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The Kuhn-Tucker Theorem in Nonlinear
Programming: A Multiple Discovery?

1 Introduction

In the summer of 1950 at the Second Berkeley Symposium on Mathematical
Statistics and Probability which were held in Berkeley, California a mathe-
matician from Princeton, Albert W. Tucker, who was generally known as a
topologist, gave a talk with the title Nonlinear Programming. It was based
on a joint work of Tucker and a young mathematician Harold W. Kuhn,
who had just finished his Ph.D. study at Princeton University. The talks
was published in a conference proceeding, and for the first time the name
nonlinear programming - the title Kuhn and Tucker chose for their paper —
appeared in the mathematical literature [48]. In the paper Kuhn and Tucker
introduced the nonlinear programming problem and proved the main theo-
rem of the theory — the so-called Kuhn-Tucker theorem. This theorem which
gives necessary conditions for the existence of an optimal solution to a non-
- linear programming problem launced the mathematical theory of nonlinear
programming.

The result is very famous and not long after its publication people began
to talk about it as the Kuhn-Tucker theorem, but apparently Kuhn and
Tucker were not the first ones to prove this theorem. In modern textbooks
on nonlinear programming there will often be a footnote telling that William
Karush proved the theorem in 1939 in his master’s thesis from the University
of Chicago, and that Fritz John derived (almost) the same result in a paper
published in 1948 in an essay collection for Richard Courants 60. birthday.
Now a days one will often see the theorem refered to as the Karush-Kuhn-
Tucker theorem to acknowledge the work of Karush. But the fact is that
when he handed in his master’s thesis in December 1939 nothing happened:
the work was not published, nobody encouraged him to publish his result,
apparently is was not very interesting. Fritz John’s paper came out only two
years before Kuhn’s and Tucker’s paper, again nobody noticed it. Actually
the fact is that John tried to get it published earlier in Duke Mathematics
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Journal but they rejected the paper! What I find striking here is that only
two years later when Kuhn and Tucker derived the result, it became famous
almost instantaneously and caused the launching of a new mathematical
research area.

These historical facts leads to the following interesting questions: Was
it really the same result they had derived? Is it fair here to talk about a
multiple discovery, and in what sense is it or is it not a multiple discovery?
Why were the reactions from the mathematical community so different in the
three cases? Why did nothing happen the first two times? Or maybe more
interesting why did Kuhn and Tucker’s work have such an enormous impact?

This paper is centered about these questions. They will be addressed and
discussed on the basis of a contextualized historical analysis of the work of
John, Karush, Kuhn and Tucker. Both mathematical and social contexts will
be considered and the paper will end with a discussion of the role played by
the military through Office of Naval Research (ONR) and operations research
(OR). A

1.1 Mathematical Prerequisites

Let me just very briefly explain what is to be understood by the concept
a nonlinear programming problem and state more precisely what the Kuhn-
Tucker theorem says.

Definition of a Nonlinear Programming Problem: A nonlinear pro-
gramming problem is an optimization problem of the following type

Minimize f(z)
subject to the constraints g(z) <0 fori=1,...,m
z € X.

Here, X is a subset of R", the functions f,¢g,... ,gn are defined on X, and
¢ is an n-dimensional vector (zy,... ,z,).!

Thus a nonlinear programming problem is a finite dimensional optimization
problem where the variables has to fulfill some inequality constraints. A va-
riable, x € R", who satisfy all the constraints is said to be feasible.

The Kuhn-Tucker Theorem: Suppose X is a nonempty open set in R™.
Let z be feasible and the functions f, ¢,... , ¢, differentiable at z. Suppose

1For an exposition on the mathematical theory of nonlinear programming see for exam-

ple [3], [4], [50], [58].




the gradient vectors 7g:(Z), for the binding - or active — constraints, i.e con-
straints, g;, for which g;(Z) = 0, are linearly independent. Then the following
will be true: ‘

A necessary condition for f(Z) to be a minimum for the nonlinear
programming problem above is that there exist scalars (multipli-

ers) uy,... ,Un such that
V@) + Y ui v a(z) =0, (1)
i=1
wg(3)=0 i=1,...,m, (2)
u; >0, 1=1, ,m

These necessary conditions are called The Kuhn-Tucker Conditions.

You may recognize the first of these conditions, (1), as to say that the cor-
responding Lagrangian function, ¢(z,u) = f(z) + 3.7 u;gi(z), has a critical
point in (Z, u). The second necessary condition, (2), ensures that if g;(z) # 0,
that is, if g; is not active in z, then the corresponding multiplier, u;, is equal
to 0.

2 The Theorem of Karush: A Result in the Cal-
culus of Variations

In December 1939 William Karush recieved a master’s degree in mathema-
tics from the University of Chicago. His master’s thesis had the title “Minima
of Functions of Several Variables with Inequalities as Side Conditions” [38].2
Today we would say that such an optimization problem subject to inequality
constraints belong to the subject of nonlinear programming. But since non-
linear programming didn’t exist at that time we need to take a closer look
at Karush’s thesis in order to figure out which field of mathematics it was
considered a contribution to. This student project was proposed by Karush’s
supervisor Lawrence M. Graves, [39], so how did it fit in with the activities
in the department of mathematics at Chicago at the time? Why was this
problem interesting and what was Karush trying to do?

In the introduction to his thesis Karush stated the purpose of his work,
and he also gave a hint where to look for the motivation behind the proposal
of the problem. He wrote: '

%I am very gratefull to Professor W. Karush for providing me with a copy of his thesis.
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The problem of determining necessary conditions and sufficient
conditions for a relative minimum of a function f(zq,...,z,)
in the class of points * = (x1,...,z,) satisfying the equations
ga(z) = 0 (. = 1,...,m), where the functions f and g, have
continuous derivatives of at least the second order, has been sa-
tisfactorily treated [1]. This paper [Karush’s thesis] proposes to
take up the corresponding problem in the class of points x satisfy-
ing the inequalities

ga(z) 20 (¢ =1,2,...,m),
where m may be less than, equal to, or greater than n. [38, 1]

The reference, [1], in the above quotation from the introduction to Karush’s
thesis is to a paper titled “Normality and Abnormality in the Calculus of
Variations” [8]. It had been published just the year before by Gilbert Ames
Bliss, who was the head of the mathematics department at Chicago. The
problem that Karush’s supervisor proposed for the thesis originated from
this paper by Bliss on the calculus of variations. So, the roots of the problem
Karush set out to work on was burried in the mathematical subdiscipline
called the calculus of variations, a field in mathematics that had a special
connection to the mathematical department at University of Chicago.

2.1 The Chicago School in the Calculus of Variations

The mathematical department at the University of Chicago was founded
with the opening of the university in 1892. The first leader of the depart-
ment was Eliakim M. More (1862-1932) who in cooperation with the two
Germans Oskar Bolza (1857-1936) and Heinrich Maschke (1853-1903) crea-
ted a mathematical environnement that soon became the leading department
of mathematics in the USA [56].

It was Bolza who introduced the calculus of variations as a major research
field at the department. His own interest in the topic stemmed from Weier-
strass’ famous lectures in 1879 and Bolza taught the subject to graduate
students at Chicago. From 1901 Bolza also turned his own research towards
the calculus of variations. This indicated a shift in research direction and it
was caused by a series of talks Bolza gave at the third American Mathema-
tical Society (AMS) symposium. The purpose of these AMS meetings was
to give an overview of selected mathematical topics for a broader audience
of mathematicians and thereby give directions for new research. Bolza had
been chosen as one of the main speakers for the 1901 meeting and was asked
to talk about hyperelliptic functions but chose instead to give talks on the

4




calculus of variations. Interesting unsolved problems became visible and from
then on Bolza was deeply involved in research in that field [56, 394].

