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Abstract:
Genotypic Proportions in Hybrid Zones

We study a hybrid zone between two populations of a diploid organism. The
populations differ at one locus. Homozygotes have equal fitnesses and the
heterozygote fitness is reduced by B + § (8 is the birth rate deviation and 6
is the death rate deviation). The populations extend along a one dimensional
continuous habitat, and migration occurs by diffusion of individuals. The
model is formulated as a set of simple continuous time demographic models
without age structure for the three genotypes, and the system is transformed
into three new variables, the total population size N, the gene frequency p,
and the deviation from Hardy-Weinberg proportions F'. The gene frequency in
a steady state cline always follows a hyperbolic tangent closely. Analysis of the
asymptotic behavior of the cline far from the hybrid zone suggests a qualitative
prediction of the shape of N, p and F over the zone. For weak selection the
shape is determined by a central steepness of /(3 + 6)/40, as observed by
Bazykin in 1969, where o is the diffusion coefficient. For strong selection the
cline is less steep than the Bazykin cline, and the form is dominated by the
migration process. The steepness at the center of the cline is close to /b/40
where b is the birth rate of homozygotes.

The paper has been submitted to Journal of mathematical Biology
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1 Introduction

When geographically disjoint, genetically differentiated populations come into
contact, they may produce a narrow zone, where hybrids of inferior fitness are
produced. The variation in the frequency of individual traits over the hybrid
zone is characterized by a balance between dispersal of individuals and selection
against hybrids. The understanding of the dynamics of hybrid zones has advanced
significantly in recent years and this has led to a deeper understanding of naturally
occurring hybrid zones, see the review by Barton and Hewitt'(1985).

The basic model describes a one dimensional continuous habitat, where popu-
lations at the two extremes are fixed for alternative alleles at one locus. A classic
assumption is that the heterozygote has a small fitness depression compared to
the homozygotes which are assumed to have equal fitness (Bazykin, 1969a, 1969b,
Barton, 1979). This model may be viewed as a slow-selection approximation to
a stepping-stone model (Slatkin, 1973; Nagylaki, 1975), and it approximates the
genotypic frequencies in the population at any time and place by the Hardy-
Weinberg proportions. Thus, deviations due to selection are neglected, and so
are deviations due to the Wahlund effect of population mixing. This latter ap-
proximation may seem less obvious, but it is allowed at equilibrium because the
resulting cline has a low slope at any place so the variation in gene frequencies
among immigrants is small at any place. These assumptions allow the cline to be

‘described in terms of variation in the gene frequencies only.

The description obtained from this model of the clinal variation through a
hybrid zone is very nice (Barton, 1979). An extension of the continuous model
to the case of strong selection therefore would be preferable to the usual rever-
sion to the stepping-stone model, in that discrete demes provide a model with
qualitatively different properties. However, strong selection against the heterozy-
gote produces significant deviations from the Hardy-Weinberg proportions, and
we must allow for a steep cline and significant Wahlund variances. Thus, the
gene frequency description becomes insufficient and we need a proper genotypic
specification of the dynamics of the cline.

We study this problem in a simple continuous-time model of a population
with overlapping generations and with a specified mode of population regulation..
Selection will occur either as increased mortality or increased sterility of hybrid
individuals. The genotypic frequencies at any point will be described by the gene
frequency and Wright’s measure for the relative deviation of the genotypic fre-



quencies from Hardy-Weinberg proportions. The movement of individuals will be
described by diffusion along the linear habitat, and reproduction by the assump-
tion that a breeding individual chooses a mate at random close to the place where
it is situated, and that the offspring is dropped immediately. This exceedingly
simple model will help to characterize important differences between hybrid zones
with weak and strong hybrid inferiority.

2 The Model

Consider an autosomal locus with two alleles A and a characteristic of each of
the two populations that meet in the hybrid zone. The densities of the three
genotypes AA, Aa and aa at location z at time t are denoted by Ni(z,t), Na(z,1)
and Ns(z,t), and the total density is given by N(z,t) = Ny(z,t) + Na(z,t) +
17\73(1‘, t).

Mating is local and random, and birth and death rates are independent of
location. The death rate of individuals of genotype 7 is d + §;, and the birth rate
contribution is 16— §; in that the birth rate of a mating between genotype ¢ and
genotype j is b — (8; + 3;). We assume that the heterozygote is inferior in both
components of fitness, i.e. 3, > £, Bs and 62 2 &, 6a.

The population density at any location is regulated by a density dependent
term in the death rate; this term is assumed to increase linearly with the to-
tal population density (logistic model), and to be independent of genotype and
location. The proportionality coefficient of this term is denoted by «. The move-
ment of individuals is described by the diffusion coefficient o, which is assumed
independent of genotype and constant throughout the area of the cline.

We assume equal fitness of the homozygotes, i. e. 8, = B3 and 6, = 63, and
these assumptions allow the existence of stationary clines, while, in general, any
difference in homozygote fitnesses will give traveling clines (Barton, 1979). For
simplicity, we put By = 83 =0, é; = 63 =0, B2 = B and é, = §, where we assume
d<b0<B<b/2,0<6,and 0< B+ 6. The model equations then become

6N1 62N1 7

5 = 0 522 +(b— Bl)pzN ~ (d+ (N)Ny,

ON, *N,

= = TG + (b — By)2pgN — (d + & + tN)Ny, | (1)



ON3 9% N3

£ - + (b— B3)¢°N — (d + LN)N;_,,
where the birth rate deviations are given by
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(Andreasen and Christiansen, 1993), and where p and ¢ are the gene frequencies

2N1 + N2 2N3 + N2
=——<<- and = —.

2N 9= "N (3)

The model equations have the property that changes in the diffusion per time unit
7 is equivalent to changes in the geographic scale of the model. Therefore, we
may without loss of generality assume a given value, e. g. o7 = 1 of the diffusion
coefficient, and this amounts to measuring distance in units of /o7. Some of our
results are valid under more general assumptions (see Appendix 1), but to keep
the exposition as simple as possible, we restrict discussions to the model (1).

We study the interaction of two populations each monomorphic for one allele.
To the far left in the cline we have a population monomorphic aa, i. e. p(—0c.t) =
0, and to the far right we have a population monomorphic AA, 1. e. p(oo,t) = 1.
Thus, we always assume that Ny(—oc,t) = Ny(—oc,t) = 0 and Ny(oo,t) =
Ns(oo,t) = 0 for all t. The gene frequency p(z,t) seen as a function of = describes
at any time the genetic cline, i. e. the genetic change in going from one population
to the other. The genotypic frequencies in the cline will be described by the
normalized deviation from the Hardy-Weinberg proportions, F(z,t), where the

. genotypic frequencies are given by

N N, Ns
N =P + Fpq, —ﬁ—qu(l—F) and ~ =9 + Fpq. (4)

In terms of the population densities this variable is

4N, N; — N2

F = :
(2N, + N2)(2N3 + Ny’

(3)

and its range of variation is between max(—p/q,—g/p) and 1. This normalized
deviation from the Hardy-Weinberg proportions is undefined in monomorphic
populations where p = 0 or ¢ = 0. Therefore, its properties as a descriptive
variable in the analysis of the model seem less desirable than those of the un-
normalized deviation pgF (Nagylaki and Crow, 1974; Aronson and Weinberger,



1975; Hunt, 1980). The range of variation of this unnormalized deviation, how-

‘ever, is very dependent on the gene frequencies compared to the rather weak
dependence of F'. Further, observation of deviations from the Hardy-Weinberg
proportions is closely linked to F, .in that a statistical comparison of observed
genotypic frequencies to the Hardy-Weinberg proportions is based on the ap-
proximate Gaussian-(0,1) statistic F\/n where n is the number of individuals
sampled (Brown, 1970). Therefore,-the variable F provides a much more direct
and powerful description of the genotypic proportions in the population.

