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Unbounded Fredholm Operators and Spectral Flow

Bernhelm Booss-Bavnbek, Matthias Lesch, and John Phillips

ABSTRACT. We study the gap (= “projection norm” = “graph norm”) topology of
the space of (not necessarily bounded) self-adjoint Fredholm operators in a separable
Hilbert space by the Cayley transform and direct methods. In particular, we show that
the space is connected contrary to the bounded case. Moreover, we present a rigorous
definition of spectral flow of a path of such operators (actually alternative but mutually
equivalent definitions) and prove the homotopy invariance. As an example, we discuss
operator curves on manifolds with boundary. -

Introduction

The main purpose of this paper is to put the notion of spectral flow for continuous
paths of (generally unbounded) self~adjoint Fredholm operators on a firm mathematical
footing with clear concise definitions and proofs.

The natural topology on the space of all such operators, denoted by €%, (for
a fixed separable Hilbert space, H) is given by the graph norm topology. That is,
we consider the topology induced by the metric: §(T1,T3) = ||P, — P.| where P, is
the projection onto the graph of T; in the space H x H for 4 = 1,2. This metric is
called the gap metric. The space of unbounded Fredholm operators has been studied
systematically in the seminal paper by Cordes and Labrousse [5].

Many users of the notion of spectral flow feel that the definition and basic properties
are too trivial to bother with. However, there are some difficulties with the currently
available definitions which this paper aims to remedy.

A feature of our approach is the use of the Cayley Transform:

T k(T)=(T-)(T+3)".
We show that the image x(€%#**) is precisely the set
{Ue(H)|(U+1) is Fredholm and (U — I) is injective} =: ¢% i,
and that the map x induces an equivalent metric, S, on €F 5 via,
(T, To) = ||&(Th) — &(T2)]|-

Using this Cayley picture of €%°*, we are able to give two different (but equivalent)
definitions of the spectral flow of a continuous path in €% and to show that these
definitions are invariant under homotopy. We don’t use Kato’s Selection Theorem nor
any differentiability or regularity assumptions. Thus, spectral flow induces a surjective
homomorphism SF, from the fundamental group m,(€.%%*) to Z.

1991 Mathematics Subject Classification. Primary: 47A53; secondary: 19K56, 58G20.
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This leads us to a more careful study of the topological space €.%#%* by studying
its image #% in; = K(6F**). In contrast to the space of bounded self-adjoint Fredholm
operators, we use the “Cayley picture” to prove the surprising result that €% is
(path—)connected! In particular, the operator I can be connected to —I in €#%*.

On the other hand, the space #** of bounded operators in €% inherits its usual
(norm) topology with the gap metric 6 and #** has three connected components by
a result of Atiyah and Singer. To add to the confusion, & is also dense in €% !
Unfortunately, we have been unable to decide whether SF : 7, (4.%#%%) — Z is injective
or whether €% is a classifying space for K.

Finally, we consider a fixed compact Riemannian manifold M with boundary %,
a family {D,} of symmetric elliptic differential operators of first order and of Dirac
type on M acting on sections of a fixed Hermitian bundle E with coeflicients depend-
ing continuously on a parameter s, and a norm-continuous family {P;} of orthogonal
projections of L%(Z; E|x) defining well-posed boundary problems. Here “Dirac type”
means that each operator D, can be written in product form near any hypersurface (for
details of the definition see Assumption 3.1 (1), Equation (3.1) below).

With a view to applications in low—dimensional topology and gauge theories (see
e.g. [10]), we do not assume that the metric structures of M and E are product
near X; nor that the fangential symmetric and skew—symmetric operator components
are independent of the normal variable near ¥; nor that the principal symbol of the
operator family is fixed. Solely exploiting elliptic regularity and the unique continuation
property of operators of Dirac type, we show that the induced two-parameter family

(5:2) = (Ds),

of self-adjoint L?(M;E)-extensions with compact resolvent is continuous in
€Fs2(L*(M; E)) in the gap metric without any further assumptions or restrictions.

The results of this paper have been announced in {3].

0.1. Notations. Let H be a separable complex Hilbert space. First let us intro-
duce some notation for various spaces of operators in H:
%(H) closed densely defined operators in H,
%(H) bounded linear operators H — H,
% (H) unitary operators H — H,

& (H) bounded Fredholm operators H — H,

(
(
J¢(H) compact linear operators H — H,
(
% (H) closed densely defined Fredholm operators in H.

If no confusion is possible we will omit “(H)” and write €, %, ¥ etc. By €5, #*
etc. we denote the set of self-adjoint elements in ¥, % etc.

1. The space of unbounded self-adjoint Fredholm operators

1.1. The topology of ¥**(H). We present a few facts about the so called gap
topology on ¥*2, cf. [5], [9], [11]. As explained, e.g., in [11, Sec. 1] there are two
natural metrics on ¥, the Riesz metric and the gap metric. The Riesz metric is the
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metric such that the bijection

F: ¢* — {Se%||S]<1and ST both injective}, (11
T o Fp =TI + T?)"1/? 1)

is a homeomorphism. That is, given 77,7, € €** then their Riesz distance ¢(7y,T3)
is defined to be ||Fr, — Fr,||. Note that the image of F' is neither open nor closed
in the closed unit ball of °*. Note also that F' maps the space €.#** of (generally
unbounded) self-adjoint Fredholm operators onto the intersection of the space #* of
bounded self-adjoint Fredholm operators with F(%*?), see also Subsection 1.2. We
postpone the proof that F' as defined in (1.1) is surjective (see Proposition 1.5 below).

The gap metric 6(T1,T3) is given as follows: let P; be the orthogonal projections
onto the graphs of T; in H x H. Then 6(T1,T3) := |P, — P||. It is shown in [11,
Sec. 1] that the Riesz topology is finer than the gap topology. By an example due
to Fuglede (presented in loc. cit., see also Example 2.14 below) the Riesz topology is
not equivalent to the gap topology and hence the Riesz topology is strictly finer than
the gap topology. This means in particular that the Riesz map F is not continuous on
(¢**,6). This was also noted in [2, Sec. 4.2].

The next result shows that, similarly as for the Riesz topology, the gap topology
can also be obtained from a map into the bounded linear operators.

Recall that two metrics for the same set are (topologically) equivalent iff they define
the same topology and (uniformly) equivalent iff they can be estimated mutually in a
uniform way. In the latter case id : (X, ;) — (X, ;) and id : (X,d5) — (X,6,) are
Lipschitz continuous and thus uniformly continuous.

THEOREM 1.1. (a) On € the gap metric is (uniformly) equivalent to the metric v
given by

VT, To) = (T1 +9)7" = (Te +14) 7. .

(b) Let & : R = S'\ {1},z — 2=% denote the Cayley transform. Then k induces a
homeomorphism

k:E*(H) — {Ue%H) | U-1 is injective }

R (1.2)
T~ k(T)= (T - (T+14)".

More precisely, the gap metric is (uniformly) equivalent to the metric 5 defined by

—~

8(Th, T2) = ||6(Th) = &(T2)|| = 37(T1, T).

PROOF. First we recall that for T € ¥°* the orthogonal projection Pr onto the
graph of T is given by

Rr TR -
(£ o), Bom 419 (1.3
Hence, the gap metric § is (uniformly) equivalent to
61(Ty, T2) = |, — Rp,|| + [T\ Rr, — T2Rpll, (1.4)

(see also [5, Lemma 3.10]). The identities
(T—i)"'=T+)(T*+ 1) =TRr +iRr,
(T+i)'=(T -)(T*+ 1) =TRy — iRy




4 BERNHELM BOOSS-BAVNBEK, MATTHIAS LESCH, AND JOHN PHILLIPS
yield
1 e N , . .
Rt f"z—i((T i) = (T +9)7),

1 T € €%, (1.5)
TRr = 5((T )+ (T +9)7Y),

and we infer that the metric 4, is (uniformly) equivalent to the metric v given by

YT T) = 5 (1T +0)7 = i)+ 1T - )7 = (T =) 7)
= (T +0)7 = G+

In the last equality we have used that for any A € %(H) one has ||A]| = ||A*||. This
proves (a).

