from negative to positive values.

This listing of different cases will now proceed as we make some further restrictions
on the feedback functions.

• If 1
w̃1w̃2w̃3

|d(F1(X3)F2(X3))
dX3

| < 1 , ∀X3 ∈ I3(0) then only one fixed point exists
and the fixed point is globally asymptotically stable. This is a major result that
eliminates the possibility of existence of limit cycles of systems where cortisol can
exert positive as well as negative feedback on CRH.

12.2 Results of model including hippocampal dynamics
Now we focus on the results of our model including hippocampal mechanisms where four
feedbacks occur. One negative feedback from cortisol on ACTH, a negative feedback
from cortisol on CRH in hypothalamus and a negative as well as a positive feedback
from cortisol on CRH acting through hippocampal receptors. This lead to the feedback
functions
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F1(X3) = 1 + ξ
Xα

3

1 +Xα
3

− ψ
Xγ

3

c̃3
γ +Xγ

3

, (12.2)

with ξ ≥ −1, ψ ∈ [0; 1 + ξ] ∩ [0; 1], c̃3 > 0 and α, γ are a positive integers.

F2(X3) = 1− ρ
Xα

3

1 +Xα
3

, (12.3)

with ρ ∈ [0; 1].
• If

ξα

w̃1w̃2w̃3
≤ 1 , (12.4)

then exactly one fixed point exists.
• For small values of ξ only one fixed point exists. However increasing the value of

ξ make more steady state solutions possible.
• A necessary condition for a Hopf bifurcation is dF1(X3ss)/dX3 < 0 at some fixed

point and

γ/c3 ≥ ψγ/c3 ≥ (w̃2 + w̃3) (w̃1w̃2 + w̃1w̃3 + w̃2w̃3) + w̃1
2 (w̃2 + w̃3) for ξ ≥ 0 .

(12.5)
This condition requires unphysiologically large values of γ for physiologically val-
ues of c̃3, w̃1, w̃2 and w̃3.

• Simulations show that in the case of one fixed point this is stable. Another
observed case is three fixed points. In this case the larger and lower value of X3ss

corresponds to stable fixed points and the one in the middle is unstable with one
real, positive root of the characteristic polynomium and no complex roots with
nonzero imaginary parts have a positive real part. This means at this fixed point
dF1(X3ss)

dX3
> 0.

For all simulations the long term behavior of solutions showed ’convergence’ to
a fixed point. This was investigated for one and three fixed points of the system.
Therefore the possibility of existence of limit cycles seems minimal. In the case
of three fixed points the trapping region seemed to be divided into one bassin of
attraction for each stable fixed point.

Moreover we were able to determine conditions for each parameter that guar-
anteed global stability of a unique fixed point. This was determined when all
other parameters were fixed at their default values. Using default values for all
parameters guarantee a globally stable fixed point.

12.3 Results of the model excluding hippocampal mechanisms
Now we focus on our model not including hippocampal mechanisms which means that
there is a negative feedback on CRH from cortisol

• dF1(X3)
dX3

≤ 0 on D̃ ensures exactly one fixed point.
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We have considered some specific choices of F1(X3) and F2(X3) based on receptor
dynamics.

F1(X3) = 1− µ
Xα

3

1 +Xα
3

(12.6)

F2(X3) = 1− ρ
Xα

3

1 +Xα
3

, (12.7)

with ρ, µ ∈ [0; 1] and α is an integer value.
• All solutions enter the trapping region in finite time.
• The fixed point is asymptotically stable for α < 8 which means the fixed point is

stable for reasonable values of α and a Hopf bifurcation of the fixed point is thus
impossible.

• Physiologically relevant parameters are found from literature. The remaining
parameters are estimated from an assumption that the fixed point value is at the
mean value of the hormone levels.

– All simulations show solution curves converging to the unique fixed point.
However max

∣∣∣ 1
w̃1w̃2w̃3

d(F1(X3)F2(X3))
dX3

∣∣∣ > 1 using default parameters. We
were able to determine the size of perturbation to one of the default pa-
rameters that caused max

∣∣∣ 1
w̃1w̃2w̃3

d(F1(X3)F2(X3))
dX3

∣∣∣ < 1 which analytically
guarantees a globally stable fixed point.

– All simulations of the long term behaviour of solutions converged to the fixed
point. Therefore existence of limit cycles seem unlikely.

12.4 Comparing the results to state of the art models
This discussion aim trelate the results of this projecte to state of the art models of
the HPA axis especially the models of Kyrylov et al and Jelic et al. that have already
been described. Kyrylov et al. investigate a five dimensional model of the HPA axis
[1]. Assuming fast dynamics between the bound forms of cortisol the model can be
reduced to a three dimensional model. Except for the direct CRH -cortisol stimulation
bypassing ACTH the model without bound forms of cortisol has also been investigated
in a previous work of Kyrylov et al [23]. The idea of investigating a linear system first
is used. Using (problematic) parameters the predominant result is a set of complex
conjugate eigenvalues with non zero imaginary part and one real negative eigenvalue.
Then non linearities are added. The non linearities ensure that hormones do not become
negative and make sure that the derivative of the concentrations have an upper bound.
No argument that the concentrations are bounded is used. Comparing to our model with
or without hippocampus the saturation mechanisms from receptor dynamics make sure
that the concentrations are bounded and also it is evident from the differential equations
that the concentrations cannot become negative when the initial conditions are non
negative. This means a trapping region exists for our system which is a physiological
desirable property that makes sure solutions having ’reasonable’ values at some time
stay ’reasonable’ for all future time. Thus in our model the non linearities are an
inherent part of the model build on physiological reasoning.

Jelic et al. [2] describes the mechanisms of hippocampus that we have used in one of
our models. However Jelic et al. disregards the feedback from cortisol on CRH and the
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system of differential equations follow from a reaction scheme that lacks justification.
The system is non trivially reduced from a four dimensional system to a two dimensional.
Then a limit cycles exists due to the assumptions of the values of parameters and by use
of Theorem of Poincaré-Bendixon that may only be applied on twodimensional systems.

The conclusion of our work is thus inconsistent with the conclusions in [2] and [1].
In our view the field in general is characterized by diverging papers. For example

[6] argues that ACTH and CRH can be pooled in one compartment since the two
concentrations ’have a strong and fast synchrony’. This is inconsistent with [2] where
the CRH dynamics is considered slow compared to the ACTH dynamics thus leading to
the assumption dCRH/dt = 0 while still considering the dynamics of ACTH. Nevertheless
[6] cites [2] without pointing out this important difference in the approaches. Another
problem in general is the description of the ultradian oscillations of the system. Some
authors [1, 2] argue that these should be inherent to the system. Other authors [3, 6]
argue that the fixed points are stable. In case ultradian oscillations are considered this
behavior is simply a response to an outer, ultradian stimuli (a forcing function with
ultradian frequency) as in [3].

12.5 Typical mathematical approaches when non linear differential
equations are used for modeling

Only rarely can a non linear system of differential equations be solved. However often
it is still possible to show existence and uniqueness of solutions using theorem 3.6. In
the two dimensional case the Poincaré Bendixson theorem may be used to guarantee
existence of limit cycles. Comparing the model to reality can be done using numerical
integration of the differential equations. This requires choice of parameters as well as
initial conditions. This approach give a finite number of solutions of the differential
equations for specific parameters and initial conditions. If e.g. no periodic solutions are
observed then one may be tempted to say there is no periodic solutions of the system
in general. However investigating a finite number of solution curves in a continuum of
solution curves can never constitute a proof. Then what can be done? Some look for
Hopf bifurcation of fixed points since this guarantees existence of a limit cycle (however
the limit cycle may be so small that it is not physiologically relevant). This resembles
the approach of Kyrylov et al. where the interesting results for the linear system is a
set of complex conjugate eigenvalues with real part and one negative real eigenvalue.

Savic and Jelic [3] make models of the HPA axis using CRH, ACTH and cortisol as
variables. They make models of increasing complexity as the model fail to show oscilla-
tions. Since the fixed point of their models are stable no Hopf bifurcations are possible.
From this they conclude that no periodic solutions are present and the ’systems’ are sta-
ble. However there is quite a long way from a fixed point being locally stable to globally
stable. Their analysis showed that the system is locally stable and no simulations were
used to show that initial conditions ’far’ from the fixed point would be attracted to the
fixed point. Because stability of fixed points is one of the few things that often can be
analyzed rigorously then failure of limit cycles through Hopf bifurcations may wrongly
be converted to an argument that no limit cycles exists for the system in general.
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12.6 Inclusion of circadian rhythm
In analogy with previous work we decided to model the circadian rhythm additively
in the differential equation governing CRH. Under the assumption that the circadian
rhythm is caused by external factors like sunlight etc. a splitting of the dynamics of
circadian and ultradian oscillations seems physiologically relevant.

Because of our access to data of ACTH and cortisol we reasoned that the circadian
rhythm could be presented as the first component of the fast Fourier transformation.
A hypothesis that the circadian rhythm in CRH could be modeled by a scaling of
the circadian rhythm in ACTH gave reasonable results. Although we did not make
an in depth analysis of the circadian rhythm we were able to conclude that adding a
trigonometric function in the differential equation governing CRH was able to show
the circadian rhythm in ACTH and cortisol. When reaching this conclusion we found
it puzzling that a delay of 90 minutes lead to almost perfect fit in the peaks of the
circadian rhythm in both ACTH and cortisol.

12.7 Conclusion
We have made two deterministic models of the HPA axis containing well known phys-
iological mechanisms. A trapping region is found for both models and all solutions
outside the trapping region converge to or enter the trapping region. This guarantees
that solutions to the system correspond to reasonable levels in hormone concentration.
All fixed points of the systems are located inside the trapping regions.

For the model without hippocampus a unique fixed point exists. For physiologically
reasonable parameters it is analytically shown that this fixed point is stable thus a Hopf
bifurcation causing a limit cycle is impossible.

We have made a thorough investigation of fixed points and stability of fixed points
searching for ultradian oscillations. We put forward an easily applicable criteria on the
feedback functions and parameters that guarantee existence of a globally stable fixed
point. This criteria is fulfilled for some sets of physiologically reasonable parameter
values for both models.

Using physiologically reasonable parameter values for both models no oscillating
solutions are found. In some cases analytical arguments are applied and in some cases
numerical investigations are used. All simulations showed the long term behaviour of a
solution is convergence to a fixed point.

The generality of many of our results rules out existence of periodic solutions in a
range of three dimensional models with feedback functions.

We can conclude that an external imposed function on CRH is able to produce the
circadian rhythm in both ACTH and cortisol.



13 Discussion: Modeling of HPA axis
including time delay

In the models of the HPA axis considered in this project the derivative of the cortisol
concentration depends on the instant value of the ACTH concentration. However it
takes some time for ACTH to move with the bloodstream and stimulate the adrenal
glands to create cortisol. Therefore it makes sense to include a time delay τ which
is needed before ACTH stimulate the cortisol production such that the derivative of
cortisol depends on ACTH(t− τ) instead of ACTH(t). The argument for a time delay
from ACTH to cortisol can be made to all cites where one hormone is affecting another
hormone. Either by a delay caused by the transport with the bloodstream and/or time
of receptor binding.

Including a time delay in differential equations may have a destabilizing effect [19].
Therefore inclusion of time delays may force a stable fixed point into an unstable fixed
point which may lead to a limit cycle.

