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Abstract

This PhD thesis consists of fiveé parts: (1) A literature survey and an
overview of a larger research project with the same title, including back-
ground and framework. Then follows the four main papers of the thesis,
presenting completed studies within the larger project: (2) A study on four
students’ task solving difficulties, indicating that the students were more
focused on what is familiar and remembered, than on mathematical reas-
oning and accuracy. (3) An extension of the former study by developing
an analytical framework, and focusing on the quality of their reasoning.
It was found that the reasoning was more ‘ superficially experience-based’
than mathematically based. (4) A study describing detail how most text-
book exercises may be solved without considering the core mathematics of
the textbook, mainly by copying solved examples, and how this may lead
to the behaviour above. (5) A study of the ways students conduct their
homework that, among other things, confirms that they are restricted to
using the superficial procedures found in (4).

The starting point for this thesis is a severe educational problem that is easy
to formulate but difficult to resolve: We are, as organisers of undergraduate
mathematics courses, not able to help sufficiently many students reach a de-
sired level of mathematical competence [see the Background section in part 1 of
this thesis (Lithner, 2001b) for some approximate data on dropout rates etc.].
Larger and larger groups are studying undergraduate mathematics but many of
the students have severe learning and achievement difficulties, and the dropout
rates are far too high. This is a severe problem, not only for many students as
individuals but also for the society since there is a shortage of labour force in
many areas were mathematically intense academic qualifications are required.
It is also a severe problem for our universities, who are not able to provide a
learning environment that can cope with the situation.

It is important to try to improve the learning environment and in order to
do so on a well-founded basis it is crucial to study the following two research



questions, which is the purpose of this thesis: ,

Q1: What are the characteristics of the undergraduate students’ main learning
and achievement difficulties in mathematics?

Q2: What are the main reasons behind these difficulties?

The main purpose behind Q1 and Q2 is to provide a foundation for answering
the following question, which is not primarily within the scope of this thesis:
Q3: What measures should be taken in order to reduce the difficulties?

It is far from possible to provide complete answers to the very difficult and
complex questions Q1, Q2, and Q3, so the thesis will actually treat some sub-
questions of central importance. The thesis is divided in the following five parts,
which are all related through the research questions above, but written as sep-
arate articles that stand by themselves.

Part 1. Undergraduate Learning Difficulties and Mathematical Reas-
oning: A Literature Survey and Project Overview.

This paper (Lithner, 2001b) contains four sections:

Section 1: Background. A short background to the research questions
Q1, Q2, and Q3.

Section 2: Literature survey. A literature survey related to these ques-
tions, where the results are briefly summarised as:

- Though one of the main curricula goals is conceptual understanding, this seems
hard to reach for many students, especially at a global, general level.

- A large number of research articles show the severe unbalance towards rote
learning of algorithmic procedures and the inability to solve non-routine prob-
lems. This seems to be related to weak conceptual understanding.

- There is a pressure on students and teachers to reduce the mathematical com-
plexity in the learning environment, for example to work in a ‘rote learning
mode’,

- It is possible to help students develop better understanding and problem solv-
ing abilities, but this often require more engagement, expertise from teachers,
and significant change in practice.

- Students’ reasoning is not only based on mathematical thinking: the need to
cope (e.g. pass exams) in situations that are difficult for them to handle may
lead them into reasoning of other types.

Section 3: General framework. A framework for the larger project
mentioned above. The learning and achievement difficulties described above are
not in accord with the explicit or implicit goals of the course organiser, and
there are several junctures where discrepancies may exist. One way to structure
the study of possible differences between goals and outcomes is provided by
Robitaille and Garden (1989). They have characterised discrepancies between
the components in the following framework:

“The intended curriculum as transmitted by national or system level
authorities; the implemented curriculum as interpreted and trans-
lated by teachers according to their experience and beliefs for par-
ticular classes; and the attained curriculum, that part of the intended




curriculum learned by students which is manifested in their achieve-
ments and attitudes” (Robitaille and Garden, 1989, p.4).

To make this study of the potential discrepancies between the different aspects of
the curriculum more precise a fourth aspect is added: The received curriculum,
the part of the implemented curriculum that influences the students.

Section 4: The project components. A brief description of the compon-
ents in the larger project, of which four completed studies constitute the main
papers of this thesis and are described below:

Part 2. Students’ general difficulties in task solving

In this study, ‘Mathematical reasoning and familiar procedures’ (Lithner, 2000a),
four first-year undergraduate students were videotaped while working with two
tasks. The underlying question treated was ‘what are the characteristics and
background causes of their difficulties when trying to solve these tasks?’ The
purpose was to give a general survey of their main difficulties, rather than to
go deeply into details. One of the common characteristics was that the stu-
dents were more focused on what is familiar and remembered, than on (even
elementary) mathematical reasoning and accuracy.

Part 3. Students’ reasoning in task solving

This study, ‘Mathematical reasoning in task solving’ (Lithner, 2000c), was based
on the same data as (Lithner, 2000a) but aimed at focusing on, and extending,
the part of the earlier study that concerned task solving strategies. This included
the development of an analytical framework. The results indicated that focusing
on what was familiar and remembered at a superficial level is dominant over
reasoning based on mathematical properties of the components involved, even
when the latter could lead to considerable improvement in progress. The main
difference between (Lithner, 2000a) and (Lithner, 2000c) is that the former is
‘wider’ (all their main difficulties) and the latter is more limited to treating, on
a firmer theoretical foundation, certain types of mathematical reasoning.

The studies (Lithner, 2000a) and (Lithner, 2000c) indicated (together with
studies of research literature) that students focus on routines and superficial
reasoning, and one of the main reasons behind their difficulties is their inability
and/or reluctance to consider the mathematical properties involved in the reas-
oning. The studies below aimed at searching for possible reasons behind these
indications.

Part 4. Strategies and reasoning possible to use when solving text-
book exercises.

The aim of this paper, ‘Mathematical reasoning in Calculus Textbook Exercises’
(Lithner, 2000b), was to study some of the strategies that are possible to use in
order to solve the exercises in undergraduate calculus textbooks. The reason be-
hind this choice of study was that students in general spend most of their study



time trying to solve textbook exercises (Lithner, 2001a). It was described in de-
tail how most exerciseés may be solved by mathematically superficial strategies.
Strategy choices and implementations can usually be based on identifying sim-
ilar solved examples and copying, or sometimes locally modifying, given solution
procedures. One consequence, which is analysed, is that exercises may often be
solved without actually considering the core mathematics of the book section
in question.

Part 5. Strategies and reasoning applied by students when solving
textbook exercises.

The study ‘Students’ Mathematical Reasoning in Textbook Exercise Solving’
(Lithner, 2000d) investigated the ways three students conducted their study
work, in particular their mathematical reasoning when working with textbook
exercises. The results indicated that: (i) Most strategy choices and imple-
mentations were carried out without considering the intrinsic properties of the
components involved in the solution work. This in turn lead to different diffi-
culties. (ii) It was crucial for these students to find solution procedures to copy.
(iii) There were extensive attempts, often successful, to understand each step of
the copied solution procedures, but only locally. (iv) The students made almost
no attempts to construct their own solution reasoning, not even locally. (v) The
main situations where the students’ work were not just straightforward imple-
mentations of provided solution procedures, were where careless mistakes were
made in minor local solution steps when implementing provided procedures.

An informal summary of the studies

The research methods used in the studies above are mainly qualitative: Relat-
ively fine-grained analyses of a small number of students’ reasoning character-
istics in limited task solving situations, where the analyses included the develop-
ment of analytical frameworks. These types of analyses can not determine with
a high degree of accuracy the reasoning characteristics of students in general,
but can a) show the existence of some reasoning types and b) indicate plaus-
ible characteristics of larger student groups. The latter may also be supported
by studying similar or related aspects from other theoretical perspectives or by
other methods, hereby finding reasonable and general explanations behind the
indicated behaviour. One example of this is the study (Lithner, 2000b), which
is partly quantitative (600 textbook exercises were classified), where possible
reasons behind the students’ behaviour in the other studies are investigated.
Though the studies above treat only limited aspects of students’ compet-
ence and limited aspects of the learning environment, and though the work of
rather few students is investigated, the overall picture emerging is coherent: It
seems like the students are founding their work mainly on superficial reasoning,
and that the reasons behind this originates to a large extent from the learn-
ing environment provided by the educational system. This is (at least partly)
already known, as exemplified by the literature review in (Lithner, 2001b), and



it also seems to be experience-based knowledge familiar to many teachers. The
motivation for carrying out as research the studies above is: (i) The studies
(Lithner, 2000c), (Lithner, 2000b), and (Lithner, 2000d) explicitly and primar-
ily address the ways that the students’ reasoning is based on mathematical
properties or not, something that is not done by many other studies. The
studies (Lithner, 2000a) and (Lithner, 2000c) indicated that the domination
of ‘non-mathematical’ reasoning is one of the main causes behind task-solving
difficulties. (ii) The reasoning is studied in rather fine-grained detail. A frame-
work for this type of studies is one of the outcomes. (iii) There are surprisingly
few studies on textbook structure (Love and Pimm, 1996) (especially from the
perspective (i)) and on students’ actual learning strategies and textbook usage.
(iv) The achievement difficulties of mathematics students at all levels have been
known for many years, but the difficulties mainly remain. Extensive research
on the questions Q1, Q2, and Q3 above is still required in order to be able to
construct well-founded measures for improvement of the learning environment.
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Abstract

This paper provides background for and connects a series of completed,
ongoing or planned studies within a project that treats undergraduate stu-
dents’ learning difficulties and the influence from the learning environment
on these difficulties. A particular focus is on students’ ability to use dif-
ferent kinds of mathematical reasoning in task solving. The results from
the studies carried out so far indicate that focusing on what is familiar
and remembered at a superficial level is dominant over reasoning based
on mathematical properties of the components involved, even when the
latter could lead to considerable progress. One of the main reasons behind
this seems to be that the main part of the student’s study work consists
of solving textbook exercises by mathematically superficial reasoning.
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1 Introduction

This paper presents the background and structure of a project containing a
series of studies on learning and achievement difficulties among undergraduate
mathematics students, with a particular focus on the types of mathematical
reasoning students apply when solving different tasks. Section 1 starts by a
general background discussion and some fairly broad research questions are for-
mulated. Several examples of related research are given in Section 2. In Section
3 an comprehensive project structure is presented, and Section 4 contains short
abstracts of the, at this date, completed, initiated, and planned subprojects.

1.1 Background

The number of students entering mathematical studies at university level in
Sweden has increased dramatically in the last 10 years, and probably also in
large parts of the whole world. In a longer perspective one can say that under-
graduate mathematics was an élite education 30-40 years ago, but is today a
mass education. As many as 98 % of each Swedish age group (about 100 000
persons) study mathematics in upper secondary school, for one to three years.
About 15 % of each age group study undergraduate mathematics, mainly as a
service subject within programs in technology, natural science, and computer
science but also in mathematics and teacher programs. Even in the last 5 years
the changes has been so extensive that, together with what some call the ‘crisis
of mathematics’ in the whole Swedish school system, the universities are not
able to cope with the new situation. A severe problem for us who are arranging
undergraduate courses in mathematics, and probably for many of us engaged in
teaching mathematics at any level and at any place in the world, is:

Problem: We are not able to help sufficiently many students reach
a desired level of mathematical competence.

This seems to be a severe problem regardless if one considers students in pro-
grams where mathematics is the main subject or a service subject. There is a
large and increasing demand from the society for persons with different kinds of
mathematically intense academic educations, but our educational system is not
able to provide them in spite of the fact that many want to study mathematics.



In Sweden 10-40 % of the undergraduate students drop out, though they fulfil
the entering qualifications. Of those who pass very roughly 20-50 % do this with
severe difficulties and many reexaminations. The learning and achievement dif-
ficulties seem to be similar in the Swedish upper secondary school (though the
examination system is differernt). Even among the majority who pass there are
clear signs of severe weakness in competence, and it also seems clear that it is
an international problem (see the literature survey below). Central questions in
relation to all this are:

1.2 General research questions

This paper describes a project with purpose to study the following two questions
related to learning undergraduate mathematics:

Q1: What are the characteristics of the students’ main learning and achieve-
ment difficulties?

Q2: What are the main reasons behind these difficulties?

The main purpose behind Q1 and Q2 is to provide a foundation for answering
the following question, which is not primarily treated within this project:
Q3: What measures should be taken in order to reduce the difficulties?

It is far from possible to provide complete answers to the very difficult and
complex questions Q1, Q2, and Q3, so this project will actually treat some
subquestions, but the aim is still to treat parts of decisive importance.

1.3 The role of research

In the literature, in some of my pilot studies, and in discussions with students,
teachers, researchers, administrators, etc., there is a great variety in the pro-
posed answers to the questions above. For example: The students are lazy,
unintelligent, they do not learn anything sensible at the earlier educational
levels. Or that the mathematics learning environments provided by schools and
universities are badly adapted to the real situation: There are too much, or too
little, of tests, grades, algorithms, calculators, lectures, small-group work, pro-
jects, exploratory work, individualisation, real-life math, hard exercises, easy
exercises, etc. Or that the problems are caused by mass education, budget re-
ductions, changed attitudes, social factors, etc. This variety in the proposed
answers leads to two hypothetical conclusions:

(i) The answers are actually very complex. This assertion is strengthened by
Niss [Nis99] when summarising the results of research in mathematics educa-
tion: “The astonishing complexity of mathematical learning. An individual
student’s mathematical learning often takes place in immensely complex ways,
along numerous strongly winding and frequently interrupted paths, across many
different sorts of terrain. Many elements, albeit not necessarily their composi-
tion, are shared by large classes of students, whereas others are peculiar to the
individual.”

(i) Little is known (this is of course a relative statement): There are very few



clear answers to the questions above found in mathematics eduction research,
and thousands of teachers and researchers all over the world have worked hard
with this for a long time but many difficulties remain.

If (i) and (ii) are true, then a consequence is that well-founded measures
are hard to suggest. At the same time, the situation for mathematics teaching
and learning at all educational levels is troublesome today. Students, parents,
teachers, and, not to forget, politicians are all eager to see radical improvements,
but man seem to have a weakness for quick and easy solutions. A thinker (I
forgot who) once said something like: ‘To every complicated question there is
a simple answer that is completely wrong’. Taken together, the speculative
discussion in this section may be one reason why educational development in
mathematics seems to be rather ‘trend-sensitive’, and why the development seem
to progress rather slowly in many areas and often (but far from always) takes

fruitless directions. The most well-known large scale radical shift was perhaps'

the ‘new mathematics’ of the 1970:s, which in many aspects was a failure. There
of course is no doubt that important and influential progress is actually taking
place, for example by teachers, students, administrators, politicians, etc. It is
also reasonable tho assume that most of the educational development is and
will be carried out by devoted teachers. The point to make is that mathematics
education research about the issues above could be a valuable complement to the
development work that is carried out in other ways today, and hopefully make
the development a bit more well founded, stable and less trend-sensitive. For
general overviews on mathematics education research, see for example [Gro92],
[BSSW94], [BCK*96], [SK94], and [Nis99].

Many researchers have described the severe learning and achievement dif-
ficulties of large groups of students, often in relatively elementary situations:
(HD92], [HT96], [Sch85], [Tal96], and [Tho94b]. These difficulties are of differ-
ent kind and lead to different consequences. Some are related to passive and
dependent learning strategies in general, see for example [Ant96], while other
are related to specific areas of mathematics education. Recent research in some
of these areas will be exemplified below.

2 Literature survey

The purpose of this section is to give a non-exhaustive literature survey on
research, structured in relation to the general research questions in Section 1.2:
What does research have to say about characteristics, reasons and measures
concerning learning and achievement difficulties, in general and in particular
with respect to different types of mathematical reasoning? There are many
different ways to structure this survey, and all structures will give categories
were many of the research examples will fit in several categories. For example,
some of the studies described treat characteristics of learning difficulties, which
may often be seen as reasons behind achievement difficulties. In addition to this,
some studies actually treats two or all three of the research questions in Section
1.2. Most of the examples will concern upper secondary and undergraduate



mathematics, but some will be from earlier school levels.

2.1 Ql: What are the characteristics of the students’ main
learning and achievement difficulties?

2.1.1 Conceptual understanding difficulties

Many learning and achievement difficulties are directly related to inherent math-
ematical difficulties within specified concepts, and some concepts seem to be
harder to master than other. One of the more specific results of research in
mathematics education is according to Niss [Nis99]:

“The key role of domain specificity. For a student engaged in learn-
ing mathematics, the specific nature, content and range of a math-
ematical concept that he or she is acquiring or building up are, to a
large part, determined by the set of specific domains in which that
concept has been concretely exemplified and embedded for that par-
ticular student. [..] For example, even if students who are learning
calculus or analysis are presented with full theoretical definitions |..],
and even if it is explicitly stated in the textbook and by the teacher
that the aim is to develop these concepts in a general form [..], stu-
dents actual notions and concept images will be shaped, and limited,
by the examples, problems, and tasks on which they are actually set
to work.”

One aspect of this is treated by Vinner and Tall ((TV81] [Vin91] [Tal92]), when
introducing the notion of “concept image” and describing that these may dif-
fer substantially from the corresponding concept definitions. Selden and Selden
[SS95] introduced the “statement image” as “a unifying extension of the idea of
concept images which we regard as statement images corresponding to defini-
tions”. These notions have clearly helped researchers to structure and analyse
the deep and influential difficulties that arise when students’ representations
and understandings of mathematical ideas are not in accordance with the ac-
tual contents of these ideas and definitions. For example, many students believe
that all functions y = f(z) are continuous (see e.g. [HD92}).

Artigue [Art96] discusses and summarises research on students’ difficulties
with the conceptual field of analysis. One of the main problems is that the
basic objects of the field (real numbers and functions), are not stabilised for the
students when they enter the field, though they have studied these basic objects
earlier. Another problem is the students’ difficulties in fully understanding the
central concept of limit, where primitive ‘pre-understandings’ may have been
sufficient in earlier social or scholar contexts but may in fact hinder the ne-
cessary development towards deeper insights. An extensive discussion about
educational research on (among other things) students’ difficulties with func-
tions and calculus is provided by Tall [Tal96]. It is probably not a coincidence
that Tall also focuses on difficulties related to functions, real numbers, and lim-
its (see also [Tal90]). These concepts are fundamental in calculus and analysis,




and also seem very difficult for many students to understand and master. In a
“study by Williams {Wil91] students were presented with alternative models of
limit and with anomalous limit problems:

“Individual models of limit varied widely even among students who
initially described limits in similar ways. The dynamic aspect of
these models was extremely resistant to change. This resistance was
influenced by students’ belief in the a priori existence of graphs,
their prior experiences with graphs of simple functions, the value
they put on conceptually simple and practically useful models, and
their tendency to view anomalous problems as minor exceptions to
rules. These factors combined to inhibit students’ motivation to
adopt a formal view of limit.”

Other aspects of calculus have also been studied: Mamona [Mam90] stud-
ies “Sequences and series-sequences and functions: students’ confusions”, and
finds vivid evidence of the confusion between sequences and series and a res-
istance to regarding a sequence in any sense as a function. In a study on
“Images of rate and operational understanding of the fundamental theorem
of calculus”, Thompson’s [Tho94a] findings suggest that students’ difficulties
with the theorem stem from impoverished concepts of rate of change and from
poorly-developed and poorly coordinated images of functional covariation and
multiplicatively-constructed quantities. White and Mitchelmore [WM96] found
that concept-based calculus instruction helped students symbolise rate of change
in noncomplex situations but not in modelling or in complex situations, and that
variables were treated as symbols to be manipulated rather than as quantities to
be related. Sierpinska [Sie92] lists several epistemological obstacles, which are
defined as inherent difficulties connected with complex concepts, for example
the concept of function.

MacGregor and Stacey [MS97] describes that (several references are provided):

“Research studies have found that the majority of students up to age
15 seem unable to interpret algebraic letters as generalised numbers
or even as specific unknowns. Instead, they ignore the letters, replace
them with numerical values, or regard them as shorthand names.
The principal explanation given in the literature has been a general
link to levels of cognitive development.”

MacGregor and Stacey found additional origins of misinterpretation that had
been overlooked in the literature: “Intuitive assumptions and pragmatic reason-
ing about a new notation, analogies with familiar symbol systems, interference
from new learning in mathematics, and the effects of misleading teaching ma-
terials.”

Ferrari [Fer97) studied advanced algebraic problem solving among under-
graduate students and found a focus on action-based strategies, i.e. on strategies
depending on physical manipulations which are performed with little semantical



control. He also found that problems requiring relational knowledge or impre-
dicative reasoning may result difficult to a number of students even if only
elementary concepts and methods are involved.

One central type of difficulty is the inability to reach global understandings
of general concepts and their mutual relations. Love and Pimm [LP96, p.387)
claim that:

“Examples are, in some sense, intended to be ‘paradigmatic’ or ‘gen-
eric’, offering students a model to be emulated in the exercises which
follow. The assumption here is that the student is expected to form
a generalisation from the examples which can then be applied in the
exercises” .

It seems like these generalisations are hard to make. Kahn et al. [KAAT98]
considers the extent to which students are acquiring an understanding of math-
ematics as a whole and of the relative significance of different parts of math-
ematics to that whole. Their study indicates that “even after two years of
undergraduate mathematics, many of the students involved had not developed
such an understanding”.

There are also many studies of conceptual difficulties related to more element-
ary mathematics. For example Tirosh and Graeber studied [TG90] preservice
elementary teachers’ beliefs about multiplication and division. Beliefs like ‘mul-
tiplication always make bigger and division makes smaller’ were found, and the
beliefs were also inconsistently related to each other and to their more correct
counterparts. For more general survey articles on (among other things) concep-
tual difficulties at different educational levels, see for example [BS96], [BHPL92],
[BC96], [CBI2], [Gre92], [Fus92], [Kie92], and [Sow92].

2.1.2 Task solving

The research area of learning difficulties is enormous, the examples given in
this survey only indicate a small subset, and the research project described in
Section 4 treats mainly a limited component: The mathematical foundations of
students’ task solving reasoning.

One of the more influential learning environment components consists of the
mathematical tasks. Secondary and undergraduate students normally spend
the main part of of their study time trying to solve mathematical tasks, mainly
from the textbooks [LitOlc]. This is the way students are supposed to practice
and learn mathematics in order to be able to apply their knowledge in other
situations, for example in their further studies, in their future professional life,
or in their everyday life as members of the modern society. In addition, task
solving in exams is often the main tool through which students’ mathematical
competence is assessed. Some examples of research related to different types of
task solving will be described below.



Genuine problems and routine tasks

There are many different types of mathematical tasks and it is essential to
clarify the central distinction between routine tasks and ‘genuine’ or ‘creative’
problems (see [Sch85] and [Sch92] for extensive discussions on this distinction)
before presenting examples of research results. A routine task is one where a
complete solution method is available to the solver, and the solution is carried
out in an algorithmic way by following a set of wellknown procedures. The term
‘algorithmic’ includes all kinds of sequential well-defined procedures, not only
calculational ones. For example to find the zeros of a function by drawing it
on a graphing calculator and zooming in the function’s intersections with the
z-axis. The term ‘problem’ has been used in the literature with many different
meanings, ranging from any mathematical task to the type of tasks only en-
countered by research mathematicians in frontline research [Sch92]. Schoenfeld
[Sch83] found that college mathematics departments’ goals in courses labelled
as ‘problem solving courses’ varied considerably:

“ to train students to ‘think creatively’ and/or ‘develop their prob-
lem solving ability’ (usually with a focus on heuristic strategies);

- to prepare students for problem competitions such as the Putnam
examinations and or national or international Olympiads;

- to provide potential teachers with a narrow band of heuristic strategies;
- to learn standard techniques in narrow domains, most frequently

in mathematical modelling;

- to provide a new approach to remedial mathematics (basic skills)

or to try to induce ‘critical thinking’ or ‘analytical reasoning’ skills.”

In the text below (except perhaps in some quotations), the meaning of the term
‘problem’ is adopted from Schoenfeld [Sch85, p. 74]:

“The difficulty with defining the term problem is that problem solv-
ing is relative. The same tasks that call for significant efforts from
some students may well be routine exercises for others, and answer-
ing may just be a matter of recall for a given mathematician. Thus
being a ‘problem’ is not a property inherent in a mathematical task.
Rather, it is a particular relationship between the individual and
the task that makes the task a problem for that person. The word
problem is used here in this relative sense, as a task that is difficult
for the individual who is trying to solve it. Moreover, that difficulty
should be an intellectual impasse rather than a computational one.
(For example, inverting a 27 x 27 matrix would be an arduous task
for me, and I would most likely make an arithmetic error in the
process. Even so, inverting a given matrix is not a problem for me.)
To state things more formally, if one has ready access to a solution
schema for a mathematical task, that task is an exercise and not a
problem.”

Thus the classification of a task as routine or problem is not determined by prop-
erties of the task alone, but is determined by the relation between the task in



question and the solver. Some additional examples from more elementary math--
ematics are: Dividing 56 marbles evenly among 4 children is probably a genuine
problem for a first-grader, but a routine task to most ninth-graders. Finding the
maximum of a second-degree polynomial may be a problem for a ninth-grader
who just encountered algebra, but should be a routine task for an undergradu-
ate who has studied calculus. In fact, any problem can be turned into a routine
task once you have studied the problem type and its properties sufficiently. The
starting point (which is described in {Sch92]) of the more systematic discussions
on mathematical problem solving is by many seen as Pélya’s famous book “How
to solve it” {P6145) and his following work, for example [P6154].

In {Les94] an overview of research on problem solving is provided, and though
problem solving is perceived as important Lester describes an apparent decline
of research in this area:

“Although conference reports, curriculum guides, and textbooks in-
sist that problem solving has become central to instruction at every
level, the evidence suggests otherwise. WE may have learned quite
a lot over the past 25 years or so about how students learn to solve
problems and how problem solving can be taught, but we have not
learned enough. And yet there are signs that problem solving has
begun to receive less attention from researchers.”

Routine tasks and memorisation

Two of the more central, and recurrent, findings in research on problem solv-
ing are: (i) Students’ focus on rote learning of routine procedures. The rote
learning of routine procedures would not have been so severe if this strategy
had been complemented by the development of other task solving approaches.
(ii) Students’ extensive difficulties in solving non-routine problems. This un-
balance seem to fit very poorly with the mathematics curricula goals of most
countries. Though this has been ‘wellknown’ for quite a while, in particular
from the large body of mathematical problem solving research from the 1980:s,
this unbalance seems persistent. This issue is treated in for example [Sch85],
[Sch92], and [Les94]. Some examples of research related to rote learning of
routine procedures are mentioned in this section.

The unbalance described above is exemplified by the research of Selden,
Selden and Mason: In a study titled “Can average calculus students solve non-
routine problems?” [SMS89] the researchers found that students with math-
ematics grade C had extremely limited problem solving abilities. A natural
question to pursue then was how students with higher grades, A and B, man-
aged to solve creative problems. The disappointing result was summarised in
the title of the follow-up study [SSM94]: “Even good calculus students can’t
solve nonroutine problems”. The researchers concluded that traditional meth-
ods of teaching calculus are insufficient in preparing even good students to apply
calculus creatively. Routine tests confirmed that the students possessed an ad-
equate knowledge base of relevant calculus skills. This is in accordance with the



findings in [Sch85], that students’ problem solving difficulties often had other
background than lacking basic resources.

Schoenfeld, in [Sch85] which is a summary of a series of studies, investigated
what it means to think mathematically, in particular with respect to nonroutine
problem solving. As a result of his studies he distinguished between the following
four aspects of problem solving competence [Sch85, p. 15}:

“Resources: Mathematical knowledge possessed by the individual
that can be brought to bear on the problem at hand. Intuitions
and informal knowledge regarding the domain. Facts. Algorithmic
procedures. ‘Routine’ nonalgorithmic procedures. Understandings
(propositional knowledge) about the agreed-upon rules for working
in the domain.

Heuristics: Strategies and techniques for making progress on un-
familiar and non-standard problems: rules of thumb for effective
problem solving, including: Drawing figures; introducing suitable
notation. Exploiting related problems. Reformulating problems;
working backwards. Testing and verifications procedures.

Control: Global decisions regarding the selection and implementa-
tion of resources and strategies. Planning. Monitoring and assess-
ment. Decision-making. Conscious metacognitive acts.

Belief Systems: One’s ‘mathematical world view’, the set of (not
necessarily conscious) determinants of an individual’s behaviour.
About self. About the environment. About the topic. About math-
ematics.“

Schoenfeld very clearly shows not only that all four aspects are central in suc-
cessful problem solving, but also why and in what sense: Traditionally, problem
solving proficiency has often been considered equal to mastery of Resources.
One could, very simplified, say that according to Schoenfeld problem solving
failure is often caused by that the solver (e.g. student): i) does not master the
Heuristic strategies necessary to make progress in unfamiliar situations; ii) does
not evaluate the potential utility or the progress made concerning the different
solution strategies that are or could have been attempted (Control); and /or iii)
has the Belief that all problems should be possible to solve in similar ways as
routine exercises, essentially by recalling from the memory a short algorithm
and therefore sees no point in attempting other approaches. Schoenfeld also
claims that if teaching is restricted to treat only Resources, which often is the
case, then students will not develop the other three aspects.

2.1.3 Reasoning

The NCTM Commission on the Future of the Standards posed some questions
concerning proof and mathematical reasoning. Ross [Ros98] responds, on behalf
of the MAA, in the following way:

10



“One of the most important goals of mathematics courses is to teach
students logical reasoning. This is a fundamental skill, not just a
mathematical one. [.]| It should be emphasised that the found-
ation of mathematics is reasoning. While science verifies through
observation, mathematics verifies through logical reasoning. [..] If
reasoning ability is not developed in the student, then mathemat-
ics simply becomes a matter of following a set of procedures and
mimicking examples without thought as to why they make sense.”

It is probably not controversial to accept Ross’ position, at least in the inter-
pretation that logical reasoning is a fundamental component in mathematics.
What different types of reasoning are or should be included in school mathem-
atics, where proof is only one type, and how do students handle these types of
reasoning? Some examples will be discussed below.

Task solving reasoning

There seem to be many ways to solve school tasks by superficial reasoning. One
of the more fundamental strategies in lower school levels is described by Hegarty
et al. [HMMO95] as a ‘keyword strategy’ in the context of arithmetic word tasks:

“In the short-cut approach, which we refer to as direct translation,
the problem solver attempts to select the numbers in the problem
and key relational terms (such as ‘more’ and ‘less’) and develops a
solution plan that involves combining the numbers in the problem
using the arithmetic operations that are primed by the keywords
(e.g., addition if the keyword is ‘more’ and subtraction if it is ‘less’).
Thus, the problem solver attempts to directly translate the key pro-
positions in the problem statement to a set of computations that
will produce the answer and does not construct a qualitative repres-
entation of the situation described in the problem.”

Their study shows that in tasks where keyword strategies are unsuitable the
unsuccessful task solvers use keyword strategies, whereas the successful task
solvers base their solution plans on models of the situations in the tasks.

Verschaffel [VCV99] found that elementary school pupils’ modelling and non-
routine problem solving errors often was caused by superficial, stereotyped work
without considering the appropriateness of the actions in relation to the problem
context.

At university level the tasks and the reasoning involved are more complex than
in arithmetic. Szydlik [Szy00] compared university students’ content beliefs
about limits and their sources of conviction. The students were enrolled in a
traditional calculus course using a traditional textbook. The data suggested
that students with external sources of conviction (the authority of a teacher or
a textbook) gave more incoherent definitions, held more misconceptions, and
were less able to justify their calculations than those with internal sources of
conviction (appeals to empirical evidence, intuition, logic, or consistency).
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Cifarelli [Cif98] interviewed 14 college students solving algebra word tasks,
with the aim of identifying and describing their cognitive actions in resolving
the genuinely problematic situations they faced while solving the tasks. One
outcome of the study was the formulation of three increasingly abstract levels
of structural knowledge, and a framework for a theory of representation that
is activity-based and consistent with a view of knowledge based on the idea of
viability.

Tirosh and Stavy [TS99] describes (references are given) that many responses
which the literature describes as alternative conceptions could be interpreted as
evolving from common, intuitive rules. They had noted that students react
similarly to a wide variety of conceptually unrelated situations. Tirosh and
Stavy found an intuitive ‘rule’ (Same A — same B) that could predict some of
the irrational behavior: When two systems are equal with respect to a certain
quantity A but differ in another quantity B, students often argue that ’Same
amount of A implies same amount of B’.

A very natural question to study is ‘why do successful students succeed and
why do unsuccessful fail’? Due to the complexity of mathematical learning
mentioned in Section 1.3, exhaustive answers to this seemingly simple question
seem far away.

Tall and others ([FT96], [GT93], [GT94], [TR93]) reaches the somewhat un-
expected conclusion that one of the main characteristics of unsuccessful students
is that they are actually performing a more difficult kind of mathematics than
those who succeed. The successful ones have a flexible way of thinking which
makes mathematics easier to do and to think about, and are able to compress
knowledge into an easy-to-handle and flexible form. The less successful learn
isolated techniques which make higher levels increasingly difficult, and focus
procedures on physical objects. The authors consider the duality between pro-
cess and concept in mathematics and define a ‘procept’ to be a combined neutral
object consisting of a process, a concept produced by that process, and a symbol
which may be used to denote either or both. I.e. 3 + 2 is either the process
of addition of the numbers 2 and 3, or the concept of sum. The ambiguity of
notation allows the successful thinker the flexibility in thought to move between
the process to carry out a mathematical task and the concept to be mentally
manipulated as part of a wider mental schema. The authors hypothesise that
the successful mathematical thinker uses a mental structure that is manifest in
the ability to think proceptually, and give empirical evidence to support the
hypothesis that there is a qualitatively different kind of mathematical thought
displayed by the more able thinker compared to that of the less able one.

Some of the characteristics of the successful graduate students in Carlsson’s
[Car99] study of successful students were that they were very confident and per-
sistent when solving complex mathematical tasks. They frequently attempted
to classify the task as one of familiar type, and their answers appeared to have
a logical foundation.
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Proof reasoning : -

Many studies on mathematical reasoning are restricted to reasoning related
to the strict reasoning in mathematical proof. In [P6154] Pélya discusses the
relation between formal demonstrative reasoning (deductive proof) and the more
informal and intuitive plausible reasoning:

“We secure our mathematical knowledge by demonstrative reason-
ing, but we support our conjectures by plausible reasoning. A math-
ematical proof is demonstrative reasoning, but the indictive evidence
of the physicist, the circumstantial evidence of the lawyer, the doc-
umentary evidence of the historian, and the statistical evidence of
the economist belong to plausible reasoning. [..] In strict reasoning
the principal thing is to distinguish a proof from a guess, a valid
demonstration from an invalid attempt. In plausible reasoning the
principal thing is to distinguish a guess from a guess, a more reason-
able guess from a less reasonable guess. If you direct your attention
to both distinctions, both may become clearer.”

Pélya mainly treats one type of plausible reasoning, inductive reasoning, but
one of his main points is that other types of reasoning than the strict proof are
central in mathematics.

There are many studies on different aspects of learning, understanding, and
implementing proof. In a study of students’ notion of proof, focusing on how
they arrive at their conviction of the validity, Balacheff [Bal88| singled out two
types: Pragmatic ‘proofs’ are about ‘showing’ that the result is true because ‘it
works’. These do not actually establish the truth of an assertion but are often
believed to do so by their producers. Conceptual proofs concern establishing
the necessary nature of the truth by giving reasons. Though both types could
be based on mathematical properties, Balacheff found a clear break between the
two concerning levels of sophistication.

Other researchers have also described students’ difficulties in differing proofs
from other less rigourous types of argumentation [Cha93], [Hoy97]. In [HJ96]
Hanna and Jahnke discuss the distinction between proofs which prove and proofs
which explain, and criticise some attempts to reduce the role of proof in math-
ematics education. Blum and Kirsch [BK91] discuss preformal proving (“a chain
of correct, but not formally represented conclusions which refer to valid, non-
formal premises”) among grade 12 students.

A crucial prestage to mastering proofs is the ability to move between informal
and formal statements. Selden and Selden [SS95] studied undergraduate stu-
dents’ ability to unpack informally written mathematical statements into the
language of predicate calculus:

“We discuss this data from a perspective that extends the notion
of concept image to that of statement image and introduces the no-
tion of proof framework to indicate that part of a theorem’s image
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which corresponds to the top-level logical structure of a proof. For
simplified informal calculus statements, just 8.5% of unpacking at-
tempts were successful; for actual statements from calculus texts,
this dropped to 5%. We infer that these students would be unable
to reliably relate informally stated theorems with the top-level lo-
gical structure of their proofs and hence could not be expected to
construct proofs or validate them, i.e., determine their correctness.”

Moore [Moo94] studied the transition to formal proof and found three major
sources of student difficulties: (a) concept understanding, (b) mathematical
language and notation, and (c) getting started on a proof. A similar topic,
the relation between thought experiment and formal proof, is studied by Tall
[Tal99]. He starts by structuring proof and students development and learning
of proof, and the outcomes of the article is summarised in the rather long but
informative abstract:

“This presentation will address the conceptual demands placed on
students attempting to deal with formal proof for the first time and
present empirical evidence that reveals the subtlety of this trans-
ition. It transpires that there is more than one route to move from
informal experience of proof to formal proof. Informal proof often
occurs in the style of a thought experiment, using a variety of im-
agery to infer that, when a certain situation occurs, then another
must also occur as a consequence of the first. Formal proof, on the
other hand, is based on verbal/symbolic definitions and focuses only
on those results that can be deduced logically from the definitions.
The presentation will show that there are (at least) two cognitively
different routes from informal to formal. One builds on imagery and
constantly reconstructs it to fit new formalisms. Another starts from
the definitions and develops only those properties that can be built
by formal deduction. Empirical evidence will be given, collected in
longitudinal studies from students in their first year of university
mathematics, to demonstrate how both of these routes can lead to
success, but that each involves a different array of cognitive diffi-
culties that can lead to failure. For instance, the image of thought
experiments may include subtle elements at variance with the form-
alism that causes serious blockages of understanding. On the other
hand, formal proof may also lead to structure theorems which have
their own mental images that can then be used in informal thought
experiments to predict new directions for the formal theory. The res-
ults suggest that different students may benefit from different kinds
of teaching strategies and what may help one may be of a hindrance
to another.”
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2.2 Q2: What are the main reasons behind the learning
and achievement difficulties?

2.2.1 Reduction of complexity

A large part of the research results dealing with the reasons behind the diffi-
culties discussed above can be characterised as an unwarranted and far too ex-
tensive reduction of complexity of mathematical concepts, processes and other
ideas. This seems to be done in different situations by teachers, textbook writers,
and/or students in order to cope with curricula goals that are (too?) hard to
reach.

Schoenfeld [Sch91a] described that students are inclined to answer questions
with suspension of sense-making, and that they often use short-cut strategies.
It is likely that this may also be the case with textbook exercises. According to
Doyle [Doy86], [Doy88], there is a pressure from students to reduce ambiguity
and risk, and to improve classroom order, by reducing the academic demands
in tasks.

Dreyfus [Dre99] argues that students are in textbooks rarely given explicit in-
structions or indications concerning the required quality of reasoning. In a
historical perspective McGinty et al. [MVZ86] analysed grade 5 arithmetic
textbooks from 1924, 1944, and 1984, and found that the number of word prob-
lems had decreased, the number of drill problems had increased, and that word
problems had also become shorter and less rich.

A brief comparison between some older calculus textbooks, for example
[CJ65] and [dLVP54], and some newer textbooks indicates that the propor-
tion of exercises that have more or less complete solution methods provided
(e.g. worked examples that are very similar to the exercises) have increased
considerably. All this may be part of a self-deceptive way in the present mass-
education situation to continue, at the surface, to deal with advanced concepts
in our mathematics courses. It is at the same time important to stress that this
does not imply that the older books where ‘better’. Love and Pimm [LP96, p.
397] claim that “While teachers’ perceptions of textbooks have received some
attention, there is a dearth of research into the use of texts in class”.

Stacey and MacGregor [SM99] described how algebra instructions and exercises
are actually reduced to easier arithmetic, though they are still supposed to
treat algebra. The central but sometimes difficult transition from arithmetic
to algebra is avoided by allowing, and sometimes encouraging, students to keep
using familiar ways of operating based on arithmetic instead of learning the
algebraic way of operating with unknowns.

