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1 Introduction

During the last three decades or so mathematics education has become es-
tablished as an academic discipline on the international scene. To show this
we need only refer to a number of sociological facts, such as the existence
of a multitude of departments in universities and research institutions; re-
search grants and projects; academic programmes and degrees; international
scientific organisations and bodies; journals and publication series; hosts of
conferences; and so forth, all devoted to research in mathematics education.
The discipline is given slightly different names in different quarters, which is
mainly due to the fact that mathematics education has a dual and hence am-
biguous meaning, in that it may refer both to something provided to students
(for simplicity, throughout this paper we shall use ’student’ as the general



term for the learner, irrespective of educational level), and to the field in
which this ’something’ is made subject of research (and development). In
order to avoid misunderstandings caused by this duality the discipline is
sometimes called mathematics education research or science of mathematics
education, although mathematics education probably remains predominant
in everyday usage. In Europe, there seems to be a preference for using
the label the didactics of mathematics, inspired by names such as ‘Didak-
tik der Mathematik’ (German), ‘didactique des mathématiques’ (French),
‘did4ctica de las matemiticas’ (Spanish), ‘matematikdidaktik’ (Scandina-
vian languages), and their analogues in most European languages, in spite
of the slightly oblique connotations attached to the term ’didactical’ in En-
glish. In the following I shall use the names interchangeably.

The sociological aspects aside, what are the issues and research questions
of the didactics of mathematics, what are its methodologies, and what sorts
of results or findings does it offer? In this paper attempts will be made to
characterise this discipline, in particular as regards its nature and state, and
to present and discuss some of its major findings. Key sections of this paper
have been greatly inspired by a number of the world’s leading researchers in
mathematics education who were consulted during the preparation of this
paper. My sincere thanks go to all of them (cf. ‘Acknowledgements’). It is
important to underline that these scholars hold a variety of different views
and perspectives of the discipline, and many of them are likely to disagree
with my exposition of it. Also, needless to say, the responsibility for the
entire paper, especially for any flaws or biases it may contain, is mine alone.

Before undertaking the attempt just outlined it may be in order to ask why
it would/should be of interest not only to mathematics educators but also to
research mathematicians to become acquainted with the nature and state of
research in mathematics education, i.e. a discipline which is not quite their
own and towards which they may hold various degrees of skepticism. Well,
let me offer an answer to this question. The answer consists of a number
elements most of which are related to the fact that the majority of research
mathematicians are also — and in some cases perhaps even primarily —
university teachers of mathematics.

The first element is to do with changes in the boundary conditions for
the teaching of mathematics at university level, changes which are, in turn,
linked to major changes in the role, place and functioning — and financing!
— of universities in society. In former times, say thirty-forty years ago, the
situation was more or less the following (in condensed and simplistic terms).
University students of mathematical topics were expected to assume all re-
sponsibility for their own studies and for their success or failure. Students
who passed the exams had ‘it’ (i.e. necessary prerequisites, mathematical
talent, and diligence), and those who failed lacked ‘it’, and apart from work-
ing hard there wasn’t much one could do about that. Universities mainly
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had to pay attention to the former category, except that they also had a task
in identifying members of the latter at an early stage and in pointing the exit
from mathematics out to them. This implied that lecturers of mathematics
could concentrate on the delivery of their teaching, whereas the individual
student’s learning of what was taught was not the business of the lecturers
but entirely of the student him/herself. The outcome of learning was finally
gauged in tests and examinations, and students were filtered accordingly.
In those days not many question marks were put at this way of operation.
Universities were not blamed for students’ failures, and enrolment and pass
rates only influenced the marginals of institution and department budgets.
Against this background it is not surprising that the typical university math-
ematician took no deeper interest in students’ learning processes, especially
not of those who were unsuccessful in their studies, or in devising innovative
formats and ways of teaching or new kinds of student activity. By no means
does this imply that teaching was generally neglected (although sometimes
it was). But the focus was on the selection and sequencing of the mate-
rial to be taught, and on the clarity and brilliance of its presentation, all
of which was considered from the point of view of one-way communication.
These deeply rooted traditional conditions and circumstances of university
teaching of mathematics may well account for parts of the widespread, yet
far from universal, absence of interest amongst research mathematicians in
the didactics of mathematics.

But, whether or not it ought be deplored, these conditions and circum-
stances are no longer with (most of) us. Universities can no longer afford
to concentrate their main efforts on students who can, and want to, stand
the type of diet that used to be served in the past. Today, we have to
cater for students who are actually able to learn mathematics, if properly
assisted, but who would be likely to either not enroll at all to studies with
a non-negligible component of mathematics, or to leave or fail the studies
should they enroll, if no didactical or pedagogical attention were paid to
their backgrounds, situations, prerequisites and needs. First of all, apart
from the scarce “happy few”, these students are in fact the ones we get, and
it is our professional (and moral) duty to look after them as best we can.
Should we forget this ourselves our colleagues in other disciplines, deans
and vice- chancellors/presidents, administrators, politicians and the public
at large — and above all the students, by voting with their feet — will
know to remind us and to blame us for our autistic arrogance and for our
(co-)responsibility of waste of human potential. Besides, to an increasing
extent the existence, position, and resources of departments which teach
mathematics are strongly dependent not only on the number of students en-
rolled and taught, but also on the proportion who succeed in their courses
and finish with a degree. Whether we perceive these as facts in a hostile or
ill-informed world that have to be counteracted, or as a genuine challenge
that has to be met, this — second element — points to the need of trying




to understand what it is and what it takes to learn mathematics, includ-
ing the processes involved therein, in particular for students who experience
difficulties in this endeavour, and to invent and investigate ways of teach-
ing that are more beneficial and effective to average students than the ones
traditionally employed.

Then, thirdly, if we understood the possible paths of learning mathe-
matics, and the obstacles that may block these paths, for ordinary students,
we would gain a better understanding of what mathematical knowledge, in-
sight, and ability are (and are not), of how they are generated, stored, and
activated, and hence of how they may be promoted (and impeded) for other
categories of students, including those with severe learning difficulties, as
well as those with a remarkable talent. As far as the latter category is con-
cerned, we would come closer to specifying what mathematical talent is and
subsequently, perhaps, to fostering it. Similarly, it might well happen that
effective improvements of our modes of teaching ordinary students could be
transferred to have a positive bearing on the teaching of exceptional stu-
dents as well. This would not pertain to the university level only. If such
improvements could be devised and brought about at all levels of the edu-
cational system, we would not only do important service to society at large,
we would do important service to the mathematics research community, too.

Finally, to the extent we are able to shed light on what mathematical
knowledge, insight, and ability are, we shall eventually contribute to shed-
ding light on what mathematics is. For, none of the issues touched upon
here can be dealt with without continuous implication of and reflection on
the characteristics of mathematics as a discipline in all its manifestations.

This completes my arguments for the claim that matters pertaining to
mathematics education research ought to be of interest also to research
mathematicians, at least in principle. Assuming that this argument be ac-
cepted, new issues arise. Although the questions posed by the didactics of
mathematics are important enough, to what extent is the didactics of math-
ematics able to give answers to them, and what is the nature of the answers
actually given? This is the main issue of this paper. In order to consider it,
I shall offer a definition of the field.

2 Characterising the field

Various researchers in mathematics education have given definitions of the
field which have a considerable amount of overlap. Instead of reviewing the
definitions put forward by others I shall offer my own as follows. It contains
four components.

A definition

Subject The didactics of mathematics, alias the science of mathematics
education, is the scientific and scholarly field of research and devel-
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opment which aims at identifying, characterising, and understanding
phenomena and processes actually or potentially involved in the teach-
ing and learning of mathematics at any educational level.

