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Puzzles and Siegel disks

Carsten Lunde Petersen

Abstract

Using as examples quadratic polynomials with a fixed Siegel disk,
whose boundary is a Jordan curve containing the critical point, we
give an abstract definition of puzzles and use it to prove that the
Julia set of any quadratic polynomial with a constant type Siegel disk
is locally connected.

1 Introduction.

Suppose 8 € [0, 1] is an irrational and write it as a continued fraction:’

where a, € Nfor all n € N.

Definition 1.1 An irrational 6 € [0, 1] is said to be of constant type
if and only there exist N > 1 such that

a, <N for all n € N.

Suppose zp € Cis a say k-periodic point for some holomorphic map
f and that the multiplier A = f*'(2) equals €™ for some irrational
6. If f* is linearizeable in a neighbourhood of zy we let Ag denote
the maximal domain of linearization and call it a Siegel-disk after C.
L. Siegel, who was the first to study such domains and prove their
existence. In fact Siegel proved that when 6 is of constant type then
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f* always has a Siegel disk around zp, we call such a Siegel disk a
constant type Siegel disk. We call k¥ the period of the Siegel disk.
As everywhere in this paper, k-periodic and k-cycle means period
exactly k, if not stated explicitly otherwise. The number 6 is called
the rotation number both of the Siegel disk Ag and its periodic center
20.

Main Theorem'1 Suppose the quadratic polynomial ¢} has a con-
stant type Siegel disk. Then the Julia set Jg for Q is locally connected.

Figure 1: The Julia set of a quadratic polynomial with a fixed Siegel disk
with rotation number the “golden mean” § = %(\/5_ -1).

One may show that these Julia sets also have planar Lebesgue
measure 0, using a similar technique as the one presented here. How-
ever we shall desist from doing so, in part for simplicity, and in part
because conjecturally their Hausdorff dimension is strictly less than
2, which would be stronger. In fact in the case of a fixed (period 1)
constant type Siegel disk this conjecture is even a Theorem due to
McMullen, see [McM1].



Figure 2: The Julia set (in grey) of a quadratic polynomial with a 2-cycle of
Siegel disks (boundaries in black) with rotation number the “golden mean”

§=1+5-1).

For a polynomial P the point oo is always a superattractive fixed
point. We define the attracted basin of infinity Ap(oo) by

Ap(c0) = {zlP”(z) — oo}

It is non-empty and connected by the maximum principle. The com-
pact complement Kp = C\ Ap(c0) is called the filled Julia set, be-
cause it is full (the complement is connected and unbounded in C)
and 0Kp = Jp, the Julia set for P. The filled-Julia set Kp is con-
nected if and only if Ap(cc) = C\ D. Suppose Kp is connected and
let ¢p : C\ D — Ap(o0) denote the unique biholomorphic map with

M —)T‘ER+.
z

zZ—=00

If P(z) = 2% 4+ a,-12%"! + ..., i.e. P is monic of degree d > 1, then
r=1and

— 2329 —_—
C\D —— C\D

d’*’l lrﬁp

AP(OO) —P—> Ap(oo)
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By a classical theorem of Caratheodory, [Car] we have :

Theorem 1.2 If the Julia set Jp is connected then it is locally con-
nected if and only if the map ¢p : C\ D — Ap(o0) extends continu-
ously to the boundary, i.e. to a continuous map

— - - ¢p:C\D—-—)AP(OO)f

If the Julia set Jp is connected and locally connected we define an
equivalence relation ~p on S§! by z; ~p 2, & ép(21) = ¢p(22). Then
21 ~p 2y = zf ~p z%. Let Ep denote the quotient space S!/ ~p and
let P: Tp — Tp denote the quotient dynamics induced by z — z¢
on S! (for an enlargement of this discussion see [D3]).

Corollary 1.3 If the Julia set Jp is connected and locally connected,
then Jp is homeomorphic to the quotient Lp of the circle. More pre-
cisely there exists a hgmeomorphism xp :Xp — Jp, which conju-
gates dynamics: xpo P =Po xp.

The quotients of quadratic polynomials (and their quotient dy-
namics) have been studied among others by [K-B-1], [K-B-2], [K].

We shall discuss the proof of the Main Theorem first in the case
of a fixed Siegel disk, ie. a constant type Siegel disk of period 1.

As a representative example consider the Julia set for the quadratic
polynomial Q.(z) = z% + ¢, wherec = 3 — ’\Tz, A=e g=1(/5-1)
as pictured above in Figure 1. The number 4 here is the golden num-
ber, which have all 1-s in the continued fraction. Figure 3 shows the
basic dynamics of this quadratic polynomial. The indifferent fixed
point a = % is surrounded by a Siegel disk on which the dynamics is
conjugate to the rigid rotation z — Az.

By a theorem of Herman and Swiatec the boundary of this Siegel
disk is a Jordan curve, in fact a quasi-circle containing the critical
point 0. The Siegel disk and its other preimage thus have 0 as their
unique common boundary point. Moreover there is a sequence of iter-
ated preimages of the Siegel disk one attached to the next at an iter-
ated preimage of the critical point 0, just like pearls on a string. This
sequence converge to the other and repelling fixed point 8 =1 - %




Figure 3: The basic dynamics of the quadratic polynomial with a fixed Siegel
disk with rotation number the “golden mean” § = 1(v/5 —1). (Julia set in
grey and the string of pearls in black.)

2 Puzzles

2.1 A puzzle

A principal tool for proving the Main Theorem is a puzzle, which
we are about to define. This puzzle can be constructed and we shall
do so under the assumption, that the boundary of the Siegel disk
is a Jordan curve, containing the critical point 0. This condition is
actually much weaker than the above constant type condition on the
rotation number. In fact M. Herman has proven that this condition
has full measure in the unit circle.

General Assumption 2.1 Let6 € [0, 1] be a(ny) irrational such that
the quadratic polynomial Q.(z) = 2%+ ¢, where ¢c=c(f) = % — -’\;13,
and ) =e?" has a Siegel disk A, whose boundary § is a Jordan
curve containing the critical point. (Q. has a fixed Siegel disk with




rotation number 6 and the boundary of the disk is nice.)

Let xF denote the two closed but complementary subarcs of &
bounded by the critical point 0 and the critical value ¢. Define Kit C -6
to be the lifts of 53 to Q. not contained in & but in —4. Define in-
ductively £ to be the lifts of kX, to Q. starting at the common

endpoint of /-:jf_l. Define

70i=,;<1i KE kT,
where - means curve product. Then the curves 73t converge to the
unique repelling fixed point 8 for Q., which is belanded by the fixed
external ray R (0) of argument 0. We shall thus add § to the arcs v,
to make them closed. Let ﬁ: denote the lifts of 75*= to @, starting at
z1 = Q71(0) N 4. Define

-1
YE=()T - (—kF) AF

so that 4% are two arcs in J, from B to =3, and which intersects only
at the endpoints and at 0 and iterated preimages there of.

We shall extend the two arcs above to form two Jordan curves
bounding disjoint open disks as follows. Define I't to consist of
first the segment of the external ray R.(0) from potential level 1
into 3, secondly the arc 4%, thirdly the segment of the external ray
R:(3) = —R.(0) from —3 to potential level 1 and fourth and last the
appropriate segments (one for each) of the level-1 equipotential to
close up the arcs.

Let }510 be the open disk, (simply connected domain) bounded by
the Jordan curve I'Y = 't and let 1311 be the open disk, bounded by

the Jordan curve I'j = I'~. Moreover let P{ = P9, P! = P},

Let I'y denote the common image curve T'g = Q.(I'9) = Q.(I'}).
Moreover define P, and Fy similarly as for I'Y, T'1 above. Then the
restrictions @), : Pf — Py are homeomorphisms, holomorphic in the
interior for each : = 0, 1.

We note for later use that the complements of both 150 and F,
are forward invariant, i.e. P,(C\ Fy) C C\ Py. Moreover the clo-
sure of the critical orbit is contained in the complement of the disk
Py. And finally J, C PP U P} C Py and both sets J, N PP, J, N P} are
connected.

The two sets P{, i = 0,1 shall be called level 1 puzzle pieces and
the set Py = {P}, P!} consisting of the level 1 puzzle pieces shall




be called the level 1 puzzle. We define puzzle pieces and puzzles at
all levels n > 1 as follows. Let n > 1 be given. A level n prepuzzle
piece P, is any connected component of P:™(Py). A level n puzzle
piece P, is the closure of a level n prepuzzle piece. And the level
n puzzle is the set or collection P, of all level n puzzle pieces. It
follows from the construction, that each puzzle piece at level n +1
maps homeomorphicly onto a puzzle piece at level n. In particular
each puzzle piece is homeomorphic to a closed disk. Moreover each
level n puzzle piece is the image of precisely two level n 4+ 1 puzzle
pieces so that by induction there are precisely 2™ level n puzzle pieces.
In fact this kind of puzzle is special kind of puzzle. We call it the
dyadic puzzle and shall come back to this point later.

The forward invariance of C\ Py under P. implies that any two
puzzle pieces either are interiorly disjoint or one is nested inside the
other. Thus we shall define

Definition 2.2 A nest N ={P,},5,, P, € P, foreachn>1is a
(any) nested sequence of puzzle pieces

Pn+1CPn7 VnZl

Definition 2.3 The End of a nest N' = {F,}, ., is the set

EndV) =[] Px C J..

n>1

The nest N is called convergent if the set End(N) is a singleton, a
one point set, and the nest is called divergent otherwise.