A study by Cox [Cox94] suggests that many first-year university students
obtain good A-level grades by strategic learning concentrating on routine topics
at a superficial level, rather than a deep understanding of fundamental top-
ics. Cox argues that “this learning approach appears to be encouraged by the
excessive breadth and content of A-level syllabuses”.

Vinner [Vin97] suggests a theoretical framework where two of the main notions
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are ‘pseudo-conceptual’ and ‘pseudo-analytical’. They are defined as thought
processes that are not conceptual and analytical respectively, but which in
routine task solving might give the impression of being so and could even pro-
duce correct solutions. One of Vinner’s main points is that students’ difficulties
in solving routine tasks may often be better understood if they are interpreted
within this ‘non-cognitive’ framework, than if they are seen as misconceptions
within the domain of meaningful contexts: What may be a true learning and
problem solving situation for the teacher may not be so for the student. Be-
cause of the didactic contract [Bro97] students may, consciously or not, try to
please the educational system with behaviour that, perhaps only superficially, is
considered acceptable by the system. Leron and Hazzan [LH97] also argue that
analyses of task solving behaviour should not only consider attempts to under-
stand the task, and successes and failures in such attempts. They emphasise
additional non-cognitive means of trying to cope: attempts to guess and to find
familiar surface clues for action, and the need to meet the expectations of the
teacher or researcher. The position substantiated in [Vin97] and [LH97], that
it may be of limited use to always study students’ behavior as if it is cognitve,
is highly relevant for the research project described below in Section 4. There,
among other issues, task solving reasoning that is not ‘mathematically based’ is
studied.

222 A procedﬁral focus

The perhaps most frequent type of reduction of complexity seems to be to focus
the teaching and learning on algorithmic procedures that can be carried out in
order to solve advanced tasks without the need for conceptual understanding or
constructive reasoning.

“The reasons behind the students’ focus on learning and applying routine
procedures is discussed by Tall [Tal96] in an article on functions and calculus
under the heading “Procedural consequences of conceptual difficulties” where
he argues in the following way:

“When faced with conceptual difficulties, the student must learn
to cope. In previous elementary mathematics, this coping involves
learning computational and manipulative skills to pass exams. If
the fundamental concepts of calculus (such as the limit concept un-
derpinning differentiation and integration) prove difficult to master,
one solution is to focus on the symbolic routines of differentiation
and integration. At least this resonates with earlier experiences in
arithmetic and algebra in which a sequence of manipulations are
performed to get an answer. The problem is that such routines be-
come just that - routine - so that students begin to find it difficult
to answer questions that are conceptually challenging. The teacher
compensates by setting questions on examinations that students can
answer and the vicious circle of procedural teaching and learning is
set in motion.”
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Other research has also indicated that weak conceptual understanding is related
to a procedural focus [TG90] [WMO96).

The claimed inability of the ‘common’ and ‘traditional’ learning environments to
help students to satisfactory develop some central mathematical competencies,
like conceptual understanding and problem solving abilities, is discussed in the
research literature. In an article with the somewhat provoking title “We're
crippling our kids with kindness!”, Chatterly and Peck [CP95] claim that one
of the mistakes we do as teachers is the following:

“We actually cripple our students mentally by feeding them too
many hints and by trying to push them algorithmically beyond their
ability without the development of proper referents for the mathem-
atics being taught. It, too often, leads to rote memorisation and
prevents the students’ development of a proper conceptual under-
standing. Concrete referents are essential before the establishment
of a conceptual background can be firmly developed in the minds of
each student.”

Hiebert and Carpenter [HC92] also claim that introductory procedural teaching
and learning may prevent students from being able to later develop a deeper
conceptual understanding.

The studies mentioned above concluded that improper teaching strategies
may prevent students’ mathematical development. McNeal [McN95] found that
in some situations, exemplified by one child’s learning of the standard addi-
tion algorithm, even a regression with respect to understanding may be caused
by the learning environment: Changes in the child’s mathematical beliefs and
constructions were analysed as he moved from an experimental 2nd-grade math-
ematics class characterised by inquiry mathematics to a textbook-based third
grade. The analysis shows that he had abandoned his self-generated computa-
tional algorithms in favour of less understood conventional procedures.

Henningsen and Stein [HS97] set out to identify, examine, and illustrate the
ways in which classroom factors shape students’ engagement with high-level
mathematical tasks in middle school classrooms. They found that when stu-
dents’ engagement is successfully maintained at a high level [of mathematical
thinking], a large number of support factors are present. Another result was
that, though the tasks themselves were identified as being set up to encourage
doing high-level mathematics, one major obstacle was a decline into using pro-
cedures without connection to concepts, meaning, and understanding. This in
turn was mainly caused by three factors: (i) Challenges became nonproblems,
for example by successfully pressuring the teacher to provide explicit procedures.
(ii) A classroom-based shift in focus away from meaning and understanding to-
ward the completeness and accuracy of the answer. (iii) Too much or too little
time.

It is often emphasised that both in learning, understanding and applying math-
ematics the ability to visualise is central. Still, it seems like students are gener-
ally too focused on algebraic algorithmic approaches. Eisenberg [Eis94] set out
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to analyse why there is such widespread reluctance on the part of both teachers
and students to choose visual methods in problem solving and in establishing a
basic understanding of fundamental notions. He found that visualisation tech-
niques are cognitively more demanding of the learner than analytical techniques
which are more algorithmic in nature, and also hypothesised that another reason
behind the reluctance is that visual techniques are not accepted in mathemat-
ical proof. Aspinwall [ASP97] came to the somewhat surprising (in relation
to the widespread view that visualisation increases understanding and problem
solving performance) conclusion that imagery might be a disadvantage on cer-
tain tasks, that persistent limited visual concept images can be a hindrance for
development:

“One of the limitations of imagery found in the literature comes to
bear on a unique aspect of mathematics teaching and learning. This
is the notion of an uncontrollable image, which may persist, thereby
preventing the opening up of more fruitful avenues of thought, a
difficulty which is particularly acute if the image is vivid.”

Often students will overgeneralise properties of a set of examples and draw faulty
conclusions about properties of a whole concept, and thereby construct faulty
concept images (see Section 2.1.1 for a discussion on concept images). One very
influential and frequently occurring example of a ‘visual-based’ overgeneralisa-
tion is the concept of function [HD92]. Many students believe that all functions
have ‘smooth’ and continuous graphs since their concept images are not based
on the abstract and difficult definition of the function concept, but on the nu-
merous examples of function graphs they have met and almost all of them have
been ‘smooth’.

2.2.3 Other research examples

Christiansen [Chr97] found that the school-system’s exercise-oriented perspect-
ive may have serious hindering effects on the development of true modelling
abilities. For example, concerning the exercises’ reference to reality, one stu-
dent adopted a reality-oriented perspective but this was suppressed by the
teachers (maybe unconsciously) exercise-oriented perspective. Dahlberg and
Housman [DH97] studied concept formation (initial understanding of advanced
undergraduate mathematical concepts) within the theory of concept definition,
concept image, and concept usage, in relation to the three strategies example
generation, definition reformulation, and memorising: “We infer that the stu-
dents in our study who employed an example generation learning strategy were
more effective in attaining an initial understanding of the new concept than
those who primarily employed other learning strategies such as definition refor-
mulation or memorisation.”

There are specific difficulties related to the transition from the upper sec-
ondary school to the university [FLOO] [Tal92]. A general, qualitative step in
this transition is with respect to an increased level of abstraction. This level is
in a sense increasing continuously through the whole educational system, but is
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by many seen as a crucial difference between the upper secondary school and
the university (see for example several of the articles in [Tal91]). In addition to
this, at the university level there are higher requirements on the students inde-
pendence, which many claim to be one of the main reasons behind the learning
and achievement problems [GHRV9S].

It has in the later years been recognised that other factors than the cognitive
and conceptual aspects described above have deep impact on students’ learning
and achievements, for example affective factors. Leder [Led98] found that the
proportion of students who found mathematics enjoyable dropped from 60 %
at upper secondary school to 35 % at university level. An example of a study
on mathematics anxiety in higher-level students is [Bes95]. Social and gender
related factors also influences the achievements of mathematics students at all
levels, see for example [Led96]. A wide review on research on affect at all school
levels can be found in [McL92].

2.3 Q3: What measures should be taken in order to re-
duce the learning and achievement difficulties?

The research on the characteristics of and reasons behind the learning and
achievement difficulties indicates the direction for the measures to be taken
in order to improve the learning environment.

2.3.1 Learning environments that promotes conceptual understand-
ing and problem solving competence

Thompson and Thompson [TT94] studied a teacher’s struggle with helping one
student to learn (discover) fundamental aspects of rates and speed. The dif-
ficulties originated in the two persons’ different conceptual bases and repres-
entations. The teacher was using a (for him, not for the student) powerful
calculational ‘language’ (language in a wide meaning) and the student a lim-
ited ‘language’ closer to a primitive concept image, based on the idea of speed
as a distance (covered in one second). In a second study by Thompson and
Thompson [{TT96], the setup was similar but the teacher was replaced by one
of the researchers with the ambition to provide a solid conceptual foundation
based on the covariation of time and distance, before introducing the more dif-
ficult questions. The goal was that the student came to understand motion in
relation to speed, distance and time sufficiently well so that her ability to solve
problems became a consequence of that understanding - as distinct from hav-
ing the goal that she learns how to solve such problems. Conceptually-oriented
teachers try to focus students attention away from thoughtless application of
procedures, towards a rich conception of situations, ideas and relationships.
Several studies describe that different types of ‘non-traditional’ learning en-
vironments may improve students’ learning and performance. In a study on
elementary school childrens’ multidigit addition and multiplication task solu-
tion strategies, Kamii and Dominick [KD97] found that those who had not
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been taught any routine algorithms produced significantly more correct answers.
They also found that:

“If children made errors, the incorrect answers of those who had not
been taught any algorithms were much more reasonable than those
found in the ‘Algorithms’ classes. It was concluded that algorithms
‘unteach’ place value and hinder children’s development of number
sense.”

Boaler [Boa98] compared student (age 13-16) experiences and understandings
in two different learning environments: ‘traditional’ and ‘open project-based’.
Students from the latter developed a conceptual understanding that provided
them with advantages, both in school and nonschool settings. Students from
the former developed a procedural knowledge (including “rule-following beha-
vior” and “cue-based behavior”) that was of limited use to them in unfamiliar
situations. These students had not experienced unfamiliar demands in their
mathematics lessons:

“For their textbook questions always followed from a demonstration
of a procedure or method, and the students were never left to de-
cide which method they should use. If the students were unsure of
what to do in the lessons, they would ask the teacher or try to read
cues from the questions or from the contexts in which they were
presented.”

There are additional studies describing that ‘reform’ students outperform ‘tra-
ditional’ students, e.g. [BCFF*98|.

In comparing distinctions between ‘novice’ and ‘expert’ teachers, there are prob-
ably very many complex factors to consider. .One such study was made by
Livingston and Borko [LB90] who contrasted two review lessons of two second-
ary mathematics student teachers with those of their high school cooperating
teachers:

“Despite extensive preparation, the novices’ review lessons were less
comprehensive than those of the experts, and their explanations were
less conceptual. The experts more -skilfully ‘improvised activities
and explanations around student questions and comments. These
differences are explained by the assumption that novices’ cognitive
schemata for content and pedagogy are less elaborated, interconnec-
ted, and accessible than those of the experts.”

Schoenfeld (e.g. [Sch85], [Sch91b], [Sch94], [Sch98]) has constructed a problem
solving course that aims at developing students’ Resources, Heuristics, Control,
and Belief (see Section 2.1.2). One of the main purposes with the series of
studies presented in [Sch85] was to systematically evaluate the effects of the
course (which were found to be positive). Schoenfeld’s general goal is to help
students to learn to think mathematically:
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“In sum, my goals for the students are that they develop appro-
priately mathematical predilections, knowledge, and skills. I want
them to be aggressively mathematical - to see mathematics where it
can be seen, to pursue mathematical connections, extensions, gener-
alisations; to know how to make good conjectures, and how to prove
them; to have a sense of what it means to understand mathemat-
ics and good judgement about when they do. And, I want them to
have the tools that will enable them to do so. That means having a
rich knowledge base, a wide range of problem solving strategies, and
good metacognitive behaviour [Sch91b].”

To get a flavour of the contents of the course, consider the following ‘list of
properties’ of the problems that students work with [Sch91b, p. 94]:

“. The problems are (relatively) accessible. I like problems that are
easily understood and that do not require a lot of vocabulary or
machinery in order for the students to make progress on them.

- The problems can be solved, or at least approached, in a number
of ways. This leads to discussions of mathematical richness, of con-
nections, and of strategy choice.

- The problems should serve as introductions to important math-
ematical ideas. The topics and mathematical techniques involved in
the problem solutions should be of agreed importance, or the solu-
tions to the problems should illustrate important problem solving
strategies.

- The problems should, if possible, serve as good starting points for
honest-to-godness mathematical explorations. Good problems lead
to more problems. If the domain from which the problem comes
from is rich enough, students can start with the problem that has
been posed to them and proceed to make the domain their own.”

If many of the severe student performance difficulties and learning environment
inadequacies discussed above have been known for at least a couple of decades,
and if teachers and researchers have shown fruitful ways of improvement, why
are not the changes more profound? One of the reasons is according to Ar-
tigue [Art98] that research seldom shows extensive improvements via simple
changes: “On the contrary, most research based designs require more engage-
ment, expertise from teachers, and significant changes in practices (Dubinsky
et al. [DMR97]).”

2.3.2 Discrepancies between teachers intentiones and practices

The reference [Art98] above summarises some of the difficulties in creating learn-
ing environments that fosters problem solving abilities and conceptual under-
standing to a greater extent than today. Another indication of these difficulties
is the research describing major discrepancies between teachers intentiones and
their actual practices.
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Eisenhart et al. [EBU*93] explored a student teacher’s ideas and practices
for teaching procedural and conceptual knowledge, and also the (potential) in-
fluences on these aspects from the student teacher’s education program and
placement school:

“We reveal a pattern in which the student teacher, her mathematics
methods course instructor, her cooperating teachers, and the admin-
istrators of her placement schools expressed a variety of strong com-
mitments to teaching for both procedural and conceptual knowledge;
but with these commitments, the student teacher taught, learned to
teach, and had opportunities to learn to teach for procedural know-
ledge more often and more consistently than she did for conceptual
knowledge. We find that the actual teaching pattern (what was
done) was the product of unresolved tensions within the student
teacher, the other key actors in her environment, and the learning-
to-teach environment itself.”

Barnard and Morgan [BM96] described how a teacher actually focuses more
in computational aspects (knowledge and justification) than on his aims for
understanding and culture. Eley and Cameron [EC93] found that university
teachers appreciate global explanations, but use only local explanations when
teaching.

2.4 Summary of the literature survey

In an attempt to summarise the examples of mathematics education research
described above, the following seem to be of central importance in relation to
the general research questions presented in Section 1.2:

- Though one of the main curricula goals is conceptual understanding, this seems
hard to reach for many students, especially at a global, general level. Students
often lack a comprehensive view of what mathematics is and the ability to move
flexibly between and relate different types of mathematical representations and
knowledge.

- A large number of research articles, many more than the ones mentioned
above, shows the severe unbalance (even among many high-achieving students)
towards rote learning of algorithmic procedures and an inability ‘to solve non-
routine problems. This is also related to the understanding difficulties men-
tioned above, both in the sense that weak conceptual understanding leads to
(perhaps even forces the students into) rote learning, and in the sense that rote
learning does not develop conceptual understanding. It is still possible to obtain
good grades by strategic learning of routine topics, probably because exams of-
ten, to a large extent, are adapted to suit rote learning.

- Several studies concludes that mathematical learning without algorithms leads
to better results. One should be cautious not to draw the conclusion that
algorithms should be banned from the classroom. It is probably not the al-
gorithms, which actually often are powerful mathematical tools, that are bad
but the ways they are handled: Superficial and without firm enough connections

22



to the underlying mathematical ideas. )

- There is a pressure on students and teachers to reduce the mathematical com-
plexity in the learning environment, for example to work in a ‘rote learning
mode’. This seems to be partly caused by the extensive courses in combination
with the inherent difficulties in reaching deep understanding. At the same time,
it is possible to help students develop better understanding and problem solving
abilities, but this often require more engagement, expertise from teachers, and
significant change in practice.

- Students’ reasoning is not only based on mathematical thinking: the need to
cope (e.g. pass exams) in situations that are difficult for them to handle may
lead (force?) them into reasoning of other types. These types of reasoning could
often be better analysed in ‘non-cognitive’ frameworks.

The relation to the research project described below

In short, the relation between the outcomes of the research survey described in
Section 2 above and the ongoing research project presented in Sections 3 and 4
below is that the subprojects in the latter so far indicate the following:

i) The results are in line with and confirms the earlier research in the sense that
among the main reasons behind the students’ learning and achievement diffi-
culties seem to be rote learning, a narrow procedure focus, and lacking problem
solving ability in non-routine situations. It is also found that a large part of the
students’ study work consists of solving exercises by mimicking solved examples,
with little opportunity to develop conceptual understanding and problem solv-
ing ability.

ii) The results add to the earlier research in the sense that the base for different
types of student reasoning is studied in detail. In particular if and in what
way their strategy choices and strategy implementations are based on ‘true’
mathematical and logical properties of the components involved in the solution
reasoning, or if they are based on something else. The task solving situations
studied in the project below concern calculus tasks where the solutions are more
complex than in for example arithmetic and elementary algebra, and therefore
simple memory-based strategies (e.g. keyword strategies) can often not be ap-
plied. In non-routine situations (which includes both non-routine problems
and routine tasks where some mistake is made in the solution procedure) the
students’ main strategies seem to be based on trying to combine different famil-
iar subprocedures without general considerations or understanding, which often
lead to failure. There are very few situations where the students complement the
application of familiar procedures by trying to construct their own reasoning,
even where this probably relatively easy (for these students) could have lead
to considerable progress. Another subproject describes in rather fine-grained
detail how about 90% of the exercises in common textbooks can be solve by
completely or essentially mimicking solved examples, and that this can be done
without considering the mathematics that the exercises are supposed to treat.
It is also found that students may be extremely inclined to use essentially only
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this superficial exercise solving strategy, and that this leads to a very narrow
type of rote learning. Some of the conclusions in i) above are also supported by
detailed and perhaps partly new types of data.

3 A framework for a series of research projects
on learning and achievement difficulties

The purpose of this section is to provide a general structure for a set of research
Projects aiming at studying some aspects of the questions introduced in Section
1.2. This structure is described as a 2-dimensional matrix, where one dimen-
sion address the discrepancy between goals and actual outcomes, and the other
dimension contains some central learning environment components.

3.1 Discrepancies between goals and outcomes: The In-
tended, Implemented, Received, and Attained cur-
ricula

We, as course organisers and undergraduate mathematics teachers, are not able
to help sufficiently many students to learn mathematics sufficiently well. This
is not in accord with the explicit or implicit goals of the course organiser, and
there are several junctures where discrepancies may exist. One way to structure
the study of possible differences between goals and outcomes is provided by
Bauersfeld [Bau79] and Robitaille and Garden [RG89). They have in similar
(but not identical) ways characterised discrepancies between the components in
the following framework:

“The intended curriculum as transmitted by national or system level
authorities; the implemented curriculum as interpreted and trans-
lated by teachers according to their experience and beliefs for par-
ticular classes; and the attained curriculum, that part of the intended
curriculum learned by students which is manifested in their achieve-
ments and attitudes” (RG89, p.4].

3.1.1 The intended curriculum

The general goal for the educational system when arranging undergraduate
mathematics courses is in Sweden, and probably more or less in any country, to
provide the society with a sufficient number of persons with appropriate educa-
tion in mathematics at sufficient quality levels (for an extensive discussion on
general national curricula goals, see [Nis96]). The quantity of students is (partly)
controlled by national and local economical means of control, and manifested in
the number of admissions to the different undergraduate programs. The quality
is supposed to be controlled by the local exams and occasional national system
evaluations. There are on one hand the national and local formal intentiones,
and on the other hand the teachers’ intentiones. It could seem reasonable that
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the former should have be more influential than the latter, but the university
structure is so decentralised that the system level authorities of undergraduate
mathematics are in reality the teachers (lecturers), perhaps not as individuals
but as groups of teachers. The national descriptions of the goals are very concise
and general. The local university goals are more specified, but still very brief
and mainly content-oriented (as opposed to for example competence-oriented).
These local goals are normally formulated by individuals or small groups of
lecturers, and formally accepted by the mathematics departments’ executive
committees.

3.1.2 The implemented curriculum

The implemented curriculum may be seen as the learning environment that we
as course organisers provide to the students, mainly manifested in lectures, text-
books and exams. There are (at least) two junctures in the transition from the
intended to the implemented curriculum were ‘distortions’ may occur. Firstly,
the individual teacher may interpret the national and/or the local goals differ-
ently than what was intended. This juncture is perhaps not surprising, since the
national and local goals are so very sparsely specified and in a sense the teachers
have to ‘fill in the gaps’ by themselves. Secondly, which is perhaps a bit more
unexpected, as described in some of the research examples above there may be
major discrepancies between teachers intentiones and their actual practices.

3.1.3 The received curriculum

To make this study of the potential discrepancies between the different aspects
of the curriculum more precise a fourth aspect will be added in addition to the
three above, namely the received curriculum, the part of the implemented cur-
riculum that influences the students. It is not necessarily the case that what
students achieve, for example in task solving situations, is a subset of neither
the implemented nor intended curriculum: A student is entering a learning situ-
ation, for example a lecture, where the implemented curriculum is put forward
by the teacher. The student will, consciously or not, focus on and receive the
main influences from a subset of the implemented curriculum, this subset is the
received curriculum. This subset may then from the student’s point of view
be developed, complemented, transformed, or misunderstood to fit with earlier
concept images, or altered in other ways before it is ‘learnt’ (or ‘constructed’) as
the attained curriculum. This modification of Robitaille’s and Garden’s frame-
work makes it possible to study the question ‘what influences may the students
receive in a learning situation’, independent from questions concerning both
what is implemented by the teacher and what is achieved by the students.

3.1.4 The attained curriculum

It is difficult to measure what students learn and their mathematical compet-
ence at different educational stages. The most common method to measure
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undergraduate students’ achievements is by written tests. It seems like written
tests may often fail [Sch85, p.4] to measure important aspects of mathematical
competence, and are instead often focused on memorised routine procedures
(see e.g. [Tal96]). Other aspects that are difficult to measure with written tests
are exemplified by heuristics, metacognition, and belief, all of which have been
shown by Schoenfeld [Sch85] [Sch92] to be central competence aspects. It is bey-
ond the scope of this text to discuss the research on assessment of achievement,
see for example [Nis93a| and [Nis93b| for general surveys and further references.

The four aspects above will not be considered in relation to the curricula as a
whole, but to a selection of central learning environment components which are
described in the next section.

3.2 The Internal Learning Environment: Central influ-
ences on students’ task solving reasoning

The learning environment for an individual student can be seen as everything
in the student’s life that affects the learning of mathematics at a certain period
of time. Since factors outside school may have substantial influence, the learn-
ing environment may in a wide sense include very large parts of a student’s
whole living environment. This paper will be restricted to the internal learn-
ing environment, which here is defined as the part of the learning environment
that is explicitly or implicitly provided by the mathematics course or program
organiser.

The purpose of the project is to investigate some components of the internal
learning environment, and their influence on students’ learning and achievement
difficulties. Different components of the internal learning environment have
influence of different type and magnitude, and some of these components may
be less relevant to this study.

Schoenfeld [Sch85] has described that some aspects of students’ behaviour
will not be changed quickly, and one may assume that students’ ways of reas-
oning in task solving will be fairly stable. Therefore it seems reasonable that
first year undergraduate students’ difficulties are also affected by their prior
(secondary school and earlier) internal learning environment, but this is out-
side the scope of this study to investigate. As a consequence, this study is
not really about the causes behind students’ difficulties but rather concerns in
what ways the present (first-year undergraduate) internal learning environment
will reinforce or counteract such difficulties, regardless if they originate from
undergraduate education or elsewhere. The internal learning environment com-
ponents that this project will focus on are the syllabus, the teaching, the textbook,
and the examination.

3.2.1 The syllabus.

The syllabus contains the goals of the course. The formal syllabus is a written
rather concise description of the mathematical contents of the course including
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the main time frames. The informal syllabus complements and adds details
to the formal syllabus, and may differ between universities and also between
individual teachers. It is mainly based on a tradition that is carried forward by
the teachers’ experiences as students, teachers, and mathematicians, by possible
experiences from teacher education and other pedagogical programs, and inter-
actions with other mathematicians and teachers. One important carrier of the
tradition is the use of written course instructions (which may include detailed
content descriptions, task suggestions, time tables and exam structures) that
the earlier teachers of the same course have used. Another important influence
on the informal syllabus is the textbook, which most undergraduate courses are
mainly designed to follow.

3.2.2 The teaching

In a full-time Swedish undergraduate mathematics course there are about 10-20
scheduled lecture hours per week, normally most of them consist of lecturing
by the teacher. Another common scheduled class activity is when the teacher
or a teaching assistant solves exercises at the blackboard, and also helps stu-
dents individually while other students are working by themselves or in small
groups. Outside scheduled time the students normally work by themselves at
home, and sometimes in small groups that are not organised by the teacher.
Roughly half of the teachers have positions as senior lecturers, where the main
formal qualification requirement is a PhD degree in mathematics. Most of the
other teachers are junior lecturers, and there are also different types of teaching
assistants. Very few undergraduate lectures are given by full professors.

3.2.3 The textbook

Mainly American textbooks are used in undergraduate mathematics courses in
Sweden, for example [Ada95] or [EP94], which are relatively inexpensive and
essentially all students have their own copy. They contain many more exercises
and solved examples than older textbooks, like [CJ65] and [dLVP54].

3.2.4 The examination.

The examination is probably very influential on what the students will attempt
to learn. In Sweden, there is normally a written exam after each 5-week full-
time course, often consisting of questions that are fairly similar to the exercises
in the textbooks. The students are usually given a couple of old exams during
the course before the real one, and after a few courses it seems likely that they
have learnt what a normal exam will look like. This means that exams may
affect students’ learning in the sense that they know what to expect from the
exam and that they try to meet with these expectations.
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4 Research project components

In order to provide a specified structure for the project, each of the four internal
learning environment components from Section 3.2 will be matched to each of
the four curricula aspects in Section 3.1, which yields a 4 by 4 matrix with
different research areas. Each position will contain the subproject number (A1,
A2, etc., with completed subprojects in boldface) of the article that treats the
particular research area, and a reference to the related subsection below (e.g.
(4.1.1)). All subprojects are related to the research questions in Section 1.2.

[ Syllabus Teaching Textbook | Exam
Intended AB(4.3.1) | A8(4.3.1) | A5(4.2.1) | A8 (4.3.1)
Implemented || A10 (4.3.3) | A5 (4.2.1) | A3 (4.1.3) | A6 (4.2.2)
A5 (4.2.1)

Received AD(433) | A7 (423) | Ad (4.1.4) | A9 (432)
A9 (4.3.2) | A7 (4.2.3)

Attained AT (d411) | Al (411) | AL (411) | A6 (422)
A2 (41.2) | A2 (4.12) | A2 (4.12)

Below follows a very concise presentation of the subprojects and their specific
research questions.

4.1 Completed studies

Since the completed studies are available and references are given, the present-
ations contain only the abstracts from the papers and brief comments. An
informal summary of all completed studies is also provided at the end of this
subsection.

4.1.1 Al: Students’ general difficulties in task solving
Completed report: ‘Mathematical reasoning and familiar procedures’ [Lit00a].

Abstract

Four first-year undergraduate students are working with two tasks.
The underlying question treated is ‘what are the characteristics and back-
ground causes of their difficulties when trying to solve these tasks?’ The
purpose is to give a general survey of their main difficulties, rather than to
go deeply into details. It seems like one of the common characteristics is
that the students are more focused on what is familiar and remembered,
than on (even elementary) mathematical reasoning and accuracy.

4.1.2 A2: Students’ reasoning in task solving

Completed report: ‘Mathematical reasoning in task solving’ [Lit00c|.

Abstract
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An earlier study [Lit00a] treated the question ‘what are the main char--
acteristics and background of undergraduate students’ difficulties when
trying to solve mathematical tasks?’ This paper will focus on, and ex-
tend, the part of the earlier study that concerns task solving strategies.
The results indicate that focusing on what is familiar and remembered
at a superficial level is dominant over reasoning based on mathematical
properties of the components involved, even when the latter could lead to
considerable progress.

The main difference between Al and A2 is that the former is ‘wider’ (all
their main difficulties) and the latter is more limited to treating, on a firmer
theoretical foundation, certain types of mathematical reasoning.

4.1.3 A3: Strategies and reasoning possible to use when solving text-
book exercises.

Completed report: ‘Mathematical reasoning in Calculus Textbook Exercises’
[Litoob).

Abstract

The aim of this paper is to study some of the strategies that are pos-
sible to use in order to solve the exercises in undergraduate calculus text-
books. It is described how most exercises may be solved by mathem-
atically superficial strategies. Strategy choices and implementations can
usually be based on identifying similar solved examples and copying, or
sometimes locally modifying, given solution procedures. One consequence
is that exercises may often be solved without actually considering the core
mathematics of the book section in question.

The studies A1 and A2 indicated (together with studies of research literat-
ure) that students focus on routines and superficial reasoning, and one of the
main reasons behind their difficulties is their inability and/or reluctance to con-
sider the mathematical properties involved in the reasoning. The studies A3
and A4 aim at searching for possible reasons behind these indications.

4.1.4 A4: Strategies and reasoning applied by students when solving
textbook exercises.

Completed report: ‘Students’ Mathematical Reasoning in Textbook Exercise
Solving’ [Lit00d].

Abstract

This study investigates the ways students conduct their study work,
in particular their mathematical reasoning when working with textbook
exercises. The results indicate that: (i) Most strategy choices and im-
plementations are carried out without considering the intrinsic properties
of the components involved in the solution work. This in turn leads to
different difficulties. (ii) It is crucial for these students to find solution
procedures to copy. (iii) There are extensive attempts, often successful,
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to understand each step of the copied solution procedures, but only loc-
ally. (iv) The students make almost no attempts to construct their own
solution reasoning, not even locally. (v) The main situations where the
students’ work are not just straightforward implementations of provided
solution procedures, are where mistakes are made in minor local solution
steps.

4.1.5 The studies Al-A4: An informal summary

The research methods used in the completed studies above are mainly qualit-
ative: Relatively fine-grained analyses of a small number of students reasoning
characteristics in limited task solving situations, including the development of
analytical frameworks. These types of analyses can not determine with a high
degree of accuracy the reasoning characteristics of students in general, but can
a) show the ezistence of some reasoning types and b) indicate plausible charac-
teristics of larger student groups. The latter may also be supported by studying
similar or related aspects from other theoretical perspectives or by other meth-
ods, hereby finding reasonable and general explanations behind the indicated
behaviour. One example of this is the study A3, which is partly quantitat-,
ive (600 textbook exercises were classified), where possible reasons behind the
students’ behaviour in the other studies are investigated.

Though the studies A1-A4 treats only limited aspects of students’ compet-
ence and limited aspects of the learning environment, and though the work of
rather few students are investigated, the overall picture emerging is coherent: It
seems like the students are founding their work mainly on superficial reasoning,
and that the reasons behind this originates to a large extent from the learn-
ing environment provided by the educational system. This is (at least partly)
already known, as exemplified by the short literature review above, and it also
seems to be experience-based knowledge familiar to many teachers. The mo-
tivation for carrying out as research the studies Al-4 is: (i) The studies A2,
A3, and A4 explicitly and primarily address the ways that the students’ reason-
ing is based on mathematical properties or not, something that is not done by
many other studies. The studies A1 and A2 indicated that the domination of
‘non-mathematical’ reasoning is one of the main causes behind task-solving dif-
ficulties. (ii) The reasoning is studied in rather fine-grained detail. A framework
for this type of studies is one of the outcomes of the studies A2-4. (iii) There
are surprisingly few studies on textbook structure [LP96] (especially from the
perspective (1)) and on students’ actual learning strategies and textbook usage.
(iv) The achievement difficulties of mathematics students at all levels have been
known for many years, but the difficulties mainly remain. Extensive research
on the questions in Section 1.2 is still required in order to be able to construct
well-founded measures for improvement of the learning environment.

4.2 Ongoing studies

Short summaries of ongoing studies are presented in this section.
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4.2.1 AS5: Reasoning put forward by the teacher and textbooks

Report under preparation: ‘Mathematical Reasoning put forward in Under-
graduate Teaching’ [Lit01b)].

Abstract

The purpose of this paper is to study the types of mathematical reas-
oning put forward in the learning environment by teachers and in the
textbooks’ theory and examples. The primary focus is on the mathemat-
ical foundations in task solving reasoning.

The ways the teacher acts in lectures, lessons, seminars, supervision, dis-
cussions, etc. are probably, but not necessarily, very influential on the internal
learning environment. The reasoning put forward in textbooks, mainly in the
solved examples, may be influential on the student’s learning and achievements.
One could expect that it is obvious that the teachers’ and textbooks’ reason-
ing will influence students’ reasoning, but there are indications that this does
not influence students to the intended extent. For example, it seems like few
students actually read the textbook’s theory text and that many spend most
of their time working with textbook exercises [Shi89] [Shi91] [Lit00b] [Lit00d].
Here will also be considered the written material like schedules and extra tasks
provided for the students by the teacher.

4.2.2 A6: Examination.

Report under preparation: ‘Mathematical Reasoning in Exams’ [Lit0lal.

What types of reasoning are required, encouraged and practised in exams?
Are there discrepancies between what is intended, implemented, received and
attained? Some of the methods and frameworks from the papers above are used
to analyse exam tasks and students’ reasoning when solving these tasks. This
is complemented by interviews with teachers and students.

4.2.3 AT: The aspects of the internal learning environment that are
focused by the students.

Report under preparation: ‘Students’ efforts in learning mathematics’ [Lit01c].

What types of activities do students prioritise when studying undergraduate
mathematics? This study is mainly a quantitative study of a large number
students learning behavior, and complements [Lit00d] which was a qualitative
study of only three students’ studying activities.

4.3 Planned studies

The studies below are planned within the project, but not yet initiated.
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4.3.1 AS8: The teachers’, syllabus constructors’, and others’ inten-
tiones about mathematical reasoning when constructing the
syllabus, the teaching, and the exam.

Planned report: ‘intentiones about mathematical reasoning in the learning
environment’.

What are the teachers’ explicit and implicit intentiones when planning and
implementing the syllabus (here is included all written relevant syllabuses, not
only the ones written by the teachers), the teaching and the examination, in
particular with respect to mathematical reasoning?

4.3.2 A9: How the students receive the syllabus, the teaching, and
the exam? :

Planned report: ‘The learning environment as received by undergraduate
students’.

This study is not about the students mathematical competence, which is
studied in other parts of the project, but about their apprehension of the syl-
labus, the teaching and the exam. Included are also studies of the students’
beliefs concerning what the proper learning strategies are in order to reach the
apprehended goals, in particular with respect to different types of mathematical
reasoning in task solving.

4.3.3 A10: The implementation of the syllabus, and its relation to
the other studies A1-9 above.

Planned report: ‘The implementation of the syllabus: A summary of a series
of studies on undergraduate mathematical reasoning’.

This study is planned to sumimarise the other nine studies in the project,
and to relate their outcome to the implemented formal and informal syllabus.
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Mathematical Reasoning and Familiar Procedures

Johan Lithner

ABSTRACT. Four first-year undergraduate students are working with two tasks. The
underlying question treated is "what are the characteristics and background causes of their
difficulties when trying to solve these tasks?" The purpose is to give a general survey of
their main difficulties, rather than to go deeply into details. It seems like one of the
common characteristics is that the students are more focused on what is familiar and
remembered, than on (even elementary) mathematical reasoning and accuracy.

METHOD
The students worked the tasks alone in the presence of me and a video
camera, and were asked to "think aloud". After a session I tried to analyse
the tape and describing not only what was taking place but also why this
was happening, in a sense speculating in how the student was thinking.
Not later than three days after the session I then met with the student, and
we went through my written analysis. The student then had a chance to
make comments, and also suggest other ways to interpret and explain the
situations. The descriptions and the analyses below will focus on six
examples of behaviour that seem to account for their main difficulties in
this study. A fuller version of the study is found in (Lithner 1998).

SUMMARISED DESCRIPTION OF ALF'S AND TOM'S WORK

~ Task 1: A company shall produce x units per year, where x belongs to
[400,600]. The estimated production cost is approximately -2x2 + 2000x
- 420000 Kir/unit, and the expected sale price approximately -x2 + 700x
Kr/unit. How many units should be produced each year to maximise the
yearly profit?

Alf's episode.
Minor passages omitted are replaced by [..] , pauses are indicated by ... .
Alf says "It feels a bit familiar". [..] "The sale price minus the production
cost is the profit" [this yields the profit per unit, not per year]. He has no
difficulties in constructing the [within his faulty interpretation, correct]
profit function

V = x2 - 1300x + 420000
Alf differentiates this, solves V'(x)=0 to find x=650. "Now we can use the
second derivative test to find out if it is a max or a min." He easily finds
V"=2, but then gets a bit puzzled: "This is strange. It feels like it should
be a minimum if I remember rightly, since the second derivative is
positive."



After a while Alf decides that: "I could skip this second derivative test.
There are other possibilities if I don't remember wrong. For example to
check what the derivative looks like close to . [meamng x=650]". Alf

- works swiftly, finds that V'(600) is negative and V' is positive to the right
- of x=650, and draws two arrows: N A

"It feels like it becomes a minimum! No, wait a minute, what am I
doing?" Alf spends a few minutes not being able to decide whether to
examine the derivative or the function.

"Normally I would just accept it [x=650] as an answer, it feels like a
rather good answer in some way. ... Maybe I should check this."

Alf uses a calculator and finds

V(650) = -2500
"I'll be damned if it was not negative! [..] Then we can assume that this
[x=650] isn't so good." After some thinking he remembers that he has to
check the endpoints of the definition interval, and after some routine
work he states that "this implies that we have the maximum profit for 400
units". '

After some discussion JL asks if he is finished with the task and Alf
answers: "The question was how much one should produce, and I have
determined this. In other words, one should produce 400... whatever it
was ... units to earn as much as possible."

JL now asks him to describe, as carefully as possible, what is really asked
for in the task and what question Alf really has answered. After a while
Alf says: "They are asking how many units one should produce to
maximise [..] the profit. One has two expressions that depend on the
number of produced units. One for the production costs, the expenses.
One for what you get when you sell. Consequently, the profit must be the
income minus the expenses. So it feels like I have answered the
question."

JL asks Alf to explain what profit his expression V(x) describes.
Alf now admits that he is lead by JL to question his interpretation of
"profit", and continues hesitantly: "The yearly profit ... No, it doesn't
really fit ... I have missed the units [at the start he read and pronounced
the units correctly] ... I have to consider what I have written. [..] The unit
for the production costs is in Kr/unit, which implies that V describes the
profit per unit, and I have drawn faulty conclusions."

JL asks what he has actually calculated, but Alf has difficulties in
describing this: "If you want to earn ... let me think ... If you want to
earn as much as possible if you want to sell one? It feels strange ..." 25
minutes have passed since start, and JL helps Alf to summarise. Then Alf
spends 17 minutes to finally reach the correct solution.

Tom's episode
Tom makes the same misinterpretation as Alf and reaches an incorrect
profit function:

fix) = x2 - 1300x + 420000



He finds that f(x)=0 at x=650, f'(650)=2, and concludes that there is a
minimum at x=650. "This does not tell me so much, I have to look at the
endpoints." Using a calculator he finds £f(400)=60000 and £(600)=0, but
makes a careless mistake, mixes them and plots the points (400,0) and
(600, 60000) in the xy-plane.