* To prove (b) we note for T € €** the identities rng(T" + %) = H and
k(T)=1-2i(T+i)7 L. (1.7)

(L.6)

That implies
IT:+ 6™ = (T 4+ )7 = 58T - KT, (18)

This shows that the gap metric and the metric 8 are (uniformly) equivalent. This
equivalence implies that the Cayley transform is a homeomorphism onto its image. It
remains to identify the image of the Cayley transform.

Given T € %** its Cayley transform «(T') is certainly a unitary operator. To show
that x(T) — I is injective consider z € H such that (T)z = z. In view of (1.7) this
implies

r=k(Tzx =z - 2T +1) 'z,
thus (T'+ )~z = 0 and hence z = 0.

Conversely, let U be a unitary operator such that U — I is injective. From the
following Proposition and Corollary, we obtain the existence of a T' € ¥** such that
k(T) = U. The Theorem is proved. O

PROPOSITION 1.2. IfU is unitary and U —1I is injective, then T := i(I+U)(I-U)!
is self-adjoint on dom(T) := rng(I — U). Moreover, T =i(I —U)™*(I +U).

A similar result is proved in [15, Theorem 13.19]. Our argument seems to be shorter
and more appropriate in our context.

PRrOOF. rng(I — U) = ker(I — U*)* = ker(I — U)* = {0}* = H since U normal
implies ker(I — U*) = ker(I ~ U). Thus, dom T is dense in H. Now,

T+ -U)y'=1-U)y'I-D)+U)I-U)™
=(I - U)-l(I + U)‘mg(1~U) c- U)_l(I +U).
On the other hand, if z € dom((I — U)~Y( + U)) then
(I+U)z € dom((I - U)™") = mg(I - U),
so there exists a y € H with (I + U)z = (I — U)y. Solving:
r=(I-Uy+{I-U)z -z
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and so z = (I ~ U)3(z +y) € dom[(I + U)(I —U)~*]. Thus,
‘ T=iI+U)I-U)"t=i(I-U)"YI+U).
It is an elementary calculation that 7' is symmetric and so
TCT =—i(I-U)"YI+U"

(we have the since I + U is bounded and on the left in the formula for T, see e.g.
[13, p. 299]) and by the same argument as for T we get

T =—i(I -U)"YI+U") =—i(I+ U -U")"
and T is symmetric, so that
T*CT*=iI-U)'(I+U)=T.
Hence, T =T"*. O

W9

COROLLARY 1.3. With U and T as above, k(T) = U.

PROOF.
(T+i)=iI-U)'I+U)+iI-U)"'(I-0)
=4[ -U)y"t-2=2(I-U)"
so that,
(T +4I)™ ' = %(I -U).
By a similar calculation,
(T—-il)=2i(I-U)"'U=2U(I -U)!
so that,
k(T) = (T —i)(T+il)"' =U.
a
REMARK 1.4. (a) In the definition of the metric v in (1.6) we may replace i by —i

or, more generally, by any —\ with A € o(T1) N o(T3) . All these metrics are (uniformly)
equivalent with the gap metric.

(b) We recall the basic spectral argument for Cayley transforms, namely that the iden-
tity A\ — T = (A +14)(k(A) = &(T))(I — &(T))~! implies

A€specT <= k() € speck(T), (1.9)
A €specgieee I <= K(A) € specgieer K(T) . (1.10)
Here specg,,. denotes the discrete spectrum, cf. subsection 1.2 below.

Following the same pattern as the preceding proof of Proposition 1.2 we show
PROPOSITION 1.5. If S is a bounded self-adjoint operator with ||S|| <1 aend S+ I
injective, then T := S(I — S"’)‘é is densely defined and self-adjoint. Moreover,

T=(-5%"%5 and S=T(I+T?)%.
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PROOF. Since I — S? is injective it has dense range and so (I —52)~! and (I — §2)~2
are densely defined and self-adjoint. Since S commutes with (I — Sz)% we have that
S(I—S%)~% C (I - S$%)~2S by an argument in Proposition 1.2. On the other hand, for
z € dom((I — $?)72S) we have Sz € dom((I — $%)~7) = mg((I — S?)%) so that

Sz = (I - $%)%y
for some y. Hence, S2¢ = S(I - §2)3y = (I - $2)28y. Or, (I—5%)z = z— (I — 52)% Sy.
That is,
z=(-8z+(I-8%iSy=(I-S%i((I-S%iz+Sy)
is in the range of (I — S?)7 which is dom((I — S?)~1) = dom(S(I — S$?)~%). That
is, (I — S2)~3S = S(I — S?)~2. By an argument in Proposition 1.2, this implies that
T := (I — §%)7%S is self-adjoint.
Now, since S commutes with (I — S2)~2 one calculates

I+TH=I1+(I-8)1S?=(I-SH)(I-S)+S)=(I-5)".
From this we easily calculate T(] +T2)~% = §. O

It was proved in [5, Addendum] that the topology induced by the gap metric on
the set of bounded operators is the same as the topology induced by the natural metric
s(Th,T3) = ||Ty — T3||. However, the reader should be warned that the metric s is not
(uniformly) equivalent to the gap metric. In other words the uniform structures induced
by the gap metric and by the operator norm on the space of bounded linear operators
are different. This follows from the fact that the metric s is complete while the gap

metric on the set of bounded operators is not complete. The latter follows from the
following result.

PROPOSITION 1.6. With respect to the gap metric the set 9**(H) is dense in
&2 (H).

PROOF. Let T € €** and denote by (E))xecr the spectral resolution of T. Put

T, = / ME, . (1.11)
[-n.m]

Then T, is a bounded self-adjoint operator and

FOT) =W+ = @4 =1 [ Giam) <

IAl>n

Hence T, = T in the y—metric. In view of Theorem 1.1 (a) this proves the assertion. O

(1.12)

1.2. A characterization of €.#%. We present an elementary characterization of
the space ¥.F** of (not necessarily bounded) self-adjoint Fredholm operators. For the
general theory of unbounded Fredholm operators we refer to [9, Sec. IV.5].

We recall that for a closed operator T' in a Hilbert space the essential spectrum,
specs 1', consists of those A € C for which T' — ) is not a Fredholm operator. Then
SpecC., I is a closed subset of specT. The discrete spectrum, specy, I's consists of
those isolated points of spec T which are not in spec, T'.
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It is well-known that if T is self-adjoint then X is an isolated point of specT iff
rng(T — M) is closed ([6, Def. XII1.6.1 and Thm. XIII.6.5]; note that loc. cit. define
the essential spectrum differently). Consequently, for a self-adjoint operator T we have

SP€Cyiser I = SpecT \ specg T
= {A € C| A is an isolated point of specT which is
an eigenvalue of finite multiplicity of T}
= {A € C| dimker(T — A) < oo and rng(T — )) closed }.

We note an immediate consequence of the Cayley picture:
PROPOSITION 1.7. For A € R the sets
{Te®?H)| r¢gspecT} and {T € €*(H) | A & spec, T}
are open in the gap topology.

PROOF. By Theorem 1.1 (see also Remark 1. 4b) we have
{T € €% H) | Mg specT} =k""{U € %(H) | &()) &specU},
{Te€*(H) | Agspece , T} =6 {U € %(H) | k(N) & spece, U},

where the spaces of unitary operators on the right side are open in the range of k by

the openness of the spaces of bounded invertible resp. bounded Fredholm operators.
Now the assertion follows. . O

COROLLARY 1.8. The set € = {T € €°* | 0 & spece,, T} = 67 (s%),
U = {U € U | -1 ¢ spece U}, of (not necessarily bounded) self—adjomt Fred-
holm operators is open in €*2.

REMARK 1.9. By Proposition 1.6, the preceding Corollary implies that the set F
is dense in €.#** with respect to the gap metric.