For z # z' € § let [z,2'] and |z, z'[ denote respectively a closed
or open subarc of § = A bounded by z and z’. It will be clear from
the context, which of the two possible arcs it refers to, but as a rule
with exceptions, it will be the smaller.

Recall that the restriction Q. : § — ¢ is a homeomorphism. For
each n € Z let z, =Q-™(0) N4, and thus in particular zo =0 and
z-; =c. Let Up = —A, the preimage of A different from A, so that
A and Uy has the critical point z¢ as unique common boundary point.
For n > 1 let U, denote the unique connected component of Q7™ (Up)
having a common boundary point (in fact the point z,) with A.

Below are listed some basic properties of our puzzle pieces, which
are easily proved by induction.




1. The boundary 3P, is a Jordan curve for every level n > 1 puzzle
piece P,.

2. f B,Né # 0, then P,Né = 0P,NS = [zk, 2] for some k,m > 0,
k # m. Moreover in this case the sets P, N 8U; and P, N 8U,,
are non trivial arcs (i.e. not points) and P, NUy = P, NU,, =
(see also Figure 4).

Figure 4: Julia set in grey and the first four puzzles in black.

Proposition 2.4 If every nest is convergent, then the Julia set J, is
locally connected.

Proof : By construction and induction we have the following prop-
erties

1. For any n > 1, any point in J. belongs at least one puzzle piece
at level n and to at most two such puzzle pieces.

2. If a point z in J, belongs to a level n puzzle piece P,, then z also
belongs to a level n + 1 puzzle piece P,y C P,.



3. The intersection P, NJ. is connected for any puzzle piece P,.
Moreover let z € J.. If z belongs to only one level n puzzle piece
F,, then J. N P, is a connected neighbourhood of z in J.. And if
z belongs to two level n puzzle pieces P,, P., then J.N (P, U P.)
is a connected neighbourhood of z in J..

It follows that every z € J, belongs to at least one and at most
two nests. Moreover a nest N’ = {P,}, . is convergent if and only if
diam(P,) — 0, as » — oco. Thus local connectivity follows.

Local connectivity, given convergence of all dyadic nests could also
be deduced indirectly from the following which also explains the term
dyadic puzzle. Let ¢:C\ K. — C\D denote the Riemann map,
which is tangent to the identity at infinity. Then ¢ conjugates Q. to
Qo(z) = 2°. Define the dyadic puzzle for Qo similarly as for Q.. That
is (see Figure 5) let the level 0 prepuzzle piece be the set bounded by
the unit circle, the circle of radius e and the line segment [1, e].

Figure 5: The dyadic puzzle (first three levels) for the quadratic polynomial
QQ(Z ) = 22 '

Define prepuzzle pieces at all levels by pulling back by Qo and
define puzzle pieces as closures of prepuzzle pieces etc. Then ¢ defines
a bijection ¢ between the set of all puzzle pieces for Q. and the set
_of all puzzle pieces for Qo, given by @¢(F,) = ¢(P, \ K.). Thus ¢
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defines a 1 :1 correspondence between the (dyadic) nests for Q. and
the (dyadic) nests for Qg. This proves the following Proposition

Proposition 2.5 The map ¢~ : C\D — C\ K, extends continu-
ously to the unit circle S, if and only if every nest is convergent.

And as a Corollary of the Caratheodory Loop Theorem we obtain

Corollary 2.6 The Julia set J; is locally connected, if and only if
every nest is convergent.

There is a natural bijection between T3 = {0, 1}" and the set of all
(dyadic) nests for Qo and hence a bijection  : £y — {N|A a nest for Q.}
given by

n(er, €2, 1 €ny .. .) =N ={Pr},5;
if and only if for all n > 1
exp(i27([0,277] 4 0, €162 ... €,)) = ST N (P, \ K,)

where 0, €1€3 . . . €, is the binary decimal number with digits €;, €3, .. . , €,.
This explicitly exhibits J, as a quotient of 5, in case J, is locally
connected.

2.2 Puzzles in general

The idea of puzzles was invented by Branner and Hubbard, in order
to understand the structure of certain cubic polynomials, where one
of the two finite critical points escapes to infinity. In particular they
described precisely, which cubic polynomials has a Cantor Julia set
see [B-H]. Puzzles were subsequently used by Yoccoz to prove local
connectivity of the Julia set for any quadratic polynomial @, which
is not infinitely renormalizable and for which all periodic orbits are
repelling (see [Hu] and the beautifull exposition [Mi] by Milnor). In-
finitely renormalizable polynomials have also been studied using (Yoc-
coz) puzzles. See for instance the papers [L] by Lyubich, [J] by Jiang
and [L-vS] by Levin and vanStrien. The puzzles used by Branner and
Hubbard was in a way simpler, than those employed by Yoccoz, be-
cause their boundary was fully contained in the attracted basin of oo,
while the puzzles of Yoccoz intersected the Julia set in preperiodic
repelling points. The puzzles presented here represents yet a general-
ization, in that full boundary arcs of the puzzle pieces are contained
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in the Julia set, and these boundaries may even contain the critical
and or post critical points. Ignoring the risk of being too restrictive
for future uses, we shall try to give an abstract definition of puzzles,
which at least includes the puzzles used so far:

Definition and Construction 2.7 Given arationalmapR: C — C,
a puzzle is given by a finite collection of open, connected and non
empty sets:

Po={B.B... . B}

such that

2. 13013’=0,fora1113¢15'e750.

3. The complement C = C\ U P is forward invariant, i.e. satisfies
}56750
R(C) CC.
Define P,, for all n > 1 by pulling back, i.e. P, € 'Pn if and only if P,
is a connected component of R="(P) for some P € P,.
Finally the puzzles Py, n > 0 are obtained by taking closures. That
is

PecP,o3PecP,:P=P
When used in local connectivity arguments, we also require

4. En Jr is connected for all Py € 750. :

5. The number of postcritical points belonging to at least two dif-
ferent level-1 puzzle pieces is finite.

It is easily checked that the properties 1.-3. are inherited by all
levels n > 1. Moreover properties 2. and 3. implies that puzzle pieces
are either nested or “interiorly disjoint”, i.e. if P, € Pn, P, € Pp,
m > n then either P, C P, or P.nP,=0. Concerning property 4.
one has to put in extra assumptions in order for it to be inherited to
subsequent levels. However it easily follows that if the puzzle piece
P,+1 is mapped properly by degree d’ onto the puzzle piece P,, then
the number of connected components of P,.; N Jg equals d' times the
number of connected components of P, N Jg.
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Nests, the End of a nest and convergence/divergence of a nest is
defined as in the previous definitions.

The objective for defining puzzles and for the further study of
puzzles is to decide when nests (a given nest) is convergent and if not
describe why not.

In the case of cubic polynomials as studied by Branner and Hub-
bard the convergence of all nests for a given polynomial proves that the
Julia set in question is a Cantor set. Moreover they prove that when
this is not the case, so that at least one nest is not convergent, then the
cubic polynomial has a quadratic like renormalization (this term shall
be defined in Section 5) and the End of the nest is homeomorphic
to the filled Julia set of some quadratic polynomial with connected
Julia set. In the case of Yoccoz puzzles again either all nests for a
given quadratic polynomial are convergent and the Julia set is locally
connected, or there is at least one non convergent nest, the quadratic
polynomial is quadratic like renormalizable and the end of the non
convergent (in fact all non convergent nests) is homeomorphic to the
filled Julia set of some quadratic polynomial with connected Julia set.
Moreover both the results of Branner-Hubbard and Yoccoz about the
dynamical spaces admit conclusions about the corresponding param-
eter spaces.

The results of Branner-Hubbard and Yoccoz, not only share the
idea of puzzles. Also when it comes to proving that nests are conver-
gent they share the main idea:

Given a nest N = {P,},,, define A, = Ign \ Pp+1. If A, does not
separate the plane we say A, is degenerate and define mod(A4,) =0
and if it does define mod(A,) to be the conformal modulus of A,. That
is if A, separates the plane then it is biholomorphic to a circular annu-
lus A(r, R).= {z|r < |z| < R}. The number mod(A(r, R)) = 5 log R/r
is a conformal invariant called the conformal modulus. The central
part in proving convergence of nests is then to prove that

Z mod(A,) = oo

n2l

using dynamics. Convergence of the nest N then follows by a basic
Grotzsch inequality.
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2.3 General Puzzle Tools.

Going back to our puzzles and nests for quadratic polynomials with a
fixed Siegel disk, we see that the above method fails fatally. For every

o]
nest N = {Pp},>, every A, = P, \ P,y is degenerate. Thus we need
a completely different approach.

One such was given by the author in the paper [P]. There the
idea is to look at a quasi conformal model of the Julia set described
by Douady in [D2]. In this model the Siegel disk is replaced by the
unit circle and its iterated preimages are analytic arcs. For this model
it is proved directly that every nest contains puzzle pieces, which are
arbitrarily small, simply because their circumference are small. One
then obtains local connectivity or convergence of all nests because the
model (with its puzzles) are homeomorphic to the quadratic Julia set
(with its puzzles).