Including time delays the system of differential equations with no diurnal input on
the CRH derivative can be written (modifying array 8.5 by including time delays)

dx1

dt
=k0

(
1− µ

(x3(t− τ1))
α

(x3(t− τ1))α + cα
+ φ

(x3(t− τ2))
α

(x3(t− τ2))α + cα

−ψ
(x3(t− τ3))

γ

(x3(t− τ3))γ + cγ3

)
− w1x1

dx2

dt
=k1

(
1− ρ

(x3(t− τ4))
α

(x3(t− τ4))α + cα

)
x1(t− τ5)− w2x2

dx3

dt
=k2x2(t− τ6)− w3x3 . (13.1)

Since a fixed point solution has the property that xss(t1) = xss(t2) for any t1 and
t2 we can find the fixed points for the simpler case with τ1 = τ2 = τ3 = τ4 = τ5 =
τ6 = 0. This means that there exists at least one fixed point due to our previous
analysis. However when finding the stability of the fixed points the time delays cannot
be neglected. It can be much more difficult to analyze this than the corresponding
system without time delay.

The time delay model of Savic et al.
A model without hippocampal mechanisms has been investigated analytically by Savic
et al. in[4]. The model corresponds to array 13.1 with the choice of parameters φ =
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ψ = 0 and α = 1.

dx1

dt
=k0

(
1− µ

x3(t− τ1)

x3(t− τ1) + c

)
− w1x1

dx2

dt
=k1

(
1− ρ

x3(t− τ4)

x3(t− τ4) + c

)
x1(t− τ5)− w2x2

dx3

dt
=k2x2(t− τ6)− w3x3 . (13.2)

The analysis of Savic et al. can be categorized as
• The system with all time delays equal zero result in a stable fixed point (this also

follows from our previous analysis).
• Rouché´s theorem1 is used to compare the eigenvalues of the system with zero

time delays to the system with arbitrary, positive values of the time delays. This
smart approach requires a choice of a contour that defines the domain where the
eigenvalues from the two systems are compared.

• Savic et. al finds a sufficient criteria for the system to have a stable fixed point,
that is B > 0 with

B ≡ abX3
3ss + (b(1 + 2a)− µ)X2

3ss + (a+ 2b− µb)X3ss + 1 . (13.3)

Here a = 1 − µ and b = 1 − ρ. The value of X3ss = x3ss/Kd is estimated from
x3ss = 10µg/dL = 276nmol/L, Kd = 18nmol/L giving X3ss = 15. Inserting this in
13.3 Savic et al. claims that B > 0. This means that no time delays can force the
stable fixed point into an unstable fixed point.

We investigate the condition B > 0 by inserting for a and b.

B =(1− µ)(1− ρ)X3
3ss + (2(1− µ)(1− ρ) + 1− µ− ρ)X2

3ss+

((1− µ)(1− ρ) + (1− µ) + (1− ρ))X3ss + 1 . (13.4)

For µ = ρ = 1 we get B1,1 = −X2
3ss + 1. Since X3ss ≈ 15 then B1,1 < 0. Thus for

large values of µ and ρ the conditions for applying Rouche´s theorem are not fulfilled
by the argument of Savic et al. It is worth noting that Savic et al. assume a ¿ 1, b ¿ 1
meaning that µ and ρ are close to 1.

It should be noted that for ρ = τ1 = τ4 = τ5 = 0, µ = 1 the system 13.2 is
mathematically equivalent to a system modeling the testosterone production [19]. Here
sufficiently large values of τ6 leads to a Hopf bifurcation. Since this choice of parameters
give a subset of the cases considered by [4] it should be clear that the argumentation
of the asymptotic stable fixed point in [4] is deficient. However it may be the case that
the fixed point in array 13.2 is stable for physiologically relevant parameters and time
delays. It just means we have no knowledge about it.

1 In [32] Rouché´s theorem is stated for a complex variable z as: ’If two functions f(z) and g(z), are
analytic inside and on the closed contour C, f(z) has no zeros on C and |f(z) − g(z)| < |f(z)| on C,
then g(z) and f(z) have the same number of zeros inside C’.



138 Discussion: Modeling of HPA axis including time delay

A simpler model including delay differential equations by Savic and Jelic
Savic and Jelic [3] have investigated a system very similar to the model of testosterone
but with the conclusion that physiologically relevant parameters does not lead to a
Hopf bifurcation. We will discuss this now since we disagree with their reasoning and
conclusion.

The model in [3] is contained in the model in [4] since array 13.2 reduce to the model
in [3] by a restriction of parameters τ1 = τ4 = τ5 = 0.

dx1

dt
=k0

(
1− µ

x3

x3 + c

)
− w1x1

dx2

dt
=k1

(
1− ρ

x3

x3 + c

)
x1 − w2x2

dx3

dt
=k2x2(t− τ6)− w3x3 . (13.5)

One fixed point exists and it is stable for τ6 = 0. The question is whether τ6 > 0 can
lead to a Hopf bifurcation when the parameters of the model have reasonable values.
Savic and Jelic conclude that the fixed point is stable for all time delays and reasonable
choice of parameters which is consistent with their conclusion in [4]. However we do not
consider this conclusion valid. We will not go through the entire paper but jump to the
problematic part. We have from [3] (but using our notation from previous chapters)

X3ss =
x3ss

c
a =1 +X3ss(1− ρ)

b =1 +X3ss(1− µ)

F =
X3ss(µa+ ρb)

(1 +X3ss)ab
− 1 . (13.6)

Jelic and Savic formulate the condition that there exists a time delay, τ6 causing a Hopf
bifurcation as F > 0. F ≤ 0 guarantees that no Hopf bifurcation occurs for any time
delay. They find for µ = 0.98 and ρ = 0.72 F ≤ 0 for all X3ss ≥ 0 and this guarantee
their conclusion. However there is no discussion of why µ and ρ should have these
values though µ is assumed to be close to one. Inserting in F for array 13.6.

F =
X3ss

1 +X3ss

(
µ

1 +X3ss(1− µ)
+

ρ

1 +X3ss(1− ρ)

)
− 1 . (13.7)

With µ, ρ ∈ [0, 1] we have F is increasing in µ and ρ and F (µ, ρ) ∈ [−1; 2X3ss

1+X3ss
− 1].

This means F (µ, ρ,X3ss) ≤ F (1, 1, X3ss). This makes sense compared to our analysis
of the system without hippocampus where µ = ρ = 1 gave the case with largest chance
of instability and Hopf bifurcation. Using µ = ρ = 1 we get a bound for what values of
X3ss that can lead to Hopf bifurcation

X3ss

1 +X3ss

(
1

1 +X3ss(1− 1)
+

1

1 +X3ss(1− 1)

)
− 1 > 0 ⇔ X3ss > 1 . (13.8)

This means that for µ = ρ = 1 then a Hopf bifurcation occurs for some τ6 > 0 at
the fixed point for X3ss > 1. In [3] Savic and Jelic state that X3ss ∈ [50; 100] and
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in [4] Savic and Jelic state that X3ss = 15. In either case X3ss > 1 which means a
Hopf bifurcation occurs for some time delay which contradicts the conclusion of [3] and
[4].However this is a promising outcome for future modeling of the HPA-axis using delay
differential equations since a limit cycle is then guaranteed. Of course the time delay(s)
cannot attain physically irrelevant size(s) which must be investigated in depth in future
research. However the analysis above show that when the remaining parameters have
physiologically relevant size then a Hopf bifurcation is possible when a time delay is
included.

13.1 Inclusion of time delay in our system
In this section we will show that introducing a time delay in our model will give an
unstable steady state. The solutions are showing oscillations like the diurnal oscillations
that are seen in data. The aim of this thesis have not been to include time delay so
this section could serve as an appetizer for future work.

Since it seems as if an inclusion of hippocampal mechanisms have a stabilizing effect
on the system we will not include hippocampal mechanisms in this section.

A time delay can be explained as the hormones have to move with the bloodstream
in order to reach receptors in different parts of the body. Furthermore it could take
some time from the hormone reach the receptor until the receptor delivers the effect of
a feedback.

Throughout this work we have gathered knowledge of the effect each parameter has
on the stability of the system. We know that large α, µ and ρ have a destabilizing effect
(This is at least true when considering global stability). Therefore we will set α = 5 and
ρ = µ = 1. wi is not changed and ki will be determined in the same way as in chapter 10.
This gives the following values of the parameters k0 = 2.6543, k1 = 0.191, k2 = 0.0013
and c = 3.055. The steady state will be given as xss = (7.6508pg/ml, 21pg/ml, 3.055ng/ml).
The system simulated is given as

ẋ1 = k0

(
1− µ

(x3(t− τ))α

cα + (x3(t− τ))α

)
− w1x1

ẋ2 = k1

(
1− ρ

(x3(t− τ))α

cα + (x3(t− τ))α

)
x1 − w2x2

ẋ3 = k2x2(t− τ)− w3x3 . (13.9)

Simulating this system with a time delay (τ = 19 min) we are capable of producing
oscillations in the system. The Matlab file used for producing this simulation can be
seen in appendix B.4. These are seen on figure 13.1.

Thus it is possible to obtain inner oscillations in the system. Furthermore a lot of
different time delays could be implemented. Surely a time delay of 19 minutes can not
be explained by the time it takes for the hormones to travel with the bloodstream. But
we see that oscillations are possible. If anyone can give a reasonable explanation of why
a delay of this magnitude is reasonable this could be an idea to pursue. But this must
be left for future work.
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Figure 13.1: The system given in array 13.9 simulated with a time delay of 19 min
and the parameters mentioned in this section. The figure shows oscillations in all three
hormones. The unit of CRH is pg/ml the unit of ACTH is pg/ml and the units of cortisol
is ng/ml.
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A Proof of the Routh Hurwitz Criteria

The RHC for a third order polynomial is often used in this project so here is a proof.
In general a RHC is valid for an n´th degree polynomial but for the third order case
the proof can be based on ’brute force’. First the theorem is restated from chapter 3.

Theorem A.1
Routh Hurwitz Criteria
Given

P (λ) = λ3 + α1λ
2 + α2λ+ α3, α1, α2, α1 ∈ R (A.1)

Then all of the roots of P (λ) are negative or have negative real part if and only if
α1 > 0, α3 > 0 and α1 · α2 > α3.

Proof
Using complex numbers any third order polynomial has three roots (not necessarily
distinct). These can be used to factorize the polynomial. A third order polynomial
has at least one real root. This is due to the fact that for a large absolute value of λ,
the term λ3 dominates in the expression for P . Thus for a sufficiently large λ, P is
positive, and for a sufficiently small λ, P is negative. Since P is continuous in λ by
the intermediate value theorem [17, p. 75] there must exist a λ1 such that P (λ1) = 0.
Factorizing P using this solution one gets

P (λ) = (λ− λ1)
(
λ2 + bλ+ c

)
, b, c ∈ R (A.2)

Finding the roots of the second factor in equation A.2 one gets

λ+ =
−b+

√
d

2
, λ− =

−b−
√
d

2
, d ≡ b2 − 4ac . (A.3)

If d is negative λ− is the complex conjugate of λ+, which is seen from splitting equation
A.3 in real and imaginary parts . In that case we define µ = −b/2 and ω =

√−d/2 and
then the roots can be written λ+ = µ + iω and λ− = µ − iω where ω is not zero. For
d ≥ 0 the two real roots are named λ2 and λ3. Thus we are left with two different ways
of factorizing P depending on the sign of d.