Contrary to the bounded case and somewhat surprisingly the space of unbounded
self-adjoint Fredholm operators is connected. More precisely we have:

THEOREM 1.10. (a) The set €% is path —connected with respect to the gap metric.
(b) Moreover, its Cayley image

i ={U €% | U+1I Fredholm and U — I injective} = k(EF*)
18 dense in g% .

PROOF. (a) Once again we look at the Cayley transform picture. We shall use the
following notation:

Unj = {U € % | U - I injective} = k(™).

Note that #%;,; = #% N %;. We consider a fixed U € ¢%;,;. Then H is the direct
sum of the spectral subspaces Hy of U corresponding to [0,7) and |7, 27] respectively
and we may decompose U = U, @& U_. More precisely, we have

spec(U;) C {e* | t €10,7)} and spec(U) C {e* | t € [r,2n]}.

Note that there is no intersection between the spectral spaces in the endpoints: if —1 be-
longs to spec(U), it is an isolated eigenvalue by our assumption and hence belongs only
to spec(U_); if 1 belongs to spec(U), it can belong both to spec(U, ) and spec(U_), but
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in any case, it does not contribute to the decomposition of U since, by our assumption,
1 is not an eigenvalue at all.

By spectral deformation (“squeezing the spectrum down to +¢ and —4”) we contract
U, to ¢, and U_ to —¢l_, where I denotes the identity on H.. We do this on the
upper half arc and the lower half arc, respectively, in such a way that 1 does not become
an eigenvalue under the course of the deformation: actually it will no longer belong to
the spectrum; neither will —1 belong to the spectrum. That is, we have connected U
and il, @ —il_ within kK(FF?).

We distinguish two cases: If H_ is finite-dimensional, we now rotate —iI_ up
through —1 into 4I_: More precisely, we consider {il, @ e™/2+(1=8m[ }, ... This
proves that we can connect U with iI, @ ¢/_ = iI within k(€%#**) in this first case.

If H_ is infinite-dimensional, we “un—contract” —iI_ in such a way that no eigen-
values remain. To do this, we identify H_ with L?([0,1]). Now multiplication by —¢ on
L%([0,1]) can be connected to multiplication by a function whose values are a short arc
centred on —i and so that the resulting operator V_ on H_ has no eigenvalues. This
will at no time introduce spectrum near +1 or —1. We then rotate this arc up through
+1 (which keeps us in the right space) until it is centred on +i. Then we contract the
spectrum on H_ to be +i. That is, also in this case we have connected our original
operator U to +iJ. To sum up this second case (see also Figure 1):

Un~il,®—il_ ~il, ®V_~il, @™ V_forte|0,1]
~il, ®=Vo~il @ —(—il) ~ il .
To prove (b), we just decompose any V € g% into V = U®I; where U € #%n;(Hop) and
I, denotes the identity on the 1-eigenspace Hy = ker(V — I) of V with H = Hy & H,

an orthogonal decomposition. Then for ¢ > 0, U @ €I} € $%;,; approaches U for
e—0. 4

REMARK 1.11. The preceding proof shows also that the two subsets of €%
€Z5 = {T € €F* [ speces(T) C Cy },

the spaces of all essentially positive resp. all essentially negative self-adjoint Fredholm
operators, are no longer open. The third of the three complementary subsets

CFe =67\ (677 UG

is also not open. We do not know whether the two “trivial” components are contractible
as in the bounded case nor whether the whole space is a classifying space for K! as is
the non-trivial component in the bounded case.

Independently of the Fuglede example, the connectedness of €% and the non-
connectedness of #°* show that the Riesz map is not continuous on ¥.#** in the gap
topology.

2. Spectral flow for unbounded self-adjoint operators

2.1. First approach via Cayley transform and winding number. In [10,
Sec. 6] it was shown that the natural inclusion

Uw(H):={Ue¥ | U—1Iiscompact } — % (H):={U€ U | —1 ¢ spece; U}
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U = U+ @ U -

@ Case I1

\/ A
= .

NV

N?,I+®ZI

i/

Case 1

FIGURE 1. Connecting a fixed U in g%,y,; to il. Case I (finite rank U_)
and Case 1I (infinite rank U_)

is a homotopy equivalence. As a consequence the classical winding number extends to
an isomorphism

wind : m (% ,1) — Z, (2.1)
see also [7, Appendix] for a different proof (cf. also Proposition 2.5 below).
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Furthermore, in [10, l.c.] it was shown that to any continuous (not necessarily
closed) curve f : [0,1] = #% one can assign an integer wind(f) in such a way that the
mapping wind is ) ' ,

1. Path additive: Let fi, fo : [0,1] = % (H) be continuous paths with

f2(0) = A(1).
Then
wind(f; * f2) = wind(f,) + wind(f2).
2. Homotopy invariant: Let fi, f» be continuous paths in ¢% . Assume that there
is a homotopy H : [0,1] x [0,1] — #% such that H(0,t) = fi(t), H(1,t) = f2(t)
and such that dimker(H(s,0) + I),dimker(H(s,1) + I) are independent of s.

Then wind(f1) = wind(f). In particular, wind is invariant under homotopies
leaving the endpoints fixed.

Roughly speaking wind is the ‘spectral flow’ across —1, i.e. wind counts the net number
of eigenvalues of f(t) which cross —1 from the upper half plane into the lower half
plane. One has to choose a convention for those cases in which —1 € spec f(0) or
—1 € spec f(1). Contrary to the convention which was chosen in [10], our convention
is chosen as follows: choose &€ > 0 so small that —1 ¢ spec(f(j)e**),7 = 0,1 for all
0 < |¢| < e. Then put wind(f) := wind(fe*). This means that an eigenvalue running
from the lower half plane into —1 is not counted while an eigenvalue running from the
upper half plane into —1 contributes 1 to the winding number.

In analogy to [12] we can give an explicit description of wind(f). Alternatively, it
can be used as a definition of wind:

PROPOSITION 2.1. Let f : [0,1] — g% be a continuous path.
(a) There is a partition {0 =ty < t; < --- < t, = 1} of the interval and positive real
numbers 0 < e; <m, j =1,...,n, such that ker(f(t) — e'™*)) = {0} fort;_y <t < t;.
(b) Then

wind(f) = zn: k(ti,€5) — k(tj-1,€;5), (2.2)

where

k(t,e;) == }: dim ker(f(t) — ' ™9),

(¢) In particular, this calculation of wind(f) is independent of the choice of the seg-
mentation of the interval and of the choice of the barriers.

ProOF. In (a) we use that f(t) € % and f continuous. (b) follows from the path
additivity of wind. (c) is immediate from (b). G

This idea of a spectral flow across —1 was introduced first in [2, Sec. 1.3], where it
was used to give a definition of the Maslov index in an infinite dimensional context.

After these explanations the definition of spectral flow for paths in €% is straight-
forward:

DEFINITION 2.2, Let f : [0,1] — €%%(H) be a continuous path. Then the spectral
flow of SF(f) is defined by

SF(f) := wind(k o f).
From the properties of k and of the winding number we infer immediately:
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PROPOSITION 2.3. SF is path additive and homotopy invariant in the following
sense: let fi, fo : [0,1] — GF® be continuous paths and let

H:[0,1] x[0,1] = €=
be a homotopy such that H(0,t) = fi(t),H(1,t) = fo(t) and such that

dimker H(s,0),dimker H(s,1) are independent of s. Then SF(f;) = SF(f;). In
particular, SF is invariant under homotopies leaving the endpoints fized.

From Proposition 2.1 we get

PROPOSITION 2.4. For a continuous path f : [0, 1] = £ our definition of spectral
flow coincides with the definition in [12].

Note that also the conventions coincide for 0 € spec £(0) or 0 € spec f(1).