The proof we present here is a simplified version of the proof used
in [P]. This simplification was suggested by Lyubich and Yampolsky,
(see also [Ya]). The simplified approach combines a central result from
[P] on control of the nests containing the critical point with a general
idea for spreading this control to all nests. This general spreading
idea has its roots in what Lyubich have named the K&be principle in
holomorphic dynamics. It has been used succesfully in several places
and by many authors e.g. Lyubich, Shishikura, Jiang, Hu, Levin, van
Strien, Y@mpolsky, . '

Lemma 2.8 Suppose U C C is a simply connected domain, z € U
and r > 0. Let d = diam(By(z,r)) denote the Euclidean diameter of
the closed hyperbolic U-ball By (z,r). Then

D(z, ge'z") C By(z,r).

Proof : The Lemma is an immediate consequence of the distortion
estimates for univalent maps of D applied to an inverse Riemann map
¢:D— U, with ¢(0) = z.

Proposition 2.9 Let z € End(N) C J, for some nest N = {P,}, ;.
Suppose there exist K > 0, two sequences of integers {ms};cn, {7k} ren
and a sequence of simply connected domains {Uy},cn such that

1. mp — o0 as k — oo.
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2. P,, C Uy and diamy, (P,,) < K, for all k € N.
3. QI : Up —> C is univalent, for all k € N.
Then N is convergent, and End(N) = {z}.

Proof : Under the hypothesis of the Proposition suppose to the
contrary that_ _

"E=EndV)= [ P.= [ Pu.# {z}-

n>1 keN

and let d =diam(E) > 0. As EC P,, C By, (z,K) for all k € N the
above Lemma implies

D(z, $e~%X) C By, (2, K) C Us.

Hence the restrictions QT+ : D(z, £ e™2K) — C are univalent for all
k € N. But then the family of iterates {Q7** }, .y is @ normal family.
This contradicts that z € J. and as such is accumulated by repelling
periodic points.

Note that the univalence of the restrictions QT** to Uy was only
used to ensure normality of the family {Q7** }, .y on the disk Dz, g e‘zk)
Hence many other properties such as omitting 3 distinct points in C
could be used instead of 3.

A puzzle piece P is called critical if it contains the critical point.
A nest N = {Pn}neN is called critical if every puzzle piece P, contains
a critical point so that End(AN) also contains a critical point. In our
case with a Siegel disk there are precisely two critical puzzle pieces at
every level and precisely two critical nests.

A puzzle piece P is called postcritical, if and only if PNé # 0.
(Recall that the postcritical set {Q7(0)},>, equals §.) Moreover we
let P!, denote the set of postcritical level-n puzzle pieces.

Corollary 2.10 Let z € J. and suppose there exists a level N and a
sequence of integers {my}n diverging to oo such that

Q)¢ U P

PePy

Then every nest N with z € End(N) is convergent with End(N) = {z}.

14
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Proof : For each non postcritical level-N puzzle piece P € Py\Py
let Up C C be an open simply connected neighbourhood of P with
UpNdé=0. (To construct such a neighbourhood note that Pn = (
and that P is compact and connected. Let ¢p : D — C\P denote an
inverse Riemann map. Choose 0 < r < 1such that § U {00} C ¢p(D(r))
and define Up = C\¢p(D(r)).)

Let K = max{diamy,(P)|P € P~n\Py} and let ny = N + m;, for
k € N. Given a nest N = {P,}, 5, with z € End(N) we shall define a
sequence of simply connected domains {Uy }; ¢y such that K, {ma}eens
{nk}ren and {Uk} ey full fills the hypotheses of Proposition 2.9.

Fork € Nlet P = Q7*(P,,) € Pn\P) and let Ui denote the unique
connected component of Q7™ (Up) containing P,,. Then the restric-
tion QT** : Uy — Up is biholomorphic because Up N {Q7(0)},,50 = 0.
- In particular Q7 is univalent on Uy, U is simply connected and
diamy, (Fn,) = diamy, (P) < K. Hence the hypotheses of Proposi-
tion 2.9 are satisfied and this Proposition furnishes the conclusion

End (W) = {z}.

3 Controlling the dyadic Siegel puzzle

In order to use the general tools developed so far, we need to have
some initial control over the (two) critical nests. In this section we
shall state one such type of control over the critical nests and prove
that it suffices to prove that all nests are convergent and hence that
the Julia set J; is locally connected. In the subsequent section we shall
show that this particular control over the critical nests can be obtained
provided the rotation number for the Siegel disk is of constant type.

Definition 3.1 Given k > 1let Iy = It = [0, z,, | denote the closed
interval containing T g, ., and let Ji = Jy o =% _g,, T—g,, 44, [ denote
the open interval containing Iy. Moreover for 0 < j < qx41 let the
intervals Iy ; and Ji; be the unique connected components in § of

Q77 (Ir0) and Q7% (Ji o) respectively.

Note that Ij ; C Ji ; and that the restrictions Q. : Jx; — Jk j~1
are diffeomorphisms for each 0 < j < gr41, because z_g, 4+1 is the first
return (iterate) of the critical point 0 = zg into Jk.

Given an open interval ]z,z’[C § in § (notion defined on page 7)
define a hyperbolic domain Cy, o1 = (C\ 8)U]z,2'[. To simplify no-
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tation we shall use the shorthand Cy; = C. ; and similarly we shall
simplify the notation for other objects such as distance related to the
hyperbolic domain Cy ;.

Proposition and Definition 3.2 Suppose the (critical) level-n puz-
zle piece P satisfies PN é = Ir. For 0 < j < gg41 there is a unique
level n + j puzzle piece P! (connected component of Q7 (P)) with
Pind=1I;;. Moreover c € Tkgpy1-1 C P%+171 and the two level-
(n + qr+1) critical puzzle pieces map homeomorphicly onto P%+1=1
by Q. and hence map homeomorphicly onto P = P° by Q¥+, One of
these critical level-(n + gr+1) puzzle pieces, call it P’ is nested inside
P and the other, call it P” satisfies P" N = Iy41. The later puzzle
piece is called the Swap of P and is denoted Swap(P).

Proof : Note that QZ : C‘j(Ck,o) — Ci,0 is a covering map be-
cause it is unbranched. Hence any connected component of Q¢ J (P)
is mapped homeomorphicly onto P C Cro by @7 and is thus a level
(n + 7) puzzle piece. Moreover Q4(I} ;) = Iro C PN & and thus I ; is
contained in a unique connected component of Qc_j (P). This provides
for the existence and uniqueness of P?. Clearly ¢ € Ixq4,,,~1 2nd thus
the mapping properties of P’ and P” follows. Hence we need only

check that P” Né = I4;. To this end we have

Q™ Te) NV = [Zgptq041) Tans | = [Tortarngrs 01U [0, 24,4, 1

a'nd [$Qk+9k+1,0-l C Ik C P

Hypothesis 3.3 There exist a constant K > 0 and a sequence of
critical puzzle pieces {(Py, } .y such that for all k € N

1. Py, N6 = Ii.
2. diamo(CP,, ) < K and diamgqy o(Swap(CP,,)) < K.

In order to transform this hypothesis into something useful we shall
introduce a little more notation and some properties of hyperbolic
metrics.

For U C C a hyperbolic subset we let Ay : U — R, denote the
coefficient function of the hyperbolic metric on U relative to the Eu-
clidean. We let dy(-,-) denote the hyperbolic distance, further more
for z € U and r > 0 we let Dy(z,7) and By(z,r) denote the open and
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closed respectively hyperbolic U-ball of radius r around z. Finally we
define the outer (Euclidean) radius of By (z,r) as

Out(By(z,r)) = sup{|w — 2| |w € By(z,7)}

the minimal radius of a Euclidean ball centered at z and containing
By(z,r). It is well known that Out(By(z,r)) for r fixed, converge
to 0 as z approaches a finite boundary point of U. We shall in the
following quantify this statement.

Assume first that U is simply connected. The famous K&be %-
Theorem is equivalent to

1

5d(z,50) < u(2),

where d(z, 8U) denotes the Euclidean distance from z to the boundary
of U. Let 29 € U be arbitrary but fixed and let o € QU be a point
with |29 — | = d(2z0,0U) = d. Then by the triangle inequality

: 1 1 1
>
A(2) 2 535507 2 T —a 2 Td+ o =2

= k(z2),

where k : C — R is defined by the last equal sign. We let also &
denote the metric with coefficient function « relative to the Euclidean
metric. Given any r > 0 we have By (z9,7) C By (20,7), where the later
denotes the closed x ball. The later is also a Euclidean ball centered
at zo, by rotational symmetry of x around zq and its Euclidean radius
R can be calculated from the formula

R
r=/ w()dz| = = [ —odt =log 23 E
[z0,z0+R] 2Jo d+t d

and hence R = d(e?” —1). We have thus deduced that for any simply
connected domain U C C, for any point zp € U and forany r > 0

Out(By(20,7)) .
d(zotfc‘?(;) < (€7 -1).