Pd≥0 = (λ− λ1) (λ− λ2) (λ− λ3) (A.4)
Pd<0 = (λ− λ1) (λ− µ− iω) (λ− µ+ iω) , (A.5)

where λ1, λ2, λ3, µ,∈ R, ω ∈ R+.
This proof is simply a brute force comparison of equation A.4 and equation A.5 with
the statements α1 > 0 ∧ α3 > 0 ∧ α1α2 − α3 > 0 resulting in table A.1 which will now
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be justified. We begin with the case of only real roots, Pd≥0. Expanding equation A.4
one gets

Pd≥0 = λ3 − (λ1 + λ2 + λ3)λ
2 + (λ1λ2 + λ1λ3 + λ2λ3)λ− λ1λ2λ3 . (A.6)

Now it is straightforward to identify α1, α2 and α3

α1 = − (λ1 + λ2 + λ3) (A.7)
α2 = (λ1λ2 + λ1λ3 + λ2λ3) (A.8)
α3 = −λ1λ2λ3 . (A.9)

α1α2 − α3 = − (λ1 + λ2 + λ3) (λ1λ2 + λ1λ3 + λ2λ3) + λ1λ2λ3 ⇔ (A.10)
α1α2 − α3 = − (λ2 + λ3) (λ1λ2 + λ1λ3 + λ2λ3)− λ2

1 (λ2 + λ3) . (A.11)

• If λ1, λ2, λ3 < 0 we see that α1, α3 > 0 and from equation A.11 it can be seen
that α1α2 − α3 consists of two positive terms such that α1α2 − α3 > 0.

• If one or more roots are zero then α3 is zero and thus cannot be positive.
• If exactly one root is non negative, α3 cannot be positive.
• If exactly two roots are positive and one negative, say λ1 < 0, λ2, λ3 > 0 then

α3 > 0. In general if we require α1 > 0, α3 > 0 and α1α2 − α3 > 0 this clearly
leads to α2 > 0 as a necessary condition. If α2 > 0 we look at the expression for
α1α2 − α3 in equation A.11 remembering that the second factor is α2.

α1α2 − α3 = − (λ2 + λ3)α2 − λ2
1 (λ2 + λ3) . (A.12)

Since we assumed λ1 < 0, λ2, λ3 > 0 we have α1α2 − α3 < 0. The proof should
also be done in the case λ2 < 0, λ1, λ3 > 0 and also when λ3 < 0, λ1, λ2 > 0 but
since α1, α2, α3 are symmetric in λ1, λ2 and λ3 then so is α1α2 − α3, and all
cases are thus covered by covering one.

• If all three roots are positive then α3 < 0.
For the case of real roots of P we have now been through all relevant scenarios showing
that RHC holds in each case. Now we just need to do the same when there is one real
root and two complex conjugate roots of P . Expanding equation A.5 one gets

Pd<0 = λ3 − (2µ+ λ1)λ
2 +

(
µ2 + ω2 + 2µλ1

)
λ− λ1

(
µ2 + ω2

)
. (A.13)

Identifying the coefficients of the polynomials now with a prime not to be confused with
the case d ≥ 0.

α′
1 = − (2µ+ λ1) (A.14)

α′
2 = µ2 + ω2 + 2µλ1 (A.15)

α′
3 = −λ1

(
µ2 + ω2

)
(A.16)

α′
1α

′
2 − α′

3 = − (2µ+ λ1)
(
µ2 + ω2 + 2µλ1

)
+ λ1

(
µ2 + ω2

) ⇔
α′
1α

′
2 − α′

3 = −2µ
(
µ2 + ω2 + 2µλ1 + λ2

1

) ⇔
α′
1α

′
2 − α′

3 = −2µ
(
(µ+ λ1)

2
+ ω2

)
. (A.17)

Now the real part of the roots are only two numbers, λ1 and µ.
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Pd Real part of roots α1 > 0 ∧ α3 > 0 ∧ α1α2 − α3 > 0

d ≥ 0 λ1 < 0 ∧ λ2 < 0 ∧ λ3 < 0 true
d ≥ 0 λ1 = 0 ∨ λ2 = 0 ∨ λ3 = 0 false
d ≥ 0 Exactly one root > 0 false
d ≥ 0 Exactly two roots > 0 false
d ≥ 0 λ1 > 0 ∧ λ2 > 0 ∧ λ3 > 0 false
d < 0 λ1 < 0 ∧ µ < 0 true
d < 0 λ1 ≥ 0 false
d < 0 µ ≥ 0 false

Table A.1: Proof of RHC

• If µ < 0, λ1 < 0 then α1 consists of two positive terms and is thus guaranteed
positive. α3 is positive since it is a product of two positive factors. Regarding
α1α2−α3 the factor in the brackets is a sum of a positive and a non negative term
and is thus positive. Multiplied with a positive factor makes α1α2 − α3 positive.

• If λ1 is nonnegative then α′
3 cannot be positive.

• If µ ≥ 0 then
α′
1α

′
2 − α′

3 ≤ 0 , (A.18)

since it is a result of a negative number multiplied by a positive. The equality
sign only applies for µ = 0.

Now all the different classes of roots of P have been considered and the result is proving
the RHC summarized in table A.1.
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B Matlab codes

In this appendix the various Matlab codes used throughout this thesis is presented.

B.1 Fast Fourier transformation

Listing B.1: Main file transforming the confidential raw data by means of fast Fourier
transformation.

1 f u n c t i o n [ x z X Z y]=fourierACTH (h)
2 %Enke l tpersoner
3 c l o s e a l l
4 c l e a r x y X Y z x1 X1 D
5 %f ø r s t hentes data
6 Carroll_data_som_matrix ;
7
8 %Nu de f i n e r e s h v i l k e t a f gennemsnittene v i v i l undersøge ( data f ra

enke l t p e r soner kan l i g e l e d e s b eny t t e s )
9 %For y=mean(∗ ’ ) ’ , hvor ∗ kan være HyperACTH, HyperCort iso l , ControlACTH ,
10 %Contro lCor t i so l , LowACTH, LowCortiso l . Husk at ændre f i g u r t e k s t e r !
11
12 %h g i v e r person nummer . h=1:29
13 h=5;
14 y=ACTH( : , h ) ;
15 %when doing f f t o f a d i s con t inous point , the average has to be used .
16 %Important f o r endpoints
17 x (1 , 1 )=(y (145)+y (1) ) /2 ;
18 x (145 ,1 )=x (1 , 1 ) ;
19 x ( 2 : 1 44 )=y (2 : 1 44 ) ;
20 %Nu er y det ønskede datasæt , og x er i d e n t i s k med y b o r t s e t f r a i
21 %endepunkterne
22
23 %di s k r e t , ende l i g f ou r i e r t rans f o rma t i on udregnes
24 X= f f t ( x ) ;
25
26 %Nu kons t ruere s en form for f i l t e r i frekvensdomænet . Z dannes som en
27 %73x145 matrice . I f ø r s t e s ø j l e medtages 1 frekvens , i næste 2 osv .
28
29 Z=z e r o s (73 ,145) ;
30 f o r i =0:72;
31 Z( i +1 ,1: i +2)=X( 1 : i +2) ;
32 Z( i +1,145− i : 1 45 )=X(145− i : 1 45 ) ;
33 %z er en 73x145 matrice hvor den i ´ t e s ø j l e er den i ´ t e inve r s e f o u r i e r
34 %trasnformerede a f den i ´ t e s ø j l e i Z
35 z ( i +1 ,1:145)= i f f t (Z( i +1 ,1:145) ) ;
36 end
37 t =1:145;
38 %t e s t a f z er ren r e e l . da er imag_del_lig_nul=0

146



B.1 Fast Fourier transformation 147

39 imag_del_lig_nul=sum ( sum ( imag ( z ) . ^ 2 ) ) ;
40
41 k1=0;
42 i f k1==0
43
44 %Nu p l o t t e s x mod de f o r s k e l l l i g e s ø j l e r i z . Dvs nu kommer ( en t e gn e s e r i e

)
45 %en f ø l g e a f g r a f e r hvor e t s t i g ende an ta l f r e k v en s e r medtages
46
47 p l o t ( t .∗10 , z ( 2 0 , : ) , ’ b.− ’ )
48 %D( i ) er den summerede , kvadrerede a f s tand mellem datasæt og z ( i , : )
49 D( i ) = s q r t ( sum ( ( x’−z ( i , : ) ) . ^ 2 ) ) ;
50 pause ( 0 . 1 )
51
52 end
53 ho ld on
54 h=10;
55 y=ACTH( : , h ) ;
56 %when doing f f t o f a d i s con t inous point , the average has to be used .
57 %Important f o r endpoints
58 x (1 , 1 )=(y (145)+y (1) ) /2 ;
59 x (145 ,1 )=x (1 , 1 ) ;
60 x ( 2 : 1 44 )=y (2 : 1 44 ) ;
61 %Nu er y det ønskede datasæt , og x er i d e n t i s k med y b o r t s e t f r a i
62 %endepunkterne
63
64 %di s k r e t , ende l i g f ou r i e r t rans f o rma t i on udregnes
65 X= f f t ( x ) ;
66
67 %Nu kons t ruere s en form for f i l t e r i frekvensdomænet . Z dannes som en
68 %73x145 matrice . I f ø r s t e s ø j l e medtages 1 frekvens , i næste 2 osv .
69
70 Z=z e r o s (73 ,145) ;
71 f o r i =0:72;
72 Z( i +1 ,1: i +2)=X( 1 : i +2) ;
73 Z( i +1,145− i : 1 45 )=X(145− i : 1 45 ) ;
74 %z er en 73x145 matrice hvor den i ´ t e s ø j l e er den i ´ t e inve r s e f o u r i e r
75 %trasnformerede a f den i ´ t e s ø j l e i Z
76 z ( i +1 ,1:145)= i f f t (Z( i +1 ,1:145) ) ;
77 end
78 t =1:145;
79 %t e s t a f z er ren r e e l . da er imag_del_lig_nul=0
80 imag_del_lig_nul=sum ( sum ( imag ( z ) . ^ 2 ) ) ;
81
82 k1=0;
83 i f k1==0
84
85 %Nu p l o t t e s x mod de f o r s k e l l l i g e s ø j l e r i z . Dvs nu kommer ( en t e gn e s e r i e

)
86 %en f ø l g e a f g r a f e r hvor e t s t i g ende an ta l f r e k v en s e r medtages
87
88 p l o t ( t .∗10 , z ( 2 0 , : ) , ’ r .− ’ )
89 %D( i ) er den summerede , kvadrerede a f s tand mellem datasæt og z ( i , : )
90 D( i ) = s q r t ( sum ( ( x’−z ( i , : ) ) . ^ 2 ) ) ;
91 pause ( 0 . 1 )
92
93 end
94 h=27;
95 y=ACTH( : , h ) ;
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96 %when doing f f t o f a d i s con t inous point , the average has to be used .
97 %Important f o r endpoints
98 x (1 , 1 )=(y (145)+y (1) ) /2 ;
99 x (145 ,1 )=x (1 , 1 ) ;

100 x ( 2 : 1 44 )=y (2 : 1 44 ) ;
101 %Nu er y det ønskede datasæt , og x er i d e n t i s k med y b o r t s e t f r a i
102 %endepunkterne
103
104 %di s k r e t , ende l i g f ou r i e r t rans f o rma t i on udregnes
105 X= f f t ( x ) ;
106
107 %Nu kons t ruere s en form for f i l t e r i frekvensdomænet . Z dannes som en
108 %73x145 matrice . I f ø r s t e s ø j l e medtages 1 frekvens , i næste 2 osv .
109
110 Z=z e r o s (73 ,145) ;
111 f o r i =0:72;
112 Z( i +1 ,1: i +2)=X( 1 : i +2) ;
113 Z( i +1,145− i : 1 45 )=X(145− i : 1 45 ) ;
114 %z er en 73x145 matrice hvor den i ´ t e s ø j l e er den i ´ t e inve r s e f o u r i e r
115 %trasnformerede a f den i ´ t e s ø j l e i Z
116 z ( i +1 ,1:145)= i f f t (Z( i +1 ,1:145) ) ;
117 end
118 t =1:145;
119 %t e s t a f z er ren r e e l . da er imag_del_lig_nul=0
120 imag_del_lig_nul=sum ( sum ( imag ( z ) . ^ 2 ) ) ;
121
122 k1=0;
123 i f k1==0
124
125 %Nu p l o t t e s x mod de f o r s k e l l l i g e s ø j l e r i z . Dvs nu kommer ( en t e gn e s e r i e