Transforming equations (1) to the variables (N, p, F') produces the equations

ON 0°N
= et (b—d = «N)N — 2pg(1 — F)(28 + 6)N, (6)
dp 0°%p _Op1dN '

T U(&;‘*‘ 22N 0z + pg(1 = F)(B+6)(p—9q), (

oF a(azp 21 — F) (ap)’_z(p-q@a_zr 7 amazv)

-1
~—

pg Oz dr ' "9z N Oz
—bF + (1 = F)(B8F +6(2pg + (1 — 2pq)F)) (8)

(see Appendix 2). Thus we have a set of equations describing the population
density variation, the gene frequency variation and the variation in the deviation
from the Hardy-Weinberg proportions.

ot 0x? Pq 0z +2

3 The Classical Cline

An explicit solution to the model will not be produced, but we will provide a series
of approximate solutions which will help to overview the biological properties of
the model population.

From equation (7) we can produce the classical cline models analyzed by
Bazykin (1969a) and Barton (1979). For b—d large we may approximate equation
(6) by ON 9°N
The equilibrium in this model is obtained when dN/dt = 0, and the solution to

this equation is N(z) = K where
b—d

L

K=

(10)



is the carrying capacify in a monomorphic population, i. e. a population where
only one homozygote is present. Thus, if we assume that the population size
has reached this equilibrium, then equation (7) simplifies, and with the ad-
ditional slow selection approximation of F' = 0 equation (7) is the model of
Bazykin (1969a) and Barton (1979):

op 9%

- =o—t 8)(p - q). 11

5 = 955z T PIB+ (P9 (11)
The solution at equilibrium (9p/dt = 0) is given by

p(z) = 3 (1 + tanh ((1‘ — o) 'B+6)) , | (12)

40

where z is the center of the cline which may be at any location (Bazykin, 1969b;
Barton, 1979). In the following the center will always be assumed to be at zo = 0.

4 Stability of clines and panmictic populations

The discussion of a cline may be partitioned into considerations of the central
region where local populations are unmistakenly polymorphic and of the. tails
where the alternative allele exists at ideomorphic frequencies, i. e. frequencies
where a normal investigation of the population has a low probability of disclosing
the allele. The region of greatest interest is the central transition zone which we
discuss in Section 6. The tails of the cline describe the nature of introgression
“of an allele into the region dominated by the alternative allele, and in Section 5
we examine some properties of this introgression by obtaining an asymptotic
description of the tails.

~ An equilibrium cline is of interest only if it is stable as a stationary solution
to the system of equations given by (1) or (6)-(8). The cline has p(—o0) = 0
and p(o0) = 1, i.e. Ni(=00) = Ny(—o00) = 0 and Nj(o0) = Na(oo) = 0 from
our assumptions. The model equations, however, are invariant to translations
along the geographic scale. The center of the cline therefore may be at any
location, and it will be impossible to prove stability by the usual method of
linearization. There are two related reasons for this. First, when the system is
translation invariant, then translates of a stationary cline are also stationary, and
so a continuum of stationary clines exists. Analysis of stability by the linearization
method concludes exponential stability or instability, which is possible only when
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the stationary solution under consideration is isolated. Secondly, from translates
of the cline equations straghtforward differentiation with respect to the parameter
of translation shows that the derivative of the cline is an eigenfunction of the
linearization corresponding to the eigenvalue 0 (Poulsen, 1989). ‘

Thus, we cannot hope to prove by simple means that the model has a stable
stationary cline, the best we can do is to insist that our candidates are not
manifestly unstable. In particular, we shall require that far out in the tail, where
the variations in the population structure as z varies are negligible, we should
not be close to an unstable equilibrium for the corresponding model without
dependence on z. That is, we should not be close to an unstable equilibrium
in the corresponding panmictic model. Therefore, we will initially discuss the
dynamics of a panmictic population whose dynamics is given by the ordinary
differential equations ' '

%1- = (b - Bl)pzN - (d + LN)]Vl,

dN,

= = (b= Bu)2pgN — (d+ 6+ N)N,, (13)
dN.

s = (b= BN~ (d+ NN,

where p, g, By, B; and B are given in terms of Ny, N; and N3 by equations (2)
and (3). '

We show in Appendix 3 that (Ny, N, N3) = (0,0,K) is a stable station-
ary point of (13), where K is the carrying capacity given by equation (10).
We also show that for an arbitrary solution (Ny(t), N2(t), N3(t)) to (13) with
Ni(t), Na(t) > 0 the limit limy—o F(t) exists. This is shown under the non-
resonance condition that none of the three non-negative real numbers b, b—d and
B + 6 is a linear combination of the other two with non-negative integer coeffi-
cients. The possible values of the limit of F' are found and discussed in Appendix

3.

By replacing the variables (N, N3, N3) by (N,p, F) in equations (13) as in
Section 2 we get

.‘% = (b—d—N)N = 2pq(1 — F)(28 + 6)N, (14)
L p(1 = F)(B+6)p-a), (15)



dF

dt
(see Appendix 2). If selection is sufficiently weak, i. e. if f+6 < b, then (N,p, F) =
(K,0,0) is the only equilibrium of this system with N > 0 and p = 0, and this
equilibrium is stable (Appendix 3). For strong selection, i. e. if 8 + § > b, then
(K,0,0) is an unstable equilibrium, but a second equilibrium (K0, '), where

b
B+6

= —bF+ (1 - F)(BF + §(2pq + (1 — 2pg)F)) (16)

F=1- (17)

exists and is stable (Appendik 3).