Assymptoticly this also holds in the general case, where U is not sim-
ply connected, but the center zo approaches a non singleton boundary
component of U. This is the content of the following Lemma
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Lemma 3.4 Let U C C be a hyperbolic subset and let K be a con-
nected component of C\U. For all r >0 and for all zo € U with
d(20, K) < L e7% diam(K):

Out(By (20, 7)) er —1
¢ - d(zo,K o
d(Zo,K) 1—2d_i£a—rgx(_i{%e2

Proof : The set V = C\K contains U and thus it suffices to prove
the bound for V. If K is unbounded then V is simply connected and
diam(K) = oo. The bound in the Lemma coincides with the bound in
the simply connected case, found above. Thus we shall suppose K is
compact. Moreover both the inequality in the statement of the Lemma
and the inequality in the hypothesis of the Lemma are invariant under
affine maps. We shall use this liberty however only to assume zo = 0
and that —d € K, where d = d(z, K'). Let 8 € K be a point with

diam(K)
2
Let H(z) = g%ézk_ The Mobius transformation H fixes 0 and —d,
moreover it maps 8 to co and oo to —(8+d). Let W= H(V) C C,
then W is simply connected with C\W = Cn H(K). Moreover H
maps the hyperbolic ball By (0, ) onto the hyperbolic ball H(By (0, r))
and d(0, H(K)) < d, hence
Bw (0,r) C D(d(e* -1))

To complete the proof let us show that

|8+dl=6-(-d)|=D> >de”.

1 - 2 d!zo,K!

By(z0,r) C By (20,7) C H™'(D(d(e* ~1))) C D ( A )
Fam(K) €

where H~1(z) = —_;%’—5 denotes the inverse of H. Here the only non
trivial inclusion is the last one: For |2| < d(e®” —1) we have
Blll . _(D+d)
[B+d|—|z| = D - d(e*r —1)
_ D+l |4
D+d—der ~ 1—e2fof_d
d(e’ -1)

< .
-1 _ or d(20,K
1-2e% di_(_zfiam 1274

|H (2)f <

18
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Lemma 3.5 The Euclidean diameter diam(Jx ;) converges to zero
uniformly in 0 < j < gx4+1 as k — oo.

Proof : The Lemma holds because the restriction Q. : 5 — § is
homeomorphicly conjugate to the rigid circle-rotation, with the same
rotation number. The Lemma holds for the images under the conju-
gacy (in fact the images are for fixed k all of equal length and interiorly
disjoint) and the inverse of the conjugacy is uniformly continuous.

Remark that the Lemma implies

diam (6\Jx ;)

diam (Jr.) as k — co.

Lemma 3.6 Given R > 0 and ¢ > 0, there exists kg € N such that for
Vk > ko, V0 < j < qi41 and for all z € Jy ;:

Out(By,j(z, R)) < ¢

and the disk Dy ;j(2,R) is sifnp]y connected.

Proof : Let ¢ = min{diam(§)/2,¢} and choose ko € N according
to Lemma 3.5 such that diam(J ;) < We?clr?ﬁ' We can suppose that
diam(8\Jk,;) > diam(8)/2 and 2diam(Ji;) < e~?Rdiam(6\J,;) for
k > ko and 0 £ j < gk41, increasing kg if necessary. Combining the
above with Lemma 3.4 we obtain the estimate of the Lemma. More-
over any loop in Dy ;(2, R), based at z is homotopicly trivial in Cg;
and hence also in Dy ;(z, R), because we have proved the estimate with
¢/ = min{diam(4)/2, €} and diam (6\Jx ;) > diam(6)/2. Thus Dy ;(z, R)
is simply connected. This proves the Lemma.

For k€ Nand 0 < j < gxq let Ag; = QC_I(C]C,]'._l) C Ci,;. Then
the restriction Q. : Ag; — Ci ;-1 is a covering and hence a local
hyperbolic isometry and Ji ;1 = Q:(Ji,;) = Qc(=Jk,;)-

Lemma 3.7 The hyperbolic distance d4, ;(Jk,j, —Jk,;) converges to
oo uniformly in 0 < j < qx41, as k — oo.

Proof : Let v =, :[0,1] — Ak, be a (geodesic) arc realizing
the hyperbolic distance da, ,(Jkj, —Jk,;) and say with v(0) € Ji ;,
(1) € =Jij. Let & = krj_1 =Q(7):[0,1] — C j—1 and define a
Jordan arc p,j-1 = £ [k(1),(0)], where the later arc in the curve
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product is contained in the interval Ji ;_;. The arc 4 has non zero in-

dex (+1) around the critical value c and hence around any z € 6\ Ji ;_;.

Combining Lemma 3.4, Lemma 3.5 and the remark following it with
the above yields the Lemma.

- Proposition 3.8 Hypothesis 3.3 implies the two critical nests are
convergent. And hence that any nest N containing a precritical point
z, i.e. QT (2) = 0 for some m > 0, is convergent with End(N) = {z}.

Proof : The convergence of the two critical nests follows by com-
bining Lemma 3.5 and Lemma 3.4 with Hypothesis 3.3. Suppose next
that Q7*(z) = 0 for some m > 0 and let N = {P,}, 5, be a nest with
z € End(NV). Then Ny, = QF(N) = {QT(Pn)}nom s a critical nest
and hence convergent. But @7 (End(V)) = End(N’) = {0} and hence
End(NV) = {z} by analytic continuation.

q.e.d.

q.e.d.

Given k > 1let Ik,j+qk+1 = Ij4+1,; and Jk,j+qk+1 = Ji41,5; for 0 < j < gx.

Definition 3.9 Let P be a puzzle piece with PN 4§ = I o for some
k € N as in Proposition and Definition 3.2 and let P!, 0 < j < gr41
be as defined there. Extend this sequence of puzzle pieces by defin-
ing P%+1 = Swap(P) and P%+1tJ = Swap(P)J for 0 < j < qx. Where
Swap(P) is as in Proposition and Definition 3.2, but with P replaced
by Swap(P). Then QL(P?) = P° =P for all 0 < j < gry1 + g&- This
finite sequence {P? };":‘B‘ﬂ"_l will be called the Yampolsky sequence
based on P.

The following Lemma is due to Yampolsky.

Lemma 3.10 For every critical puzzle piece P with PN J = I for
some k € N the union of the puzzle pieces in the Yampolsky sequence
based on P contains a neighbourhood of 6 in J,. That is the set

k4+1+gr—1 )
U Pnu

i=0

is a neighbourhood of § in J.. Moreover the puzzle pieces of the
Yampolsky sequence are mutually interiorly disjoint.
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Proof: We have

Piné=1I;; for  0<j<grn
PiNé=1Ir;=Ikt1jqys 0T Qet1 < J < Qopr + G-

The intervals Ix j, 0 < j < gk+1 + gx are mutually interiorly disjoint
and their union covers é, because the similar property holds for the
corresponding rigid rotation. Thus the puzzle pieces in the Yampolsky
sequence are also mutually interiorly disjoint. Moreover

gk41+qx—1 _
Au |J Puyy

§=0

is a neighbourhood of § in C by the above and the general properties
of puzzle pieces (see page 7). This completes the proof.

A point z € J, is said to be critically recurrent (recurrent to the
critical point) if the forward orbit of 2, {Q%(2)},5¢ intersects every
neighbourhood w of the critical point 0. -

Proposition 3.11 Assume Hypothesis 3.3 and suppose z € J, is not
critically recurrent. Then every nest N' with z € End(N) is conver-
gent, i.e. End(NV) = {z}.

Proof : Let w be a neighbourhood of the critical point 0 with
wN{QT(z)|m > 1} = 0. Choose k with ((P,,, USwap(CP,, )) C w and
let {P? };’-":“Bl'*'q"_l denote the Yampolsky sequence based on (P,,. The
orbit of z also stays outside the union of the puzzle pieces P?, because
every puzzle piece in the Yampolsky sequence is an iterated preimage
of CP,,. Moreover by Lemma 3.10 the union the puzzle pieces from
the Yampolsky sequence forms a neighbourhood of §. Thus by the
nestedness property of puzzle pieces the orbit of z does not intersect
any of the postcritical level NV = ng + gg+1 + gx puzzle pieces. Hence
we can take N above and mjy = k in Corollary 2.10. This Corollary
then furnishes the conclusion.

Lemma 3.12 Given K > 0 there exists K = K(K) > 0 such that for
any hyperbolic domain U C C, for any zg € U with Dy(z9,2K) simply
connected and any compact set z9 € L C U with diamy (L) < K :

diamp,, (;, 2) (L) < K.

21
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" Proof : As Dy(20,2K) is simply connected we can assume, lifting
to a universal covering if necessary, that U = D and zo = 0. We have
Dp(0,2K) = D(tanh(K)) and L C Dp(0, K) = D(tanh(K/2)). Thus
we can even calculate a bound for K:

- 1+R _ tanh(K/2)

K—(I() S 210g 1-R. where R = m—

Proposition 3.13 Assume Hypbthesis 3.3 holds and let 2 € J. be
critically recurrent, but not precritical. Then every nest N with
z € End(N) is convergent, i.e. End(N) = {z}.

Proof : Let K be as in the hypothesis and let K (K) be as in
Lemma 3.12. Choose kg according to Lemma 3.6 such that Dy (0, 2K)
is simply connected for all £ > k¢ and according to Lemma 3.7 such
that

day ; (Jrjr —Jkg) > 2K (1)
for all £ > ko and all 0 < j < gg41-

Let N = {P.},5, be a nest with z € End(V) and let 2, = Q7 (2).

For k > ko arbitrary let {P,f}qk+l+qk_

=0 : denote the Yampolsky sequence
based on (P, .