Tom notes immediately that this is not consistent with his argument
that there should be only one extremal point (a minimum), since
£(600)=60000 indicates that there should be a maximum between the zero
at x=400 and the minimum at x=650. He starts his careful error analysis
by reading the task again [without noting his faulty interpretation], checks
that he has transcribed the given functions correctly, goes through his
algebraic and arithmetic calculations, and finally finds his mistake seven
minutes after mixing the values above. He corrects and completes his
figure, and from this draws the conclusion that "one should produce 400
units per year to maximise the yearly profit".

JL is now trying to lead Tom into reflecting over his faulty
interpretation:

"If this was an examination situation, would you check your work again,
or are you convinced that you are correct?"

"I would consider this as finished, but I always check if I have the time."
"If you should check, what would you check?"

Tom describes how he would proceed in the same manner as when he
searched for the mixed-values error above, but he is convinced that he is
correct now.

JL says, a bit provocative: "If this was an exam question that could give 3
points, you would be given 0.5. What would you do if you had another
chance?" '

"[..] I would plot the two functions given in the task, to see what happens.
I cannot see this now."

After 5 minutes of careful plotting in accordance with the standard
method he learned in class [analysing derivatives, critical points, extremal
points, asymptotes, etc.}, JL interrupts: "I believe your interpretations of
the functions are correct.” Tom then considers the interval of definition,
and then the relation between income and expense. With some assistance
from JL he realises that the mistake is to be found elsewhere.

Tom considers the formulation of the task again, reads the last
sentence aloud with a clear emphasise on the keywords "produce” and
"maximise", and finally gives in: "I cannot find the error. Could you give
me a clue?"

"What question is really asked, and what question have you really
answered?"

"One asks about the number of units (he underlines "units") ... it must
mean that it is the same ... that one is talking about units when referring
to Kr/unit ... say one unit ..."

"This cost to produce, what does it tell you?"



"I see, so this is a function for the whole sum of units. It costs ... to
produce 400 units so ... shall one ... use this formula ... for 400 units one
doesn't get the price per unit ... ? Is that what you mean?"’

"Well, what do you get when you insert x=400 in the [productlon cost]
expression?”

"It says that I get price each."

"And what is that?"

"Price per unit.”

"Yes, how much it costs per unit if one produces 400 units."

"Now things become clearer to me! If one produces 600 units, the profit
could get lesser per unit but greater totally since one produces more
units. I have found when to earn most per unit, not maximised the yearly
profit". 44 minutes has passed since start. Tom has now no problems in
constructing the proper profit function and proceeding with the task.

ANALYSIS OF ALF'S AND TOM'S EPISODES
A) Alf's and Tom's misinterpretations.

Alf reads the task superficially several times, stepwise searching for more
information:

1) The mathematical symbols state that polynomials are involved, but
nothing more.

11) He searches for keywords (Hegarty et al. 1995). The first is
"maximise" which tells him that the setting is calculus and that he through
a well-known procedure shall maximise a function f(x).

iii) If there had only been one function given in the task, he had probably
without further analysis tried to find its maximum. Now he has to decide
which function to maximise and needs to decode more keywords.

iv) The familiar keywords he finds are "production cost", "sale price"
and "yearly profit". He does not bother to try to specify the exact
meaning of these keywords, but interprets them as just "expense”,
"income" and "profit". Now he has identified a meaningful interpretation,
it makes sense as a mathematical task in accordance with his experiences.

Tom is very carefully reading the first two sentences. Then he feels
that he has reached an interpretation that is meaningful, and he looses
interest in continuing his careful analysis. When he reads the third
sentence of the task he does not take in any additional information. This
faulty but very solid interpretation guides his work for 40 minutes, even
though he rereads the task several times.

The key is that their interpretations are meaningful and included in
their library of familiar task types. By almost all their experience from
their studies, exercises are essentially of a limited set of standard type,
and careful analyses do not pay off. The consequences of this is that their
interpretations are:



1) Superficial. When requested, both of them have difficulties in
establishing what kind of profit they have actually treated.

2) Stable. Though they meet several difficulties, and question much of
what they do, they have to be led practically all the way before they
question the interpretations.

The same task was later given to 64 students. Of the 46 who made
an attempt to answer, 33 made the same misinterpretation as Alf and
Tom. Only 5 provided a correct interpretation, which indicates that Alf's
and Tom's interpretations are not extreme cases.

B) The character of the critical point.

Alf expects the he as usual will find the answer by finding the zeros of the
derivative V'(x). When he finds that V"(x)=2 he is puzzled by the two
contradictions: .
i) His (faulty) expectation that the answer is found where V'(x)=0.
i1) He (correctly) believes that V"(650)=2 => x=650 is a minimum.

There are two reasons behind Alf's decision to dismiss ii):
a) The expectation i) is stronger than his conviction that ii) is true.
b) ii) is just something he remembers. Alf does not know why this should
be true, and has no means of completing and testing hlS memory by some
kind of reasoning.
If he had made some miscalculations and for example found V"(650)=-2
(which would imply that x=650 yields a maximum), he would without
doubt have considered himself finished with the task.

Another familiar method is the first derivative test, but again he
reaches a contradiction, this time between i) above and:
iii) V(x) is decreasing to the left of x=650 and increasing to the nght
which implies that x=650 is a minimum.
Once again, the expectation 1) is dominating and he questions here if the
correct method in iii) is applicable at all. He is then rather puzzled and
searches at first for other methods to verify that the answer is x=650, but
cannot find any. It is not until he tests the value of V(650) and to his
surprise finds that it is negative, that he questions i). Almost ten minutes
have passed since he found that V"(x)=2 above.

C) Localising errors.

1) Tom notices at once that something is wrong when plotting the mixed-
up values of f(400) and f(600). When searching for the error though, he
simply checks it all by starting from the beginning. There is no
consideration about what type of error it might be and it takes him seven
minutes to find it.

2) When Tom is told that he has produced a faulty solution, he says after
thinking only a few seconds that he wants to plot the two functions. There
is essentially no deeper consideration over what type of error it might be.
He has a rather strong affective reluctance towards analysing the text and
the general content of the task. He is not used to doing this and feels more



comfortable analysing his calculations, where he spends most of the
eleven minutes (which could have been longer if he had not been helped)
of his error search.

In order to avoid the need to always check all types of errors, it is
- important to also consider where the error might be. It could have been
possible for Tom to notice that his discovery of the error 1) above was
founded in two contradictory statements:

i) f(x) is continuous and growing (at least partially) between x=400 and
x=600 (wrong).

ii) f(x) has exactly one extremal point, a minimum at x=650 (correct).
Both of these originates from f(x)=x2-1300x+420000, and thus he does
not have to check anything he has done prior to writing down this
function.

If Tom is checking too much in 1) he is checking too little and the
wrong things in 2), but the common feature is in both cases that there are
very quick decisions on how to start the error search, and essentially no
consideration over what type it might be. It is noteworthy that in these
students learning environment, there seems to be essentially no explicit
focus on this type of considerations.

SUMMARISED DESCRIPTION OF JAN'S AND PER'S WORK

Task 2: The function f(x) has the graph below (Figure 1). a) Sketch the
graph of f'(x).

b) What is f(-2), f'(0) and f'(2)? c) Sketch the graph of g(x), if
g'(x)=f(x).

Figure 1.

Jan's episode.
When sketching f'(x) in the xy-plane, Jan swiftly draws approximately the
line y=-2 for x € (-3,-1), see Figure 2.
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Figure 2.
Then he starts to hesitate about what to draw for x € (-1,0): "And then ...
there is a jump ... it is zero here ... let's see ..." After a period of silence
JL asks Jan what he is thinking.
"What the derivative looks like ... in this constant interval. Here (he
points at the line y= -2 in Figure 2), I have figured out that it is constant
but negative." Jan is silent for half a minute and then continues, by
leaving the interval (-1,0) and turning to the next one: "And here, the
derivative is like this." He draws swiftly the graph for x € (0,4), thus
producing a picture that looks approximately like (he has not yet drawn
any curve for x € (-1,0)) Figure 2.

"Here it is ... (he points at the graph of f(x) in Figure 1 at the
interval (-1,0)) it is some function that is ... this function on that interval
is -2." He writes this down:

fix) = -2. _

"And then the derivative of this is zero" he continues and writes:

fix) = 0.

Without hesitation he adds the line y=0 for x € (-1,0) to Figure 2 and
then immediately turns to verifying the shape of the curve for x € (0,4).

In part b) he has essentially no problems in estimating f(-2). Turning to
f'(0) he gets more hesitant: "If one looks at the figure (he points at his
graph of f\(x)) ... we have a jump ... it never gets zero." JL asks him to
clarify what he means. "This (Jan's pen traces his graph of f'(x) in Figure
2 along the curve as x goes from 4 towards 0) will never cross the y-axis,
this derivative, for positive x. On the other hand, this (his pen traces his
graph as x goes from -1 towards 0) will be 0 all the way to ... x equal to
... Ze10 ... because it depends ... Now I am uncertain. It should either be
zero or not defined. [..]

"The question I ask myself is if this (points again at the line y=0) goes all
the way into zero? ... It seems like it does not, since there is like a corner
on the function ... which means that it does not exist. Jan writes down
"f'(0) does not exist" and then immediately turns to the question about
f'(2), which is omitted here.

In c) Jan says: "It looks approximately ... f(x) on the interval (-, -1) ...

it looks like a constant times x, a negative constant." As he talks he writes:
‘ (-¢-1) fix) = -kx [It should be f(x)=-kx+m]

"And then the anti-derivative is one exponent higher."




g(x) = -kx2/2
"If I differentiate g(x) I get f(x)." He is very uncertain and it takes him
three minutes to plot (approximately) the points (-1,1) and (-2,-4), and
then connect them with a curve that is bent upwards [the wrong way
- compared to his g(x)] (see Figure 3).
Two seconds after drawing the curve he turns to the next interval, (-1,0).
This time without hesitation, he writes down

fix) =-2 g(x) = -2x,
thus producing Figure 3.
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"Then we have, finally, the interval (0,®). And ... there the function
looks like ... something that could look like -+x ... something ... May I
take a chance on that, to use a function?" JL answers that Jan can do as he
likes. After a period of silence JL asks what Jan is thinking.

"I would prefer to have an expression for f(x), it feels like. To find an
anti-derivative. But it can be difficult to ... find one ... quickly. What I
first thought about was +X, it is steeply increasing to start with, and then
continues further on (he traces the graph of f(x) in Figure 1 with his
pen). It could be -2+x, it should jump down to -2 then, where it should
start (he points at (0,-2) at the graph of f(x)) [Note the mistake; he
implicitly claims that -2+0 = -2]. Then it should go through ... if I insert
x=1 ... It should not work, no. Because the square root of 1 times -2 is -2
(he points at (1,-0.7) at the graph of f(x)) ... Then it was probably not so
wise." After a while, searching for other methods, he interrupts at 27
minutes from start his attempts to solve c).

Per's episode.

After some initial work Per swiftly draws (approximately) the line
f(x)=-1 for x € (-3,-1) (see Figure 4). "Then it should be zero ... Shall I
draw it like this or? ... T am a bit uncertain here." He draws the two lines
connecting the points (-1,-1), (-1,0) and (0,0).

JL asks him what he is uncertain about. "How to draw this." After some
silence he says "I think it is like this". Per determines f(x)=+x, but has
difficulties in sketching the graph of f'(x)=1/(2+x) on the interval (0,4),
and it takes him six minutes to complete Figure 4.




==t

.

R LI I
-1

-2

Figure 4.

"No, wait a minute! ... Isn't it so that the derivative doesn't exist in such a
point (points at (-1,-2) in Figure 1) ... an edge ... I don't know ... a sharp
... turn ..."

"Why shouldn't it?"

"Well, I form associations with this ... that we had as an example [in class]
... the absolute value of x (he swiftly sketches the graph of |x|). Then the
derivative doesn't exist in this point (points at origin) because there is ...
can be many different (he lays his pen on his graph of |x| along the x-axis
and then rotates it, centred at origin) ... one cannot simply determine the
slope. Then it should also be the same at this point (points at (-1,-2) in
Figure 1), I think, since this also is a ... sharp corner ... and maybe there
also (points at the point (0,-2) in Figure 1)? ... And then ... well ... I don't
know how to draw here (points at the vertical line at x=-1 in Figure 4)
but ... maybe there shall be no line up?"

After some more thinking, once again expressing his uncertainty he
finally (without explicitly motivating this) says that he guesses that f'(x) is
not defined at x=-1 and x=0, deletes the vertical line at x=-1 in Figure 4,
and then immediately turns to part b) which is omitted here.

In part c), Per writes after some initial work:
y=3/2x+ [Itshouldbey=-3/2 x +]
"If 1 shall estimate what ... it shall be a constant here ... I can get this by
... I can choose this point ... x=-1 and y=-2." He then writes:
-2=3/2(-1)+m
m=-2/(-3/2) = 4/3 [He divides instead of subtracting]
He says hesitantly that this does not seem to fit, because if he extends the
line in Figure 1 it should cross the negative y-axis. [..] He searches but
does not discover his mistakes. JL points them out to him and Per
estimates m to be -3, but Per makes another mistake when writing this
down:
y=-32x+3 [It should be - 3]
He easily finds a primitive function to this:
g(x) = -3/4 x2 + 3x
JL shows how to draw this on a calculator, and Per produces Figure 5:



Figure 5.

About 3 seconds after he completes the graph in Figure 5, he turns to
sketching g(x) on the next interval, but JL interrupts and asks if he is
finished with the interval (-3,-1).

"Yes, I guess we can say that.”

"Can you make some kind of estimate to see if your graph is reasonable,
can you check this in some way?"

Per is a bit hesitant at first, but after convmcmg h1mse1f that the graph in
Figure 5 corresponds to his algebraic expression for g(x) he is satisfied.
[..] JL continues:

"If you look at this function (JL points at Per's graph of g(x) in Figure 5,
at approximately the point (-2,-10)), what is the derivative here? Can you
say if it agrees with the derivative as given here (JL points at the graph of
f(x) in Figure 1)?"

"No, it does not. The derivative is positive all the way (points at Figure
5), and it should be negative here (points at the graph in Figure 1, for x
€ (-2.3,-1))." Per makes some comments specifying the interval, and JL
asks: "And before this the derivative is?"

Per answers without hesitation: "Positive." '

"Can you from this make a very rough sketch of what the function should
look like?"

It takes Per about half a minute to provide a rough but reasonable sketch
of g(x) at the interval (-3,-1), see Figure 6:

/\

Figure 6.

"The derivative is positive here (Per points at the left part of his sketch in
Figure 6), and then it gets zero, and then it is negative." 61 minutes has
passed since start, and JL closes the session.

ANALYSIS OF JAN'S AND PER'S EPISODES
D) f(x) on the interval [-1.0].

Their knowledge bases contain mainly two methods to extract
information about f'(x) from a function f(x):
1) To view f'(a) as the slope of the tangent line to f(x) at x=a.
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2) To differentiate algebraic expressions of functions by familiar
algorithmic rules.

Both hesitate since the situation contains, as they see it, two contradictory
statements:

i) f'(x) should be zero on (-1,0).

i1) The graphs of f'(x) that they want to draw are not continuous (not
even defined) on (-3,4), and therefore do not resemble any familiar
graphs. Anything unusual is as they see it probably wrong. To resolve the
situation, they use different approaches:

In part a) Jan doubts if i) is correct and turns to the more familiar
method 2), which convinces him that f'(x)=0. In b) Jan is trying to
determine the value of f'(0) from his graph of f'(x), but does not really
know how to do this. He remembers after some thinking that if the graph
of f(x) has a corner, then f'(x) does not exist. Per is disturbed by the
vertical line at x=-1 in Figure 4. He remembers (in a similar way as Jan)
almost ten minutes after drawing it that the function |x| has "a sharp turn"
in a similar way as f(x). Per also remembers what the derivative of |x|
look like and erases the vertical line. _

The background to their hesitation is not that they initially ask
themselves questions about the existence and general characteristics of
f'(x) on the interval (-3,4), but that the graphs they want to draw look
unfamiliar and are not included in their function concept image (Tall and
Vinner 1981). I seems like posing these crucial existence questions is very
seldom done by students, at least partly because it is superfluous in most
textbook exercises. Per and Jan do not reflect over if and why the
contradiction between i) and ii) above is resolved. They are convinced by
the mere familiarity of the methods and examples. They essentially do not
know why these “rules” are true but it does not matter, they are satisfied
and at once turn to their next tasks.

E) Careless mistakes.
On the interval (-3,-1) in part c) their plan is:
1) f(x) is a line and thus of the form f(x)=kx+m, and the first step is to
determine k and m.
i1) Integrate kx+m by the familiar procedure, which yields g(x).

Some of their careless mistakes are:
1) Jan states that "on (-*,-1) f(x)=-kx" (he misses the constant m), and
finds g(x)=-kx2/2 by the familiar integration algorithm.
2) Per misses to write out minus signs twice, and once he divides instead
of subtracts.

Their focus is to use familiar procedures, and there are essentially
no checking comparisons with other types of reasoning that might have
detected the errors. The only exception is when Per notes that the
function he has reached, y=3/2 x + 4/3, does not fit with the graph of f(x)
in Figure 1. He makes a very superficial search for the error but cannot
find it, partly because he is disturbed by the test situation.
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Per has during 20 minutes worked with c), mainly with familiar
elementary algorithmic methods. He has great problems caused by
careless arithmetical mistakes and improper monitoring and control.
When asked to check his answer, he just considers if it corresponds to his
algebraic expression for g(x). When Per is mildly led into first checking
if f(x) actually is the derivative of his g(x), and then making a rough
estimate of g(x), he makes this swiftly and skilfully. Per cannot
afterwards explain why he did not think of this himself, but it is probably
caused by the fact that this type of mathematical reasoning is unusual in
his studies. He says that he feels more at home when trying to apply more
"exact" familiar algorithmic methods. Both Per and Jan could probably
have made better progress if they have completed their present
approaches with mathematical reasoning, as Per does when guided.

F) Jan's rejection of a good idea.

Jan's idea is very reasonable: If one moves the graph of +x two steps
(units) down it resembles f(x) on (0,4) in Figure 1. He remembers
wrongly that this is done by multiplying by -2 instead of subtracting 2.
Unfortunately, his attempt to verify this is not well organised and fails:
Jan first says that the point (0,-2) is on the graph of -2+x. The
reason for this mistake is that he does not calculate this value, but believes
that the function -2+x is actually the translation of +x (which starts at (0,
0)) two steps down and therefore that the graph of -2+x starts at the point
(0,-2). Then he writes down the function's value at x=1, which he
calculates; -2+1=-2. This does not fit with the graph of f(x) in Figure 1
and he decides (correctly) that f(x) cannot be equal to -2+x on (0,4). The
function -2-+x is to him (wrongly) f(x) translated two steps down. The
consequence is that he thinks that the whole idea of translating +x to
obtain f(x) is "not so wise" and rejects a good idea without analysing why
it did not work because:
1) He remembers vaguely that translating two units down is achieved by
multiplying by -2 but he never really understood why (and not how
translations work in general), and therefore has a weak base for asking
himself why it failed.
2) As in many occasions above he is not used to, and very seldom tries to
verify or test his reasoning at all. It would probably not be impossible for
him to solve the sub-problem of what it takes algebraically to translate +x
two steps down, but he does not even consider trying. He is not used to
doing this in his studies, and his belief seems to be that he cannot
construct his own mathematical reasoning. In general, students’ beliefs
about the nature of mathematics are very influential on their actual
behaviour. Common beliefs are for example that ordinary students cannot
expect to really understand mathematics, and cannot by themselves
construct anything outside the rules and methods demonstrated by the
teacher (Schoenfeld 1992).
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SUMMARY

The four students often focus mainly on what they can remember and
what is familiar within limited concept images. This focus is so
dominating that it prevents other approaches to be initiated and
implemented. There are several situations where the students could have
made considerable progress by applying (sometimes relatively
elementary) mathematical reasoning.

Their work and interpretations of the tasks are superficial in the
sense that they are based on familiarity. At the same time they are
remarkably stable. It is uncommon and takes a lot before they by
themselves question and evaluate what they have done and are doing. One
important component of mathematical competence is to be open and able
to continuously doubt one's positions in different situations. Even skilled
students and mathematicians often make minor and major mistakes, but
this is not such a big obstacle if the mistakes are detected and corrected
within reasonable time. The four students above have difficulties in
founding their metacognitive (see e.g. Schoenfeld 1985) activities on
some guiding mathematical reasoning. One common reason to activate
monitoring and control is that something looks unfamiliar, not that the
situation in itself might contain difficult or unclear mathematical
questions that need to be addressed.

There are situations where the students above meet difficulties
because they do not understand the background to the familiar procedures
they apply. For example concerning Alf's problems with the second
derivative test, many calculus textbooks treat the background to it as an
introduction and so does probably the teacher. But when it comes to the
student’s part of the work (the exercises) the focus is almost entirely on
applications of the test. The students are essentially not given any
opportunity to practice and construct mathematical reasoning in
connection with the second derivative test. Maybe this might also be the
case with many other mathematical ideas at all levels in school? One may
also note that there are several concepts, methods and procedures that are
used without any attempts to background explanations at all.

Maybe the behaviour described above has its origins in that this
usually is the best way for students to work with their studies? At short
sight it might be most efficient when entering a task to (perhaps without
understanding): Superficially identify the type of task, somewhat
randomly choose one from the library of standard methods, apply the
familiar algorithms and procedures, and finally check with the solutions
section. Contrast this with Pélya's (1945) four problem solving phases:
Understanding the problem, devising a plan, carrying out the plan, and
looking back. It is also noteworthy that the textbook and examination
questions the four students encounter that asks for the construction of
some kind of mathematical reasoning, almost always also are the more
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difficult ones. The easier tasks, that are manageable for the students with
learning difficulties, ask essentially for the application of some standard
algorithm. Tall (1996) treats a related problem when discussing
conceptual difficulties: "If the fundamental concepts of calculus [..] prove
difficult to master, one solution is to focus on the symbolic routines of
differentiation and integration. [..] The problem is that such routines
become just that - routine - so that students begin to find it difficult to
answer questions that are conceptually challenging. The teacher
compensates by setting questions on examinations that students can answer
and the vicious circle of procedural teaching and learning is set in
motion."

We sometimes say that "the students just do not learn what we teach
them". But maybe it is actually the way of working described and
criticised in this paper that we as teachers, together with textbooks and
examinations, actually teach? And that the students are actually quite good
at learning in accordance with the learning environment that we actually
provide? If the students are basing their work more on what is familiar
from a limited type of standard exercises than on solid mathematical
reasoning and accuracy, and if this base is likely to lead them in the
wrong direction as soon as the task is not completely familiar, then we
cannot really claim that our teaching has succeeded.
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- Mathematical reasoning in task solving

Johan Lithner

ABSTRACT. An earlier study (Lithner 1998) treated the question “what are the main
characteristics and background of undergraduate students’ difficulties when trying to
solve mathematical tasks?” This paper will focus on, and extend, the part of the earlier
study that concerns task-solving strategies. The results indicate that focusing on what is
familiar and remembered at a superficial level is dominant over reasoning based on
mathematical properties of the components involved, even when the latter could lead to
considerable progress.

1. MATHEMATICAL REASONING IN SCHOOL TASKS

1.1. Reasoning Structure.

Ross (1998) responds on behalf of the MAA, to the NCTM Commission
on the Future of the Standards’ questions concerning proof and
mathematical reasoning: “One of the most important goals of mathematics
courses is to teach students logical reasoning. This is a fundamental skill,
not just a mathematical one. [..] It should be emphasised that the
foundation of mathematics is reasoning. While science verifies through
observation, mathematics verifies through logical reasoning. [..] If
reasoning ability is not developed in the student, then mathematics simply
becomes a matter of following a set of procedures and mimicking
examples without thought as to why they make sense.” It is probably not
controversial to accept Ross’ position, at least in the interpretation that
reasoning is a fundamental component in mathematics. Authors of recent
articles have expressed their concern about students’ difficulties in
handling mathematical proofs (Hanna and Jahnke (1996), Hoyles (1997)).
Proof is indeed central in mathematical reasoning but this paper will
focus on two other aspects of such reasoning: (i) Plausible reasoning,
which is defined below as an extended and “looser” version of proof
reasoning, but still based on mathematical properties of the involved
components. (ii) Reasoning based on established experiences from the
learning environment, which might be mathematically superficial.

Solving a mathematical task can be seen as solving a set of sub tasks
of different grain size and character. If the sub task is not routine, one
way to describe the reasoning is the following four-step structure.

(1) A problematic situation is met, a difficulty where it is not obvious
how to proceed.

(2) Strategy choice: One possibility is to try to choose (in a wide sense:
choose, recall, construct, discover, etc.) a strategy that can solve the
difficulty. This choice can be supported by predictive argumentation:
Will the strategy solve the difficulty? If not, choose another strategy.



(3) Strategy implementation: This can be supported by verificative
argumentation: Did the strategy solve the difficulty? If not, redo 2 or 3
depending on if one thinks the problem is in the choice or in the
implementation of the strategy. ,

(4) Conclusion: A result is obtained.

The term reasoning is defined as the line of thought, the way of thinking,
adopted to produce assertions and reach conclusions. Argumentation is
the substantiation, the part of the reasoning that aims at convincing
oneself, or someone else, that the reasoning is appropriate.

1.2. Plausible Reasoning.

Without attempting to provide a precise definition, the type of
mathematical tasks that students normally meet in their textbooks and
exams will be labelled school tasks. One crucial distinction between
school tasks and the professional use of mathematics, is that within the
didactical contract (Brousseau 1984) of school one does not always have
to be certain that the result is correct. One is allowed to guess, to take
chances, and use ideas and reasoning that are not completely firmly
founded. Even in exams, it is acceptable to have only 50% of the answers
correct and, if you do not, you will get another chance later. But it is
absurd if the mathematician, the engineer, and the economist are correct
only in 50% of the cases they claim to be true. This implies that it is
allowed, and perhaps even encouraged, within school task solving to use
forms of mathematical reasoning with considerably reduced requirements
on logical rigour.

A way to characterise this aspect of school task reasoning is
indicated by Pélya (1954 pp. v-vi): “We secure our mathematical
knowledge by demonstrative reasoning, but we support our conjectures
by plausible reasoning. [..] In strict reasoning the principal thing is to
distinguish a proof from a guess, a valid demonstration from an invalid
attempt. In plausible reasoning the principal thing is to distinguish a guess
from a guess, a more reasonable guess from a less reasonable guess.” In
an attempt to relate Pélya’s ideas to the discussion above, a version of the
reasoning structure (1-4) will be called plausible reasoning (abbreviated
PR) if the argumentation:

(1) is founded on mathematical properties of the components involved in
the reasoning, and

(ii) is meant to guide towards what probably is the truth, without
necessarily having to be complete or correct.

PR includes proof as a special case, with the distinction that proof
requires a higher degree of certainty in (ii). For example, in a task



solving situation one might make progress by PR, without formally
proving ones ideas:

(1) Problematic situation: T is a calculus maximisation task. What shall be
done to solve T?

(2) Strategy choice: If one sees the graph of a function as hills and
valleys, a maximum is found at the top of a hill. At the top the slope is
zero, and the slope is described by the derivative. So T is solved by
examining the points where £(x)=0.

(3 and 4) Strategy implementation and conclusion: If the task solver is
familiar with this procedure, the rest is straightforward.

1.3. Reasoning based on Established Experiences.
Let the strategy choice above be replaced by:

(2) Strategy choice: The solution to all maximisation tasks I have solved
have been found where f(x)=0. So T is solved by finding where f'(x)=0.

Then the reasoning is not classified as PR, since the argumentation in (2)
is based on established experiences from the learning environment, and
not on mathematical properties of the components involved. A version of
the reasoning structure (1-4) will be called reasoning based on established
experiences (abbreviated EE) if the argumentation:

(1) is founded on notions and procedures established on the basis of the
individual’s previous experiences from the learning environment, and
(11) is meant to guide towards what probably is the truth, without
necessarily having to be complete or correct.

The reasoning concerns the transfer of properties from one familiar
situation, to another (task solving) situation that has at least superficial
resemblance to the familiar situation. It may not be possible to decide
only from a person’s behaviour whether the reasoning is EE or not. This
is determined by the underlying thoughts of the person. It is important to
stress that EE is not the same as rote learning, and solving routine
exercises by following procedures and mimicking examples. An EE
approach is often applied in a problematic situation, which is non routine

to some extent, by trying to relate the strategy choice and implementation
to something familiar.

2. RESEARCH QUESTIONS AND METHOD
2.1. Research Questions.

This study is based on the following questions:




Q1: In what ways do students manage or fail to engage in PR as a
means of making progress in solving tasks in school? What are the roles
of EE in these situations?

Q2: In the situations where the students make or could have made
progress by PR or EE, what types of competencies are present and
absent?

2.2. Related Research.

Earlier studies have described students’ reluctance to base their work on
“mathematical grounds” as one of the main causes behind task solving
difficulties.

Vinner (1997) suggests a theoretical framework where two of the
main notions are analytical and pseudo-analytical behaviour, respectively.
The latter is defined as a behaviour that is not analytical, but which in
routine task solving might give the impression of being analytical, and
could even produce correct solutions. The examples in Vinner’s article,
characterised as analytical and pseudo-analytical, could essentially also be
described as PR and EE, respectively. The main theoretical difference
between Vinner’s term analytical and PR is that the latter addresses the
degree of certainty in the reasoning. EE can be seen as one type of the
more general pseudo-analytical behaviour. Pseudo-analytical is defined by
what it is not (analytical), but EE is more narrowly defined. One of
Vinner’s main points is that this kind of difficulties in solving routine
tasks may often be better understood if they are interpreted within his
“non-cognitive” framework, than if they are seen as misconceptions
within the domain of meaningful contexts.

EE may be related to the keyword approach in task solving.
Hegarty et al. (1995) describes this keyword strategy in the context of
arithmetic word tasks: “In the short-cut approach, which we refer to as
direct translation, the problem solver attempts to select the numbers in
the problem and key relational terms (such as “more” and “less”) and
develops a solution plan that involves combining the numbers in the
problem using the arithmetic operations that are primed by the keywords
(e.g., addition if the keyword is “more” and subtraction if it is “less”).
Thus, the problem solver attempts to directly translate the key
propositions in the problem statement to a set of computations that will
produce the answer and does not construct a qualitative representation of
the situation described in the problem.” Their study shows that the
unsuccessful task solvers use keyword strategies, whereas the successful
task solvers base their solution plans on models of the situations in the
tasks. In more advanced mathematics like calculus the tasks are more
complex than in arithmetic and there is a multitude of potential solution
strategies involving a multitude of different components. Here EE might
be seen as attempting to select more general “key connections” between a
task and ones established experiences from (perhaps superficially) similar



situations in the learning environment, in order to develop a solution
strategy without constructing a qualitative representation of the task.

In a study of students’ notion of proof, focusing on how they arrive
at their conviction of the validity, Balacheff (1988) singled out two types:
Pragmatic “proofs” are about “showing” that the result is true because “it
works”. These do not actually establish the truth of an assertion but are
often believed to do so by their producers. Conceptual proofs concern
establishing the necessary nature of the truth by giving reasons. Though
both types could be based on mathematical properties, Balacheff found a
clear break between the two concerning levels of sophistication. Other
researchers have also described students’ difficulties in differing proofs
from other less rigorous types of argumentation (Chazan 1993, Hoyles
1997).

Schoenfeld (1985, p. 358) describes, in a study of geometrical
problem solving, students’ focus on methods that he labels naive
empiricism: To test ideas by constructing figures, and then determine the
correctness of the ideas by the shapes of the figures. This approach often
caused different types of failure. Often the students did not attempt to use
the mathematical properties of the objects to construct some kind of
deductive reasoning, even though their resources were sufficient and
proper reasoning could have helped them to make considerable progress.

2.3. Analysis Framework.

The framework for Q1 is given in section 1 above. A suitable theoretical
tool for Q2 is provided by Schoenfeld’s (1985, 1992) structuring of
problem solving behaviour in the four categories resources, heuristics,
control, and belief. Schoenfeld has convincingly shown that all four
components have fundamental influence on progress in problem solving.
The structure is summarised by Schoenfeld (1985 p. 15):

“Resources: Mathematical knowledge possessed by the individual that can
be brought to bear on the problem at hand. Intuitions and informal
knowledge regarding the domain. Facts. Algorithmic procedures.
“Routine” nonalgorithmic procedures. Understandings (propositional
knowledge) about the agreed-upon rules for working in the domain.
Heuristics: Strategies and techniques for making progress on unfamiliar
and non-standard problems: rules of thumb for effective problem solving,
including: Drawing figures; introducing suitable notation. Exploiting
related problems. Reformulating problems; working backwards. Testing
and verifications procedures.

Control: Global decisions regarding the selection and implementation of
resources and strategies. Planning. Monitoring and assessment. Decision-
making. Conscious metacognitive acts.

Belief Systems: One’s “mathematical world view”, the set of (not
necessarily conscious) determinants of an individual’s behaviour. About
self. About the environment. About the topic. About mathematics.”




2.4. Method.

The students in the examples were at the end of their first semester of
university studies in mathematics. Their examination results were average
or slightly above.

The two school tasks (see below) are neither pure routine tasks, nor
completely non-routine genuine problems. The main purpose behind the
choice of these tasks was to create task solving situations, where
opportunities existed to show both competence in choosing from a
multitude of familiar facts and procedures, and competence in handling
novel problem solving situations by PR or other types of constructive
reasoning. By doing so it was possible to study the balance between PR
and EE in the student’s work. The calculus context ensured that the
students had met this multitude of related facts and procedures so that EE
approaches were possible.

The students who volunteered worked on the tasks in the presence
of a video camera, but working alone apart from my help (see the
“Description” sections). They were informed in advance that they should
try to “think aloud”, but otherwise act as close as possible to their usual
way of working. They where given as much time as they needed, the
sessions normally lasted 30-60 minutes. The episodes presented in the
“Description” sections are fairly complete to provide the reader with
enough data to be able to question the analysis and conclusions. Some
parts that are omitted here are described in (Lithner 1998). The analysis
proceeded in two steps:

(1) After a session I tried to interpret the tape and describe not only
what was taking place, but also why this was happening, speculating in
how the student was thinking. In order to increase the reliability of these
speculations, I then (not later than three days after the session) met the
student, and we went through my written interpretation while viewing the
videotape. Then the student could make comments, and also suggest other
ways to interpret and explain the situations. The revised interpretations
are presented in the “Interpretation” sections below.

(2) The second step of the analysis is focused more closely on the
questions Q1 and Q2 above. These analyses are presented in the
“Analysis” sections, and are based on the PR/EE and resources-heuristics-
control-belief frameworks, but are not commented on by the students.

3. EMPIRICAL DATA AND ANALYSIS

The work of each student will be presented in the three parts Description,
Interpretation, and Analysis. The two tasks are presented to the students
in the same written form as below (translated from Swedish essentially
word for word). Minor passages that are omitted in the quotations are
replaced by [..] , and pauses are indicated by ... .



3.1. Description of Alf’s Work with Task 1.

Task 1: A company produces x units of a commodity per year, where x
belongs to [400,600]. The estimated production cost is approximately
-2x2 + 2000x - 420000 kr/unit, and the expected sale price
approximately -x2 + 700x kr/unit. How many units should be produced
each year to maximise the yearly profit?

Alf starts by reading the task aloud and shows no sign of hesitation. He
says that “It feels a bit familiar” and writes down the given formulas:
-2x2 + 2000x - 420000 -x2 + 700x x _ [400, 600]
After some thinking he states that “the sale price minus the production
cost is the profit” [note that this yields the profit per unit, not the profit
per year] and has no difficulties in constructing and simplifying the
[within his faulty interpretation, correct] profit function
V = x2 - 1300x + 420000
Alf differentiates this, solves V'(x)=0 to find x=650.
“Now we can use the second derivative test to find out if it is a max or a
min.” He easily finds V"=2, but then gets a bit puzzled:
“This is strange. It feels like it should be a minimum if I remember
rightly, since the second derivative is positive.” After a while Alf decides
that:
“I could skip this second derivative test. There are other possibilities if I
don’t remember wrong. For example, to check what the derivative looks
like close to ... [meaning x=650]". Alf works swiftly, finds that V'(600) is
negative and V' is positive to the right of x=650, and draws two arrows
[the firNst d}clrivative test):

“It feels like it becomes a minimum! No, wait a minute, what am I
doing?” Alf spends a few minutes not really being able to decide whether
to examine the derivative or the function itself.
“Normally I would just accept it [x=650] as an answer, it feels like a
rather good answer in some way. ... Maybe I should check this.”
Alf uses a calculator and finds that

V(650) = -2500
“I’ll be damned if it was not negative! [..] Then we can assume that this
[x=650] isn’t so good.” After some thinking he remembers that he has to
check the endpoints of the definition interval, and after some routine
work he states that “this implies that we have the maximum profit for 400
units”. 15 minutes have passed since he started, and 10 minutes since he
found that V"(x)=2. ‘

3.2. Interpretation.

Alf expects to find the answer by finding the zeros of the derivative
V'(x). When he finds that V"(x)=2 he is puzzled by two contradictions:
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(i) His (faulty) expectation that the answer (maximum) is found where
V'(x)=0, at x=650.

(i1) He (correctly) believes that V"(650)=2 implies that x=650 is a
minimum. : :

7 There are two interacting reasons behind Alf’s decision to dismiss
@11):

(a) The expectation (i) is much stronger than his conviction that (ii) is
true.

(b) He remembers that the second derivative test states (ii) but does not
know why it is true. Alf does not try to complete or test his memory by
some kind of mathematical reasoning.

Taken together, (a) and (b) mean that the only way out, that occurs to
him, is to dismiss (ii) and search for other methods to verify that (i) is
correct. If he had made some miscalculations, and for example found
V"(650)=-2 (which would imply that x=650 yields a maximum), he
would have considered the task finished.

Another method that Alf applies in order to determine the
characteristics of the critical point is the first derivative test. He again
reaches a contradiction, this time between (i) above and:

(iii) V(x) is decreasing to the left of x=650 and increasing to the right,
which implies that x=650 is a minimum.

Once again, the expectation (i) is dominating and he questions here if the
correct method in (iii) is applicable at all. He is then rather puzzled and
searches at first for other methods to verify that the answer is x=650, but
cannot find any. It is not until he tests the value of V(650) and to his
surprise finds that it is negative, that he questions (i).

3.3. Analysis.

Reasoning Structure.

The reasoning structure in section 1 can be applied to Alf’s work:

(al) Problematic situation: What shall be done to solve task 1?

(a2) Strategy choice: By his established experiences, maximisation tasks
are usually solved by finding where V'(x)=0.

(a3) Strategy implementation: Alf finds that V'(650)=0, and tries to
verify that x=650 is the correct answer by applying the familiar second
derivative test. Alf’s reasoning reveals that a contradiction between (i)
and (ii) is reached, but the reasoning is too limited to reveal why and he
returns to (2).

(b2) Strategy choice: If the second derivative does not verify that x=650
is the answer, other familiar methods should be searched for.

(b3) Strategy implementation: The first derivative test is recalled and
implemented according to familiar procedures. A contradiction between
(1) and (iii) is reached, and once again he returns to (2)

(c2) Strategy choice: He is puzzled since he does not understand why his
approach does not work, and has run out of familiar procedures to apply.



Therefore, his approach is more open and he turns to exploring
properties of the expected answer.

(c3) Strategy implementation: One of the easier properties to explore is
the size of the profit. By Alf’s verificative argument, a negative profit is
not reasonable, and here he questions (a2).

(d2) Strategy choice: By (c3), the answer is not found where V'(x)=0. Alf
tries to recall from his experiences if there are any other familiar types
of answers.

(d3) Strategy implementation: He remembers that maxima may be found
at the interval endpoints, and implements the familiar method for testing
this.

(d4) Conclusion: The answer is found at x=400.

There are instances that may be characterised as PR, for example (a3),
when Alf realises that there is a contradiction between (i) and (ii). This
reasoning is founded on mathematical properties of second derivatives. At
the same time, the base for the reasoning is superficial (memory, not
understanding) and limits its range: it reveals a contradiction but does not
lead forward. Another instance is (c3), when he sees a negative profit as
unreasonable. It is noteworthy that both the contradictions between (i)
and (ii), and between (i) and (iii) are logical contradictions, but he does
not question (i). To do so, he would have to apply PR and consider the
mathematical properties of (i), (ii) and (iii). The “contradiction” between
(1) and the statement “x= 650 gives a negative profit” is not a logical
contradiction since profits may be negative, but here he does question (i).
This time he does not have to consider mathematical properties, but can
apply EE: profits are usually positive.