Returning to the Cayley picture, we have that wind induces a surjection of 7, (¥ in;)
onto Z. Because Z is free, there is a right inverse of wind and a normal subgroup G of
T1(#%in;) such that we have a split short exact sequence

0 — G — 1(s%nj) — Z — 0. (2.3)

For now, an open question is whether G is trivial: does the winding number distinguish
the homotopy classes? That is, the question is whether each loop with winding number
0 can be contracted to a constant point, or, equivalently, whether two continuous paths
in €#% with same endpoints and with same spectral flow can be deformed into each

other? Oris mi(s%n;) = Z x| G the semi—direct product of a non-trivial factor
G with Z?
We know a little more than (2.3):

PROPOSITION 2.5. There ezists a continuous map s% — U, which induces an
isomorphism (g% ) — m(%s) = Z. Moreover, the restriction of this map to s%n;
induces a map such that the following diagram commutes .

m (ﬂ%inj) — Wl(%oo)
wind \, = | wind (2.4)
Z

PROOF. Let Uy € #% . Then there exists a neighbourhood N, of Uy in g% and
€0 > 0 so that for each U € N,, the projection x,,(U) has finite rank where Xe, denotes
the characteristic function of the arc {¢* | t € [ — &g, 7 +£¢]} of the unit circle T. Now,
there is a continuous function f., : T — T so that:

ful) =47 forz € {e*|ter— %, m+ 2]}
°° 1 for z € {e |t € [0, — eo) U[T + &0, 2]}
with

|
|
I {e|te[m—eo,m— L]} — {&* |t €[0,m —eo]} is injective

Tt It e m+ L, m+eo]} - {€ | t € [+ e, 27} is injective. |
Then, actually, U — fo,(U) : No, — %! \

Since #% is metric it is paracompact and so the open cover {N¢ (U)} has an open |
locally finite refinement, say {N,} and each N, carries a function fa 1 No = U
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FIGURE 2. Convex regions of finite linear combinations

given by a function f, : T — T corresponding to a positive gg. We let {p,} be a
partition of unity subordinate to the cover. Then f : % — Z(H) is continuous
where f(U) := Y, pa(U) fo(U). We claim that f(U) is normal and invertible so that
g(U) = f(U)|f(U)|™! is unitary. To see this, we observe that for each single U we have
FU) =Y, Mifa, (U) with the f,, as above. Moreover, if we let § denote the minimum
of the corresponding {3e,,} then h = 37| \; fo, satisfies

h(z) =z forall z € {e"* |t € [r -6 m+d]} (2.5)
h(z) =1 forall z € {e* |t e [0,A]U2m — A, 27]}, © (2.6)

where A = maxe,, > 0 and xja 2r-a)(U) is finite-rank; h(z) lies in one of the shaded
convex regions of Figure 2 for all other z on the circle.
Thus, f(U) = h(U) is normal and invertible. Moreover, since each

fa;(U) € % C {I + Finite ranks},

f(U) is in {I + Finite ranks} so that g(U) = f(U)|f(U)|™" is in . Moreover,
clearly xs(U) = xs5(9(U)) and so we get the commuting diagram (as the covering is
neighbourhood—finite we get x5(V) = xs(g(V)) for V in a neighbourhood of U. a

Summing up it remains an open problem to determine the fundamental group of
the space ¥ #%*(H) or, even more, to determine whether, as in the bounded case, it is
a classifying space for K.

Robbin and Salamon [14] introduced the spectral flow for a family of unbounded
self-adjoint operators under the assumption that the domain is fixed and that each
operator of the family has a compact resolvent. Along the lines of their method one
can prove the following generalization of [14, Theorem 4.25]:

PROPOSITION 2.6. Let f : [0,1) - €F*(H) be a closed continuous path. Then
there is a continuous path of self-adjoint matrices g : [0,1] — Mat(n, C) such that f®g
is homotopic to a closed continuous path of invertible operators

h:[0,1] » ¥Z=(H & C*).

If h were a family of bounded invertible operators then it would be clear that it is
homotopic to a constant path. Unfortunately, this is not clear for a path of unbounded
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operators. If we could conclude that h is homotopic to a constant path then we would
know at least that the “stable” fundamental group of ¥#%*(H) is isomorphic to Z.

2.2. Second approach, after [12]. There is another way of looking at continuous
curves of self-adjoint Fredholm operators which more closely resembles what is done
in the bounded self-adjoint setting. The fact that one can (continuously) isolate the
spectra of the unbounded Fredholm operators in an open interval about 0 is quite
appealing from an operator algebra point of view: it is surprising that this can be done
without the Riesz map being contmuous' Therefore both approaches are included in
this note.

In [12] the third author introduced a new method to define spectral flow of a con-
tinuous family of bounded operators. The interesting new feature of his approach was
that it works directly for any continuous family without first changing the family to a
generic situation (see also Proposition 2.1 above).

In this subsection we adapt the method of [12] to unbounded operators

LEMMA 2.7. Let K C C be a compact set. Then {T € | K C o(T } is open in
the gap topology. Here, o(T) := C\ specT denotes the resolvent set of T

Similarly, {T € €%* | K C 0ess(T)}, 0ess(T) := C \ speceg(T), is open in the gap
topology.

PROOF. In view of Theorem 1.1 we find
{Te#® | KCo)}={T €%* | specT C K°NR}
={T € €= | speck(T) C k(K°NR) U {1}} (2.7)
=k H{U e | specU C k(KcﬂR) u{1}}.
Since K is compact the set k(K¢ NR) U {1} is open. Consequently
{Ue# | specU C k(K°NR) U{1}}

is open and since & is a homeomorphism we reach the first conclusion. .
The proof for gess(T) instead of p(T') proceeds along the same lines. a

LEMMA 2.8. Let K C C be a compact set and let Q := {T € €** | K C o(T)} be
equipped with the gap topology. Then the map R: K X Q — B,(A\,T) — (T — X~ i
continuous.

PRrROOF. For (A, T) € K x ) we have
RAT) =T -N"'=I-G+N)T+)y )T +4)

= F\(T+9)™) =FoG\T). (28)
In view of Theorem 1.1 the map
G:KxQ— Kx{Sed* | (K+i)" coS)} 29)
AT) = (A (T+9)7) )
is continuous. Furthermore, the map
F: Kx{Se®B| (K+i'cp®S)} — B (2.10)
(A, S) = (I-@GE+A)S)"1Ss

is continuous. This proves the assertion. O




14 BERNHELM BOOSS-BAVNBEK, MATTHIAS LESCH, AND JOHN PHILLIPS

LEMMA 2.9. Let a < b be real numbers. Then the set
Qpp = {T € € la,bgéspecT} = - -
is open in the gap topology and the map
Qup — B, T — 14(T)
s continuous.

PROOF. That (), is open follows from Proposition 1.7. Next let I" be the circle of
radius (b — a)/2 and center (a + b)/2. Then

_ 1 _ -1
1y (T) = 57 /F(/\ T) " dA. (2.11)
The assertion now follows from Lemma, 2.8. O

We collect what we have so far:

PRroPOSITION 2.10. Fiz Ty € €%°*. (a) Then there is a positive number a and an
open neighbourhood A C €.%%* of Ty in the gap topology such that the map

N — B, T+ 1[_a,a](T)

is continuous and finite-rank projection-valued, and hence T — T1_,4(T) is also
continuous. (We may as well assume the rank to be constant).

(b) If —a < ¢ < d < a are points so that ¢,d ¢ spec(T) for all T € A then the
map T — 11, 4(T) is continuous on A and has finite rank on A". Of course, on any
connected subset of A this rank is constant.

PROOF. Ty € €% is equivalent to 0 & spec.(To). Thus either 0 ¢ spec Ty or 0 is
an isolated point of specTy and an eigenvalue of finite multiplicity. Hence there is an
a > 0 such that specT N [—a,a] C {0}. By Lemma 2.7 the set

A :={T € €™ | [-a,a] C 0ess(T), and * a ¢ spec(T)} (2.12)

is open in the gap topology and the map T + 1{_q,4)(T) is continuous by Lemma 2.9.
Moreover, A C €.F* and 1[_qq(T) is of finite rank. This follows from the fact that
[~a,a] C gess(T). This proves (a). Now (b) follows from Lemma 2.9. a

REMARK 2.11. The preceding proposition is a precise copy of the corresponding
result for norm—continuous curves of bounded self-adjoint Fredholm operators. It ex-
plains why, after all, spectral flow of gap—topology continuous curves of (possibly un-
bounded) self-adjoint Fredholm operators can be defined in precisely the same way as
in the bounded case and with the same properties. In substance, the proposition was
announced in [4, p. 140] without proof but with reference to [9, IV.3.5] (the continuity
of a finite system of eigenvalues).