Claim 3.13.1 There exists m > 0 (in fact infinitely many) such that

Q?(Pnk-}-m) =@y, -

Proof of Claim: The union of P{**' = Swap((P,,) and —P7**!
contains a neighbourhood of 0 and are the only level (ng + gk41) puzzle
pieces which intersects D(r) for r sufficiently small. There exists m > 0
(in fact infinitely many) with z,, € D(r), because 29 = z is critically
recurrent. But for such m Q7 (Pr,4g,,,4+m) equals either P**' or

— P+ and hence Q7 "™ By, 4g0y4+m) = (Pr,, because

ng+1(PZk+l) — ng+1 (__sz+1) = PO = CP"I: .
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Let m; > 0 denote the minimal m > 0 with QP (P, 4m) = Py,
and define nj, = n; + m). Moreover let 0 < Jk < gk+1 + g be max-
imal with QT (Pn) = F{*, so that P}* is the first puzzle piece
from the Yampolsky sequence based on (P, in the forward orbit of
the puzzle piece Py . If jk < gr41 define mi = mj, and let Ui denote
the connected component of Q7" (Dy 0(0,2K)) containing z, call this
Case a). If ji > 41 define my = m}, — qx+1 and let Uy denote the
connected component of Q7™ (D1,0(0,2K)) containing z, call this
Case b).

Claim 3.13.2 For each k > ko the set Uy is simply connected and
diamy;, (P, ) < K. Moreover the restrictions
Case a):  QU* : Uy — D o(0,2K) (2)
Case b):  Q7* : Uy — Dj41,0(0,2K) (3)

are biholomorphic.

Note first that m; — oo as k¥ — 0o0. Hence the Claim combined with
Proposition 2.9 yields the desired conclusion End(N) = {z}.

Proof of Claim: Consider first Case a). The hyperbolic estimate
follows from the biholomorphicnes of the restriction (2) as follows: We

remark at first that P, C Uy because Q?;‘(Pn;) = P,, C Dio(0,2K).

As Dy (0,2K) is simply connected we obtain from Lemma 3.12
diamy, (P, ) = diamp, ,(0,26)((Pn,) < K.

We proceede to prove the restriction (2) is biholomorphic. Note at first

that Q7Y (Pf*+™") = PI¥*' U (=P™**+') and —P™** C P?. Thus ei-

ther mg = jr = gr41 — 1 0r ji < k41 — 1 by the maximality of jr < gr41.
For each 0 < j < gx4+1 the restriction

Q2 : Q¥ (Crp) — Cro D Dip(0,2K) (4)

is a covering map, because the first return (iterate) of the critical point
into Cro is Q&**'(0) = z_g,,, € Jro. Thus for any connected com-
ponent w of Q7 (Dy,0(0,2K)), the restriction Q% : w — Dy 0(0,2K)
is biholomorphic, because Dio(0,2K) is simply connected. Hence
if mk=ji or mp=jk+1< gs1 we are through. If mg > jr +1
then Q’cn"_(]""rl)(PﬂL) = —P**! by maximality of jy. Let wj de-

note the connected component of Qg (j"+1)(Dk,0(0,2K)) containing
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Figure 6: The central steps in pulling back the hyperbolic disk around 0 to
a disk Uy around z.

Zm—(ix+1) € —P,f"“ and hence —P,f"'“ C wk. Then Uy is a connected

! a1 .
component of Q. MGt )(wk). Moreover y;,+1 = —Zj,+1 € —P*H!

and Q7 U**Y(Cro) € Akjps1 = Q7Y (Chy, ). Hence
wr DAk,ij (Yje+1,2K) C C\Za
where the first inclusion holds, because the restriction (4) is a local

isometry, and the second holds, because of the lower bound (1). But

then the restriction Q?;‘_(]kﬂ) : U —> wy is biholomorphic because
Q. : C\(A U —A) — Ais a (holomorphic) covering map. This proves
the Claim in the Case a). The proof of Case b) is similar and is left
to the reader. Note however that if jx = gx+1 + gr — 1 and m} > ji
then

= mi—(Jx+1) _ pt
Yarsr+ax = ~Toxpr+ax € Qc (Pn;) =P
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The reason is the minimality of m}, and the fact that the other preim-
age —P' of PP+*%~1 s contained in PY.

4 Fulfilling the Hypothesis

Recall that for 8 € [0,1] welet A = A(8) = 2™ and ¢ = ¢(8) = 3 + .
The following Theorem can be found in [D2]. It relies on a priori

estimates for critical circle mapping by Herman and Swiatec see also
[S],[He] and [Yo]. '

Theorem 4.1 Suppose the irrational 6 € [0,1] is of constant type.
and let ¢ =c(6) be as above. Then there exists a quasiconformal
homeomorphism ¢g : C — C such that:

1. The map ¢g is conformal on the attracted basin of co.
2 ¢s(B)=D and  ¢e(0)=1.
3. There exists p = p(6) € S* such that for all z € C\ D

850 Quo 87 () = fols) = pt T

Remark that the number u is unique, but the map ¢ is not. In
fact the number p = p(6) is the unique unimodular constant such that
the analytic circle homeomorphism fp : 8! — S! has rotation num-
ber 4. Technically one starts with the Blaschke function fs. Then one
replaces the dynamics of f; in D by a quasiconformal conjugate of the
rigid rotation with rotation number 8 and the complex structure on D
is replaced by the structure pulled back by the quasiconformal conju-
gacy. The map Fp thus obtained has topological degree 2. By further
pulling back by Fj one obtains an invariant complex structure for Fj.
The Ahlfors-Bers Theorem, [A-B] yields the existence of a quasicon-
formal homeomorphism ¢y integrating the invariant structure. Finally
topological considerations shows that the conjugate map ¢y o Fy o qS'g’l
is M6bius conjugate to the quadratic polynomial Q.. Thus we have
synthetically constructed the map Q. by constructing a topological
degree 2 map with an invariant complex structure and the right topo-
logical data.

The condition @ of constant type enters, because this is the pre-
cise condition under which analytic circle maps with a critical point
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(the point 1 is a double critical point for f) are quasi-symmetrically
conjugate to the rigid rotation see [He] and [Yo]. And moreover an
orientation preserving circle homeomorphism extends to a quasicon-
formal selfmap of the disk if and only if it is quasi symmetric.

Let the map fp = u(f)22£2, p(f) € S* have rotation number 6
on the unit circle. Let Fy be a continuous degree 2 map obtained from
fo by gluing into D a conjugate of the Tigid rotation Ry(z) = e**™? 2.
(Note that if 4 is not of constant type we can not obtain an invari-
ant complex structure, but this is not of concern to us right now.)
Moreover let Jg, denote the boundary of the (immediate) attracted
basin of oo for Fy. Then Jg, has the same structure and dynamics
as was supposed for J, in constructing the dyadic puzzle. Thus one
may define a dyadic puzzle for Fy completely analogous to those for
the quadratic polynomials with a fixed Siegel disk whose boundary
is a Jordan curve containing the critical point. Such puzzles were
constructed and studied in great detail in the paper [P] by the author.

We shall use almost the same notation for Fy as for Qg, for instance
zj = F; (1) NSY, I = [24,,1] C 8, Jk =12 gy 14ax T—g [C ST

The following analogue of Hypothesis 3.3 for Fy can be deduced
from [P] [Proposition and Definition 3.1, Lemma 3.3 and their proofs]

Theorem 4.2 For every irrational rotation number 6 € [0, 1], there
exist K > 0 and a sequence of critical puzzle pieces {(Py, }; oy With
P, NS = It and with

l;,(0P,,) <K, (5)
17,4, (0Swap(CPy,)) < K. (6)

Note that the boundaries of puzzle pieces for Fp turns out to be recti-
fiable and that bounds are in fact given in terms of hyperbolic lengths
of boundaries of puzzle pieces (5, (-, ) denotes hyperbolic arc length in
Cj, = Jx U (C\SY)). Such a property is impossible in the polynomial
Siegel case, where presumably any arc in the Julia set is non rectifiable
(quasiconformal maps can and often do map lots of rectifiable curves
to non rectifiable curves).

Proof : Sketch The candidate sequence of arcs is found in [P] [Propo-
sition and Definition 3.1). Secondly we note that it suffices to ob-
tain the desired bounds in Cj = C;,\{0}, where J} is a hyperbolic
geodesic by symmetry. This is done in [P][Lemma 3.3]. To provide
also bounds for I, ., (0 Swap(CPy, )) one needs the proof of [P][Lemma
3.3]. Technically (in the terminology of the paper [P]) the bound
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I\(Gr) < Lgg + 3LR¢is replaced by the bound {,(G,) < Lgy+4Lpg,
because Swap((P,, ) may at worst be a fourth instead of a third Swap
of a controlled puzzle piece P € Fy.

To yield results for quadratic polynomials we shall use Theorem 4.1
and the fact that quasiconformal maps distorts quasiconformal dis-
tances by a bounded amount. To this end consider two arbitrary
points 27, 2o € D and define

modp(z1, 22) = sup {mod(4) | A C D an annulus

separating S! from {21, 22} }

For 0 < r < 1 we have modp(0, r) = mod(D\[0, r]) and further more
the function r — mod(D\[0, r]) is a decreasing homeomorphism from
10, 1 onto ]0, oo[(see e.g. the monograph [L-V]). Define a decreasing
homeomorpism g :]0, 0co[—]0, oo[ by x(dp(0,r)) = modp(0,r). Then
p{dp(z1, 22)) = modp(zy, 23) for all z;, z2 € D because both the hyper-
bolic distance dp(z1,22) and mod D(z;, 22) are invariant under auto-
morphisms of D.