Endeavour As particularly regards ‘understanding’ of such phenomena qnd
' processes, attempts to uncover and clarify causal relationships and
mechanisms are in focus.

Approaches In pursuing these tasks, the didactics of mathematics ad-
dresses all matters that are pertinent to the teaching and learning of
mathematics, irrespective of which scientific, psychological, ideological,
ethical, political, social, societal, or other spheres this may involve.
Similarly, the field makes use of considerations, methods, and results
from other fields and disciplines whenever this is deemed relevant.

Activities The didactics of mathematics comprises different kinds of activ-
ities, ranging from theoretical or empirical fundamental research, over
applied research and development, to systematic, reflective practice.

The overall purposes of work in the field are not part of the definition proper
as different agents, including researchers, pursue different aims and objec-
tives. To quite a few researchers in mathematics education the perspec-
tives of pure, fundamental research are predominant. However, it is fair to
claim that the over-arching, ultimate end of the whole enterprise is to pro-
mote/improve students’ learning of mathematics and acquisition of mathe-
matical competencies. It is worth pointing out that the very specification
of the terms just used (‘promote’, ‘improve’ ‘students’ (what students are
being considered?) ‘learning’, ‘mathematics’, ‘acquisition’, ‘mathematical
competencies’) is in itself a genuine didactic task.

It is important to realise a peculiar but essential aspect of the didactics
of mathematics: its dual nature. As is the case with any academic field,
the didactics of mathematics addresses, not surpisingly, what we may call
descriptive/explanatory issues, in which the generic questions are ‘what is
(the case)?’ (aiming at description) and ‘why is this so?’ (aiming at expla-
nation). Objective, neutral answers are sought to such questions by means
of empirical and theoretical data collection and analysis without any intrin-
sic involvement of values (norms). This does not imply that values are not
present in the choice and formulation of the problems to be studied, or — in
some cases — of the methods to be adopted. However, by their nature nu-
merous issues related to education, including mathematics education, imply
the fundamental, explicit or implicit, presence of values and norms. In other
words, in addition to its descriptive/explanatory dimension, the didactics of
mathematics also has to contain a normative dimension, in which the generic
questions are ‘what ought to be the case?’ and ‘why should this be so?’. It
may come as a surprise to some that issues such as these are considered part
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of a scholarly and scientific discourse and are claimed to belong to the scope
of research. But this is unavoidable in the same way as it is unavoidable
to operate with the notion of ‘good health’ and ‘sound treatment’ in much
medical research, or ‘satisfactory functioning’ of devices constructed in en-
gineering. For normative issues to be subject of research it is necessary to
reveal and explain the values implicated as honestly and clearly as possible,
and to make them subject to scrutiny; and to-undertake an objective and
neutral analysis of the logical, philosophical, and material relations between
the elements involved (cf. Niss, 1996). So, both dimensions are essential
constituents of the science of mathematics education, both crucially relying
on theoretical and empirical analysis, but they are not identical and should
not be confused with one another.

It appears that in many respects the didactics of mathematics has a
close analogue in the field of medicine which has the same duality between
a descriptive/explanatory and a normative dimension as well as wide ranges
of goals, methods, and activities. On the other hand, being hardly more
than 30-40 years old, the didactics of mathematics is certainly not yet a
mature, full-fledged discipline on a par with medicine.

In a brief outline of the main areas of investigation the two primary ones are,
naturally, the teaching of mathematics, which focuses on matters pertain-
ing to organised attempts to transmit or bring about mathematical knowl-
edge, skills, insights, competencies, and so forth, to well-defined categories
of recipients, and the learning of mathematics, where the focus is on what
happens around, in and with students who engage in acquiring such knowl-
edge, skills, etc., with particular regard to the processes and products of
learning. A closely related area of investigation is the outcomes (results and
consequences) of the teaching and the learning of mathematics, respectively.

We may depict, as in Figure 1, these areas as boxes in a ‘ground floor’
plane such that the ‘teaching’ and ‘learning’ boxes are disjoint and the ‘out-
comes’ box intersects both of them. As the investigation of these areas leads
to derived needs to investigate certain auxiliary areas related to the primary
ones but not in themselves of primary didactic concern, such as aspects of
mathematics as a discipline, aspects of cognitive or learning psychology, as-
pects of curriculum design and implementation, and so on, we may place
these auxiliary areas on the same plane as the primary areas but in a sep-
arate compartment at the back of the ‘ground floor’. We may agree to call
activities on the ground floor ‘mathematical didactics of the first order’. Al-
though the didactics of mathematics may be considered a mature discipline
in a sociological sense (cf. the introduction), the same is not necessarily the
case in a philosophical, a methodological, or a verificational sense. Thus,
there is no universally established framework or consensus as regards schools
of thought; research paradigms; methods; standards of verification, justifi-
cation and quality, etc. This is one reason, among others, why a number
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Figure 1: Survey map

of researchers in the field, during the last couple of decades, have been re-
flecting on its nature and characterstics, its issues, methods, and results
(see, e.g., Grouws, 1992; Biehler et al., 1994; Bishop et al., 1996; Sierpinska
& Kilpatrick, 1998). Theoretical or empirical studies in which the field as
such is made subject of investigation do in fact form part of the field itself,
although at a meta-level, which we may depict as an ‘upper floor’ plane
parallel to the ground floor plane. We may think of it as being transparent
so as to allow for contemplation of the ground floor from above. It seems
natural to call such meta-activities ‘mathematical didactics of the second
order’.

Finally, for the survey picture being outlined to become complete, let
us imagine a vertical plane cutting both floors as a common wall. On the
ground floor, all three boxes, ‘teaching’, ‘learning’, and ‘outcomes’ are bi-
sected by this wall. The two half-spaces thus created may be thought of as
representing the descriptive/explanatory and the normative dimensions, re-
spectively. These dimensions are then present at both floors. If we imagine
the vertical wall to be transparent as well, it is possible to look into each
half-space (dimension) from the perspective of the other.

Let us sum up, in a simplified and maybe also simplistic way, the ulti-
mate (utopian?) goals of the didactics of mathematics as follows: We want
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to be able to specify and characterise desirable or satisfactory learning of
mathematics, including the mathematical competencies we should like to see
different categories of individuals possessing. We want to be able to devise,
design and implement effective mathematics teaching (including curricula,
classroom organisation, study forms and activities, resources and materials,
to mention just a few components) that can serve to bring about satisfac-
tory/desirable learning. We finally want to construct and implement valid
and reliable ways to detect and assess, without destructive side effects, the
results of learning and teaching of mathematics. Indicating and specifying
these goals is a normative activity in the didactics of mathematics.

For all this to be possible we have to be able to identify and understand,
in descriptive and explanatory terms, the role of mathematics in science and
society; what learning of mathematics is/can be and what it is not, what
its conditions are, how it may take place, how it may be hindered, how it
can be detected, and how it can be influenced, all with respect to different
categories of individuals. We further have to understand what takes place in
existing approaches to and modes of mathematics teaching, and why, both as
regards the individual student, groups of students and entire classrooms (in a
general sense). We have to invent new modes of teaching and make similar
investigations. We have to investigate the relationships between teaching
modes and learning processes and outcomes. We have to investigate the
influence of teachers’ backgrounds, education, and beliefs on their teaching.
We have to examine the properties and effects of current modes of assessment
in mathematics education, with particular regard to the ability to provide
valid insight into what students know, understand, and can do, as we have
to devise and investigate, in the same way, innovative modes of assessment.
All this points to endless multitudes of theoretical and empirical tasks of
fundamental and applied research as well as of concrete development with
practical aims.

If questions such as these are the ones we want to pose, what are the
answers we can offer, and what is their nature? Let me deal with the latter
issue first, and devote the next section to the former.

