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Abstract:

First we summarize two different concepts of Cauchy data ("Hardy’) spaces of elliptic
differential operators of first order on smooth compact manifolds with boundary: the L’-
definition by the range of the pseudo-differential Calderén-Szegd projection and the
’natural’ definition by projecting the kernel into the (distributional) quotient of the
maximal and the minimal domain. We explain the interrelation between the two
definitions. Second we give various applications for the study of topological, differential,
and spectral invariants of Dirac operators and families of Dirac operators on partitioned
manifolds.
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ABSTRACT. First we summarize two different concepts of Cauchy
data (‘Hardy’) spaces of elliptic differential operators of first order
on smooth compact manifolds with boundary: the L?-definition
by the range of the pseudo-differential Calderén-Szegd projection
and the ‘natural’ definition by projecting the kernel into the (dis-
tributional) quotient of the maximal and the minimal domain. We
explain the interrelation between the two definitions. Second we
give various applications for the study of topological, differential,
and spectral invariants of Dirac operators and families of Dirac
operators on partitioned manifolds.
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Introduction

0.1. Topological, geometric, and physics motivation. After
Jean Leray’s pioneering work of the 40s, topologists have been studying
the cutting and pasting of manifolds using Betti numbers, long exact
(co)homology sequences, and spectral sequences. Roughly speaking,
their goal is to control the replacement of simple parts by complex
ones and vice versa when constructing or decomposing a manifold.
The corresponding hypersurfaces appear as a kind of 1-codimensional
fixed points. The shift between manifold and hypersurface is a tenet
of this branch. , ‘

Similar ideas have been around in differential geometry for long;
e.g. the celebre Gauss-Bonnet Theorem of the curvature integrals of
manifolds with boundary and the Morse Theory for the decomposition
of manifolds. The shift to codimension 1 is also widely exploited in
modern differential geometry, e.g. in Donaldson’s work on 4-manifolds
as boundaries of 5-manifolds and in the Seiberg-Witten Theory (for a
recent survey see [7], Part IV, and [19]). The same goes for modern
quantum field theory of gauge invariant fields which are pure gauge
at the boundary of e.g. a 4-ball, or when one sums over all compact
(Euclidean) four-geometries and matter field configurations on both
sides of a fixed three-surface £ (see e.g. [11] and in particular [23]).

Here we shall restrict ourselves to the study of the index, the deter-
minant, and the spectral flow of Dirac operators and families of Dirac
operators on partitioned manifolds. These invariants can be coded by
the intersection geometry of the Cauchy data spaces (‘Hardy classes’
in complex and Clifford analysis) along the partitioning hypersurface.
Various kinds of gluing formulas can be obtained for them.

0.2. Various concepts of Cauchy data spaces. The literature
treats the Cauchy data spaces in slightly different ways. One is to estab-
lish the Cauchy data spaces as L?—closures of smooth sections over the
partitioning hypersurface ¥, coming from the restriction to the bound-
ary of all smooth solutions (‘monogenic functions’ in Clifford analysis)
over one of the parts M; of a partitioned manifold M = M, Us M;.
As for the Dirac operator, this Cauchy data space can be represented
as the range of the L?-extension of the pseudo-differential Calderén
projection (‘Szegd projection’ in Clifford analysis) and established as a
Lagrangian subspace of the symplectic Hilbert space L?(—X) + L*(Z).

The pseudo—differential approach involves a machinery which makes
it too heavy and inflexible for an adequate study of continuous families
of operators and other topological considerations. It imposes unnec-
essary limitations and assumptions in spite of the fact that L?-spaces
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are more amenable than distributional spaces. However, this approach
also has its merits: it leads to operational parametrices and bound-
ary integrals in the theory of elliptic boundary value problems with
important applications. In Section 3 we summarize the details of the
pseudo—differential (L2-)approach.

A more elementary approach to the Cauchy data spaces is to estab-
lish them as subspaces of the symplectic Hilbert space 3 := Dmax/Din
of natural boundary values, i.e. as the boundary values of sections be-
longing to the maximal domain D, of the operator. One can embed
3 as a non—closed subspace into the distribution space H™'/2(-X) +
H~/2(L) and get a surprisingly simple proof of the closedness of the
corresponding (distributional) Cauchy data space - without resorting
to pseudo—differential operator calculus. In this way it is also easy to
obtain the continuity of the Cauchy data spaces for continuous families
of operators. In Section 4 we explain how the results of the technically

more simple distributional approach can be transferred to the more
customary L?-approach.

0.3. The function of symplectic geometry. The ‘complemen-
tarity’ of the skew-symmetry of spin—geometry and Clifford multipli-
cation on the one hand and the symmetry of the induced differential
operators on the other were a puzzle until Leray in his famous mono-
graph [26] ezplained why aspects. of symmetric differential operators
can be best understood in the framework of symplectic geometry.

In Part 2, we shall elaborate the conjured Leray’s view and use
the Lagrangian property of the Cauchy data spaces to discuss the glu-
ing formulas for spectral invariants in this setting. Section 5 shows
how index theory may be considered as expressing the index of a non—
symmetric elliptic differential operator over a closed partitioned mani-
fold (which is a ‘quantum’ variable, defined by the multiplicity of the
0—eigenvalues) by the index of the Fredholm pair of Cauchy data spaces
from both sides of the separating hypersurface, measuring their ‘non—
Lagrangianess’ (which is a ‘classical’ variable, defined by the geometry
of the solution spaces). This is the Bojarski Conjecture, proved in [14]
for chiral Dirac type operators on even—dimensional partitioned mani-
folds. Various generalizations for global (elliptic) boundary conditions
will be discussed.

In Section 6 we give a family version of the Bojarski Conjecture:
the Yoshida—Nicolaescu Theorem. It relates the spectral flow of a con-
tinuous one—parameter family of (total) Dirac type operators to the
Maslov index of the corresponding family of Cauchy data spaces. This
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is another case of quasi—classical approximation, which is further un-
derlined by the fact that the ‘quantum’ variable spectral flow has a
topological meaning only in infinite dimensions, whereas the ‘classical’
variable Maslov indez has a non-trivial topological meaning already in
finite dimensions.

In Section 7 we explain the function of the Cauchy data spaces in
the boundary reduction and in the adiabatic gluing formula for the
determinant regularized by the (—function. Even more than the index
and the spectral flow, the determinant has remained a puzzle and it is
still a challenge to understand the different character of the invariants
over the whole manifold and in terms of the Cauchy data spaces.

An example: the determinant of a Dirac operator over a closed
manifold or a manifold with boundary is clearly not defined as a true
product of the eigenvalues (which go to £oo) but requires a kind of reg-
ularization. A beautiful result is due to Scott and Wojciechowski, [34].
Formally, it is almost identical with a variant of the Bojarski Conjec-
ture for the index and the Yoshida—Nicolaescu Theorem for the spec-
tral formula: the Scott—Wojciechowski Formula (our Theorem 7.1) says
that the (-regularized determinant of the Dirac operator over a com-
pact smooth manifold with boundary, subject to a Lagrangian global
pseudo—differential boundary condition ‘of Atiyah-Patodi—Singer type’,
is equal to a Fredholm determinant defined over the Cauchy data space

along the boundary, i.e. a true infinite product of eigenvalues which go
rapidly to 1.

Part 1. The Functional Analysis of Cauchy Data Spaces

1. Symplectic Functional Analysis

We fix the following notation.