Bolza was very popular as a thesis advisor and he often guided his students
to work in the field in which he was currently doing research himself. The
result was that Bolza created a solid foundations for research in the calculus,
of variations at Chicago — the so-called Chicago School of the Calculus of
Variations [56, 393].

In 1908 Maschke died and two years later Bolza returned to Germany.
Chicago then lost two of its leading mathematicans and from 1910 on there
seems to have been a decline in the reputation of the Chicago mathematics
department. Acording to some Chicago people this decline was caused by a
too narrow focus on the calculus of variations.> The “new team” at Chicago
consisted of Bliss, Dickson and Wliczynski. It was Bliss who as a student of
Bolza continued the calculus of variations tradition.

Bliss was head of the department from 1927 to 1941 and this period in
the life of the institute was characterized by intense research in the calculus
of variations. In the 10-year period from 1927 til 1937 the Chicago institute
produced 117 Ph.D. thesis’. Bliss supervised 35 of these and 34 fell within
the caluclus of variations {51, 138]. Several mathematicians connected with
Chicago later held a very critical view of Bliss’ program in the calculus of
variations. They seem to share the following view put forward by A. L. Duren
who himself was a student of Bliss and wrote a Ph.D. in the calculus of
variations:

The subject itself [calculus of variations| had come to be too nar-
rowly defined as the study of local, interior minimum points for
certain prescribed functionals given by integrals of a special form.
Generalization came only at the cost of excessive notational and
analytical complications. It was like defining the ordinary calculus

to consist exclusively of the chapter on mazima and minima {17,
245]. '

This is of course a characterization of the Chigago School in the Calculus
of Variations under Bliss with hinsight, but it tells something about how
extensive the research in the calculus of variations was at the department
at the time and that this field was quite narrowly defined at Chicago. As
a student in Chicago Karush was a product of this calculus of variations
tradition and his master’s thesis must be analyzed and discussed within that
context.?

3See f.ex. [51], [10], [66], [17].

“For more information on the mathematical institute at Chicago under the leadership
of Moore see [56], [18]. For the history of the calculus of variations see [29], [30].




2.2 Karush’s Master’s Thesis

The purpose of Karush’s work was to determine necessary and suffici-
ent conditions for a relative minimum of a function f(z,,...,z,) in the
class of points ¢ = (zi,...,z,) satisfying the inequalities g,(z) > 0 for
(a =1,2,...,m,) where the functions f and g, are subject to various con-
tinuity and differentiability conditions. He carried out this work in 1939 at
a time were the research was centred on variational calculus problems with
inequalities as side conditions. Viewed in that context Karush’s problem can
be interpretated as a finite dimensional version of such a problem in the
calculus of variations.

At first sight it can seem a little strange to ask Karush — who was a
promissing student - to work on a finite dimensional version of the problem
that was the real focus of attention. Karush didn’t explain the importance
of his work in a broader perspective but from his introduction it is clear
that he viewed his work as an extension of the work of Bliss, mentionned
above, from the year before. From the mid-30.s Bliss had been interested in
some properties called normality and abnormality for the minimizing arc of
an equality constrained problem in the calculus of variations. The purpose of
the paper by Bliss that Karush took as point of departure for his thesis was
to

... analyze, more explicitly than has been done before, the meaning
of normality and abnormality for the calculus of variations. To do
this I have emphasized in §1 below the meaning of normality for
the problem of a relative minimum of a funtion of a finite number
of variables. [8, 365]

Because as Bliss wrote

The significance of the notion of abnormality in the calculus of
variations can be indicated by a study of the theory of the simpler
[finite dimensional] problem. [8, 367]

Hence, Bliss’ idea was that valuable insight into the general more complex
cases could be obtained through a thorough study of the finite dimensional
case. In the light of this it is reasonable to presume that the same would hold
true for the inequality constrained case — a study of the finite dimentional
version of the problem could throw light on the infinite case. This shows that
even though the problem proposed for Karush’s thesis didn’t fell directly
in the main research area in the calculus of variations at the department it
would still make sense to work it out.




The theorem which is interesting in relation to the Kuhn-Tucker theorem
in nonlinear programming appears in the third section of the thesis. Here
Karush examined the minimum problem under the condition that the func-
tions f and g., that 1s the objective function and the contrained functions,
are C''-functions near a point z°.

Before he proved the theorem which is now recognized as the Kuhn-Tucker
theorem he showed a less restricted version, namely the following theorem:

Theorem 3:1. If f(z°) is a minimum then there exist multipliers
lo, Iy not all zero such that the derivatives F; of the function

F(z) = lof(z) + laga(z)
all vanish at z°. [38, 12-13]°

Note, that there is no sign-restriction on the multipliers in these first neces-
sary conditions. Also the multiplier l associated with the objective function,
f, can take the value zero, in which case z° is called an abnormal point. In
order to avoid the abnormal case one need some kind of regularity conditions
or constraint qualification as Kuhn and Tucker later called it.

The concepts Karush introduced to construct such a regularity condition
was admissible direction, admissible curve and normal point. By an admissible
direction Karush understood a nonzero vector A = (A1, Az, ... , A,) that solves

the inequality system

Zgi“ )i >0

[38, 11]. In other words, Karush considered a direction admissible if the
directional derivatives of the constrained functions, g,, in the direction
of A is nonnegative, which means that “you stay” in the feasible area if

“you walk” from 2° in the direction of A. He called a regular arc, z;(t)
(:=1,2,...,n; 0<t<tp),an admissible arc if

9ga(z(t)) >0 for all a and ¢

[38, 11). This means that a regular arc is admissible if “you stay” feasible
when “you move” along the arc. Finely he called a point x° normal if the
Jacobian matrix for g has rank m at z°, that is, if the gradients

v (z°), vg:(z°), ..., Vgm(z®)

SKarush used the Einstein summation sybolisme, i. e F(z) = lof(z) + loga(z) means

F(z) = lof(z) + X0z laga(2).




are linearly independent.
Karush then formulated the later so celebrated Kuhn-Tucker theorem in
the following way:

Theorem 3:2. Suppose that for each admissible direction X there is
an admissible arc issuing from z° in the direction A\. Then a first
necessary condition for f(z°) to be a minimum is that there exist
multipliers [, < 0 such that the derivatives Fy, of the function

F= f + lagoz
all vanish at z° {38, 13].5

By a curve z;(t) (0 < ¢ < 1p), “issuing from z° in the direction A” he meant
that z;(0) = z;° and z/(0) = X; [38, 13].

His idea was to use Farkas’ lemma’ to guarantee the existence of non-
positive multipliers, [,, and the assumptions in the theorem — the regularity
condition — ensures precisly that Farkas’ lemma can be brought into action.

2.3 The Acknowledgement of Karush’s Thesis in Non-
linear Programming

Karush’s theorem looks indeed very much like the version of the Kuhn-Tucker
theorem I showed in the introduction. The symbol l,g, in Karush’s formula-
tion of the theorem means 3 l,g,. That is there should exist multipliers (/5)
such that the Lagrangian function, F, has a critical point at z°, (/). The
condition /,g,(z°) = 0 is missing because Karush only considered the active
constraints, e.i constraints for which g,(z°) = 0.

Actually in 1975 Harold Kuhn wrote a letter to Karush saying:

First let me say that you have clear priority on the results known
as the Kuhn-Tucker conditions (including the constraint qualifi-

cation). I intend to set the record as straight as I can in my talk.
[42]

The talk Kuhn refered to is one he had been asked to give on the history of
nonlinear programming at an AMS symposium. Kuhn became aware of the
work of Karush through Takayama’s book Mathematical Economics [67], [44,

®Karush used the Einstein summation sybolisme, i. e F(z) = f(z) + log4(z) means
F(z) = f(2) + Loz lada(®).

For a short historical account on Farkas lemma see [9]. To consult Farkas’ own work
see [22].