Lemma 4.3 Suppose ¢ : U — V is a K-quasiconformal homeomor-
phism between hyperbolic subsets U,V C C. Then for any pair of
points 2,22 € U

B (Ko (an, ) < dp(@(a),6(22)) < w7 (ol (o, )

Proof : Lifting to universal coverings if necessary we can suppose
that U =V = D. Then V2,2, € D:

%modp(zl, 29) < modp(¢(21), #(22)) < K modp(z1, 22)

as K-quasiconformal maps distorts moduli of annuli by at most a fac-
tor K. Hence the Lemma follows

Thus we obtain as Corollary of the above Theorem 4.1 and Theo-
rem 4.2:

Corollary 4.4 Suppose 6 € [0, 1] is of constant type, then Hypothe-
sis 3.3 holds for the quadratic polynomial Q). In particular all nests
are convergent and the Julia set is locally connected.
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5 Siegel disk of period p > 1.

We shall turn to the study of quadratic polynomials with a p > 1-cycle
of Siegel disks whose boundaries are Jordan curves, one of which con-
tains the critical point 0. For this we need the notions of polynomial
like map, renormalizeability, and some ba,sm knowledge of Julia sets

of quadratic polynomials. -

A polynomial like map of degree d > 2 is a triple (f,U’,U), where
U’ cC U cC C are open sets with closures homeomorphic to D and
f: U — U is a proper holomorphic mapping of degree d. We shall
usually write f : U’ — U instead of (f,U’, U). Moreover we shall use
the synonym quadratic like map for a polynomial like map of degree
two. The filled Julia set of a polynomial like map is the set of non
escaping points Ky = {z € U'|f"(z) € U',¥n > 0}. The Julia set J;
is the boundary d K of the filled Julia set for f (note the abbreviation
f for the polynomial like map).

Two degree d polynomial like maps f: U/ — U and g: V' — V
are said to be conformally equivalent if there exist disk neighbour-
hoods, wy of Ky and w, of K, respectively and a biholomorphic map
¢ :w; — w, conjugating f to g, ie gogp=¢o f. In the situation
and notation above, if ¢ is only quasiconformal on wy, but conformal
on Ky (in the sense of distributions) we say that f and g are hybrid
equivalent and call ¢ a hybrid equivalence. Clearly both a conformal
and a hybrid equivalence maps filled Julia set onto filled Julia set.

Note that any polynomial like map f:U’ — U is conformally
equivalent to a polynomial like restriction f:V’' — V of f, where
both V C U and V' C U’ have real-analytic boundary. (Let V be
a sufficiently large hyperbolic disk in U containing both U’ and all
critical values for f and let V/ = f~1(V)). Polynomials are included
in the class of polynomial like maps, taking suitable restrictions, when
necessary. The following is a principal tool in the theory of polynomial
like maps developed by Douady and Hubbard and presented in [D-H].

Theorem 5.1 (Straightening) Let f: U’ — U be a degree d poly-
nomial like map, for which both U and U’ have at least C? two bound-
ary. Then there exists a degree-d polynomial P and a quasiconformal
homeomorphism, ¢ : U — V O Kp conjugating f to P on U’ and
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which is conformal on Ky (in the sense of distributions). i.e.

N

8| l¢
v <2, v

In particular any polynomial like map is hybrid equivalent to a
polynomial. Moreover if Ky is connected then the polynomial P is
unique up to affine conjugation.

Though the polynomial P of the above Theorem is uniquely deter-
mined up to affine conjugation by f (if Ky is connected), the straight-
ening map (hybrid equivalence) is not. It is determined only on Kj.
(If P has (affine) symmetries, it is even only defined up to postcom-
position by such a symmetry.)

A quadratic polynomial Q.(z) = 2% + ¢ is said to be (p > 2)-renor-
malizeable if there exists a quadratic like restriction QF : U’ — U of
Q-

The following Theorem is a particular case of a Theorem by Douady
and Hubbard. We have however for completeness included a proof in
the Appendix, Theorem A.6 (See also [McMZ2]). '

Theorem 5.2 Suppose the quadratic polynomial Q). has a p > 2-
cycle with multiplier A € D\{1}. Then there exists a p-renormalization
f=Q%:U" — U with 0 € U’ and which is hybrid equivalent to the
unique quadratic polynomial Qz, €= % - 142—, which has a fixed point

of multiplier A.

Corollary 5.3 In the terminology of the above Theorem. The quadratic
polynomial Q. has a cycle of Siegel disks, whose boundaries are Jor-
dan curves, one of which contains the critical point, if and only if the
quadratic polynomial Q¢ has a fixed Siegel disk, whose boundary is a
Jordan curve containing the critical point.

Suppose the quadratic polynomial @, has a p > 2-cycle of Siegel
disks with rotation number 8 € [0,1] (and multiplier X = e**"%). Let
f denote both f = Q% and a p-renormalization f =Q%: U’ — U of
Q. with 0 € U'. Moreover let ¢ : U — V be a straightening homeo-
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morphism as in Theorem 5.1 with

v LU
¢l ' lqs
v 2,y

where V' = ¢(U") and €= % — &~ > . Suppose furthermore the boundary
of the Siegel fixed disk for Qz is a Jordan curve containing the critical
point 0. )

Define K;o= K= ¢~!(Kg,) and moreover Ky ; = Q%(Kjy,) for
0 < 7 < p. Then the restrictions Q277 : : Ky ; — Ky, are homeomor-
phisms (restrictions of holomorphic dlffeomorphlsms) foreach 0 < j < p.
Let (o denote the S-fixed point for f, i.e. fo = 1(ﬂ) where ﬁ is the
unique repelling fixed point for Q3 belanded by the external ray of
external argument 0 for Kz. For p > 2 there are at least two p-periodic
external rays landing at 8o (see also the Appendix). Let R, Ry de-
note the two such external rays of K, which are closest to Ky = Ky .
That is let S be the open sector bounded by the arc RF U {Bo} U Ry
and disjoint from K. Then any other external ray of K. landing at

Bo is contained in S. Moreover let Eo = —fo and 1’%;‘; = —R(ﬂf, so that

f(Bo) = f(Bo)=Bo and  f(RE) = f(RE) = RE.
We let W;, denote the strip containing Ko and bounded by the two
arcs R U {Bo} U Ry and RF U{Bo} U R;. Moreover let v& = ¢~1(5%),
where % are the Jordan arcs in J; constructed on page 6. Pull back
these pomts rays and arcs homeomorphicly to Ky ; by Q’ ? to deﬁne
points f;, ﬁJ € Ky,; belanded by rays RJi and RJi and finally arcs 7J .
To complete the picture add the equipotential I' at say level 1.

Then any level-1 puzzle piece P, (the closure of a level-1 prepuzzle
piece,) is bounded by a Jordan curve. This Jordan curve consists of
piece(s) of the equipotential T', two or more pieces of external ray with
landing pomt B; or ﬂj for some j and either nothing more or one of
thea,rcs'yj,0<]<p

We are now in position to define a puzzle for Q.. A level-1 pre-

puzzle piece is any bounded connected component of the set (see also
Figure 7).

p—1
c\|rTul (R;’u'y"“ufz;uR;uv'uﬁj)
7=0
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Figure 7: Boundaries of the level-1 puzzle pieces with Julia set in grey.

It is easy to verify that the above prepuzzle satisfies the puzzle proper-
ties (see page 11) to define a puzzle and that this puzzle also satisfies
the two additional puzzle properties 4. and 5. (see page 11. Moreover
since the postcritical set is contained in the complement of the level-1
prepuzzle, any level n > 2 puzzle piece P is mapped homeomorphicly
onto a level-n — 1 puzzle piece. Hence the connectedness condition 4.
is inherrited to all subsequent levels.

Proposition 5.4 If every nest is convergent, then the Julia set J, is
locally connected.

The proof is a direct copy of Proposition 2.4 and is left to the
reader. The only difference is that a point z € J, can belong to more
than two puzzle pieces at any level. This occurs precisely for the
periodic point B and all its iterated preimages: If the period p’ of o
equals the period p (of the Siegel disk and) of the rays RE landing on
Bo, then there are precisely three puzzle pieces at each level containing
Bo, and if k = ;”—, > 1 then Bp belongs to exactly 2k puzzle pieces at
each level.
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Proposition 5.5 In the terminology above. Let P* and P~ be the '

two level-1 critical puzzle pieces containing v and v; respectively.
There exists a p-renormalization f = QF : U’ — U with P*, P~ € U,
a quadratic like restriction Qz:V — V' and a straightening map
¢ : U — V satisfying

(Pt c-P*, $(P")C P~ and ¢(PENKj) =(P*nKg,).

Proof : For the quadratic like restriction take V to be the open disk
bounded by the level-2 equipotential, and let V' = Q7 1(V) (the disk

bounded bounded by the level-1 equipotential). And thusQz: V' — V.