Traditionally, fields of research within the sciences produce either empirical
findings of objects, phenomena, properties, relationships, and causes — like
in, say, chemistry — through some form of data collection guided or followed
by theoretical considerations and interpretations, or they produce theorems,
i.e. statements derived by means of logical deduction from a collection of
‘axioms’ (postulates, facts, laws, assumptions) that are taken as a (locally)
undisputed basis for the derivations, like in mathematics and theoretical
physics.

If we go beyond the predominant paradigms in the sciences and look at
the humanities and the social sciences, other aspects have to be added to the
ones just considered. In philosophical disciplines, the proposal and analysis



of distinctions and concepts — sometimes sharp, but mostly somewhat fuzzy
— and concept clusters, introduced to identify and represent matters from
the real world, serve to create a platform for discourses on and investigations
of these matters in an explicit, clear and systematic way. Such disciplines
often produce notions, distinctions, terms, amalgamated into concepts, or
extensive hierarchical networks of concepts connected by formal or mate-
rial reasoning, called theories, which are meant to be stable, coherent and
consistent. Or more simply put: tools for thought to assist the analysis of
parts or aspects of the world. Disciplines dealing with human beings, their
minds, types of behaviour and activity, as persons, members of different so-
cial and cultural groups, and as citizens, or with communities and societies
at large, primarily produce interpretations and models, i.e. hypotheses of
individual or social forces and mechanisms that may account for (explain)
phenomena and structures observed in the human or societal domain under
consideration, as encountered in, say, psychology, anthropology, or history.
Sometimes sets of interpretations are organised and assembled into systems
of interpretation, usually called ‘theories’, they too, and also meant to be
stable, coherent, and consistent. We shall refer to such systems by the term
interpretative theories. As most human behaviour is complex, and most
of the time at best locally coherent, results in these disciplines cannot be
expected to be simple and clear-cut. Finally, there are disciplines within all
categories of science that produce designs (and eventually - constructions).
For such products the ultimate test is their functioning and efficiency in the
realm in which they are put into practice (“the proof of the pudding is in
its eating”). However, as most important designs and constructions are re-
quired to have certain properties and meet certain specifications before the
resulting constructions are installed, design disciplines are scientific only to
the extent they can provide well-founded evidence and reasons to believe
that their designs possess certain such properties to a satisfactory degree.

This is not the place to enter into classical philosophical (epistemological)
discussions of the similarities and abundant differences between disciplines
such as these, let alone of their well-foundedness and relative strengths and
weaknesses. Suffice it, here, to note that irrespective of any dispute, all
these types of disciplines are represented in academia with ‘civil rights’ of
long standing.

Where is the didactics of mathematics situated in the discipline survey just
sketched? In fact it contains instances and provides findings of all the cat-
egories of disciplines mentioned, but to strongly varying degrees. There are
empirical findings, like in chemistry or archaeology. There are even ‘theo-
rems’, like in mathematics (but, in the honour of truth, these are derived
within mathematics itself; for example the 1960’s and 1970’s saw quite a
few ‘existence theorems’ stating that a given mathematical concept or the-
orem could be introduced in a consistent way at a given educational level



on a given theoretical basis). There are terms, concepts and theories for
analysis of a philosophical nature (e.g. Ernest, 1991; Skovsmose 1994; Niss
1994), and there are models, interpretations and interpretative theories of a
pscyhological, sociological or historical nature. Finally there are multitudes
of designs and constructions of curricula, teaching approaches, instructional
sequences, learning environments, materials for teaching and learning, and
so forth.

When researchers in mathematics education are asked about the nature
of their field, their answers point to some of these aspects but with varying
perspectives and emphases. Some researchers are hesitant to use the term
‘finding’ in this context in order to avoid misunderstandings and too nar-
row expectations of what a scientific field should have to offer. They prefer
to see the didactics of mathematics as providing generic tools — including
conceptual apparatuses and models — for analysing teaching/learning sit-
uations, or as providing new questions, new ways of looking at things, new
ideas inspired by other fields, etc. Others emphasise that the field offers illu-
minating case studies which are not necessarily claimed to be generalisable
beyond the individual cases themselves, and hence should not be considered
scientific findings in the classical sense, but are nevertheless stimulating for
thought and practice. Still other didacticians give primary importance to
the design aspects of the field (Wittmann, 1995; cf. also Artigue, 1987).
However, as long as we keep in mind that the notion of finding is broader
in disciplines not residing within the realm of classical empirical and the-
oretical sciences, I don’t see any severe problems in using this term in the
didactics of mathematics.

Although it is not an easy task to gauge the relative weights of the
different categories of disciplines and findings across the entire field of the
didactics of mathematics, it is probably fair to describe the situation as
follows.

A major portion of research done during the last couple of decades has
focused on students’ learning processes and products as manifested on the
individual, small group, and classroom levels, and as conditioned by a vari-
ety of factors such as mathematics as a discipline; curricula; teaching; tasks
and activities; materials and resources, including text books and information
technology; assessment; students’ beliefs and attitudes; educational environ-
ment, including classroom communication and discourse; social relationships
amongst students and between students and teacher(s); teachers’ education,
backgrounds, and beliefs; and so forth. The typical findings — of which
examples will be given in the next section — take the shape of models, in-
terpretations, and interpretative theories, but certainly often also of solid
empirical facts. Today, we know a lot about the possible mathematical
learning processes of students and about how these may take place within
different areas of mathematics and under different circumstances and con-
ditions, as we know a lot about factors that may hinder, impede or simply
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prevent successful learning.

We have further come to know a great deal about what happens in actual
mathematics teaching in actual classrooms at different levels and in different
places in the world (Cobb & Bauersfeld, 1995). Much of this knowledge is
of a factual, descriptive nature. This has made it possible to describe and
analyse various settings and forms of teaching, and the resulting teaching-
learning situations. However, we are still left with hosts of unanswered
questions as to how to design, stage, organise, implement, and carry out
teaching-learning environments and situations addressing various categories
of students, which to a reasonable degree of certainty and robustness lead
to desirable or satisfactory learning outcomes, in a broad sense, for those
students. Indeed this is not to say that we don’t know anything in this
respect. In fact we do, but as yet our knowledge is more punctual and
scattered than is the case with our insights into the mathematical learning
processes of students. This is to do with two factors.

Firstly, insights into such learning processes have turned out to be a
prerequisite for insights into the outcomes of teaching. So, progress in the
latter respect somehow has to await progress in the former. Secondly, as re-
search on learning processes has revealed several variations, complexities and
complications in students’ learning of mathematics, traditional assessment
modes and instruments to an increasing extent have proved insufficient, and
sometimes outright misleading, in making well-founded inference of what
students actually know, understand, and can achieve in different situations
and contexts, especially when larger student populations are considered.
In other words, it is far from a trivial matter to specify, detect, appraise,
assess, and convincingly document the outcomes of teaching and learning
in terms of students’ mathematical knowledge, insights and competencies.
A third factor that might have been expected to be in force here is dis-
agreement about what desirable or satisfactory outcomes of mathematical
learning are. Such disagreement on the goals would, of course, give rise to
problems regarding what should be considered adequate modes of teaching.
A considerable amount of literature has been devoted to the — normative —
issue of the ends and aims of mathematics education (e.g., see Niss, 1996),
and even though there is some variation in the views held by mathematics
educators on these matters, in particular as regards details or terminology,
a fair amount of agreement on the basics seems to prevail (with emphases
on understanding, reasoning, creativity, problem solving, and the ability to
apply mathematics in extra-mathematical contexts and situations, all under
varying circumstances and in varying domains and contexts).