)
126 %en f ø l g e a f g ra f e r hvor e t s t i g ende an ta l f r e k v en s e r medtages
127
128 p l o t ( t .∗10 , z ( 2 0 , : ) , ’ g.− ’ )
129 %D( i ) er den summerede , kvadrerede a f s tand mellem datasæt og z ( i , : )
130 D( i ) = s q r t ( sum ( ( x’−z ( i , : ) ) . ^ 2 ) ) ;
131 pause ( 0 . 1 )
132
133 end
134 %t i t l e ({ ’ACTH data presented by means o f f a s t Fourier transformation ’ ; ’

us ing the sma l l e s t 20 f r e quenc i e s . ’ } )
135 x l a b e l ( ’ time␣ , ␣ [ min ] ’ )
136 y l a b e l ( ’ACTH␣ concentrat ion , ␣ [ pg/ml ] ’ )
137 l e g end ( ’ Hype r co r t i s o l ␣ d ep r e s s i v e ’ , ’ Normal ’ , ’ Lowcor t i s o l ␣ d ep r e s s i v e ’ )
138 a x i s ( [ 0 1440 0 60 ] )
139 s e t ( gca , ’ XTick ’ , 0 : 1 20 : 1 440 )
140 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
141
142 %Ti l svarende l a v e s f o r c o r t i s o l
143 h=5;
144 y=Co r t i s o l ( : , h ) ;
145 %when doing f f t o f a d i s con t inous point , the average has to be used .
146 %Important f o r endpoints
147 x (1 , 1 )=(y (145)+y (1) ) /2 ;
148 x (145 ,1 )=x (1 , 1 ) ;
149 x ( 2 : 1 44 )=y (2 : 1 44 ) ;
150 %Nu er y det ønskede datasæt , og x er i d e n t i s k med y b o r t s e t f r a i
151 %endepunkterne
152
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153 %di s k r e t , ende l i g f ou r i e r t rans f o rma t i on udregnes
154 X= f f t ( x ) ;
155
156 %Nu kons t ruere s en form for f i l t e r i frekvensdomænet . Z dannes som en
157 %73x145 matrice . I f ø r s t e s ø j l e medtages 1 frekvens , i næste 2 osv .
158
159 Z=z e r o s (73 ,145) ;
160 f o r i =0:72;
161 Z( i +1 ,1: i +2)=X( 1 : i +2) ;
162 Z( i +1,145− i : 1 45 )=X(145− i : 1 45 ) ;
163 %z er en 73x145 matrice hvor den i ´ t e s ø j l e er den i ´ t e inve r s e f o u r i e r
164 %trasnformerede a f den i ´ t e s ø j l e i Z
165 z ( i +1 ,1:145)= i f f t (Z( i +1 ,1:145) ) ;
166 end
167 t =1:145;
168 %t e s t a f z er ren r e e l . da er imag_del_lig_nul=0
169 imag_del_lig_nul=sum ( sum ( imag ( z ) . ^ 2 ) ) ;
170
171 k1=0;
172 i f k1==0
173
174 %Nu p l o t t e s x mod de f o r s k e l l l i g e s ø j l e r i z . Dvs nu kommer ( en t e gn e s e r i e

)
175 %en f ø l g e a f g r a f e r hvor e t s t i g ende an ta l f r e k v en s e r medtages
176 f i g u r e
177 p l o t ( t .∗10 , z ( 2 0 , : ) , ’ b.− ’ )
178 %D( i ) er den summerede , kvadrerede a f s tand mellem datasæt og z ( i , : )
179 D( i ) = s q r t ( sum ( ( x’−z ( i , : ) ) . ^ 2 ) ) ;
180 pause ( 0 . 1 )
181
182 end
183 ho ld on
184 h=10;
185 y=Co r t i s o l ( : , h ) ;
186 %when doing f f t o f a d i s con t inous point , the average has to be used .
187 %Important f o r endpoints
188 x (1 , 1 )=(y (145)+y (1) ) /2 ;
189 x (145 ,1 )=x (1 , 1 ) ;
190 x ( 2 : 1 44 )=y (2 : 1 44 ) ;
191 %Nu er y det ønskede datasæt , og x er i d e n t i s k med y b o r t s e t f r a i
192 %endepunkterne
193
194 %di s k r e t , ende l i g f ou r i e r t rans f o rma t i on udregnes
195 X= f f t ( x ) ;
196
197 %Nu kons t ruere s en form for f i l t e r i frekvensdomænet . Z dannes som en
198 %73x145 matrice . I f ø r s t e s ø j l e medtages 1 frekvens , i næste 2 osv .
199
200 Z=z e r o s (73 ,145) ;
201 f o r i =0:72;
202 Z( i +1 ,1: i +2)=X( 1 : i +2) ;
203 Z( i +1,145− i : 1 45 )=X(145− i : 1 45 ) ;
204 %z er en 73x145 matrice hvor den i ´ t e s ø j l e er den i ´ t e inve r s e f o u r i e r
205 %trasnformerede a f den i ´ t e s ø j l e i Z
206 z ( i +1 ,1:145)= i f f t (Z( i +1 ,1:145) ) ;
207 end
208 t =1:145;
209 %t e s t a f z er ren r e e l . da er imag_del_lig_nul=0
210 imag_del_lig_nul=sum ( sum ( imag ( z ) . ^ 2 ) ) ;
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211
212 k1=0;
213 i f k1==0
214
215 %Nu p l o t t e s x mod de f o r s k e l l l i g e s ø j l e r i z . Dvs nu kommer ( en t e gn e s e r i e

)
216 %en f ø l g e a f g ra f e r hvor e t s t i g ende an ta l f r e k v en s e r medtages
217
218 p l o t ( t .∗10 , z ( 2 0 , : ) , ’ r .− ’ )
219 %D( i ) er den summerede , kvadrerede a f s tand mellem datasæt og z ( i , : )
220 D( i ) = s q r t ( sum ( ( x’−z ( i , : ) ) . ^ 2 ) ) ;
221 pause ( 0 . 1 )
222
223 end
224 h=27;
225 y=Co r t i s o l ( : , h ) ;
226 %when doing f f t o f a d i s con t inous point , the average has to be used .
227 %Important f o r endpoints
228 x (1 , 1 )=(y (145)+y (1) ) /2 ;
229 x (145 ,1 )=x (1 , 1 ) ;
230 x ( 2 : 1 44 )=y (2 : 1 44 ) ;
231 %Nu er y det ønskede datasæt , og x er i d e n t i s k med y b o r t s e t f r a i
232 %endepunkterne
233
234 %di s k r e t , ende l i g f ou r i e r t rans f o rma t i on udregnes
235 X= f f t ( x ) ;
236
237 %Nu kons t ruere s en form for f i l t e r i frekvensdomænet . Z dannes som en
238 %73x145 matrice . I f ø r s t e s ø j l e medtages 1 frekvens , i næste 2 osv .
239
240 Z=z e r o s (73 ,145) ;
241 f o r i =0:72;
242 Z( i +1 ,1: i +2)=X( 1 : i +2) ;
243 Z( i +1,145− i : 1 45 )=X(145− i : 1 45 ) ;
244 %z er en 73x145 matrice hvor den i ´ t e s ø j l e er den i ´ t e inve r s e f o u r i e r
245 %trasnformerede a f den i ´ t e s ø j l e i Z
246 z ( i +1 ,1:145)= i f f t (Z( i +1 ,1:145) ) ;
247 end
248 t =1:145;
249 %t e s t a f z er ren r e e l . da er imag_del_lig_nul=0
250 imag_del_lig_nul=sum ( sum ( imag ( z ) . ^ 2 ) ) ;
251
252 k1=0;
253 i f k1==0
254
255 %Nu p l o t t e s x mod de f o r s k e l l l i g e s ø j l e r i z . Dvs nu kommer ( en t e gn e s e r i e

)
256 %en f ø l g e a f g ra f e r hvor e t s t i g ende an ta l f r e k v en s e r medtages
257 p l o t ( t .∗10 , z ( 2 0 , : ) , ’ g.− ’ )
258 %D( i ) er den summerede , kvadrerede a f s tand mellem datasæt og z ( i , : )
259 D( i ) = s q r t ( sum ( ( x’−z ( i , : ) ) . ^ 2 ) ) ;
260 pause ( 0 . 1 )
261
262 end
263 %t i t l e ({ ’ Cor t i s o l data presented by means o f f a s t Fourier transformation

’ ; ’ us ing the sma l l e s t 20 f r e quenc i e s . ’ } )
264 x l a b e l ( ’ time␣ , ␣ [ min ] ’ )
265 y l a b e l ( ’ Co r t i s o l ␣ concentrat ion , ␣ [ \mug/ dl ] ’ )
266 l e g end ( ’ Hype r co r t i s o l ␣ d ep r e s s i v e ’ , ’ Normal ’ , ’ Lowcor t i s o l ␣ d ep r e s s i v e ’ )
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267 a x i s ( [ 0 1440 0 20 ] )
268 s e t ( gca , ’ XTick ’ , 0 : 1 20 : 1 440 )
269 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )

B.2 Calculation of parameters

Listing B.2: File calculating the default parameter values.
1 %%This m− f i l e g i v e s an approximate va lue f o r unknown parameters
2 %Fi r s t we de f i ne the parameters we know
3 c l e a r a l l
4
5 %The mean va lue o f the concent ra t ions
6 x1=7.6588; %pg/ml
7 x2=21; %pg/ml
8 x3=3.055; %ng/ml
9

10 %The h a l f l i f e s
11 half_life_CRH=4; %min
12 half_life_ACTH=19.9; %min
13 ha l f_ l i f e_Co r t i s o l =76.4 ; %min
14
15 %The e l im ina t i on cons tant s
16 w1=l o g (2 ) /half_life_CRH ;
17 w2=l o g (2 ) /half_life_ACTH ;
18 w3=l o g (2 ) / h a l f_ l i f e_Co r t i s o l ;
19
20 %The parameters in the feedback func t i ons
21
22 mu=1; %hypothalamic feedback
23 phi=0; %hippocampal feed forward
24 p s i =0; %hippocampal f eedback
25
26 x i=phi−mu; %sum of hippocampal and hypothalamic GR po t e n t i a l
27
28 rho=1; %pi tuary feedback
29 alpha=5; %GR exponent
30 gamma=3; %MR exponent
31 c=x3 ; % GR a f f i n i t y
32 c3=(1/10) ^(1/gamma) ∗c ^( alpha /gamma) ; % MR a f f i n i t y
33
34 %Defining s teady s t a t e to be in the meanvalues g i v e s the k ’ s
35
36 k0=w1∗x1/(1+ x i ∗( x3^alpha /( c^alpha+x3^alpha ) )−p s i ∗( x3^gamma/( x3^gamma+c3^

gamma) ) )
37 k1=w2∗x2/((1− rho ∗( x3^alpha /( c^alpha+x3^alpha ) ) ) ∗x1 )
38 k2=w3∗x3/x2
39
40 %The parameters in the reduced system can now be determined
41
42 d0=(k0∗k1∗k2/c ) ^(1/3)
43 d1=(c∗k0^2/( k1∗k2 ) ) ^(1/3)
44 d2=(c^2∗k0∗k1/k2^2) ^(1/3)
45 d3=c
46 w1t i lde=w1/d0
47 w2t i lde=w2/d0
48 w3t i lde=w3/d0