For the p-renormalization of (). let W denote the the intersection of
the closed disk bounded by the level-2 equipotential and the strip
W, (recall W, from page 30). Moreover let W’/ = f~}(W)NW so
that f = Q% : W/ — W is a proper degree two map with K;o C W'.
However W' N 0W # 0. This difficulty can be overcome by fattening
W and W’ along the ray parts of the boundary, because fq is repelling
and f is expanding in the Bétcher coordinate (see also the Appendix
for a more precise description of fattening). Thus fattening W and
restricting again to a sufficiently large hyperbolic disc U centered at 0
we obtain a p-renormalization f : U’ — U with real analytic bound-
aries, with P* C U and with K ¢ = Kyo. Choose z; € SN AU’ and let
zp = f(z1) € SNOU (recall S from page 30). Moreover let k denote
the closure of the hyperbolic geodesic of S N (U\T7) from z to 2.
Choose a diffeomorphism ¢, : U\U’ — V\V' with Qzo0 ¢y = ¢y 0 f

on 8U’ and which maps the arcs k¥ and —x onto V\V’'N Rx(0) and
\v/ ORE(%) respectively. Then ¢; is K quasiconformal for some
K > 1. Define inductively ¢, : U\f™(U) — V\Q5"(V) by ¢n = ¢1
on U\U' and Qz0 ¢, = ¢p—1 o f on U\ f~"(U). Then ¢, converges
locally uniformly to ¢o : U\K; — V\Kgq, a K quasiconformal home-
omorphism. Applying the proof of [D-H, Proposition 5, last 8 lines]
to the f invariant complex structure on U obtained by keeping the
standard structure on Ky, and pulling back the standard structure on
V\Kg, to U\Ky by ¢o, we obtain a hybrid equivalence ¢ : U — V
between f and @z Moreover by construction ¢ = ¢o on U\K; (see
e.g. [D-H, Proposition 6]) and hence

o(PE)CP*  and  ¢(PENKj) = (PENKp,).
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Corollary 5.6 Let ¢ : U — V be the hybrid equivalence of the above
Proposition 5.5 and let W be the initial disk constructed in the proof
of this Proposition. Then ¢ defines a 1:1 correspondence between
nests N = {P,},, ey for Q. with Q7 (Ppp41) C Wy, Ym > 0 and nests
N'={P,},en of Qz given by : Py is the unique level-mp, Q. puzzle
piece with ¢(Ppp) C P.. In particular ¢(End(NV)) = End(NV’) and N
is convergent if and only if N is convergent.

Note that Q77 (Pnp+1) C W, is equivalent to Qc'P(Pppt1) = Pt or
QT?(Prps1) = P~. Because P* are the only level-1 puzzle pieces
entirely contained in W. _

Let Ag denote the Siegel disk for f and let §p = 0A¢ denote the
boundary of Ag, so that dy by hypothesis is a Jordan arc containing
 the critical point 0. Moreover let A; = Q%(Ag) and &; = Q* (o).

The definitions and Propositions of the previous sections have been
carefully designed so as to carry over with almost only substitutional
changes. The reader is encouraged to do so. However we shall present
here a different more general approach due to Lyubich.

The fundamental observation of Lyubich is that the local expansion
of the renormalization implies that if a Qc.-nest N = {P,}, .y does
not iterate to one of the nest of the above Corollary, then there are
infinitely many puzzle pieces P, € N, which under iteration eventually
maps on to a non postcritical level-1 puzzle piece.

Theorem 5.7 In the terminology above. Every nest for Qz is con-
vergent if and only if every nest for Q. is convergent. Thus if the Julia
set Jz for Qz is locally connected then the Julia J. for Q. is locally
connected.

Note that by an effective version of Proposition 5.4, J. is locally con-
nected if and only if Jz is locally connected.
Proof : If every nest for Q. is convergent then every nest for Qz is
convergent by the above Corollary 5.6.
Hence let Vb = {Pn},,cn be a nest for Q. and let zp € End(V). De-
fine zx = Q¥(20) and Ny = Q¥ (M) = {Q¥ (Pa+k) }nen: 50 that zx € End(MVy).
Consider first the case where 2, € Ky = Ko for some ko > 0.
Then either Q%*™? (Pro+mp+1) C W for all m > 0, Ny is convergent
by the above Corollary 5.6 and N is convergent by analytic con-
tinuation. Or there exists a possibly higher k; with 2, = 8o and
Q¥1 (Pe,41) C S. In this case there are two possibilities. If the period
p’ of By properly divides the period p of the rays Roi, then there exists
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0 < j < psuch that also zx,+; = Bo and QP H ™ (P i) C W,
for all m > 0. This case then falls under the above already treated
case. Finally if p' = p then P = Q% (P, 4;) is the then unique non
critical level-1 puzzle piece containing fo and Q%1 +™? (Pry4mpy1) = P
for all m > 0. The puzzle piece P is also non postcritical and hence in
this case convergence follows directly from Corollary 2.10 and analytic
continuation. T ' : :

Secondly if z, ¢ Ko for all m > 0, then there are infinitely many
n € N for which Q7~!(P,) is a non postcritical level-1 puzzle piece.
Hence convergence follows in this case directly from Corollary 2.10.

A A proof of renormalizeability

In this Appendix we shall portrait the proof by Douady and Hub-
bard, that a quadratic polynomial with a period p > 2 Siegel disc, is
p-renormalizable. Another proof can be found the monograph {[McM2].
We first need a result of Douady and Hubbard based on ideas of Sul-
livan.

Theorem A.1 Suppose the quadratic polynomial Q. has a non re-
pelling p-periodic point oy with multiplier A € D. Then there exist
continuous maps C, a : D — C such that C(Xo) = ¢, a(Xo) = @ and
for each A € D the point a() is p-periodic for Q¢(») with multiplier
A. Moreover both functions C, o are holomorphic in D and C is a
homeomorphism onto its image H = C(D)

The reader shall find proofs in [D1, Theoreme 4,] and in [ON2,
Exposé XIV and Exposé XIX]. The open set H = C(D) of the above
Theorem is called a hyperbolic period-p component of the Mandel-
brot set. The point ¢g = C(0) is called the center of the hyperbolic
component H and the boundary point ¢; = C(1) is called the root of
H.

In light of the above Theorem A.1 we shall use the natural param-
eter ¢c on H rather than A. Thus we shall consider the inverse function
A(c) = C71(c) and the function also denoted by a, a(c) = a(A(c)).
Both functions o, A : H — C depend on H and are restrictions of
holomorphic functions defined on a neighbourhood of H\{c;}. Obvi-
ously there is a one to one correspondence between the set of hyper-
bolic components H and the set of ¢, for which ¢p is periodic for @,
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given by cg is the center of a unique hyperbolic component H. Less
obvious but true is it that, a point ¢ for which @, has a parabolic cycle
is the root of precisely one hyperbolic component.

Note that a quadratic polynomial can have at most one non re-
pelling cycle see e.g. [D1].

Suppose the critical point 0 is p > 2 periodic for ., and let A1
denote the immediate attracted basin for ¢g. Then JA; (and J,,)
is locally connected. Hence 8A; contains a unique repelling periodic
point 5; of period p’ dividing p. (Let ¢ : D — A4 denote the inverse
Riemann map conjugating Qe : A1 — Ay to z— 2% on D. Then ¢
extends continuously to D and f8; = #(1). The point B; is repe]hng,
because there can only be one non repelling cycle).

Proposition A.2 Suppose the critical point 0 is p > 2 periodic for
Qc- Let Ay denote the immediate attracted basin for cy and let
B1 € O\, denote the unique repelling periodic point of period p' di-
viding p. Let o, A : H — C be as above. Then there exists a continu-
ous function 8 : H — C, holomorphic in H with B(co) = 1 and with
B(c) a p'-periodic point for Q., repelling for each ¢ € H\{c1}. More-
over Q™ (c) # B(c), m > 0 for each ¢ € H and the (periodic) orbits of
a(c) and B(c) are disjoint for for each ¢ € H\{c}.

Proof : Note that any periodic point not in the orbit of a(c) is
repelling for @Q., for ¢ € H\{c;}. Moreover such a periodic point is
simple, i.e. it is not a multiple periodic point. In particular any such
periodic point can be followed holomorphicly in ¢ for ¢ in a neighbour-
hood of any ¢’ € H\{c1}. The existence of the function 8 then follows
by analytic continuation. If @7 (c) = f#(c), then either ¢ and hence 0
belong to the orbit of B(c), which is then (super) attracting, a con-
tradiction, or the critical point 0 is strictly preperiodic, but then all
periodic orbits of Q. are repelling in contradiction with ¢ € H. More-
over the orbits of a(c) and fB(c) can coalesce only at the root ¢, and
hence B(c) is repelling for c € H\{c,}.

Note that one can prove that in fact a(c1) = 8(c1). Moreover the
hyperbolic component is called primitive, if the period p’ of B(c) equals
the period p of ofc) and it is called a satelite if p’ properly divides p.

Theorem A.3 Suppose the critical point 0 is periodic for Q., of pe-
riod p> 2. Let Ay and ; € 0A; be as above. Then there are at
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least two p-periodic external rays of K.,, which lands on 8;. More-
over if R, (0-), R, (6+), 0 < 6_ < 4 < 1 are the two such rays with
04+ — 0_ minimal, i.e. they are the two rays adjacent to A;y. Then the
arc Re,(6-) U{B1} U R, (04 ) separates co from 0 and the other points
in the orbit of 0.

This Theorem is often referred to, but I have not found it stated
together with an actual proof. One can however read a proof between
the lines in [ON1]: Combine the local connectivity of J,,, [ON1,
Exposé III, Prop. 4] with the extremality of ¢y in the Hubbard tree
H., C K, for Q.,, [ON1, Exposé IV, Prop. 4] and the fact that every
access to 8y € Hy, N J,, relative to H,, contains at least one external
ray of K., landing at 3;, [ON1, Exposé VI, Prop. 1].