The main characteristic of his work is that the PR instances are all
of very limited range. The overall reasoning that guides his strategy
choices and implementations is mainly based on EE, without applying
constructive reasoning based on mathematical properties of the
components involved. This seems to be one of the main reasons for his
difficulties. Alf’s work might have progressed more steadily and
effectively if the role of PR had been more influential. This could have
been achieved in many ways, see “heuristics” below for examples. One
approach could be to try to construct a deeper understanding of the
second derivative test. This is unnecessarily laborious if the purpose is
merely to solve task 1, but in a wider perspective the gained
understanding may be useful outside the task. An imagined PR approach
might be:

(1") Problematic situation: The uncertainty about the second derivative
test. What does V'(650)=0 and V"(650)=2 imply concerning the shape of
the graph of V(x) close to x=650? In particular, is there a max, a min, or
something else?



(2" Strategy choice: V'(x) can be visually interpreted as describing the
slope of V(x), and V"(x) as describing the slope of V'(x). Combine this
with the information about V'(650) and V"(650) to describe the shape of
V(x). :

(3") Strategy implementation: V"(650) is positive, so V' is increasing.
Since V'is zero at x=650, V' is negative to the left and positive to the
right of x=650. The graph of V is U-shaped, since V' describes its slope.
(4") Conclusion: There is a minimum at x=650.

V(x) is a specific function but it is used as a generic example, and the
reasoning concerns general principles of second derivatives.

Resources.

Alf is very familiar with the action parts of the maximisation procedure
as they are treated in the textbook of the course: He swiftly differentiates
his function V(x), solves V'(x)=0 and applies the second derivative test.
So far it is purely routine work, which he masters. It is not until Alf
meets a situation that lies outside his established experiences, the
contradiction between (i) and (ii), that he starts hesitating about how to
proceed. There are several possibilities to resolve this situation, where
Alf has the required resources. He could for example have questioned (i),
or drawn a graph.

Alf’s insufficient understanding of the underlying concepts can be
seen as lacking resources. He says in the interview, after the task solving
session, that one reason why he was uncertain about the second derivative
test, was that he never understood why it was true and therefore he could
not check (ii) by some kind of reasoning. It is possible that his concept
image (Tall and Vinner 1981) of the second derivative contains no visual
component, and this makes it difficult for him to immediately “see” if his
formulation (ii) seems correct. It seems like his statement image (“a
unifying extension of the idea of concept images which we regard as
statement images corresponding to definitions”, Seldén & Selden 1995) of
the second derivative test consists only of the action of applying the test to
an algebraically represented elementary function. Perhaps no visual
component is included, for example like the visual interpretation in the
imagined PR example (1'-4") above.

Could Alf by himself have constructed a more solid statement
image of the second derivative test by PR? At a first glance, the statement
image of the second derivative test and the concept image of derivatives
needed in the imagined example (1'-4') may seem much more solid than
Alf’s, but possibly they are not: In (1'-4') PR and “old knowledge” is used
to construct new knowledge. The resources required in (1'-4") may be
exactly the same as Alf’s when entering task 1. After finishing task 1
Alf’s resources are not increased, except in the sense that he will more
likely remember to check the endpoints of the definition interval. In (1'-
4", on the other hand, the resources are increased by developing both the
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concept image of derivatives and the statement image of the second
derivative test. Of course, (1'-4") is more complicated than Alf’s
approach, but in another episode below, the student Jan is able to make
quite a jump towards more advanced PR when guided.

Heuristics.

One of the main heuristic strategies in many calculus tasks is to draw a
graph of the function involved. The ideas about maxima and minima of
functions are very well represented in a graphical exposition, at least as a
complement to the algebraic representation. A graph of V(x), especially
if restricted to the interval of definition, could be a source for discovery
and a base for PR. The graph would show an U-shaped parabola with a
minimum, not a maximum as Alf expects, at its only critical point x=650.
He had the resources to do this by hand, and he knew how to use the
graphic calculator that lay beside him. One reason for his reluctance to
draw a graph might be that his experience of these types of tasks is
mainly based on practising the maximisation routine procedure, where
drawing graphs may be seen as a waste of time. Another heuristic
strategy is to look at the more general case: What is known about second
degree polynomials, in particular with positive second degree
coefficients? What types and how many different extremal points may
they have? Alf has met many second degree polynomials in different
contexts during his secondary and tertiary studies.

Control.

In one way Alf’s control is very efficient, if one accepts the position that
Alf’s EE strategy choice is to apply his interpretation of the familiar
maximisation procedure. He immediately notices when something comes
up that does not fit with his expectation (i). He curtails his unsuccessful
attempts to resolve the contradictions between (i) and (ii), and then also
between (i) and (iii). He searches in his resources for familiar methods to
apply, and probably also finds all the available ones. The two methods he
tries to apply are in fact the main ones in the textbook.

In other ways Alf’s control is poorer: The main problem is that he
does not question his faulty expectation (i) earlier. There are no signs
found of planning or evaluation of progress that could lead to other
approaches, for example PR.

Belief.

Many teachers and calculus textbooks treat the background of the second
derivative test as an introduction to it, but when it comes to the students’
part of the work (the exercises) the focus is almost entirely on
applications of the test. The students are not given many opportunities to
practice PR in connection with the underlying properties of the second
derivative test, and this could lead to the belief that this type of PR is not
useful in task solving. Maybe this is also commonly the case with other
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mathematical ideas at school? Schoenfeld (1992 p. 359) describes that
students’ beliefs about the nature of mathematics are very influential on
their behaviour. To carry through (1'-4") one has to see PR as a useful
task solving tool.

3.4. Description of Jan’s Work with Tasks 2a and b.

Task 2: The function f(x) has the graph below.
a. Sketch the graph of f'(x).

b. What is f(-2), f'(0) and £"(2) ?

c. Sketch the graph of g(x), if g'(x)=f(x) .

7 |

Figure 1.

When sketching f'(x) in the xy-plane, Jan swiftly draws approximately the
line y=-2 for x _ (-3,-1), see Figure 2. Then he starts to hesitate about
how to draw the graph for x _ (-1,0):

“And then ... there is a jump ... it is zero here ... let’s see ...” Jan is
moving his pen around and he is drawing the line y=0 in the air, just
above the paper with the picture of Figure 2. After a period of silence JL
asks Jan what he is thinking of.

“What the derivative looks like ... in this constant interval. Here (he
points at the line y=-2 in Figure 2), I have figured out that it is constant
but negative.” Jan is silent for half a minute and then continues, by
leaving the interval (-1,0) and turning to the next one:

“And here, the derivative is like this.” He draws swiftly the graph for x _
(0,4), thus producing a picture that looks approximately like Figure 2 (he
has not yet drawn any curve for x _ (-1,0)).

2
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Figure 2.
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“Here it is ... (he points at the graph of f(x) in Figure 1 at the interval (-
1,0)) it is some function that is ... this function on that interval is -2.” He
writes this down:

fix) = -2.
“And then the derivative of this is zero” he continues and writes:
f(x) =0.

Without hesitating he adds the line y=0 for x _ (-1,0) to Figure 2, and
then immediately turns to verify the shape of the curve for x _ (0,4).

In part b he has essentially no difficulties in estimating f(-2). Turning to
f'(0) he becomes more hesitant:

“If one looks at the figure (he points at his graph of f(x)) ... we have a
jump ... it never gets zero.” JL asks him to clarify what he means.

“This (Jan’s pen traces his graph of f'(x) along the curve as x goes from 4
towards 0) will never cross the y-axis, this derivative, for positive x. On
the other hand, this (his pen traces his graph as x goes from -1 towards 0)
will be 0 all the way to ... x equal to ... zero ... because it depends ... Now
I am uncertain. It should either be zero or not defined. [..] The question I
ask myself is whether this (points again at the line y=0) goes all the way
into zero?” After half a minute of thinking he continues:

“It seems that it does not, since there is sort of a corner on the function ...
which means that it does not exist.” Jan writes down “f'(0) does not exist”
and then immediately turns to the question about f"(2).

3.5. Interpretation.

Jan’s resources contain two methods of extracting information about f'(x)
from f(x):

(I) To view f(a) as the slope of the tangent line to f(x) at x=a.

(II) To differentiate algebraic expressions of elementary functions by
algorithmic rules.

At first, Jan uses (I) in a dynamic translation from f(x) to f'(x) on the
separate intervals, and demonstrates his skill on the difficult interval
(0,4). Jan hesitates when trying to determine f'(x) on the interval (-1,0).
The situation contains, as he sees it, two contradictory statements:

(1) £(x) should be zero on (-1,0), since the slope of f(x) is zero.

(i1) The graph of f'(x) that he wants to draw is unfamiliar since it is not
continuous on (-3,4). Anything unusual is to Jan probably wrong.

Jan doubts if (i) is correct and turns to the more familiar method (II)
above. He has no difficulties in implementing it, and considers himself
finished. In b Jan is trying to determine the value of f'(0) from his graph
of f'(x), but does not really know how to do this. He searches his memory
and remembers after some thinking that if the graph of f(x) has a comner,
like |x| at x=0, then f'(x) does not exist.
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Jan does not reflect over whether his problem with the two
contradictory statements (i) and (ii) above is resolved. The mere
familiarity of the algorithmic method is enough to convince him that he is
correct. It is clear that Jan has not actually resolved the contradiction, this
can be seen in his difficulty with task 2b. This difficulty with determining
the existence of f'(0) is resolved when he remembers that derivatives do
not exist at corners. Later he says that he does not really know why this
“rule” is true, but it does not matter since he now can relate to something
familiar and is fairly convinced that he is correct.

3.6. Analysis.

Reasoning Structure.

There are few PR instances included in Jan’s work (one example is when
method (1) above is applied in task 2a on the interval (0,4)). If instead of
asking himself what the derivative looks like, he had first considered
whether the derivative was defined, he could have proceeded by
theoretically based PR:

(1) Problematic situation: Is f'(x) defined on (-3,4)?

(2) Strategy choice: Apply mathematical properties of the definition of
the derivative, to see where on (-3,4) f'(x) exists.

(3) Strategy implementation: The derivative is determined pointwise.
That is, f'(x) exists iff lim h_0 (f(x+h)-f(x))/h exists. This means in
particular that the quotient should approach the same value when h_0-
and h_0+. This condition is fulfilled everywhere on (-3,4), except at x=-1
and x=0. (As an alternative, a similar argument may be produced in a
visual, less formal mode by considering the line through the points
(x,f(x)) and (x+h,f(x+h)) that approaches the potential tangent line as
h_0- and h_0+).

(4) Conclusion: f(x) is defined everywhere on (-3,4) except at x=-1 and
x=0.

The EE approach that convinces Jan that he has found the solution of task
2a can be structured as:

(1") Problematic situation: Consider Figures 1 and 2. What does {'(x)
look like on (-1,0)? It ought to be zero, but the graph of f(x) will then
look unusual.

(2") Strategy choice: The safest way to determine derivatives is by the
familiar differentiation algorithm.

(3") Strategy implementation: The function is estimated to be f(x)=-2.
Then by the differentiation algorithm f'(x)=0.

(4" Conclusion: f(x)=0 on (-1,0).
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In task 2b, Jan initially takes a PR approach. He tries to determine the
value and existence of f'(0) by considering what happens to his graph
from task 2a, when x tends to zero from left and right. However, the
attempt fails since his reasoning is not founded firmly enough in
mathematical properties of the derivative concept. To just look at the
graph and see if it “goes all the way” is not a feasible approach. Instead,
the task is solved by a EE approach:

(1") Problematic situation: Task 2b, £'(0).

(2") Strategy choice: Search for similar familiar situations, compare with
familiar graphs.

(3") Strategy implementation: At corners, derivatives do not exist.

(4") Conclusion: f'(0) does not exist.

The two EE approaches above result in fairly correct answers and Jan
seems convinced that his work is satisfactory, at least in the sense that he
does not spend any time trying to check his result. It does seem clear
though, that he has not tried (or managed) to construct any reasoning that
addresses the basic considerations concerning existence and continuity that
underlie his difficulties.

Resources and Belief.

A function that is not defined or not continuous on the whole interval (-
3,4) is peripheral in Jan’s learning environment, and Jan suspects that
f'(x)=0 on (-1,0) is wrong. This situation can be related to (Niss 1998):
“For a student engaged in learning mathematics, the specific nature,
content and range of a mathematical concept that he or she is acquiring or
building up are, to a large part, determined by the set of specific domains
in which the concept has been concretely exemplified and embedded for
that particular student.”

To construct the theoretically based PR above, Jan needs experience
in handling theoretical reasoning. He has in his undergraduate calculus
courses met the theoretical tools needed, but they are often mainly used as
definitions when introducing concepts or proving theorems, and seldom
used to solve the textbook exercises which constitutes the bulk of Jan’s
study work. As Niss (1998) puts it: “For example, even if students who
are learning calculus or analysis are presented with full theoretical
definitions [..], and even if it is explicitly stated in the textbook and by the
teacher that the aim is to develop these concepts in a general form [..],
students actual notions and concept images will be shaped, and limited, by
the examples, problems, and tasks on which they are actually set to
work”. In Jan’s learning environment there is a very limited need for
using the formal theoretical definition of the derivative to solve tasks.
This may cultivate the belief that theoretically based PR is important for
proving theorems but not for solving tasks.
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Heuristics and Control.

Perhaps one could call control strategies heuristic which “start by
investigating what kinds of answers may exist, to avoid searching for a
type that does not”. Jan’s initial strategy is to search for the answer,
without any explicit existence considerations. When he later finds that the
answer he wants to construct leads to a contradiction between (i) and (ii),
his attempts are founded on far too weak theoretical grounds to
investigate how the existence is determined. The strategy that Jan actually
applies in addition to methods (I) and (II) above, could be called
“compare with familiar function graphs”. Another instance that may be
characterised as insufficient control, is that Jan does not consider whether
his doubts concerning the contradiction between (i) and (ii) above have
been resolved. He is convinced by the familiarity of the EE method.

His difficulties are in a sense actually caused by active control, but
on weak grounds: If he had not bothered about that the graph he first
wants to draw looks unfamiliar, and just drawn the line f'(x)=0 on (-1,0),
he would probably have received a fairly good grading if the task had
been included in an examination. There are no signs found that his
hesitation is grounded in mathematical reasons, or that he searches for
mathematical reasons to clarify it.

3.7. Description of Per’s Work with Task 2c.

Per starts by looking at the graph of f(x) in Figure 1, saying “if this is the
derivative, I am supposed to find the function to it”. After a while he
continues: “Here we have a decreasing derivative, between x=-3 and x=-1
... The question is what that yields? ... One could estimate the function
here (points at the graph of f(x) in Figure 1 for x _ (-3,-1)), in a similar
way as I did when I had ... the second derivative. The slope here ...” He
writes:
y=32x+ [Itshould be y =-3/2 x + ]
“If I shall estimate what ... it shall be a constant here ... I can get this by
... I can choose this point ... x=-1 and y=-2.” He then writes:
2=32(-1)+m
m = -2/-3/2) = 4/3 [He divides instead of subtracting]
He says hesitantly that this does not seem to fit, because if he extends the
line in Figure 1 it should cross the negative y-axis. After some silence JL
asks what he is doing.
“I am trying to discover my mistake, but I can’t figure out what it is that
doesn’t fit ... OK, we’ll say that it shall be -4/3.” He writes
y=32x-4/3
He notes that this does not fit with the graph of f(x) in Figure 1, from
which he estimates m to be “less then -3”. He searches, but does not
discover his mistakes. After a while JL points them out to him, and says
that it is OK to estimate m 2 -3.
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When writing down the corrected formula for y, Per makes yet another
mistake:

y=-32x+3 [It should be -3]
He easily finds a primitive function to this:

g(x) = -3/4 x2 + 3x
JL assists Per in sketching g(x) on a graphic calculator, and Per produces
Figure 3.
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Figure 3

Three seconds after Per has completed Figure 3, he turns to sketch g(x)
on the next interval.

“And then ... let’s see ...” JL interrupts and asks if he is finished with the
interval.

“Yes, I guess we can say that.”

“Can you make some kind of estimate to see if your graph is reasonable?”
Per hesitates a little at first, but after convincing himself that the graph in
Figure 3 corresponds to his g(x) he is satisfied.

When asked by JL, Per can without hesitation describe which one of the
graphs (Figure 1 or 3) that is the derivative, and which one that is the
function. JL continues:

“If you look at this function (JL points at Per’s graph of g(x) in Figure 3,
at approximately the point (-2,-10)), what is the derivative here? Can you
say if it agrees with the derivative as given here (JL points at the graph of
f(x) in Figure 1)?”

“No, it does not. The derivative is positive all the way (points at Figure
3), and it should be negative here (points at the graph in Figure 1, for x _
(-2.3,-1)).”

Per makes some additional comments specifying the interval, and JL asks:
“And before this the derivative is?”

Per answers without hesitation: “Positive.”

“Can you from this make a very rough sketch of what the function should
look like?”

It takes Per about half a minute to provide a rough but reasonable sketch
of g(x) at the interval (-3,-1), see Figure 4.
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Figure 4.

He motivates his figure without hesitation: “The derivative is positive
here (Per points at the left part of Figure 4), and then it gets zero (points
at the maximum at Figure 4, and at the point (-2.3,0) at the graph of f(x)
in Figure 1), and then it is negative.”

3.8. Interpretation.

Per’s plan is as follows: Since f(x) on (-3, -1) is a line and thus of the
form f(x)=kx+m, determine k and m. Integrate kx+m by the familiar
procedure, which yields g(x). Per makes several careless mistakes, his
focus is to use familiar procedures and algorithms, and there are
essentially no checking comparisons with other types of reasoning that
might have detected the errors. The only exception is when Per notes that
the function he has reached, y=3/2 x + 4/3, does not fit with the graph of
f(x) in Figure 1. He makes a very superficial search for the error but
cannot find it, partly because he is disturbed by the test situation. As a
consequence of the mistakes Per produces an incorrect graph, but he does
not consider checking this. Per has, up to this point, worked for 20
minutes with task 2c, mainly with familiar elementary algorithmic
methods. When asked to check his answer, he just searches for possible
errors in the translation from the algebraic representation of g(x) to its
graphical representation, and not in the construction of g(x) where the
main part of his work and the mistakes lies. Per does not consider what is
asked for, how his graph relates to the information in the task, or if his
methods are correctly chosen and implemented.

When Per is “mildly guided” first into checking his answer against
the graph of f(x) in Figure 1, and then into making a rough estimate of
g(x), he makes this swiftly and skilfully. Per cannot afterwards explain
why he did not think of this himself, but it is probably caused by the fact
that this type of mathematical reasoning is unusual in his learning
environment. He says that he feels more at home when trying to apply
more “exact” familiar algorithmic methods.

3.9. Analysis.

Reasoning Structure.

Per’s work can be structured as:

(1) Problematic situation: Task 2c¢ on the interval (-3,-1).

(2) Strategy choice: Primitive functions are found by the familiar
integration procedure. It is applicable on algebraic representations of
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functions, and this representation of the line f(x) can be obtained by the
familiar procedure for determining k and m in y=kx+m.

(3) Strategy implementation: The implementation could have been
straightforward, but many careless mistakes were made. There is no
attempt at verification.

(4) Conclusion: Figure 3.

The strategy choice is founded on constructive reasoning, but the
range of the reasoning includes only how to combine familiar procedures,
not how to use mathematical properties of the involved components in a
wide range PR approach. Per’s approach is rather reasonable, but his
work would probably have progressed more accurately if he had
continuously compared his algebraic expressions of f(x) and g(x) with
their graphical representations. One exception (of limited range) when he
does this, is when he notes that m=4/3 does not seem to fit. As an example
of PR with wider range, Per could from the start have made a rough
estimate of the shape of g(x) (Figure 4). This could either have been
developed to a more precise estimate, or could have served as a guide for
his arithmetic manipulations. The PR Per produces when guided can be
structured as:

(1) Problematic situation: Is Figure 3 the correct answer?

(2") Strategy choice: Assume Figure 3 is correct, then check if the
derivative of Figure 3 is given by Figure 1.

(3') Strategy implementation: The derivative of the graph in Figure 3 is
positive on (-3,-1), but f(x) is not.

(4") Conclusion: Figure 3 is not a correct answer to task 2c.

(1") Problematic situation: Task 2c.

(2") Strategy choice: Reformulate the task to be able to apply reasoning
similar to the above: What should the graph of a function g(x) look like
that has the function f(x) as its derivative?

(3") Strategy implementation: f(x) which describes the slope of g(x) is
positive at x=-3, then decreases to zero, and then decreases to become
negative. In other words, g(x) is first increasing, then horizontal, then
decreasing.

(4") Conclusion: Figure 4.

Resources and Heuristics.

Per’s resources are sufficient to carry through everything he does above,
both in the first EE part by himself and in the second PR part when
guided. His first approach could have succeeded, the methods he chooses
are appropriate and he knows the algebra and the familiar integration
procedure. The problem is that there are so many steps in the
calculations, and so many opportunities to make careless mistakes. The
guidance given in the second part does not help Per with the resources, it
only leads him into another heuristic strategy:
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The approach taken when guiding Per and formulating the
strategies (2') and (2") above can be labelled “Reformulating the problem
by assuming you have a solution and determining its properties”,
(Schoenfeld 1985 p. 109). It is very difficult, probably not within Per’s
resources, to look at Figure 1 and dynamically construct g(x) by
estimating the accumulated increase of f(x) as x goes from x=-3 to x= -1.
It is much easier for him to look at a function and estimate the slope, the
derivative. Therefore it is also much easier for to him to answer
questions like (2') and (2") because they concern slope, instead of
accumulated increase.

Control and Belief.

Per’s first twenty minutes’ EE approach to solve task 2c could have -
succeeded, and in less time, if it had been complemented by appropriate
control in three aspects: More careful calculations, continuous
comparisons with figures and verification of conclusions. There are no
indications that he asks himself if there are other ways of obtaining
information about g(x), or of active attempts to use wide range PR. This
is perhaps not seen as useful here by Per, an assumption strengthened by
Per’s comment in the discussion afterwards: He feels more at home when
trying to apply more “exact” familiar algorithmic methods, than the type
of PR he is guided into.

4. DISCUSSION

All three students meet extensive difficulties of different kind. Their
difficulties, and their progress, can be related to the questions Q1 and Q2
of section 2.1:

EE guides the global strategy choices. PR is local, and dominated by EE.
At a global level the students’ strategy choices are mainly based on EE: to
apply methods they know from similar tasks. This causes problems when
the familiar routines do not work for different reasons. Alf’s reasoning is
limited by his expectations and narrow approach, Jan’s methods cannot
resolve the existence problems, and Per’s strategy leads to many careless
mistakes. The influence from PR on this global level is minimal. Alf does
not attempt any PR. Jan tries, but his graphical approach is too
superficial. Per does not initiate any PR by himself, but when “mildly
guided” he is able to make good progress in short time by wide range PR.
There are also imagined examples provided of how wide range PR could
have been used.

At a local level the students show examples of progress being made
by PR approaches, for example: Alf notes the contradictions between his
strategy implementation and his expectation, but he cannot reveal the
underlying causes. Jan is skilled in his dynamical translation from f(x) to
f'(x), but can not treat the existence problem by this approach. Per once
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notes there is a misfit between his algebraic expression and the graph, but -
there are many other similar mistakes that are not detected. These PR
instances have in common that they are all too limited to address or

resolve the students’ main difficulties.

Resources seem to be sufficient.

All three students have the resources needed to correctly (“almost
correctly” in Jan’s case) solve the tasks with their EE based strategies. As
described above, the reasons for their difficulties with the strategy
implementations are other than lacking resources.

This study does not say if they master the resources needed to carry
through anything like the imagined PR examples or not, since there are
no wide range PR attempts detected. One exception is Jan, who fails
because his attempt is not feasible at all. The other exception is Per, who
clearly has the resources to carry through the guided PR. For the
imagined PR examples described, the resources required are well within
- the scope of the curriculum. One of the main results in Schoenfeld’s
(1985) problem solving studies, is that students often fail for reasons
other than lacking resources.

Heuristics are often applied in limited and inflexible ways.

Sometimes EE strategies are appropriate in task solving, and there is
nothing wrong with trying to recall familiar facts, procedures, typical
exercises, etc. The particular case of trying to remember similar tasks
and use related structures is described as an important heuristic approach
by Pélya (1945) under the headline “Do you know a related problem?”
One of the reasons behind the three students’ difficulties is that their EE
focus is not balanced by a greater emphasis on other complementary
approaches, for example PR.

One heuristic strategy that is very often applied in calculus in books
and by many teachers is “Draw a figure”, (Pélya 1945). Alf could have
detected his unreasonable expectation with PR based on a rough sketch of
V(x). Jan and Per could also have used graphs (in Jan’s case completed by
theoretical considerations) as a base for PR, but all three seem unwilling
to make use of this strategy. Another heuristic strategy is the
“reformulation”, which is the most crucial aspect of the guiding in Per’s
PR work. It is also noteworthy that there are many situations where
testing and verification procedures are absent or too limited.

Control is mainly founded on familiarity, not mathematical properties.
The main reason for reacting is that the methods used do not provide
answers of the expected type, or that the result is unfamiliar. Meeting two
logical contradictions, Alf does not question his faulty expectation when
PR is requested in order to do so. He reacts stronger to a statement that is
actually possible, but unfamiliar. Also Jan’s reason for reacting is that his
graph looks unfamiliar. Per does not produce anything unfamiliar, and
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there are very few control reactions detected. Control that included better
evaluation of the EE strategy itself could have led to better progress or to
other approaches, for example PR, but then other control questions are
necessary: Alf could have asked himself what the second derivative really
“meant. Jan could have asked for the mathematical reasons behind his
hesitation. Per could have tried to search for other ways of obtaining
information about g(x).

Belief may be that PR is not central in task solving.

If one supposes that PR is not perceived by the students as one of the main
tools when solving tasks, perhaps because PR is not emphasised in the
teaching practice they experience, and that the students hence obtain very
limited experience in constructing PR, then their behaviour is perfectly
natural. This study does not provide evidence to support this assumption,
but some “weak” arguments may be given:

e There are few short range and no wide range PR attempts noted.

e Per’s comment that he feels more at home with “exact” familiar
algorithmic methods, though he was able to construct PR when guided.

* Schoenfeld (1992 p.359) describes that common beliefs are for example
that ordinary students cannot expect to really understand mathematics,
and cannot by themselves construct anything outside the rules and
methods demonstrated by the teacher.

* It seems that the textbook and examination tasks that request the
construction of PR are few and almost always the most difficult ones,
while the tasks manageable for “normal” students more often ask for the
application of some standard procedure.
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Abstract

The aim of this paper is to study some of the strategies that are pos-
sible to use in order to solve the exercises in undergraduate calculus text-
books. It is described how most exercises may be solved by mathem-
atically superficial strategies. Strategy choices and implementations can
usually be based on identifying similar solved examples and copying, or
sometimes locally modifying, given solution procedures. One consequence
is that exercises may often be solved without actually considering the core
mathematics of the book section in question.

1 Introduction

In two earlier studies [14], [15], first year undergraduate students’ reasoning in
mathematical task solving were examined. The students worked with math-
ematical tasks with no aids at hand except a graphics calculator, a situation
similar to the one in examinations. The results indicated that a strategy to
focus on what is familiar and remembered at a superficial level was dominant
over reasoning based on mathematical properties of the components involved,
even when the latter could lead to considerable progress. It seemed like the
students’ beliefs did not include the latter type of mathematical reasoning as
a main approach, even though they mastered the necessary knowledge base.
Their behaviour seemed to be quite far from the educational goals. At the same
time, there were indications that this was the way they were used to working
with mathematics in their studies. One question that arises is: In what way (if
at all) is this way of working a reasonable outcome of some unbalance in the
learning environment?

One of the main components of the learning environment to investigate is
the textbook exercises. One reason is that normally at least half of the students’
study time is spent working with these (this assertion is based on local unpub-
lished surveys). Another reason is provided by Love and Pimm [16): “The book
is still by far the most pervasive technology to be found in use in mathemat-
ics classrooms. Because it is ubiquitous, the textbook has profoundly shaped

OThe author thanks Mogens Niss and Hans Wallin for their comments on an earlier draft.



2 FRAMEWORK AND RESEARCH QUESTIONS 2

our notion of mathematics and how it might be taught. By its use of the ‘ex-
planation - example - exercises’ format, by the way in which it address both
teacher and learner, in its linear sequence, in its very conception of techniques,
results and theorems, the textbook has dominated both the perceptions and the
practices of school mathematics.”

Many authors have described students’ focus on memorising procedures,
without understanding the underlying central ideas, as an important reason
behind learning and achievement difficulties in mathematics, see for example
[11), [22], and [24]. It is in a sense ‘wellknown’ that textbook exercises can
often be solved by copying solved examples, but it is still important to: (i)
Study some of the ‘mathematically superficial’ strategies and reasoning possible
to use when solving exercises in greater detail in order to learn more about
this phenomenon. Even though it is perhaps ‘wellknown’, it seems like the
proportion of these types of exercises are increasing (see below) in textbooks.
(ii) Prepare a framework that can be applied to study students actual work with
textbook exercises (which is the subject of an ongoing study [13]). The setting is
here a ‘model situation’, where no other learning environment components than
the textbook are considered. Most real life learning situations are much more
complex and students will be influenced by several other factors, for example
other written material, the teachers, peer students, and technology. Therefore
it may be too complicated to prepare the framework when studying real life
situations.

2 Framework and Research Questions

In [15], the framework below was used in order to analyse the observed students’
task solving reasoning. For a more complete discussion, see [15], where related
references also may be found.

2.1 Reasoning structure

Solving a mathematical task can be seen as solving a set of sub tasks of different
grain size and character. If the (sub)task is not routine, one way to describe
the reasoning is the following four-step structure:
(1) A problematic situation is met, a difficulty where it is not obvious how to
proceed.
(2) Strategy choice: One possibility is to try to choose (in a wide sense: choose,
recall, construct, discover, etc.) a strategy that can solve the difficulty. This
choice can be supported by predictive argumentation: Will the strategy solve
the difficulty? If not, choose another strategy.
(3) Strategy implementation: This can be supported by verificative argumenta-
tion: Did the strategy solve the difficulty? If not, redo (2) or (3) depending on
if the problem is in the choice of the strategy or in the implementation.
(4) Conclusion: A result is obtained.

The term reasoning is defined as the line of thought, the way of thinking,
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adopted to produce assertions and reach conclusions. Argumentation is the
substantiation, the part of the reasoning that aims at convincing oneself, or
someone else, that the reasoning is appropriate.

2.2 Reasoning characteristics

The following distinction was found to be central in [15]:

A version of the reasoning structure (1-4) is called plausible reasoning (ab-
breviated PR) if the argumentation:

(i) is founded on mathematical properties of the components involved in the
reasoning, and

(ii) is meant to guide towards what probably is the truth, without necessarily
having to be complete or correct.

The term component includes all mathematical concepts, actions, processes,
objects, solution procedures, facts, heuristics, etc. that may be explicitly or
implicitly involved in the reasoning. In short, the idea behind (ii) is that in
school task solving it is allowed and encouraged to use mathematical reasoning
with less requirements on rigour than for example in proof or in professional life.
This study can not be restricted to reasoning that is required to be accepted as
logically complete and correct (mathematical proof), since this is very seldom
produced by students in normal learning situations.

The reasoning structure is called reasoning based on established experiences
(abbreviated EE) if the argumentation:

(i) is founded on notions and procedures established on the basis of the indi-
vidual’s previous experiences from the learning environment, and

(ii) is meant to guide towards what probably is the truth, without necessarily
having to be complete or correct.

Here the attempt to resolve the problematic situation is based on trying
to transfer and combine (possibly incomplete) solution procedures from famil-
iar situations, perhaps superficially and without considering the mathematical
properties of the components involved. It may not be possible to decide only
from a person’s behaviour whether the reasoning is EE or not, this is determ-
ined by the underlying thoughts of the person. It is important to stress that EE
does not only include rote learning and solving routine exercises by following
procedures and mimicking examples. One reason is that the simple keyword
strategies that are possible to use in elementary arithmetic (e.g. subtracting if
the exercise contains the keyword ‘less’ {10] [21]), are most often not applicable
in more complex settings such as calculus. An EE approach is often applied in
a problematic situation, which is non routine to some extent, by trying to relate
the strategy choice and implementation to something familiar.

In [15] there was in the examined students’ task solving behaviour a distinc-
tion between superficial EE approaches and mathematically well-founded PR.
PR approaches were relatively rare and of limited range, and this was one of
the main reasons for the students’ difficulties.
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2.3 Research questions

Formulated in relation to the discussion above, the questions treated in this
study are:

Q1: In what ways is it possible to solve textbook exercises without considering
the mathematical properties of the components involved? This question leads to
a qualitative analysis in section 3, and to the distinction between three solution
types.

Q2: What proportions of a textbook’s exercises can be solved by these solution
types? 600 exercises from different textbooks are classified in section 4.

The PR-EE framework can not be directly applied when studying Q1, since
an EE approach requires that the solver has formed established experiences from
some set of solution procedures during a longer period of time. For example, one
established experience could be that ‘maximisation exercises are usually solved
by finding the zeroes of the derivative of a function’, an approach that is often
correct but may be wrong. Another similar experience is that ‘an irrational
solution to a second degree equation is probably wrong’, since second degree
equations in textbooks are often arranged in order to have easily manageable
solutions. This type of experiences are not developed when a student reads
a new textbook section for the first time, it probably takes several weeks or
months. Students may of course be influenced by established experiences from
earlier levels. An undergraduate student may for example try to apply EE
reasoning learnt at upper secondary school, but the textbook exercises usually
treat mathematics that to some extent is new to the solver. Thus she or he
seldom has sufficient experiences to base solutions solely on EE approaches,
and other strategies than EE need to be applied. One possibility is to base
a solution on PR reasoning, but are there other strategies? Below it will be
described how solution procedures can be partially or completely copied from
information in the textbook.

3 Q1l1: A Qualitative Classification of Exercises

3.1 Data source

A calculus coursebook (1] is studied, and all exercise references in this section
are to this book. The main reason for this choice is that the study described
in [15] treats calculus and the students there have read this book as a course-
book. Browsing through some American (mainly American books are used in
Sweden) calculus textbooks gives the impression that they are in many ways
quite similar to [1], both concerning content and pedagogy. This one can no-
tice, in particular when it comes to the main part of the solved examples and
the exercises. Therefore it seems like the one chosen is fairly representative.
This assumption is strengthened in section 4 by applying the same classification
methods to some randomly selected exercises from other books. The aim of this
study is not to investigate these particular books, but a common tradition that
is represented by them. There are of course other types of (both American and
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others) textbooks and traditions.

3.2 Solution conditions

After analysing possible solutions to several exercises the six exercises below
were chosen to represent three solution types that differ with respect to the
role of PR. Each exercise is presented and analysed under the following four
subheadings:

Exercise formulation: The exercise quoted from the textbook.

Possible solution: There are of course many different ways to solve an exer-
cise, and this can in turn be done more or less correctly. A solution presented
below should: (1) Be logically reasonable and realistic in the sense that a real-
life exercise solver could produce it. It would be desirable to state this condition
in a more precise definition, but this is beyond the scope of this paper and not
necessary for its purpose. Solutions based only on guesses are not considered
since every exercise is possible, but seldom likely, to be solved by wild guesses
and random applications of procedures. (2) Be meant to guide towards what
probably is the truth, without necessarily having to be complete or correct (cf.
section 2.2). (3) Produce a correct result. (4) If possible, avoid being based on
PR. This condition is central to this paper since every exercise is possible to
solve by a PR approach (¢f. Q1 in section 2.3).

Reasoning structure: The solution reasoning is structured by the framework
from section 2.1.

Reasoning characteristics The characteristics of the reasoning structure, in
relation to question Q1 above, are summarised.

3.3 Detailed solutions of exercises

Textbook Section 1.2, Exercise 14.

Exercise formulation:

“In Exercises 3-40, evaluate the limit or explain why it does not
exist.

- 2 —
14. lim;_,, & t3i41° D

Possible solution: Try to identify the solved example in the textbook Sec-
tion 1.2 that is most similar to Exercise 1.2.14. There are 11 examples (due
to space limitations, they are not quoted here) in the section and all concern
finding different types of limits for different functions by numerical, graphical,
or algebraical methods. There are several superficial properties to consider:

(I) Examples 4 ac, 5, 6, 7, 8 and 9 b are the only ones that contain the expres-
sion lim;_,, f(z) where a is numerical and f is an explicit function.

(II) In Examples 1, 4 a and 9 a f is a rational function.

(II1) Only in Example 4 both the numerator and denominator are second-degree
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polynomials.
(IV) In some examples the limit can be evaluated by simply calculating f(a).
The only examples where f(z) is a combination of elementary functions and
f(a) can not be evaluated are 1, 2, 4 abc and 7.

After considering some or all similarities described above, it is reasonable to
conclude that Example 1.2.4 a is similar to Exercise 1.2.14. The example and
its solution are quoted from the textbook:

“EXAMPLE 4(a) Evaluate:

lim 22+ —2
z—=-222 452 +6
SOLUTION Each of these limits involves a fraction whose numer-

ator and denominator are both 0 at the point where the limit is

taken.
24z —2

sz 2 +5z46
Undefined at z = —2. Factor numerator and denominator.

= lim MM Cancel common factors.
z~=2 (z + 2)(z + 3)
z—

1
= lim Evaluate this limit by substituting ¢ = —2.
z—=+-22T +3

~2-1
= =-3. [
—2+3 I

After this similar example is found, the next step is to solve the exercise by
copying the solution procedure from the example in every detail. This results
in the following solution to the exercise:

2 4+3t-10

Undefined at t = 2. Factor numerator and denominator.
t—2 2 -4

= lim -(i——2-)—(t-+—5) Cancel common factors.
t—2 (t - 2) (t + 2)
. t+5 N s
= lim —— Evaluate this limit by substituting ¢t = 2.
t—»2t 42
_2+5 7 i
242 4
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Reasoning structure:

(1) Problematic situation: The exercise.

(2) Strategy choice: Search for an example or a theorem where the components
in the exercise can be inserted. The identification of a similar example is based
on the mathematically superficial properties (I-IV) above.

(3) Strategy implementation: Copy the solution of the example. To carry out
this it is necessary to: (A) Conclude from the example that the number o
appearing in the expression lim,_,, is the one that should be inserted in the
function. (B) Insert a number into a first or second degree polynomial and
obtain a function value. (C) Recall that division by 0 is not allowed. (D) Recall
that the properties of a function is independent of the name of the variable (z
or t). (E) Factor a second degree polynomial.

(4) Conclusion: The answer to the exercise.

Reasoning characteristics: The key feature here is that none of the iden-
tification similarities (I-IV) or the solution procedure steps (A-E) consider the
underlying meaning of the expression lim;_, o ﬁ{f’i—zlg. The reasons behind these
steps do not have to be known in order to carry out the solution. In fact, no
mathematical properties central to the section (limits and continuity) are used,
or need to be understood. In order to discuss these aspects more precisely it is
suitable at this point to extend the framework from Section 2.2:

Intrinsic and surface properties: There will be a distinction between
intrinsic and surface mathematical properties of the components involved in
the reasoning. An intrinsic property is deep and central to the component. For
example, an intrinsic property of the solution procedure above is that cancelling
common factors does not alter the function if 0 < |t—2| < é for some 4. A surface
property may be a consequence of an intrinsic property but carries with itself no
or little mathematical meaning, for example that the number o appearing in the
expression lim,_, ., is the one that should be inserted in the function expression.

Past and current properties: The exercises of a section are most often
related to the subject matter introduced in the section. One of the purposes
of an exercise is to introduce, learn, practice, and consolidate subject matter in
the section: concepts, methods, and other ideas. A mathematical property of
a solution component is called current if it concerns subject matter introduced
in the same (or a close) chapter as the exercise, and past if it concerns subject
matter treated much earlier. The label ‘past’ may also be complemented by the
approximate time, in educational system years, passed since the subject matter
was treated.