152 Matlab codes

49 c 3 t i l d e=c3/d3
50 theta=d0

B.3 Main file used for the numerical analysis

Listing B.3: Main file used for numerical analysis.
1 %% This f i l e shows the dynamics o f a parameterset in the model wi th and

wi thout hippocampal dynamics
2 c l o s e a l l
3 c l e a r a l l
4 run k_values_from_mean_values
5 %1. The system without reduc t ion
6 %2. The reduced system
7
8 %load ing the parameterva lues
9 %k_values_from_mean_values
10 %% Addi t iona l c e l l used to p l o t c i r cad ian rhythm
11 ta =0 :0 .001 :3∗1440 ;
12 a=28.8118−8.4592∗ c o s (2∗ p i /1440.∗ ta ) +5.5438∗ s i n (2∗ p i /1440∗ ta ) ;
13 b=(5.0945−4.5157∗ c o s (2∗ p i /1440.∗ ta ) +0.42192∗ s i n (2∗ p i /1440∗ ta ) ) /2 ;
14
15 %% Define the i n i t i a l va lue s as f r a c t i o n s o f the mean va lue s
16 a1=2;
17 a2=1;
18 a3=1;
19 x s t a r t =[a1∗x1 a2∗x2 a3∗x3 ] ;
20 tspan=[0 3∗1440 ] ;
21
22 %% This c e l l e v a l ua t e s the Jacobian at a g iven po in t
23 System_steady_state_matrix=System_Jacobian ( [ x1 x2 x3 ] , xi , k0 , k1 , k2 , ps i

, rho , alpha , gamma , c , c3 , w1 , w2 , w3)
24 Eigenvalues_of_System_Steady_state_Jacobian_SS=e i g (

System_steady_state_matrix ) ;
25
26 %% This c e l l makes a one− and a three dimensional p l o t o f the
27 %% so l u t i oncu r v e s o f the unreduced system
28 %This s o l v e s the f u l l system
29 Options = odeset ( ’ Jacobian ’ , @System_Jacobian , ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−8) ;
30 [ t , x ] = ode15s (@Ikke_reduceret_system_med_hippocampus , tspan , xs tar t ,

Options , k0 , k1 , k2 , w1 , w2 , w3 , xi , ps i , rho , alpha , gamma , c , c3 , x1
) ;

31 f i g u r e
32 p l o t ( t , x ( : , 1 ) , ’b ’ )
33 %legend ( ’CRH’ )
34 t i t l e ( ’CRH␣ p l o t t e t ␣ as ␣a␣ func t i on ␣ o f ␣ time ’ )
35 x l a b e l ( ’Time , ␣ [ min ] ’ )
36 y l a b e l ( ’CRH, ␣ [ pg/ml ] ’ )
37 f i g u r e
38 p l o t ( t , x ( : , 2 ) , ’b ’ , ta , a , ’ g ’ ,10∗Tk,Z , ’ r .− ’ )
39 t i t l e ( ’ACTH␣as ␣a␣ func t i on ␣ o f ␣ time . ’ )
40 l e g end ( ’ S imulat ion ␣ o f ␣ACTH’ , ’ Circadian ␣rhythm ’ , ’Data ’ )
41 x l a b e l ( ’Time , ␣ [ min ] ’ )
42 y l a b e l ( ’ACTH, ␣ [ pg/ml ] ’ )
43 s e t ( gca , ’XLim ’ , [ 2∗1440 3∗1440 ] )
44 s e t ( gca , ’ XTick ’ , 2∗1440 :120 :3∗1440)
45 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
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46 f i g u r e
47 p l o t ( t , x ( : , 3 ) , ’ b ’ , ta , b , ’ g ’ ,10∗Tk , ZCor t i s o l /2 , ’ r .− ’ )
48 t i t l e ( ’ Co r t i s o l ␣ p l o t t e t ␣ as ␣a␣ func t i on ␣ o f ␣ time ’ )
49 l e g end ( ’ S imulat ion ␣ o f ␣ c o r t i s o l ’ , ’ C i rcadian ␣rhythm ’ , ’Data ’ )
50 s e t ( gca , ’XLim ’ , [ 2∗1440 3∗1440 ] )
51 s e t ( gca , ’ XTick ’ , 2∗1440 :120 :3∗1440)
52 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
53 x l a b e l ( ’Time , ␣ [ min ] ’ )
54 y l a b e l ( ’ Cor t i s o l , ␣ [ ng/ml ] ’ )
55 f i g u r e
56 %Tredimensione l t p l o t a f a l l e concen tra t ioner
57 p l o t 3 ( x ( : , 1 ) , x ( : , 2 ) , x ( : , 3 ) , ’−b ’ , x s t a r t (1 ) , x s t a r t (2 ) , x s t a r t (3 ) , ’ or ’ , x1 , x2 ,

x3 , ’ og ’ )
58 t i t l e ( ’ Three␣ d imens iona l ␣ p l o t ␣ o f ␣ the ␣ s o l u t i o n ␣ curve ’ )
59 x l a b e l ( ’CRH, ␣ [ pg/ml ] ’ )
60 y l a b e l ( ’ACTH, ␣ [ pg/ml ] ’ )
61 z l a b e l ( ’ Cor t i s o l , ␣ [ ng/ml ] ’ )
62 l e g end ( ’ So lu t i on ␣ curve ’ , ’ S t a r t i ng ␣ value ’ , ’ Steady␣ s t a t e ’ )
63 g r i d on
64
65
66 %% This c e l l does the same as the prev ious c e l l but f o r the reduced system
67 x s t a r t =[a1∗x1/d1 a2∗x2/d2 a3∗x3/d3 ]
68 tspan=[0 10∗d0 ∗1440 ] ;
69 %This s o l v e s the reduced system
70
71 alpha=61;
72 %’ Jacobian ’ , @Reduced_system_Jacobian ,
73 Options = odeset ( ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−8) ; %Options = odese t ( ’ RelTol

’ , 1 e−8 , ’AbsTol ’ , 1 e−10) ;
74 [ t , x ] = ode15s (@Reduceret_system_med_hippocampus , tspan , xs tar t , Options

, xi , ps i , rho , alpha , gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) ;
75 f i g u r e
76 p l o t ( t , x ( : , 1 ) , ’ b ’ )
77 %legend ( ’X_1 (CRH) ’)
78 t i t l e ( ’X_1␣ p l o t t e t ␣ as ␣a␣ func t i on ␣ o f ␣\ theta ’ )
79 x l a b e l ( ’ \ theta ␣ ( time ) ’ )
80 y l a b e l ( ’X_1␣ (CRH) ’ )
81 f i g u r e
82 p l o t ( t , x ( : , 2 ) , ’ r ’ )
83 %legend ( ’ACTH’ )
84 t i t l e ( ’X_2␣ p l o t t e t ␣ as ␣a␣ func t i on ␣ o f ␣\ theta ’ )
85 x l a b e l ( ’ \ theta ␣ ( time ) ’ )
86 y l a b e l ( ’X_2␣ (ACTH) ’ )
87 f i g u r e
88 p l o t ( t , x ( : , 3 ) , ’ g ’ )
89 t i t l e ( ’X_3␣ p l o t t e t ␣ as ␣a␣ func t i on ␣ o f ␣\ theta ’ )
90 l e g end ( ’ Co r t i s o l ’ )
91 x l a b e l ( ’ \ theta ␣ ( time ) ’ )
92 y l a b e l ( ’X_3␣ ( Co r t i s o l ) ’ )
93 f i g u r e
94 %Tredimensione l t p l o t a f a l l e concen tra t ioner
95 %, ’ or ’ , z1 , z2 , z3 , ’ og ’
96 p l o t 3 ( x ( : , 1 ) , x ( : , 2 ) , x ( : , 3 ) , ’−b ’ , x s t a r t (1 ) , x s t a r t (2 ) , x s t a r t (3 ) )
97 t i t l e ( ’ Three␣ d imens iona l ␣ p l o t ␣ o f ␣ the ␣ s o l u t i o n ␣ curve ␣ in ␣ the ␣ reduced␣ system ’

)
98 x l a b e l ( ’X_1␣ (CRH) ’ )
99 y l a b e l ( ’X_2␣ (ACTH) ’ )
100 z l a b e l ( ’X_3␣ ( Co r t i s o l ) ’ )
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101 l e g end ( ’ So lu t i on ␣ curve ’ , ’ S t a r t i ng ␣ value ’ , ’ Steady␣ s t a t e ’ )
102 g r i d on
103 %% Here i t i s g r a p i c a l l y shown where the i n t e r s e c t i o n ( s ) o f the two curves
104 %% tha t determine the s teady s t a t e s o l u t i on ( s ) o f c o r t i s o l i s .
105 %Define tmax (The l eng t h o f the de s i r ed i n t e r v a l )
106 x i =2.98
107 p s i=1
108 %rho=0.5
109 alpha=5
110 gamma=5
111 %k=k+1
112 tmax=3;
113 t =0 : . 001 : tmax ;
114 y=(1/( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗(1+ x i ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha ) ) )−ps i ∗( t

. ^ ( gamma) . / ( c 3 t i l d e ^gamma+t . ^ ( gamma) ) ) ) .∗(1− rho ∗( t . ^ ( alpha ) ./(1+ t . ^ (
alpha ) ) ) ) ;

115 yprime=(1/( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗ ( ( x i ∗ alpha ∗ t . ^ ( alpha−1) ./((1+ t . ^ (
alpha ) ) . ^ 2 )−ps i ∗gamma∗ c 3 t i l d e ^gamma∗ t . ^ ( gamma−1) . / ( ( c 3 t i l d e ^gamma+t .^
gamma) . ^ 2 ) ) .∗(1− rho ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha ) ) ) )−(rho∗ alpha ∗ t . ^ ( alpha
−1) ./((1+ t .^ alpha ) . ^ 2 ) ) .∗(1+ x i ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha ) ) )−ps i ∗( t . ^ (
gamma) . / ( c 3 t i l d e ^gamma+t . ^ ( gamma) ) ) ) ) ;

116 maxgradient=max ( yprime )
117 mingradient=min ( yprime )
118 %This i s only i n t e r e s t i n g when po s i t v e f eedback i s inc luded
119 tmaxgradient=f s o l v e (@( t ) ( ( 1/ ( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗ ( ( x i ∗ alpha ∗ t . ^ (

alpha−1) ./(1+ t . ^ ( alpha ) ) .^2− p s i ∗gamma∗ c 3 t i l d e ^gamma∗ t . ^ ( gamma−1) . / (
c 3 t i l d e ^gamma+t .^gamma) . ^ 2 ) .∗(1− rho ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha ) ) ) )−(rho
∗ alpha ∗ t . ^ ( alpha−1) ./(1+ t .^ alpha ) . ^ 2 ) .∗(1+ x i ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha
) ) )−p s i ∗( t . ^ ( gamma) . / ( c 3 t i l d e ^gamma+t . ^ ( gamma) ) ) ) )−maxgradient ) , 1 )