The conclusion is that in a stable cline we have N;(z) — 0, Nx(z) — 0, and
N3(z) = K as ¢ — —o0, and N;(z) — K, No(z) — 0, and N3(z) — 0 as ¢ — o0,
because far out in the tails of the cline the population should approximate a stable -
panmictic population. Therefore, the population density and the gene frequencies
approach the stable panmictic equilibria, in that N(z) - K and p(z) — 0 as
r — ~oc, and N(z) — K and ¢(z) — 0 as z.— oo. The genotypic composition,
. however, is undefined at the stable panmictic equilibria, but by the requirement
that the genotypic composition should be close to that in a population converging
to a stable equilibrium in a panmictic population, we have F(z) - 0if B+ 6 < b
“and F(z)—= Fiff+6>bas z — too. l :

5 Shape of Introgression

An equilibrium solution (Nl(z),]i"g(x), N3(z)) to (1) satisfies the equations
od?Ny/dz? = (b— B)p*N — (d + (NN,
od®Ny/dz? = (b— By)2pGN — (d + 6 + 1NN, . (18)
od*Ns/dz? = (b— B3)§*N — (d + .N)Ns,

where we, as usual, write § = 1 — 5. In Appendix 4 we consider the left tail of a
solution to (18) with the properties of a stable cline, i. e. we consider the solution
(NM(z), Na(z), N3(z)) as £ — —oo. This analysis is done on a linearized version
of (18) at the point (0,0, K), and we assume for simplicity that coefficients of
potentially dominating terms are different from 0. This assumption is consistent
with the requirement for a stable cline found in Section 4. If the eigenvalues of
the linearization are pairwise distinct and satisfy the non-resonance condition,

7




then Nl(r), Ng(m), and ]?3(1) -K va@ish éxpopentl@lly itowards 0as z — —oo.
We only have to consider the eigenvalues

/b /ﬂ+5 /b—dr
Ky =\[—y K2= y K3=\(\/——,
g [+) ag

and formulas for the asymptotic behavior of N(z), (z) and F(z) are derived in
Appendix 4. Below we state these asymptotic formulas, and in these C;,C; and
Cs denote positive constants whose values are to be determined from the actual
position of the cline, and the relation & indicates that the absolute value of the
difference between the left hand side and the right hand side is at most M e{**¢)*
for some positive numbers M and €, with x denoting the coefficient occurring in
the exponential factor on the right hand side.

Weak selection For 84 & < b we have F(z) — 0 as £ — —oc, and four
different cases must be distinguished:

1. For f+ 6 < b—dand 4(8 + 6) < b we have

. i 2K(28 + 6 o

NEz)-K =~ _b—;(_ﬁ(m)&) Cp e (19)
plz) = Cre™* (20)
5 2(3+296) . o
F(T) mCQE (_1)

2. For f+6 <b—d < b<4(B+6) the asymptotic behavior of N(m) and p(z)
is given by (19) and (20), while

F(z) = Celmr)r (22)

3. For b—d < f+6 < 4(8 + 6) < b the asymptotic behavior of p(z) and F(z)
is given by (20) and (21), while

N@Ez)—K ~ —C3e™® | (23)

4. For b—d < B+ 6 < b < 4(8 + 6) the asymptotic behavior of N(z), p(z)
and F(z) is given by (23), (20) and (22).

Strong selection For f + 6 > b we have F(z) — F as ¢ — —oo where F is

given by equation (17), and two different cases must be distinguished:

8
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Figure 1: The variation in £ (solid line) and N (broken line) as a function of
gene frequency p in the transition zone. .a: Slow selection f + § < :}b and
B+6 < b—d. b: Intermediate selection b < B+ 6 < band B+ 6 < b—d.
c: ‘Intermediate selection b < B+ 6 < band b—d < 8+ 6. d: Rather strong
selection b < B + 6 < 4b. e: Strong selection 4b < B + 6. The straight lines in a,
b, and e indicate the tangents found from the linear analysis; all other tangents
at p = 0 are vertical. The parameters are b=2, K =1, 0 = 0.004, § = 0 and a:
d=15,6=03;b: d=05,6=0.75¢c: d=1.5,6=0.75;d: d=1.5,6 =3 e:
d=1.35,6=10. 9




Table 1: Asymptotic behavior of the gene frequency p and the fixation index F
in the cline model as £ — —oo. The change in the gene frequency is described
as the rate of change with location. The change in the relative deviation from
Hardy-Weinberg proportions is given in terms of the rate of change in F as a
function of the gene frequency.

poxe® F-Fexp”
Selection ' K Fe a Figure
6+ p<1b 5—}@7 0 1 2a
1<6+B<b £18 0 s — 1 2b,c
bas+B<ab | E | 1-g4 | VEE-1 | 24
4b<6+0 2 1- 52 1 %e

5. For b < 8+ 6 < 4b the asymptotic behavior of N(z) is given by (23), while

plz) = Cye™* (24)
F(z)- F =~ Delmem)z, : (25)

where D may be positive, negative or 0 (our numerical results suggest that
this constant is always positive).

6. for 4b < B + & the asymptotic behavior of N(z) and p(z) is given by (23)
and (24), and

. . 20 (8+26)
Fe)=F ~ g +i—m

Thus, in the case of strong selection the convergence of the gene frequency p to
zero is governed by the rate x; = \/b/_a which does not depend on the selection
parameters § and 8. The spatial variation in the gene frequencies far from the
hybrid zone therefore'is independent of selection.

Cy e™® (26)
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Table 2: Asymptotic behavior of population size N in the cline model as z — —oo.
The change in the population size is given in terms of the rate of change in N as
a function of the gene frequency.

N-Kxp”

Selection 5 Figure
6+ p<b-d | 1' 2a,b
b-d<s+f<b | /B2 2%
b<B+6 b=d 2d,e

5.1 .Genetic shape of the cline

Although we haven’t shown that p(z) is increasing, it certainly is for z near —oc.
Our numerical results suggest that it is in general, and we. find it illustrative to
view N and F' as functions of p. The assertions below follow immediately from
the asymptotic results 1-6 above, and the variation of p(z) in the left tail of the
cline for £ — —oc is summarized in Table 1.

Weak selection The population size N varies approximately as a linear func-
tion of p for p small and 3+ 6 < b —d (Figs. 1 a, b and Table 2). For
" b> B+ 6> b— d the population size N varies as a power function of p with ex-
ponent \/(b —d)/(B + 6) less than 1. Thus, N changes very rapidly as a function
of pas p — 0 (Fig. 1 ¢ and Table 2).

The deviation from Hardy-Weinberg proportions F' varies as a linear function
of p for p small and f+6 < 70 (Fig. 1 a and Table 1). For 8+ 6 > 3b the relative

deviation F varies as a power function of p with exponent /b/(8 + 6) ~ 1 less

than 1, and so F changes very rapidly as a function of p as p — 0 (Figs. 1 b, ¢
and Table 1).

The shifts in F' and N from linear to power functions of p occur at different

11




values of the selection parameter 8+ 6. The change from proportlonahty to very
- rapid changes in the two variables therefore are unrelated. -

Strong selection In the case of strong selection, where # + é > b, the most
conspicuous result is that the deviation F' from Hardy-Weinberg proportions does
not vanish as z tends to —oo. Rather, it converge to the limit F given by
equation (17). The deviation F — F varies as a power function of $ with exponent

(B + 6)/b—1less than 1 for 8+ 6 < 4b, and so F changes rapidly as a function
of pas p — 0 (Fig. 1 d and Table 1). For 8+ & > 4b the deviation £ — F varies
as a linear function of p (Fig. 1 e and Table 1). The population size N varies as a
power function of p with exponent /(b — d)/b less than 1, so N changes rapidly
as a function of p as p — 0 (Figs. 1 d, e and Table 2).