10]. During the research for the AMS talk Kuhn took contact to Karush and
offered a partial publication of the master’s thesis as an appendix to Kuhn's
historical paper in the AMS proceeding that was to be published after the
meeting. In this paper Kuhn announced Karush’s thesis as an unpublished
classic in the field of nonlinear programming [44].

Just looking at Karush’s result independent of the context of discovery
one can only agree with Kuhn and say that Karush actually had the later
so celebrated Kuhn-Tucker theorem. In the light of its later importance one
is then naturally led to the questions: Why wasn’t Karush’s result valued at
the time? Why wasn’t it published?

The main interest in Chicago at the time was — as we have seen — variatio-
nal calculus with inequality contraints and if Karush’s work is evaluated in
this context instead of the context on nonlinear programming (which didn’t
exist at the time) Karush’s work was only a minor, finite dimentional thing.
It was not very interesting or exciting just a minor corner, some ‘cleaning
up’ in a research direction where variational calculus with inequality con-
straints was the main field. Neither the posed problem nor the results was
something special, the interesting questions in this field were different from
the questions that were important and later guided the research in nonlinear
programming.

The letter from Kuhn to Karush qouted above also gives a flavor of how
important the theorem is considered to be in the mathematical community of
people doing nonlinear programming. Kuhn tells in the letter that Richard
Cottle, who was among the organizers of the AMS symposium, made the
following remark about Karush when he heard about Kuhn’s intentions of
“setting the record straight”

‘you must be a saint’ not to complain about the absence of recog-
nition. [42]

Kuhn also writes about Tucker’s reaction when he learned about the result
in Karush’s thesis. Tucker was truly amased that Karush never had told him
about his work when they met at the Rand Cooperation [42]. Richard Bellman
wrote the following to Kuhn when he learned about Kuhn’s upcoming talk:

I understand from Will Karush that you will try and set the record
straight on the famous Kuhn-Tucker condition. I applaud your ef-
fort. Fortunately, there is enough credit for everybody. It would
certainly be wonderful if you wrote it as the Kuhn-Tucker-Karush
condition.

Like many important results, it is not difficult to establish, once

observed. That does not distract from the importance of the con-
dition. 7]




Also Phil Wolfe informed Kuhn how pleased he was that Karush’s work
would now be recogniced [43]. These reactions from wellknown members of
the nonlinear programming society not directly involved in the development
of the Kuhn-Tucker theorem shows that the theorem is considered to be very
important and is something that people would like very much to be associated
with.

From the letters it is clear that the mathematicians working in the field are
truly amazed that Karush had not come forward to claim if not priority then
at least recognition. To this Karush himself gave the following explanation:

That does not answer the question of why I did not point to my
work in later years when nonlinear programming took hold and
flourished. The thought of doing this did occur to me from time
to time, but I felt rather diffident about that early work and I don’t
think I have a strong necessity to be ‘recognized’. In any case, the
master’s thesis lay buried until a few years ago when Hestenes
urged me to look at it again to see if it shouldn’t receive its proper
place in history ... . So I did look at the thesis again, and I looked
again at your work with Tucker. I concluded that you two had
exploited and developed the subject so much further than I, that

there was no justification for my announcing to the world, ‘Look
what I did, first’. [39]

From a history of mathematics point of view I think Karush is right here.
He did derive a result that was comparable to the result later developed
by Kuhn and Tucker, but Karush did not exploite the subject further, his
work was not nonlinear programming, it was a work that came into being in
a completely different context. The institute at Chicago had became under
Bliss a place with focus on a very narrowly defined calculus of variations
research programme and within this research direction nobody was intere-
sted in exploring the possibilities for important potentially applications of
Karush’s result. The questions that drove the research in the calculus of va-
riations at Chicago was different from the ones that later guided the research
in nonlinear programming.

3 The Theorem of F. John: A Contribution to
the Theory of Convexity

Fritz John’s version of the Kuhn-Tucker theorem appeared in his essay
Ertremum Problems with Inequalities as Subsidiary Conditions which was
published in 1948 in the Courant Anniversary Volume [37].
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John was a student of Richard Courant in Géttingen where he recieved
a Ph.D in 1933. He had Jewish ancestors and Courant worked hard to get
John a position outside of Germany. In 1934 he succeeded in getting John
a research scholarship at Cambridge, England. John moved to USA a year
later where he got an offer from the university in Kentucky. He worked there
until 1943 and after some years of war related work at the Ballistic Research
Laboratory at Aberdeen Proving Ground he returned “home” to Courant at
his institute at the New York University [61, 131-132, 154-155].

Fritz John was a world class mathematician. His list of publications counts
101 mathematical texts - papers as well as monographs, and he has received
a lot of prizes and fellowships. Today he is probably most recognized for his
work on partial differential equations but he has also made important con-
tributions in the fields of geometry, analysis and nonlinear elasticity. At the
time where Courant’s Anniversary Volume was published John had mostly
been working within the theory of convexity — more than half of his mat-
hematical publications from the first one that appeared in 1934 until this
one published in 1948 was in the field of convexity and quite a few of these
are now considered as “classics” in the theory of convexity [34]. The point
here is that in the period leading up to the publication of Johns paper on
extremum problems with inequalities as side conditons he was deeply rooted
in a mathematical environment of the theory of convexity [53].

3.1 John’s Paper

What was John’s intentions in this paper? The title of the paper was
Ezxtremum Problems with Inequalities as Subsidiary Conditions and in the
introduction he wrote:

This paper deals with an extension of Lagrange’s multiplier rule
to the case, where the subsidiary conditions are inequalites instead
of equations. Only extrema of differentiable functions of a finite
number of variables will be considered. [37, 187]

Like Karush John only looked at the finite dimensional case so judging
from the title and the introduction it sounds very much like John was intere-
sted in the same kind of questions as Karush. This impression gets reinforced
later in the introduction where John pointed ahead to further directions of
research on the problem:

from the point of view of applications it would seem desirable to
eztend the method used here to cases, where the functions involved

.... do not depend on a finite number of independent variables. [37,
187
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This extension of the problem clearly belongs to the calculus of variations
but if John considered his work as a contribution to this field, it would seem
unlikely that he shouldn’t know the work of the Chicago School in the calculus
of variations — well known at the time — who had already carried out this
work for the general case.

Apparently John didn’t know the Chigago work. There is no reference
at all to the calculus of variations in his paper. It seems that John was not
really “interested” in the calculus of variations. What was his real interest,
then? In the following I will scrutinize his paper to see what he actually did
and how he did it. The paper is divided into two parts where the first one
is concerned with the question of necessary and sufficient conditions for the
existence of a minimum and the second part is devoted to two geometrical
applications of the theoretical result in part one. ’

John formulated the result that later got acknowledges as a version of the
Kuhn-Tucker theorem in the following way:

Let R be a set of points z in R",® and F(z) a real-valued function
defined in R. We consider a subset R’ of R, which is described by
a system of inequalities with parameter y:

G(z,y) >0,

where G is a function defined for all z in R and all “values” of the
parameter y. ... we assume that the “values” of the parameter y
vary over a set of points S in a space H. ... We are interested in
conditions a point z° of R’ has to satisfy in order that

— 0y — mi
M= F(z )-gél}%F(a:)

[37, 187-188].

Under some further continuity and differentiability conditions John was able
to prove the following theorem:

Theorem [.
Let z° be an interior point of R, and belong to the set R’ of all
points = of R, which satisfy the contraints G(z,y) > 0 for all
y € S5. Let

o0y _ .
F(x )—arcréllgF(ac).

8Instead of R™ John wrote ... in a space E, but in the following he restricted himself

to the case, where the space E containing the set R is the n-dimensional euclidean space,
which I have called R™ [37, 188].
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Then there exists a finite set of points y!,...,%°, in S and num-
bers Ao, A1,..., A, which do not all vanish, such that

G(z%y") =0 for r=1,...,s

the function
¢(z) = AoF(z) - Z AGl(z,y")
r=1

has a critical point at z° i.e. the partial derivatives are zero at z°:
$:i(z°) =0 for i=1,... n.
(See [37, 188-189]).