120 tmingradient=f s o l v e (@( t ) ( ( 1/ ( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗ ( ( x i ∗ alpha ∗ t . ^ (
alpha−1) ./(1+ t . ^ ( alpha ) ) .^2− p s i ∗gamma∗ c 3 t i l d e ^gamma∗ t . ^ ( gamma−1) . / (
c 3 t i l d e ^gamma+t .^gamma) . ^ 2 ) .∗(1− rho ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha ) ) ) )−(rho
∗ alpha ∗ t . ^ ( alpha−1) ./(1+ t .^ alpha ) . ^ 2 ) .∗(1+ x i ∗( t . ^ ( alpha ) ./(1+ t . ^ ( alpha
) ) )−p s i ∗( t . ^ ( gamma) . / ( c 3 t i l d e ^gamma+t . ^ ( gamma) ) ) ) )−mingradient ) , 0 . 5 )

121 y_maxgradient=(1/( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗(1+ x i ∗( tmaxgradient ^( alpha )
/(1+tmaxgradient ^( alpha ) ) )−p s i ∗( tmaxgradient ^(gamma) /( c 3 t i l d e ^gamma+
tmaxgradient ^(gamma) ) ) )∗(1− rho ∗( tmaxgradient ^( alpha ) /(1+tmaxgradient ^(
alpha ) ) ) ) ;

122 y_mingradient=(1/( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗(1+ x i ∗( tmingradient ^( alpha )
/(1+ tmingradient ^( alpha ) ) )−p s i ∗( tmingradient ^(gamma) /( c 3 t i l d e ^gamma+
tmingradient ^(gamma) ) ) )∗(1− rho ∗( tmingradient ^( alpha ) /(1+ tmingradient ^(
alpha ) ) ) ) ;

123 f i g u r e
124 p l o t ( t , t , ’ b ’ , t , y , ’ r ’ ) ;
125 %, tmaxgradient , y_maxgradient , ’mo’
126 % , [ ’Maximum grad=’ ,num2str ( maxgradient ) , ]
127 %legend ( ’H(X_3) ’ , ’L(X_3) ’ , [ ’Minimum grad=’ ,num2str ( mingradient ) , ] , [ ’

Maximum grad=’ ,num2str ( maxgradient ) , ] )
128 %t i t l e ( ’H(X_3) fo r d i f f e r e n t parameter va lues ’ )
129 l e g end ( ’L(X_3) ’ , ’H(X_3) ’ , 2 )
130 x l a b e l ( ’X_3 ’ )
131 %f i g u r e
132 %p l o t ( t , t , t , y )
133 %legend ( ’L(X_3) ’ , ’~ c_3=0.5c_3 ’ , ’ ~ c_3=c_3 ’ , ’ ~ c_3=2c_3 ’ , 4 )
134 %x l a b e l ( ’X_3’ )
135 %ax i s ( [ 0 1.5 0 1 . 5 ] )
136 %Inv e s t i g a t e t h i s f i g u r e f o r number o f i n t e r s e c t i o n s . I f t he re are one go
137 %to the c e l l s e va l ua t i n g f o r one s o l u t i on . I f t he re are three s o l u t i o n s go
138 %to the c e l l s e va l ua t i n g f o r th ree s o l u t i o n s .
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139 %% These c e l l s e va l ua t e the s o l u t i o n s f o r one s o l u t i on
140
141 %go to f i l e Reduced_system_Jacobian and remove t to eva l ua t e t h i s c e l l
142
143 %Give an es t imate o f the s teady s t a t e s o l u t i on
144 %for c 3 t i l d e =[0.5∗ f rank frank 2∗ f rank ]
145 L_R_equal_zero=1;
146 z3=f z e r o (@(x ) ZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e , w1t i lde

, w2t i lde , w3t i lde ) , L_R_equal_zero ) ;
147 z1=(1+x i ∗( z3^alpha/(1+z3^alpha ) )−ps i ∗( z3^gamma/( c 3 t i l d e ^gamma+z3^gamma) ) ) /

w1t i lde ;
148 z2=(1−rho ∗( z3^alpha/(1+z3^alpha ) ) ) ∗ z1/w2t i lde ;
149 %Then the s teady s t a t e vec to r i s g iven as
150 SteadyStateVector=[ z1 z2 z3 ]
151 %The Jacobian at s teady s t a t e i s eva lua t ed and the e i g enva l ue s i s computed
152 Jacobian_SS=Reduced_system_Jacobian ( [ z1 z2 z3 ] , xi , ps i , rho , alpha , gamma

, c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) ;
153 Eigenvalues_of_Jacobian_SS=e i g ( Jacobian_SS )
154 %end
155 %% This c e l l w i l l e va l ua t e how the ending po s i t i o n s depend on the s t a r t i n g
156 %% pos i t i o n s . On the reduced system .
157 f i g u r e
158 g r i d s t a r t =0;
159 gridmask =.2;
160 gr idend =4.6;
161 %This s o l v e s the reduced system
162 f o r x01=g r i d s t a r t : gridmask : gr idend ;
163 f o r x02=g r i d s t a r t : gridmask : gr idend ;
164 f o r x03=g r i d s t a r t : gridmask : gr idend ;
165 x s t a r t = [ x01 x02 x03 ] ;
166 %T i d s i n t e r v a l l e t der s k a l s imu leres bestemmes
167 tspan=[0 d0 ∗1440 ] ;
168 %Her l ø s e s d i f f e r e n t i a l l i g n i n g e rne
169 Options = odeset ( ’ Jacobian ’ , @Reduced_system_Jacobian , ’ RelTol ’ ,1 e−8, ’ AbsTol

’ ,1 e−8) ; %Options = odese t ( ’ RelTol ’ , 1 e−8 , ’AbsTol ’ , 1 e−10) ;
170 [ t , x ] = ode15s (@Reduceret_system_med_hippocampus , tspan , xs tar t , Options

, xi , ps i , rho , alpha , gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) ;
171 p l o t 3 ( SteadyStateVector (1 ) , SteadyStateVector (2 ) , SteadyStateVector (3 ) , ’ or ’ ,

x ( numel ( t ) , 1 ) , x ( numel ( t ) , 2 ) , x ( numel ( t ) , 3 ) , ’ . b ’ , x01 , x02 , x03 , ’ g . ’ )
172 ho ld on
173 end
174 end
175 end
176 t i t l e ( ’ Ending␣ va lues ␣ as ␣a␣ func t i on ␣ o f ␣ i n i t i a l ␣ c ond i t i on s ’ )
177 x l a b e l ( ’X_1␣ (CRH) ’ )
178 y l a b e l ( ’X_2␣ (ACTH) ’ )
179 z l a b e l ( ’X_3␣ ( Co r t i s o l ) ’ )
180 l e g end ( ’ Steady␣ s t a t e ’ , ’ Ending␣ va lue s ’ , ’ I n i t i a l ␣ c ond i t i on s ’ )
181 g r i d on
182
183
184
185
186 %% These c e l l s e v a l a t e the s o l u t i o n s f o r th ree s teady s t a t e s o l u t i o n s .
187
188 %go to f i l e Reduced_system_Jacobian and remove t to eva l ua t e t h i s c e l l
189
190 % Define minimum and maximum( grad i en t=0)
191 grad_L_equal_to_zero_min=0.1 ;
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192 grad_L_equal_to_zero_max=1;
193 %Here the exac t va lue i s c a l c u l a t e d
194 zmin=fminsearch (@(x ) ZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e ,

w1t i lde , w2t i lde , w3t i lde ) , grad_L_equal_to_zero_min )
195 zmax=fminsearch (@(x )minusZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma ,

c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) , grad_L_equal_to_zero_max )
196 %Here we are f i nd in g the i n t e r s e c t i o n o f R(x_3) og L( x3 )
197 z31=f z e r o (@(x ) ZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e ,

w1t i lde , w2t i lde , w3t i lde ) , [ 0 zmin ] ) ;
198 z32=f z e r o (@(x ) ZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e ,

w1t i lde , w2t i lde , w3t i lde ) , [ zmin zmax ] ) ;
199 z33=f z e r o (@(x ) ZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e ,

w1t i lde , w2t i lde , w3t i lde ) , [ zmax tmax ] ) ;
200 z=y−t ;
201 p l o t ( t , z , ’b ’ , zmin , ZerosofRx3Lx3 ( zmin , xi , ps i , rho , alpha , gamma , c 3 t i l d e ,

w1t i lde , w2t i lde , w3t i lde ) , ’ ro ’ , zmax , ZerosofRx3Lx3 (zmax , xi , ps i , rho
, alpha , gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) , ’ ro ’ )

202 l e g end ( ’L(x_3)−R(x_3) ’ , ’Minimum ’ , ’Maximum ’ ) ;
203 x l a b e l ( ’ c o r t i s o l ’ ) ;
204
205 %% This c e l l f i n d s the s teady s t a t e concen t ra t ions o f a l l v a r i a b l e s and

fo r
206 %% a l l f i x p o i n t s
207 %Fi r s t we c a l c u l a t e the other s taedy s t a t e concen t ra t ions
208 %For CRH
209 z11=(1+x i ∗( z31^alpha/(1+z31^alpha ) )−ps i ∗( z31^gamma/( c 3 t i l d e ^gamma+z31^

gamma) ) ) / w1t i lde ;
210 z12=(1+x i ∗( z32^alpha/(1+z32^alpha ) )−ps i ∗( z32^gamma/( c 3 t i l d e ^gamma+z32^

gamma) ) ) / w1t i lde ;
211 z13=(1+x i ∗( z33^alpha/(1+z33^alpha ) )−ps i ∗( z33^gamma/( c 3 t i l d e ^gamma+z33^

gamma) ) ) / w1t i lde ;
212 %For ACTH
213 z21=(1−rho ∗( z31^alpha/(1+z31^alpha ) ) ) ∗ z11/w2t i lde ;
214 z22=(1−rho ∗( z32^alpha/(1+z32^alpha ) ) ) ∗ z12/w2t i lde ;
215 z23=(1−rho ∗( z33^alpha/(1+z33^alpha ) ) ) ∗ z13/w2t i lde ;
216 %A matrix i s computed with the s teady s t a t e concen tra t ions as column

vec t o r s
217 SteadyStateMatr ix=[ z11 z12 z13 ; z21 z22 z23 ; z31 z32 z33 ]
218 %The Jacobian i s computed
219 Jacobian_SS1=Reduced_system_Jacobian ( [ z11 z21 z31 ] , xi , ps i , rho , alpha ,

gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde )
220 Eigenvalues_of_Jacobian_SS1=e i g ( Jacobian_SS1 )
221 Jacobian_SS2=Reduced_system_Jacobian ( [ z12 z22 z32 ] , xi , ps i , rho , alpha ,

gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde )
222 Eigenvalues_of_Jacobian_SS2=e i g ( Jacobian_SS2 )
223 Jacobian_SS3=Reduced_system_Jacobian ( [ z13 z23 z33 ] , xi , ps i , rho , alpha ,

gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde )
224 Eigenvalues_of_Jacobian_SS3=e i g ( Jacobian_SS3 )
225 %% This c e l l w i l l e va l ua t e how the ending po s i t i o n s depend on the s t a r t i n g
226 %% pos i t i o n s . On the reduced system .
227 x_gr ids ta r t =0;
228 x_gridmask=.1 ;
229 x_gridend=1;
230 y_gr ids ta r t =0;
231 y_gridmask=.1 ;
232 y_gridend=1;
233 z_gr id s ta r t =0;
234 z_gridmask=.1;
235 z_gridend=2;
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236 %This s o l v e s the reduced system
237 f o r x01=x_gr ids ta r t : x_gridmask : x_gridend ;
238 f o r x02=y_gr ids ta r t : y_gridmask : y_gridend ;
239 f o r x03=z_gr id s ta r t : z_gridmask : z_gridend ;
240 x s t a r t = [ x01 x02 x03 ] ;
241 %T i d s i n t e r v a l l e t der s k a l s imu leres bestemmes
242 tspan=[0 d0 ∗2∗1440 ] ;
243 %Define the s i z e o f the smal l omegn around s teady s t a t e .
244 ep s i l o n =0.1 ;
245 %Her l ø s e s d i f f e r e n t i a l l i g n i n g e rne
246 Options = odeset ( ’ Jacobian ’ , @Reduced_system_Jacobian , ’ RelTol ’ ,1 e−8, ’ AbsTol