By definition, the birth rate of the heterozygote must be positive, so we have
283 < b. Thus, strong selection requires that § > 6 — § > %b, 1. e. a rather strong
viability depression for the heterozygote.

6 The transition zone

The central region of the cline, where the local populations are polymorphic
with both alleles present in non-negligible proportions, is the region of transition
between local populations dominated by the features of the two original popu-
lations. The study of the transition zone will use directly equations (6)—(8) for
the biologically interesting parameters N, p and F, and from these equations an
equilibrium solution (N(z), p(z), F(z)) satisfies the cline equations:

odN/d® = —(b—d~ NN +254(1~ F)(26+ 6)F, (27)
: dp dN , )
oNdplds? = 2052~ pill = F)(B+8)6- DR, (28)
dz dz
2
A ~ - -~ o~ N
opgNd'Fdz* = -20(1-F)N d—x) +20(p - §)N— :p ZF 20}3@(;5 cix

+bpgFN — pg(1 — F)N (8 + 6)F +2p4(1 - F)6).  (29)

Equation (29) is singular for p = 0 or p = 1 — this is the reason why the
genotypic equations (1) form a convenient point of departure for the study of the
asvmptotics in the tails of the cline.

12
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Figuré 2: Best fit ¢" of the form 21 +tanh ¢x) to the equilibrium gene frequency
p(x) as a function of Bazykin’s parameter /(3 + é)/40 (solid lines). The pa-
rameter ¢ is compared to the slow selection parameter /(3 + §)/40 and to the

strong selection parameter \/b/4c suggested by the linear analysis of the tails of
the cline (broken lines). The diffusion coefficient is ¢ = 0.004 and the carrying
~ capacity is K = 1 in this and the following figures. The birth rate parameters
are fixed at b = 2 and B = 0, and the two curves correspond to d = 0.2 or 1.5
with.§ varying.

Our description of the tails of the hvbrid zone relies on a linear approximation
that is valid only when the deviation from the asymptotic point is small. For
strong selection (b < B+ §), our description holds only for |z|\/b/¢ > 1, and for

‘weak selection (b > B + 6), the description is valid only for |z[\/(8 + §)/o > 1.
Strictly speaking, this provides no information on the width of the transition
zone, but our numerical results indicate that

(o

B+6

W, =~ 2\/—% and_ W, ~ 2

are very good estimates of the width for strong and weak selection, respectively.

Numerical solutions were obtained by solving equations (6)-(8) over a time
period long enough to obtain stationarity. The solutions were calculated using
centered differences in the spatial dimension and a variable step-size 4th order

13




Runge-Kutta algorithm along the time axis. We use o = 0.004 in all illustrations.
For S+ 6 > 1 we fixed the gene frequencyto p=0atz= -l andtop=1 at
z = 1 and used a step size of Az = 1/200. For 0.1 < f+4 6 < 1 we fixed p at
z = £3 and used Az = 3/400. The solution appears to be invariant to changes
in the specifics of the boundary conditions and in the initial data.

The numerical solutions suggest that the equilibrium gene frequency p(z) is
similar to a hyperbolic talngeﬁt. We offer no theoretical arguments for the validity
of this approximation in the transition zone, but apparently the behavior of the
tails in combination with obvious scaling and symmetry requirements impose so
strong constraints on p(z) that the approximation holds within few percent. For
all cases we investigated, the distance I, defined by

I = /:(p(z) — (1 + tanh ¢z))* dz

did not exceed 2x 1073 for the best fitting parameter ¢* and the graph of p(z) was
indistinguishable from the corresponding hyperbolic tangent. For weak selection
¢" =~ k2 = /(B +6)/40 as predicted by the Bazykin cline in equation (12).
The rate parameter ¢* for strong selection is somewhat larger than the slope
3k1 = 1/b/40 suggested by the linear analysis of the tails (Fig. 2).

The population depression and the deviation from Hardy-Weinberg propor-

tions in the equilibrium cline are maximal at the center of the cline where p = 1

which is assumed at £ = 0. Both maxima increase with the strength of selectiole
(Figs. 3-5) as expected from biological considerations. It is remarkable, however.
that the population depression induced by fertility selection is much stronger that
the depression caused by viability selection while the two types of selection pro-
duce comparable deviations from Hardy-Weinberg proportions. A comparison of
Fig. 3 and Fig. 4 shows that the fixation index F’ for a given selection pressure is
essentially controlled by the birth rate b, while the population size N is loosely
linked to the value of b/d which is a rough measure of the amount of competition

in the population.
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Figure 3: . The effect of mortality selection against heterozygotes on the minimal
populatlon density N at p = 1/2 (decreasing curves) and maximal deviation from
Hardy Weinberg proportions F' at p = 1/2 (increasing curves). All parameters
are as in Fig. 2 with b = 2, 8= 0 and ¢ varying. The death rate is d = 0.2 (solid
lines) or 1.5 (dotted lmes)

1.9
[
~ 0.5p b
2
¢l Lz 1 A 1
0.0 10.0 20.90 30.0_ 4C.0

V(B+8)/do

Figure 4: . The effect of mortality selection against heterozygotes on the minimal
populatlon density N at p = 1/2 (decreasing curves) and maximal deviation from
Hardy-Weinberg proportions F at p = 1/2 (increasing curves). The parameters
are ¢ = 0.004 and A = 1 with § = 0 and § varying. In both sets of curves
b/d = 10 while the death rates varies as d = 0.2 (dotted lines), d = 0.5 (broken

lines) and d = 1.0 (solid lines). 15
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0.0 5.0 10.0
J(p+3)/do

Figure 5: . The effect of fertility selection against heterozygotes on the minimal
population density N at p = 1/2 and maximal deviation from Hardy-Weinberg
proportions F’ at p = 1/2. All parameters are as in Fig. 2 except § = 0 while g8
varies. Note the strong population depression compared to the effect of mortality
selection in Figs. 3 and 4.

7 Discussion

The cline model of population structure exists in two versions in population ge-
netics, a discrete version and a continuous version. The continuous version we
consider here is due to Wright (1946) and it is essentially the diffusion model of
Fisher (1937). The discrete version due to Malécot (1948) and Kimura (1953)
is known as the stepping-stone model, and it considers a chain of equal popu-
lations which exchange migrants with the two immediate neighbors. The study
of selection in the stepping-stone model has advanced by considering the diffu-
sion model as an approximation to the stepping-stone model in the case of weak
selection (Haldane, 1948; Slatkin, 1973; Nagylaki, 1975). Nagylaki (1975, 1989)
show very elegantly that in populations with non-overlapping generations the
diffusion approximation necessitates that selection is assumed to be weak. The
generation time goes to zero in the diffusion limit, and the rate of selection per
time unit is constant, so the weak selection model of Bazykin is obtained. The
stepping-stone model itself, however, is difficult to analyze, so the comparison of
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results for weak and strong selection is hard in the discrete habitat model. The
alternative approach that we have adopted here is to consider the continuous
habitat mode] with overlapping generations as the primary model in the tradi-
tion of Wright (1946), and study weak and strong selection within this model.
Therefore, the migration process is described by a diffusion approximation, and
reproduction and selection is described by the simplest demographic model to
allow the study of strong selection.