John’s way of “attacking” the problem was the same one as Karush used,
but where Karush invoked Farkas’ lemma as his main tool John used other
similar results from the theory of convexity, results that he was familiar with
through works of Dines and Stokes among others [15], [65].

John’s formulation of the theorem though looks a little different than
Karush’s but the stated conditions are the Kuhn-Tucker conditions. The
difference is the appearence of the parameter, y, in the parameter set, S,
and that the multiplier, Ao, associated with the objective function, F', can
become zero as in Karush’s first theorem. The last thing is caused by the
fact that John didn’t have the constraint qualification as Kuhn and Tucker
called it or the normality condition as Karush would have said.

3.2 The Two Geometrical Applications

From reading the second part of the paper which is concerned with the two
geometrical applications it becomes clear why John chose this construction
with the parameter, y, and a parameter set, 5. It also offers an explanation
to why John did not touch upon the problem of abnormality and thereby
didn’t consider the problem of constraint qualification.

More than half of the paper is devoted to these geometrical applications.
The first one is Application to minimum sphere containing a set and the
second is about the ellipsoid of least volume containing a set, S, in R™ [37,
193]. In the first one John considered the following problem:
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Let S be a bounded set in R™. Find the sphere of least positive
radius enclosing S.

John was not interested in the ezistence of such a sphere. If the assumption
is made that the bounded set, S, contains at least two distinct points it is
quite clear that such a sphere exist [37, 194].

To be able to use his theorem John characterized spheres in R™ as points
in R™+1;

T =($1,... ,$m+1)

where (zy,...,,) are the coordinates of its center and z,,,; the square of
its radius. He could then rewrite the problem as an optimization problem
subject to inequality constraints:

Minimize the function F(z) = z,,4; subject to the constraints

m

G(z,y) = Tmy1 — 2(3’1 —y)2 >0 forall yes.

i=1

The constraints ensures that the minimum is only sought among spheres
containing S.

John used a similar procedure in the second application about the ellip-
soid. In both cases he knew that a minimum, z°, existed, so the necessary
conditions of the theorem is fulfilled. He then used these to derive significant
properties of the minimum sphere and the minimum ellipsoid. From the last
application ~ the one with the ellipsoid - he derived several general properties
of closed convex sets [37, 201-202).

3.3 The Link to the Theory of Convexity

In the application part of John’s paper and especially in the last application
concerning the ellipsoid it becomes clear that John’s main interest was the
results about closed convex sets that he developed through the applications
of his theoretical result — the extension of Lagrange’s multiplier method - to
problems with inequality constraints. In connection with Kuhn’s talk on the
history of nonlinear programming Kuhn also had a small correspondence®
with John. According to Kuhn, John should have revealed that he was led
to the theorem when he was

9This correspondence is apparently lost.
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trying to prove the theorem ... that asserts that the boundary of a
compact convez set S in R™ lies between two homothetic ellipsoids
of ratio < n, and that the outer ellipsoid can be the ellipsoid of
least volume containing S. [44, 15]

Eventhough John in his title and introduction gives the impression that he
is concerned with problems in the calculus of variations it is my opinion that
his paper rather should be viewed as a contribution to the theory of convexity.
John had at the time — as mentioned earlier - made fine contributions to
convexity theory. All the references in the paper are either to the theory
of convexity or to less general works — by John and others - on the two
applications.'® From reading the application part of the paper it becomes
" quite clear that the applications has a justification in them selves, they serve
a deeper purpose than just as illustrations of the theoretical result in the
first part of the paper. The conlusion must be that the guiding questions —
the important issues for John — was the applications and the results he could
derive from these. '

3.4 The Status of The Theorem

In Karush’s work the theorem was important in itself. The hole purpose of
Karush’s work was to derive these necessary conditions for the existence of a
minimum or maximum. In John’s work on the other hand the theorem had a
completely different status. It was not at all the main thing it was only derived
as a tool for deriving general results about convex sets. The applications
guided the formulation of the theorem which explains John’s contruction of
the ‘parameter set’ which clearly is dictated by the applications. Another
difference between Karush’s and John’s work is the ‘normality’ condition, as
Karush called it, or the ‘constraint qualification’ as Kuhn and Tucker would
call it, John does not touch upon that problem. This can also be explained
from the applications, both of them are actually examples of the normal case,
so John never ran into that problem.

In his paper on the history of nonlinear programming Kuhn wrote about
John’s work that it “very nearly joined the ranks of unpublished classics in our
subject [e. i. nonlinear programming] ” [44, 15]. But John himself apparently
did not view this work as a contribution to what later became nonlinear
programming. He never came forward with priority claims or anything like
that.

*°[35], 36], [5], [6], [1].
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4 The Theorem of Kuhn and Tucker: An Ex-
tension of Linear Programming

Albert W. Tucker was born in Canada at the year 1905 and he died in
Princeton, US. a few years ago more precisely January 27, 1995. He got a
Bachelor degree in mathematics from University of Toronto in 1928 and a
year later he began a Ph.D study at Princeton University. This turned out to
be the beginning of a life long connection to the mathematical department
at Princeton. In 1932 he recieved the Ph.D degree on a thesis in the field of
topology, and two years later he got appointed assistent professor. In 1938
he became associate professor and then full professor in 1946. He was an
important figure in the establishment in the 30.s and 40.s of Princeton as
a prestigious place for mathematical research and he served as head of the
department for the ten year period 1953-1963. He had a tremendous influence
on the students who came in contact with him, and he is often characterized
as a very good teacher and leader [68], [47].

Harold W. Kuhn - twenty years younger than Tucker - was born and raised
in California. He got a Bachelor degree in Science from California Institute
of Technology in 1947 and then moved on to Princeton where he wrote a
Ph.D thesis on Subgroup Theorems for Groups Presented by Generators and
Relations in 1950 [41]. After some traveling and a seven year appointment at
Bryn Mawr College Kuhn returned to Princeton as associate professor. He
was connected to both the mathematical and the economic departments [45].

Together Kuhn and Tucker defined the nonlinear programming problem
and proved their famous theorem The Kuhn-Tucker Theorem in the joint
paper Nonlinear Programming published in 1950 [48].

4.1 The Nonlinear Programming Paper

The main point in Kuhn and Tucker’s paper was to find necessary and suf-
ficient conditions for the existence of a solution to the following Mazimum
Problem — as they called it then:

To find an z° that mazimizes g(z) constrained by Fz 20, z 2 0
[48, 483].

Here z° € R™, x — u = Fz is a differential mapping of nonnegative n-
vectors z into m-vectors u. That is, Fz is an m-vector whose components
fi(z),..., fm(z) are differentiable functions of z defined for z > 0. g(z) is a
differentiable real function of 2 € R™ defined for = > 0 [48, 483].

Kuhn and Tucker handled this problem by taking the so-called saddle
value problem as their point of departure. They defined the saddle value
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problem as the problem of finding nonnegative vectors z° € R™ and u° € R™,
such that

b(z,u°) < B(z% %) € B(a%u)  forall 320, u0,

where ¢(z,u) is a differentiable function of an n-vector z with components
z; 2 0 and an m-vector u with components uy 2 0.

They led ¢°_, ¢°, denote the partial derivatives, evaluated at a particular
point z°, u®. That is ¢°_ is an n-vector:

_ (99 , 99 o
¢0.7: - (5‘7:(:6 )7 ’5.'1)_”(1‘ ))a

and ¢°, is an m-vector:

(9 oy D2,
¢0u_(aul(u )7 )8um( O))

They used the “’-notation to denote the transposed vector.