The strategy choice of the solution above is not based on intrinsic mathemat-
ical properties, it concerns identifying surface key components of this particular
exercise type. The strategy implementation is based on copying the solution
procedure from the example, and the mathematical competence needed here
concerns recalling past mathematical facts and procedures from the beginning
of upper secondary school (three years earlier in the students’ perspective).
Since the solution does not include any reasoning based on intrinsic current
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mathematical properties, the reasoning is not characterised as PR.

Textbook Section 1.4, Exercise 1

Exercise formulation:

“State whether g is (i) continuous, (ii) left continuous, (iii) right
continuous, and (iv) discontinuous at each of the points -2, -1, 0, 1,
and 2.”

Figure 1: (Textbook fig. 1.32)

IR B

o y=8

(-1,1) . . o
D B SN GEEN G

Possible solution: The only example in Section 1.4 that both (I) explicitly
mentions right or left continuity, and (II) contains a figure with segments of
curves connected to filled and empty dots, is Example 1.4.1:

“EXAMPLE 1 The Heaviside function H(z) whose graph is shown
in Figure 1.19 is continuous at every number = except 0. It is right
continuous at 0, but is not left continuous or continuous there.”

Figure 2: (Textbook fig. 1.19)

’t

s

Y

Here it is not possible to copy the solution procedure in every detail, as
in the solution to Exercise 1.2.14 above. However, the procedure described in
the example needs only some slight interpretation: From the example text and
figure one may conclude that a function is right continuous at = 0 if the filled
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dot is connected with a curve to the right. It seems reasonable to assume that
a function is left continuous if the filled dot is connected with a curve to the
the left. It does not matter if the filled dot is above or below the empty dot.
The filled dots in figure 1.32 that are connected with curves to the right are
at ¢ = —2 and z = 1. The filled dot that is connected with a curve to the
left is at z = 0. The conclusion is that g is right continuous at £ = —2 and
x = 1, and left continuous at = 0. [The questions 1.4.1 (i) and (iv) can be
solved in similar ways, relating to other examples in Section 1.4. Due to space
limitations, this will not be described here.]

Reasoning structure:

(1) Problematic situation: The exercise.

(2) Strategy choice: Search for an example or a theorem where the components
in the exercise can be inserted. The identification of a similar example is based
on the properties (I) and (II).

(3) Strategy implementation: Interpret which graphical components of the pic-
ture that are connected to the term ‘right continuous’, and how. Then copy the
solution procedure in the example.

(4) Conclusion: The answer to the exercise.

Reasoning characteristics: None of these steps considers the mathemat-
ical meaning of the expression ‘right continuous’, and no intrinsic mathematical
properties central to the section are used or needed to be understood in the
solution above. It is important to stress that, it is of course possible that the
solver will actually learn something about the intrinsic properties but not cer-
tain, which is essential in this paper (c.f. solution condition (4) in Section 3.2).

The strategy choice, the identification of the similar properties (I) and (II),
is possible to base on surface reasoning: It is merely the keywords ‘right con-
tinuous’ and the surface visual forms (dots and lines) that are used, not their
intrinsic mathematical meaning. The strategy implementation, the identific-
ation of which graphical components of the picture that are connected to the
expression ‘right continuous’, may be based on surface reasoning. In addition to
this, it is necessary to recall a past property of graphs: in what way a position
in a graph is connected to a numerical value of z, once again a topic treated in
the beginning of upper secondary school. Since the solution does not include
any reasoning based on current intrinsic mathematical properties, the reasoning
is not characterised as PR.

Textbook Section 1.3, Exercise 9

Exercise formulation:

“Find the limit lim,_,o, 2£F2Y2 »

-



3 QI1: A QUALITATIVE CLASSIFICATION OF EXERCISES 10

Possible solution: There is no example or theorem of exactly the same type.
However, in the section several examples and earlier exercises have treated lim-
its at +oo of rational functions, like Example 1.3.3 (which is preceded by an
introductory text):

“The following examples show how to render such a function in a

form where its limits at infinity and negative infinity (if they exist)

are apparent. The way to do this is to divide the numerator and the
- denominator by the highest power of  appearing in the denominator.

The limits of a rational function at infinity and negative infinity

either both fail to exist, or both exist and are equal.

EXAMPLE 3 -Numerator and denominator of the same

degree \

Evaluate lim kot
z—too 32245
SOLUTION Divide the numerator and denominator by z2, the
highest power of z appearing in the denominator:

2z — 3 2-(1 3/z? 2-0+0 2
p 2T L 2=/ () _2-0+0 2,
z—too 3z245 z—to0 3+(5/:L‘2) 3+0 3

The outcomes of Example 1.3.3 and other similar examples are summarised
in the textbook:

“Summary of limits at +oc for rational functions

Let Pp(x) = ama™ + -+ + ap and Qp(z) = bpz™ + --- + by be
polynomials of degree m and =, respectively. Then limg_, 1o -g’f%;
(a) equals zero if m < n, (b) equals 4= if m = n, (c) does not exist
if m>n"

The only difference between Exercise 1.3.9 and the Example 1.3.3, is that in
the former the numerator and denominator consists of sums of power functions
where the exponents are rational numbers, while in the latter the exponents are
whole numbers. In the exercise, after dividing the numerator and denominator
by the highest power of z appearing in the denominator, the denominator tends
to a constant as z tends to zoco. Thus the limit is determined by the behaviour
of the numerator, in the same way as in the example. Therefore it does not
matter that there are rational exponents in the exercise, the method of the
example is applicable. According to the summary, the limit is %ﬁl = ZST = -3.

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Search for a situation in the text, where the components
in the exercise can be inserted. .

(a.3) Strategy implementation: Similar examples and a method is found but it
can not be copied in every detail, since f(z) in the exercise is not a rational
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function. This leads to:

(b.2) Strategy choice: Determine the properties of the method, and the differ-
ences between the examples and the exercise. Determine if these differences
make the method applicable or not.

(b.3) Strategy implementation: Analyse the intrinsic idea in the solutions of ex-
amples treating limits at +oo of rational functions. Conclude that the method
is applicable to fractions of power functions with rational exponents.

(c.2) Strategy choice: Apply the method in the summary.

(c.3) Strategy implementation: Straightforward.

(c.4) Conclusion: The answer to the exercise.

Reasoning characteristics: The strategy choice (a.2) is based on first identi-
fying examples and other situations in the text that are similar to the exercise.
This is more difficult, compared to the solutions to Exercises 1.2.14 and 1.4.1
above, to do without considering the mathematical properties of the compon-
ents involved. However, it is possible since there are only ten examples to choose
from, and most of them are very different from Exercise 1.3.9.

As a part of the overall strategy choice, (b.2) and (b.3) determine if the
method in Example 1.3.3 is applicable. Here it is, contrary to the solutions to
Exercises 1.2.14 and 1.4.1, necessary to consider {at least some of) the intrinsic
mathematical properties of the components in the example. This reasoning,
described in the final paragraph of the solution, can be done more or less thor-
oughly but is characterised as PR. Still, the main contribution to the solution
construction comes from identifying and copying parts of examples and a pre-
scribed method.

Textbook Section 1.4, Exercise 27

Exercise formulation:

“Find the intervals on which the functions f(z) in Exercises 25-28

are positive and negative.

27 f(z) = &=3”
Possible solution: The closest approximation to the exercise formulation is
Example 1.4.10. The identification of a similar example can be based on the in-
sight that semantically both the exercise and the example ask for ‘find A where
B is C’, and that in both A = ‘intervals’, B = ‘f(x)’ and C = ‘positive and negat-
ive’. The mathematical meaning of A, B, and C does not have to be considered
when making this identification. All the other 11 examples in Section 1.4 are
linguistically very different from Exercise 1.4.27, and mathematically most of
them just describe different types of continuous and discontinuous functions.

“EXAMPLE 10 Determine the intervals on which f(z) = 2° — 4z
is positive and negative.
SOLUTION Since f(z) = z(z* — 4) = z(z — 2)(z + 2), f(z) =
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Oonly at £ = 0, 2, and —2. Because f is continuous on the
whole real line, it must have constant sign on each of the inter-
vals (—o0,-2), (—2,0), (0,2), and (2, 00). (If there were points a
and b in one of those intervals, say in (0,2), such that f(a) < 0
and f(b) > 0, then by the Intermediate-Value Theorem there would
exist ¢ between a and b, and therefore between 0 and 2, such that
f(c) =0. But we know f has no zero in (0, 2).)

To find whether f(z) is positive or negative throughout each interval,
pick a point in the interval and evaluate f at that point.

Since f(—3) = —156 < 0, f(z) is negative on (—o0, —2).

Since f(—1) =3 >0, f(z) is positive on (~2,0).

Since f(1) = —3 < 0, f(z) is negative on (0,2).

Since f(3) = 15 >0, f(z) is positive on (2, 00). 07

The entire solution can not be copied since the function in Exercise 1.4.27
is more complicated than the function in the example, so the solution needs
to be somewhat modified: By Example 1.4.10, a continuous function can only
change sign where it is zero. Thus the places where the function f(z) = %;:—}1
can change sign is where it is zero (at £ = +1) or not continuous (at z = £2
where it is undefined). From here on, the solution of Example 1.4.10 can be
mimicked.

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Search for a similar example or a theorem where the
components in the exercise can be inserted.

(a.3) Strategy implementation: The identification of the similar Example 1.4.10
can be based mainly on linguistic grounds, and that the other examples in
Section 1.4 do not treat the same type of question as Exercise 1.4.27. At the
same time, there are differences between Exercise 1.4.27 and Example 1.4.10.
The solution can not be copied in every detail, and this leads to:

(b.2) Strategy choice: Determine the necessary modifications of the example
solution procedure.

(b.3) Strategy implementation: Analyse the intrinsic properties of the example
solution: f(z) may change sign where f(z) = 0, as in the example, or where
f(z) is not continuous.

(c.2) Strategy choice: Find the values of x where f(z) is zero or not continuous,
then copy the rest of the solution to Example 1.4.10.

(c.3) Strategy implementation: Straightforward.

(c.4) Conclusion: The answer to the exercise.

Reasoning characteristics: The strategy choice, identifying a similar ex-
ample, can be carried out without considering the mathematical properties of
the components involved. But, contrary to the solutions to Exercises 1.2.14
and 1.4.1 above, the whole solution can not be copied in detail. Some of the
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mathematical intrinsic properties of the solution are considered, for example the
consequences of the continuity of f(z). A local modification of the solution pro-
cedure is needed, and this is achieved by PR in step (b.3). Still again, the main
contribution to the solution construction comes from identifying and copying
parts of an example.

Textbook Section 1.2, Exercise 81

Exercise formulation:

“If limg_,p L5 = 3, find lim,,2 f(2).”

Possible solution: There is in Section 1.2 no example, theorem, or other
situation that is similar to the exercise and that could give guidance concern-
ing the strategy choice. In order to understand the meaning of the expression
‘limg_,9 L(}_;u = 3, consider the only definition of limit that has been intro-
duced so far:

“An informal definition of limit

If f(z) is defined for all z near (on either side of) a, except possibly
at a itself, and if we can ensure that f(z) is as close as we want to L
by taking z close enough to a (on either side of a), we say that the
function f approaches the limit L as = approaches a, and we write

lim f(z) = L.”

r—a

Applying the definition to the exercise leads to the conclusion that if z is
close to 2, then ﬂf_zﬂ will be close to 3. This in turn implies that f(z) — 5 is
close to 3(z — 2), and that f(z) is close to 3(z — 2) +5. 3(z — 2) is close to 0, so
f(z) is close to 5. According to the definition above, f(z) can become arbitrarily
close to 5 by choosing z sufficiently close to 2. Consequently, lim,_,s f(z) = 5.

0

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Since a similar example (or another situation in the text)
is not found, it is necessary to analyse the situation and construct a qualitative
understanding of the exercise and the relevant definition.

(a.3) Strategy implementation: The meaning and consequences of the exercise
and the definition are interpreted in approximation terms.

(b.2) Strategy choice: When z is close to 2, the limit can be seen as an ‘approx-
imate equation’. ‘Solve’ this ‘approximate equation’.

(b.3) Strategy implementation: This is essentially done by replacing ‘equal to’,
in the familiar procedure for solving ordinary equations, by ‘close to’.

(b.4) Conclusion: The answer to the exercise.
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Reasoning characteristics: None of the steps above can be ‘superficially
copied’ from any situation in the text. In order to carry out (a.3) and (b.2) it is
necessary to consider present intrinsic mathematical properties of the compon-
ents involved in the exercise and in the definition of limit. The argumentation
is not extensive, but the strategy choice is based on analysing the exercise.
The entire solution is a new PR construction based on intrinsic mathematical
properties of limits and approximations.

Textbook Section 1.5, Exercise 37
Exercise formulation:

“Use the definition of limit twice to prove Theorem 7 of Section 1.4;
that is, if f is continuous at L and if lim, . g(z) = L, then

lim f(g(z)) = f(L) = f(lim g(z))

Possible solution: The exercise formulation is similar to the task formulation
in Example 1.5.4, which is contained in the textbook paragraph “Using the
Definition of Limit to Prove Theorems” (the formal e- and é-definition):

“EXAMPLE 4 Proving the rule for the limit of a sum
Iflim,_,, f(z) = L and lim,_,, g(z) = M, prove that lim,_,, f(z) +
glz)=L+ M. .

SOLUTION Let € > 0 be given. We want to find a positive number
4 such that

O<|z—a|<é = |(f(z) +9(z)) - (L+M)| <e”

[The rest of the example solution is not described, since it cannot
be copied to solve Exercise 1.5.37]

Start in the same way as Example 4: Let € > 0 be given. We want to find a
positive number & such that

0<|z—c|<d = |(flg(z)) - f(L)| <e

This means that if z is close but not equal to ¢, then f(g(z)) shall be close to
F(L). This is as far as the example solution can be copied.

The next step is to analyse the conditions of the exercise: what is known in
e- and -terms? Since lim,_,. g(z) = L, there is (by the definition of limit) for
every €; > 0 a d; > 0 such that

0<|z—c]<d=|g(z) - L| <.

This means that if z is close to ¢, then g(z) is close to L. Similarly, since f is
continuous at L, there is (by the definitions of limit and continuity) for every
€2 > 0 a 69 > 0 such that

O<ly—L] <& =|fy)— f(L)] < e
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This means that if y is close to L, then f(y) is close to f(L). Altogether, this
implies (with y replaced by g(z)), that if z is close to c, then g(z) is close to L,
and consequently f(g(z)) is close to f(L).

Finally, translate this reasoning into formal e- and é-terms: Let e3 > 0 be
given. Then there is a §; > 0 such that

0 < |g(z) - L| < &2 = |f(g(2)) — f(L)| < 2.
Set €; = §2. Then there is a 6; > 0 such that
0<|z—¢f <8 =|g(x) — L| <d.
Combining the two implications above results in:

0<l|z—c|l<é=|g(z) - L| < o= |f(9(z)) — F(L)| < €. 0

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Search for an example or a theorem where the components
of the exercise can be inserted.

(a.3) Strategy implementation: Example 1.5.4 is the only one that is similar to
the exercise. It can be followed to start with, but the main part of the solution
can not be copied in order to solve the exercise. Following the first part of the
example solution helps to formulate and answer the heuristic question ‘what is
asked for’ in e- and §-terms.

(b.2) Strategy choice: The question ‘what is asked for’ is followed by formulating
the heuristic questions ‘what is known’, and ‘how can this be used’?

(b.3) Strategy implementation: It seems unlikely that a non-expert student can
construct a solution to the exercise by thinking only in formal e- and é-terms. At
the same time it is hard to construct a solution without the e- and é-machinery.
Therefore the solution is based on the interpretation of limits in both the formal
e-6-representation, and the the informal ‘closeness’-representation. The neces-
sity and consequences of the continuity of f at L also have to be considered.
The proper connections in ‘closeness’-terms are made between z and ¢, g(z) and
L, and f(g(z) and f(L). The reasoning is first informally structured in terms
of closeness, which is then translated into formal language.

(b.4) Conclusion: The answer to the exercise.

Reasoning characteristics: Though the exercise formulation includes the
clue “use the definition of limit twice”, and though Example 1.5.4 can be copied
to start with, this is far from providing guidance to a complete solution. The
solution of Exercise 1.5.37 requires the solver to: (A) Consider intrinsic proper-
ties of the limit and continuity concepts, including the formal definitions. (B)
Consider intrinsic properties of mathematical proofs, in particular under what
conditions the reasoning is accepted as a proof. (C) Construct a solution pro-
cedure, which includes the construction of the ‘closeness’-reasoning but also the
insight that this is not precise enough, the formal ¢- and é-machinery has to be
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applied. All the components (A-C) are known to be hard for the students, and
the exercise must be seen as one of the most difficult in the section. The solution
is mainly a new PR construction based on intrinsic mathematical properties of
limits and proofs.

3.4 Conclusion: Definition of solution categories

The reasoning characteristics of the solutions above describe, as a partial an-
swer to Q1 in Section 2.3, three different ways that the solution reasoning can be
based on current intrinsic mathematical properties of the components involved:
Not at all, locally, or globally. Some modifications of the framework of Sec-
tion 2.2 are suggested in order to capture the essence of these three reasoning
categories:

3.4.1 Identification of Similarities (IS)

The reasoning characteristics of the solutions to Exercises 1.2.14 and 1.4.1 are
summarised in the following definition:

The reasoning in an exercise solution attempt will be called reasoning based
on identification of similarities (abbreviated IS) if the reasoning fulfils both of
the following two conditions: :

(i) The strategy choice is founded on identifying similar surface properties in an
example, definition, theorem, or some other situation that is described earlier in
the text. This identification does not consider the current intrinsic mathematical
properties of the components involved.

(ii) The strategy implementation is carried through by copying the procedure
from the identified situation.

Both IS and EE (Section 2.2) concern a mathematically superficial transfer
of solution procedures from a textbook (IS) or an experience-based (EE) situ-
ation. In both EE and IS reasoning, the task solver may seem to be working
with advanced mathematics. An IS solution is often short and simple to carry
through, but it may be long, technically tricky, and/or require a lot of past basic
mathematical knowledge and skills. An IS approach can often be applied in a
problematic situation, which is new and nonroutine to some extent.

3.4.2 Local Plausible Reasoning (LPR)

The reasoning characteristics of the solutions to Exercises 1.4.27 and 1.3.9 are
summarised in the following definition:

The reasoning in an exercise solution attempt will be called local plausible
reasoning (abbreviated LPR) if it differs from IS in at least one of the following
two ways:

(i) The strategy choice is founded on the identification of similarities between
components in the exercise and components in a situation in the text, but these
components differ in one or a few local parts, and PR (Section 2.2) is used to
determine whether the procedure can be copied in order to solve the exercise or
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not. :

(ii) The strategy implementation is mainly based on copying the solution pro-
cedure from the identified situation, but one or a few local steps of this procedure
are modified by constructive PR.

What differs LPR. from IS is that in the former PR is applied locally: in the
strategy choice (Exercise 1.3.9) to see if the solution procedure can be copied,
or in the strategy implementation (Exercise 1.4.27) to see how the solution
procedure should be modified. The main part of the solution reasoning is still
similar to IS. One difference from IS is a consequence of the definition of LPR:
IS reasoning may be possible to carry out without considering anything of the
current intrinsic mathematics treated. In LPR, since PR reasoning is applied
and this can not be done arbitrarily, it may be necessary to understand large
parts of the exercise and the identified textbook situation in order to make the
required local decisions or modifications.

3.4.3 Global Plausible Reasoning (GPR)

The reasoning characteristics of the solutions to Exercises 1.2.81 and 1.5.37 are
summarised in the following definition:

The reasoning in an exercise solution attempt will be called global plausible
reasoning (abbreviated GPR) if at least one of the following conditions is ful-
filled:

(i) The strategy choice is mainly founded on analysing and considering the cur-
rent intrinsic mathematical properties of the components in the exercise. A
solution idea is constructed and supported by PR.

(ii) The strategy implementation is mainly supported by PR based on current
intrinsic mathematical properties.

GPR is similar to LPR in the sense that PR is applied, and therefore it is
necessary to understand large parts of the exercise and the identified textbook
situation. GPR differs from LPR in the range of the PR reasoning: if it concerns
the whole solution (global) or a few limited components (local). If an exercise
is not possible to solve by IS or LPR then GPR is required, and in that case
the exercise is, to the solver, a genuine problem in the sense of Schoenfeld [20].

3.4.4 Comments to the categories

The three categories IS, LPR, and GPR are exclusive in the sense that a solution
can be classified in one category only. However, the extent of PR in exercise
solutions may in a sense vary along a continuum from none (IS} to extensive
(GPR), and this variation is not quantifiable. Therefore the definitions do not
admit an exact classification of borderline cases, which may therefore be rather
arbitrarily categorised. When the framework is applied below in order to classify
a larger number of exercises, the purpose is not to categorise every exercise but
to study the approximate distribution among the three categories.



4 Q2: A QUANTITATIVE CLASSIFICATION OF EXERCISES 18

4 Q2: A Quantitative Classification of Exercises

4.1 Classification conditions

This section aims at answering Q2 by classifying a larger number of exercises
in the three categories above. From three calculus textbooks, some exercises
are chosen among the central one-variable sections. All exercises below were
analysed through the same procedure as the six exercises in Section 3.3 above.
The reasoning characteristics determine in which of the three categories an
exercise should be classified: As ‘IS’ if it is possible to solve by IS reasoning, as
‘LPR’ if it is not possible to solve by IS but by LPR, and as ‘GPR’ if GPR is
required. In this section the classification procedure is not described, only its
outcome. The textbook number of each classified exercise is placed in one of the
rows IS, LPR or GPR. The total amount of exercises in each row is summarised
within square brackets [Sum).

4.2 Classification results

The textbook ‘Calculus - a Complete Course’ [1]

All exercises in chapter 1, ‘Limits and continuity’, are classified.

Section 1.1, ‘Examples of velocity, growth rate and area’
IS [Sum: 8]: 1234561012
LPR {Sum: 1]: 11
GPR [Sum: 4]: 78913

Section 1.2, ‘Limits of functions’

IS [Sum: 71]: 123456 78910111213 14 1516 17 18 19 20 21 22 23
25 26 30 31 33 34 35 39 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 79 80 83 84 85 86 87 88 89 91 92 93
LPR [Sum: 18]: 24 27 28 36 37 38 40 41 42 43 44 45 46 75 76 77 78 94
GPR [Sum: 7]: 29 32 81 82 90 95 96

Section 1.3, ‘Limits at infinity and infinite limits’

IS [Sum: 45]: 12345671011 13 14 15 16 17 18 19 20 21 22 23 27 29
30 33 34 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 56 59 60 61 62
LPR [Sum: 16]: 8 9 12 24 25 26 28 31 32 35 36 37 38 55 57 58

GPR [Sum: 4]: 50 63 64 65

Section 1.4, ‘Continuity’

IS [Sum: 22]: 1234561112 13 14 15 16 26 29 35 36 37 38 39 40 41 42
LPR [Sum: 13]: 789 10 19 21 22 23 24 25 27 28 30

GPR [Sum: 7]: 17 18 20 31 32 33 34

Section 1.5, ‘The formal definition of limit’
IS [Sum: 9]: 1213 21 22 23 24 25 26
LPR [Sum: 21]: 3456 78910 11 12 14 15 16 17 18 19 20 27 28 29 30
GPR [Sum: 8]: 31 32 33 34 35 36 37 38
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Comment: Section 1.5 is an optional section treating the formal e- §-definition
of limit. The section text, the examples, and the exercises are unusually theor-
etical and difficult. A large proportion of the exercises are LPR. and GPR.

Classification summary: 61 % IS, 27 % LPR, and 12 % GPR.

The textbook ‘Calculus: One and Several Variables’ [19]

Four sections were randomly chosen among the sections in the first eight (out
of 18) chapters.

Section 4.3, ‘Local extreme values’
IS [Sum: 30): 1234567891011 1213141516 17 18 19 20 21 22 23
24 25 26 27 28 29 30
LPR [Sum: 0):
GPR [Sum: 22]: 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52
Comment: There are several exercise solutions among those classified as IS
that include difficult equation solutions.
Section 5.2, ‘The function F(z) = [7 f(t)dt’
IS [Sum: 11]: 1256789121314 15
LPR [Sum: 13]: 10 11 16 17 18 19 20 21 22 23 24 29 32
GPR [Sum: 10]: 3 4 25 26 27 28 30 31 33 34
Comment: There are only three examples, and a rather theoretical and difficult
text. Many of the IS solutions are difficult.
Section 5.4, ‘Some area problems’
IS [Sum: 24]: 1234567891011 1213 14 15 16 23 24 25 26 27 28 29 30
LPR [Sum: 10]: 17 18 19 20 21 22 33 34 35 36
GPR [Sum: 4]: 31 32 37 38
Comment: There are several exercise solutions among those classified as IS
that include difficult equation solutions.

Section 8.7, ‘Numerical integration’

IS [Sum: 20]: 1234567891013 141516 17 18 19 20 21 22
LPR [Sum: 2]: 23 24

GPR [Sum: 6]: 11 12 25 26 27 28

Classification summary: 56 %, 16 % LPR, and 28 % GPR.

The textbook ‘Calculus With Analytic Geometry’ [7]

Four sections were randomly chosen among the sections in the first nine (out of
16) chapters.

Section 1.4, ‘A brief catalog of functions’

IS [Sum: 30]: 1234567891013 141516 17 18 19 22 25 26 27 28 29
30 31 32 33 34 35 36

LPR [Sum: 4]: 11 12 20 21

GPR [Sum: 2]: 23 24
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Section 2.2, ‘The limit concept’

IS [Sum: 38]: 1234567891011 1213 14 15 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 44

LPR [Sum: 10: 16 18 41 42 43 45 46 47 48 49

GPR [Sum: 5]: 17 50 51 52 53

Section 7.2, ‘The natural logarithm’

IS [Sum: 59]: 1234567891011121314 1516 17 18 19 20 21 22 23
24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 59 60 61 64 65 66 67 71

LPR [Sum: 8]: 52 53 54 55 56 62 63 69

GPR [Sum: 4]: 57 58 68 70

Section 8.3, ‘Indeterminate forms and L’Hépitals rule’

IS [Sum: 43]: 123456 78910111213 14 1516 17 18 19 20 21 22 25
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

LPR [Sum: 2|: 23 49

GPR [Sum: 5]: 24 26 27 28 50

Classification summary: 81 %, 11 % LPR, and 8 % GPR.

4.3 Comments

It is important to stress that the distribution described in the tables above can
only be interpreted in approximate terms. First of all, a few of the borderline
cases between IS and LPR, and between GPR and LPR were difficult to classify.
The reader is invited to apply the classification structure in order to see if similar
classification results are obtained. Secondly, the classification does not consider
that the solutions to some exercises were short and easy, while other were longer
or more difficult. The most common exercise type is represented by exercises
1.2.14 and 1.3.9 in Section 3.3. The other four exercises in Section 3.3 are of
less common types.

Some of the LPR and GPR exercises are similar to each other. For example,
If one considers only the information available in the text, 1.2.28 in [1] (which
is presented in an LPR row above) is an LPR exercise. At the same time, if
the reasoning from the preceding similar LPR Exercise 1.2.27 is copied, then
1.2.28 becomes an IS exercise. This results in (if one solves all exercises) that
the proportion of LPR exercises are reduced roughly from about 20 % to 15 %,
and the GPR exercises from 15 % to 10 %.

One may also note that in about 90 % of the IS and LPR exercises, similar
situations were found in solved examples. The other 10 % were unmarked
examples, definitions, theorems, rules, etc. This implies that it is possible in
about 80 % of the exercises to base the solution not only on searching for similar
situations, but on searching only the solved examples.

There are in some books a smaller number of exercises included in other
types of sections, like ‘chapter reviews’, ‘miscellaneous problems’, ‘challenging
problems’ and ‘projects’. These exercises are not included in the classification in
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Section 4 above, since they are relatively few and of different types in different
textbooks. The main part of these are mixed exercises of the same types as
in the ordinary textbook sections, and they follow approximately the same IS
- LPR - GPR distribution as those classified above. Some of the exercises, for
example ‘challenging problems’, are mainly of GPR type.

5 Discussion

The purpose of this section is to summarise the results and discuss the con-
sequences. There are differences in Section 4, concerning the distribution among
the three exercise types, between and within the textbooks studied. A compar-
ison between different types of textbooks and sections will not be attempted
since this is not the primary purpose of this paper and would require the ana-
lysis of many more exercises (it may be the topic of a future study). Roughly
there are 70 % IS, 20 % LPR, and 10 % GPR exercises. This means that a
majority of the exercises are possible to solve without considering the current
intrinsic mathematical properties of the components involved in the exercise and
in the solution, and that the strategy choice and implementation may normally
be based on finding and copying a similar situation in the same textbook section
as the exercise in question.

5.1 Consequences on problem solving competence

What types of problem solving competence is required, and therefore perhaps
practised and encouraged, when applying IS, LPR, and GPR strategies, re-
spectively? A suitable framework when discussing this question is provided by
Schoenfeld {20, p. 15]:

“Resources: Mathematical knowledge possessed by the individual
that can be brought to bear on the problem at hand. Intuitions
and informal knowledge regarding the domain. Facts. Algorithmic
procedures. ‘Routine’ nonalgorithmic procedures. Understandings
(propositional knowledge) about the agreed-upon rules for working
in the domain.

Heuristics: Strategies and techniques for making progress on un-
familiar and non-standard problems: rules of thumb for effective
problem solving, including: Drawing figures; introducing suitable
notation. Exploiting related problems. Reformulating problems;
working backwards. Testing and verifications procedures.

Control: Global decisions regarding the selection and implementa-
tion of resources and strategies. Planning. Monitoring and assess-
ment. Decision-making. Conscious metacognitive acts.

Belief Systems: One’s ‘mathematical world view’, the set of (not
necessarily conscious) determinants of an individual’s behaviour.
About self. About the environment. About the topic. About math-
ematics.”
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These four aspects of competence can be seen as related to IS, LPR, and GPR,
respectively, in the following ways:

Resources: In IS reasoning the current intrinsic mathematical properties of the
solution components are not considered. Therefore, the resources that may be
developed are restricted to past and/or surface mathematical areas. The only
exception from this is that the solution procedure for the particular exercise type
(in a narrow sense) may be memorised. If this procedure can be remembered a
couple of weeks, and if there are not too many different solution types treated in
the exam, then this may be sufficient in order to pass. In LPR to some extent,
and in GPR to a larger extent, the current intrinsic mathematical properties
are considered. Therefore, this type of reasoning provides a better base for
developing resources.

Heuristics: In IS and LPR reasoning, only the strategy ‘search for a similar
situation’ is practised. In IS this strategy leads to a complete solution procedure
that can be copied, in LPR it leads to an almost complete solution procedure
that needs slight modification. In GPR reasoning, on the other hand, it is often
most efficient to apply a variation of different heuristics. See [18], [20], and [22]
for extensive discussions about heuristic strategies.

Control: In IS and LPR, ‘surface control’ is invoked in the strategy choice when
identifying the example or text situation that is most similar to the exercise.
There is no control needed in the IS strategy implementation since the whole
solution procedure is copied. In LPR, control is activated in deciding if and
how the local modifications should be implemented. Solving a GPR. exercise
generally requires active and continuous control, and insufficient control is often
one of the main reasons for failure when trying to solve these types of tasks [20],
[22].

Belief: Belief is not affected by a single exercise, but the characteristics and
domination in number of IS and LPR exercises may encourage the common belief
that mathematics is about following procedures developed by others. This belief
may seriously affect a person’s problem solving behaviour, for example that own
solution constructions are not even attempted. Schoenfeld (22, p. 359] describes
that common beliefs are for example that ordinary students cannot expect to
really understand mathematics, and cannot by themselves construct anything
outside the rules and methods demonstrated by the teacher.

In general, IS and LPR exercises do not provide sufficient practice concerning
any of the four aspects described above. In particular it is a bit unexpected that,
if the assertions of this paper are correct, IS solutions may not develop resources
except in the narrow sense that the solution procedure related to a particular
solution type may be remembered. The argument for including a large number
of solved examples and related similar exercises is often to develop some aspects
of resources.

If IS practice is sufficient to pass exams, then it may be possible to pass
a mathematics course without having learnt much about neither the concepts
treated nor general problem solving skills. Many researchers have described the
severe learning and achievement difficulties of large groups of students, often in
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relatively elementary situations: [8], [9], [20], (23], [25], [26] and [27]. Tall [25]
disciisses the background to these difficulties: “If the fundamental concepts of
calculus [..] prove difficult to master, one solution is to focus on the symbolic
routines of differentiation and integration. [..] The problem is that such routines
become just that - routine - so that students begin to find it difficult to answer
questions that are conceptually challenging. The teacher compensates by setting
questions on examinations that students can answer and the vicious circle of
procedural teaching and learning is set in motion.” The IS focus in exercises
may be a part of this, and may thus lead to short-term gains (passing exam)
and long-term losses (weak concept understanding and reasoning construction
difficulties).

Schoenfeld [21] has described that students are inclined to answer questions
with suspension of sense making, and that they often use shortcut strategies.
According to Doyle [4], [5], there is a pressure from students to reduce ambiguity
and risk, and to improve classroom order, by reducing the academic demands in
tasks. This may also be the case in textbook organisation and can be achieved
by including a large proportion of IS and LPR exercises. Dreyfus [6] argues
that students are in textbooks rarely given explicit instructions or indications
concerning the required quality of reasoning. In a historical perspective McGinty
et al. [17] analysed grade 5 arithmetic textbooks from 1924, 1944, and 1984,
and found that the number of word problems had decreased, the number of drill
problems had increased, and that word problems had also become shorter and
less rich. A brief comparison between some older calculus textbooks, for example
[2] and [3], and the ones analysed in section 4 indicates that the proportion of
IS and LPR exercises have increased considerably. All this may be part of a self
- deceptive way in the present mass - education situation to continue, at the
surface, to deal with advanced mathematical concepts in our calculus courses.
It is at the same time important to stress that this does not imply that the older
books where ‘better’, or that textbooks should only contain GPR exercises.

In Sweden there has been a rather intense debate about the decreasing pass
rates at high school and university. Many teachers claim that the main reason
behind the problem is the students’ insufficient prerequisite algebra skills. One
possible explanation for this is that our educational system actually fails to
provide a sufficient environment for developing any mathematical skill, but since
the main mathematical competence needed in order to solve IS exercises is
elementary algebra, one may wrongly draw the conclusion that the students’
difficulties are caused by insufficient algebra skills only.

5.2 Double difficulties in GPR exercises

Comparing the IS, LPR and GPR exercises through the perspective of this
paper, one may distinguish two reasons (that might not be apparent at a first
glance) to why the latter are more difficult: (i) Solution construction in the PR
sense is a difficulty in itself. (ii) In GPR the reasoning has to be based on the
current intrinsic mathematical properties of the components involved, not only
on some much more elementary mathematics as in the IS case. This double



5 DISCUSSION 24

difficulty in GPR exercises may lead to that they become much more difficult
compared to IS and LPR exercises than what was intended.

This could be hard to see for teachers and textbook writers, who are ex-
perts in the field, and for example may see the IS Exercise 1.2.14 and the GPR
Exercise 1.2.81 above to be of about the same conceptual difficulty. They are,
if one believes that the student’s solutions will be based on conceptual under-
standing in the same way as the expert’s solutions, but not if the student use
an IS approach in Exercise 1.2.14. One may also note that Exercise 1.2.81 is
not representative in the sense that most GPR exercises are much more diffi-
cult, often like Exercise 1.5.37. A likely consequence is that the GPR exercises
that are reachable for the average students are much less than the 10% described
above, perhaps 0% for large groups of less proficient students. Hoyles [12], when
discussing the role of proof, has argued that a consequence of the hierarchic-
ally organised UK National Curriculum (for children aged 5-16 years) is that
“most students have little chance to gain any appreciation of the importance
of logical argument in whatever form”. A similar interpretation, that reason-
ing construction is for the most able students, can be made from the Swedish
national grading criteria for upper secondary school.

5.3 Relation to EE

Most students seem to spend the main part of their time trying to solve exer-
cises. About 90% of the exercises are IS or LPR that can mainly be solved by
searching the text for methods. Therefore students may develop strategy choice
approaches where the question ‘what method should be applied?’ is immedi-
ately asked, instead of first trying to reach a qualitative representation {10] of
the task and base the solution attempt on the intrinsic mathematical properties
of the components involved. When the textbook is at hand, this question may
lead to the IS or LPR strategy to search for a similar example that provides
the solution method. In a task solving situation when the book is not at hand,
like in exams or in the experimental situations where the students’ behaviour
described in Section 2.2 were studied, the same question may lead to a memory
search for similar situations to base a solution method on. If the student then
has difficulties in reaching a real understanding of the concepts involved and no
real practice in constructive problem solving, the only thing to do may be to
search for superficial similarities. That is, to use the EE approaches described
in Section 2.2. This may be a connection that at least partially explains the
students’ EE behaviour as a consequence of the large proportion of IS and LPR
exercises in the book.

It is important to stress that in this paper only one, yet important, aspect
of textbook exercises is studied. The textbook author has to consider a balance
between many different factors. One may also argue that IS and LPR exercises
have their place in textbooks. Still, the results of this paper together with
the discussion, indicates that a larger proportion of elementary GPR exercises
should be included in textbooks. Otherwise the majority of the students will
not get any proper opportunity to practice GPR, and this may hypothetically
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in the long run lead to both weak conceptual understanding and to a focus on
EE solution strategies. '
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Students’ Mathematical Reasoning in Textbook
Exercise Solving
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Abstract

This study investigates the ways students conduct their study work,
in particular their mathematical reasoning when working with textbook
exercises. The results indicate that: (i) Most strategy choices and im-
plementations are carried out without considering the intrinsic properties
of the components involved in the solution work. This in turn leads to
different difficulties. (ii) It is crucial for these students to find solution
procedures to copy. (iii) There are extensive attempts, often successful,
to understand each step of the copied solution procedures, but only loc-
ally. (iv) The students make almost no attempts to construct their own
solution reasoning, not even locally. (v) The main situations where the
students’ work are not just straightforward implementations of provided
solution procedures, are where mistakes are made in minor local solution

steps.
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1 Introduction

In two earlier studies [Lit00a], [Lit00c|, first year undergraduate students’ reas-
oning in mathematical task solving was examined. The students worked alone
with mathematical tasks with no aids at hand except a graphic calculator, a situ-
ation similar to the one in examinations. The results indicated that a strategy
to focus on what is familiar and remembered at a superficial level was dominant
over reasoning based on mathematical properties of the components involved,
even when the latter could lead to considerable progress. It seemed like the
students’ beliefs did not include the latter type of mathematical reasoning as
a main approach, even though they mastered the necessary knowledge base.
Their behaviour seemed to be quite far from the educational goals. At the same
time, there were indications that this was the way they were used to work with
mathematics in their studies. One question that arises is: In what way (if at all)
is this way of working a reasonable outcome of some ‘unbalance’ in the learning
environment?

An important and influential component of the learning environment to
study is the textbook exercises, since normally at least half of the students’
study time is spent working with these (this assertion is based on a local un-
published survey). There are studies describing that it is the teachers who read
textbooks, not the students, and that students’ work is often restricted to solv-
ing exercises [Mor89], [Shi98]. Still, most research on textbooks seem to concern
the text itself, see e.g. [LP96] and references there. Love and Pimm [LP96, p.
397] claim that “While teachers’ perceptions of textbooks have received some
attention, there is a dearth of research into the use of texts in class”. The
present study is an attempt to learn more about how first-year undergraduate
students actually work with their textbooks and exercises, in particular how
they conduct and support their mathematical reasoning.

In [Lit0Ob] it was described in detail how 70 % of the exercises in represent-
ative undergraduate calculus textbooks are possible to solve by copying solution
procedures from worked examples or other situations described in the text. This
can be done without any constructive mathematical reasoning, and actually also
without considering the advanced mathematics treated in the textbook section
that contains the exercises. About 20 % of the exercises can be solved by mainly
copying worked examples, but some local modifications are required. In about
10 % of the exercises it is necessary both to construct a solution procedure and
to consider the advanced mathematics treated. The purpose of [Lit00b] was not
only to study possible ways to solve textbook exercises, but also theoretical: To
extend the framework from [Lit00a] and [Lit00c] in order to study the research
questions of Section 3 below.