’ ,1 e−8) ; %Options = odese t ( ’ RelTol ’ , 1 e−8 , ’AbsTol ’ , 1 e−10) ;
247 [ t , x ] = ode15s (@Reduceret_system_med_hippocampus , tspan , xs tar t , Options

, xi , ps i , rho , alpha , gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) ;
248 i f x ( numel ( t ) , 1 )>SteadyStateMatr ix (1 , 1 )−ep s i l o n & x( numel ( t ) , 1 )<

SteadyStateMatr ix (1 , 1 )+ep s i l o n & x( numel ( t ) , 2 )>SteadyStateMatr ix (2 , 1 )−
ep s i l o n & x( numel ( t ) , 2 )<SteadyStateMatr ix (2 , 1 )+ep s i l o n & x( numel ( t )
, 3 )>SteadyStateMatr ix (3 , 1 )−ep s i l o n & x( numel ( t ) , 3 )<SteadyStateMatr ix
(3 , 1 )+ep s i l o n

249 p l o t 3 ( SteadyStateMatr ix (1 , 1 ) , SteadyStateMatr ix (2 , 1 ) , SteadyStateMatr ix (3 , 1 )
, ’ or ’ , SteadyStateMatr ix (1 , 2 ) , SteadyStateMatr ix (2 , 2 ) , SteadyStateMatr ix
(3 , 2 ) , ’ or ’ , SteadyStateMatr ix (1 , 3 ) , SteadyStateMatr ix (2 , 3 ) ,
SteadyStateMatr ix (3 , 3 ) , ’ or ’ , x ( numel ( t ) , 1 ) , x ( numel ( t ) , 2 ) , x ( numel ( t ) , 3 ) ,
’ . b ’ , x01 , x02 , x03 , ’ g . ’ )

250 x l a b e l ( ’CRH’ )
251 y l a b e l ( ’ACTH’ )
252 z l a b e l ( ’ Co r t i s o l ’ )
253 l e g end ( ’ Steady␣ s t a t e ␣1 ’ , ’ Steady␣ s t a t e ␣2 ’ , ’ Steady␣ s t a t e ␣3 ’ , ’ Ending␣ value ’ , ’

I n i t i a l ␣ cond i t i on ’ )
254 ho ld on
255 g r i d on
256 e l s e i f x ( numel ( t ) , 1 )>SteadyStateMatr ix (1 , 2 )−ep s i l o n & x( numel ( t ) , 1 )<

SteadyStateMatr ix (1 , 2 )+ep s i l o n & x( numel ( t ) , 2 )>SteadyStateMatr ix (2 , 2 )−
ep s i l o n & x( numel ( t ) , 2 )<SteadyStateMatr ix (2 , 2 )+ep s i l o n & x( numel ( t )
, 3 )>SteadyStateMatr ix (3 , 2 )−ep s i l o n & x( numel ( t ) , 3 )<SteadyStateMatr ix
(3 , 2 )+ep s i l o n

257 p l o t 3 ( SteadyStateMatr ix (1 , 1 ) , SteadyStateMatr ix (2 , 1 ) , SteadyStateMatr ix (3 , 1 )
, ’ or ’ , SteadyStateMatr ix (1 , 2 ) , SteadyStateMatr ix (2 , 2 ) , SteadyStateMatr ix
(3 , 2 ) , ’ or ’ , SteadyStateMatr ix (1 , 3 ) , SteadyStateMatr ix (2 , 3 ) ,
SteadyStateMatr ix (3 , 3 ) , ’ or ’ , x ( numel ( t ) , 1 ) , x ( numel ( t ) , 2 ) , x ( numel ( t ) , 3 ) ,
’ . b ’ , x01 , x02 , x03 , ’ k . ’ )

258 x l a b e l ( ’CRH’ )
259 y l a b e l ( ’ACTH’ )
260 z l a b e l ( ’ Co r t i s o l ’ )
261 l e g end ( ’ Steady␣ s t a t e ␣1 ’ , ’ Steady␣ s t a t e ␣2 ’ , ’ Steady␣ s t a t e ␣3 ’ , ’ Ending␣ va lues ’ ,

’ I n i t i a l ␣ cond i t i on ’ )
262 e l s e i f x ( numel ( t ) , 1 )>SteadyStateMatr ix (1 , 3 )−ep s i l o n & x( numel ( t ) , 1 )<

SteadyStateMatr ix (1 , 3 )+ep s i l o n & x( numel ( t ) , 2 )>SteadyStateMatr ix (2 , 3 )−
ep s i l o n & x( numel ( t ) , 2 )<SteadyStateMatr ix (2 , 3 )+ep s i l o n & x( numel ( t )
, 3 )>SteadyStateMatr ix (3 , 3 )−ep s i l o n & x( numel ( t ) , 3 )<SteadyStateMatr ix
(3 , 3 )+ep s i l o n

263 p l o t 3 ( SteadyStateMatr ix (1 , 1 ) , SteadyStateMatr ix (2 , 1 ) , SteadyStateMatr ix (3 , 1 )
, ’ or ’ , SteadyStateMatr ix (1 , 2 ) , SteadyStateMatr ix (2 , 2 ) , SteadyStateMatr ix
(3 , 2 ) , ’ or ’ , SteadyStateMatr ix (1 , 3 ) , SteadyStateMatr ix (2 , 3 ) ,
SteadyStateMatr ix (3 , 3 ) , ’ or ’ , x ( numel ( t ) , 1 ) , x ( numel ( t ) , 2 ) , x ( numel ( t ) , 3 ) ,
’ . b ’ , x01 , x02 , x03 , ’ y . ’ )

264 x l a b e l ( ’X_1␣ (CRH) ’ )
265 y l a b e l ( ’X_2␣ (ACTH) ’ )
266 z l a b e l ( ’X_3␣ ( Co r t i s o l ) ’ )



158 Matlab codes

267 l e g end ( ’ Steady␣ s t a t e ␣1 ’ , ’ Steady␣ s t a t e ␣2 ’ , ’ Steady␣ s t a t e ␣3 ’ , ’ Ending␣ va lue s ’ ,
’ I n i t i a l ␣ cond i t i on ␣ va lues ’ )

268 e l s e
269 p l o t 3 ( SteadyStateMatr ix (1 , 1 ) , SteadyStateMatr ix (2 , 1 ) , SteadyStateMatr ix

(3 , 1 ) , ’ or ’ , SteadyStateMatr ix (1 , 2 ) , SteadyStateMatr ix (2 , 2 ) ,
SteadyStateMatr ix (3 , 2 ) , ’ or ’ , SteadyStateMatr ix (1 , 3 ) ,
SteadyStateMatr ix (2 , 3 ) , SteadyStateMatr ix (3 , 3 ) , ’ or ’ , x ( numel ( t ) , 1 ) , x (
numel ( t ) , 2 ) , x ( numel ( t ) , 3 ) , ’ . b ’ , x01 , x02 , x03 , ’m0 ’ )

270 end
271 ho ld on
272 end
273 end
274 end
275
276
277
278 %% In t h i s c e l l we wish to i n v e s t i g a t e the e f f e c t o f a time de lay in the
279 %% reduced system
280 %Def in i t i on o f the s t a r t i n g va lue s making the se the same as prev ious
281 %s t a r t i n g va lue s .
282 %xs t a r t 1=x s t a r t (1) ;
283 %xs t a r t 2=x s t a r t (2) ;
284 %xs t a r t 3=x s t a r t (3) ;
285 %Define the timespan
286 tspan =[0 , d0 ∗1440 ] ;
287 %sincemat lab cannot s o l v e f o r a t imede lay equa l to zero . A t imede lay equa l
288 %to zero w i l l be de f ined as 1e−16
289 alpha=5;
290 tau1=200∗ theta ; %min (Time fo r c o r t i s o l to a c t i v a t e GR in hypothalmus )
291 tau2=200∗ theta ; %min (Time fo r c o r t i s o l to a c t i v a t e GR in hippocampus )
292 tau3=400∗ theta ; %min (Time fo r c o r t i s o l to a c t i v a t e MR in hippocampus )
293 tau4=20∗ theta ; %min (Time fo r c o r t i s o l to a c t i v a t e GR in adrena l g lands )
294 tau5=1∗ theta ; %min (Time fo r CRH g i v e p o s i t i v e s t imu lus in adrena l g lands )
295 tau6=400∗ theta ; %min (Time fo r ACTH g i v e p o s i t i v e s t imu lus in p i tuary

g land )
296 t imedelay=[tau1 , tau2 , tau3 , tau4 , tau5 , tau6 ] ;
297 opt ions = [ ] ;
298 s o l = dde23 (@Reduced_system_Delaymodel , t imedelay ,

@Reduced_System_delaymodel_History , tspan , opt ions , mu, phi , ps i , rho ,
alpha , gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) ;

299 f i g u r e
300 p l o t ( s o l . x , s o l . y )
301 %ax i s ( [1430 2870 0 3 ] )
302 %t i t l e ( [ ’ A l l graphs with a t imede lay of ’ , num2str ( t i d s f o r s i n k e l s e ) , ’

minuttes , k_0=’ ,num2str (k_0) , ’ , k_1=’ ,num2str (k_1) , ’ , k_2=’ ,num2str (
k_2) , ’ , my=’ ,num2str (my) , ’ , rho=’ ,num2str ( rho ) , ] ) ;

303 x l a b e l ( ’Time␣ in ␣minuttes ’ ) ;
304 y l a b e l ( ’ So lu t i on s ’ ) ;
305 l e g end ( ’CRH’ , ’ACTH’ , ’ Co r t i s o l ’ )
306 %% In t h i s c e l l we i n v e s t i g a t e the e f f e c t o f a time de lay in the unreduced
307 %% system inc l ud ing hippocampal mecanisms .
308 tspan =[0 , 1 4400 ] ;
309 alpha=5;
310 rho=1;
311 x i=−1;
312 p s i =0;
313 tau1=19; %min (Time fo r c o r t i s o l to a c t i v a t e GR recep to r s )
314 tau2=19; %min (Time fo r c o r t i s o l to a c t i v a t e MR recep to r s )
315 tau3=19; %min (Time fo r ACTH to a c t i v a t e r e l e a s e o f c o r t i s o l )
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316 t imedelay=[tau1 , tau2 , tau3 ] ;
317 opt ions = [ ] ;
318 s o l = dde23 (@unreduced_system_med_hippocampus_delay_model , t imedelay ,

@unreduced_System_med_hippocampus_delaymodel_History , tspan , opt ions ,
k0 , k1 , k2 , w1 , w2 , w3 , xi , ps i , rho , alpha , gamma , c , c3 , x1 ) ;