Let (#,{.,.)) be a separable real Hilbert space with a fixed sym-
plectic form w, i.e. a skew-symmetric bounded bilinear form on ‘H X H
which is non-degenerate. Let J : H — H denote the corresponding
almost complex structure defined by

(1.1) w(z,y) = (Jz,y)

with J?2 = -1d, ¥J = —J, and (Jz, Jy) = (z,y). Here J denotes the
transpose of J with regard to the (real) inner product (.,.). Let £ =
L(#) denote the set of all Lagrangian subspaces of H (i.e. A = (JA)4,
or, equivalently, let A coincide with its annihilator \° with respect to
w). The topology of £ is defined by the operator norm of the orthogonal
projections onto the Lagrangian subspaces.
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Let Ay € L be fixed. Then any p € £ can be obtained as the image
of Ay under a suitable unitary transformation

p=U(N)

(see also Figure la). Here we consider the real symplectic Hilbert
space H as a complex Hilbert space by J. The group U () of unitary
operators of H acts transitively on £, i.e. the mapping

UH) — L
U = UMt

is surjective and defines a principal fibre bundle with the group of
orthogonal operators O(H) as structure group.

12 p:

‘ EXAMPLE 1.1. (a) In finite dimensions one considers the space
‘H .= R" @& R"” with the symplectic form

w((x7€)7 (yﬂ?)) = "-(.’L', 77) + <£a y) for (.’L‘, f), (y, 7]) € H.

To emphasize the finiteness of the dimension we write Lag(R?") :=
L(H). For linear subspaces of Lag(R*") one has

le L <> diml=nandlcl’,

i.e. Lagrangian subspaces are true half-spaces which are maximally
isotropic (‘isotropic’ means ! C [°).
One finds Lag(R?") = O(n)/U(n) with the fundamental group

7T1(L8€(R2n), )\0) = Z.

The mapping is given by the ‘Maslov index’ of loops of Lagrangian
subspaces which can be described as an intersection index with the
‘Maslov cycle’. There is a rich literature on the subject, see e.g. the
seminal paper (1], the systematic review [17], or the cohomological
presentation [21].

(b) Let {4k }rez\{0) be a complete orthonormal system for . We define
an almost complex structure, and so by (1.1) a symplectic form, by

Joy, = sign(k) o_ .

Then the spaces H_ := span{yi }r<o and H, := span{py }x>0 are com-
plementary Lagrangian subspaces of H.

In infinite dimensions, the space £ is contractible due to Kuiper’s
Theorem (see (7], Part I) and therefore topologically not interesting.
Also, we need some restrictions to avoid infinite-dimensional intersec-
tion spaces when counting intersection indices. Therefore we replace
L by a smaller space. This problem can be solved as first suggested
in Swanson, [38]: by relating symplectic functional analysis with the
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space Fred(#) of Fredholm operators, we obtain finite dimensions for
suitable intersection spaces and at the same time topologically highly
non-trivial objects.

DEFINITION 1.2. (a) The space of Fredholm pairs of closed infinite—
dimensional subspaces of H is defined by
Fred®(H) := {(\, ) | dim AN g < 400 and A+ p C H closed
and dim H /(X + pu) < +o0}.

(b) The Fredholm-Lagrangian Grassmannian of a real symplectic Hilbert
space H at a fixed Lagrangian subspace Aq is defined as

FLy :={u € L] (1, Xo) € Fred®(H)}.
(¢) The Maslov cycle of g in H is defined as

Mg = FL \ FLY,

where fﬁf\%) denotes the subset of Lagrangians intersecting Ao trans-
versally, i.e. uN Ay = {0}.

Recall the following algebraic and topological characterization of
Lagrangian Fredholm pairs (see [8] and [9], inspired by [13], Part 2,
Lemma 2.6).

PROPOSITION 1.3. (a) Let A\, p € £ and let 7y, 7, denote the or-
thogonal projections of H onto A respectively p. Then

(A, 1) € Fred*(H) <= 7y + 1, € Fred(H) <= 7 — 7, € Fred(H).
® [z

(b) The fundamental group of FLy, is Z, and the mapping of the loops
in FLy,(H) onto Z is given by the Maslov index

mas : 1 (FLy(H)) — Z.

To define the Maslov index, one needs a systematic way of counting,
adding and subtracting the dimensions of the intersections ps N Ay of
the curve {y;} with the Maslov cycle M,,. We refer to [8], inspired by
[30] for a functional analytical definition for continuous curves without
additional assumptions.

REMARK 1.4. (a) By identifying H 2 A @ C 2 Xy ® v/ —1 g, we
split in [10] any U € U(H) into a real and imaginary part
U=X+v-1Y

with X, Y : Ag = Ay. Let U ()™ denote the subspace of unitary
operators which have a Fredholm operator as real part. This is the
total space of a principal fibre bundle over the Fredholm Lagrangian
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.7:[:)\0 = .7':25";

FIGURE 1. a) The generation of £ = {u = U(\¢) |
UecUu(H)}
b) One curve and two Maslov cycles in FLy, = FL5,

Grassmannian F L, as base épace and with the orthogonal group O(#)
as structure group. The projection is given by the restriction of the
trivial bundle p : U(H) — L of (1.2). This bundle

UH)T 5 F L,

may be considered as the infinite-dimensional generalization of the
well-studied bundle U(n) — Lag(R?") for finite n and provides an
alternative proof of the homotopy type of FL,,.

(b) The Maslov index for curves depends on the specified Maslov cycle
M,,. Tt is worth emphasizing that two equivalent Lagrangian sub-
spaces Ao and Ao (i.e. dim Ag/ (Ao ﬂ:\\o) < +00) always define the same
Fredholm Lagrangian Grassmannian FL), = F Eio but may define dif-

ferent Maslov cycles M, # M5, . The induced Maslov indices may
also become different

in general

(1.3) mas({ﬂs}se[O,lb)\o) - mas({/‘l's}se[o,l];’):o) # 0

(see [9], Proposition 3.1 and Section 5). However, if the curve is a loop,
then the Maslov index does not depend on the choice of the Maslov
cycle. From this property it follows that the difference in (1.3), beyond
the dependence on )\g and Xo, depends only on the initial and end points
of the path {u,} and may be considered as the infinite-dimensional
generalization ongr (Lo, 115 Ao, Ao) of the Hérmander index. It plays a
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FIGURE 2. The partition of M = M, Us M;

part as the transition function of the universal covering of the Fredholm
Lagrangian Grassmannian (see also Figure 1b).

2. The Analysis of Operators of Dirac Type

We fix the notation and recall basic properties of operators of Dirac
type.

2.1. The general setting. Let M be a compact smooth Rie-
mannian partitioned manifold

M=MOUM1, whereMoﬂM1=8M0=8M1=2

and X a hypersurface (see Figure 2). We assume that M \ £ does not
have a closed connected component (i.e. ¥ intersects any connected
component of M, and M;). Let

A:C®(M;S) — C®(M;S)
be an operator of Dirac type acting on sections of a Hermitian bundle S
of Clifford modules over M, i.e. A = coV where ¢ denotes the Clifford
multiplication and V is a connection for S which is compatible with
¢ (Ve = 0). From the compatibility assumption it follows that A is
symmetric and essentially self-adjoint over M.