The first theorem Kuhn and Tucker then proved in the paper concer-
ned the question of necessary and sufficient conditions for the existence of a
solution to the saddle value problem. They proved that the conditions

(1) ¢". 20, ¢%2°=0, °20

T

(2) ¢, 20, ¢u’=0, w20

are necessary that z°, u° provide a solution for the saddle value problem [48,
482-483]. For the second part of the question they proved that the conditions
(1), (2) together with the following two conditions

(3) #(z,u’) £ #(2°,u°) + ¢%,(z — 2°)

(4) $(2°,u) 2 ¢(2% u°) + ¢%, (u — u°)

forallz 2 0, u = 0, are sufficient that z°, u° provide a solution for the saddle
value problem [48, 483].

Equiped with these conditions for the saddle value problem Kuhn and
Tucker phrased their later so celebrated theorem as:

Theorem 1. In order that z° be a solution of the mazimum pro-
blem, it is necessary that z° and some u® satisfy conditions (1)
and (2) for ¢(z,u) = g(z) + v'Fz. [48, 484]
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If the condition z° 2 0 is incoorporated in the constraint function, F, the
first and last condition in (1) together means that the Lagrangian function
#(z,u) has a critical point in z° u. The second condition in (1) ensures that
the multipliers associated with the non-binding components of z° is equal to
zero. The first condition in (2) ensures that z° is feasible, the second that
the multipliers associated with non-binding constraints are equal to zero and
the last one is the sign-restriction on the multipliers.

These conditions later got named the Kuhn-Tucker conditions and they
constitute one of the main results in the mathematical theory of nonlinear
programming.

Actually the first time Kuhn and Tucker revealed this theorem was not
at the Berkeley Symposium but a few month earlier at a seminar held at the
RAND in Maj 1950. Among the audience was C. B. Tompkins who came up
with something as unpleasent as a counter example. [44, 14]. The result - as
it was — could not rule out the abnormal case as Karush would have called it.
Kuhn and Tucker got back to work and realized the need for some regularity
conditions on the constraint functions. This led them to introduce the term
constraint qualification. The constraint qualification they used in the 1950
paper was the same as Karush’s that for each z° of the boundary of the set
determined by the constraints and for any vector differential, dx, for which
the directional derivatives of the binding constraints in the direction of dz
are non-negative there corresponds a differentiable arc z = a(8), 0 £ 6 £ 1,
contained in the constrained set, with z° = a(0), and some positive scalar A
such that a'(z°) = Adz [48, 483].

It can as Kuhn and Tucker pointed out in the paper seem artificial to
introduce the conditions (3) and (4) that occured in the sufficiency part of
the saddle value problem but these conditions are satisfied if ¢(z,u°) is a
concave function of z and ¢(z°%u) is a convex function of u [48, 483]. In
order to get full equivalence between solutions of the maximum problem and
the saddle value problem Kuhn and Tucker then required that the involved
functions, g, fi,..., fm, were concave as well as differentiable for z > 0.

With these extra requirements Kuhn and Tucker showed that:
... 2% is a solution of the mazimum problem if, and only if, z° and
some u® give a solution of the saddle value problem for ¢(z,u) =

g(z)+ u'F(z). [48, 486]

4.2 The Saddle Value Problem: A Detour?

Kuhn and Tucker’s formulation of the theorem is different from that of
Karush’s and John’s neither of them considered the concept of saddle po-
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ints. Why did Kuhn and Tucker choose the saddle point formulation? and
why were they looking for an equivalence theorem between the maximum
problem and the saddle value problem? The mathematical context the work
of Kuhn and Tucker originated in can provide an answer to these questions.

The cooperation between Kuhn and Tucker had begun two years earlier,
in 1948, where they had examined the relation between game theory and the
linear programming model for a logistic problem in the U. S. Air-Force that
had just been developed by George B. Dantzig. Kuhn was still a student at
the time and together with another student, David Gale, the three of them
worked out the mathematical foundations for linear programming [31]. They
formulated the corresponding dual problem, proved the duality theorem and
showed the relation between linear programming and game theory.!!

Tucker’s first association when he got introduced to the linear program-
ming problem was that it reminded him of Kirchoft’s laws for electrical ne-
tworks [2, 342-343]. In the fall of 1949 just after Kuhn, Gale and Tucker
had presented their work on linear programming and game theory at the
first conference on linear programming which was held in Chicago in June
1949 Tucker went on leave to Standford. Here he dug deeper into this first
association of his and discovered the underlying optimization problem of mi-
nimizing heat loss. According to Kuhn, this knowledge led Tucker to the
recognition that the Lagrangian multiplier method which is normally used to
solve equality constrained optimization problems could be adapted to opti-
mization problems subject to inequality constraints [44, 12-13]. Tucker then
wrote Kuhn and Gale and invited them to continue the work and extend
their duality result for linear programming to quadratic programming, i.e to
problems where the involved functions no longer has to be linear but can be
quadratic [44, 12-13]. David Gale declined the offer but Kuhn accepted and
he and Tucker developed the theory in a correspondence between Standford
and Princeton.!? '

Thus, the original purpose of Kuhn and Tucker’s work was to extend the
duality result from linear programming to quadratic programming and the
idea was to adapt the classical Langrangian multiplier method. In the in-
troduction to the Nonlinear programming paper Kuhn and Tucker explained

1A linear programming problem is a nonlinear programming problem where all the
involved functions are linear functions. To a linear programming problem one can formulate
another linear programming problem on the same data called the dual programme. The
duality theorem says that the original, primal, problem has a finite optimal solution if and
only if the dual problem has a finite optimal solution, and the optimum values will be the
same.

12This coorespondence is lost, I know about it from an interview with Kuhn, who also
mentioned it in [44, 13].
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how this would work for linear programming. From a linear programming
problem

maximize g¢(z)= Z CiTi, ¢ € R,
where z,,... ,z, are n real variables constrained by m +n linear inequalities:
fu(@)=ba= anzi20, 220,
whereh =1,...,m,i =1,...,n,an;, by € R, they formed the corresponding

Lagrangian function:

¢($’u) = g(a:) + z Uhfh($), up € R.

They realised that z° = (2°, ... ,2°,) will maximize g(z) subject to the given
constraints if, and only if, there exists a vector u® = (u%,...,u%,) € R™
with components u% > 0 for all i, such that (z° u°) is a saddle point for
the Lagrangian function ¢(z,u) [48, 481]. The really neat and interesting
thing about this saddle point result for linear programming was, as Kuhn

and Tucker phrased it:

The bilinear symmetry of ¢(z,u) in z and u yields the characte-
ristic duality of linear programming. [48, 481]

The bottom line here is that a linear programming problem has a solution
if, and only if, the correspronding Lagrangian function has a saddle point, this
saddle point then constitute a solution not only to the linear programming
problem but also to the dual programme. Considering now that Kuhn and
Tucker actually were searching for a way to extend the duality theorem for
linear programming to more general cases!? it seems perfectly naturally to
take the saddle point for the Lagrangian function as the starting point.!*

In section 6 I will return to the significance of the mathematical and social
contexts that Kuhn and Tucker’s work originated in.

5 The Aspect of Muliple Discovery

The reason why a question of multiple discovery pops up in connection with
a historical study of the Kuhn-Tucker theorem in nonlinear programming is

13Somewhere along the proces they shiftet the focus from the quadratic case to the
general nonlinear case.