As I said, we know something about effective teaching modes in specific
contexts (see, for instance, Leron, 1985; Tirosh, 1991; and, for an intro-
duction to the idea of a ‘scientific debate’, Alibert & Thomas, 1991). In
particular, based on our growing insight into mathematical learning pro-
cesses and teaching situations, we know more and more about what is not
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effective teaching vis-3-vis various groups of recipients. At first sight such
knowledge may appear to be a bit negative, but at closer reflection nega-
tive results are certainly valuable as they provide progress in the search for
positive, definitive results. Moreover, the didactic literature displays numer-
ous examples of innovative teaching designs and practices, many of which
are judged highly successful. The fact that it is not always easy to analyse
and document the success of an innovation in scientific terms, including to
provide evidence of its transferability to other contexts and settings, does
certainly not rule out that the innovation possesses highly valuable qualities
of the kind claimed and experienced (Leron 1983). These qualities are just
recognised and appraised at a more local or subjective level than asked for
in research. By the way, wasn’t it a renowned mathematician who said “I
cannot define my wife but I can recognise her when I see her”?

3 Examples of major findings

It follows from the previous section that findings in the didactics of math-
ematics only relatively seldom take the shape of empirical or experimental
results in the traditional sense, and of mathematical theorems only in an
obvious sense. Nevertheless, findings in the field resulting from thorough
theoretical or empirical analyses do give rise to solid insights of considerable
significance to our understanding of processes and outcomes of mathematics
teaching and learning, and hence for the ways in which mathematics may,
or may not, be taught and learnt. This is not the place for a systematic
review of the most important findings in the didactics of mathematics — in
fact, no such single place can exist. Instead, we shall consider a few selected,
significant examples, of a pretty high level of aggregation, which can serve
to illustrate the range and scope of the field. By the nature of this paper,
it is not possible to provide detailed presentations or full documentation
of the findings selected. A few references, mainly of survey or review type
providing access to a broader body of primary research literature, have to
suffice.

The astonishing complexity of mathematical learning An individ-
ual student’s mathematical learning often takes place in immensely complex
ways, along numerous strongly winding and frequently interrupted paths,
across many different sorts of terrain. Many elements, albeit not necessarily
their composition, are shared by large classes of students, whereas others
are peculiar to the individual.

Students’ misconceptions (and errors) tend to occur in systematic ways
in regular and persistent patterns, which can often be explained by the
action of an underlying tacit rationality put to operation on a basis which
is distorted or insufficient.

The learning processes and products of the student are strongly influ-
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enced by a number of crucial factors, including the epistemological char-
acteristics of mathematics and the student’s beliefs about them; the social
and cultural situations and contexts of learning; primitive, relatively sta-
- ble implicit intuitions and models that interact, in a tacit way, with new
learning tasks; the modes and instruments by which learning is assessed;
similarities and discrepancies between different ‘linguistic registers’, includ-
ing everyday language and various language modes that are characteristic
of mathematical discourses.

This over-arching finding is an-agglomeration of several separate findings,
each of which results from extensive bodies of research. The roles of episte-
mological issues and obstacles in the acquisition of mathematical knowledge
have been studied, for instance, by Sierpinska (1994) and others (for an
overview, see Sierpinska & Lerman, 1996). Social, cultural, and contextual
factors in mathematical learning have been investigated from many per-
spectives, see for instance Bishop, 1988; Nunes et. al., 1993; and Cobb
& Bauersfeld, 1995. Schoenfeld (1983) and Pehkonen (e.g. Pehkonen &
Térner, 1996), among others, have investigated students’ (and teachers’)
belief’s. Fischbein and his collaborators have studied the influence of tacit
. models on mathematical activity (see, e.g. Fischbein, 1989). The influence
of assessment on the learning of mathematics has been subject of several
theoretical and empirical studies (e.g. Leder, 1992; Niss 1993a & b). The
same is true with the role of language and communication (Pimm, 1987; and
Ellerton & Clarkson, 1996, for an overview).

The studies behind these findings teach us to be cautious and not to
jump to conclusions when dealing with students’ learning of mathematics.
Mathematical learning is not isomorphic to the edifice of mathematics to be
learnt. Neither processes nor outcomes of learning are in general logically
ordered, let alone globally deductive, at least not with respect to hierarchies
that one might have thought of as natural or even canonical. For instance,
research has shown that many students who are able to correctly solve an
equation such as 7z —3 = 13z+15 are unable to subsequently correctly decide
whether z = 10 is a solution (Bodin, 1993). Normally, one would assume
that knowing a complete solution to an equation, i.e. knowing exactly which
elements are solutions and which are not, occupies a relatively high position
in the logical hierarchy and hence will automatically lead to a correct answer
to a question concerned with a special case. Apparently this need not be
so. The explanation normally given to this phenomenon is that solving
equations resides in one (‘syntactic’) domain, strongly governed by rules and
procedures with no particular attention being paid to the objects involved in
the procedures, whereas examining whether or not a given element solves the
equation requires an (‘semantic’) understanding of what a solution means.

Furthermore, checking directly, from scratch, whether a particular element
is a solution usually involves procedures at variance with general solution
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algorithms. So, the two facets of the solution of equations, intimitely linked
in the mind of the mature knower, need not even both exist in the mind of
the novice mathematical learner, let alone be intertwined.

The key role of domain specificity For a student engaged in learn-
ing mathematics, the specific nature, content and range of a mathematical
concept that he or she is acquiring or building up are, to a _large part, de-
termined by the set of specific domains in which that concept has been
concretely exemplified and embedded for that particular student.

For an illustration of what we are talking about, a large group of Danish
12th grade students who sat, a few years ago, the final national written
examination in mathematics at the end of the most demanding mathematics
course in upper secondary school, showed severe difficulties in recognising
the object in 3-space given by the equation z = 0 as a plane. On closer
inspection, the primary reason for this turned out to be that the equation
was not explicitly stated in the standard form, az + by + ¢z = d, the main
problem being that r and y were absent in the equation. So, to these
students, the concept of a general plane in the analytic geometry of 3-space
did not comprise the z,y-plane in the form z = 0 as a special case, most
certainly because such special cases had not received much attention, if any,
in the teaching-learning activities on planes in which these students had
been engaged.

The finding at issue is closely related to the finding that students’ con-
cept images are not identical with the concept definitions they are exposed
to (Tall & Vinner, 1981; Vinner & Dreyfus, 1989; and for an overview, Vin-
ner, 1991, and Tall, 1992; see also Robert, 1982). The concept images are
generated by previous notions and experiences as well as by the examples
against which the concept definitions have been tested. Several attempts
have been made to construct general theoretical frameworks to elucidate
these findings. One notable example is Vergnaud’s notion of ‘conceptual
field’ (Vergnaud, 1990).

At first sight, our finding may seem to be little more than a reformulation,
of a well-known observation belonging to the experience of any observant
and reflective teacher of mathematics at whichever level. (If this is true,
which it sometimes is, it is remarkable, though, how often the finding re-
mains unemployed in actual teaching practice.) But, on closer inspection,
the range and depth of the instances of this finding have far-reaching bear-
ings on the teaching and learning of mathematics. Thus, not only are most
‘usual’ students unable to grasp an abstract concept, given by a definition,
in and of itself unless it is elucidated by multiple examples (which is a well
known fact), but, more importantly, the scope of the notion that a student
forms is often barred by the very examples studied to support that notion.
For example, even if students who are learning calculus or analysis are pre-
sented with full theoretical definitions, say of € — é type, of function, limit,
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continuity, derivative, and differentiability, and even if it is explicitly stated
in the textbook and by the teacher that the aim is to develop these con-
cepts in a general form, and even if ‘warning examples’ meant to vaccinate
against wrong conclusions caused by over-simplification are provided, stu-
dents’ actual notions and concept images will be shaped, and limited, by the
examples, problems, and tasks on which they are actually set to work. If
these are drawn exclusively from objects (sequences, functions) expressed as
standard ‘molecular’ expressions composed of familiar, well-behaved stan-
dard objects on the shelves, ‘atoms’, the majority of students will gradually
tie their notions more and more closely to the specimens actually studied,
and aspects allowed by the general concepts but not exhibited by the specific
specimens will whither or even, eventually, disappear. For instance, studies
show that the number of calculus students who don’t include, say, Dirich-
let’s function in their concept of function is legion. Instead, the general
concept image becomes equipped with properties resulting from an over-
generalisation of properties held by the collection of special cases but not
implied by the general concept. Remarkably enough, this does not prevent
many of the very same students from correctly remembering and citing gen-
eral theoretical definitions without seeing any mismatch between these and
properties characteristic of special cases only. These definitions seem to just
be parked in mental compartments different and detached from the ones
activated in the study of the cases. In other words, if average students are
to establish a general notion of a mathematical concept and to understand
its range, they have to experience this range by being given opportunities
. to explore a large variety of representative manifestations of the concept in
various domains.