For even n = dim M, the splitting C4(M) = C¢+ (M) @ C¢~ (M) of
the Clifford bundles induces a corresponding splitting of S = St @ S~
and a chiral decomposition

_( 0 AT=(AT)
A= ( A* 0
of the total Dirac operator. The chiral Dirac operators A% are ellip-
tic but not symmetric, and for that reason they may have non-trivial

indices which provide us with important topological and geometric in-
variants.
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Here we assume that all metric structures of M and S are product
in a collar neighbourhood N = [~1,1] x £ of £. Then

(2.1) A|N=a(%+B),

where ¢t denotes the normal coordinate (running from M, to M;) and
B denotes the canonically associated Dirac operator over ¥, called the
tangential operator. We have a similar product formula for the chiral
Dirac operator. Here the point of the product structure is that then o
and B do not depend on the normal variable. We note that o is defined
by Clifford multiplication by dt. It is a unitary mapping L%(Z; S|g) —
L?(%; S|s) with 02 = —Id and ¢B = ~Bo. In the non-product case,
there are certain ambiguities in defining a ‘tangential operator’ which
we shall not discuss here (but see also Formula (2.3)).

2.2. Analysis tools: Green’s Formula. For notational econ-

omy, we set X := M,;. For greater generality, we consider the chiral
Dirac operator

A* C®(X;81) — C%(X;87)

and write A~ for its formally adjoint operator. The corresponding
results follow at once for the total Dirac operator.

LeEMMA 2.1. (Green’s Formula). Let {.,.)+ denote the scalar prod-
uct in"L?(X; S%). Then we have

(A* fur f) = (fr A f)y = - /2 (0%oo 4 Toof ) dvols
for any fi € C®(X;S5%).
Here
(2.2) Yoo : C®(X; %) — C=(Z; S%|x)

denotes the restriction of a section to the boundary. This is not prob-
lematic within the smooth category.

2.3. Analysis tools: the Unique Continuation Property.
One of the basic properties of an operator of Dirac type A is the weak
Unique Continuation Property (UCP). For M = My Ug M, it guar-
antees that there are no ghost solutions of Au = 0, i.e. there are
no solutions which vanish on Mj and have non—trivial support in the
interior of M;. This property is also called UCP from open subsets
or across any hypersurface. For Euclidean (classical) Dirac operators
the property follows from Holmgren’s uniqueness theorem for scalar
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FIGURE 3. Local specification for the Carleman estimate

elliptic operators with real analytic coefficients (see e.g. Taylor [39],
Proposition 4.3).

In [14], Chapter 8, the reader will find a very simple proof of the
~ weak UCP for operators of Dirac type. We refer to [5] for a further
slight simplification and a broader perspective (see also [3]). The proof
does not use advanced arguments of the Aronszajn/Cordes type re-
garding the diagonal and real form of the principal symbol of the Di-
rac Laplacian, but only the following well-known generalization of the
product property of Dirac type operators.

LEMMA 2.2. Let ¥ be a closed hypersurface of M with orientable
normal bundle. Let t denote a normal variable with fized orientation
such that a bicollar neighbourhood N of ¥. is parametrized by [—e, +e] x
Y. Then any operator of Dirac type can be rewritten in the form

(2.3) Aly = c(dt) (% + B, + ct),

where By is a self-adjoint elliptic operator on the parallel hypersurface
Y, and Cy : S|z, — S|z, a skew-symmetric operator of Oth order,
actually a skew-symmetric bundle homomorphism.

To prove the weak UCP we basically follow the standard lines of
the UCP literature. Let u € C°(M; S) be a solution of Au = 0, which
vanishes on an open subset w of M. Then it vanishes on the whole
connected component of the manifold. This is to be shown. First we
localize and convexify the situation and we introduce spherical coordi-
nates (see Figure 3). Without loss of generality we may assume that
w is maximal, namely the union of all open subsets where v vanishes.
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If the solution u does not vanish on the whole connected component
containing w, we consider a point zo € suppuNdw. We choose a point
p inside of w such that the ball around p with radius r := dist(zo, p) is
contained in w. We call the coordinate running from p to zy the normal
coordinate and denote it by . The boundary of the ball around p of ra-
dius r is a hypersphere and will be denoted by S, . It goes through z,
which has a normal coordinate ¢ = 0. Correspondingly, we have larger
hyperspheres S, C M for 0 < ¢ < T with T > 0 sufficiently small. In
such a way we have parametrized an annular region Ny := {Sp: }icpo,1]
around p of width T' and inner radius r, ranging from the hypersphere
Sp,o which is contained in @, to the hypersphere S, r which cuts deeply
into supp u, if supp v is not empty.
Next, we replace the solution u by a section

(24) o(t,y) = p(t)ult,y)

with a smooth bump function ¢ with ¢(t) = 1 for ¢ < 0.87 and
o(t) =0fort > 0.97. Then supp v is contained in Ny. More precisely,
it is contained in the annular region Npgr. Moreover, supp(Av) is
contained in the annular region 0.87 <t < 0.9T.

The weak UCP follows immediately from the following lemma.

LEMMA 2.3. Let A : C®°(M; E) — C®(M; E) be a linear elliptic
differential operator of order 1 which can be written on Nt in the prod-
uct form (2.3). Let v denote a section made from a solution u as in
(2.4).

(a) Then for T sufficiently small there exists a constant C such that
the Carleman inequality

T
(25) R / / BT |l () |2 dy
t=0 J Sp¢

T
<c / / RT0" || du(t, y) || dy dt
t=0JSp s

holds for any real R sufficiently large.

(b) If (2.5) holds for any sufficiently large R > 0, then u is equal 0
on Nrjs .

3. Cauchy Data Spaces and the Calderén Projection

To explain the L2~Cauchy data spaces we recall three additional,
somewhat delicate and not widely known properties of operators of
Dirac type on compact manifolds with boundary from [14]:
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1. the invertible extension to the double;

. the Poisson type operator and the Calderén projection; and

3. the twisted orthogonality of the Cauchy data spaces for chiral
and total Dirac operators which gives the Lagrangian property
in the symmetric case (i.e for the total Dirac operator).

The idea and the properties of the Calderén projection were announced
in Calder6n [16] and proved in Seeley [35] in great generality. In the
following, we restrict ourselves to constructing the Calderén projec-
tion for operators of Dirac type (or, more generally, elliptic differential
operators of first order) which simplifies the presentation substantially.

ro

3.1. Invertible extension. First we construct the invertible dou-
ble. Clifford multiplication by the inward normal vector gives a natural
clutching of S* over one copy of X with S~ over a second copy of X
to a smooth bundle S* over the closed double X. The product forms
of A* and A~ = (A*)* fit together over the boundary and provide a
new operator of Dirac type

A+ = AT U A" CP(X; 5) — C™(X; 57).
Clearly (A* U A™)* = A~ U A*; hence index A* = 0. It turns
out that A% is invertible with a pseudo-differential elliptic inverse
(A*)~!. Of course A* is not invertible and r+(A+)~'e* A* # Id, where
et : L2(X;8%) — L?(X;S*) denotes the extension—by-zero operator

and r+ : H5(X; S':) — H?*(X;S™) the natural restriction operator for
Sobolev spaces, s real.

ExAMPLE 3.1. In the simplest possible two-dimensional case we
consider the Cauchy-Riemann operator d : C®(D?) — C*(D?) over
the disc D?, where 8 = (8, + i9,). In polar coordinates out of the
origin, this operator has the form (8, + (i/r)8,). Therefore, after
some small smooth perturbations (and modulo the factor 7), we assume

that d has the following form in a certain collar neighbourhood of the
boundary:

8 = (0, +id,) .