_ The main difference between weak and strong selection is in the deviation from

Hardy-Weinberg proportions along the cline. For strong selection the genotypic
frequencies in the population will not be close to Hardy-Weinberg proportions. In
addition, the local population size will be influenced by selection. The resulting
model is a three dimensional non-linear diffusion model, so formal analysis can not
be carried far. To obtain information about the equilibrium cline, we study the
asymptotic behavior of the tails of the cline by means of a linearization approach
inspired from the qualitative study of non-linear differential equations, where the
linear analysis provides a rough idea about the phase portrait (Guckenheimer and
Holmes, 1983). In the central part of the cline we have to resort to numerical
calculations.

Different migration distributions may provide differences in the nature of the
migration effects, so in the clines we have studied caution is warranted when the
cline pattern is interpreted. Nevertheless, we believe that our analysis of the tails
of the cline provides important information about the nature of the processes that
shape the cline. We show that for strong selection the pattern of gene-frequency
variation in the tails is virtually independent of selection. For sufficiently strong
selection the recruitment of hybrids as offspring of hybrids is negligible in the tails
and most hybrid individuals are supplied by immediate offspring of immigrants.
This, we conjecture, is still the case if, e.g., individuals have a maximal rate of
dispersal. The “tails” of the cline is just moved closer to the hybrid zone.

The equilibrium cline in all situations resembles a hyperbolic tangent. For
weak selection the steepness of the cline varies with the squareroot of the se-
lection coefficients, but for strong selection the steepness is determined by mi-
gration rather independently of the strength of selection (Fig. 2). This suggests
a classification of hybrid zones into weak and strong selection zones, where the
central slope of the cline only reflects the strength of selection in the weak selec-
tion hybrid zone. In weak selection zones the genotypic frequencies remain near
Hardy-Weinberg proportions throughout the zone, and the width of the zone is

17



determined by 2y/¢ /(8 + 6). Thus, the weak selection zone has the appearance
of a migration-selection balance equilibrium. Strong selection zones are charac-
terized by a substantial deviation from Hardy-Weinberg proportions and a width
determined by 2\/a_/b. For strong selection the fixation index remains positive
and large throughout the zone, and the local populations bear the signature of a
balance between mixing and depletion of the “foreign” types through the repro-
duction of the locally dominant type.
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Appendix 1 Generalizations

Part of the previous discussion, and, in particular, the asymptotic analysis in
Sections 4 and 5 is valid for a wide class of models of greater generality than (1),
viz. for models of the form '

ON; 82N

at = a 2 +A(N15N2aN3) i=1a2’3a (30)
where each A; is the difference between a birth term and a death term:
Ai(Ny, N3y N3) = Bi(Nla N,, N3) — D;( Ny, Né, N3) N;. (31)

Here, the terms B; describe the birth process and the terms D; N; the death
process (allowing, in particular, more general types of inter-genotypic competition
than the logistic one of (1)).

In order to be genetically meaningful, all B; and all D; should be non-negative,
and the birth terms should satisfy the conditions

Bl(0,0, ]Vg) = BQ(0,0,]V;:.) = BQ(]V],O 0) = Bg( 7\(’1,0,0) = 0,

9B, 9B, .. 0Bs 9B (32)

3N, N, (0,0,N3) = 3N, (f\l,O 0) = 3N, (N,0,0)=0
of ordinary Mendelian inheritance. Furthermore, we will allow interbreeding of
the two original populations, in that B2(N;,0,N3) > 0 if Ny > 0 and Ny >
0; otherwise the two homozygote populations would behave as two competing
species. For convenience, we make the slightly stronger genetically very natural
assumption

(0,0, N3) =

632
N,
0B,
0N

(0,0,N3)>0 if N3>0, and
(33)
(N1,0,0)>0 if N;>0. '

In this general model the condition of equal fitness of the homozygotes takes

the form
NSa N2a Nl)a

b (34)
D?(NI,N23N3) = DZ(N3,N27N])

for all Ny, N3, N3 > 0. The model should allow pure homozygote populations of

constant density to exist and be stable as t — oo, i. e. the equation

| % = B3(0,0, N) — D5(0,0, N) N
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should have a stable positive equilibrium K. In addition, the point (0,0, K)
should be a stable equilibrium of the system (13), as is the case in simple selection
models when the heterozygote is inferior. Sufficient conditions for this to be true
are given in Appendix 3, and it is shown that they are satisfied for the model
considered in Section 2.

The dynamics of the general model of fertility selection is very rich even for
the highly symmetric model (34) considered here (Feldman, Christiansen and
Liberman, 1983). The model in Section 2 is restricted in the sense that its
dynamics resemble that of a simple viability selection model. In the general
model the stability of the monomorphic equilibria is not linked to the stability
of the symmetric equilibrium where p = 1. The model of Section 2 only has
these three equilibria, and the symmetric equilibrium is always unstable. The
equilibrium configuration in the general model (34) also includes the possibility
of stability of all these three equilibria with the existence of two unstable equilibria
separating the monomorphic equilibria from the symmetric equilibrium (Hadeler
and Liberman, 1975). The discrete version of the model even may exibit llmlt

cycles (Hadeler and Liberman, 1975).

Appendix 2 The Transformed Equations

The equation for 9N /0t is obtained by a straightforward sum of equations (1).
The equation for dp/0t is obtained from the definition (3) as

Op _ 1 (,0M 0N _ poN
ot ot ot N ot

0*(2N; + N. —N
(27\7—(7}2—2 + (b= (d+:N))p = (Bip+ Bag)p — 52;')
N
% (97 + (5= d— NN = 2pg(1 - F)(28+ 6)N
82p dp 10N :
’ (—axz * Qa—m%) +pq(1 = F)(B+6)(p - 9)

The equation for F' is a bit more complicated. By implicit differentiation of
of the relation N, = 2pq(1 — F)N obtained from (4) we get

aN, _ _ QE_ _ : QE
5 = pq(l — )— 2qu6t 2(p - q)(1 F’)‘ 5
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PN, PN 9FaN 9p ON
Frolie 2pq(1 - F)'a—z{ —4Pa5 - —4(p—q)(1 - F)%E

o’F Op9F
—2qu;9— +4(p — q) 3290
8%p (0P
—2(p-q)(1 - F)N"a? —4(1 - F)'N (-55) .