The danger of forming too restricted images of general concepts seems to
be particularly manifest in domains — such as arithmetic, calculus, linear
algebra, statistics — that lend themselves to an algorithmic ‘calculus’, in
a general sense, i.e. a system of formalisable operations and manipulations
in a symbolic setting, the virtue and strength of which exactly is to replace
the continual, and often conceptually demanding, evocation of fundamental
notions and concepts by algorithmic calculations based solely on selected
aspects of the concepts. In such domains, algorithmic manipulations —
procedures — tend to attract the main part of students’ attention so as to
create a ‘concept filter’: Only those instances (and aspects) of a general
concept that are digestible by and relevant in the context of the ’calculus’
are preserved in students’ minds. In severe cases an over-emphasis in in-
struction on procedures may even prevent students from developing further
understanding of the concepts they experience through manipulations only
(Hiebert & Carpenter, 1992).

The present finding shows that it is a non-trivial matter of teaching and
learning to establish mathematical concepts with students so as to be both
sufficiently general and sufficiently concrete. Research further suggests (see,
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e.g., Janvier, 1985) that for this to happen, several different representations
(e.g. numerical, verbal, symbolic, graphical, diagrammatical) of concepts
and phenomena are essential, as are the links and transitions between these
representations.

There is a large and important category of mathematical concepts of which
the acquisition becomes particularly complex and difficult, namely concepts
generated by and encapsulating specific processes. Well- known examples of
this are the concept of function as an object, encapsulating the mechanisms
that produce the values of the function into an entity (which can further
play the role of an element in some space of functions, or that of an unknown
in a differential equation), and the concept of derivative, encapsulating the
processes of differentiating a function pointwise, and of amalgamating the
outcomes into a new function. Another example is the concept of quotient
set (and structure) arising from an equivalence relation which in turn is an
encapsulation of the process of determining whether or not given pairs of
objects are equivalent in the original set. This process-object duality, so
characterstic of many (but not all) mathematical concepts, is referred to
in the research literature by different terms, such as ‘tool-object’ (Douady,
1991), ‘reification’ (Sfard, 1991, and Sfard & Linchevski, 1994), ‘procept’, a
hybrid of process and concept, (Tall, 1991, Chapter 15). It constitutes the
following finding;:

Obstacles produced by the process-object duality  The process-
object duality of mathematical concepts that are constituted as objects by
encapsulation/reification of specific processes, typically gives rise to funda-
mental learning obstacles for students. They often experience considerable
problems in leaving the process level and entering the object level. Some
students are able to establish notions of both the processes underlying a
certain concept and of that concept as an object, but are unable to establish
links between the two.

In addition to influencing the learning of mathematics, the syndrome un-
covered in this finding gives rise to corresponding teaching difficulties as
well. For example, many students conceive of an equation as signifying a
prompt/request to perform certain operations, without holding any concep-
tion of an equation as such distinct from the operations to be performed. To
them, an equation simply does not constitute a mathematical entity, such
as a statement or a predicate — an issue which is, evidently, closely linked
to other diffcult matters like variables, unknowns, the roles of the equality
sign, and so forth. This undoubtedly accounts for large parts of the fact that
equations of whichever type (algebraic or differential) constitute well-known
hurdles in all teaching that focus on understanding of equations and not just
on procedures to solve them.

Undoubtedly, the notions of mathematical proof and proving are some of the
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most crucial, demanding, complex, and controversial ones, in all of math-
ematics education. Deep scientific, philosophical, psychological, and edu-
cational issues are involved in these notions. Hence it is no wonder that
they have been made subject of discussion and study in didactic research
to a substantial extent over the years (for a recent discussion, see Hanna
& Jahnke, 1996; see also Alibert & Thomas, 1991). Here, we shall confine
ourselves to indicating but one finding pertinent to proof and proving in the
teaching and learning of mathematics.

Students’ alienation from proof and proving There is a wide gap
between students’ conceptions of mathematical proof and proving and those
held in the mathematics community. Typically, at any level of mathematics
education in which proof or proving are on the agenda, students experience
‘great problems in understanding what a proof is (and is not) supposed to be,
and what its purposes and functions are, as they have substantial problems
in proving statements themselves, except in highly standardised situations.
They tend to perceive proof and proving as strange freemasonry rituals into
which mathematical professionals indulge but which are not really meant to
be comprehended by ordinary human beings.

Research further suggests that students’ conceptions of what it means,
to them, to convincingly establish the truth of a mathematical statement,
are often centrered around either direct intuitive insight (‘I can see it has
to be true’), an amount of empirical evidence provided by special cases, or
generic examples that ‘contain it all in one’. Moreover, many students who
are able to correctly reproduce a (valid) proof in oral or written form, do not
see the proof to have, in itself, any bearing on the truth of the proposition
arrived at by means of the proof.

The fact that proof and proving represent such great demands and chal-
lenges to the learning of mathematics implied that proof and proving have -
received, in the 1980’s and 1990’s, a reduced emphasis in much mathemat-
ics teaching. Rather than investing major efforts in training ‘performing
monkeys’, with limited success, mathematics educators have concentrated
on the provision of meaning and sense of mathematical ideas, notions, and
activities to students. However, there seems to be a growing recognition
that there is a need to revitalise (not just revive) proof and proving as cen-
tral components in mathematics education. For instance, this is the basis of
a large ongoing research project in Italy (‘Theorems in School: From His-
tory and Epistemology to Cognitive and Educational Issues’), directed by P.
Boero, M. Bartolini Bussi, and others. Also there is growing evidence that
it is possible to successfully meet, in the teaching of mathematics, parts of
the demands and challenges posed by proof and proving, while at the same
time furthering the fostering of mathematical meaning and sense-making
with students. Literature on this topic also shows (see, for example, Alibert
& Thomas, 1991) that it is possible to design and stage teaching-learning
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environments and situations that facilitate the bridging of the gap between
students’ conceptions of mathematical proof and proving and those charac-
teristic of mathematics as a discipline.

The last finding to be discussed here, briefly, is to do with the role and impact
of information technology (calculators and computers and their software) on
the teaching and learning of mathematics. As this is perhaps the single most
debated issue in mathematics education during the last two decades, and
one which has given rise to large amounts of research (for recent overviews,
see Balacheff & Kaput, 1996; Ruthven, 1996; and Heid, 1997), we can touch
upon one or two aspects only. Let us do this by formulating the following
finding;:

The marvels and the pitfalls of information technology in mathe-
matics education Information technology gives rise to major transfor-
mations of mathematics education in all respects. Research shows that it
has opened avenues to new ways of teaching and learning which may help
to greatly expand and deepen students’ mathematical experiences, insights,
and abilities. However, it further shows that this does not happen automat-
ically but requires the use of technology to be embedded with reflection and
care into the overall design and implementation of teaching-learning envi-
ronments and situations, of which IT-activities are but one amongst several
components.