2 Framework

More extensive descriptions of the work behind the framework construction,
and related references, may be found in [Lit00b] and [Lit00c]. In [Lit0Oc], the
structure below was introduced in order to analyse the observed students’ task
solving reasoning.

2.1 Reasoning structure

Solving a mathematical task can be seen as solving a set of sub tasks of different
grain size and character. If the (sub)task is not routine, one way to describe the
reasoning is the following four-step structure (which gererally is a simplification
of the solver’s actual reasoning):

(1) A problematic situation is met, a difficulty where it is not obvious how to
proceed.

(2) Strategy choice: One possibility is to try to choose (in a wide sense: choose,
recall, construct, discover, etc.) a strategy that can solve the difficulty. This
choice can be supported by predictive argumentation: Will the strategy solve
the difficulty? If not, choose another strategy.

(3) Strategy implementation: This can be supported by verificative argumenta-
tion: Did the strategy solve the difficulty? If not, redo (2) or (3) depending on
if the problem is in the choice of the strategy or in the implementation.

(4) Conclusion: A result is obtained.

The term reasoning is defined as the line of thought, the way of thinking,
adopted to produce assertions and reach conclusions. In the literature, the term
mathematical reasoning is often used (implicitly or explicitly) to indicate that
the reasoning taking place is of high quality in one way or another. In the
present paper the term mathematical reasoning means only ‘reasoning about
mathematics’, and carries with it no implications about the quality or other
characteristics of the reasoning. This is described separately by the reasoning
characteristics below. Argumentation is the substantiation, the part of the
reasoning that aims at convincing oneself, or someone else, that the reasoning
is appropriate.

2.2 Reasoning characteristics
2.2.1 Students’ work in exam-like situations

The reasoning types PR and EE were found to be central in [Lit00c], where
students worked with tasks in exam-like situations (with no aids at hand except
a graphing calculator): '

PR A version of the reasoning structure above is called plausible reasoning
(abbreviated PR) if the argumentation:

(i) is founded on mathematical properties of the components involved in the
reasoning, and



(ii) is meant to guide towards what probably is the truth, without necessarily
having to be complete or correct.

The term component includes all mathematical concepts, actions, processes,
objects, solution procedures, facts, heuristics, etc. that may be explicitly or im-
plicitly involved in the reasoning. In short, the idea behind (ii) is that in school
task solving it is often allowed and encouraged to use mathematical reasoning
with less requirements on rigour than for example in proof or in professional life.
This study can not be restricted to reasoning that is required to be accepted as
logically complete and correct (mathematical proof), since this is very seldom
produced by students in normal learning situations. The term plausible reason-
ing, but not the PR definition above, is adopted from Pélya [P4154]. According
to Pélya plausible reasoning is used to “distinguish [...] a more reasonable guess
from a less reasonable guess” while “in strict reasoning the principal thing is to
distinguish a proof from a guess”. The PR definition above is an attempt to
relate Pélya’s ideas to the results of the study [Lit00c].

EE The reasoning structure is called reasoning based on established experi-
ences (abbreviated EE) if the argumentation:

(i) is founded on notions and procedures established on the basis of the indi-
vidual’s previous experiences from the learning environment, and

(i) is meant to guide towards what probably is the truth, without necessarily
having to be complete or correct.

Here the attempt to resolve the problematic situation is based on trying
to transfer and combine solution procedures from familiar situations, perhaps
superficially and without considering the mathematical properties of the com-
ponents involved. It may not be possible to decide only from a person’s beha-
viour whether the reasoning is EE or not, this is determined by the underlying
thoughts of the person. It is important to stress that EE does not only in-
clude rote learning and solving routine exercises by following procedures and
mimicking examples. One reason is that the simple keyword strategies that
are possible to use in elementary arithmetic (e.g. subtracting if the exercise
contains the keyword ‘less’ [H*95] [Sch91]), are most often not applicable in
more complex settings such as calculus. An EE approach is often applied in a
problematic situation, which is non routine to some extent, by trying to relate
the strategy choice and implementation to something superficially familiar.

In [Lit00c] there was in the examined students’ task solving behaviour a distinc-
tion between superficial EE approaches and mathematically well-founded PR.
PR approaches were relatively rare and of limited range, and this was one of
the main reasons for the students’ difficulties.

2.2.2 The possibility of implementing superficial solutions in text-
book exercises

The reasoning types IS, LPR, and GPR below were found to be central in
[Lit00b], where possible (imagined) ways to solve textbook exercises (with the



textbook at hand) were studied. The following two distinctions were also intro-
duced:

Intrinsic and surface properties: There will be a distinction between in-
trinsic and surface mathematical properties of the components involved in the
reasoning. An intrinsic property is deep and central to the component. For
example, when comparing general properties of the functions f(z) = Inz -sinz,
g(z) =sinz - Inz, and h(z) = In(sinz), an intrinsic property is the distinction
between product (f(z), g(z)) and composition (h(z)) of two elementary func-
tions. A surface property may be a consequence of an intrinsic property but
carries with itself no or little mathematical meaning, for example the semantic
order of the factors (which is written first, ‘In’ or ‘sin’?). An assertion based on
the latter property may be that f(z) is similar to h(z) but not to g(z).

Past and current properties: The exercises of a section are most often
related to the subject matter introduced in the section. One of the purposes
of the exercises are to provide opportunities to introduce, learn, practice, and
consolidate this subject matter: concepts, methods, and other ideas. A math-
ematical property of a solution component is called current if it concerns subject
matter introduced in the same (or a close) chapter as the exercise, and past if
it concerns subject matter treated much earlier. The label ‘past’ may also be
complemented by the approximate time, in educational system years, passed
since the subject matter was treated.

IS The reasoning in an exercise solution attempt will be called reasoning based
on identification of similarities (abbreviated IS) if the reasomng fulfils both of
the following two conditions:

(i) The strategy choice is founded on identifying similar surface properties in
‘an example, definition, theorem, rule, or some other situation that is described
earlier in the text. This 1dent1ﬁcat10n does not consider the current intrinsic
mathematical properties of the components involved.

(ii) The strategy implementation is carried through by copying the procedure
from the identified situation.

Both IS and EE (Section 2.2.1) concern a mathematically superficial trans-
fer of solution procedures from a textbook (IS) or an experience-based (EE)
situation. In both EE and IS reasoning, the task solver may seem to be working
with advanced mathematics. An IS solution is often short and simple to carry
through, but it may be long, technically tricky, and/or require a lot of past basic
mathematical knowledge and skills. An IS approach can often be applied in a
problematic situation, which is new and none routine to some extent.

LPR The reasoning in an exercise solution attempt will be called local plaus-
ible reasoning (abbreviated LPR) if it differs from IS in at least one of the
following two ways:

(i) The strategy choice is founded on the identification of similarities between



components in the exercise and components in a situation in the text, but these -
components differ in one or a few local parts, and PR (Section 2.2.1) is used to
determine whether the procedure can be copied in order to solve the exercise or
not.

(ii) The strategy implementation is mainly based on copying the solution pro-
cedure from the identified situation, but one or a few local steps of this procedure
are modified by constructive PR.

What differs LPR from IS is that in the former PR is applied locally: in the
strategy choice to see if the solution procedure can be copied, or in the strategy
implementation to see how the solution procedure should be modified. The
main part of the solution reasoning is still similar to IS. One difference from IS
is a consequence of the definition of LPR.: IS reasoning may be possible to carry
out without considering anything of the current intrinsic mathematics treated.
In LPR, since PR reasoning is applied and this can not be done arbitrarily, it
may be necessary to understand large parts of the exercise and the identified
textbook situation in order to make the required local decisions or modifications.

GPR The reasoning in an exercise solution attempt will be called global plaus-
ible reasoning (abbreviated GPR) if at least one of the following conditions are
fulfilled:

(i) The strategy choice is mainly founded on analysing and considering the cur-
rent intrinsic mathematical properties of the components in the exercise. A
solution idea is constructed and supported by PR.

(ii) The strategy implementation is mainly supported by PR based on current
intrinsic mathematical properties.

GPR is similar to LPR in the sense that PR is applied, and therefore it is
necessary to understand large parts of the exercise and the identified textbook
situation. GPR differs from LPR with respect to the range of the PR reasoning:
if it concerns the whole solution (global) or a few limited components (local).
If an exercise is not possible to solve by IS or LPR then GPR is required, and
in that case the exercise is, to the solver, a genuine problem in the sense of
Schoenfeld [Sch85].

In [Lit00b] 600 calculus textbook exercises were classified. About 70 % were
possible to solve by IS reasoning, 20 % by LPR reasoning, and 10 % required
GPR reasoning. It was analysed in detail how solutions can be carried out, in
particular how many exercises may be solved without considering the current
intrinsic mathematical properties of the components involved.

3 Research questions

Can some of the causes behind the domination of mathematically superficial
reasoning described in [Lit00c] be found in the learning environment that we
provide? The purpose of the study is to relate the student task solving beha-
viour treated in [Lit0O0a] and [Lit00c] to the possible ways of solving textbook
exercises treated in [Lit0Ob], and will therefore focus on the balance between



PR and more superficial strategies:

Q1: What are students’ main strategies when solving textbook exercises? In
particular, in what ways are strategy choices and implementations based on
the mathematical properties of the components involved (PR), and how is the
mathematically superficial (IS) reasoning defined in Section 2.2.2 used?

Q2: How do different strategies and types of reasoning affect students’ success
and failure in exercise solving?

Q3: What may the consequences of working with different strategies be? In
particular, how may these relate to the domination of EE and absence of PR
discussed in Section 2.2.1?7 :

4 Method

4.1 Setting

The students who volunteered worked on the tasks in the presence of a video
camera, but working alone apart from my help in a few minor situations. They
were informed in advance that they should try to “think aloud”, but otherwise
act as close as possible to their usual way of working when conducting their
ordinary homework outside scheduled lecture time. The sessions lasted for 2
hours plus a post-interview. The episodes presented in Section 5 below are
fairly complete in order to (i) provide the reader with enough data to be able to
question the analysis and conclusions, and (ii) give the reader the ‘full picture’
of the students’ general reasoning characteristics instead of just a few isolated
quotations.

4.2 Solution conditions

Each exercise solution attempt is presented and analysed according to a similar
framework as in [Lit00b] under the following four subheadings:

Exercise formulation: The exercise quoted from the textbook.

Solution work: The student’s solution is described.

Reasoning structure: The solution reasoning is interpreted and structured
by the framework from Section 2.1. The interpretation either follows unam-
biguously from the solution description, is supported by discussions with the
student, or is explicitly described as a speculation. It is primarily the structure
of the reasoning that substantiates the solution that is described, not what the
student will or may learn.

Reasoning characteristics The characteristics of the reasoning structure, in
relation to the research questions from Section 3 above, is summarised. Under
this heading metacognitive actions are also included. The reasoning character-
istics of all exercises are finally summarised and discussed in Section 6.




5 Data and Analysis

The discussion is translated from Swedish, but the quotations from the textbook
are originally written in English. Pauses in the quotations are indicated by ... ,
and minor omitted passages are replaced by ...} .

5.1 Jon

Jon is studying a three-year computer engineer program. About one quarter of
the two years he has studied so far has been courses in ‘pure’ mathematics. The
grading system for this program has four grades (fail, 3, 4, and 5) and Jon’s
average is approximately 4.1, which is relatively high. He says that he does
not spend much time studying, and that at the last course (linear algebra) he
did only 15 exercises (out of some 200 recommended) but still received grade
5 at that exam. He has earlier taken some extra courses, and plans to study
almost twice the ordinary pace (which is very uncommon) this present semester.
Thus, at least by some measures, he seems to be a very competent student. Jon
received grade 3 at the exam after the video recording of his work below, it
seems like he somewhat less successful this time.

In his work with the exercises below, Jon uses information from four different
text sources: (a) The textbook [Ada95). (b) The lecture notes. Jon says that he
attends almost all lectures taking notes, and if he is absent he copies them from
someone else. (c) The Instructor’s solution manual (abbreviated ISM below).
This book, that contains solutions to all the exercises in the textbook, is actually
used by very few instructors but by many students. (d) A high school formula
collection with mathematical formulas.

Jon does not start with reading the text that precedes the exercises in the
textbook, and he has not read this text earlier. Instead he opens the textbook’s
exercise section, the lecture notes, and ISM at the proper pages:

“I want the book to be open at the right place. It is impossible to solve an
exercise if you don’t have any idea how.”
Then he turns to the exercise section:

Textbook Section 9.4 (Arc lengths and areas for parametric
curves), Exercise 1

Exercise formulation:

“Find the lengths of the curves in Exercises 1-8
l.z=3t2 y=23, (0<t<1)

Solution work: Jon starts by writing down the exercise formulation and looks
up the corresponding lecture in his notes. He does not spend any time trying to
solve the exercise without searching for IS (Section 2.2.2) information. JL asks
Jon what he is doing.

“I am trying to formulate this.”




“From...7”

“From the lecture notes, it is a bit hard to find in the book.”

“What do you find in your notes? ”

“I think it is the length of the curve, I will try to calculate this.”

The arc length formula for parametric curves that Jon finds in his notes is the
same as can be found in the textbook Section 9.4:

b T
s= [V Gr+Gra )

JL asks Jon what he is thinking.
T will formulate this and see if I reach a correct answer finally.”
“And what are you doing?”
“] follow this formula, to see if it gets correct. And then I try to learn this
formula so I will know it on the exam.” .
Jon first finds the derivatives and inserts them in the formula above.

z'=3.2t=6t 3 =2 3t2 =6t

1 1 :
/ VD2 ¥ (62)2 dt = / /3612 + 3682 dt
0 0
1 1
=/ V3 + 82) dt =/ 6tv/1 + £2 dt 2)
0 0

Jon hesitates briefly when calculating the final integral. He rather quickly looks
it up in ISM, and JL asks what he is doing.
“I became a bit hesitant, so I have to check how they have thought how to get
it out... Aha, they solve it that way!”

The solution to Exercise 9.4.1 in ISM states:

¢ d:
L z=32y=23(0<t<1) £ =6t =6t

Length = /()1 v/ (6t)2 + (6t2)2 dt

i .
=6/ tvV1+t2dt Letu=1+¢t> du=2tdt .
0

2 2
= 3/ Vudu = 21;3‘/2'1 = 4v/2 — 2 units”
1

JL asks how this differs from Jon’s approach.

“They did a substitution, or whatever it is called.”

“Was it the integration that became tricky or...?”

“Yes, I did not realise at once how to do it, so I had to look it up.”
Jon makes the same substitution as he found in ISM and writes:

u=1+4+t> du=2tdt t=0=>u=1 t=1=>u=2




Then he continues from (2) above, but he makes a slip and forgets the constant
3:

2 3/2
= / Vi du= [ 2 / |} = 2@ v 3)
- 1 3 1 3
Jon wants to know in what form to give the answer. He looks it up in the
textbook’s solution section and discovers that his answer is not correct. Jon does
not try to analyse his work in order to find the mistake, instead he immediately
looks at ISM. He easily finds and corrects his slip.

Reasoning structure: :

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Search for IS information: an example, a theorem, or a
rule where the components in the exercise can be inserted. No time is spent on
other considerations.

(a.3) Strategy implementation: Jon immediately finds the proper formula (1) in
his lecture notes. The competence required to carry out the implementation of
the IS solution is: (A) Understanding that the arc length formula requires the
evaluation of an integral. (B) Knowing that a main component in this evalu-
ation consists of transforming and simplifying the function expression into one
whose primitive function can be fairly easily found. (C) Finding the derivatives
of simple polynomials. (D) Finding a primitive function to 6tv1 +¢2. This
requires familiarity with the integration method of substitution, treated extens-
ively earlier in the textbook on page 324 ff. (E) Knowing the familiar procedure
of applying the fundamental theorem of calculus when evaluating integrals. (F)
Being familiar with the terminology used in the earlier steps. Jon swiftly sim-
plifies the integral expressions until he reaches one where it is not obvious to
him how to proceed.

(a.4) Conclusion: The expression (2) above.

(b.1) Problematic situation: How to integrate (2)?

(b.2) Strategy choice: Copy this step from ISM.

(b.3) Strategy implementation: Straightforward.

(b.4) Conclusion: He completes the solution, apart from a small slip.

(c.1) Problematic situation: Why is not Jon’s answer (3) the same as in the
textbook’s solution section?

(c.2) Strategy choice: Compare with ISM to find and correct the differences.
(c.3) Strategy implementation: Straightforward.

(c.4) Conclusion: A solution to the exercise.

Reasoning characteristics: Exercise 9.4.1 is an IS exercise, there is complete
IS information in the textbook, and Jon’s main solution components (a.2) and
(a.3) are based on IS reasoning. This conclusion is also supported when Jon
says before he starts with the exercise that: “I want the book to be open at

10




the right place. It is impossible to solve an exercise if you don’t have any idea
how.” No problematic situations are resolved by PR.

The IS information in the formula provides a complete solution for the
strategy implementation, apart from the evaluation (D) of the integral which
is a familiar, though non-trivial, procedure. The mathematical competence (A,
B, C, E, and F) used at (a.3) is based only on past mathematical facts and
procedures treated in school year 11 (year 2 in upper secondary), two years
earlier in Jon’s perspective. There are no indications, and not required, that
Jon considers any intrinsic properties related to arc length.

Jon works swiftly at a high pace and the implementation of the IS strategy
and the familiar procedures is straightforward, except at (b.1) and (c.1) where
he very quickly turns to ISM. In all three problematic situations described above
Jon’s strategy choices are made very quickly. There is no time spent analysing
and understanding intrinsic mathematical properties in any of the problematic
situations. In (a.2) Jon’s statement “I think (author’s emphasis) it is the length
of the curve, I will try to calculate this” indicates that he is not sure that he is
using the proper formula. Jon resolves this uncertainty by testing the formula
with the aim to compare the result with the textbook’s solution section: “I
follow this formula, to see if it gets correct. And then I try to learn this formula
so I will know it on the exam.” His goal seems to be to ‘insert’ the exercise into
the formula, which is to be learnt for the exam. The consequences of his solution
work on the development of his mathematical competence may be rather limited,
perhaps only that he evaluates yet another integral (he has already evaluated
hundreds of them) and better remembers the arc length formula. There are no
problem solving activities like PR reasoning, heuristics, or control involved.

The IS strategy used at (a.2) is defined in section (2.2.2) above. The ISM
strategy in (b.2) and (c.2) is an ‘extreme’ version of IS, and is therefore defined
as a strategy of its own:

Available Solution: The reasoning in an attempt to resolve a problematic
situation will be called reasoning based on an available complete solution (ab-
breviated AS) if:

(i) The strategy choice is to study a complete solution to exactly the same prob-
lematic situation.

(ii) The strategy implementation is carried through either (A) by copying the
found solution or (B) by comparing how the found solution differs from ones
own attempt in order to detect, understand, and correct mistakes.

In an IS approach the strategy choice is to compare with a similar one, while
in an AS approach it is to compare with a solution to an identical problematic
situation. The strategy implementation version (A) may be carried out with
or without the aim to understand the provided solution. If (A) is carried out
‘blindly’, without any attempts to consider the mathematical properties of the
components involved, then this version of AS can be seen as the ‘ultimately
superficial’ IS strategy. The main source containing AS information is, to the
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students in this study, ISM. It should be noted that AS reasoning is not neces- -
sarily easier than IS reasoning. The AS solution may be very concise and the
corresponding IS information exhaustive and and very similar to the exercise
that is to be solved.

Textbook Section 9.4, Exercise 3

This is an IS exercise, but two mistakes lead to 55 minutes of solution work.

Exercise formulation:

“Find the lengths of the curves in Exercises 1-8
3. z=acos’t, y=asindt, (0<t<27)”

Solution work, part one: Jon writes down the exercise, and then immedi-
ately opens his formula collection. JL asks what Jon is doing.

“T am uncertain about the differentiation rules for sine and cosine [his plan is
the same as in Exercise 9.4.1: to find z’ and y’ and insert them in the arc length
formula (1)]. There is always a minus sign that I miss.”

Jon does not find the rule in his formula collection [The proper rule to use,
the chain rule (the product rule is more laborious but also possible to ap-
ply), is actually included in his formula collection but written in a general form
(f(@)Y = f'(9) - ¢- There is no explicit example in the formula collection on
how to differentiate a cos™t or asin™t}, and Jon applies a faulty recalled rule:

¢’ = a3(—sin?t)  y' = a3(cos®1) (4)

[The correct derivatives are 2’ = a3(cos?t)(—sint) and ¥ = a3(sin®¢) cost.
This ‘stall mistake’ (a mistake that stalls the progressive part of his work) leads
him into unprogressive work (an integral that is impossible for Jon to evaluate)
that will last for 32 minutes.] Jon inserts his faulty derivative (4) into the arc
length formula (1):

/ " \/ (a3)2sin*t + (a3)2 costt (5)
0

2m 2
= / \/ (a3)2(sin* t + cos?t) = a3 Vsin®t + cos?t dt (6)
0 0

Jon now wants to simplify the last expression further, in order to reach a
familiar function expression that he can find a primitive function to:
“Then one can use the Pythagorean identity {sin2 z+cos? = 1], if one is lucky...
maybe. If I am not mistaken... no...”
JL asks what Jon is thinking.
“I am considering if I could use the Pythagorean identity. But it is to the power
4, so I am uncertain if one can do it... like that... Perhaps it works...”
Jon expands (sin? ¢ + cos?t)2 and substitutes this into the integral:
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( (sin? @ + cos? a)? = sin? a + cos? a + 2sin a cos? a ) )

27
= Sa/ \/(sin2 t + cos?t)2 — 2sin® t cos? ¢ dt (8)
0
1

Jon can not find a familiar primitive function to the expression in (8), so he
searches in his formula collection for formulas that could simplify it further:
“Let’s see if I can find the formula for this...”

“Are you searching for other formulas?”

“Yes. There should be another formula, but I am not certain that there is one...
perhaps... yes, I can do this... perhaps I could have done this in an easier way...”
Jon finds another formula and makes a substitution:

2T 1
= 3a/ \/1— 5sin?2t 9)
o 2

“It must be like this... I am uncertain now.”

“What are you uncertain about?”

“What it shall be in the end.”

Jon opens ISM and finds the solution to Exercise 9.4.3 which states:

“3. z =acos’t, y=asin®t, (0 <t < 2m). The length is
27

s = V/9a2 cos® t sin® ¢ + 9a2 sin® ¢ cos? ¢ dt (10)
0 '

27 /2 1
= 3a/ |sintcost| dt = 12a/ 5 sin 2t dt (11)
0 0

cos 2t (7/2
l = 6a units.” (12)
“They have arrived at almost the same thing, but not exactly. I don’t
really know what I have done wrong. It seems like a difficult exercise... I am
considering to start from the beginning... I will try a substitution instead.”
Jon writes

u =sin*t + cos?t, (13)

but does not continue the implementation of the substitution attempt. One
may note that he does not start from the very beginning, and in particular that
he ‘restarts’ at a point in the solution after his differentiation mistake (4).
“No, I don’t understand what they mean in ISM, and I don’t understand how
I can solve this myself.”

He returns to ISM and searches for differences between his and ISM’s solu-
tion.
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“Oh yes... wait a minute...”

“What do you see?”

“They have done it in some other way.”
“At which step in the solution?”

“It seems like I did something wrong here (points at (4)). If I understand
this correctly. This (5) is not like in ISM... I have done... or they have done
something different...”

[Comment: Jon finds parts of the difference between his solution and ISM’s
but not the central one: his stall mistake at (4) where his problems actually
started. He realises that his expression (5) is not the same as ISM’s (10). This
is not difficult to see, but perhaps he thinks that the functions may be the
same through some trigonometric formula that he does not know about? His
pointing at (4) indicates that he suspects that his derivatives are wrong, but
still he continues to work for a while with the integration.|

Jon continues to search for information in his lecture notes, in ISM, and in
the formula collection. After a while JL asks what Jon is thinking.

“I saw that there may be a formula I can use in the formula collection... But I
don’t know if it will help me... perhaps I have done it right...”

He writes:

1 1—cos4dt

i R
“What are you thinking?”
“How they have got it all together. It seems impossible. I will start all over.”
Jon tears off the paper that his work so far is written on.
“Do you often start all over?”
“Sometimes, sometimes I go to another exercise. But I have to learn this at
some point. It should not be that difficult.”

After a while Jon says:
“In ISM they have a completely different solution.”
“What are you writing?”
“I check this backwards. What they have done. They have done something
strange.”
Jon realises that (10) in the ISM solution is obtained by inserting the derivatives
into the arc length formula (1). His reasoning is then correctly that he could find
z' and y' by taking the square roots of the two terms in (10), and he obtains:

¢’ = —3acos’tsint  y = 3asin®tcost (15)

“I took the square root out of what they have written in ISM. It seems like it
could be this way... or perhaps the other way around [meaning the ‘-’ sign]...”
He is not convinced that this is the right expression, and it is clear from his
work below that he is eager to know what differentiation rule that yields these
derivatives from the functions z(t) and y(t).

Jon searches in the formula collection, and JL asks what he is looking for.
“How it really should be.”
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“I see that you are looking at differentiation rules?”

“Yes... I am uncertain... I have always been (laugh).”

Jon starts to search in the textbook, and JL asks what he is searching for.
“How they use these differentiation rules, what they are really doing. They have
done this in these pages [in Section 9.4, which contains four pages + exercises).
They have a lot of cosine things... then it should be here... I think... Because
it is only Exercise 3 and then they should have treated this in an example... I
think... Ahal”

“Why do you say ‘aha’?”

“They are doing it in a way I did not think was allowed (laugh)!”

“In what way?”

“Like this (points at Example 9.4.2). Here is the same exercise, almost. There
is something that differs, but it is mainly the same.”

Example 9.4.2 states:

“EXAMPLE 2 Find the area of the surface of revolution obtained
by rotating the astroid curve 2 = acos®t, y = asin®t (where a > 0)
about the z-axis. .

SOLUTION The curve is symmetric about both coordinate axes.
(See figure 9.30. [this figure is omitted here]) The entire surface will
be generated by rotating the upper half of the curve, and, in fact, we
need only rotate the first quadrant part and multiply by two. The
first quadrant part of the curve corresponds to 0 < t < /2. We
have

d d
d_:: = —3acos® tsint, 71% = 3asin? tcost. (16)

Accordingly, the arc length element is

ds = \/50,2 costtsin®t + 9a?sin®tcos?t dt

= 3acostsintV/cos?t +sin®t dt = 3acostsint dt.

Therefore the required surface area is

/2
S=2-27r/ asin®t 3a costsint dt
0

/2
= 127ra2/ sin*t cost dt Let u =sint, du = cost dt
0

2

1
12
= 127’ / ut du = = square units. 07
0

The first part of the example solution is similar to a solution to Exercise
9.4.3, in particular 2’ and 3’ are the same. As will be seen below, Jon is not
satisfied with just finding =’ and y’, he wants to learn a rule to use to find these
derivatives. Such a rule is not explicitly described in Example 9.4.2.
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Jon reads Example 9.4.2 carefully. He then searches the textbook register-
for more differentiation examples and then studies several sections, including
some about more general differentiation rules (e.g. the chain rule, which couid
have been applied by Jon) and one section about derivatives of trigonometric
functions {Ada95, p. 116]. In the latter he finds examples of derivatives of
different types of trigonometric functions (e.g. cosz, z?sinz, sintcost, etc.),
but no example of the derivatives of cos™ z or sin™ z.

“They were too easy. In that chapter... It is a bit difficult to find things in the
book. It is in English and rather thick. One is moving back and forth. If one is
uncertain about the foundations one has to check it up.”

“What are you looking for?”

“l am looking for... something that looks like the one I had before, but a bit
more well-written.”

“Do you mean the whole exercise, or only the derivative?”

“When it is kind of... raised to... like sine raised to something... and then take
the derivative of this. Why it became like it did... how they got it out... I don’t
really understand this. I don’t think I have worked so much with this raised
to... I think anyway... I have to find out why it is so.”

Jon continues to search the textbook for more information. In Section 6.6

he finds:

“EXAMPLE 7 Evaluate the integrals:

(a) [sin® z cos® z dz, (b) [ sin® zcos® z dz, and (c) [ cos® ax dz
SOLUTION (a) [sin’zcos®z dz = [sin’2(1 — sin’z)cosz dz
(Let w = sinz, du = cosz dz)

= [u¥(1-v?®) du = [f(u?—u?)du= “3—3~“?5+C = Lsindz -
2sin®z + C [The solutions to (b) and (c) are similar and omitted
here]”

“What have you found?”
“T just wanted to check if I saw something interesting. Perhaps I did... They
are using u here... that seems OK... It became too tricky.”

Jon turns the pages rapidly and a bit planlessly for a while.

“No, I can’t find it. I have to go on what I've got. I think.”

Jon returns to Example 9.4.2 above.

“T will just have to assume that it is so.”

“Is what?”

“That it comes out a such one automatically.”

“Comes out what?”

“An extra sine thing, out of this.”

“Can you point at what you mean?”

Jon points at (16).

“I will have to check this.”

“What are you looking for in the formula collection?”

“That it really is so...”

Jon returns to the textbook.
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“What they are doing is perhaps that... Yes, now I get what they are doing.
They take this (cos®t), then they extract this one sine. Yes... Then it should
be...”

Jon writes to test his idea:

z =acos®t,z’ = —4acos®tsint (17)

[Jon’s idea is thus correctly that if z = acos™t, then there is some rule that
says ' = —na cos™ ! tsin ]

“So perhaps... I'll take a chance on that... I think. One has to guess a bit, and
see if it adds up. If not sooner, you will find out at the exam.”

Reasoning structure, part one:

(a.1) Problematic situation: The exercise. ‘
(a.2) Strategy choice: It is clear to Jon that he shall use the same IS information,
the arc length formula, that he used in exercise 9.4.1.

(a.3) Strategy implementation: Immediate. _

(a.4) Conclusion: Insert the exercise components in the arc length formula.

{b.1) Problematic situation: In order to use the arc length formula, the deriv-
atives of acos®t and asin®t need to be found.

(b.2) Strategy choice: Search for the rule in the formula collection.

(b.3) Strategy implementation: The proper rule is not found since it is (of course)
written on a general instead of a specific form. He makes a stall mistake by
wrongly recalling:

(b.4) Conclusion: The expression (4) above.

(c.1) Problematic situation: The insertion of (4) into the arc length formula is
straightforward to begin with, but at (6) he reaches a difficulty: If Jon had in-
serted the correct derivatives he would have obtained an easier integral and the
implementation could have proceeded, but how to turn (6) into an integrable
function?.

(c.2) Strategy choice: From his experience, earlier exercises often contain ex-
pressions that should be cleverly simplified using the familiar fact that sin®t +
cos’t = 1. It is a good idea to try but fruitless because of his stall mistake at
(4). This can be seen as EE reasoning, since it is based on surface similarities
with earlier situations and no PR is involved.

(c.3) Strategy implementation: Jon skilfully implements his idea at (7), but is
stalled at (8).

(c.4) Conclusion: Jon needs to find more information.

(d.1) Problematic situation: Same as (c.1).

(d.2) Strategy choice: Jon searches the formula collection and finds a trigono-
metric formula that contains the term 2sin?tcos?¢ in (8). He inserts this and
tries to simplify. '

(d.3) Strategy implementation: Fails at (9).
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(d.4) Conclusion: Same as (c.4).

(e.1) Problematic situation: Same as (c.1).

(e.2) Strategy choice: Jon reads the ISM solution, but he spends almost no time
trying to analyse and understand it.

(e.3) Strategy implementation: Jon fails to discover the central difference, that
ISM’s solution contains other derivatives at (10), and abandons this approach.
(e.4) Conclusion: Same as (c.4).

(f.1) Problematic situation: Same as (c.1).

(£.2) Strategy choice: In a similar way as (c.2) Jon tries another familiar method,
a substitution, and sets u = sin*¢ -+ cos?t.

(£.3) Strategy implementation: He interrupts the implementation at (13).

(f.4) Conclusion: Same as (c.4).

(g.1) Problematic situation: Same as (c.1).

(g.2) Strategy choice: Jon reads the ISM solution again.

(2.3) Strategy implementation: This time he reads more carefully than at (e.3),
but still without understanding all central components, and notes that the ex-
pression (5) is not the same as the corresponding expression (10) in ISM.

(g.4) Conclusion: He seems to suspect that his derivatives (4) are wrong.

(h.1) Problematic situation: Same as (c.1).

(h.2) Strategy choice: Search in the lecture notes, ISM, and the formula collec-
tion for information.

(h.3) Strategy implementation: He searches fairly rapidly and finds only (14)
which he is unable to use.

(h.4) Conclusion: He fails, so he tears of the paper and “starts all over”.

(i.1) Problematic situation: Jon doubts that (4) is correct.

(1.2) Strategy choice: Analyse the ISM solution, this time more thoroughly than
at (e.3), (g.3), and (h.3), and with the specified purpose of finding the correct
derivatives: Since (10) in the ISM solution is obtained by inserting the correct
derivatives in the arc length formula (1), the correct derivatives can be obtained
by ‘working backwards’. This reasoning can be classified as LPR (Section 2.2.2),
a kind of ‘AS (page 11) heuristics’, with the aim of getting access to information
that is not explicitly provided in the ISM solution.

(i.3) Strategy implementation: Straightforward.

(i.4) Conclusion: The correct expression (15).

(j-1) Problematic situation: Jon has found the derivatives (15), but he wants to
learn the rule that led to them.

(j.2) Strategy choice: Search for information about differentiation rules. Jon
searches first in his formula collection, then in the Section 9.4 in the textbook.
It is clear that his search is based on finding information about sin™ ¢ and cos™ ¢,
not about general principles (see also (k.3)): He searches for “How they use these
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differentiation rules, what they are really doing. |...]| They have a lot of cosine
things... then it should be here... I think...” Jon continues by saying that there
ought to be IS information provided, since it is one of the first (and therefore
one of the easiest) exercises in Section 9.4: “Because it is only Exercise 3 and
then they should have treated this in an example... I think...”

(j-3) Strategy implementation: Jon finds Example 9.4.2. His comment “there is
something that differs, but it is mainly the same” indicates that he does not
(try to?) understand the intrinsic properties that differs Example 9.4.2 from
Exercise 9.4.3: the difference between finding length and area. The reasoning
is based on considering surface properties, but leads here to a situation where
useful IS info may be found (at (k.3) it does not).

(.4) Conclusion: Example 9.4.2 (16) verifies that (15) is correct but does not
explain the differentiation rule, and thus does not resolve (j.1).

(k.1) Problematic situation: Same as (j.1).

(k.2) Strategy choice: Search for more information in the textbook.

(k.3) Strategy implementation: Jon spends quite some time and it is becoming
clearer that he is searching for surface similarities and disregarding intrinsic
properties, there are several factors that support this claim: (I) He looks briefly
in the textbook sections that treats the chain and product rules but does not
realise that it is one of these rules he needs, probably because they are written
in a general form, and there are in these sections no examples on how to dif-
ferentiate functions of the form cos™t or sin™¢. (II) He studies more carefully
Section 2.4 with elementary differentiation rules of trigonometric functions but
says that “they were too easy” and that he is looking for “something like the
one I had before, but a bit more well-written”. This probably means that he
is searching for particular rules or more examples on how to differentiate sin™ ¢
and cos™ ¢, “like sine raised to something”, not general principles. Another in-
dication of this is when he says “I don’t think I have worked so much with this
raised to”. (IIT) After searching through many pages he studies Example 6.6.7
above because it contains the similar surface properties, the ‘keywords’, sin? z
and cos® z. Jon does not comment that this example treats completely differ-
ent mathematical intrinsic properties than Exercise 9.4.3, he just says that “it
became too tricky”. (IV) In the post-interview he says “I did not think about
the chain rule since it was cosine, I am so unused to working with cosine.” It
seems like Jon wants a special case rule ‘served’, without having to analyse the
text information deeply. He then continues to search through some more pages,
before he temporarily gives in:

(k.4) Conclusion: “No, I can’t find it (the differentiation rule for cos™ t or sin™ t).
I have to go on what I've got.” He “just has to assume” that the derivatives
(16) are correct, without knowing the rule.

(1.1) Problematic situation: In spite of his decision at (k.4), Jon is still so eager
to learn the differentiation rule that he immediately resumes his attempts to
resolve (j.1).

(1.2) Strategy choice: Search once again in the formula collection and textbook.
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(1.3) Strategy implementation: While Jon once again reads Example 9.4.2 he,
for some reason, thinks of a possible rule:
(L4) Conclusion: He finds the formulation of the correct rule that is tested at
(17), but not the reason behind it (he does not seem interested in the latter).
He can now restart from the beginning of the exercise by inserting the correct
derivatives in the arc length formula (1).

Solution work, part two: Jon restarts from the beginning.

“What are you doing now?”

“] am writing down the exercise, and I am going to solve it. I have checked
what it is like, so now I should be able to solve it without lookirg in the book,
I think... I think.”

Jon inserts z’ and %', this time the correct derivatives, into the arc length
formula:

z' = —3acos®tsint, y = 3asin®tcost

27
/ \/(—3:1)"’(cos2 tsint)? + (3a)2(sin’ t cos t)? dt
0

27
= 3a / \/ (costtsin®t) + (sin® t cos2 t) di
0

27 27
= 3a/ \/(cosz tsin®t) (sin®t + cos? t) dt = 3a/ costsint dt (18)
0 Nttt e 0
1

Jon works swiftly and is algebraically skilled, but in the last expression he

makes another stall mistake: He wrongly sets Vicos2tsin®t = costsint, the
correct equality is

Vcos?tsin® = | costsint| (19)

which is the expression that is integrated at (11) in ISM.
Jon makes the same substitution (u = sint, du = cost dt) as in Example 9.4.2:

u? sint127  3a, . o .
_3a/u du_Sa[?] —Sa[ 5 ]0 =3 (sin® 27 — sin 0) (20)
When Jon compares his answer [he missed to square sin0, but this is not
the central mistake] with ISM:s (12) he notes that they are different:
“Perhaps it was not possible to do this way?... They [ISM] are using a formula.”
“What formula?”
“This one (points in his formula collection at sin2a = 2cosasina, which cor-
responds to (11) in ISM). Then they got it in another form, that I hadn’t...
I think... but I am uncertain... I thought I got it nicely... Perhaps it is not
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possible to do like this, anyway... really difficult...”
Jon is searching for his mistake in the wrong part of his solution: He would have
reached the same faulty result if he had used the same formula as ISM.
“At the exam I will not know these [trigonometric] formulas. Then I don’t know
if I will be allowed to have the formula collection... Perhaps, I don’t know.”
“What do you do if you don’t have the formula collection at the exam?”
“Then I have to learn the formulas. That is the only alternative... And hope
that I pass the exam. This course was much harder than I thought it would be
at the beginning. At the beginning it felt easy. Then it became so much, in
some way... After about half the course, it felt like much... But it should be
possible to solve in my way I think.”
“What is your way”
“To insert u = sint, and do du/dt, to differentiate. I believe this way should be
possible, but apparently not... perhaps it works, but not as it looks right now...
This means that I have to do like they have done in ISM.”

Jon uses the formula sin2a = 2 cosasina that he saw in the ISM solution
at (11) but once again skips the absolute value signs, and therefore misses the
central change in integration interval when he starts over from (18):

2m 27

3a/ costsint dt = 3_a/ sin 2t dt = 3a [(;gﬁ2_t)]2” = —-Bﬂ(cos (21)

0 2 0 2 2 o 4
Jon interrupts his work and after a while JL asks:
“Are you following ISM?”
“I am trying to do the [ISM] substitution, to use the trigonometric formulas.
And in that way be able to move... in a more correct way.”
“This is the ISM method. It is not the earlier substitution method you used?”
“No, it is not. I am getting confused... It ought to work, but I did not get it
correct... But I see something else here. It could have something to do with
what the sine curve looks like. They have written 7 /2 [pointing at ISM’s upper
limit of integration at (11): Jon finds his mistake].