Now we construct the invertible double of 8. By E*. k € Z, we denote
the bundle, which is obtained from two copies of D?xC by the identi-
fication (z,w) = (z, z"w) near the equator. We obtain the bundle E*
by gluing two halves of D?xC by o(p) = €% and E~! by gluing with
the adjoint symbol. In such a way we obtain the operator

3:= U (9)* : C®(S% HY) — C®(S% HY)
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over the whole 2-sphere.
Let us analyze the situation more carefully. We fix a bicollar neigh-

bourhood N := (—¢,4+€)xS! of the equator. The formally adjoint
operator to 0 has the form:

(0)* = e (=8, + 10, + 1)
(t = r — 1) in this cylinder. A section of H' is a couple (s;, s2) such
that in NV: .
o sa(te) =eYa(t ).
The couple (91, (0)*s3) is a smooth section of H~*. To show that, we

check the equality (9)*s, = e %ds;. We have in the neighbourhood
N:

(8)*s2 = (0)*(e*s5)) = €7 (; + i0p + 1)(e51)
= 0,8, + ie_i‘paw(ei‘psl) + 51 = (0r +10,)51
= e e (0, + i0,)8, = €"*(0s;) .

Then the operator 8 U 0* becomes injective and index (8 U 8*) = 0.

3.2. The Poisson operator and the Calderén projection.
Next we investigate the solution spaces and their traces at the bound-
ary. For a total or chiral operator of Dirac type over a smooth compact
manifold with boundary and for any real s we define the null space

ker(A*,s):={f € H°(X;S*) | AT f=0in X \ Z}.
The null spaces consist of sections which are distributional for negative
s; by elliptic regularity they are smooth in the interior; in particular
they possess a smooth restriction on the hypersurface ¥, = {e} x X par-
allel to the boundary ¥ of X at a distance € > 0. By a Riesz operator
argument they can be shown to also possess a trace over the boundary.
Of course, that trace is no longer smooth but belongs to H*~2(Z; S*g).

More precisely, we have the following well-known General Restriction
Theorem (for a proof see e.g. [14], Chapters 11 and 13):

THEOREM 3.2. (a) Let s > 1. Then the restriction map Yoo of
(2.2) extends to a bounded map

(3.1) Yo : HY(X; ST) — H*73(%; S*|x).

(b) Fors < % , the preceding reduction is no longer defined for arbitrary
sections but only for solutions of the operator At: let f € ker(A™*,s)
and let v f denote the well-defined trace of f in C*®(Z,; S¥|x). Then

the sections y)f converge to an element v, f € Hs‘%(E; Stlg) ase —
0.4
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(c) For any s € R the mappzng

K -r+A+ ’yooa C™®(%; S+|g) ——>C°°(X St)

extends to a continuous map K& : H-V2(%; §*|5) — H*(X; S*) with
range K = ker(A™, s).

In the preceding theorem, A" denotes the invertible double of AT,
4 denotes the restriction operator .. : H*(X;ST) — H*(X;S") and
7%, the dual of 7 in the distributional sense.

The composition

(3.2)  P(AY) =00k C(X;5%) — (5 5*|5)

is called the (Szegd-)Calderdn projection. It is a pseudo-differential
projection (idempotent, but in general not orthogonal). We denote by
P(AT)®) its extension to the sth Sobolev space over X.

We now have three options of defining the corresponding Cauchy
data (or Hardy) spaces:

DEFINITION 3.3. For all real s we define
A(A™,5) := ys(ker(AT, 5)),

H°™ % (Z;5+|5)

Y

clos(A+ ) = ’}’oo{f € Coo(X.S+) { A+f =0in X \E}
ACA(A* g} := range P(AT)6~D)

The range of a projection is closed; the inclusions of the Sobolev
spaces are dense; and range P(AY) = Yo{f € C®(X;S") | At f =
0in X \ X}, as shown in [14]. So, the second and the third defini-
tion of the Cauchy data space coincide. Moreover, for s > % one has
A(A™, s) = AS¥4(A™ s). This equality can be extended to the L?—case
(s = -;—, see also Theorem 4.3 below), and remains valid for any real s,
as proved in Seeley, [35], Theorem 6. For s < 1, the result is somewhat

counter—intuitive (see also Example 3.5b in the following Subsection).
We have:

PrOPOSITION 3.4. Forallse R
A(A+, s) — ACIOS(A+, S) — ACald(A-t-’ 5)_

3.3. Calder6on and Atiyah—Patodi—~Singer projection. The
Calder6n projection is closely related to another projection determined
by the ‘tangential’ part of A: Let B denote the tangential symmetric
elliptic differential operator over ¥ in the product form

(A, resp.) A* = 0(8; + B) in a collar neighbourhood of ¥ in X.
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It has discrete real eigenvalues and a complete system of L?-orthonormal
eigensections. Let II>(B) denote the spectral (Atiyah—Patodi-Singer)
projection onto the subspace L. (B) of L*(T;S*|s) spanned by the
eigensections corresponding to the non-negative eigenvalues of B. It is
a pseudo—differential operator and its principal symbol p, is the pro-
jection onto the eigenspaces of the principal symbol b(y, () of B cor-
responding to non—negative eigenvalues. It turns out that it coincides
with the principal symbol of the Calderén projection.

We call the space of pseudo—differential projections with the same
principal symbol p, the Grassmannian Gr, . It has enumerable many
connected components; two projections P;, P, belong to the same com-
" ponent, if and only if the virtual codimension

- (3.3) i(P,, P1) := index { P, P, : range P, — range P}

of P, in P; vanishes; the higher homotopy groups of each connected
component are given by Bott periodicity.

EXAMPLE 3.5. (a) For the Cauchy-Riemann operator on the disc
D? = {|z]| < 1}, the Cauchy data space is spanned by the eigenfunc-
tions e"*? of the tangential operator 8 over S! = [0,2n]/{0,27} for
non-negative k. So, the Calderén projection and the Atlyah—Patodl—
Singer projection coincide in this case.

(b) Next we consider the cylinder X® = [0, R] x T, with Ay = o(0; +
B). Here B denotes a symmetric elliptic differential operator of first
order acting on sections of a bundle £ over ¥y, and ¢ a unitary bundle
endomorphism with 02 = —Id and 0B = —Bo. Let B be invertible (for

the ease of presentation). Let {yk, Ax} denote B’s spectral resolution
of L?(Zy, E) with

CAE < LALL<0<e L A <

Then

(3.4) .

By = Appx for all k € Z )\ {0},
{)\_k = —X¢, 0(pr) =0k, and o(p_g) = —px for k > 0.

We consider
f € ker(Ag, 0) = span{e ¢ }rez\ (o} in L2(XF)
= ker Arpmax (kernel of maximal extension).

It can be written in the form

(35) f(t’y) =f>(t,y)+f<(t,y),
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where

fo(t,y) =D are ™ op(y) and fo(ty) = Y e (y).

k<0 k>0
Because of

(fa f)Lz(XR) <+00 (f<>f<> < 400 and <f>7f>) < +00,
the coefficients a; satisfy the conditions

(36)
6—2/\k -1 ZIAk’R
Z lag > ——— 57 < 400 or, equivalently, Z lax|? < 400
k<0 | A k<0 Al
and
(3.7)
1— 6_2’\kR
Z [ak|2——2—)‘—— < +oo or, equivalently, Z lag*/ M < +00.
k>0 k k>0

We consider the Cauchy data space A(Ag, 0) consisting of all y(f) with
f € ker(Ag,0). Here v(f) denotes the trace of f at the boundary

Y =0XR= -2 uZpg,

where X i denotes a second copy of ¥y. According to the spectral
splitting f = fs + f<, we have

Y(f) = (53, 52) + (3, 5)
where
83 = f5(0), s% = f<(0), Sg = f>(R), 3}<3 = f<(R).
Because of (3.6), we have
(s <7S>) € C®(Zo UZp).
Because of (3.7), we have
(s%,58) € HV2(Zy U ZR).
Recall that
D e € H(D) <= Y |agk*/m D < to00

and [Ag| ~ |k|™! for k — oo, where m — 1 denotes the dimension of
Zo.