These expressions for the derivatives N, /0t and 9?N,/0z* may be inserted into
equation (1) to provide an expression for 8F/8t. By using the already established
equations (6) and (7) we may eliminate 92N /dz? and 0°p/8z? to obtain

OF _
(9p\? apaF OF ON 8°F\

+2pg(1 = F)((b~d — «N)N = 2pg(1 — F)N(28 + §))
 +2pg(1 — F)*(p—q)? N(ﬂ+5)
= (2pgNb = 2pg(1 = F)N(d + :N) = 2pq(1 — F)N(§ +6)).

Straightforward simplification of this equation yields equation (8).

Appendix 3 Asymptotlc analysis of the panmictic equl-
librium

Consider a system of ordinary differential equations of the type considered in

(13):
' dN;

dt
where A; is the difference between a birth term and a death term (31).

= Ai(1N717A:2aN3)a 1= 1a213’ (35)

We assume that all B; and all D; are smooth and non-negative when all
N; are non-negative, and that the birth terms satisfy conditions (32) and (33).
Standard uniqueness and comparison theorems for ordinary differential equations
then secures that all solutions to (35) have the properties:

1. If Ni(to) 2 0for: =1,2,3, then Ni(t) > 0fort >t and:=1,2,3.
2. If N](to) = Nz(to) = 0, then N] (t) = Ng(t) =0 fort > to.
3. If Ng(to) = N3(t0) = 0, then Ng(t) = Ng(t) =0fort> to.
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4. If Ni(to) > 0 for i = 1,2,3 and N;(to) > 0 for some j, then N;(t) > 0 for
t > to. ' ) ) - ’ ’

The point (0,0, K) by assumption is a stationary point of equations (35). A
great deal of information on the local behavior around this point of the solutions
to the system (35) can be derived from considering the corresponding system of
linear equations

du -
— =A - 36
o, (3)

U1 N1
u= U = N2
Uus N3 -K

which correspond to the increments in N;, N, and Nj. The coefficient matrix of
the equation is

a;; ay2 Q13 -D, 0 0
A=< an axp ap3 ;= b b2 — D, 0
az asz ass by —dny K b3y —dsa K bsz —dss K — Ds

with a;; = 0Ai/ON;, b;; = 0B;/ON; and di; = 0D;/ON;, where all functions are
evaluated at (0,0, K). In particular, the stationary point (0,0, K) is stable pro-
vided all eigenvalues of A have negative real parts. In our case, these eigenvalues
are real:

in the variables

M=-=Di, d=—(D2—0b), A3=—(Dz+dssK — bs3).

We will assume that the eigenvalues A;, A; and A3 are pairwise different and
that the set {\, Az, A3} is non-resonant, i. e. no \; is a linear combination of
the two others with non-negative integer coefficients. Then a C*-mapping ® of
R3 into itself exists, which is tangent to the identity map at (0,0, K'), and which
transforms the solutions of the system (36) into those of (35) (see e. g. Irwin,
1980, p. 127 or Anosov and Arnold, 1988, pp. 53 and 66). Thus, an arbitrary
solution to (35) can be written as

Ni(t) 0 uy ()
{ Na(t) } = { 0 }+{ us(t) }+O(H(ul(t),uz(t),ua(t))llz) (37)
N3(t) K U3(t)

close to the stationary point (0,0, K). The solution to (36) can be written as

{ uy(t) } 3 ‘
’uz(t) = ZCJ eA’t €;, (38)

u3(t) =1
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where €; is an eigenvector corresponding to \;, and C;, j = 1,2,3, are arbitrary
constants to be determined from the initial conditions.

Denote by M the.image under @ of the plane C; = 0, where }; is the largest
of the eigenvalues. Then M is an invariant 2-dimensional submanifold of R3, its
tangent space at (0,0, K) is spanned by the eigenvectors corresponding to the
two smallest eigenvalues, and all solutions to (35) except those in M have e; as
tangent vector in (0,0, K).

- In the model of Section 2 we have
AM==b A=—(F+6), Az=-—(b-d), (39)

and we may choose the eigenvectors

1 0 /0
el=' B-;ﬁsz-? ’,e2= 1 ,63_—‘(0)- (4‘0)
’ —{(bd—2b(28+8)+d(5+6)) —(b—d+8) 1 '
d(b-3-5) b~d=p3-6

The eigenvalue ); is never dominant because b > b — d.

All eigenvalues are negative. This immediately implies from equations (37)
and (38) that N(t) and p(t) have limits for ¢t — oc. It remains to decide whether
the limit of F(t) exists. Clearly, if Ni(t) = ae®t 4 o(e®*), No(t) = bef* + o(e"?)
with a,b> 0, @,8 < 0, then - .

: 1 - ifa > 8,
lm F(t)=1{ 1- 3k ifa=4,
* 0  ifa<p.

Now assume that €5 # 0 and that Ny(t), N,(t) > 0. For 5+ 6 < b—d we get
j=2and F(t) - 0. For +6é > b—d we get j = 3 and the dominating
term in equation (37) does not contain enough information to determine the
asymptotics of F. Higher-order terms therefore have to be taken into account.
In this connection we note that in the k-th order Taylor approximation

Ny(t) 0 ui(t) Pr(ui(t), ua(t), us(t)) |
Na(t) 3 = 4 0 b 419 u(t) 3+ Polua(t), ua(t), us(t))
Ns(t) K us(t) Ps(uq(t), ua(t), ua(t))

+O([I(wa(2), ua(t), ua(t))II*+) (41)

derived from & all terms in the polynomials P, and P, have either u; or u; as a
factor. '
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- For a complete description of the situation we distinguish between the three -
cases f+6 < b—d < b, b—d < f+6 < b,and b—d < b-< B+6. In the discussion
below, the expression ‘in general’ means ‘except on the 2-dimensional manifold

M.

1. B+ 6 < b—d < b: the eigenvalue ), is dominant, and in general F(t) — 0. -
In fact, since the two first coordinates of e, have opposite sign, a solution
with Ni(t), N2(t) > O-cannot have C; = 0, and therefore F(t) — 0 for all
such solutions.

2. b—d < f+ 6 < b: the eigenvalue A3 is dominant, and it is obvious that the
corresponding term in (37) does not determine the asymptotic behavior of
F(t). If B+ 6 < 2(b— d), it is still a consequence of (37) and (38) that in

general
{ o } = C et { ) } +0(™) (42)

with v = 2(b — d), so that F(t) — 0 (as above, this is actually true for all
solutions with positive Ny(t), No(t)). If 5+ 6 > 2(b—d), higher order terms
in the Taylor development of ® have to be taken into account, and then one
can show that equation (42) is still valid with v = 8+ 6 + b — d, so again,
F(t) - 0.

3. b—d < b < B+6: asin case 2, the eigenvalue A3 is dominant. The eigenvalue
A1 now determines the asymptotic behavior of (/Ny(t), N2(t)), and as in case
2 we get: If b < 2(b—d), then

(fip}-ocr {4 o

with 9 = 2(b — d), in general, and if b > 2(b — d) then equation (43) is still
valid with 4 = 2b — d. Thus, in general both N, and N, tend to 0 as ™%,
and F(t) — F given by equation (17).