Jon draws the curve 1/2sin 2t on his graphic calculator.
“They takes it times 12a. Otherwise they cancel each other [probably meaning
integration over negative and positive parts of the function]. I am afraid that it
does for me, therefore I get something wrong. In some way they have found out
that they can only do in a certain way... they change the interval... they want
the positive part several times... But this is really difficult. This is why sine is
so difficult. They can react in different ways... and you are not prepared for all
situations... since you don’t now them really. Or you know how it works, but
you don’t know all special cases... What they do is to extract a 4 out of this...
yes, now I see it... But perhaps this is allowed...? I think I have understood this
exercise now... then I’ll move on.”
Though he is hesitant, Jon believes that he has found his mistake and understood
the ISM solution. After 55 minutes of hard work he turns to the next exercise
without completing his solution to Exercise 9.4.3.
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- Reasoning structure, part two:
(m.1) Problematic situation: The exercise.
(m.2) Strategy choice: Insert the correct derivatives (15) into the arc length
formula (1). He believes that he has found sufficient IS information to “solve it
without looking in the book”.
(m.3) Strategy implementation: Straightforward until he makes the stall mis-
take at (18) and later notes that the faulty answer (20) does not fit with the
ISM solution (12) (he does not note the contradiction that his answer actually
is 0 while the curve should have positive length).
(m.4) Conclusion: Jon's IS strategy implementation is stalled.

(n.1) Problematic situation: Why is (20) wrong?

(n.2) Strategy choice: Jon compares his solution with ISM’s.

(n.3) Strategy implementation: Jon finds a difference, that he made the substi-
tution at (20) and ISM used the trigonometric formula sin2a = 2cosasina at
(11). His insight into the intrinsic properties is not deep enough to help him
realise that both methods work and that the origin of his problems is elsewhere,
in his stall mistake (18). Instead he wonders if his substitution method, “To
insert u = sint, and do du/dt, to differentiate”, is perhaps not applicable and
causes his problems: “I thought I got it nicely... Perhaps it is not possible to
do like this.” Jon wants to understand why his method does not work, but does
not put in a lot of effort to find out.

(n.4) Conclusion: He reluctantly gives up his attempts to carry out ‘his method’
(20), and decides that: “This means that I have to do like they have done in
ISM [(11)]".

(0.1) Problematic situation: Same as (n.1).

(0.2) Strategy choice: Jon decides that he has to “do like they have done in
ISM”, “to do the [ISM] substitution, to use the trigonometric formulas”. He
does not want to copy the solution blindly step by step, he just applies ISM’s
trigonometric formula (11) and performs the calculations by himself in order to
understand each local step.

(0.3) Strategy implementation: Jon again misses to note the central absolute
value signs and change in the limits of integration at (11). He interrupts his
work at (21) since it does not fit with ISM’s solution and becomes more puzzled:
“I am getting confused... It ought to work, but I did not get it correct.” After a
while he discovers that there is a change in limits of integration in ISM because
“otherwise they cancel each other”. The base of his discovery is that he notes
the symbolic difference between his limits of integration (0 and 27 at (21)),
compared to ISM’s (0 and 7/2 at (11)). There are no signs that he has any
deeper insight into why it is so by considering the intrinsic properties of (19) or
the fact that curves have positive length on every subinterval: “I get something
wrong. In some way they have found out that they can only do in a certain
way... they change the interval... they want the positive part several times...
But this is really difficult. This is why sine is so difficult. [...] But perhaps this
is allowed?” Jon seems to believe that the problem is that he is working with
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sine functions (a surface property), not that he is wrongly trying to calculate the
curve length by integrating a partly negative function (an intrinsic property).
(0.4) Conclusion: Jon believes that he has understood each step of the ISM solu-
tion and finally, after 55 minutes of bard work, leaves Exercise 9.4.3 without
completing his solution.

Reasoning characteristics: Exercise 9.4.3 is an IS exercise that is very sim-
ilar to Exercise 9.4.1 above, it could have been solved in a few minutes, and Jon’s
main strategy choice at (a.2) and implementation is based on IS reasoning. The
mathematical competence required to carry out the IS solution is essentially
the same as in Exercise 9.4.1 (reasoning structure step (a.3)), and, again, it is
not required to consider any intrinsic properties of arc length or apply any PR.
However, there are some components that are slightly more difficult than in
Exercise 9.4.1. Jon makes stall mistakes in two of them, at (4) and (18), that
lead to very long (55 minutes) and laborious solution work even though he is a
skilled student and does not follow unprogressive approaches very far.

To find the derivatives z’ and ¥’ is supposed to be a minor part of the solution,
that concerns past properties, but it takes Jon 32 minutes to resolve his stall
mistake at (4). The central characteristics of his work during these 32 minutes
are that: .

(A) Jon is able to try very many different approaches at (c-k) above, mainly
searching for information or applying familiar procedures. He seems used to
search for IS information in the textbook, his lecture notes, the formula collec-
tion, and ISM. This is complemented by applications of familiar procedures at
(c.2) and (f.2) to test if the changes will lead into an integrable function.

" (B) He follows none of these approaches very far, in particular he is not
hindered by the ‘follow-no-matter-what-happens’ implementation of one single
non-productive approach that Schoenfeld [Sch85] {Sch92] described as one of
the main reasons behind students’ problem solving difficulties. In this sense his
control [Sch85] is rather good.

(C) Jon’s work is mainly based on considering surface properties of the
components involved. There is no GPR and very little LPR involved when he
tries to resolve the problematic situations. His reasoning seems to be mainly
based on EE, IS, and AS. The data supporting this claim is: (I) Jon explicitly
says (j.2) that the there ought to be IS information provided. (II) Jon has earlier
worked with very many integration exercises where the main part of the solution
work consists of simplifying integrands (the functions to integrate). These are
often solved with familiar methods like the ones he tries at (c.2) and (£.2). (III)
When Jon at several occasions searches for information, for example at (b, h,
j, and k) he sometimes misses the texts that treat relevant general intrinsic
properties, and instead focuses on text parts that treats, mainly irrelevant,
surface similar properties (see in particular the data analysis at (j.2) and (k.3)).
Another indication that he does not analyse the IS information deeply is at (j.3)
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- when he says “there is something that differs” but he does not try to find out
what. (IV) At (e, g, h, and i) he tries to apply AS (version (B), see page 11),
and deduce from ISM how to resolve the problematic situations. First at (e)
very quickly and superficially, then more carefully, and it is not until (i) that
his (LPR complemented) analysis of the ISM solution is deep enough to help
him find the correct derivatives. (V) At (j, k, and 1) Jon is searching for the
particular rule how to differentiate cos™ t and sin™ ¢, not the reason behind it or
for some more general rule. This interpretation is based on that he is very eager
to find a rule but once he finds it (“Yes, now I get what they are doing”) at (17)
he does not spend any time considering its background. Jon never mentions
anything about the mathematical foundation of the rule, why it is valid, or
anything related to more general ideas (e.g. the chain rule).

(D) Since Jon’s work is based on surface properties, he is unable to recognise
useful IS information (like Example 9.4.2 and the general chain rule) when he
reads it, and to distinguish it from unuseful (for example at (b, d, h, j, k, and 1))
information. Therefore he needs to test many approaches, sometimes the same
ones several times, without making progress and this is the main reason that
his solution work is so very long (55 minutes). If Jon’s control (see (B)) has not
been efficient, he might even have spent much more time on each approach.

(E) In a similar way, since his AS attempts are very superficial to start with,
Jon is first unable to make use of the AS information in ISM. This indicates
that AS (version B) is often difficult to use, since the ISM solutions are often
compact.

(F) It is clear that Jon does not accept to blindly use AS (version A). He
wants to understand each step, both when he uses IS and AS information. The
data supporting this claim is: (I) After having read the ISM solution at (11), he
does not just copy it but tries to to make his own solution work and understand
each local step. (II) After (14) Jon says “I have to learn this”. (III) After being
fairly convinced that he has found the correct derivatives at (15), he continues
to search for the differentiation rule and wants to learn “How they use these
differentiation rules, what they are really doing”. (IV) After being completely
convinced that he has found the correct derivatives at (16) he still continues to
search for the differentiation rule. (V) Jon reluctantly gives up searching for the
rule at (k.4), but resumes his attempts. He stops searching immediately after
he finds a plausible rule at (1.4).

(G) At the same time there are no indications that he wants to learn any-
thing but the local details of the solution to this particular exercise type, that
he wants to learn global solution ideas or general principles of differentiating
products or composite (of the form f(g(zx))) functions.

Jon believes at (m.2) that he has found sufficient IS information, but makes
another stall mistake at {18) that concerns both the past intrinsic properties of
(19) and the present intrinsic basic property that curve length is positive. His
work is again rather superficial and for similar reasons as (D) above it takes as
long as 21 minutes to resolve the stall mistake. The central characteristics of
his work during these 21 minutes is that:
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~ (H) Jon’s main strategy is to read and understand the AS information
provided in ISM, but his analysis of the ISM solution is too superficial and
‘effortless’ so he does not realise: (I) That his answer at (20) is unreasonable
since it is 0. (II) Why his method does not work (n.4). (III}) The complete
reasons behind his difficulties at (0.3), instead he focuses on the surface prop-
erties of sine and cosine. In particular, he seems satisfied with his (partial)
understanding of what is done in ISM, and disregards why this is done.

(J) There is in Jon’s work a general IS focus and he is worried if he will
recall and be able to use the trigonometric formulas at the exam:

“At the exam I will not know these formulas. Then I don’t know if I will be
allowed to have the formula collection... Perhaps, I don’t know.”

“What do you do if you don’t have the formula collection at the exam?”
“Then I have to learn the formulas. That is the only alternative... And hope
that I pass the exam.” :

From the way he works it seems like he sees the recollection and application
of proper formulas as a more central strategy base than intrinsic mathematical
understanding.

(K) The search for local understanding is not PR-based. He may be inter-
ested in finding intrinsic principles, but the base for the information search is
surface IS.

(L) It seems like he, as in (F) and (G) above, wants to learn and understand
each step of ISM’s solution on a local but not global level. Jon’s goal is probably
not to learn the general intrinsic ideas, which he does not once mention, but
all special cases that he may meet, here represented by the case of finding the
arc lengths of sine curves: “This is why sine is so difficult. They can react in
different ways... and you are not prepared for all situations... since you don't
now them really. Or you know how it works, but you don’t know all special
cases.”

(M) He is unwilling (as in (F) above) to accept ‘blind copying’ of methods
and is very reluctant at (n.4) to give up ‘his method’ (and blindly follow ISM)
since he does not understand why his method does not work.

5.2 Ulf

UK is studying to become an upper secondary teacher in mathematics and
Swedish. In his first semester of mathematics studies he failed all four dif-
ferent course exams and the corresponding re-exams. In the following semester,
where the session analysed below took place, he was studying the same courses
again and had managed to pass three of the exams (all at the third attempt).
The data below describes his work in the fourth course (“Calculus 2”, treating
mainly integration and series). Ulf failed the subsequent exam but later passed
at his fourth attempt. Thus his mathematics difficulties are more severe than
for the average student, but by no means exceptional. Ulf has also studied five
semesters of other university subjects than mathematics (mainly Swedish), and
passed all course exams at first attempt.

Ulf starts by reading the theory text of Section 8.3 in [Ada95] for 30 minutes,
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before turning to the exercises. He studies mainly the solved examples and tries —
to understand each solution step:

“ think it gives me more to read the examples than to just read the text. And
they often skip so many steps that one has to make ones own calculation, to see
what have happened”

Textbook Section 8.3 (Arc length and surface area), Exer-
cise 1

Exercise formulation:

“In exercises 1-16, find the lengths of the given curves.
l.y=2z—-1fromzx=1tox=3"

Solution work: Ulf starts by writing down the exercise formulation and draws
the graph. JL asks him to explain what the task is.
“One is supposed to find the length of the curve from = = 1. I know what the
curve looks like, but I would anyway like to draw it, to have it in front of me
so that I can think about what I am doing. Therefore I am drawing it on the
calculator... So I am supposed to find this length (points at his correct curve,
which he actually does not use for anything later).”

The exercise is on textbook page 422, and Ulf looks up the arc length formula
in a blue-marked box on page 417 which states:

“The arc length s of the curve y = f(z) from z = a to z = b is given

b
' 3=Lb¢mﬁwdx=[lb,/1+(j_§)zdm.”

JL asks Ulf what he is doing.

“I go back to see what the formula looks like. I write it down so it will perhaps
go into my head. If I write it down I will perhaps have it in my head.”

Ulf copies the formula from the book. The implementation is essentially straight-
forward and he writes:

y =2 S=/13mdx=LbJ§dz

[5z]3 =15 -5 =10

Ulf makes a small slip, he forgets the square root in the last line, and says:
“Hm, this did not become a good integral.”
“Why not?”
“It became too easy (laugh). One gets suspicious when it gets too easy.”

Ulf looks up the textbook’s solution section.
“One can check the answer on the calculator if one likes, but one can also check
in the solution section.”
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“What do you usually do?”

“I usually check the solution section... Like here for example, here I have done
something crazy (he notes that it does not fit with his answer)... Yes, it shall
be a square root.”

Ulf writes:

[V5z]3 = 3v5 — 5 = 2V5

The IS exercise 8.3.2 is solved by Ulf in a similar way, but the description of
this solution is omitted here.

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Search in the textbook for IS information: an example,
a theorem, or a rule where the components in the exercise can be inserted. To
find the formula in the blue box with complete IS information is fairly unprob-
lematic, since both Exercise 8.3.1 on page 422 and the formula on page 417
explicitly mention “length of the curve” Ulf does not mention that since the
curve is a straight line, the length may easily be found using the Pythagorean
theorem.

(a.3) Strategy implementation: The implementation is straightforward, apart
from the small slip. The competence required to carry out the implementation
of the IS solution is: (A) Understanding that the arc length formula requires
the evaluation of an integral. (B) Knowing that a main component in this
evaluation consists of transforming and simplifying the function into one whose
primitive function can be fairly easily found. (C) Finding the derivative of a
first degree polynomial. (D) Finding a primitive function to a constant func-
tion. (E) Knowing the familiar procedure of applying the fundamental theorem
of calculus when evaluating integrals. (F) Being familiar with the terminology
used in the earlier steps.

(a.4) Conclusion: The faulty solution and answer “5”.

(b.1) Problematic situation: The answer needs verification, partly because it
“became too easy” to fit with his expectations.

(b.2) Strategy choice: For Ulf, as for most students, the main method of checking
and verifying solution work is to compare with the textbook’s solution section,
which he does in order to (i) see if his answer is correct and (ii) if not, try to
learn what the correct solution should be.

(b.3) Strategy implementation: Ulf (i) is immediately convinced that his answer
is wrong and (ii) notes that the solution section answer contains a square root
which leads him to search for and find his missing square root.

(b.4) Conclusion: Finding and correcting the mistake.

Reasoning characteristics: The main point here is that this is an IS exer-
cise, and Ulf’s strategy choice at (a.2) is clearly to find and use the available IS
information which is found in the curve length formula. In order to identify this
formula as the proper one, no intrinsic properties have to be considered since
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both the exercise and the formula explicitly mention the keywords “length of
the curve”. '

The IS information in the formula provides a complete solution for the
strategy implementation, apart from the evaluation of the integral which is a
familiar procedure. The mathematical competence (A-F) used at (a.3) is based
only on past mathematical facts and procedures treated in school year 11 (year
2 in upper secondary), two years earlier in Ulf’s perspective. There are no in-
dications, and no need for, that Ulf considers any intrinsic properties related to
arc length. Even though he draws the curve from the start, he does not use it
in the solution.

This is an IS exercise, and it is almost straightforwardly solved by Ulf as
one. He makes a small slip, and it is noteworthy that his metacognitive reaction
at (b.1) to the result is not mathematically but entirely EE based: a “too easy”
solution does not fit with his established experiences. He resolves this at (b.2)
by quickly turning to the solutions section, not by analysing his work trying to
find the mistake. Ulf could easily have verified his answer by estimating the
length of the line segment in his figure, or by the Pythagorean theorem.

Similar to Jon’s work with Exercise 9.4.1, it seems likely that Ulf’s mathem-
atical competence is developed only in the sense that he has seen yet another
application of the integral, and perhaps that he may better remember the arc
length formula. The latter seems to be one of his main goals, since he says twice
that “I write it down so it will perhaps go into my head”. There is no need for
any problem solving activities like construction of PR reasoning, heuristics or
control. It is of course possible that Ulf will learn more from his work, but there
are no such indications.

Textbook Section 8.3, Exercise 7

Exercise formulation:

“In exercises 1-16, find the lengths of the given curves.
3
T.y=%+1lfromz=1toz=4¢"

Solution work: Ulf starts by drawing the graph (which he, as above, does not
use for anything), and uses his calculator’s built-in program for curve lengths
to find the exercise’s answer (6 units) to, as he says, “work against”. He then
applies the same curve length formula that he used in Exercises 8.3.1 and 8.3.2,
but he makes a stall mistake and integrates 1/z instead of differentiating it:

32 z?
I _ T — .
V=1 +Inzx n +Inz
[The correct derivative is y' = z%/4 — 1/2?]
“This derivative is a bit more difficult...”
He then inserts the faulty 3’ into the curve length formula:
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s=/14\/1+(%2+1nm)2 dzr (22)

“Now I shall try to simplify this in some way... so I can integrate it in the easiest
possible way.”

Ulf says that he is hesitant about how to proceed: “[...] just to square such a
thing is not the easiest... We can go back in the book and see if there is some
similar example, to compare with... Example 2 seems fairly similar.”

Ulf carefully reads Example 8.3.2:

“EXAMPLE 2 Find the length of the curve y = z* + 57— from
z=1tox =2.
SOLUTION Here 2 = 4z° — 115 and

dyz_ 3 1 2 _ 32 1 I
1+(d$) =1+ (4z __16:1:3) =1+ (42°) 2+(16$3)
1 1 1
-1 32 , 2 _ 3 2
+(48%)° 4 5 + ()" = (27 + 5=3)

The expression in the last set of parentheses is positive for 1 < z < 2,
so the length of the curve is

2
1 1 2
= 43 + — dx = (2*
y /1 T Togm =@+ 353)|
1 1 3
= —_——_— — (] — —)} = —_ its. »
16 58 ( 32) 15+128umts i

Example 8.3.2 above is followed by a text paragraph, which is not read by Ulf
[recall that he said above that “it gives me more to read the examples than
to just read the text”], that explains the ‘trick’ that is supposed to be used in
Exercise 8.3.7:

“The examples above are deceptively simple; the curves were chosen
in such a way that the arc length integrals could be easily evaluated.
For instance, the number 32 in the curve in Example 2 was chosen .
just so the expression 1 + (dy/dz)? would turn out to be a perfect
square and its square root would cause no problems. Because of the
square root in the formula, arc length problems for most curves lead
to integrals that are difficult or impossible to evaluate without using
numerical techniques.”

[The ‘trick’ here is thus that if dy/dz is of the form f(z)—g(z), where 2f(z)g(z) =
1/2 (which is a rather strong restriction), then

V14 (dy/dz)2 = 1+ (f-g)2 =1+ f2—1/2+¢°
=Vi2+1/2+g2=/(f+9)2=|f +g
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which is probably easier to integrate than the original square root expression.]

After reading Example 8.3.2 Ulf says “Aha” and describes that the example
solution has reached an even square [but he does not fully understand the ‘trick’
yet]. He then says “Let’s see if we can do magic in the same way with this”,
and expands his faulty and tricky expression:

/14 \ﬂ+ (3”;)2 qaz(“”z2 Inz) + (Ine)? d

4 z2 1
/ 1+(T)2+5(x2lnx)+(lnz)2 dz
1
“It did not help me anything. Let’s try this.”

4 ¢ 1
/ \/1 + =+ >(2?Inz) + (Inz)? dz (23)
L 16 2

“I want this number 1 to disappear in some way... as they did in the book, so
that I can rewrite this as... one parenthesis...”

Ulf continues hesitantly.

“Let’s see what they have done here again (points at Example 8.3.2 above).
They have got 1/2 here in some way... To see what they have done, I calculate
the example myself.”

Ulf copies Example 8.3.2 step by step. He wants to understand each step, and
says that he normally works like this.

“Now I understand where they got this 1/2 from. When you multiply the factors
then you ean cancel cormmon factors. Then it must be possible to do in the same
way in my exercise... But it gets a bit more difficult, I get a lot of Inz and so...
If T have not mixed the derivative and the integral of 1/z? It is not necessarily
Inz. It [the derivative] must be 1/z2, have I done such a mistake!”

Ulf thus understands the ‘trick’, finally finds his mistake, and finds the cor-
rect derivative y' = 22/4 — 1/22. He can now complete the solution in the same
way as the solution to Example 8.3.2, but the description of this part of his
work is omitted here.

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: The same IS strategy as in Exercise 8.3.1 above.

(a.3) Strategy implementation: The implementation could have been straight-
forward as in Exercise 8.3.1. There is also additional IS information in Example
8.3.2 where almost the same task as Exercise 8.3 7 is solved, and this solution
could have been copied in detail. Unfortunately, Ulf makes a stall mistake and
his work becomes more and more algebraically difficult since the faulty expres-
sions are impossible to integrate by elementary methods.

(a.4) Conclusion: Ulf becomes hesitant about how to proceed.
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(b.1) Problematic situation: How to simplify and integrate the expression (22)?
(b.2) Strategy choice: Ulf’s strategy choice is clearly to search for additional IS
information: “We can go back in the book and see if there is some similar ex-
ample, to compare with... Example 2 seems fairly similar.” It is straightforward
to see that Example 8.3.2 is similar to Exercise 8.3.7, since: (i) the task in both
is to find the curve length and (ii) the functions in the exercise and the example
are both of the form az™ + b/z"™.

(b.3) Strategy implementation: He analyses the example and concludes that:
(b.4) Conclusion: Ulf realises that in Example 8.3.2 “they have reached an even
square”, and he hopes that he “can do magic in the same way” with the exercise.
That is, to reach a solution in a similar way. He has not yet fully understood
the ‘trick’ in the example solution.

(c.1) Problematic situation: How to reach an even square?

(c.2) Strategy choice: Expand the parenthesis in (22) and try to simplify.

(c.3) Strategy implementation: Expanding is straightforward, but simplification
is hard [it is actually impossible, but Ulf does not realise this].

(c.4) Conclusion: Ulf says that “It did not help me anything” and reaches the
tricky expression (23).

(d.1) Problematic situation: Ulf wants “this number 1 to disappear in some
way... as they did in the book, so that I can rewrite this as... one parenthesis”,
but how?

(d.2) Strategy choice: Search for additional information in Example 8.3.2, try
to learn more about how to solve the exercise. Ulf reads the example again, but
this time his strategy is to understand the details by writing down and carefully
consider the intrinsic properties in each local step of the example solution.
(d.3) Strategy implementation: The implementation takes some time, but is
straightforward.

(d.4) Conclusion: At (b.4) above Ulf understood a part of the ‘trick’ described
on page 29, now he seems to have full insight. He also states that “Then it must
be possible to do in the same way in my exercise”.

(e.1) Problematic situation: Why is it so hard to use the same trick as in Ex-
ample 8.3.2, that is, why is it so hard to carry out an IS solution?

(e.2) Strategy choice: Try to find some differences between the example solution
and Ulf’s attempt.

(e.3) Strategy implementation: Ulf finds that it is the appearance of the Inz
expressions that makes it difficult to carry out the cancellation trick: “But it
gets a bit more difficult, I get a lot of In z and so...”

(e.4) Conclusion: The Inz expressions are probably wrong.

After this Ulf finds the stall mistake and completes an IS solution.
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Reasoning characteristics: In the same way as Exercise 8.3.1 this is an IS
exercise. Ulf’s strategy choice at (a.2) is again clearly to find and use the avail-
able IS information in the curve length formula, and again no intrinsic properties
have to be considered in order to identify this formula as the proper one. The
competence required is essentially the same as in Exercise 8.3.1, though the
differentiation and integration are technically a bit more difficult. The imple-
mentation of the IS information could have lead to a straightforward solution,
as in Exercises 8.3.1 and 8.3.2, but Ulf makes a stall mistake at (a.3) that leads
his work into an unprogressive direction.

In trying to resolve the difficulties, the central characteristic of Ulf’s work
is that even though he clearly sees that the function expression becomes very
complicated, it takes long time before he tries to search for mistakes in his
solution work or tries in any other way to understand his work. A possible
reason for this is that according to his experiences, the main (and often only)
difficulty in almost all of the textbook’s integration exercises is to simplify a
tricky expression in order to find a familiar primitive function: “Now I shall try
to simplify this in some way... so I can integrate it in the easiest possible way.”
Therefore he may see the tricky expression at (b.1) as a ‘normal’ part of the
solution work. A very common strategy in integration exercises is to expand
parentheses and simplify, as he does at (c.2).

Ulf seems (correctly) to be so very convinced that there should be IS inform-
ation available, that he at (d.3) reads the example solution very carefully in
order to understand each detail and find the differences between the example
solution and his work. This assumption is strengthened both by Ulf’s comment
at (d.4), and in the post-interview when JL asks:

“How did you find your mistake?”

“Tt was not possible to get something out of this parenthesis (points at (22)),
so therefore it was not possible to have Inz there.”

Ulf thus resolves the difficulty by a careful IS information search, but this work
includes a local component that may be classified as LPR: It is hard to make
the cancellation trick work if the square root expression includes both 2% and
Inz. Here he considers intrinsic properties of the example solution, in order to
determine why his work does not ‘fit in’ with the provided IS information.

A comment to the exercise type: The ‘trick’ used to solve the exercise is
only applicable to a very limited family of functions (see the discussion at page
29). If the reasoning is only based on IS and if a small slip, like Ulf’s above,
or a minor mistake as Jon’s first one in Exercise 9.4.3, is made then it becomes
impossible to make any progress. It seems like students often get stuck in similar
situations. This type of ‘arranged’ exercises are rather common in textbooks,
but perhaps they should be more sparsely included? In Exercise 8.3.11 Ulf
makes a mistake that leads to similar difficulties as in Exercise 8.3.7, but this
description is omitted here.

Textbook Section 8.3, Exercise 17

Exercise formulation:
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“Find the circumference of the closed curve £%/3 +y2/3 = a?/3. Hint:
the curve is symmetric about both coordinate axes (why?), so one
quarter of it lies in the first quadrant.”

Solution work: Ulf starts by saying:

“Yes, this was the kind of task that someone asked about at the lecture today.
The circumference of a closed curve. This one can not draw... What can I do
with this? Perhaps solve for y?”

He writes

2/3 2/3

y _ z2/3 (24)

“But this did not become much easier, y raised to 2/3... Another problem is,
how shall I know between what limits I shall integrate? The curve should be
closed, so perhaps it will go around (he sketches a circle that is centred at the
origin in a coordinate plane). It is symmetric... around both axes, so that one-
quarter is in the first quadrant (this is the clue in the exercise formulation)...
So it is an ellipse, or a circle, or whatever it can be... Then one can take the
limits from here to here (points at the circle segmerit in the first quadrant of his
sketch, from x=0 to y=0). It says that the curve is symmetric, why? I do not
know, I do not even know if I have guessed correctly to the right curve.”

Ulf reads Example 8.3.4, which states:

=a

“EXAMPLE 4 The circumference of an ellipse
Find the circumference of the ellipse

2:2 y2
S+m=0L (25)

where a > b > 0. See figure 8.25 [a figure of an ellipse].

SOLUTION The upper half of the ellipse has equation y = b4/1 — -z—;r =

4 VaZ —22. Hence
dy b x
dz av@Z-22
and so
¥ 22 a'—(a®—b%)s?
a2 22 a%(a? — x?)

d
1+(3)P =1+

The circumference of the ellipse is four times the arc length of the
part lying in the first quadrant, so

a\/4—_—2_—2'2'
s=4/ at — (a? — )z dz
0

ava? — z2

Let z = asint, dz = acost dt

acost dt

7/2 /at — (a2 — b2)a? sin’ ¢
Y CRICEL
0

a(acost)
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. T2 _ : -
=4/ \/a2—(a2-b2)sin2tdt
0

/2 aZ — b2 /2
=4a/ 1- 3 sinztdt=4a,/ V1 — €e2sin’t dt units,
0 0 :

a

where € = (Va? — b%)/a is the eccentricity of the ellipse. (See Section
9.1 for a discussion of ellipses.) Note that 0 < € < 1. The function
E(e), defined by

/2

E(e) = V1-e?sin’t dt (26)
0

is called the complete elliptic integral of the second kind. [the
text then briefly discusses numerical methods to evaluate E 07

“This says something about the circumference of an ellipse, I will read this.
There is a formula that looks like...”

Ulf writes down the function (26).

“The € is the eccentri... eccentri..., whatever it is called [Ulf has difficulties in
translating the term from English to Swedish]. Perhaps it is something like
that one should use? Then I must in principle rewrite this (24) to se if it is an
ellipse.”

Ulf tries to rewrite (24) in a similar form as (25):

(%3 + y?/3) a2/3

a2/3 YR
g3 23
2Bt o= 1 (27)

“But this is perhaps not so good? It should not be like this? (The difference
is that the exponents are 2/3 instead of 2 in his formula)... It is close... If you
can do this way, that is...”

After some silence JL asks Ulf what he is thinking.
“First, what differs this from an ellipse is that there are not squares here (points
at the exponents). Secondly, the denominators are the same (a?/3 in (27)). I am
thinking about, if it says a? and b2 here (points at (24)), what does it mean for
an ellipse? If it can be some other kind of ellipse if they {the denominators| are
equal, some kind of circle or so... Yes, there must be squares if it is an ellipse...
I don’t know... Perhaps it is a circle if they are equal. If this distance (points
at the ellipse’s major axis in the figure belonging to Example 8.3.4) is equal to
this distance (the minor axis), then it is a circle... It was a difficult exercise.
How shall I handle this? Raised to two thirds was trickier. I can not use this
(the E(e) formula), because then I have to find €...”
Ulf writes ¢ = va? — b2.
“What does it ((24)) say? It says:”

YT+ YF

3
a2
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“But perhaps it did not help me?”

After a longer period of silence JL interrupts:
“I think we shall break here. It is three o’clock (two hours have passed since
Ulf started with Exercise 8.3.1 above).”
“Oh! Damn! I have not done much!”
“If you had not made any progress with this exercise, had you turned to the
Instructor’s solution manual?”
“No I had skipped this, I have other book sections to work with.”
JL then guides Ulf into solving for y in (24), which he manages. That is, if this
idea had occurred to Ulf he probably could have solved the exercise.

Reasoning structure:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Recall the solution procedure related to “circumference
of a closed curve” from today’s lecture.

(a.3) Strategy implementation: Though he seems to have some insight in the
procedure, it seems rather superficial and very incomplete.

(a.4) Conclusion: Ul does not really consider any intrinsic properties related
to arc length or to methods of calculating it. What he says is approximately
that: (i) The curve can not be drawn (wrong, it is the composition of the two
curves y = +(a?/3 — £2/3)3/2), (ii) Perhaps he should solve for y (correct), this
is the first step but he is neither able to carry it out nor to see the necessity
of it. (iii) Perhaps the curve will ‘go around’, like and ellipse (not really, but
something like it). (iv) The limits of integration may be found by studying the
first quadrant, since the curve is symmetric (correct, the clue in the exercise).
(v) He is not sure that he has ‘guessed correctly’ about all this.

(b.1) Problematic situation: Ulf’s recollection of the solution procedure is not
sufficient, how to proceed?

(b.2) Strategy choice: Search for additional information in the text, that could
complete the solution procedure.

(b.3) Strategy implementation: The identification of a similar example is straight-
forward since the only example in Section 8.3 that “says something about cir-
cumference” is Example 8.3.4. Ulf’s understanding of the example solution is
too superficial, so he does not realise that it is only the first part that can be
copied, not the whole solution and in particular not the formula (26) that he
tries to use. Ulf notes the symbolic difference (a surface property) between
his expression (27) and the corresponding expression (25) in Example 8.3.4,
but does not realise the central similarity (an intrinsic property of the solution
method) between Exercise 8.3.17 and Example 8.3.4: that the function needs
to be rewritten on the form y = f(z). He then tries wrongly to verify that
the function in Exercise 8.3.17 is also an ellipse, with the purpose of using the
formula E(e) from the example.

(b.4) Conclusion: No progress.
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Reasoning characteristics: 8.3.17 is an LPR exercise. There is actually
almost complete IS information in the above cited Example 8.3.4 (and probably
in the method recalled from the lecture), but the example’s solution leads to an
integral that can not be evaluated by elementary techniques. Thus the solver
of Exercise 8.3.17 has to understand parts of the example’s solution, and realise
that a central difference is that the integral in the exercise can be evaluated by
elementary techniques. It is only this difference that turns 8.3.17 into an LPR
exercise, otherwise it would just have been an (difficult) IS exercise.

From (a.3) and (a.4) it seems like Ulf has access to most of the central
intrinsic components in a possible solution to Exercise 8.3.17. There are two key
features behind his failure: (I) He probably could have continued if he had been
able to “solve for y” in (24) as he would like to. At the same time, his insight in
the (from the lecture) recalled method is so superficial that he does not see that
this is necessarily the next step. Thus he is not searching for information on
how to “solve for y”, but general solution procedure information: His inability
to consider intrinsic properties leads him to search for IS information at the
wrong places. (II) Ulf does not really try to use his knowledge from (a.4), which
combined with a careful reading of the first part of the example solution might
have lead him into understanding the necessity of solving for y. Instead he makes
a very superficial search for IS information. Ulf tries in (b.4) unsuccessfully to
‘adjust’ his solution to fit in with the solution of Example 8.3.4. It seems clear
that this attempt is based on surface properties: For example when he says
“Perhaps it is something like that [the eccentricity] one should use?”, and later
when he says: “It is close” and “First, what differs this from an ellipse is that
there are not squares here. Secondly, the denominators are the same.” It seems
like Ulf makes some unsuccessful attempts to consider intrinsic properties, “I
am thinking about, if it says a? and b here, what does it mean for an ellipse?”,
but he is completely unable to do so and relate this to his solution work.

In Exercise 8.3.7 above, his strategy of trying to adjust his solution to fit with
the IS information was successful: By understanding the solution of Example
8.3.2 in detail he was then able to find his mistake. Now, his understanding
of Example 8.3.4 is too superficial, and the example’s solution is impossible
to completely copy this time. Therefore Ulf is not able to build a solution to
Exercise 8.3.17 solely by considering surface properties, and since no global PR
or intrinsic property considerations are invoked his whole attempt fails.

5.3 Dan

Dan is studying the same three-year computer engineer program as Jon. There
are some courses that he has not yet passed and Dan’s grading average on the
courses he has passed is 3.2 which altogether is a relatively poor result. Dan
failed the exam after the video recording of his work below. In his work with
the exercises below, Dan uses information from the same text sources as Jon:
(a) The textbook [Ada95]. (b) The lecture notes. (c) ISM. (d) A high school
formula collection with mathematical formulas.

Dan starts with reading the text that precedes the exercises in the textbook’s
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Section 10.4:

“I usually start by reading the section unless it is self-evident, but during this
course there has not been so much self-evident.”

In spite of this statement, before turning to Exercise 10.4.1 he reads the (rather
difficult) six text pages of Section 10.4 for only 14 minutes and says:

“It is a bit hard to understand the language. I understand most of the general
ideas, but often not exactly all of the details.”

It seems below like he understands none of the general ideas and very few of the
details of the text in Section 10.4, which treats alternating series and methods
for determining absolute and conditional convergence for these series.

Textbook Section 10.4 (Absolute and conditional conver-
gence), Exercise 1

Exercise formulation:

“Determine whether the series in Exercises 1-12 converge absolutely,
converge conditionally, or diverge.
-1)"
Ly, S
Solution work: Dan starts by saying:
“Now I do not know exactly, before I have read it, I do not recall exactly how
this works. When I look at the exercise I see that it is an alternating curve, no,
alternating series.”
Dan writes down the first 4 terms:

o111
i VA VA

“If one compares with the closest one should check, then it is this (writes)”:

1 (28)

% = 7—111/5 —;- <1 Diverges = oo (29)
[(29) is Dan’s faulty answer to the exercise)
“Which means that this, I think, diverges.”

[ Comment: Dan recalls a result from the earlier Section 10.3 concerning ‘p-
series’, which states that

oo
“ Z -T—i; converges if p > 1 and diverges to infinity if p < 1.” (30)
n=1
This test can not be used to determine convergence for the series in Exercise
10.4.1. It could be used to determine absolute convergence but, as becomes
clearer below, Dan does not consider the distinctions between convergence, ab-
solute convergence, and conditional convergence. To determine convergence,
Dan could have applied the alternating series test which is contained in Section
10.4 that he read 10 minutes earlier:
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THEOREM 14 The alternating series test

Suppose that the sequence {a,} is positive, decreasing, and con-
verges to 0, that is, suppose that

)a,>20forn=1,2,3, ..

(ii) ant1 Sap forn=1,2,3, ..;

(iil) limpn 00 Gn = 0.

Then the alternating series 2:;1 (-1)*ta, =a1 —as+az—as+
as — ... converges.” (The proof of the theorem then follows) ]

Dan makes no reference to this theorem, instead he opens the textbook’s solution
section which only says:

“1. Converges conditionally”.

“This seems to be wrong... Converges conditionally...”
Dan opens ISM and reads the solution to Exercise 10.4.1:

“1. Y] 5_71-31 converges by the alternating series test (since the terms

alternate in sign, decrease in size, and approach 0). However, the
convergence is only conditional, since -\/l; diverges to infinity.”

“It was correct what I said, that it diverges to infinity. But it converges since
it is an alternating series, and it... decreases in size, tends to zero. Condi...
condi... {Dan has difficulties in translating the term from English to Swedish]
It converges only conditionally.”

Dan seems to consider himself finished, and turns to the next exercise.

Reasoning structure:

(a.1) Problematic situation: What is the exercise about?

(a.2) Strategy choice: Analyse the exercise.

(a.3) Strategy implementation: The analysis is very brief and superficial.

(a.4) Conclusion: Dan concludes quickly that it is an “alternating series”, but
one of the main characteristics of his work with all the exercises in Section 10.4
(which mainly treats alternating series) is that Dan is essentially never able to
consider any of the intrinsic properties of alternating series. Dan also writes
down the first four terms, which seems to be a routine for him but he seldom
actually considers any properties of the terms.

(b.1) Problematic situation: How shall the exercise be solved?

(b.2) Strategy choice: Dan makes a superficial IS connection at (29) to the p-
series of Section 10.3. The connection is based on the surface property that the
terms (28) in the Exercise 10.4.1 are, if one wrongly disregards the numerator
(-1)", on the form % as in (30). Since Dan does not consider the intrinsic
properties of alternating series, he does not realise that convergence can not be
determined by (30). He misses the complete IS information provided in The-
orem 14 that he read earlier in Section 10.4.

(b.3) Strategy implementation: Dan recalls correctly that a p-series diverges if
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p < 1 (the answer is still wrong since the strategy choice is not fruitful).

(b.4) Conclusion: Dan concludes that Y o ; ﬁ—_\/l_nﬁ “Diverges — 00”, but notes

that it does not fit with the textbook’s solution section.

(c.1) Problematic situation: What is wrong with Dan’s solution?

(c.2) Strategy choice: AS, read ISM.

(c.3) Strategy implementation: Everything Dan says after reading ISM’s solu-
tion except “it was correct what I said” is (partly wrongly) quoted from ISM.
He says at the same time that “it converges” and that “it diverges”, without
commenting the apparent contradiction or that there are different kinds of con-
vergence involved.

(c.4) Conclusion: It seems like Dan believes that he, at least partially, solved
Exercise 10.4.1 (this claim is strengthened at Exercise 10.4.3 (b.3) below where
he, from working in a similar way as with Exercise 10.4.1, believes that he has
solved Exercise 10.4.3.).