Now we proceed exactly as in [12, p. 462]. We strive for almost literal repetition to
emphasize the analogy (and the differences wherever they occur) between the bounded
and the unbounded case.

First a notation: If F is a finite-rank spectral projection for a self-adjoint operator
T, let E2 denote the projection on the subspace of E(H) spanned by those eigenvectors
for T in E(H) having non—negative eigenvalues.
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DEFINITION 2.12. Let f : [0,1] — €£%2(H) be a continuous path. By compactness
and the previous proposition, choose a partition, {0 = ¢y < t; < --- < t, = 1} of the
_interval and positive real numbers ¢;, j = 1,...,n so that for each j = 1,2,...,n the
function ¢ — E;(t) := 1{-,,1(f(t)) is continuous and of finite rank on [t;_i,t;]. We
re—define the spectral flow of f, SF(f) to be

> (dim(BZ (1)) - dim(E (t5-1)) )-
Jj=1

By definition, spectral flow is path additive when defined this way, and we obtain
in exactly the same way as in [12]:

PROPOSITION 2.13. Spectral flow is well-defined, that is, it depends only on the
continuous mapping f : [0,1] » CF.

Propositions 2.10 and 2.13 show that pathological examples like piecewise linear
curves of self-adjoint unbounded Fredholm operators with infinitely fast oscillating
spectrum and hence without well-defined spectral flow are excluded; i.e. cannot be
continuous in the gap topology. '

EXAMPLE 2.14. Let H be a separable Hilbert space and {ex}ren be a complete
. orthonormal system. Consider the multiplication operator which is defined by

T : dom(Tp) — H, Z axer — Z kayes,
k k

with dom(Tp) = {3°, arex | 3 x k?|ak|? < +oo}. Then Ty is self-adjoint and invertible
and so Tp € €F™. Set

Po:H—H, er{lek Hk=n
10 otherwise .

Then the sequence of unbounded self-adjoint Fredholm operators {7}, := Ty — 2P, }nen

converges to Ty for n — 0o in the gap topology. To see this, we apply Theorem 1.1a
and get
1 1
-l st e - -
T To) = || (T +iD) 7 = Ty +iD)7!| = |-— - =
For the Riesz transformation we note, however, that

‘ — 0 for n = 0o. (2.13)

\|Fr,en — Frye,|| = )—1%‘ — 2 for n = oo.

This is the aforementioned Fuglede example. Clearly the full spectrum (i.e. the parts
which are increasingly remote from 0) does not change continuously for n — co. The
corresponding linear interpolations (1 — t)T, + tT,41 all belong to ¥#* and have
rapidly oscillating spectrum also near 0, hence the piecewise linear curve can not be
continuous in the gap topology by the previous proposition; and it is not, as clearly
seen by Theorem 1.1a. We find e.g.

1 1 1 1, 2 1
’)’(ETn + ET"H’TO) 2> “(iTn + '2‘Tn+1 —To)en|| = l; “itn

The example also shows that it is unlikely that the Cayley image o%;,; of €%
can be retracted to the subspace where 1 does not belong to the spectrum at all (that

is the image of #** in g#%,,;). Differently put, it shows that the eigenvalues of the

'—)2forn—-)oo.
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Cayley transforms flip around +1 like the eigenvalues of operators in €. flip around
+o0o. More precisely, consider the sequence of Cayley transforms U, := k(T},) € &% in;-
The spectrum of U, consists of discrete eigenvalues which all are lying in the lower
half plane except one in the upper half plane with a corresponding hole in the lower
half plane sequence, plus the accumulation point 1 where U, — [ is injective, but not
invertible. The same is true for Uy := &(Tp), but now having all eigenvalues in the
lower half plane. By (2.13) the sequence {Uy }nen converges to Up in 5% in;- We see that
the eigenvalues of the sequence flip from the upper half plane to the lower half plane
close to +1 without actually crossing +1. It seems, however, unlikely that there is a
continuous path from U, to U, which avoids any crossing.

Note that the linear path from 7}, to T; is continuous and has SF equal to -1. The
corresponding curve from Uy to U; has one crossing at -1 from the lower half plane to
the upper one.

REMARK 2.15. So far we have established that spectral flow based on the approach
in [12], i.e., Definition 2.12, is well-defined for gap continuous paths of self-adjoint
Fredholm operators. To do this we have repeatedly used the local continuity proposition
(Proposition 2.10) for continuous families in the gap topology. The surprising fact is
that this same local continuity proposition suffices to prove the homotopy invariance.
Initially, this may sound a little counter—intuitive since we admit varying domains for
our operators and therefore might not expect nice parametrizations of the spectrum for
these perturbations.

Of course it would suffice to show that Definition 2.12 coincides with the previous
definition based on the Cayley transform and the winding number (Definition 2.2).
Then, the homotopy invariance of Definition 2.12 would follow from Proposition 2.4
which is based on general topological arguments. We prefer, however, to emphasize the
existence of a self-contained proof based only on Definition 2.2 and Proposition 2.10.

PROPOSITION 2.16. Spectral flow as defined in Definition 2.12 is homotopy invari-
ant.

PROOF. As in [12]. O

As a direct consequence of Proposition 2.1 we obtain:
PROPOSITION 2.17. Spectral flows as defined in Definitions 2.2 and 2.12 coincide.

REMARK 2.18. In spite of the density of #** in ¥.#%* (Remark 1.9) not any gap
continuous path in €.%% with endpoints in £ can be continuously deformed into an
operator norm continuous path in %%, One reason is that the one space is connected,
but not the other by Theorem 1.10a.

3. Operator curves on manifolds with boundary

In low—dimensional topology and quantum field theory, various examples of operator
curves appear which take their departure in a symmetric elliptic differential operator of
first order (usually an operator of Dirac type) on a fixed compact Riemannian smooth
manifold M with boundary . Posing a suitable well-posed boundary value problem
provides for a nicely spaced discrete spectrum near 0. Then, varying the coefficients of
the differential operator and the imposed boundary condition suggests the use of the
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powerful topological concept of spectral flow. In this Section we show under which con-
ditions the curves of the induced self-adjoint L?-extensions become continuous curves

in €#°*(L*(M; E)) in the gap topology so that their spectral flow is well-defined and
truly homotopy invariant.

3.1. Notation and basic facts. We fix the notation and recall basic facts, par-
tially following [4] and [8].

Let D : C®°(M;E) — C®(M;E) be an elliptic symmetric (i.e., formally self—
- adjoint) first order differential operator on M acting on sections of a Hermitian vector
bundle E. Different from the case of closed manifolds, now D is no longer essentially
self-adjoint and ker D is infinite-dimensional and varies with the regularity of the un-
derlying Sobolev space. Among the many extensions of D to a closed operator in
L*(M; E) we recall first the definition of the minimal and the mazimal closed extension
with

, H'(M;E)
dom(D™") = {u € C*(M;E) | suppu C M \ £} and

dom(D™*) = {u € L*(M;E) | Du € L*(M;E)}.
Now we make three basic (mutually related) assumptions:
AssuMPTIONS 3.1. (1) The operator D takes the form

D|y = a(y, T)(% +A;+B;) (3.1)

in a bi—collar U = = x [—¢, €] of any hypersurface = C M \ X, and a similar form in a
collar of £, where
0('7 T)a A‘I’) B‘r : COO(ET) E|ET) — COO(E‘H EIET)

are a unitary bundle morphism; a symmetric elliptic differential operator of first order;
and a skew-symmetric bundle morphism, respectively, with

o7t =-I, o(-,7)A, = —A,0(-,7), and o(-,7)B, = B,o(-, 7).
Here 7 denotes the normal variable and =, a hypersurface parallel to = in a distance 7.
(2) The operator D satisfies the (weak) Unique Continuation Property

ker D™** N dom(D™") = {0}. (3.2)

(3) The operator D can be continued to an invertible le symmetric elliptic differential

operator D on a closed smooth Riemannian manifold M which contains M and acting
on sections in a smooth Hermitian bundle E which is a smooth continuation of E over
the whole of M; in particular, M is partitioned by ¥ so that we have M = M_ Ug M,
with M+ ~_—M, M.ﬂM.,. =6M:t =3

REMARK 3.2. All (compatible) Dirac operators satisfy Assumption (1) (see e.g. [1]
or [8]). Then Assumptions (2) and the sharper (3) follow by [4, Chapters 8, 9].