One notices that the estimate (3.6) for the coefficients of s% is
stronger than the assertion that ), olax/*| M|V < +oo for all natu-
ral N. Thus our estimates confirm that not each smooth section can
appear as initial value over ¥ of a solution of Agf = 0 over the cylin-
der.
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To sum up the example, the space A(Ag,0) can be written as the
graph of an unbounded, densely defined, closed operator 7 : domT —
H‘%(ER), mapping s% + s =: " = % := B 4 sF with domT C
H=2(%;). To obtain a closed subspace of L?(X) one takes the range
A(Ag, }) of the L?—extension P(Ag)® of the Calderén projection. It
coincides with A(Ag,0)NL?(Z) by Proposition 3.4. In Theorem 4.3 we
show without use of the pseudo—differential calculus why the intersec-
tion A(Ag,0) N L%(X) must become closed in L?(L). See also Theorem
7.1 for another description of the Cauchy data space A(Ag, %), namely
as the graph of a unitary elliptic pseudo—differential operator of order
0. .

Since ¥ = —¥y U X g, the tangential operator takes the form B =
B @ (—B) and we obtain from (3.4)

range IL,. (B)® = L, (B) = span (5, { (s, 7(#t)) }rso -

For comparison, we have in this example
range P(AR)(O) = A(Ag, %) = Spanm(z){(%, G—A"ka)}bo )

hence L. (B) and A(Ag, §) are transversal subspaces of L*(Z). On the
half-infinite cylinder [0, 00) x X, however, we have only one boundary
component Y. Hence

range H>(B)(0) - SpanL2(20{‘Pk}k>0 = I%I_I)Igo range P(Ag).

One can generalize the preceding example: For any smooth compact
manifold X with boundary ¥ and any real R > 0, let X® denote the
stretched manifold

X® = ([-R,0] x £) Ug X.

Assuming product structures with A = ¢(0; + B) near ¥ gives a well-
defined extension Ag of A. Nicolaescu, [28)] proved that the Calderén
projection and the Atiyah—Patodi-Singer projection coincide up to a
finite-dimensional component in the adiabatic limit (R — +o0 in a
suitable setting). Even for finite R and, in particular for R = 0, one
has the following interesting result. It was first proved in Scott, [32]
(see also Grubb, [22] and Wojciechowski, [20], Appendix who both
offered different proofs).

LEMMA 3.6. For all R > 0, the difference P(Ag) — II>(B) is an
operator with a smooth kernel.
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3.4. Twisted Orthogonality of Cauchy Data Spaces. Green’s
formula (in particular the Clifford multiplication ¢ in the case of Dirac
type operators) provides a symplectic structure for L?(X; S|y) for lin-
ear symmetric elliptic differential operators of first order on a compact
smooth manifold X with boundary %. For elliptic systems of second-
order differential equations, various interesting results have been ob-
tained in the 70s by exploiting the symplectic structure of correspond-
ing spaces (see e.g. [25]). Restricting oneself to first-order systems,
the geometry becomes very clear and it turns out that the Cauchy data
space A(A, 1) is a Lagrangian subspace of L*(Z; S|g).

More generally, in [14] we described the orthogonal complement of
the Cauchy data space of the chiral Dirac operator A* by

(3.8) 0TI (A(AT, 3)) = (A(4%,9))

We obtained a short exact sequence

0 =0 1 (A(A™,s)) = H*1(Z; St5) K ker(A*,s) — 0.
For the total (symmetric) Dirac operator this means:

PROPOSITION 3.7. The Cauchy data space A(A, 3) of the total Di-
rac operator is a Lagrangian subspace of the Hilbert space L?(Z; S|x)

equipped with the symplectic form w(p,®) := (0@, ).

The preceding result has immediate applications in index theory,
see Section 5 below.

4. Cauchy Data Spaces and Maximal and Minimal Domains

We give a systematic presentation of the boundary reduction of the
solution spaces, inspired by M. Krein’s construction of the maximal
space of boundary values for closed symmetric operators (see [8], [9]).
In this section we stay in the real category and do not assume prod-
uct structure near ¥ = 90X unless otherwise stated. The operator A
needs not be of Dirac type. We only assume that it is a linear elliptic
symmetric differential operator of first order.

4.1. The natural Cauchy data space. Let Ay denote the re-
striction of A to the space C§°(X; S) of smooth sections with support
in the interior of X. As mentioned above, there is no natural choice of
the order of the Sobolev spaces for the boundary reduction. Therefore,
a systematic treatment of the boundary reduction may begin with the
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minimal closed extension A, := Ag and the adjoint Apay := (Ag)* of
Ay. Clearly, Anax is the maximal closed extension. This gives

Diin = dom(Amsn) = CR(X; 8)° = Coo(X;8)

and

Dyax := dom(Apax)
= {u e L*(X;S) | Au € L*(X; S) in the sense of distributions}.

Here, the superscript G means the closure in the graph norm which
coincides with the 1st Sobolev norm on C§°(X; S). We form the space 8
of natural boundary values with the natural trace map v in the following
way:

Dma.x 1—9 Dmax/Dmin = B
z —  y(z) = [z] ;== 2 + Duin -

The space @ becomes a symplectic Hilbert space with the scalar prod-
uct induced by the graph norm

(4.1) (z,9)g == (z,y) + (Az,Ay)
and the symplectic_ form given by Green’s form

(42)  w(z].ly]) = (Az,y) - (z,Ay)  for[z],[y] € B

It is easy to show that w is non—degenerate.

We define the natural Cauchy data space A(A) := ~y(ker Apax) -
Let us assume that A has a self-adjoint L?—extension with a compact
resolvent. Then it is a Fredholm operator. Let us choose such an
extension and denote its domain by D. Such an extension always exists.
Take for instance Ap(4), the operator A with domain

dom Ap(s) := {f € H'(X; S) | P(A)D(fl5) = 0},
where P(A) denotes the Calderdén projection defined in (3.2).

PROPOSITION 4.1. (a) The Cauchy data space A(A) is a closed La-
grangian subspace of B and belongs to the Fredholm-Lagrangian Grass-
mannian FLy, at Ao := y(D).

(b) For arbitrary domains D with Dpin, C D C Dpax and v(D) La-
grangian, the extension Ap := Apax|p is self-adjoint. It becomes a
Fredholm operator, if and only if the pair (v(D), A(A)) of Lagrangian
subspaces of B3 becomes a Fredholm pair.

(c) Let {Cilier be a continuous family (with respect to the operator
norm) of bounded self-adjoint operators. Here the parameter t runs
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within the interval I = [0,1]. We assume the non-ezxistence of inner
solutions (‘weak UCP’) for all operators A* + C;, i.e.

(4.3) Dyin Nker(A* + C;,0) = {0} for allt € [0,1].

Then the spaces ~y(ker(A* + Cy,0)) of Cauchy data vary continuously
in B.

Here, for t € I the spaces 3, are all naturally identified with 3.