The more students can do in and with information technology in mathe-
matics, the greater is the need for their understanding, reflection, and critical
analysis of what they are doing. So, in spite of what one might have ex-
pected because of the new opportunities offered by information technology,
IT increases rather than decreases the demands of the teaching and learning
of mathematics.

In other words, it is not a smooth and simple matter of ‘just doing it’ to make
information technology assume a role in mathematics education which serves
to extend and amplify students’ general mathematical capacities rather than
replacing their intellects. There is ample research evidence for the claim that
when it is no longer our task to train the ‘human calculator’ as was (also)
the case in the past, parts of the traditional drill do become obsolete. But
this does not imply that students’ no longer need to be able to perform basic
operations themselves. We have yet to see research pointing out exactly what
and how much procedural ability is needed for understanding the processes
and products generated by the technology.

One other pitfall of information technology indicated in the research lit-
erature, is that the technological system itself (hardware and software) can
form a barrier and an obstacle to learning, either by simply becoming a new
and not necessarily easy topic in the curriculum, or by distracting students’
attention so as to concentrate on properties of the system rather than on the
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learning of mathematics. Once again, for this instance of ‘the tail wagging
the dog’ to be avoided it is essential that information technology be assigned
a role and place in the entire teaching-learning landscape on the basis of an
overall reflective and analytic educational strategy. Where this happens,
calculators and computers can give students access to mathematical expe-
riences, insights, and abilities which otherwise demand years of dedication
and hard work.

4 Conclusion

In a single paper it is not possible just to touch upon all major aspects and
areas of the didactics of mathematics. So, it has been out of the question
to do justice to the field, let aloné to the thousands of researchers who
have contributed to founding, shaping and developing it. Instead of the few
findings put forward here, hosts of other findings could have been selected
for discussion with no lesser right and relevance. Here is one:

There is no automatic transfer from a solid knowledge of mathematical
theory to the ability to solve non-routine mathematical problems, or the
ability to apply mathematics and perform mathematical modelling in com-
plex, extra-mathematical contexts. For this to happen both problem solving
and modelling have to be made object of explicit teaching and learning, and
there is ample evidence that it is possible to design teaching settings so as
to foster and solidify these abilities.

And here is another one:

Many of the assessment modes and instruments in current use in math-
ematics education fail to provide valid insight into what students know,
understand, and can achieve, in particular as far as higher order knowledge,
insight and ability are concerned. No single assessment instrument is suf-
ficient for this purpose; balanced sets of instruments are needed. There is
a general and increasing mismatch between established assessment modes
and the ends and goals pursued by contemporary mathematics education.
Nevertheless, appropriate (valid and reliable) assessment modes are at our
disposal, but are not put into large scale use because they tend to contradict
external demands for inexpensive, fast, and easy assessment procedures that
yield simple and summative results which are easy to record and communi-
cate.

Important findings concerning the values and efficiency of collaborative
learning and innovative teaching approaches and forms of study, such as
project work; the significance of carefully balanced, innovative multifaceted
curricula, elucidating historical, philosophical, societal, applicational and
modelling aspects of mathematics; the impact of social, cultural and gender
factors on mathematics education; and many others, have not, regrettably,
been given their due shares in this presentation. The same is true with
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the findings contributed by impressive bodies of research on the teaching
and learning of specific mathematical topics, such as arithmetic, abstract
and linear algebra, calculus/analysis, geometry, discrete mathematics, and
probability and statistics, and with the findings represented by the instru-
mental interpretative theories of Brousseau (on ‘situations’, and ‘didactical
contracts’ in mathematics education), of Chevallard (on the so-called ‘di-
dactical transposition’), of Fischbein (on intuition), and of Mellin-Olsen (on
‘learning rationales’). Also the extensive and elaborate piece of didactical
engineering (design and construction) contributed by the Freudenthal school
(Freudenthal, de Lange, and several others) at the University of Utrecht (the
Netherlands) has been left out of this survey.

Nevertheless, the findings which we have been able to present suffice to
teach us two lessons which we might want to call super-findings. If we want
to teach mathematics, with satisfactory or desirable results, to students
other than the rather few who can learn mathematics without being taught,
or the even fewer who cannot learn mathematics irrespective of what and
how they are taught, two matters have to be kept in mind at all times:

1. We have to be infinitely careful not to jump to conclusions and make
false inferences about the processes and outcomes of students’ learning of
mathematics. Wrong or simplistic assumptions and conclusions are always
close at hand.

2. If there is something we want our students to know, understand,
or be able to do, we have to make it object of explicit and carefully de-
signed teaching. Because of 1., there is no such thing as guaranteed transfer
of knowledge, insight and ability from one context or domain to another.
Transfer certainly occurs and can be brought about, but if it is to take place
in a controlled way it has to be cultivated.
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af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Mgller Nielsen

Vejledere: Johnny Ottesen, H.B.Hansen

"Underspgelse om den. simultane opdagelse

af energiens bevarelse og iszrdeles om

~de af Mayer, Colding, Joule og Helmholtz

udforte arbejder”
af: L.Arleth, G.I.Dybkjer, M.T.@stergdrd

Vejleder: Dorthe Posselt

"The effect of age-dependent host
mortality on the dynamics of an endemic
disease . and

Instability in an SIR-model with age-
dependent susceptibility ,

by: Viggo Andreasen

"THE FUNCTIONAL DETERMINANT OF A FOUR-DIMENSIONAL
BOUNDARY VALUE PROBLEM"

by: IThomas P. Branson and Peter B. Gilkey
OVERFLADESTRUKTUR 0G PBREUDVIKLING'AF KOKS

~ Modul 3 fysik projekt -

af: Thomas Jessen
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INTRODUKTION TIL KVANTE
HALL EFFEKTEN

af: Anja Boisen, Peter Beggild

Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

’

STROMSSAMMENBRUD AF KVANTE
HALL EFFEKTEN
af: Anja Boisen, Peter Beggild

Vejleder: Peder Voetmann Christiansen

Erland Brun Hansen

The Wedderburn principal theorem and
Shukla cohomology

af: Lars Kadison
SEMIOTIK 0G SYSTEMEGENSKABER (2)
Vektorband og tensorer

af: Peder Voetmann Christiansen

Valgsystemer -~ Modelbygning og analyse
Matematik 2.

af: Charlotte Gjerrild,
Maria Hermannsson,
Ragna Clauson-Kaas,

modul

Jane Hansen,
Allan Jergensen,
Poul Lutzen

Vejleder: Mogens Niss

Patologiske eksempler.
Om s=®re matematiske fisks betydning for
den matematiske udvikling

af: Claus Draby, Jeorn Skov Hansen,
Ulsee Johansen, Peter Meibom,
Kristoffer Nielsen

Runa
Johannes

Vejleder: Mogens Niss

FOTOVOLTAISK STATUSNOTAT 1
af: Bent Serensen
Brovedligeholdelse - bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer

af: Linda

Kyndlev, Kare Fundal, Kamma
Tulinius,

Ivar Z2eck
Vejleder: Jesper Larsen
TANKEEKSPERIMENTER I FYSIKKEN

Et l.modul fysikprojekt

af: Xaren Birkelund, Stine Sofia Korremann
Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN ogq dens anvendelse
i CT-scanning

Projektrapport

af: Trine Andreasen, Tine Guldager Christiansen,
Nina Skov Hansen og Christine iIversen

Vejledere: Gestur Olafsson og Jesper Larsen

Time-0f-Flight mdlinger pd krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Boye Olsen
HVERDAGSVIDEN OG MATEMATIK