319 f i g u r e
320 p l o t ( s o l . x , s o l . y )
321 t i t l e ( ’ System␣without ␣hippocampus␣and␣a␣ t imedelay ␣ o f ␣19␣min . ’ )
322 l e g end ( ’CRH’ , ’ACTH’ , ’ Co r t i s o l ’ )
323 s e t ( gca , ’XLim ’ , [ 2∗1440 3∗1440 ] )
324 s e t ( gca , ’ XTick ’ , 2∗1440 :120 :3∗1440)
325 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
326 x l a b e l ( ’Time , ␣ [ min ] ’ )
327 %de t t e er brug t t i l lundbeck præsentat ion og a r t i k e l 1 .
328 f i g u r e
329 p l o t ( s o l . x , 2∗ s o l . y ( 2 , : ) )
330 %legend ( ’ACTH’ )
331 s e t ( gca , ’XLim ’ ,[2∗1440−30 3∗1440−30])
332 s e t ( gca , ’ XTick ’ ,2∗1440−30:120:3∗1440−30)
333 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
334 y l a b e l ( ’ACTH, ␣ [ pg/ml ] ’ )
335 x l a b e l ( ’Time , ␣ [ min ] ’ )
336 f i g u r e
337 p l o t ( s o l . x , 2∗ s o l . y ( 3 , : ) )
338 %legend ( ’ Cor t i so l ’ )
339 s e t ( gca , ’XLim ’ ,[2∗1440−30 3∗1440−30])
340 s e t ( gca , ’ XTick ’ ,2∗1440−30:120:3∗1440−30)
341 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
342 y l a b e l ( ’ Cor t i s o l , ␣ [ \mug/ dl ] ’ )
343 x l a b e l ( ’Time , ␣ [ min ] ’ )
344 %ny vek tor d e f i n e r e s s å l e d e s at nu lpunk te t er hvor man ønsker
345 s o l .X=s o l . x−(2∗1440−30) ;
346 f i g u r e
347 p l o t ( s o l .X,2∗ s o l . y ( 2 , : ) )
348 %legend ( ’ACTH’ )
349 s e t ( gca , ’XLim ’ , [ 0 1440 ] )
350 s e t ( gca , ’ XTick ’ , 0 : 120 : 3∗1440 )
351 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
352 y l a b e l ( ’ACTH, ␣ [ pg/ml ] ’ )
353 x l a b e l ( ’Time , ␣ [ min ] ’ )
354 f i g u r e
355 p l o t ( s o l .X,2∗ s o l . y ( 3 , : ) )
356 %legend ( ’ Cor t i so l ’ )
357 s e t ( gca , ’XLim ’ , [ 0 1440 ] )
358 s e t ( gca , ’ XTick ’ , 0 : 1 20 : 1 440 )
359 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
360 y l a b e l ( ’ Cor t i s o l , ␣ [ \mug/ dl ] ’ )
361 x l a b e l ( ’Time , ␣ [ min ] ’ )
362 f i g u r e
363 p l o t ( s o l .X, s o l . y )
364 t i t l e ( ’ System␣without ␣hippocampus␣and␣a␣ t imedelay ␣ o f ␣19␣min . ’ )
365 l e g end ( ’CRH’ , ’ACTH’ , ’ Co r t i s o l ’ )
366 s e t ( gca , ’XLim ’ , [ 0 1440 ] )
367 s e t ( gca , ’ XTick ’ , 0 : 1 20 : 1 440 )
368 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
369 x l a b e l ( ’Time , ␣ [ min ] ’ )
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B.4 Files loaded by the main file used for numerical analysis

Listing B.4: The Jacobian of the unreduced system.
1 f u n c t i o n F=System_Jacobian ( t , x , xi , k0 , k1 , k2 , ps i , rho , alpha , gamma , c

, c3 , w1 , w2 , w3 , x1 ) ;
2 F=[−w1 0 k0 ∗( x i ∗ alpha ∗( x (3 ) ^( alpha−1)∗c^alpha /( c^alpha+x (3) ^alpha ) ^2)−

p s i ∗gamma∗ c3^gamma∗( x (3 ) ^(gamma−1)/( c3^gamma+x (3) ^gamma) ^2) )
3 k1∗(1− rho ∗( x (3 ) ^alpha /( c^alpha+x (3) ^alpha ) ) ) −w2 −k1∗ rho∗ alpha ∗( x (3 )

^( alpha−1)∗c^alpha /( c^alpha+x (3) ^alpha ) ^2)∗x (1 )
4 0 k2 −w3 ] ;

Listing B.5: The differential equations of the unreduced system.
1 f u n c t i o n xdot=Ikke_reduceret_system_med_hippocampus ( t , x , k0 , k1 , k2 , w1 ,

w2 , w3 , xi , ps i , rho , alpha , gamma , c , c3 , x1 )
2 %De a f l e d t e t i l t i d en nul bestemmes
3 xdot=z e r o s ( 3 , 1 ) ;
4 %Systemet d e f i n e r e s
5 xdot (1 )=k0∗(1+ x i ∗( x (3 ) ^alpha /( c^alpha+x (3) ^alpha ) )−p s i ∗( x (3 ) ^gamma/(x (3 ) ^

gamma+c3^gamma) ) )−w1∗x (1 ) +0.11∗(−0.295∗x1∗ c o s (2∗ p i /1440∗( t+90) )
+0.1924∗x1∗ s i n (2∗ p i /1440∗( t+90) ) ) ;

6 xdot (2 )=k1∗(1− rho ∗( x (3 ) ^alpha /( c^alpha+x (3) ^alpha ) ) ) ∗x (1 )−w2∗x (2 ) ;
7 xdot (3 )=k2∗x (2 )−w3∗x (3 ) ;
8
9 %xdot (1)=(1+x i ∗( x (3) ^ alpha/(1+x (3) ^ alpha ) )−p s i ∗( x (3) ^gamma/( c 3 t i l d e ^gamma+

x (3) ^gamma) ) )−w1 t i l d e ∗x (1) ;
10 %xdot (2)=(1−rho ∗( x (3) ^ alpha/(1+x (3) ^ alpha ) ) )∗x (1)−w2 t i l d e ∗x (2) ;
11 %xdot (3)=x (2)−w3 t i l d e ∗x (3) ;
12
13
14 %k0=w1∗x1/(1+ x i ∗( x3^alpha /( c^ alpha+x3^alpha ) )−p s i ∗( x3^gamma/( x3^gamma+c3^

gamma) ) )
15 %k1=w2∗x2/((1− rho ∗( x3^alpha /( c^ alpha+x3^alpha ) ) )∗x1 )
16 %k2=w3∗x3/x2

Listing B.6: The Jacobian of the reduced system.
1 f u n c t i o n F=Reduced_system_Jacobian (x , t , xi , ps i , rho , alpha , gamma ,

c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde ) ;
2 F=[−w1t i lde 0 x i ∗ alpha ∗( x (3 ) ^( alpha−1)/(1+x (3) ^alpha ) ^2)−p s i ∗gamma∗

c 3 t i l d e ^gamma∗( x (3 ) ^(gamma−1)/( c 3 t i l d e ^gamma+x (3) ^gamma) ^2)
3 (1−rho ∗( x (3 ) ^alpha/(1+x (3) ^alpha ) ) ) −w2t i lde −rho∗ alpha ∗( x (3 ) ^( alpha

−1)/(1+x (3) ^alpha ) ^2)∗x (1 )
4 0 1 −w3t i lde ] ;

Listing B.7: The differential equations of the reduced system.
1 f u n c t i o n xdot=Reduceret_system_med_hippocampus ( t , x , xi , ps i , rho , alpha ,

gamma , c 3 t i l d e , w1t i lde , w2t i lde , w3t i lde )
2 %De a f l e d t e t i l t i d en nul bestemmes
3 xdot=z e r o s ( 3 , 1 ) ;
4 %Systemet d e f i n e r e s
5 xdot (1 )=(1+x i ∗( x (3 ) ^alpha/(1+x (3) ^alpha ) )−ps i ∗( x (3 ) ^gamma/( c 3 t i l d e ^gamma+x

(3) ^gamma) ) )−w1t i lde ∗x (1 ) ;
6 xdot (2 )=(1−rho ∗( x (3 ) ^alpha/(1+x (3) ^alpha ) ) ) ∗x (1 )−w2t i lde ∗x (2) ;
7 xdot (3 )=x (2)−w3t i lde ∗x (3 ) ;
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Listing B.8: The function H(X3)− L(X3).
1 f u n c t i o n f=ZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e , w1t i lde ,

w2t i lde , w3t i lde )
2 f =(1/( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗(1+ x i ∗( x^( alpha ) /(1+x^( alpha ) ) )−p s i ∗( x^(

gamma) /( c 3 t i l d e ^gamma+x^(gamma) ) ) )∗(1− rho ∗( x^( alpha ) /(1+x^( alpha ) ) ) )−x
;

Listing B.9: The function L(X3)−H(X3).
1 f u n c t i o n f=minusZerosofRx3Lx3 (x , xi , ps i , rho , alpha , gamma , c 3 t i l d e ,

w1t i lde , w2t i lde , w3t i lde )
2 f =−1∗((1/( w1t i lde ∗w2t i lde ∗w3t i lde ) ) ∗(1+ x i ∗( x^( alpha ) /(1+x^( alpha ) ) )−p s i ∗( x

^(gamma) /( c 3 t i l d e ^gamma+x^(gamma) ) ) )∗(1− rho ∗( x^( alpha ) /(1+x^( alpha ) ) ) )
−x ) ;

Listing B.10: The differential equations for the system including timedelays.
1 f u n c t i o n ydot=unreduced_system_med_hippocampus_delay_model ( t , y , Z , k0 , k1

, k2 , w1 , w2 , w3 , xi , ps i , rho , alpha , gamma , c , c3 , x1 )
2 %De a f l e d t e t i l t i d en nul bestemmes
3 ylag1=Z ( : , 1 ) ;
4 y lag2=Z ( : , 2 ) ;
5 y lag3=Z ( : , 3 ) ;
6 %The system with time de lay i s de f ined
7
8 ydot=[k0∗(1+ x i ∗( y lag1 (3 ) ^alpha /( c^alpha+ylag1 (3 ) ^alpha ) )−ps i ∗( y lag2 (3 ) ^

gamma/( y lag2 (3 ) ^gamma+c3^gamma) ) )−w1∗y (1 )%+0.7∗(−0.295∗ x1∗ cos (2∗ p i
/1440∗( t+90))+0.1924∗ x1∗ s in (2∗ p i /1440∗( t+90)) )

9 k1∗(1− rho ∗( y lag1 (3 ) ^alpha /( c^alpha+ylag1 (3 ) ^alpha ) ) )∗y (1)−w2∗y (2 )
10 k2∗ ylag3 (2 )−w3∗y (3 ) ] ;
11
12
13 %xdot (1)=(1+x i ∗( x (3) ^ alpha/(1+x (3) ^ alpha ) )−ps i ∗( x (3) ^gamma/( c 3 t i l d e ^gamma+

x (3) ^gamma) ) )−w1 t i l d e ∗x (1) ;
14 %xdot (2)=(1−rho ∗( x (3) ^ alpha/(1+x (3) ^ alpha ) ) )∗x (1)−w2 t i l d e ∗x (2) ;
15 %xdot (3)=x (2)−w3 t i l d e ∗x (3) ;
16
17
18 %k0=w1∗x1/(1+ x i ∗( x3^alpha /( c^ alpha+x3^alpha ) )−ps i ∗( x3^gamma/( x3^gamma+c3^

gamma) ) )
19 %k1=w2∗x2/((1− rho ∗( x3^alpha /( c^ alpha+x3^alpha ) ) )∗x1 )
20 %k2=w3∗x3/x2

Listing B.11: The history file used in the differential equations for the system including
timedelays.

1 f u n c t i o n s = unreduced_System_med_hippocampus_delaymodel_History ( t , k0 , k1
, k2 , w1 , w2 , w3 , xi , ps i , rho , alpha , gamma , c , c3 , x1 )

2 % Der s k a l d e f i n e r e s en h i s t o r i e f un k t i on , her er den bare konstant .
3 s = [ 2 , 2 1 , 1 1 ] ;
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