REMARK 4.2. (a) It is an astonishing aspect of symplectic func-

tional analysis that the proof of the preceding proposition is completely
elementary (see [8], Proposition 3.5 and Theorem 3.8).
(b) Clearly, Dyax and Dy, are C*°(X)-modules, and so the space 3 is
a C*°(X)-module. This shows that 3 is local in the following sense: If
Y decomposes into 7 connected components ¥ = ¥, U---UY, , then 3
decomposes into

,32@,33'

i=1

where
B; = ”r({f € Dyax | supp f C Nj})

with a suitable collar neighbourhood N; of ¥;. Note that each 8, is
a closed symplectic subspace of 3 and therefore a symplectic Hilbert
space.

(¢) For elliptic differential operators of first order, the weak unique
continuation property discussed in Subsection 2.3 implies unique con-
tinuation from hypersurfaces and so the property (4.3): if a section f
belongs to Dyn, it vanishes at the whole boundary. So it can be ex-
tended to the closed double by 0. By elliptic regularity this extension
is smooth, so f|x = 0 by weak UCP.

Now consider a section f which vanishes on one connected compo-
nent of the boundary. The arguments of Subsection 2.3 extend to this
case and we obtain once again f|x = 0 by weak UCP. For operators of
Dirac type, this follows also from the early results by Aronszajn and
Cordes (for a recent review and generalization see [3]). We combine
this result with the preceding Remark b. Let us assume that the op-
erator A satisfies the weak unique continuation property (from each
connected component of the boundary as explained). For simplicity
we assume that the boundary consists of three connected components.
Then the natural Cauchy data space A(A) intersects transversally each
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of the ‘faces’
(44) A(4) 0 ({0} x B, x By) = AA) N (B, x {0} x B5)
= AN (B, x B, x {0}) = {0}.

In finite dimensions, this would contradict the Lagrangian property
of A(A) in the full symplectic Hilbert space 8 = B, + B, + B; for
dimension considerations: because of the transversality (4.4), any such
space | := A(A) can be written as the graph of an injective linear
mapping C : B; — B, X B3, so l = graphC and dim! = dim 3, .
Without loss of generality we assume that dim 3, < dim B; for j = 2,3.

That implies 2dim ; dim B, x B, x B;. So [ is not Lagrangian.

There is nothing disquieting in this remark because 3 becomes only
finite-dimensional when X is an interval where the number of con-
nected components of the boundary is limited to two.

By Theorem 3.2a and, alternatively and in greater generality, by
~ Hormander [24] (Theorem 2.2.1 and the Estimate (2.2.8), p. 194), the
space @3 is naturally embedded in the distribution space H~2 (3; S|g).
Under this embedding we have A(A) = A(A,0), where the last space
was defined in Definition 3.3. ‘ _

If the metrics are product close to ¥, we can give a more precise
description of the embedding of 3, namely as a graded space of distribu-
tions. Let {¢, A} be a spectral resolution of L?(X) by eigensections of
B. (Here and in the following we do not mention the bundle S). Once
again, for simplicity, we assume ker B = {0} and have By = A\y¢y for
all k € Z\ {0}, and A_ = =X, o(pr) = 9, and o(p_x) = —y, for
k > 0. In [9], Proposition 7.15 (see also [15] for a more general setting)
it was shown that

B=p_®pB, with

45 B =TTl ™ and 8, = [oisd]

Then B_ and B, are Lagrangian and transversal subspaces of 3.

H™3(x)

4.2. Criss—cross reduction. Let us define two Lagrangian and
transversal subspaces Ly of L?(X) in a similar way, namely by the
closure in L?(Z) of the linear span of the eigensections with negative,
resp. with positive eigenvalue. Then L, is dense in 3 +,and B_ is dense
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FIGURE 4. The mapping 7 : FLg_(B) — FLy_(L)

in L_. This anti-symmetric relation may explain some of the well-
observed delicacies of dealing with spectral invariants of continuous
families of Dirac operators.

Moreover, v(D,ps) = B_, where

(4'6) Daps = {f € Hl(X) l H>(f‘2) = O}

denotes the domain corresponding to the Atiyah-Patodi-Singer bound-
ary condition. Note that a series ), <0 Ckr May converge to an element

¢ € L?(Z) without converging in H3(%). Therefore such ¢ € L_ can
not appear as trace at the boundary of any f € D,,,,.

Recall Proposition 4.1 and note that (3_, A(A)) is a Fredholm pair.

This can all be achieved without the symbolic calculus of pseudo-
differential operators. Therefore one may ask how the preceding ap-
proach to Cauchy data spaces and boundary value problems via the
maximal domain and our symplectic space 3 is related to the approach
via the Calder6én projection, which we reviewed in the preceding sec-
tion. How can results from the distributional theory be translated into
L%-results?

To relate the two approaches we recall a fairly general symplec-
tic ‘Criss—Cross’ Reduction Theorem from [10] (Theorem 1.2). Let 3
and L be symplectic Hilbert spaces with symplectic forms wg and wrg,,
respectively. Let

B=B_+B, and L[=L_+1L,
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be direct sum decompositions by transversal (not necessarily orthogo-
nal) pairs of Lagrangian subspaces. We assume that there exist con-
tinuous, injective mappings

i-:B_ — L_ and iv : Ly — B

with dense images and which are compatible with the symplectic struc-
tures, i.e.

wr(i-(z),a) = wg(z,i+(a)) forallae L, andz € B_.

Let p€ FLp_(B), e.g. u= (pNPB_) + v with a suitable closed v. Let
us define (see also Figure 4)

(4.7) T(p) = i_(pNB_) + graph(p,),
where
out i3 (Fy) — L_
T i-0f,0i(z)

Here F,, denotes the image of p under the projection 7, from p to

B, along B_ and f, : F, — B_ denotes the uniquely determined
bounded operator which yields v as its graph. Then:

- THEOREM 4.3. The mapping (4.7) defines a continuous mapping
T:FLs_ (B) — FLp_(L)

which maps the Maslov cycle Mp_(B) of B_ into the Maslov cycle
My_(L) of L_ and preserves the Maslov index

mas ({ss}sefo,1), B-) = mas ({7 (s) }sepo,1), L-)
for any continuous curve [0,1] 3 s — pus € FLs_(B).

In the product case, the ‘Criss—Cross’ Reduction Theorem implies
for our two types of Cauchy data that all results proved in the theory
of natural boundary values (B-theory) remain valid in the L?-theory.
In particular we have:

COROLLARY 4.4. The L*(Z) part A(A)NL%(Z) of the natural Cau-
chy data space A(A) is closed in L?(Z). Actually, it is a Lagrangian
subspace of L*(X) and it forms a Fredholm pair with the component
L_, defined at the beginning of this subsection.
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Part 2. Cauchy Data Spaces and Spectral Invariants

5. Non-Lagrangian Half-Spaces and Index Theory

5.1. Index theory. Recall that the index of a Fredholm operator
measures its non-symmetry: it is defined by the difference between
the dimension of the kernel (the null space) of the operator and the
dimension of the kernel of the adjoint operator (= the codimension of
the range). So, the index vanishes for self-adjoint Fredholm operators.
For an elliptic differential operator A on a closed manifold M the index
is finite and depends only on the homotopy class of the principal symbol
o of the operator over the cotangent sphere bundle S*M. Therefore,
the index always vanishes on odd-dimensional manifolds. On even—
dimensional manifolds one has the Atiyah-Singer Index Theorem which
expresses the index in explicit topological terms, involving the Todd
class defined by the Riemannian structure of M and the Chern class
defined by gluing two copies of a bundle over S*M by ¢. It has turned
out that various topological invariants of manifolds can be expressed
by the index of naturally defined operators of Dirac type. In the index
theory of closed manifolds one mostly studies the chiral and not the
total Dirac operator (which is symmetric for compatible connections).