- LEREPROCESSER I SKOLEN

af: Lena Lindenskov, Statens Humanistiske

Forskningsr&d, RUC, IMFUFA

247,93

248/93

249/93

250/93

251193

252193

253/93

254/93

255/93

256/93

257/93

258/93

259/93

RET/ R E]

UNIVERSAL LOW TEMPERATURE AC CON-
DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS

by: Jeppe C. Dyre

DIRAC OPERATORS AND MANIFOLDS WITH
BOUNDARY o

by: B. Booss-Bavnbek, K.P.Wojciechowski M

Perspectives on Teichmuller and the
Cahresbericht Addendum to Schappacher,
Scholz, et al.

by: B. Booss-Bavnbek

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
J.jost, J.-P.Kahane, R.Lochan, L.Lorch,
J.Radkau and T.Soderqvist

EULER OG BOLZANO ~ MATEMATISK ANALYSE SET I ET
VIDENSKABSTEORETTSK PERSPEKTIV

Projektrapport af: Anja Juul, Lone Michelsen,
Tomas Hejgdrd Jensen

Vejleder: Stig Andur Pedersewn
Genotypic Proportions in Hybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFELDIGE FENOMENER

Progjektrapport af: Birthe Friis, Lisbeth Helmgaard,
Kristina Charlotte Jakobsen, Marina Mosbek
Johannessen, Lotte Ludvigsen, Mette Hass Nielsen

Kuglepakning

Teori og model

af: Lise Arleth, Kire Fundal, Nils Kruse
Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus
af: Jorgen Larsen

TID & BETINGET UAFHENGIGHED

af: Peter Harremoés

Determination of the Frequency Dependent
Bulk Modulus of Liquids Using a Piezo—
electric Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Modellering af dispersion i piezoelektriske
keramikker

af: Pernille Postgaard, Jannik Rasmussen,
Christina Specht, Mikko @stergard

Vejleder: Tage Christensen

Supplerende kursusmateriale til

"Linewre strukturer fra algebra og analyse”

af: Mogens Brun Heefelt

STUDIES OF AC HOPPING CONDUCTION AT LOW
TEMPERATURES

by: Jeppe C. Dyre

PARTITIONED MANIFOLDS AND INVARIANTS IN
NTMENSIONS 2, 3, AND 4

by: B. Booss—Bavnbek, K.P.Wojciechowski
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265/94

266/94

267/94

268/94

269/94

270/94

271/94

OPGAVESAMLING
Bredde~kursus i Fysik
Eksamensopgaver fra 1976-93

Separability and the Jones

- Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Line®re strukturer fra algebra
oaqa analyse“ II

af: Mogens Brun Heefelt

FOTOVOLTAISK STATUSNOTAT 2

af: Bent Sg¢rensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

To Sigurdur Helgason on his
sixtyfifth birthday

by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets~-oscillationer 1
laterale supergitre
Fysikspeciale af: Anja Boisen,

Peter Beggild, -Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik

Lindelof, Peder Voetmann Christiansen

"Kom til kort med matematik pd

Eksperimentarium - Et forslag til eﬁ
opstilling

af: Charlotte Gjerrild, Jane Hansen
Vejleder: Bernhelm Booss-Bavnbek

Life is like.a sewer ...

Et projekt om modellering af aorta via
en model for stremning i kloakrer

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,
Jannik Rasmussen

Vejleder: Jers Hojgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL. LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT-BAS-projekt

vejleder: Jens Hejgaard Jensen

272/94

273/94

274/94

275/94

276/94

277/94

278/94

279/94

280/94

281/94

282/94

Tradition og fornyelse

Det praktiske elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppe og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistancelsb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
Bettina Serensen

Vejleder: Mette Olufsen

MODEL 10 - en matematisk model af intravenese
anestetikas farmakokinetik

3. modul matematik, fordr 1994

af: Trine Andreasen, Bjern Christensen, Christine

Green, Anja Skjoldborg Hansen. Lisbeth
Helmgaard

Vejledere: Viggo Andreasen & Jesper Larsen

Perspectives on Teichmuller and the Jahresbericht

2nd Edition

by: Bernhelm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af: Gitte Andersen, Rehannah Borup, Lisbeth Friis,

Per Gregersen, Kristina Vejre

Vejleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK - Om tre tolkninger af
problemorienteret projektarbejde

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jern Skov Hansen, Thomas
Thingstrup

A

Vejleder: Jens Hejgaard Jensen

The Models Underlying the Anaesthesia
Simulator Sophus

by: Mette Olufsen(Math-Tech), Finn Nielsen
(RISg National Laboratory), Per Fege Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Roskilde University)

Description of a method of measuring the shear
modulus of supercooled liquids and a comparison
of their thermal and mechanical response
functions.

af: Tage Christensen

A Course in Projective Geometry

by Lars Kadison and Matthias T. Kromann

Modellering af Det Cardiovaskulere System med

Neural Pulskontrol

Projektrappor€ udarbejdet af:

Stefan Frello, Runa Ulsee Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Andreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen

- mma Y,
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288/95
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Grenser for tilfaldighed

(en

af: Erwin Dan Nielsen og Niels Bo Johansen

Det er ikke til at se det, hvis man ikke

kaotisk talgenerator)

lige ve' det!

Gymnasiematematikkens begrundelsesproblem

En specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Vejleder: Mogens Niss

Slow coevolution of a viral pathogen and

its

by:

The energy master equation: A low-temperature
approximation to Bassler's .random walk model

diploid host

Viggo Andreasen and
Freddy B. Christiansen

by: Jeppe C. Dyre

A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by:

PROGRESS 1IN WIND ENERGY UTILIZATION

by:

Universal Time-Dependence of the Mean-Square
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob Jacobsen

Modellering af uregelmassige balger
Et 3.modul matematik projekt

af: Anders Marcussen, Anne Charlotte Nilsson,
Lone Michelsen, Per Merkegaard Hansen

Jeppe C. Dyre

Bent Serensen

Vejleder: Jesper Larsen

1st Annual Report from the project
LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH

ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

by:

Fotovoltaisk Statusnotat 3

af':

Geometridiskussionen - hvor blev den af?

af: Lotte Ludvigsen & Jens Frandsen

Bent Serensen

Bent Serensen

Vejleder: Anders Madsen

Universets udvidelse -
et metaprojekt

Af: Jesper Duelund og Birthe Friis

Vejleder: Ib Lundgaard Rasmussen

A Review of Mathematical Modeling of the
Controled Cardiovascular System

By:

Johnny T. Ottesen

296/95

297/95

298/95

299/95

300/95

301/95

302/95

303/95

RETIKULER den klassiske mekanik

af: Peder Voetmann Christiansen
A fluid-dynamical model of the aorta with
bifurcations

by: Mette Olufsen and Johnny Ottesen

Mordet p& Schrodingers kat - et metaprojekt om *

to fortolkninger af kvantemekanikken

af: Maria Hermannsson, Sebastian Horst,

Christina Specht

Vejledere: Jeppe Dyre og Peder Voetmann Christiansen

ADAM under figenbladet - et kig p& en samfunds-

videnskabelig matematisk model

Et matematisk modelprojekt

af: Claus Draby, Michael Hansen, Tomas Hzjgird Jensen

Vejleder: Jergen Larsen

Scenarios for Greenhouse Warming Mitigation

by: Bent Serensen

TOK Modellering af trazers vakst under pdvirkning
af ozon

af: Glenn Meller-Holst, Marina Johannessen, Birthe

Nielsen og Bettina Serensen

Vejleder: Jesper Larsen

KOMPRESSORER - Analyse af en matematisk model for

aksialkompressorer

Projektrapport sf: §Stine Beggild, Jakob Hilmer,

Pernille Postgaard
Vejleder: Viggo Andreasen
Masterlignings—modeller af Glasovergangen