Douady and Hubbard announced in [D-H, page 332] that given ¢
as in the above Theorem A.3, there exists x., : M — M, a continuous
map with x(0) = ¢o and x., (0M) C M, moreover ., can be chosen
to satisfy 0x., = 0 almost everywhere on M.

We shall not need the full power of this Theorem. Actually we
only need what I believe was motivating this main Theorem of [D-H].

Proposition A.4 Suppose the critical point 0 is periodic for Q., of
period p > 2 and let o, 3, A : H — C be as in Proposition A.2. For
c € H let Ay(c) be the immediate attracted basin of a(c). Then B(c)
is the unique p’ periodic point in the boundary of A (c).

Let 0 < §_ < 6; <1 be the external arguments of 8y = $(0) in
Theorem A.3. Then the external rays R.(0-), R.(+) lands on ((c)
forall c€ H.

Moreover let Si(c) denote the open sector bounded by the Jordan
arc by R.(6-) U{B(c)} U R.(6+) and not containing c¢. Then S;(c)
contains any other external ray landing at B(c) and contains all points
of the orbit of a(c) except a(c), which is contained in the complemen-
tary closed sector Wy1(c).

Proof : We shall prove here only the case ¢ € H\{¢;}. The in-
terested reader shall find a proof for ¢ = ¢; in [ON2, Exposé XVIII].
The periodic point §(c) stays repelling for ¢ € H\{c;}. For c€ H
the boundary of the p periodic basin A;(c) contains a unique periodic
point 3(c) of period dividing p, and which can be accessed from A; (o)
via a p periodic arc, a generalized ray. By a generalized version of
the stability of landing of (pre)periodic rays [ON1, Exposé VIII, II,
Prop. 3] the point §(c) moves continuously, even holomorphicly with
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the parameter c¢. Since ﬁ(co) = f(co) the two functions agree on all
of H. This proves the first statement. Similarly the second statement
of the Proposition is a particular case of the stability of landing of
(pre)periodic external rays, [ON1, Exposé VIII, II, Prop. 3]. Finally
the statement about the orbit of (c) follows by continuity, because
it holds for ¢ = ¢y, by Theorem A.3 and the orbit of a(c) does not
intersect (the orbit of) R.(6-) U{B(c)}U R.(64).

Let 0 be p > 2 periodic for @, and let o, 3, A: H — C be as in
Proposition A.2. Moreover let Wp41(c) be the closed sector defined in
Proposition A.4. Define

ao(e) = Q¥ V() &i()=QF(a(e), for 0<ji<p (7)
Bo(e) = Q¥V(B(9), Bi(c)=QYV(B(e)), for 0<j<p (8)

Moreover let Wy(c) = Q7' (Wp41(c)) and let Wj(c) denote the con-
nected component of @27 (W, (c)) containing j(c), for 0 < j < p. As
Q%77 (a;(c)) = ap(c), the above is well defined.

Proposition A.5 For every c € H:

1. QrPti(0) € V?/'j(c), m>0and0<j<p.

2. The restrictions Q. : Wj(c) — Wj41(c) are biholomorphic for
every 0 < j < p and are degree two coverings branched at the
critical point 0 for j =0 and j = p.

]

3. Wji(e)n Vc{/jl(C) =0 for j # j' mod p.

Proof : To prove 2. of the Propostion note that the restrictions
Q. : W;(c) — Wi41(c) are proper, because Wj(c) is a connected com-
ponent of Q7 (W,4+1(c)) for each j, thus we need only calculate the
degree. As Wpyi(c) is simply connected each W;(c) is simply con-
nected. Thus the degree is 2 if ¢ € W;(c) and 1 if not.

We shall prove the Proposition for the point ¢o € H, then it follows
for all other ¢ € H by continuity, since Q7 (c) # B(c) for all m > 0,
¢ € K. and the boundary of each W;(c) moves continuously with c.
We shall henceforth omit for the rest of this proof the dependence on
Cc = Cp.

Let A; denote the immediate attracted basin for the attracting
p-periodic point «;. Then A; C Wj, because A; is a connected open
subset (component) of the interior of K, containing a;. And moreover
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the A; are mutually disjoint. We have ¢y = o = a3 € A; and thus the
first statement of the Proposition holds.

As Q% (co) = co = o1 € Wy the degree is 2 for j = 0 and p and
moreover W; C Wy.1, Wy C W,,.

Define Aj4p = Aj and o4, = @;. Then ojyy € Sy = C\W,4y for
0 < j < pand hence A,+1 C Sy for0 < j < p. Moreover A4y UOW, 4
is connected and henceé W; C S, for each 0 < j < p, since external
rays do not cross and R(6) are adjacent to A;. Thus if ¢g € Wiy
for some 0'< j < p, then W4y C W41, We shall show by induction
on p— j, that this is not possible. For the same price we get that

o

V%/,,.H NWjit1 =0 for 0< j <p. Note that Wp41 contains all rays
with argument in the interval [#_,6,]. And W, contains only rays
with arguments in two disjoint intervals of length (0.,. —6_)/2. Thus

Woi1 € Wy and co ¢ W). Hence the restriction Qg : Wy—y — W, is
a homeomorphlsm and the arguments of external rays in W,_, are
contained in two intervals each of length (64 — 6_)/4. And by induc-
tion the arguments of external rays contained in W4, are contained in
two intervals each of length (84 — 6_)/2P~9, Wyy1 € W;4; and the re-
striction Q., : W; — W, is a homeomorphism. This completes the
proof that the restrictions @, : W; — W;;1 are homeomorphisms
for each 0 < j < p and that

o

o
Wi N Wip =0. (9)
To complete the proof recall that W1 C Wpi1, Wy C W, and suppose
that W]+1 N Wz.,,l # 0 for some 0 < 7 < j < p. Then

QI (Wiga) N Q™ (Wz+1) = W1 O W ppagic # 0

contradicting equation (9).

Proposition A.6 (Fattening) Suppose the quadratic polynomial Q.
has a p > 2-cycle with multiplier ¢ € D\{1}. Then there exists a p-
renormalization f = Q% : U’ — U with 0 € U’ and hybrid equivalent
to the unique quadratic polynomial Qz;, ¢ = % - ’;—2, which has a fixed
point of multiplier c.

Proof: (See also [B-F].) We shall use freely the notation introduced
previously in this Appendix. Moreover we shall suppress the function-
ality of ¢ for typographical reasons. Let W = B(T',2) N W,, where
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B(T',2) denotes the closed disk bounded by the level-2 equipotential
and W, is the ‘strip’ defined above. Moreover let W/ = f~1(W)n W.
Then the restriction f : W' — W is proper of degree 2 by the above
Proposition A.5. We shall fattend W and W' along the the nonequipo-
tential part of the boundaries to obtain a quadratic-like restriction
FiU —UwithW cTU and W CT.

Let S denote the connected component of Q71(S;) with 8o € §
(for S; see Proposition A.4). Choose r > 0 such that f is injective
on the disk D = D{f8q,7) a.nd f(D) > D. Note that —8p = fo ¢ W;

for 0 < 7 < p, because ﬂj € Wp+1 Hence decreasing r if necessary we
can assume furthermore, that —(D N S) is disjoint from all the sets
W;, 0 < j < p and in particular contains no critical value for f. Let
T denote the torus obtained as the quotient of the punctured disk
= D\{Bo} by the dynamics of f and let n : D* — T denote the
natural projection, i.e. #o f == on f~1(D). Consider the cylinder
A=m(DNS)CTandlet nC f~1(D)N S be alift to m of a geodesic
in A connecting the two boundary arcs of A. We extend 7 to a closed
arc by adding to it its two endpoints wy € RE. Let 2y, z_ be interior
points of 7 such that the two subarcs [wy, 2], and [w_, 2], of 7 are
contained in A.(co0) and the external rays Ry through z4 intersects g
for the first time at z4, when looking from oo and intersects f(7) only
once on the way to z1 from oco. The existence of two such points 24
follows from the fact, that the similar property holds for the endpoints
wx € R¥ of n and that 7 is transverse (orthogonal) to RE at wy.
We construct the open disk U as the Jordan domain containing
0, whose boundary consists of the segments of the rays R+ and — R4
from potential level 2 to 24+ and —z4 respectively together with the
subarcs [z4, 2_],, ~[24, 2-], of 7 and —7 respectively and the connect-
ing segments of the level-2 equipotential (see Figure 8). Then W C U,
because QU N OW is a subset of the level-2 equipotential and the rest
of the boundary of W is contained in U. Let U’ denote the connected
component of f~!(U) containing say the interior of W', then U’ is
a Jordan domain and f:U’ — U is proper of degree 2, because U
contains only the single critical value f(0) € U for f. Finally U’ C U
because each preimage of Ry N OU on U’ intersects 7 or —7 only once
and thus is contained in U. Hence f: U’ — U is quadratic-like and
a p-renormalization of Q.. Let @z be a quadratic polynomial hybrid
equivalent to f. Then Qz has a fixed point of multiplier ¢ € D\{1},
because f has such a fixed point and hybrid equivalences preserve the
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multiplier of any non repelling ?eriodic point. Hence it follows by
A

direct calculation that ¢= 3 - X,

q.e.d.

Figure 8: Fattening of W and W'. The dot-dash curves are the f-invariant
rays RE and their preimages —RZ on the boundary of W and W' C W.
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