Equations (35) are equivalent to the equations (14)-(16) in the model of Sec-
tion 2. If a point (N°¢,p°, F¢) with p°* = 0 and N° > 0 is a stationary point
for this system, N° must be equal to K, and F¢ must satisfy the equation
Fe(b—(B8+6)(1 - F¢)) = 0. Since p = 0 implies F' > 0 by the remark fol-
lowing definition (5), we see that (K,0,0) is a stationary point of (14)-(16) for
all values of b, 8 and 6, and that if 8+ & > b, then (KX,0, F') is also a stationary
point. The linearization of this system around a stationary point (K0, F¢) is

-d—i-=BU,
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where v, vz, v3 correspond to the increments in N, p, F', and

—(b—d) —2K(28+6)(1 - F°) 0
" B= 0 —(B+6)(1 = F°) 0 :
{ 0 26(1 — Fe)? —b+(8+6)(1-2F) }

The eigenvalues of B are —(b— d) and —(8 + 6)(1 — F**) which are negative, and
—b+ (B + 6)(1 — 2F°¢) which is positive if #+ 6 > b and F° = 0, but negative
if B+6 <band F*=0orif 8+86 > band F* = F. Thus, (K,0,0) is a stable
stationary point of (14)-(16) if 8+ é < b, but if B+ 6 > b, then the only stable
stationary point of that system is (K,0, F'). This is in perfect agreement with the
observations 1-3 above concerning the behavior ‘in general’ of the system (35).

Appendix 4 Asymptotic Analysis of the Tail of the Cline

Consider a system of ordinary differential equations of the type considered in
~ equation (18):

od’N;/dz? = — Ai(Ny(z), Na(z), Ns(z)), i=1,2,3, (44)

and assume for definiteness that the A; are given as in Section 2. In order
to discuss solutions of this system of equations, we use the standard trick of
introducing the lower order derivatives as extra variables, and so we get

dn,
dr
dN,
dr
dNs
dr
% = —%A1(N1,N2,N3),
dn,
dr
% = —1ay(f, R, ).
T g . :
It can be shown that if (N;(z), No(z), Na(z)) is a solution to (44) such that
(Ny(z), No(z), Na(z)) — (0,0,K) as z — —oo, then (#y(z),A2(z), Rs(z)) —
(0,0,0).

= M,
= 7:127

= s, ' (45)

1 A “ -
= -';A2(Nla N27 ]\73)3
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Thus, the point (0,0, K,0,0,0) is a stationary point for the system (45), and
- its linearization around this point can be-written in block form as

$()-(0)

where the vectors v and v are 3-dimensional and L is the block matrix

0 I
205

with A as in (36), and where I is the 3 x 3 identity matrix and O is the 3 x 3
matrix with only zero entities. The eigenvalues of L are k¥ = +(—);/ a)é, where
A; is given by equation (39). The eigenvector corresponding to rc;': can be chosen
as the vector whose first 3-dimensional block is the eigenvector e; of A given in
equation (40), while the second block is Kj* €;.

In the terminology of the theory of dynamical systems, the stationary point
(0,0,K,0,0,0) is a hyperbolic point; its stable and unstable manifolds (corre-
sponding, respectively, to the negative and positive eigenvalues) are of dimension
3, and solutions to (45) approaching it for z — —oc lie in the unstable manifold.
As in Appendix 3 it follows that if the set of eigenvalues is non-resonant, there
is a C*-mapping ¥ of RP into itself, tangent to the identity map at the station-
ary point, which transforms the solutions of the system (46) into those of (45).
Consequently, we get approximations to those solutions to (44) which converge
to (0,0, K,0,0,0) for z — —oo. These solutions are completely analogous to (37)
and (41). The first order approximation analogous to (37) gives

M (z) 0 i ()
No(z) ¢ = { 0 } + { () } + O(ll(ur(2), u2(z), ua(x))|I?) (47)
Nas(z) K t3(7)

with

ﬁ](x) 3 +
ig(z) p =) Cie™%e;. (48)

'&.3(37) =1

For the most part, the arguments and results are analogous to those in Ap-
pendix 3, and we omit the details, giving only the results. The asymptotic for-
mulas for Ny, Ny, N3 are:

b—28
4K (b— 4(B +9))

MNz) = Ce™* + C2 ¢¥7 (49)

26



o 2

Ny(z) 5_+5'—_bN1(“’) + Cye™”
26(8+6) ((B+6)> = 2bB) p 20,z ,
TK(BTE-bRBE-a) (50)
Niy(z) ~ K- b-d+p C, % — Cae™®, (51)

b—d— (B+9)

The sign & indicates that the absolute value of the difference between the left
hand side and the right hand side is at most Ce(*+)* for some positive numbers
C and ¢, with % denoting the smallest coefficient occurring in the exponentials
on the right hand side of the formula (and so, all terms with larger coefficients
are actually redundant). In some cases, we need certain second order terms of
the expansions of Nj(z) and N,(z) in order to determine the rate of convergence
of F(z) as ¢ — oc, and these second order terms are included in (49)-(50).
The simplified and more informative versions of equations (49)~(51) appear in
Section 5 for the various orderings of the eigenvalues. '

In Appendix 3 we observed that equations (35) for the genotype numbers are
equivalent to equations (14)-(16) for N, p, and F as functions of ¢. Similarly,
equations (44) are equivalent to (27)-(29), but the last of these equations has a
~ singularity at p = 0, so it is not clear how to make an asymptotic analysis of the

solutions to (27)-(29). It turns out that if we convert (27)-(29) to a first order
system by introducing the logarithmic derivatives - ‘

as extra variables, then the singularity is resolved, and among the solutions to
the resulting system of first order equations which satisfy lim,._ N(z) = K,
lim, .o p(z) = 0, the ‘general solutions’ are precisely those described in 1-6 in
Section 5. Note, however, that there is no reason why this property of a cline
should be related to its stability as a stationary solution to (6)-(8) (cf. Section 4).

Note that all results in Appendix 4 are derived under the assumption that the
solution considered is a ‘general’ one in the sense that coefficients of potentially
dominating terms are different from 0. This assumption is justified by the fact
that in all cases the resulting value of lim;_.. £(z) is the ‘right one’ according
to the concluding remarks of Section 4.