Let @, o* denote the trace maps from C®(M; E),C®(My; E) to C®(S; E|s). (We
write E also for E and E|y_). Furthermore, r* denotes restriction to M, and et
denotes extension by 0 from M. to M.
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Under the fundamental Assumption (3) it is well-known that the Poisson operator
K is given by 7
) K :=r*D 'g0. ' (3.3)
The Poisson operator K extends to a bounded mapping of H*(E|s) onto
Z**? = {u € H**'?(M,;E) | Du =0 in the interior of M}

and provides a left inverse for ot : Z**Y/2 — H*(E|g). Note that by the ellipticity of
D, the trace map p* can be extended to Z*+1/2 for all real s.
The Calderdn projector is then given by

P. = o'K. (3.4)

It is a pseudodifferential projection (idempotent). By definition, its extension to
H*(Ejz) has the Cauchy data space o™(Z**1/?) as its range. Without loss of gener-

ality we can assume that the extension of P, to L?(Els) is orthogonal (see {4, Lemma
12.8)).

3.2. Well-posed boundary problems. To obtain self-adjoint Fredholm exten-
sions of D in L?(M,; E) we must impose suitable boundary conditions.

DEFINITION 3.3. The self-adjoint Fredholm Grassmannian of D is defined by

Gr®(D) := { P pseudodifferential projection | P* = P, P = go(I — P)o;,
and PP, : tng P, — rng P Fredholm},

where 0y : E|s — Elx denotes the unitary bundle morphism over the boundary accord-
ing to Assumption (1). The topology is given by the operator norm.

It is well-known (see e.g. [10]) that Gr®*(D) is connected with the higher homotopy
groups given by Bott periodicity.

REMARK 3.4. At X, the “tangential operator” Ay defines a spectral projection IT>
of L2(Z; E|s) onto the subspace spanned by the eigensections of Ay for non-negative
eigenvalues, the Atiyah-Patodi-Singer projection. If Ay is invertible, then I, = II,
belongs to Gr®*(D). If Ap is not invertible, then one adds to I, a projection onto a
Lagrangian subspace of ker Ay (relative to o) to obtain an element in Gr**(D).

We recall the main result of the analysis of well-posed boundary problems (see e.g.
[4, Corollary 19.2, Theorem 19.5, and Proposition 20.3]):

THEOREM 3.5. (a) Each P € Gr**(D) defines a self-adjoint ertension Dp in
L*(M; E) with compact resolvent by

dom(Dp) := {u € H'(M;E) | P(uls) = 0}.

(b) The Calderdn extension Dp, is invertible. In fact, the inverse of Dp, can be ex-
pressed in terms of D~ and the Poisson operator:

Di! =r*Dlet — KP, gD ", (3.5)
(¢) The operator Dp is invertible if and only if the boundary integral
PoP,:mgP, »>rmgP
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is invertible. Denote by Qp its tnverse and put Qp := QPP. Then
D' = Dp, — KQpo* Dp!

- ~ 3.6
= (I - KQpo*)(r*D™'e* — KP,gD'e"). (3.6)

LEMMA 3.6. Let H be a Hilbert space. For an invertible pair (P, R) of orthogonal
projections let Q(P, R) denote the inverse of PR : rng R — rng P and put

Q(P,R) := Q(P, R)P.
Then the map
(P,R) ~» Q(P,R) € #(H)

18 continuous tn the operator norm.

PROOF. (P, R) is an invertible pair if and only if

T(P,R) := PR+ (I - P)(I - R)

is an invertible operator. Obviously, (P,R) — T(P,R) is continuous on the set of
invertible pairs. From ‘

T(P,R)R = PR = PT(P,R), T(P,R)I~R)=(I—- P)T(P,R)
we infer _
RT(P,R)"'=T(P,R)y™'P, (I-R)T(P,R)'=T(P,R)"}(I-P)
and so Q(P,R) = T(P, R)"'P, and we reach the conclusion. D

COROLLARY 3.7. For fized D the mapping ‘
Gr**(D) > P~ Dp € €F%(L*(M; E))

is continuous from the operator norm to the gap metric.

PROOF. It follows immediately from (3.6), Lemma 3.6, and Theorem 1.1a (see also
Remark 1.4a) that

{P e Gr*™(D) | (P,Py) invertible} > P w— Dp € ¥€F2L*(M;E))

is continuous. Now consider Py € Gr**(D) such that Dp, is not invertible. Since
Dp, € €Z%(L*(M; E)), the operator Dp, + & = (D + ¢€)p, is invertible for any real
¢ > 0 small enough. Obviously D + ¢ also satisfies Assumptions 3.1, (1)-(3). In view of
(3.4) the Calderén projector Py (D + ¢) depends continuously on € (see also Theorem
3.9 below). Thus for ¢ small enough we have Py € Gr**(D + ¢) with (P, Py(D + ¢))
invertible and the above argument shows that P — (D +¢)p = Dp + ¢ is continuous
at Py. Since € = € - I is bounded, also P — Dp is continuous at P . O
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3.3. The variation of the operator D. We now assume that D depends on an
additional parameter s. More precisely, let (D;)sex , X a metric space, be a family of
differential operators satisfying the Assumption 3.1 (1). We assume moreover that

in each local chart, the coefficients of D, depend continuously on s. (3.7)
In a collar U = [0,¢) x ¥ the operator D,|y takes the form

0
DSIU = os(ya T)(a_T + As,v' + Bs,v-) (3'8)

with o, A, B depending continuously on s and smoothly on 7. By the very definition
of smoothness on a manifold with boundary we find extensions of o, A, B to

(s,7) € X x [-b,¢€)
for some 0 > 0, such that (3.2), (3.3) are preserved and such that the operator
D on M
D, = : 3.9
i {0(%+A+B) on [—d,e) x T (3.9)

is a first order elliptic differential operator on the manifold M; := ([—4,0] x £) Us M.
We fix sg € X. We choose § so small that the operator

0
[tos,(y, —6) (a—T + Agy—5 + Bsy,-s) + (1 — 1)D,] s (3.10)
is elliptic for all ¢t € [0, 1].
Next we choose a cut—off function ¢ € C*°(R) with
1 z'< —%6
_ < -39 3.11
Then we put
D" = po,,(y, — 5)( + Agg,—5 + Bso—s) + (1 — ) Dy’ . (3.12)

Clearly, D,," is an elliptic dlfferentlal operator on My which satisfies assumption (3.1).
Moreover, in the collar U" := [-4, —%5] x ¥ of 0M;s we have

Ds" = o'so(y, _5)(86 + Aso,—6 + Bso —6) =0 (aa A"+ B”)a (3'13)

where o”, A", B" are independent of s and 7.

By construction, D" preserves (3.7). Hence there is an open neighbourhood X of
so such that for s € X the operator D,” is elliptic.

For {D,"};cx, we now apply the construction of the invertible double of [4, Chapter
9]. In view of (3.13), the invertible double will be a first order elliptic differential
operator on a closed manifold which depends continuously on the parameter s.

Summing up we have proved

THEOREM 3.8. Let M be a compact Riemannian manifold with boundary. Let
{Ds}sex , X a metric space, be a family of differential operators satisfying Assump-
tion 3.1.(1) and which depends continuously on s in the sense of (3.7). Then en for each
S0 € X there ezist an open neighbourhood Xy of s¢ and a continuous family {D }se xo Of
invertible symmetric elliptic differential operators D, : C®(M; E) — C>(M; E) with
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13;| M = D, . Here M is a closed Rie@annian manifold with Mo M ; and E — Ma
smooth Hermitian vector bundle with E|py = E.