Reasoning characteristics: This is an IS exercise but Dan is unable to
provide even a partial solution. Dan’s work is very superficial, he is unable
to use even surface properties of the components in his solution work, and there
are no signs that his reasoning considers any intrinsic properties: (I) He is
unable to use the relatively (series is a difficult concept) simple and clear IS
information provided in the alternating series test, even though he read it just
before and explicitly says at (a.4) that Exercise 10.4.1 is an “alternating series”.
Instead, based on superficial properties he applies at (b.2) IS information from
the preceding Section 10.3 (Convergence tests for positive series), that probably
worked to some extent for many of the easiest exercises in that section. In the
post-interview it is clear that Dan did not understand the meaning of the al-
ternating series test, and he also says that he can not use the comparison tests
at all. There are no real signs that he even tries to find IS information. (II)
There are no signs that he is able at (c.3) to make any use of the AS inform-
ation provided by the ISM solution, apart from quoting it. (III) He does not
relate his solution work to anything else that he read in Section 10.4, though the
section treats only alternating series and absolute and conditional convergence.
There are no signs, not even at (a.4) and (c.3), that he considers any intrinsic
or surface properties related to these terms. (IV) There is no PR involved.
Dan does not, contrary to Jon and Ulf above, work hard to understand the
local components of the provided IS and AS information. He says in the post-
interview that “Math can be, though it has not shown today, one of my stronger
sides.” Perhaps his difficulties have lately become so great that he has given up
his attempt to understand even local components? Dan’s work above and below
is sometimes very hard to follow and find meaning in. It seems like he has ‘lost
contact’ with mathematics, that Dan’s concept images [TV81] and statement
images [SS95] are so distant from the corresponding concept and statement
definitions that analysing his work his difficult. Dan seems to believe ((c.3) and
(c.4)) that he has solved the Exercise 10.4.1, which he is very far from doing.
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This is an example of that even surface IS and AS reasoning may be difficult
when the understanding is very weak.

Textbook Section 10.4, Exercise 3

Exercise formulation:

“Determine whether the series in Exercises 1-12 converge absolutely,
converge conditionally, or diverge.

oo cos N »
3. En:l (n+1) In(n+1)

Solution work: Dan writes (copies from the exercise formulation):

cosnw
= 3
;(n—}-l)ln(n-i—l) (31)
and continues by recalling and once again reading Example 10.4.1:

“EXAMPLE 1 Test for absolute convergence:

(-1)r1 o~ 7L COS LT
Z 2n -1 (b) Z 2"

n=1

SOLUTION

(a) limp—oo l%l/% = limp 00 5= = 3 > 0. Since the har-

monic series Yoo ; (1/n) diverges to infinity, therefore limn oo ((—1)" "1 /(2n—
1)) does not converge absolutely (comparison test).

(b) p = limp_yqo | B ptlm) jncosnm) | _ iy, 2 = L <1,

(Note that cos(nn) is just a fancy way of writing (—1)™.) Therefore

(ratio test) Y oo ((ncosnm)/(2™)) converges absolutely.”

Dan writes (copies from Example 10.4.1):

cos(nm) = (—1)" (32)

and then decides to apply the ratio test from the earlier Section 10.3, which
there is formulated as:

“THEOREM 11 The ratio test

Suppose that the sequence a,, > 0 (ultimately) and that p = lim, 0 &‘—*——
exists or is +-o00.

(a) If0 < p <1, then o7 | an converges.

(b) If 1 < p < o0, then limpyoo @, = 00 and Y .| @, diverges to
infinity.

(c) If p = 1, this test gives no information; the series may either con-
verge or diverge to infinity.” (The proof of the theorem then follows)
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Dan continues from (31) by trying to apply the ratio test:

cosn4lm
in+2;lnin+2) _

cos N -

n+1n(n+2)

One may note that the insertion itself of the term into the ratio test is correct
[though the test can not be used to solve Exercise 10.4.3], apart from that: it
is the absolute value of the expression above that should be tested, he twice
misses the parentheses around n + 1, and that it should be In(n + 1) instead
of In(n + 2) in the lower denominator. However, Dan corrects these slips as he
continues:

cos((n+1)m) (n+1)in(n+1)
(n+2)In(n+2) cos(n) -
It seems like he then decides to wrongly use the information (32) and sets both
cos((n+ 1)mr) = 1 and cos(nw) = 1:
(n+1)In(n+1)
(n+2)In(n +2)
Dan then applies the ‘faulty logarithm law’ alnb = In ab and obtains:

(33)

In(n +1) + In(n? +n)
In(2n 4 4) + In(n? + 2n)

[ Comment: It is noteworthy that none of the mistakes below (32) are the
main causes behind his difficulties. The main problem is that the ratio test can
not be used to determine absolute convergence (since Dan would, if he carried
out the calculations correctly, reach case (c) above: “p = 1, the test gives no
information”), or conditional convergence (since the series is alternating). The
former is determined by the integral test and the latter by the alternating series
test. ]

Dan’s work is becoming more and more hesitant, and when it seems to have
come to a standstill JL asks what Dan has done.
“I have taken an+1/an and then inverted [as in the ratio test].”
“OK, and then?” .
“I check what remains when I multiply this, something usually disappears. But
I am a bit sceptic about what really disappears... It is cos(n + 1) here and only
cosn here (points at numerator and denominator at (33)), but I wonder what
disappears...”
Dan reads ISM'’s solution to Exercise 10.4.3 which states:
“3. Y Zn—_:f)s](:("n) =L +§;&2 +1y converges by the alternating
series test, but only conditionally since ) Zn_HTln(m diverges to

infinity (by the integral test).”

(34)
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“Yes, this remains. They have not done like this at all. They do like I did first,
they checked that it is an alternating series. Same as Exercise 1... Hm, I have
missed something.”

Dan returns to the textbook’s Example 10.4.1.

“ This is almost...” [He is probably about to say “the same as the exercise” |
No, they have 2™ here... Well, I'll start ail over.”

Dan leaves off Exercise 10.4.3 and turns to Exercise 10.4.5.

Reasoning structure:

(a.1) Problematic situation: How to solve the exercise?

(a.2) Strategy choice: Dan searches for information and finds Example 10.4.1,
but the IS application of the information in the example is extremely superfi-
cial: (i) Dan completely disregards all intrinsic properties that are related to
alternating series and to absolute and conditional convergence. (ii) Instead he
notes the surface property that in both Exercise 10.4.3 and Example 10.4.1 (b)
the numerator contains ‘cos nn’, and from this concludes wrongly that both can
be solved in the same way. (iii) Dan shows no sign of understanding or consider-
ing any intrinsic properties of the example solution, but notes that one surface
property is that it contains a reference to a test, “(ratio test)”, and therefore
Dan tries without considering its role in the example or the exercise solution to
solve Exercise 10.4.3 by the ratio test. )

(a.3) Strategy implementation: As commented after (34) were he reaches a
standstill, Dan could not have solved Exercise 10.4.3 by the ratio test. It is
anyhow a reasonable attempt to try it, especially if he could have correctly con-
sidered the relations and distinctions between absolute and conditional conver-
gence. It seems, from his long and hesitant work with the algebraic expressions,
like he believes that his problems are caused by that the algebraic manipula-
tions and simplifications are tricky (“something usually disappears”), not that
he made a superficial strategy choice at (a.2) and fails to consider the intrinsic
properties of the exercise.

(a.4) Conclusion: A standstill.

(b.1) Problematic situation: Same as (a.1).

(b.2) Strategy choice: Search for AS information in ISM and IS information in
the textbook’s Example 10.4.1.

(b.3) Strategy implementation: Dan notes that ISM’s solution has something
to do with alternating series: “They do like I did first, they checked that it is
an alternating series. Same as Exercise 1...” Actually, there are no signs that
he uses any surface or intrinsic properties of alternating series for anything. It
seems like he believes that he has achieved a partly correct solution. (This as-
sumption is strengthened below when Dan says about Exercise 10.4.5 that: “It
was not so easy. Exercise [10.4] 3 was much easier.”) Dan finally says that he
“missed something”, and returns to Example 10.4.1. He is unable to consider
the intrinsic properties of the example solution in order to determine if it can
be followed, and how this relates to the ISM solution.
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(b.4) Conclusion: Dan leaves off the exercise.

Reasoning characteristics: This is, as Exercise 10.4.1, an IS exercise that
can be solved by applying the IS information in the integral test (absolute
convergence) and the alternating series test (conditional convergence). Dan
applies neither of them, and as described at (a.2) his faulty strategy choice is
based on extremely superficial IS.

In the post-interview, Dan’s description of his reasoning in this exercise is
coherent with the interpretations (a.2) (ii) and (iii):
JL asks why Dan applied the method from Example 10.4.1.
“It says that cosnw is just a fancy way of writing (—~1)", therefore ratio test,
alternating series. It was therefore I went back to this.”
“It was because cosnw was similar to the exercise?”
“Yes, one goes back to see if there is something to relate to, something that will
push you in the right direction. These things one never gets to know when the
teacher teaches, he just writes down his definitions and so, he never gives these
small hints and tricks, so you can know in what ways to attack it.”
Dan’s problem here is that his identification of the ‘hint’ is based on surface
considerations only, and leads in the wrong direction.

Later in the post-interview JL asks why Dan left exercise 10.4.3.
“What I have the greatest difficulties with is when T have to divide, when one
has }I':J:‘H_% What will disappear? I assume that ... Inn + 2 ... is it equal to
Inn+n2?7”
“No, [...]”
“He has never really treated ... Or did he [Dan is probably trying to recall if
‘the teacher has treated division of logarithms]? These In tasks are difficult.”
Dan thus (see also (a.3)) seems to wrongly believe that his difficulties were
caused by difficulties in simplification of expressions (local property), instead
of difficulties in founding the strategy choice on intrinsic properties (global).
The main part of the solution work in the textbook exercises is often to simplify
tricky expressions in order to be able to apply provided solution methods. From
this Dan may establish experiences that lead to EE reasoning that focuses on
these algebraic simplifications. Dan also wants the teacher to give suggestions
for more exercises, in order to learn each possible type:
“There are so many different ... they are not variations on the same, ... very
many different, totally different exercises. And if it comes up a variation on any
of them, you are stuck. There should be more easy exercises, so one can look
at different variations. [...] It usually is like, this exercise is about polynomials,
another is about sine, the third is about e raised to something, and then you
have four of them, and there is only one on sine and on tan, and then there is
something one have not learnt really. I would like the teacher to give us a paper
with, say, four or five exercises each on sin, power functions, tan, arctan, etc.
To have more of the same type. This is what I miss.”
This is another indication that Dan is focused on considering local surface prop-
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erties of series (e.g. whether the terms are sine or logarithms) instead of intrinsic -
global properties (e.g. wether the series are alternating or not). He also criticises
that it is so much to memorise, but also says that understanding is desirable.

Dan is unable to correctly use or consider any surface or intrinsic properties
of alternating series or absolute and conditional convergence, neither in the
exercise, the textbook, nor in ISM, even though there is IS and AS information
available. There is no sign of any PR.

Textbook Section 10.4, Exercise 5

Exercise formulation:

“Determine whether the series in Exercises 1-12 converge absolutely,
converge conditionally, or diverge.

o0 !—1!"!112-—1!”
5. Zn:o n<41

Solution work: Dan starts by saying:

“This is an alternating series, but it goes to infinity.”

Then he writes down the exercise formulation and the first five terms in the
series:

3 5 15

1—0+g-—7+ﬁ (35)
[Dan makes two slips: The first term should be -1 and the fourth term should
be -8/10, but it does not affect his solution work.]
“This goes to infinity then... Yes it goes to 0, but it will never get there really.
But this is strange, since it says here that this will be 0 (points at the term 0
in (35))"
Dan calculates the second 0 term again and asks JL to confirm that the term is
zero, which JL does.
“If I continue then (he points at (35)): This + this - this + this... It tends to zero.

Dan opens ISM and its solution to Exercise 10.4.5:

nye 2
“5. ) L’%}%‘—l) diverges since its terms do not approach zero.”

“Diverges... since its terms do not approach zero... Aha! No they did not...

they get smaller and smaller [his statement is wrong since IL_—I%;%:—-—Q} increases
towards 1, which is the reason that the series diverges|, but... The area, they
will never reach zero, apparently.”

“How do you mean?”

Dan sketches a curve that looks like y = 1/z and marks the area between the
curve and the z-axis, approximately between z =1 and z = 7.

“It looks something like this. It gets smaller and smaller, but will never go
towards 0... Which is a bit strange, I think personally.”

Dan taps his pen at the 0 in (35).



JL asks if it is strange because of the zero.

“Because of this 0 that suddenly appears. On the other hand... that is, it is
just a number in the series, 1-0. Oh yes, this 0 is just a number in the series. It
is not a final 0, it does not tend towards 0.

Dan copies fragment of the ISM solution into a faulty answer:

Diverges — oo Since it never becomes 0. The area under the curve.

Dan leaves Exercise 10.4.5 by saying:
“It was not so easy. Exercise 3 was much easier.”

Reasoning structure:

Dan works rather quickly and his reasoning is very difficult to follow and struc-
ture, in particular the bases for his (sometimes contradictory) statements. He
starts by quickly deciding that “This is an alternating series, but it goes to in-
finity”, which could mean many different more or less correct things. As above,
he does not use any properties of alternating series. Then follows something like:

(a.1) Problematic situation: The exercise.

(a.2) Strategy choice: Analyse the behaviour of the terms in (35).

(a.3) Strategy implementation: He first seems to hold on to his earlier statement
“This goes to infinity then...”, which seems to contradict the next one: “Yes it
goes to 0, but it will never get there really.” One possible interpretation, which
is mathematically wrong in relation to Exercise 10.4.5, but where the two state-
ments are not contradictory is one that he actually expresses at (b.4) below
(when he compares with y = 1/z): That the terms decreases towards 0, but
the sum diverges to infinity (which is the case with 3 . ;1/x). He then seems
to change his mind when he notes that there is a 0 term in (35), and therefore
wrongly makes the extremely superficial conclusion that:

(a.4) Conclusion: The series converges to 0.

(b.1) Problematic situation: Dan wants to know if (a.4) is correct.

(b.2) Strategy choice: Search for AS information in ISM.

(b.3) Strategy implementation: Contrary to (a.4), ISM says explicitly that the
series diverges since the terms do not approach 0. Dan mixes consequences of
several components that are involved in his solution work, without being able to
make any fruitful considerations of their intrinsic properties and their relations.
It seems, to the observer, like extremely superficial ‘random’ relations:

(b.4) Conclusion: (i) At first dan concludes wrongly (a.4). (ii) After reading
ISM, he concludes that the series diverges since even though the terms will get
“smaller and smaller (wrong)”, the area under the curve (which should mean
y= %;%l if one disregards the factor (—1)", though this curve does no resemble
the graph of 1/z he sketched above) will not approach 0, in a similar way as
the area under y = 1/z (wrong). This is probably a faulty application of the
integral test, or some superficial connection to its graphical representation. (iii)
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Dan then correctly realises that the reasoning that led to (a.4) is wrong since
the 0 in (35) is just a term in the series, not its limit. (iv) He finally concludes,
incompletely and wrongly, that the series diverges since the area under the curve
never becomes 0.

Reasoning characteristics: This is an IS exercise, that could be solve by ap-
plying Theorem 4 from Section 10.2: “If 3" | an, converges, then limy, o0 n =

0.” Since limy, .00 tlg;%::—ll # 0 the series diverges. Dan never in his work
considers anything that is related to this theorem. He is probably not aware of
(the intrinsic property) that the absolute value of the terms approaches 1 and
that the sum ‘oscillates’ as n — oc.

Dan’s strategy choice at (a.2) is probably an attempt to use the heuristic
strategy (that is more often elaborated by teachers than by textbooks) to study
the behaviour of the first few terms in the series, in order to ‘get a feeling’
for how the sum behaves as more terms are added. Though Dan’s reasoning
is very hard to follow it is clear from (a.3), (a.4), (b.3), and (b.4) that he
actually draws conclusions based on extremely weak surface properties, without
considering any of the intrinsic properties of the components involved. There
is no explicit mathematical reasoning to support his first statement “it goes to
infinity”, or his later decision that the terms tends to 0 but the area is infinite
(like y = 1/z). Both these statements (or their correct counterparts) would take
some work to verify, but Dan just formulates them, as it seems, ‘out of the air’.
It is also an extremely superficial connection when he wrongly states that the
series converges to 0 since there is a 0 among the terms (35). The only explicitly
correct part of his work is when he realises that the 0 in (35) is just one term
and not the sum of the terms, but this is a very basic fact in the definition of
series. No PR is involved.

It seems from his final comment that Dan believes that he has solved Exer-
cises 10.4.1 and 10.4.3 though he is not close to producing answers to any of the
three exercises above, even with the help of ISM. The rest of his work with other
exercises proceeds in a similar way as with Exercise 10.4.5, but the descriptions
of them are omitted here.

Dan relates Exercise 10.4.3 to Example 10.4.1, since both the exercise and
the example contains the numerator ‘cosna’. It is noteworthy that there is no
example in the whole Section 10.4 which has a summation term that includes
the expression /n from Exercise 10.4.1, and no example that includes a term

similar to ﬁ:_{%’;&# in Exercise 10.4.5. This may explain why Dan does not
relate his work with Exercises 10.4.1 and 10.4.5 to something in Section 10.4:
There is no ezample with similar surface properties (as in Exercise 10.4.3), and
he can not find the provided IS information since his only base for reasoning is
extremely superficial IS. The IS information that he is (probably) used to find
in examples is here contained in theorems instead, and he does essentially not
read the latter.
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6 Discussion

According to the classification structure in [Lit00b] all exercises that the stu-
dents work with above are IS exercises, except 8.3.17 which is an LPR exercise.
In [Lit00b] 600 calculus textbook exercises were classified, and about 70 % were
IS, 20 % were LPR, and 10 % were GPR exercises. The PR exercises were mainly
found at the end of each exercise section, and the three students in Section 5
were videorecorded starting with new sections, where they were likely to meet
mainly IS exercises. Their work would probably have been somewhat different
if they had worked with LPR and GPR, exercises, but since frequent failures in
their IS implementations lead to problematic situations there are opportunities
to study other types of reasoning than straightforward IS.

Though there are clear differences in the three student’s reasoning character-
istics there are also some clear similarities, in particular in their strategy choices,
which is a bit unexpected considering their great variation in examination suc-
cess: Jon passes several more exams than is required in full time studies, Ulf
fails all mathematics exams at first attempt but passes later, and Dan fails so
many exams that he is likely to drop out of his engineer program. The aspects
that seem most central in relation to the research questions from Section 3 are
discussed below.

6.1 Strategy choice: Characteristics and reasoning base
6.1.1 What are the main strategies?

All fruitful global strategy choices (9.4.1 (a.2), 9.4.3 (a.2), 8.3.1 (a.2), 8.3.7
(a.2)) are based on IS reasoning. These are all ‘proper’ choices, since the IS
exercises can be solved by applying the found formulas. The unsuccesful global
strategy choices are based on: (i) An incomplete recollection of a solution pro-
cedure described at a lecture (8.3.17 (a.2)). (ii) Faulty connections to wrong IS
information (10.4.1 (b.2), 10.4.3 (a.2). (iii) Some major misconceptions (10.4.5
(a.2) and (a.3)). The strategy choice 10.4.5 (a.2) is both the only one that is not
based on a (by the textbook or teacher) provided specific and complete solution
method, and the one who’s implementation is based on the severest misconcep-
tions. The students’ main global strategy choices are thus IS, a conclusion that
is also strengthened when they explicitly say that they expect IS information
to be available somewhere (9.4.1, 9.4.3 (j.2), 8.3.7 (d.4)).

Almost all of the strategy choices of a more local character are based on IS
or AS reasoning. The few exceptions are: (i) 9.4.3 (c.2), (£2) and 8.3.7 (c.2) are
unsuccessful attempts to apply recalled familiar methods often used in earlier
exercises. (ii) 10.4.1 (a.2) and 10.4.5 (a.2) are unsuccessful and very superficial
attempts to analyse the behaviour of sums. There are only two local situations
found that may be classified as' LPR: (i) Jon ‘works backward’ at (i.2) in order
to access the derivatives from ISM’s solution of Exercise 9.4.3. (ii) Ulf realises
in Exercise 8.3.7 that his In z component makes the central idea in the example
solution hard to carry out. It is noteworthy that both these LPR situations




- concern getting access to IS or AS information.

Conclusion: Most strategy choices are of IS or AS types, and several of the
IS choices lead to correct solution procedures. It is crucial, for these students, to
identify proper IS information in order to be able to solve exercises successfully,
especially if they are going to make it without AS information.

6.1.2 Why are these strategy choices made?

It is not possible to determine what kind of reasoning and conceptual under-
standing that underlies the decisions in the cases where the IS strategy choices
" are correctly and quickly made. There are some weak indications that even these
choices are not based on considerations of intrinsic properties, for example: (i)
Jon says (9.4.1 (a.2)) about the formula his using that “I think it is the length
of the curve”. (ii) Ulf searches in the textbook and says (8.3.1 (a.2)) that: “I
go back to see what the formula looks like. I write it down so it will perhaps
go into my head.” (iii) Ulf says (8.3.7) that “ We can go back in the book and
see if there is some similar example, to compare with... Example 2 seems fairly
similar.” '

However, there are several situations where the strategy choices are clearly
based on surface property considerations only, for example: (i} Most of Jon’s
many attempts in Exercise 9.4.3 to find the differentiation rule for cos®t and
sint consist of studying texts that have something to do with the expressions
sin or cos in a wide variety of, sometimes irrelevant, situations. At several
occasions he reads, but fails to recognise, proper IS information because it is
written on a more general form (e.g. the chain rule) and he does not make the
(fairly basic) intrinsic property considerations that are necessary in order to find
and use it. (ii) Though Jon, at Exercise 9.4.3, reads ISM’s solution carefully
several times he fails to to discover and consider the basic intrinsic property
of the positivity of curve lengths, and its calculational consequences, in ISM’s
solution. (iii) Ulf has very little insight in the intrinsic properties of the solution
procedure he recalls at 8.3.17.

Sometimes the surface IS strategy choices are extremely superficial and the
found solution procedures have completely irrelevant intrinsic properties, for
example: (i) In his search for IS information about differentiation rules for
Exercise 9.4.3 Jon studies carefully the integration example 6.6.7 just because
it contains the ‘keywords’ sin’z and cos®z. (ii) At 8.3.17 Ulf tries wrongly
to ‘squeeze’ the exercise into a formula for arc length of ellipses. (iii) Most of
Dan’s work. The clearest situation is perhaps when he at 10.4.3 decides to use
the ratio test, just because both the exercise and an example has ‘cosnz’ as
numerator, and the example mentions the ratio test. There are absolutely no
intrinsic property connections between them and he does not consider how the
ratio test has been used in the example.

All AS strategy choices can of course trivially be made without considering
any mathematical properties at all: There is a provided solution to each exercise.
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The AS strategy implementation may though, as seen, be tricky since the ISM
solutions often are rather compact.

Conclusion: The reasons behind the strategy choices are almost exclusively
based on surface considerations, sometimes extremely superficial, or trivial in
AS situations.

6.1.3 What is, or could have been, the role of PR?

As argued in [Lit00c] and [Lit00b}, PR can be seen as central in competent math-
ematical reasoning, in a sense necessary both in routine situations where things
turn problematic for some reason and in creative problem solving. Without the
ability to construct and carry out PR, it is impossible to solve any mathemat-
ical task unless a solution procedure has been provided by someone else. In the
present study PR is very rare while AS and IS is very common. In many of the
situations the students seem to want to avoid AS, it is probably seen as a bit of
‘cheating’, but often only until things become too difficult. Even when AS fails,
there are essentially no PR attempts. Not even in Jon’s solution work, though
he is a high achieving student.

IS could have been complemented by PR in problematic situations, but very
seldom is and then only locally. A few examples of possible PR, considering
- intrinsic properties, that could have lead forward may be mentioned. It is
probably noncontroversial to claim that the ability to carry out this type of
reasoning is central in the curricula goals:

(i) If Jon bad analysed his work and noticed that his faulty answer at (20)
was 0, he could have concluded something like: If the (arc length) integral of a
continuous function (that is not identically 0) over an interval of positive length
is 0, then the integrand function must be negative on some interval of positive

length. Then the arc has negative length on that interval, which is impossible.

This implies that the mistake in Jon’s calculations probably is at the first place
where a negative integrand appears: at (18).

(ii) Ulf could in Exercise 8.3.17, in a similar way as in Exercise 8.3.7, have tried
to analyse the solution to Example 8.3.4 and found that the central intrinsic
property that differed from his solution work was that his curve needed to be
divided into parts expressed on the form y = f(z).

(iii) Dan could have, perhaps using his calculator, actually have added some of
the first terms of the series in all his exercises in order to study their behaviour.

Conclusion: PR is not required in IS exercises if the solution work proceeds
smoothly. The IS implementations often go wrong for the students but there are
still very few and limited PR situations found, not even in the work of the high
achieving student Jon. More extensive PR could have lead to better progress
(which is one of the main conclusions in [Lit00c)).
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6.2 Strategy implementation: Success and failure-
6.2.1 What are the results of implementing IS and AS reasoning?

It is clear, which is to be expected, that the ‘idealised’ IS solutions presented
in [LitOOb] are very simplified. In reality, other types of reasoning are often
involved and influence success and failure. There are no absolutely ‘pure’ IS
solutions found in the present study but some that almost are (e.g 9.4.1, 8.3.1),
where the strategy choice (to find IS information) is immediate and the strategy
implementation (copying the found solution procedure) can be straightforwardly
carried out without considering the current intrinsic properties of the compon-
ents involved. In these solutions the competence required and practised is ele-
mentary (mostly- algebra) and mainly based on past mathematical properties.
The implementations of the IS and AS strategy choices are, as seen, often
far from trivial for the students, for different reasons:
(i) Often the students’ restriction to consider only surface properties leads to
difficulties in distinguishing useful IS information from unuseful, even when use-
ful IS information is closely present (9.4.3, 8.3.17, all Dan’s exercises). Jon’s
statement (9.4.3) that “I am uncertain... I have always been” may be-an indica-
tion that considering intrinsic properties may be hard even for skilled (by exam
measures) students. There are also several situations where surface considera-
tions are sufficient in order to find useful IS information (see Section 6.1.2).
(ii) Jon, and UIf to some extent, probably has the resources required to con-
sider intrinsic properties to a greater extent than what they actually do. In
contrast to this, Dan’s apparent lack of basic conceptual understanding makes
it impossible for him to consider anything but extremely superficial properties,
and he misses central basic IS information in a way that Jon and Ulf does not.
One could suspect that lacking conceptual understanding would lead to a more
intense IS focus, here is actually the opposite case present: Dan’s IS information
searching is not only much less efficient than Jon’s and Ulf’s, he even tries to a
far lesser extent. He does not even relate his work with the exercises in Section
10.4 to the text that he just read in the same section. Dan seems to have ‘lost
contact’ with the mathematics treated in Section 10.4, and his work indicates
that it is actually very difficult to carry out IS solutions by finding and ‘blindly’
copying IS information without any insight in the intrinsic properties of the
components involved.
(iii) The students are often not able to use the AS information from ISM (9.4.3,
all Dan’s exercises). Jon has difficulties when he studies the ISM solution too
superficially, and does not really consider its intrinsic properties. A consequence
of Dan’s lacking basic conceptual understanding is that the ISM solutions are
not sufficiently detailed for him to follow, and Dan fails to understand or make
any use of them.
(iv) The IS solutions are often seriously stalled by slips and mistakes (9.4.3,
8.3.7), which are perhaps not primarily related to the reasoning type (but to
carefulness). On the other hand, these mistakes are probably less common in
PR reasoning, since then the intrinsic properties need to be more or less con-
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tinuously considered and controlled. The mistakes often takes most of the IS
solution time to discover, but are when found usually quickly resolved. This is
especially the case in ‘arranged’ exercises where it is hard to make anything (e.g.
calculate a faulty answer, since the arc length formula requires a very special
type of function in order to work smoothly) if the mistake is not found.

Conclusion: IS and AS solutions are fairly easy to implement when things
proceeds smoothly, and it is possible to get very far by only or essentially only
IS reasoning. At the same time, the surface focus often leads to difficulties in
actually finding proper IS information. Stall mistakes are serious obstacles, and
their inability to consider intrinsic properties may makes IS and AS information
hard to use.

6.2.2 What are the students’ goals?

As discussed above, Dan’s strategy implementations include really no consider-
ations of any mathematical properties at all, neither surface or intrinsic, due to
lacking conceptual understanding. Perhaps his difficulties are so severe that he
has even given up to aim for local understanding? Contrary to this, Jon’s and
Ulf’s strategy implementations are, though essentially no PR is invoked, clearly

carried out with the goal to reach local understanding of each step in the IS and

AS information. Their reluctancy to accept ‘blind copying’ is exemplified by
Jon’s hard work in Exercise 9.4.3 to learn the differentiation rules behind the
derivatives he found, and later his reluctancy to leave ‘his’ method and follow
ISM while not understanding why his method does not work. Another situation
is when Ulf 8.3.7 (d.2) carefully studies a solved example in order to under-
stand the local details. At the same time, they seem prepared to accept ‘blind
copying’ of general solution strategies, there are no signs that they attempt to
learn general ideas by considering global intrinsic properties. For example, Jon
wants to learn the formulation of the differentiation rule for cos™ z, but seems
not interested in learning or considering its general mathematical background
(differentiation of products or composite functions). Dan wants (10.4.3) to see
more examples of different exercise types, but only different from a local surface
perspective. It seems like they aim at learning how to solve a particular, limited,
exercise type, instead of learning general ideas: Jon says (9.4.3 (0.3)) that sine
(local property) is difficult, but does not refer to integration of partly negative
functions (the central principle). In the same way, Dan believes wrongly that
his difficulties (10.4.3) are caused by problems with local strategy implementa-
tion simplifications of expressions, not by his inability to make proper strategy
choices.

This aim for local understanding may be seen as a way to try to learn formu-
las and methods in order to pass the exam, an assumption that is supported by
several statements: Jon says (9.4.1) that “I follow this formula, to see if it gets
correct. And then I try to learn this formula so I will know it on the exam.”
At 9.4.3 he says that “But I have to learn this at some point. It should not be
that difficult”, and later as an answer to JL’s question about what he will do
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without his formula collection at his exam: “Then I have to learn the formulas.
That is the only alternative... And hope that I pass the exam.” U}f says when
working with 8.3.1 that “I go back to see what the formula looks like. I write it
down so it will perhaps go into my head.”

Since the students spend little or no time reading the rather difficult but
informative text that precedes the exercises, it seems like they aim at learning
not only task solution procedures but also concepts and all other mathematical
ideas through working with exercises.

Conclusion: Their goal seem to be to apply IS solutions, and try to learn
and understand the local components of the particular solution type in order to
remember it for the exam. The main part of these students’ homework time is
spent working with textbook exercises.

6.2.3 In what ways are control and verification conducted?

The students’ main way of verifying solution work is through comparing their
work with the textbook’s solution section or with ISM. Jon and Ulf are often
able to verify or correct their work by comparing with these information sources,
though it is sometimes far from trivial. Dan is not able to make use of it, there
is no situation where he understands how his work differs or coincides with the
information from the solution section and ISM.

At 9.4.3 Jon tries many different approaches in short time. Mostly, he does
not follow them too far (sometimes to short), he curtails approaches that does
not lead forward. In that sense his monitoring and control is efficient (in the
same way as one of the more proficient students in [Lit00c], where solution
work in exam-like situations were studied). Schoenfeld [Sch85] have found that
absence of monitoring and control is one of the main reasons behind problem
solving failure (in situations where no aid is at hand), which results in that
solution procedures are followed very far even if no progress is being made. This
is not the case here when the students have access to different kinds of written
information sources: all three students turn to these sources as soon as things get
difficult. This can be compared with the study in [Lit00c] (where no aids were
available), where the main reason when students reacted and questioned their
work was that the results looked superficially unfamiliar (EE reasoning). This
occurs once in the present study, when Ulf (8.3.1) thinks that his answer became
too easy to fit with his experiences. There are no attempts at verification by
PR, for example by comparing with sketches of arcs or estimating convergence
by studying the behaviour of the first few terms in a series.

In other ways the control is also less efficient: The students seem to believe
that the trouble lies in that the algebraic simplifications of the expressions are
tricky (9.4.3, 8.3.7, 10.4.3 (a.3)), and do not question other faulty work. Instead
of analysing (the intrinsic properties of) their work, their main strategy is to
search for IS and AS information. In general, the search for errors is unsystem-
atic and often takes most of the solution time, which is characteristic also of the
students’ work in [Lit00a].
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Dan’s control and monitoring is ineffective, since he is unable to relate both
his own reasoning and the IS and AS information to the basic intrinsic properties
of the concepts treated.

Conclusion: Control and verification is mainly based on comparing with
available information sources, not on own considerations.

6.3 Consequences

What types of competence will be developed from working this way? Since this
is not actually investigated in this study, this section becomes a bit speculative.

It is remarkable that, if Section 5 describes examples of the general task
solving behaviour of these students, IS strategy choices are so dominating and
often so successful, especially at the global level. One consequence of this is
that several central components in non-routine problem solving may not be
practised and developed, for example heuristics and control ([Sch85], [Sch92]).
It is also likely that the students will develop the belief ([Sch85], [Sch92]) that
mathematical tasks are solved by searching for a, by someone else provided,
solution method, and not at all by ones own solution constructions. This coin-
cides with the main results of [Lit00c]. It is also possible that their resources
and conceptual understanding will, as discussed more extensively in [Lit00b],
will only be marginally developed. If IS solutions are possible in exercises, and
practised by students as main global and local strategy choices, then the only
situations where students practice anything but copying procedures are those
where mistakes and slips are made in the IS implementation.

The students’ work in Section 5, together with the IS - LPR - GPR distribu-
tion discussed in Section 2.2.2, indicates a focus on local procedures and absence
of more global and conceptual considerations. But could not a procedural focus
at least be seen as a ‘prestage’ to conceptual understanding? Hiebert and Car-
penter [HC92, p. 78] discuss the relation between conceptual and procedural
knowledge, and claim that a procedural focus may even prevent a later con-
ceptual development: “The evidence [several references are cited] suggest that
learners who possess well-practised, automatized rules for manipulating sym-
bols are reluctant to connect the rules with other representations that might
give them meaning. [...] The tendency to persist in using procedures once they
are well-rehearsed, without reflecting on them or examining them further, has
been noted for some time in a variety of domains.”

Henningsen and Stein [HS97] set out to “identify, examine, and illustrate
the ways in which classroom factors shape students’ engagement with high-level
mathematical tasks” in middle school classrooms. They found that “when stu-
dents’ engagement is successfully maintained at a high level [of mathematical
thinking], a large number of support factors are present”. Another result was
that though the tasks themselves were identified as being set up to encourage
doing high-level mathematics one major obstacle was a “decline into using pro-
cedures without connection to concepts, meaning, and understanding. This in
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turn was mainly caused by three factors: (i) Challenges became nonproblems, for
example by “successfully pressuring the teacher to provide explicit procedures”.
(ii) A “classroom-based shift in focus away from meaning and understanding
toward the completeness and accuracy of the answer”. (iii) Too much or too
little time. In middle school, the students’ main source of information and
communication is the teacher. At undergraduate level, especially when working
with exercises, this source is mainly the textbook. In undergraduate textbooks,
factor (i) above can be seen as corresponding to the increasing (during the past
30 years or so) amount of solved examples and other types of IS information
provided. There is at least one influential component in the students’ work in
Section 5 that encourages a shift that corresponds to (ii): The main way to
verify and evaluate their work is to measure the correctness of their answer (not
their solution work) by comparing it with the textbook’s solution section. The
counterpart to (iii) is not primarily investigated in this study, but it is clear that
the students’ slow progress will lead to difficulties in keeping the schedule. In
addition to this, it is well-known that very many students (at least in Sweden)
complain about the high pace of the courses.

Szydlik [Szy00] compares university students’ content beliefs about limits
and their sources of conviction. The students were enrolled in a traditional
calculus course using a traditional textbook. The data suggested that students
with external sources of conviction (the authority of a teacher or a textbook)
gave more incoherent definitions, held more misconceptions, and were less able
to justify their calculations than those with internal sources of conviction (ap-
peals to empirical evidence, intuition, logic, or consistency). It is non-trivial to
compare these sources of conviction to the reasoning types described in Sections
2.2.1 and 2.2.2, but they are probably related in the way that the sources of
conviction in IS reasoning are the textbooks. The sources of conviction in PR
are consequences of mathematical properties, mainly concluded from (more or
less consistent) deductive or inductive logical arguments.

The students’ (at least Jon’s and Ulf’s) aim for local understanding will
probably lead to some concept and solution procedure understanding. A main
problem is that this understanding may be very local, based only on surface
properties, and related only to exercises of a very limited type, for example
to find the arc length of sin™ z curves. This means that, in order to pass the
exam, they will have to memorise solution procedures to very many different
exercise types. On the other hand, if the exams are adapted to coincide with
the competence developed in IS textbook exercise solving then it is probably
possible to go very far, within the learning environment that we provide for our
students, by memorising and (partly) understanding local procedures.

Boaler [Boa98] compared student (age 13-16) experiences and understand-
ings in two different learning environments: ‘traditional’ and ‘open project-
based’. Students from the latter developed a conceptual understanding that
provided them with advantages, both in school and nonschool settings. Students
from the former developed a procedural knowledge (including “rule-following
behavior” and “cue-based behavior”) that was of limited use to them in unfa-
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miliar situations. These students had not experienced unfamiliar demands in
their mathematics lessons: “For their textbook questions always followed from
a demonstration of a procedure or method, and the students were never left
to decide which method they should use. If the students were unsure of what
to do in the lessons, they would ask the teacher or try to read cues from the
questions or from the contexts in which they were presented.” Though these stu-
dents’ textbook exercises probably differ in several aspects from undergraduate
textbook exercises, it is reasonable to hypothesise that the traditional students
in [Boa98] applied (something similar to) IS strategies. There are additional
studies describing that ‘reform’ students outperform ‘traditional’ students, e.g.
[BCtag].

It is reasonable to assume that working with almost exclusively IS strategies
as the three students in Section 5 does, especially on the global level, will not lead
to a global understanding of mathematical ideas. Kahn et al. [K*98] “considers
the extent to which students are acquiring an understanding of mathematics as
a whole and of the relative significance of different parts of mathematics to that
whole”. Their study indicates that, “even after two years after undergraduate
mathematics, many of the students involved had not developed such an under-
standing”. Love and Pimm [LP96, p.387] claim that: “Examples are, in some
sense, intended to be ‘paradigmatic’ or ‘generic’, offering students a model to
be emulated in the exercises which follow. The assumption here is that the stu-
dent is expected to form a generalisation from the examples which can then be
applied in the exercises”. In the work of the students in Section 5 there are no
real signs that generalisations are considered or made. On the contrary, most
of their work seem to focus local details and procedures.

It is in a sense a pity that these students, in particular Jon, do not use their
competence to learn concepts and problem solving more ‘solidly’, less superfi-
cially, by relating their thinking more to the intrinsic properties of the math-
ematics they work with. Some of the characteristics of the successful graduate
students in Carlsson’s [Car99] study were that they were very confident and
persistent when solving complex mathematical tasks. They frequently attemp-
ted to classify the task as one of familiar type, and their answers appeared to
have a logical foundation. There is no support for anything but a speculative
comparison between these results and the successful Jon’s work in Section 5,
but it seems reasonable that Jon’s IS focus and his eagerness to understand and
logically connect each local solution step may lead to the behaviour described
by Carlsson.

A focus on surface properties and absence of intrinsic property considerations
in different ways is one of the main outcomes of both [Lit00a], [Lit00b], (Lit00c],
and the present paper. Perhaps this way of working will lead to short term
gains (passing exam), but to long term losses like weak concept understanding
and weak non-routine problem solving competence? As seen above it is possible
to get really far by superficial IS strategies. It is also often possible to pick up
marks on procedural exams, while having difficulties in considering definitions
and proofs [Tal99] or in applying mathematics outside school {Boa98]. It seems
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likely that an IS focus when solving textbook exercises may lead to an EE
focus when solving tasks with no aids at hand. Schoenfeld [Sch85, p. 374],
when studying geometry problem solving, provides strong support for a related
conclusion: “The data suggest that many of the counterproductive behaviors
wee see in students are learned as unintended by-products of their mathematics
instruction. A very strong classroom emphasis on performance - on memorizing
constructions and practising them until they can be performed with a very high
degree of accuracy - ultimately results in the students losing sight of the rational
reasons for the correctness of those constructions.”
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