141t is striking then that Kuhn and Tucker did not mention duality for nonlinear pro-
gramming in the paper. The first duality result for nonlinear programming was derived by
Werner Fenchel in 1951, published 1953 [23].
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that the result today in textbooks and in papers on the history of mathema-
tics is ascribed to all of them - Karush, John and Kuhn and Tucker.!®

One can also see the result ascribed to the Russian physicist Mikhail
Ostrogradsky (1801-1862) and the Hungarian physicist Julius Farkas (1847-
1930). In three papers O. I. Franksen discusses Fourier’s extension of the
Principle of Virtual Work in mechanics and how it sheds new light on the
development of the Second Law of thermodynamics and mathematical pro-
gramming [26], [27], [28]. He concludes that the Kuhn-Tucker theorem is
an independent rediscovery, by Kuhn and Tucker, of a theorem derived by
Ostrogradsky in a paper which was read for the French Academy in 1834 and
published four years later, in 1838 [28, 337-338, 353, 355]. A. Prékopa gives
an account on the development of optimization theory in a paper from 1980.
He had searched for the first appearence of the Kuhn-Tucker conditions in
the literature and he found it at Ostrogradsky and Farkas [59, 528].

Before I return to the question whether Karush’s, John’s, Kuhn’s and
Tucker’s work can be said to count as a multiple discovery I will briefly deal
with these older sources which discuss questions belonging to the field of

analytical mechanics — questions that came out of Fourier’s extension of the
Principle of Virtual Work.

5.1 The Kuhn-Tucker Theorem in Analytical Mecanics

John as well as Kuhn and Tucker mentioned explicitly that their work in one
way or another was connected with the Lagrangian multiplier method. John
wrote directly in his introduction that the purpose of his work was to extend
this method to problems with inequality constraints. Tucker associated the
network nature of linear programming with Kirchoff’s laws for electrical ne-
tworks and got the idea that maybe the Lagrangian multiplier method could
be adapted to inequality constraint cases.

Lagrange developed his multiplier method in Mécanique analitique from
1788 as a method for finding an equilibrium for a mechanical system [49]. He
founded his theory of equilibrium on what is now called the Principle of Virt-
ual Work which he took as an axiom. In modern terms the principle states
that in order for an equilibrium to take place the virtual work of the applied
forces acting on the system is equal to zero. This principle was stated in
terms of reversible displacements which means that if a virtual displacement,
dr, is alloved then the opposite displacement, —dr, is also possible without
breaking the constraints on the system. This means that the mecanical sy-

15[4, 149], [58, 169]. For an account on the prehistory of linear and nonlinear program-

ming see [32], [33]. For an account on the history of nonlinear programming see [44], [40].
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stem is subject only to constraints that can be formulated as equations (26,
137].

The inequalities entered the picture in 1798 where Fourier extended the
Principle of the Virtual Work to irreversible displacements, that is to me-
chanical systems subject to inequality constraints [25]. Based on arguments
concerning “le moment de la force” [25, 479] he formulated the conditions for
equilibrium for such systems as an inequality condition, as he realized that
such a system is in equilibrium if, and only if, the virtual work of the ap-
plied forces is nonpositive [25, 494]. This inequality is often called the Fourier
Inequality.

Ostrogradsky derived in 1834, and published 1838, the conditions for
equilibrium for such a system [55]. He denoted the applied forces acting on a
system by P, @, R, ... and the equilibrium condition, the Fourier Inequality,
then stated that the total work

Pdp+ Qdg+ Rdr + ...

has to be nonpositive for every feasible displacement. The constraints was
named L, M, ... and because these constraints are given by inequalities
Ostrogradsky argued that dl, dM, ... can only change sign in cases where
one moves from feasible to infeasible displacements [55, 131].

The ‘trick’ he used was to change the coordinates by introducing so-called
generalized coordinates. So instead of considering dp, dg, dr ... Ostrogradsky
introduced some other variations d¢, dn, di, ... which are functions of dp,
dq, dr, ... and in number equals the number of the original variables. Since
dL, dM, ..., are also functions of dp, dg, dr, ... Ostrogradsky took these
to be the first of the new generalized coordinates.!® He then reformulated
the hole thing with these new coordinates and ended up with the following
equilibrium condition:

AL+ pdM + ...+ Adé + Bdn+Cd(+... <0

for every feasible displacement [55, 131]. Using arguments about the impos-
sibility of changing signs for dL, dM, ... and the possibility of sign changing
for d¢, dn, di, ... Ostrogradsky concluded that A= B=C =...=0. This
meant that the total work, Pdp+ Qdg+ Rdr +..., equals AddL +pudM +. ..,

i.e

Pdp+ Qdgq+ Rdr + ... = AdL + udM + ...

16This means that Ostrogradsky’s method can be used only when the number of con-
straints does not exceed the number of variables.
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for all feasible displacements. Since d, dM, ... cannot change sign the equ-
ilibrium condition can only take place, he concluded, if the multipliers A,
f; - - . has the opposite sign as the cooresponding constraint, dL,dM,... [55,
132).

Ostrogradsky then ended up by concluding that:

... les conditions de équilibre d’un systeme quelconcque seront
exprimeées

1™° par l’équation
0=Pdp+Qdg+ Rdr+ ...+ MdL + pdM + ...

qui doit avoir lieu pour tous les déplacemens tmaginables,

2% par la condition que les quantités A, p,... aient respective-
ment les mémes signes que les différentielles dL, dM, . .. pour les
déplacemens possibles. (55, 132-133)

Today, in a situation were a potential, V, exists, that is if P = —%, Q=
—%Z, R = —%, ..., one can ‘translate’ the question of finding an equilibrium

into a problem about minimizing the potential energy. So, the conclusion of
Franksen and Prékopa that Ostrogradsky here formulated as well as argued
for what we call the Kuhn-Tucker theorem in nonlinear programming can
only be understood - I think - with this interpretation and ‘translation’ of
Ostrogradsky’s work. My opinion — as an historian of mathematics — is that
in ascribing the Kuhn-Tucker theorem to Ostrogradsky too much has been
read into these sources. In the next section ~ The Significance of the Context
— I will provide further reasons for this response.

The mathematical foundations for the extension of Lagrange’s multiplier
method to equilibrium for mechanical systems subject to irreversible displa-
cements was treated by Farkas. The main mathematical result that came out
of this is Farkas’ lemma about linear inequality systems [22]. Farkas devel-
oped it in some earlier papers [19], [20], [21] whose main focus was

- zu erweisen, dass mit einer passenden Modifikation die Met-
hode der Multiplikatoren von Lagrange auch auf das Fourier’sche
Princip ibertragen werden kann. [19, 266]

There is a remarkable resemblance with the goal stated in John’s introduction
but here in a context of analytical mechanics.

Farkas knew the work of Ostrogradsky and he made a remark about the
limitations of the method used by Ostrogradsky to situations were the num-
ber of constraints does not exeed the number of variables [19]. Farkas wanted
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to come up with a method that could be used in any problem no matter
what the relationship is bewteen the number of constraints and the number
of variables [19, 266]. He was very much concerned with the mathematical
foundations of the method and he had a clear insight that homogeneous li-
near inequalities could provide a satisfactory foundation so he began his 1895
paper with such a theory:

§1. enthdlt eine algebraische Einleitung tber die homogenen line-
aren Ungleichheiten als mathematische Grundlage der weiteren
Betrachtungen. [19, 266]

This “algebraische Einleitung” consist of a proof of what we now call
Farkas lemma. With the help of that Farkas was able to reach the same
conclusion as Ostrogradsky but this time for the general problem were there
are no restriction on the relation between the number of variables and the
number of constraints on the system. Again, if a potenial, V, exists Farkas’
results can be translated and interpreted as the Kuhn-Tucker conditions, but
the same conclusion as for Ostrogradsky also holds for Farkas.

The work of Ostrogradsky and Farkas had no direct influence on the de-
velopment of nonlinear programming. It is true that Farkas’ lemma functions
as an important tool in both the work of Karush and that of Kuhn and Tuc-
ker but this is in a version were Farkas lemma is completely removed from
analytical mechanics and questions about equilibrium conditions — a separa-
tion that was initiated by Farkas in his 1901 paper, Theorie der einfachen
Ungleichungen, where both the title and the content solely refer to abstract
theory of inequalities [22].