The continuity of s — D, is understood in the sense of (3.7). However, since M is

closed this means that {D,},cx, is a graph continuous family of invertible self-adjoint
operators.

THEOREM 3.9. Under the assumptions of Theorem 3.8 we have
(a) The Poisson operator K, of D depends continuously on s.
(b) The Calderén projector P,(s) of D, depends continuously on s.
(c) The family

X>s — (Ds)p+(s) € cggsa(LQ(M; E)Y)

18 continuous.
(d) Let {P.}1cy be a norm—continuous path of orthogonal projections in L*(L; E|g) . If

P e[| Gr*D,), tevY,
. seX
then _
XxY 3 (s,t) = (Ds)p, € EF*(L*(M;E))
8 continuous. '

PROOF. (a) follows from Theorem 3.8 and (3.3); (b) follows from Theorem 3.8 and
(3.4); (c) follows from Theorem 3.8 and (3.3). |
(d) Similarly as in the proof of Lemma 3.6 it suffices to prove the claim for (D;)p,
invertible. Now the assertion follows from Lemma 3.6 and (3.6). ‘ d

REMARK 3.10. (a) By different methods, somewhat related results have been ob-
tained in [2] under the highly restrictive additional assumption of a fixed principal
symbol of the family {D;} and a fixed boundary condition.

(b) Corollary 3.7 for fixed D and the preceding Thorem 3.9 for variation of D yleld a
well-defined and homotopy invariant spectral flow by Proposition 2.3, resp. Proposi-
tions 2.16, 2.17. The surprising facts are that

1. gap continuity suffices to establish spectral flow and

2. gap continuity is obtainable from continuous variation of the operator and the
boundary condition without any restrictions and without any need to fix the
domains of the unbounded L?-extensions by unitary transformations.

Roughly speaking, that makes the difference between the present approach and Nico-
laescu’s approach in [11] which requires the continuity of the Riesz map and to achieve
that additional properties of the families of boundary problems.

(c) In some important applications in topology, families of Dirac operators are consid-
ered on non—compact manifolds. The L?-extensions of these operators are self-adjoint
Fredholm operators but do not have a compact resolvent and therefore require a light
modification of our preceding arguments to establish the continuity in the gap metric.
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First we discuss some difficulties with the currently available definitions of spectral flow (SF). Then we use the
Cayley transform to study the topology of the space CF**(H) of (generally unbounded) self-adjoint Fredholm
operators in a fixed complex separable Hilbert space H and give two different (but equivalent) rigorous definitions
of SF as a homotopy invariant for continuous paths in CF**(H). Our study is based on the gap (= projection or
graph norm) topology. As examples, we consider families of operators of Dirac type on a compact manifold M
with boundary, acting on sections of a fixed Hermitian vector bundle E with domains defined by varying global
_well-posed boundary conditions. Such families are continuous families in CF** (L2(1\/1 ,E)) if the coeflicients of
the Dirac operators and the boundary conditions vary continuously. No additional assumptions are required.

This is mainly a report on the topology of the
space CF** of (generally unbounded) densely de-
fined self-adjoint Fredholm operators in a com-
plex separable Hilbert space H and the defini-
tion and homotopy invariance of SF for contin-
uous paths of operators of this kind (relative to
fixed endpoints).

Such paths typically arise in mathematical
physics, e.g. in the derivation of eigenvalue in-

equalities for fermions in gauge theories or in the.

interpolation between two different spacetimes in
M-theory (see e.g. [1], [2]). They arise also in
low—dimensional topology, Floer homology and
Seiberg-Witten theory (see e.g. 3], [4], [5))-

SF has been well investigated for norm-
continuous curves in the space F°* of bounded
self-adjoint Fredholm operators (see [6], [7] for
a rigorous and comprehensive treatment). A spe-
cial feature of the bounded case is that the topol-
ogy of F3? is well known: it has three connected
components made up by the contractible spaces
F3* of essentially positive, respectively essentially

negative operators, and their complement F5* -

which is a classifying space of the topological
functor K!. In particular we have m(F5) =
[St, F2] = K'(S') = Z with the isomorphism
given by SF.

Heuristically, SF is just the net number of

eigenvalues (counting multiplicities) which pass
.through zero in the positive direction from the
start of the path to its end. Once the first homo-
topy group is established and the homotopy in-
variance of SF is proved, the preceding intuitive
definition of SF suffices, also in defining SF' for
(possibly non-periodic) paths because we always
may deform the path into a generic situation.

One of the principal aims of our study is to
specify minimal conditions under which the usual
assertions about SF are true: that is, under the
assumption that we have a path in CF** which is
continuous in the gap metric. Note that in the
previous applications the paths consist of differ-
ential operators (Dirac operators on closed mani-
folds or manifolds with boundary) which are nei-
ther bounded in L? nor, in general, describable
by operator norm continuous paths in 732 .

We refer to [8] for a full length presentation of
our results.

We define the convergence in the space C** of
(generally unbounded) self-adjoint operators in
H by the gap metric, i.e. the convergence of the
orthogonal projections onto the graphs of the op-
erators. The gap metric is (uniformly) equivalent
to the operator metric of the resolvents.

Of course, some care is needed when dealing

with sequences and curves of unbounded opera-

- 0920-5632/02/% - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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tors as the following example may illustrate. It is
a variant of an example due to B. Fuglede (noted
in Ref. [9] and presented in Ref. [10]).

Let {ex}xen be a complete orthonormal sys-
tem for H. Consider the multiplication oper-
ator Ty : D(Tpy) — H defined by ex — kex
with D(Tp) = {Zk ax€x | Sk kak|? < +oo}.
Then Ty, T, € CF**, where T,, := Tp — 2nP,
with P, the orthogonal projection onto the line
through e, for n € N. For the resolvents we have

[(Tn +iD)= = (To +i)7 M| = | 25 — =

i-n i+n — 0.
This gives

Proposition 1. (a) The sequence {T,}nen con-
verges to Ty in CF°° (in the gap metric).

(b) The piecewise linear path of linear interpola-
tions (1 — )T, + tTh41 belongs to CF** and has
rapidly oscillating spectrum near 0 with principal
value of SF equal to 0 (note: this path does not
connect Ty to Tg ).

(c) However, the linear path from Ty to Ty is con-
tinuous and has SF equal to -1.

Clearly, the problem with the preceding exam-
ple is that the path of linear interpolations does
not converge to Tp even though the corners T,
converge to Tp.

To us, the only safe strategy of dealing with SF
of curves of unbounded operators is by reducing
them to curves of bounded operators in operator
spaces with basically known topology. We shall
discuss four different approaches of quite differ-
ent range and value: (i) deformation into F°* by
a density argument - non viable; (ii) Riesz trans-
formation into F** - of limited value; (iii) Cayley
transformation into a subspace of the group U of
unitary operators - of universal value; (iv) piece-
wise reduction to continuous curves of finite range
operators - also of universal value.

(i): On the space B** of bounded self-adjoint
operators the topologies defined by the gap metric
and by the operator norm are equivalent, but the
metrics are not uniformly equivalent. By spectral
resolutions we prove

Proposition 2. The space B** is dense in C% in
the gap metric.

Actually, we can prove that 73 is dense in
CFs2 . However, these two spaces have completely
different topology. E.g., the second space is con-
nected (see Theorem 5 below). Thus, in general-
we cannot deform a continuous path in CF** into
a continuous path in F** even if the endpoints
are in F5*.

(ii): Next we recall that the Riesz map T ~—
Fr :=T(I +T?)~'/2 is a bijection from C** onto
the subset of B%® of all T with |[T|| <1and T+1
both injective. It contracts the spectrum in a
continuous way. In Ref. [9] it was shown that we
can reduce our problem to the bounded case by
the Riesz transform in a special case:

Theorem 3. Fiz a T € CF** so that we have a
continuous translation T : B*®* — CF*® defined -
by C — T 4+ C. Then the combined map F o1y :
B%e — F3@ 45 continuous, and SF is well defined
and homotopy tnvariant for families of the form
{T + C(t)} where {C(t)}icio,1) i any continuous
path in B¢ .