5.2. The Bojarski conjecture. The Bojarski Conjecture gives
quite a different description of the index of an elliptic operator over a
closed partitioned manifold M = M, Us M, . It relates the ‘quantum’
quantity index with a ‘classical’ quantity, the Fredholm intersection
index of the Cauchy data spaces from both sides along the hypersurface
X. It was suggested in [4] and proved in [14] for operators of Dirac
type.

PROPOSITION 5.1. Let M be a partitioned manifold as before and
let A(A;,3) denote the L*~Cauchy data spaces, j = 0,1. Then

index A = index (A(Ao, 1), A(A1, 1)).
Recall that
index (A(Aq, 3), A(Ay, 3)) == dim(A(A,, 3) NA(A;, 3))
— dim(L*(Z; Ss)/(A(Ao, 3) + A(A1, 3).

It is equal to i(Id—P(A;), P(Ay)) where P(A,) denotes the correspond-
ing Calder6n projections.

"The proof of the Proposition depends on the unique continuation
property for Dirac operators and the Lagrangian property of the Cau-
chy data spaces, more precisely the chiral twisting property (3.8).
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5.3. Generalizations for global boundary conditions. On a
smooth compact manifold X with boundary ¥, the solution spaces
ker(A, s) depend on the order s of differentiability and they are infinite—
dimensional. To obtain a finite index one must apply suitable boundary
conditions (see [14] for local and global boundary conditions for oper-
ators of Dirac type). In this report, we restrict ourselves to boundary
conditions of Atiyah-Patodi-Singer type, i.e. P € Gr(A), and consider
the extension

(5.1) Ap:dom(Ap) — L*(X;S)
of A defined by the domain
(5.2) dom(Ap) := {f € H'(X;5) | PO(f|5) = 0}.

It is a closed operator in L?(X;S) with finite-dimensional kernel and
cokernel. We have an explicit formula for the adjoint operator

(5.3) (Ap)" = Agd—Pyo+ -

In agreement with Proposition 4.1b, the preceding equation shows that
an extension Ap is self-adjoint, if and only if ker P® is a Lagrangian
subspace of the symplectic Hilbert space L?(5; S |s)-

Let us recall the Boundary Reduction Formula for the Indez of
(global) elliptic boundary value problems discussed in [13] (inspired
by [37], see [14] for a detailed proof for Dirac operators). Like the
Bojarski Conjecture, the point of the formula is that it gives an ex-
pression for the index in terms of the geometry of the Cauchy data in
the symplectic space of all (here L?) boundary data.

PROPOSITION 5.2.
index Ap = index {PP(A) : A(A,1) — range(P®)}.

5.4. Pasting formulas. We shall close this section by mentioning
a slight modification of the Bojarski Conjecture/Theorem, namely a
non-additivity formula for the splitting of the index over partitioned
manifolds.

THEOREM 5.3. Let P; be projections belonging to Gr(Aj), 7=0,1.
Then

index A = index (Ag)p, + index (A;)p, — i(Py,1d — P).

It turns out that the boundary correction term i(P,Id — Ry) equals
the index of the operator (9, + B) on the cylinder [0,1] x ¥ with the
boundary conditions Py at t =0 and P, at t = 1.
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REMARK 5.4. (a) In this section we have not always distinguished

between the total and the chiral Dirac operator because all the discussed
index formulas are valid in both cases.
(b) Important index formulas for (global) elliptic boundary value prob-
lems for operators of Dirac type can also be obtained without analyzing
the concept and the geometry of the Cauchy data spaces (see e.g. the
celebre Atiyah—Patodi-Singer Index Theorem, [2] and [14], Chapter
22, or [31] for a recent survey of index formulas where there is no trace
of the Calderén projection). The basic reason is that the index is an
invariant represented by a local density inside the manifold plus a cor-
rection term which lives on the boundary and may be local or non-local
as well. However, these formulas do not explain the simple origin of the
index or the spectral flow, namely that all index information is natu-
rally coded by the geometry of the Cauchy data spaces. To us it seems
necessary to use the Calderén projection in order to understand (not
calculate) the index of an elliptic boundary problem and the reason for
the non-locality resp. locality.

6. Family Versions: the Spectral Flow and the Maslov Index

6.1. Spectral flow and the Maslov index. Let {A;}ic[o,1) be a
continuous family of (from now on always total) Dirac operators with
the same principal symbol and the same domain D. To begin with,
we do not distinguish between the case of a closed manifold (when
D is just the first Sobolev space and all operators are essentially self-
adjoint) and the case of a manifold with boundary (when D is specified
by the choice of a suitable boundary value condition).

We consider the spectral flow sf {A; p}. Roughly speaking, it is the
difference between the number of eigenvalues which change the sign
from — to + as t goes from 0 to 1, and the number of eigenvalues which
change the sign from + to —. It can be defined in a satisfactory, purely
functional analytical way, following a suggestion by J. Phillips (see [8]
and [30]). We want a pasting formula for the spectral flow. To achieve
that, one replaces the spectral flow of a continuous 1-parameter family
of self-adjoint Fredholm operators, which is a ‘quantum’ quantity, by
the Maslov indez of a corresponding path of Lagrangian Fredholm pairs,
which is a ‘quasi—classical’ quantity. The idea is due to Floer and was
worked out subsequently by Yoshida in dimension 3, by Nicolaescu in
all odd dimensions, and pushed further by Cappell, Lee and Miller,
Daniel and Kirk, and many other authors. For a survey, see 8], [9],
[20].
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Let us fix the space 3 for the family. By Proposition 4.1c¢ the corre-
sponding family {A(A:} of natural Cauchy data spaces is continuous.
In [8] we obtained the General Boundary Reduction Formula for the
spectral flow which gives a family version of the Bojarski conjecture
(our Proposition 5.1):

THEOREM 6.1. The spectral flow of the family {A:p} and the Mas-
lov indez mas ({A(A:)},7(D)) are well-defined and we have

(6.1) sf{A,p} = mas ({A(A,)},7(D)).

We have various corollaries for the spectral flow on closed mani-
folds with fixed hypersurface (see [9]). For product structures near X,
one can apply Theorem 4.3 and obtain an L2-version of the preceding
Theorem which gives a new proof and a slight generalization of the
Yoshida—Nicolaescu Formula (for details see [10], Section 3):

THEOREM 6.2.

Sf{A(] -+ Cg} = mas ({A? n Lz(-—-Z) + Atl N L2(E)}, L_)
= mas ({A! N L*(-D)}, {A} N LA(D)}),
where the last expression is given by the formula of the Maslov index

of Fredholm pairs of two curves.

REMARK 6.3. Nor here is it compelling to use the symplectic geo-
metry of the Cauchy data spaces (see Remark 5.4b). Actually, deep
gluing formulas can and have been obtained for the spectral flow by
coding relevant information not in the full infinite-dimensional Cau-
chy data spaces but in families of Lagrangian subspaces of suitable
finite-dimensional symplectic spaces, like the kernel of the tangential
operator (see [18] and [19]).