5.2 Theories on Multiple Discoveries

The mathematical community does not ascribe the Kuhn-Tucker theorem to
Ostrogradsky and Farkas, but they do consider the work of Karush and John
as papers belonging to the field of nonlinear programming and both names
now appear in textbooks on nonlinear programming. The Kuhn-Tucker the-
orem is now often renamed the Karush-Kuhn-Tucker theorem and there is
also a Fritz John theorem [4]. Also my analysis of Karush’s, John’s, Kuhn’s
and Tucker’s work seems to indicate that we may actually have a multiple
discovery. What I find particulary interesting is the fact that three occuren-
ces of a result — which the scientific community later viewed as the samme -
developed within a time span of only 11 years was received so differently. In
order to examine and understand this phenomenon I turned to the theories
on multiple discoveries.

24




A central figur in the literature on multiple discoveries in science is Robert
K. Merton. His main criteria for talking about a multiple discovery is inde-
pendent discovery of the same scientific result and his theory is that multiple
discoveries in science is not something special on the contrary it is the disco-
veries that on the surface appear to be single that deserves special attention.
It is Merton’s hypothesis that a thorough investigation will show that these
singletons will turn out to be if not multiple then at least potentially multi-
ple. According to Merton “all scientific discoveries are in principle multiples,”
[52, 356]. He has 10 different arguments for this hypothesis: First of all he
points to the huge class of singletons which later turns out to be rediscoveries
of results found in earlier work - unpublished or published “obscure” places.
Then he has six arguments that all are concerned with the problem of “being
anticipated”. Merton here describes situations were the scientist for some re-
ason suddently realize that some one else already has developed the result he
or she is working on. If the scientist then let go of the project the discovery
is an example of a singleton which in reality were a potential multiple disco-
very. If the scientist goes ahead an publishes anyway there will typically be
a footnote saying that this or that person arrived at this conclusion in this
or that paper. The last three of Merton’s arguments deals with the behavior
of the scientist which in Merton’s view reveal that they themselves believe
that all scientific discoveries are potentially multiple. Here Merton refer to
all the different things scientist do in order to secure that they will not be
anticipated by another scientist: they carefully date their notes, they “leak”
informations about their ideas and circulate incomplete versions of their work
[52, 358-361]. The reason for this behavior, Merton points out, is based on a
whish to ensure priority which is very important in the scientific world:

the culture of science puts a premium not only on originality but
on chronological firsts in discovery, this awareness of multiples
understandably activates a rush to ensure priority. [52, 361]

Evaluated according to Merton’s theory for multiple discoveries the Kuhn-
Tucker theroem is a triple discovery. Some of the circumstances Merton points
out can be found in the work of Kuhn and Tucker: Tucker presented their
work at a meeting before they had the theory thoroughly worked out. Kuhn
told me that he felt that the Berkely Symposium on Mathematical Statistics
and Probability was an odd place to present their work but explained it by
arguing that is provided an oppertunity to get the result published fast [46].
Another of Merton’s points also holds for Kuhn and Tucker. They do not
have a footnote in the paper saying that Fritz John had worked on the same
problem but they do have a reference to his paper. In an interview Kuhn
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told me that the reference to John was made in the proof reading stage were
some one told them about his work [46].

Merton’s hypothesis has not survieved undisputed. It has been criticized
by Don Patinkin who points out especially two issues which he finds have
not received proper attention: First, what is it actually that has been disco-
vered and second to what degree does the discovery form part of the central
message of the scientist [57, 306]. Patinkin claimes that a lot of so-called
multiple discoveries will turn out to be singletons if they are subject to an
analysis that takes these two issues seriously. Patinkin’s own central message
is that a scientist cannot be considered as having made a discovery unless
this discovery form part of the central message of the scientist. The question
now is of course how to identify the central message. Patinkin sets up the
following criteries:

. the central message of a scientic work is announced by its
presentation early in the work (and frequently in its title) and
by repetition, either verbatism or modified in accordance with the
circumstances. [57, 314]

Patinkin’s reason for the importance of the central message is first the scien-
tific reward system. In order for this system to be “fair” Patinkin finds that
it is important that:

. its rewards must go to the true discoverers: to those who bro-
ught about a cognitive change. [57, 316]

Second, in Patinkin’s view the function of scientific discoveries is to

stimulate a new research program on the part of colleagues in his
field of inquiry, for only in that way can the full scientific potential
of the discovery be efficiently exploited. |57, 316]

Using Patinkin’s criteria for multiplicity the picture gets a little more
subtle. Using his method for uncovering the central message of the scientist
and taking John’s introduction for face value it must be said that the Kuhn-
Tucker theorem is indeed part of the central message in all three papers.
The titles of both Karush’s and John’s paper indicate that the subject of
their paper is optimization constrained by inequality conditions. The title of
Kuhn and Tucker’s paper is simply Nonlinear Programming but at the time
linear programming was well known in the circles Kuhn and Tucker appeared
in so in 1950 this word could not refer to anything but finite dimensional
optimization subject to inequality constraints. So using only this criteria we
must once again conclude that the Kuhn-Tucker theorem is a triple discovery.
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This however is not very satisfactory and if one is also considering Patin-
kin’s reasons for putting such a high empasis on the central message namely
that the purpose of scientific discoveries is to stimulate further research in
the field it becomes clear that only Kuhn and Tucker can be said to be the
true discoverer of the Kuhn-Tucker theroem in nonlinear programming. Ne-
ither Karush’s nor John’s work stimulated any further research. Their work
had no influence what so ever on the development of nonlinear programming
or any other discipline, only the work of Kuhn and Tucker can fulfill this
requirement.

This however does not shed light on why the three different versions of
the result were so differently recieved in the scientific community. I think that
Patinkin’s second essential point — what is it exactly that has been discovered
— analyzed with respect to the different contexts the three papers originated
in is a more fruitful approach to understanding this phenomenon.

6 The Significance of the Context

In the following I shall distinguish between a mathematical and a sociological
context. I shall make a further division of the mathematical context into what
I call the context of “pure mathematical content” which refer to analysis of
mathematical results without taking into account the context of discovery or
the mathematical environment in which it is presented, and the context of
mathematical subdisciplines such as the theory of convexity or the calculus
of variations.

Today mathematicians concieve Karush’s and Kuhn and Tucker’s result
as the same result - as the Kuhn-Tucker theroem and John’s result as the
Kuhn-Tucker theorem without the constraint qualification. The reason for
this is an analysis of the results in relation to “pure mathematical content”
that is an analysis based on the theoretical knowledge of today without taking
into account the mathematical subdisciplines, that is the internal mathema-
tical contexts the results were derived in. In such an analysis mathematicians
disregard the differences and focus solely on the similarities between the three
results. They look at the theorems independently of the context they were
developed in.

An analysis which instead focuses on the differences in the three formu-
lations of the theorem and take the internal mathematical context i.e. the
context of the subdisciplines into account can provide an explanation for the
different influences on the mathematical development and the different re-
ception in the mathematical community at the time of the three occurences
of the result. '

27




The reason why the works of Karush and John were ‘overlooked’ was
not because their result didn’t form part of the central message of their
work but rather because their work wasn’t central in relation to the internal
mathematical — and maybe also sociological — context it-appeared in.

Karush’s work was part of the calculus of variations. It was work on a
finite dimensional version of the research problems the group at the mat-
hematical department at University of Chicago was deeply involved in at
the time, namely variational calculus with inequalities as side conditions. In-
terpreted in this subdiscipline Karush’s work was just a minor corner, some
‘cleaning up’, it was not very exciting, it did not touch on the main questions
that guided the research in this area. This explains why nobody at Chicago
encouraged him to publish his results, they simply were not very interesting
in this narrowly defined mathematical context of variational calculus as it
was viewed in Chicago at that time.