So, for families of Dirac operators we are on safe
grounds, if we fix one self-adjoint L?-extension
of a Dirac operator and vary only the connection
(physically speaking, the background field). On
a closed manifold this means fixing the principal
symbol of the Dirac operators to be considered;
on a manifold with boundary, additionally, this
means fixing a well-posed boundary condition.
This covers most of the classical cases considered
in the 70s and 80s, but not families with varying
domain.

By the example underlying Proposition 1, the
Riesz map is not continuous on the full space
€% and even not on CF°*. Actually, we have
”FTnen - FToen” = I\/‘lz—%{z‘l — 2. So the ap-
proach of the preceding Theorem of establishing
SF by reducing to the bounded case by the Riesz
map is not viable in general.

One way to get around the problems was shown
in Ref. [10] by just defining the metric in C** as
the one which makes F' into a homeomorphism
and then establishing this Riesz continuity for
curves of relatively bounded perturbations of a
fixed (unbounded) operator. A priori, this still
means that the domains remain fixed. However,
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for sufficiently “nice” families of boundary-value
problems, one can transform the varying domains
back to a fixed domain by unitary equivalence
(see [11)).

So much about the non-problematic, restricted
applications. Our purpose, however, is a system-
atic approach in the gap metric. That is, first

we want to establish SF for any gap-continuous

path. This is more demanding than establishing
- it in the Riesz metric and a priori it is not clear
whether this is possible without any restriction.
Second, we shall prove the gap continuity for con-
tinuous paths of boundary problems. This is less
demanding than establishing Riesz continuity and
no special assumptions will be needed.

(iii): Let £ : R — S*\ {1},z = Z=} denote the
Cayley transform.

Theorem 4. The Cayley transform k induces a
homeomorphism & of C** onto

Uy :={U e U(H) | U — I is injective }

by T — w(T) = (T —1)(T+4)"" which maps CF**
onto Uy ;= U NU, , where

FU = {UGU | U+1 Fredholm}.

It is well known (e.g., [5]) that the natural in-
“clusions Uy, — Ux — U are homotopy equiv-
alences, but we do not know whether zl{, and
#U have the same homotopy type. Here the sub-
script to the right, resp. left indicates a property
of U — (1), at the right, resp. left side of the
- spectral circle, i.e. U — I of finite range, compact
or injective, respectively U + I Fredholm.

In particular, zU is a classifying space for
K! with the isomorphism m(xU) = Z given
by the winding number. By combination with
K, this gives a rigorous definition of homotopy
invariant SF for gap-continuous paths in CF®®
which coincides with the established SF for norm-
continuous paths in F52.

The Cayley picture gives us some additional
information by the canonical spectral correspon-
dences and by spectral deformation:

Theorem 5. The set CF** is path-connected
with respect to the gap metric and open in C%%.
Moreover, its Cayley image rlx is dense in zU .

The Cayley picture of the Fuglede Example
(the “corners” of our Proposition 1) indicates the
topological intricacies of the space U, : The
spectrum of U, := k(T,) consists of discrete
eigenvalues which all are lying in the lower half
plane except one in the upper half plane with
a corresponding hole in the lower half plane se-
quence, plus the accumulation point 1 where
U, — I is injective, but not invertible. The same
is true for Up := k(Tp), but now having all eigen-
values in the lower half plane. By Proposition
1.a and Theorem 4, the sequence {Upn}nen con-
verges to Up in sU,. Thus, the eigenvalues of
the sequence flip between the upper half plane
and the lower half plane close to +1 without ac-
tually crossing +1. This phenomenon rules out
the possibility of retracting £U, onto the more
intelligible space of all U € £U with U — I truly
invertible (that is the image of 7% in zU ).

(iv): There is another way of looking at con-
tinuous curves of self~adjoint Fredholm operators
which more closely resembles what is done in the
bounded self-adjoint setting. We show that one
can (continuously) isolate the spectra of the un--
bounded Fredholm operators in an open interval
about 0. This is quite appealing from an operator
algebra point of view: it is surprising that this can
be done without the Riesz map being continuous!

Here, our main result is )

Proposition 6. (a) Let a < b be real numbers.
Then the set Q0 := {T € C** | a,b &specT} is
open in the gap topology and the map Qq p — B*¢,
T - 1[a,b](T) 1S CcONtinuUous.

(b) Fiz Ty € CF*®. Then there is a positive num-
ber a and an open neighbourhood N' C CF** of Ty
in the gap topology such that the map N — B*®,
T — 1lj—aq)(T) is continuous and finite-rank
projection—valued, and hence T — T1j_aq)(T) s
also continuous.

(c) If —a < ¢ < d < a are points so that c,d &
spec(T) for allT € N then the map T +— 1i¢,q)(T)
is continuous on N and has finite rank on N'. Of
course, on any connected subset of N this rank is
constant.

We proceed exactly as in [7, p. 462] and obtain
SF which by definition is homotopy invariant and
coincides precisely with previously defined SF.
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An Example: Paths of Dirac Operators on
Manifolds with Boundary. Now we consider
a fixed compact Riemannian manifold M with
boundary ¥ and a fixed Hermitian vector bun-

dle over M. We assume that M has no closed-

connected component. Let {D;}sex , X a metric
space, be a family of linear symmetric elliptic dif-
ferential operators of first order acting on sections
of E.

We shall specify under which' conditions curves
of self-adjoint L?-extensions become continuous
curves in CFs*(L?(M; E)) in the gap topology.
We make two assumptions:

Assumptions 7. (1) For each s € X, the oper-
ator D, takes the form

0
DSIU —d O's(y, T) (é; + AS,T + Bs’fr> (1)

in a bi—collar U = E x [—¢,¢] of any hypersur-
face = ¢ M \ %, and a similar form in a collar
of X, where 0,(-,7), As +,Bs,» : C®(E,;Elz,) —
C*(=;; E|z,) are a unitary bundle morphism; a
symmetric elliptic differential operator of first or-
der; and a skew—symmetric bundle morphism, re-
spectively, with os(-,7)? = —I, 05(-,7)As, =
—Asr05(-,7), and o5(-,7)Bs, = Bg.0(-,7).
Here 7 denotes the normal variable and =, a hy-
persurface parallel to Z in a distance 7.

(2) In each local chart, the coefficients of D, de-
pend continuously on s.

Condition (1) is satisfied for all operators of
Dirac type. From (1) it follows that all D, satisfy
the (weak) Unique Continuation Property, i.e.,
each u € L?(M;E) with suppu C M \ £ and
Dsu = 0 vanishes identically on all of M [6].

Let P, , denote the Calderdn projection of
L?(Z; E|x) onto the Cauchy data spaces (the
traces at 2 of the kernel of D;). It differs from the
Atiyah—Patodi~Singer projection onto the non—
negative eigenspace of A; ¢ by a smoothing oper-
ator {12). We consider the Fredholm Grassman-
nian Gr**(D;) := {P pseudodifferential projec-
tion with P* = P, P = o4|x(I — P)(os|x)* and
PP, ; :ran P, ; — ran P Fredholm }.

By the method of the invertible double and ex-
plicit calculation of the resolvents (see [6, Chap-
ters 9, 19], {13]) we obtain

Theorem 8. Let {Pi}icy , Y a metric space, be
a norm~continuous path of orthogonal projections
in L*(S; Elz). Let P, € Nyex Gr**(Ds), t € Y.
Then X xY 3 (s,t) + (Ds)p, € CF*(L*(M, E))
is continuous. Here (D;)p, denotes the L[2-
extension of Dy with domain defined by the van-
ishing of Py on the traces at . -

Note: we do not assume that the metric struc-
tures of M and E are product near ¥; nor that the
tangential symmetric and skew—symmetric opera-
tor components A; -, Bs - are independent of the
normal variable near ¥; nor that the principal
symbol of the operator family {D;} is fixed.
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