6.2. Correction formula for the spectral flow. Let D, D’ with
Dumin € D,D’ C Dyax be two domains such that both {A;p} and
{A¢ b} become families of self-adjoint Fredholm operators. We assume
that D and D’ differ only by a finite dimension, more precisely that

(6-2) dimy(D)/y(D)Ny(D') = dim~y(D")/v(D) Ny(D') < +oo.
Then we find from Theorem 6.1 (for details see [9], Theorem 6.5):
(6.3) sf({Aup}) - f ({40}

= mas ({A(A9)},1(D")) — mas ({A(A)}, (D))
= o (A(4o), A(41); v(D'), v(D))




28 B. BOOSS-BAVNBEK, K. FURUTANI, AND K.P. WOJCIECHOWSKI

(c.f. Remark 1.4b). The assumption (6.2) is rather restrictive. The
pair of domains, for instance, ‘defined by the Atiyah—Patodi—Singer
projection and the Calderén projection, may not always satisfy this
condition. For the present proof, however, it seems indispensable.

7. The Boundary Reduction and the Gluing of Determinants

There are competing concepts of the Fredholm determinant and
the (—function regularized determinant. Following the condensed pre-
sentation of [6], this section presents the recent Scott-Wojciechowski
formula under the perspective of Cauchy data spaces (the ‘Bojarski
approach’).

7.1. Three determinant concepts. Let us begin with the most
simple integral of statistical mechanics, the partition function which is
the model for all quadratic functionals:

(7.1) Z(B) := / e T2 gy
r

To begin with, let dim[' = d < co and 3 real with 8 > 0, and assume
that T is a strictly positive, symmetric endomorphism. In suitable
coordinates we evaluate the Gaussian integrals and find

Z(B) =n%?. 572 . (et T)" 2 .

Two fundamental problems arise when we try to take a Dirac op-
erator for T and all sections in a bundle S over a compact manifold M
for I" according to the Feynman recipes. What if T is not > 0?7 And
what if d = 400 (i.e. if M is not a finite set of points)? To get around
the first problem, one proceeds as follows:

We decompose I' =Ty xT'_ and T' =T, @7T_ with T, , —T_ strictly
positive in I'y and dimI'y = d.. Formally, we obtain by a suitable
path in the complex plane approaching § = 1:

(7.2) Z(1) = 792 X5 (det |T)) "7,
Wlth€:d++d_ a«ndT]IZ d+—d_.

We shall not discuss the various stochastic ways of evaluating the

integral when d = 400, but present two other concepts of the determi-
nant.

From the point of view of functional analysis, the only natural con-
cept is the Fredholm determinant of bounded operators acting on a
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separable Hilbert space of the form e* or, more generally, Id + o where
« is of trace class. We recall the formulas

(7.3) detp, e =e™* and detp,(Id + ) ZTr Ny

The Fredholm determinant is notable for obeying the product rule in
difference to other generalizations of the determinant to infinite dimen-
sions, where the error term of the product rule leads to new invariants.

Clearly, the parametrix (or Green’s function) of a Dirac operator
leads to operators for which the Fredholm determinant can be defined,
but the relevant information about the spectrum of the Dirac opera-
tor does not seem sufficiently maintained. Note also that Quillen and
Segal’s construction of the determinant line bundle is based on the con-
cept of the Fredholm determinant, but does not lead to numbers when
the bundle is non—trivial.

A third concept is the {(—function regularized determinant, based on
Ray and Singer’s observation that formally

det T = [ 2 = exp{3_Indje™" |} = emderlms,

where (r(z) == 3272, \j* = 15 J 771 Tre~tT dt. For a positive defi-
nite self-adjoint elliptic operator T of second order, acting on sections
of a Hermitian vector bundle over a closed manifold M of dimension m,
Seeley [36] has shown that the function (r(z) is holomorphic for R(2)
sufficiently large and can be extended meromorphically to the whole
complex plane with z = 0 no pole.

The preceding definition does not apply immediately to the Dirac
operator A which has infinitely many positive A; and negative eigen-
values —p;. As an example, consider the operator A, := —i% +a:
C®(8') — C=(S") with A, @ = kg + apr where pi(z) = ez, It
follows that spec A, = {k + a}kez.

Choosing the branch (—1)‘Z = e~ we find

)= AT+ (1)
=G +me )} +3e {Cu(5) - m(a)},
where 7a(z) 1= 3222 A7* 4+ u;*. Thus:
Ca(0) = 5¢42(0) = F {¢a2(0) — ma(0)}

and
(7.4) det; A = e=AO = F{20-MO} -3GO




30 B. BOOSS-BAVNBEK, K. FURUTANI, AND K.P. WOJCIECHOWSKI

7.2. The Scott—Wojciechowski Formula. In the one-dimen-
sional case various authors obtained formulas for the (-regularized de-
terminant of a system of ordinary differential equations subject to linear
boundary conditions in terms of the usual determinant of the (finite)
matrices defining these boundary conditions, see e.g. [12], [17], and
[27]. Here, we shall review recent progress in higher dimensions.

In 1995 it was shown by Wojciechowski that the (-regularized deter-
minant can also be defined for certain self-adjoint Fredholm extensions
of the Dirac operator on a compact manifold with boundary, namely
when the domain is defined by a projection belonging to the smooth,
self-adjoint Grassmannian

(7.5)
gr: (A) = {P € Gr(A) | P is self-adjoint, P — P(A) is smoothing

and range(P®) is Lagrangian in L?(Z; S|5)}.

We refer to [40] for the details of the delicate estimates needed for
establishing the three involved invariants in that case.

Since then, Scott and Wojciechowski have established a formula
which relates the (—determinant and the Fredholm determinant (see
33], [34]).

THEOREM 7.1. Let A be a Dirac operator over an odd-dimensional
compact manifold M with boundary ¥ and let P € Gr), (A). Then the
range of the Calderdn projection P(A) (the Cauchy data space A(A,3))
and the range of P can be written as the graphs of unitary, ellip-
tic operators of order 0, K, resp. T which differ from the operator
(BT*B~)"1/2B* . C®(Z; S*|s) = C®(Z; S |g) by a smoothing opera-
tor. Moreover,

(76) detc AP = det( A'p(A) . detpr%(]:d + KT_I) .

In geometric terms, the key to understanding the preceding The-
orem is that the determinant line bundle, parametrized by the pro-
jections belonging to the smooth self-adjoint Grassmannian, is trivial
so that one can attribute complex numbers (up to a multiple) to the
canonical determinant section. This may explain why earlier attempts
at relating the concept of the (—determinant with the Fredholm deter-
minant had to be content with discussing the metric of the determinant
bundle in terms of the (—determinant, and why the break-through in
understanding the mutual relation required a concept of boundary re-
duction.

REMARK 7.2. (a) The variation of the modulus of the (—determi-
nant contains a truly global term and can not be localized near the
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boundary. In [34], the authors get around this problem by varying a
quotient of determinants.

(b) Various modifications and generalizations of the Scott—Wojciechow-
ski Formula are to be expected, in particular for the (—determinant over
a partitioned manifold (i.e. a reduction formula to the hypersurface
and a true pasting formula). Even so such results are not yet obtained,
Scott’s and Wojciechowski’s formula provides an illuminating example
of the meaning of the geometry of Cauchy data spaces for the study of
spectral invariants.

7.3. An adiabatic pasting formula. At the end of this exposi-
tion let us present a recent adiabatic splitting formula for the determi-
nant proved by Park and Wojciechowski ([29]):

THEOREM 7.3. Let R € R be positive, let M® denote the stretched
partitioned manifold M® = M, Us [-R,0] x £ Uz [0, R} x ¥ Ug M,
and let Ag, Ao g, A1 r denote the corresponding Dirac operators. We
assume that the tangential operator B is invertible. Then

tim det,; AR2

R—voo (detg(AO,R>I2d—II>) : (det( (A 1’R)I21>)

= 9-¢p2(0)
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