Termisk-Mekanisk Relaksation |

Specialerapport udarbejdet af:
Johannes K. Nielsen, Klaus Dahl Jensen

Vejledere: Jeppe C. Dyre, Jergen Larsen

304a/95 STATISTIKNOTER Simple binomialfordelingsmodeller

af: Jergen Larsen

304b/95 STATISTIKNOTER Simple normalfordelingsmodeller

af: Jorgen Larsen

304¢/95 STATISTIKNOTER Simple Poissonfordelingsmodeller

af: Jergen Larsen

3044/95 STATISTIKNOTER Simple multinomialfordelingsmodeller

af: Jorgen Larsen

304e/95 STATISTIKNOTER Mindre matematisk-statistisk opslagsverk

indeholdende bl.a. ordforklaringer, resuméer og
tabeller

af: Jorgen Larsen
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306/95

307/95

308/95

309/95

The Maslov Index:
A Functional Analytical Definition
And The Spectral Flow Formula

By: B. Booss-Bavnbek, K. Furutani

Goals of mathematics teaching

Preprint of a chapter for the forth-
comming International Handbook of
Mathematics Education (Alan J.Bishop, ed)

By: Mogens Niss

Habit Formation and the Thirdness of Signs
Presented at the semiotic symposium

The Emergence of Codes and Intensions as
a Basis of Sign Processes

By: Peder Voetmann Christiansen

Metaforer i Fysikken

af: Marianne Wilcken Bjerregaard,
Frederik Voetmann Christiansen,
Jern Skov Hansen, Klaus Dahl Jensen
Ole Schmidt

Vejledere: Peder Voetmann Christiansen og

Petr Viscor

Tiden og Tanken
En undersegelse af begrebsverdenen Matematik
udfert ved hjezlp af en analogi med tid

af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek

310/96

311/96

312/96

313/96

314/96

315/96
a+b

Kursusmateriale til "Line=zre strukturer fra
algebra og analyse" (E1)
af: Mogens Brun Heefelt

2nd Annual Report from the project
LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Serensen

Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojciechowski

THE IRHREDUCIBILITY OF CHANCE AND
THE OPENNESS OF THE FUTURE
The Logical Function of Idealism in Peirce's

Philosophy of Nature

By: Helmut Pape, University of Hannover
Feedback Regulation of Mammalian
Cardiovascular System

By: Johnny T. Ottesen

"Rejsen til tidens indre" - Udarbejdelse af

et manuskript til en fjernsynsudsendelse

+ manuskript
af: Gunhild Hune og Karina Goyle

Vejledere: Peder Voetmann Christiansen og

Bruno Ingemann

316/96

317/96

318/96

319/96

320/96

321/96

322/96

323/96

324/96

325/96

326/96

327/96

328/96

Plasmaoscillation i natriumklynger

Specialerapport af: Peter Meibom, Mikko @stergird

Vejledere: Jeppe Dyre & Jorn Borggreen

Poincaré og symplektiske algoritmer
af: Ulla Rasmussen

Vejleder: Anders Madsen

Modelling the Respiratory System
by: Tine Guldager Christiansen, Claus Draby

Supervisors: Viggo Andreasen, Michael Danielsen

Externality Estimation of Greenhouse Warming

Impacts

by: Bent Serensen

Grassmannian and Boundary Contribution to the
-Determinant

by: K.P.Wojciechowski et al.

Modelkompetencer - udvikling og afprevning

af et begrebsapparat

Specialerapport af: Nina Skov Hansen,

Christine Iversen, Kristin Troels-Smith

Vejleder: Morten Blomhej

OPGAVESAMLING )
Bredde-Kursus i Fysik 1976 - 1996

Structure and Dynamics of Symmetric Diblock
Copolymers
PhD Thesis

by: Christine Maria Papadakis

Non-linearity of Baroreceptor Nerves

by: Johnny T. Ottesen

Retorik eller realitet ?
Anvendelser af matematik i det danske
Gymnasiums matematikundervisning i

perioden 1903 - 88

Specialerapport af Helle Pilemann

Vejleder: Mogens Niss

Bevisteori
Eksemplificeret ved Gentzens bevis for
konsistensen af teorien om de naturlige tal

af: Gitte Andersen, Lise Mariane Jeppesen,
Klaus Frovin Jergensen, Ivar Peter Zeck

Vejledere: Bernhelm Booss-Bavnbek og

Stig Andur Pedersen

NON-LINEAR MODELLING OF INTEGRATED ENERGY
SUPPLY AND DEMAND MATCHING SYSTEMS

by: Bent Serensen

Calculating Fuel Transport Emissions

by: Bernd Kucmmel




329/96

330/96
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The dynamics of cocirculating influenza
strains conferring partial cross-immunity

and
A model of influenza A drift evolution

by: Viggo Andreasen, Juan Lin and
Simon Levin

LONG-TERM INTEGRATION OF PHOTOVOLTAICS
INTO THE GLOBAL ENERGY SYSTEM

by: Bent Serensen

Viskese fingre

Specialerapport af:
Vibeke Orlien og Christina Specht

Vejledere: Jacob M. JacobSeh'og Jesper Larsen

332/97

333/97

334/97

335/97

336/97

337/97

338/97

ANOMAL SWELLING AF LIPIDE DOBBELTLAG
Specialerapport af:
Stine Sofia Korremann

Vejleder: Dorthe Posselt

Biodiversity Matters

an extension of methods found in the literature
on monetisation of biodiversity

by: Bernd Kuemmel

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Bernd Kuemmel and Bent Serensen

Dynamics of Amorphous Solids and Viscous Liquids

by: Jeppe C. Dyre

PROBLEM~ORIENTATED GROUP PROJECT WORK AT
ROSKILDE UNIVERSITY

by: Kathrine Legge

Verdensbankens globale befolkningsprognose

- et projekt om matematisk modellering

af: Jorn Chr. Bendtsen, Kurt Jensen,

Per Pauli Petersen

Vejleder: Jorgen Larsen

Kvantisering af nanolederes elektriske
ledningsevne

Ferste modul fysikprojekt

af: Seren Dam, Esben Danielsen, Martin Niss,

Esben Friis Pedersen, Frederik Resen Steenstrup

Vejleder: Tage Christensen

339/97 Defining Discipline
by: Wolfgang Coy

340/97 Prime ends revisited - a geometric point
of view -

by: Carsten Lunde Petersen

341/97 Two chapters on the teaching, learning and

assessment of geometry
by Mogens Niss

342/97 LONG-~TERM SCENARIOS FOR GLOBAL ENERGY
DEMAND AND SUPPLY

A global clean fossil scenario discussion paper
prepared by Bernd Kuemmel

Project leader: Bent Serensen

343/97 IMPORT/EKSPORT-POLITIK SOM REDSKAB TIL OPTIMERET
UDNYTTELSE AF EL PRODUCERET PA VE-ANLEG

af: Peter Meibom, Torben Svendsen, Bent Serensen

344/97 Puzzles and Siegel disks

by Carsten Lunde Petersen

345/98 Modeling the Arterial System with Reference to
an Anestesia Simulator
Ph.D. Thesis
by: Mette Sofie Olufsen
346/98 Klyngedannelse i en hulkatode-forstevningsproces
af: Sebastian Horst
Vejledere: Jeorn Borggren, NBI, Niels Boye Olsen
347/98 Verificering af Matematiske Modeller
-~ en analyse af Den Danske Eulerske Model
af: Jonas Blomgqvist, Tom Pedersen, Karen Timmermann,
Lisbet @hlenschlager
Vejleder: Bernhelm Booss-Bavnbek
348/98 Case study of the environmental permission

procedure and the environmental impact assessment

for power plants in Denmark

by: Stefan Kruger Nielsen

Project leader: Bent Serensen