John’s work originated in a mathematical context of the theory of con-
vexity. His real interest was not finite dimensional optimization with inequa-
lity contraints but rather to develop a tool useful for deriving some general
theorems in the theory of convexity. The important results, the results he
was looking for emerged from his geometrical applications of the theorem.
It is also obvious that his hole formulation of the theorem and the ‘missing’
regularity condition, the ‘contraint qualification’, is due to the geometrical
applications.

In contrast to this Kuhn and Tucker’s work was a continuation of their
work on linear programming. They derived their theorem in an attempt to ex-
tent the duality theorem for linear programming to the nonlinear case, which
explain their reformulation of the problem in terms of saddle points. Their
work took place within linear programming — a newly established research
field — which it enlarged. The Kuhn-Tucker theorem answered a central qu-
estion in this discipline and thereby stimulated further research in nonlinear
programming. That is, their work was defined in an internal mathematical
context which was just beginning and was rapidly developing into a major
discipline. Regarded with this knowledge it is not surprising that Kuhn and
Tucker’s paper could launch a new research area.

6.1 The Significance of the military: ONR and OR

Until now I have almost exclusively considered the mathematical contexts of
the different versions of the Kuhn-Tucker theorem. In the case of Kuhn and
Tucker there is also a very important social context — namely the military
represented by Office of Naval Research (ONR) that encouraged mathemati-
cians to do research in linear programming and thereby played a major role
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in the development of nonlinear programming into a succesful and growing
research area.!”

In the section on the work of Kuhn and Tucker I mentioned that the
coorporation of the two began in 1948. The direct reason for this was the
establishment of a university based project with the purpose of exploring the
relationship between linear programming and game theory and do research in
the underlying mathematical structure of linear programming. This project
was not only financed by ONR they also initiated it.

The background for the project was a model that George B. Dantzig had
developed for a logistic problem within the Air Force.!® The military became
very enthusiastic when they learned about this model and it even caused
ONR to set up a special logistic branch within its mathematics program.'®
Mina Rees who was the head of the Mathematics Division of ONR described
it in [62, 111]:

. when, in the late 1940’s the staff of our office became aware
that some mathematical results obtained by George Dantzig, who
was then working for the Air Force, could be used by the Navy
to reduce the burdensome costs of their logistics operations, the
possibilities were pointed out to the Deputy Chief of Naval Opera-
tions for Logistics. His enthusiasm for the possibilities presented
by these results was so great that he called together all those sen-
ior officers who had anything to do with logistics, as well as their
civilian counterparts, to hear what we always referred to as a “pre-
sentation”. The outcome of this meeting was the establishment in
the Office of Naval Research of a separate Logistics Branch with
a separate research program. This has proved to be a most suc-
cessful activity of the Mathematics Division of ONR, both in its
usefulness to the Navy, and in its impact on industry and the
universities. ‘

ONR was established by the Navy in 1946. It grew out of the mobilization
of scientists in the US during World War II. When the war was about to end
there was a common concern that the scientists would just go back to their
university duties after the war. There also was a strong belief that the US
had be to strong scientifically in order to be strong military. A lot of people

7For historical accounts on ONR see f.ex [63], [64], [54].

18This was the beginning of linear programmering. For historical accounts on linear
programmering see [12], [13], [14], [16].

19The simultaneous development of the computer also had a major influence in this hole
development and financing of linear and nonlinear programming.
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were concerned with the further financing of science, military related science
as well as basic science. The first four years of its existence ONR was the
head sponsor for government supported research in the US. It was organized
after the same model Vannevar Bush created for the war effort of civilian
scientists.?’ The scientists continued to work in universities and industries
and their relationship with ONR were based on contracts. Every project had
a principal investigator and the financial support from ONR covered salaries
during the summers, salaries for research assistants working on the projects,
conferences, invitations of guests etc.

In the spring of 1948 Dantzig went to Princeton on behalf of ONR to meet
with John von Neumann in order to discuss the possibilities for a university
based project financed by ONR on linear programming and its relations to
game theory [2, 342-343]. During this visit Dantzig got introduced to Tucker
who gave him a ride to the train station. During this short car trip Dantzig
gave Tucker a brief introduction to the linear programming problem. Tucker
made a remark about a possible connection to Kirchoff-Maxwell’s law of
electric network and because of this remark Tucker was contacted by the
ONR a few days later and asked if he would set up such a mathematics
project [2, 342-343].

Until this moment Tucker had been absorbed in research in topology.
He agreed in becomming principal investigator and that completely changed
his research direction. The same happened for Kuhn, who at the time was
finishing up a Ph.D project on group theory. Kuhn went to Tucker to ask for
summer employment in the summer of 1948, because he needed the additional
income. Tucker hired him together with Gale, to work with him on the ONR
project [46]. The three of them presented the results of their work on the
project at the first conference on linear programming which took place in
Chicago in June 1949 [31]. The most prominent among their results was the
duality theorem for linear programming. After that Kuhn and Tucker in a
way got “stuck” in the project, the duality theorem caught their interest — it
was an interesting result from a mathematical point of view. From there on
Kuhn and Tucker, proceeding according to the “inner” rules for research in
pure mathematics, tried to extend this result to more general cases. This work
resulted in the nonlinear programming paper and the Kuhn-Tucker theorem.
This work was also sponsored by ONR who continued to support Tucker’s
project until 1972 where the National Science Foundation took over.

Another social factor also related to the military was the development
of operations reserach (OR) during the war and the following establishment

20Gee [69).
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after the war of OR as a scientific discipline at the universities.?! ONR also
played a major role in this proces. Fred Rigby the head of the logistic program
of ONR later described the significance of ONR:

We did indeed influence the introduction of operations research
into business schools. The subdiscipline called management sci-
ence is our invention, in quite a real sense. That is, we and
our contract researchers recognized its potentials, planned its early
growth, and, as it turned out, set the dominant pattern in which
it has developed (quoted in [62, 111]).

Linear programming was imediately incoorporated in the toolbox of OR
which meant that OR stood ready to provide a ‘home’ also for nonlinear
programming as soon as it was developed. In this way it can be seen that the
Office of Naval Research had an enormous influence in creating a scientific
community of people doing linear programming, and in this community it

was almost inevitable that the nonlinear programming paper of Kuhn and'

. Tucker would give rise to the new research field of nonlinear programming.

-7 Closing Remarks

The Kuhn-Tucker theorem exemplifices that it is not always the mathemas-

. tical theorem in itself, that is its “pure mathematical content” that decide

whether it will stimulate further research or not. Whether a theorem is going
to be famous or not to launch new research areas or not is not independent
of the mathematical and social contexts. Eventhough the three results today
are viewed as the same theorem they were in praxis very different. The sig-
nificance of a result and its potential for stimulating further research in its
area is determined by the mathematical — and sometimes also the social —
context it was developed in. The Kuhn-Tucker theorem was an important
result in the mathematical discipline Kuhn and Tucker was working in but
this was not at all the case in the discplines the papers of Karush and John
appeared In.

The fact that both Karush, John and Kuhn and Tucker gets credit for the
theorem in the scientific community of nonlinear programming is due to the
influence of third parties - a notion introduced by S. Cozzens. In her book
Social Control and Multiple Discoveries in Science: The Opiate Receptor Case
she focused on how discoveries later gets established as multiple discoveries
[11]. She points out that it is often due to an after-the-fact process where the

1 For historical accounts on OR in the USA see f.ex [60], [24].
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case 1s settled by influence from third parties, that is members of the scientific
community who are not directly involved in the discovery. Through later
references and acknowledgement the third parties establishes the discoveries
as multiple. The quotes I showed in the section on Karush shows that this
also was the case for the establishment of the Kuhn-Tucker theorem as a
multiple discovery, even though Kuhn himself, that is one of the involved
scientist, here played a major role in the establishment.
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