References -

Andreasen, V., Christiansen, F. B.: Disease-induced natural selection in a diploid
host. Theor. Pop. Biol. 44, in print (1993)

Anosov, D. V., Arnold, V. I:  Dynamical Systems. I. Berlin Heidelberg New
York: Springer 1988 7

Aronson, D: G., Weinberger, H. F.: Nonlinear diffusion in population genetics,
combustion, and nerve pulse propagation. In Goldstein, J. A. (ed.) Partial
Differential Equations and Related Topics, pp. 5-49. Berlin Heidelberg New
York: Springer 1975

Barton, N. H.: The dynamics of hybrid zones. Heredity 43, 341-359 (1979)

Barton, N. H., Hewitt, G. M.: Analysis of hybrid zones. Ann. Rev. Ecol. Syst.
16, 113-148 (1985)

Bazykin, A. D.: Hypothetical mechanism of speciation. Evolution 23, 685-687
(1969a) '

Bazykin, A. D.: On the effect of disruptive selection on the population with one
dimensional area. 1. Equal fitness of homozygotes. (Russian with English
summary). Problemy evolutsii 2, 219-223 (1969b)

Brown, A. H. D.: The estimation of Wright’s fixation index from genotypic
frequencies. Genetics 41, 399-406 (1970)

Feldman, M. W., Christiansen, F. B., Liberman, U.: On some models of fertility
selection. Genetics 105, 1003-1010 (1983)

Fisher, R. A.: The wave of advance of advantageous genes. Ann. Eugenics 7,
355-369 (1937)

Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Berlin Heidelberg New York: Springer 1983

Hadeler, K. P., Liberman, U.: Selection models with fertility differences. J.
Math. Biol. 2, 19-32 (1975)

Haldane, J. B. S.: The theory of a cline. J. Genet. 48, 277-284 (1948)

Hunt, F.: On the persistence of spatially homogeneous solutions of a population
genetics model with slow selection. Math. Biosci. 52, 185-206 (1980)

Irwin, M. C.: Smooth Dynamical Systems. New York San Fransisco London:
Academic Press 1980

Kimura, M.: Stepping stone model of population. Ann. Rept. Nat. Inst. Genet.
Japan 3, 62-63 (1953)

Malécot, G.: Les Mathématiques de I’Hérédité. Paris: Masson et Cie 1948

Nagylaki, T.: Conditions for the existence of clines. Genetics 80, 595-615 (1975)

28




Nagylaki, T.: The diffusion model for migration and selection. In Hastings,
A. (ed.) Some Mathematical Questions in Biology: Models in Population
Biology, pp. 55-75. Providence, R. I.: American Mathematical Society 1989

Nagylaki, T., Crow, J. F.: Continuous selective models. Theor. Pop. Biol. 5,
257-283.(1974) :

Poulsen, E. T.: Nonmonotone clines in homogeneous space cannot be stable.
SIAM J. Math. Anal. 20, 148-159 (1989)

Slatkin, M.: Gene flow and selection in a cline. Genetics 75, 733-756 (1973)

Wright, S.: Isolation by distance under diverse systems of mating. Genetics 31,
39-59 (1946) |

29.



Liste over tidligere udkorme tekster

“tilsendes germe. Henmvendelse herom kan

gke til IMFUFA's sekretariat
tlf. 46 75 77 11 lokal 2263

217/92

218/92

219/92

220/92

221/92

222/92

223792

b24/92

225/92

226/82

"Two papers on APPLICATIONS AND MODELLING
IN THE MATHEMATICS CURRTCULUM"

by: Mogens Niss

"A Three-Square Theorem"

by: Lars Kadison

“"RUPNOK - stationear stremning i elastiske rer"
.af': Anja Boisen, Karen Birkelund, Mette Olufsen

Vejleder: Jesper lLarsen

“"Automatisk diagnosticering i digitale kredsleb”
af: Bjern Christensen, Ole Mgller Nielsen

Vejleder: Stig Andur Pedersen

"A BUNDLE VALUED RADON TRANSFORM, WITH
APPLICATIONS TO INVARIANT WAVE EQUATIONS"

by: Thomas P. Branson, Gestur Dlafsson and
Henrik Schlichtkrull

On the Representa“ions of some Infinite Dimensional
Groups and Algebras Related to Quantum Physics

by: Johnny T. Ottesen

THE FUNCTIONAL DETERMINANT
by: Thomas P. Branson

UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT
LOW TEMPERATURES

by: Jeppe C. Dyre

YHATMODELLER" Impedansspektroskopti i ultrarent

en-krystallinsk silicium

af: Anja Boisen, Anders Gorm Larsen, Jesper Varmer,

Johannes K. Nielsen, Kit R. Hansen, Peter Boggild

og Thomas Hougaard

Vejleder: Petr Viscor

*METHRODS AND MODELS FOR ESTIMATING THE GLOBAL
CIRCULATION OF SELECTED EMISSIONS FROM ENERGY

CONVERSION"

by: Bent Serensen

227/92

228/92

229/92

230/92

231A/92

231B/92

232/92

233/92

234/92

235/92

"Computersimulering og fysik"

af: Per M.Hansen, Steffen Holm,

Peter Maibom, Mads K. Dall Petersen,
Pernille Postgaard, Thomas B.Schroeder,
Ivar P. Zeck

Vejleder: Peder Voetmann Christiansen

"Teknologi og historie"
Fire artikler af:

Mogens Niss, Ib Thiersen,

Hans Hedal

Jens Hoyrup,

"Masser af information uden betydning"

En diskussion af informationsteorien
i Tor Nerretranders' "Mazrk Verden" og
en skitse til et alternativ basseret
pad andenordens kybernetik og semiotik.

af: Soren Brier

"Vinklens tredeling - et klassisk
problem"

et matematisk projekt af
Karen Birkelund, Bjern Christensen
Vejleder: Johnny Ottesen

"Elektrondiffusion i silicium - en
matematisk model"

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Moeller Nielsen

Vejledere: Johnny Ottesen, H.B.Hansen

"Elektrondiffusion i silicium - en
matematisk model" Kildetekster

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Moller Nielsen

Vejledere: Johnny Ottesen, H.B.Hansen

"Undersegelse om den simultane opdagelse
af energiens bevarelse og isardeles om
de af Mayer, Colding, Joule og Helmholtz
udferte arbejder"

af: L.Arleth, G.I.Dybkjar, M.T.@stergard

Vejleder: Dorthe Posselt

"The effect of age-dependent host
mortality on the dynamics of an endemic
disease and

Instability in an SIR-model with age-
dependent susceptibility

by: Viggo Andreasen

“THE FUNCTIONAL DETERMINANT OF A FOUR-DIMENSIONAL ~

BOUNDARY VALUE PROBLEM"
by: Thomas P. Branson and Peter B. Gilkey
OVERFLADESTRUKTUR OG POREUDVIKLING AF KOKS

- Modul 3 fysik projekt -

af: Thomas Jessen




236a/93 INTRODUKTION TIL KVANTE 247,/93 UNIVERSAL LOW TEMRERATURE AC CON-
HALL EFFEKTEN DUCTIVITY OF MACROSCOPICALLY

af: Ania Boisen, Peter Beggild DISORDERED NON-METALS

Vejleder: Peder Voetmann Christiansen by: Jeppe C. Dyre
Erland Brun Hansen

‘

248/93 DIRAC OPERATORS AND MANIFOLDS WITH

236b/93 STREOMSSAMMENBRUD AF KVANTE : BOUNDARY
HALL EFFEKTEN
af: Anja Boisen, Peter Boggild by: B. Booss-Bavnbek, K.P.Wojciechowski
Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen . 249/93 Perspectives on Teichmuller and the
. ) Sahresbericht Addendum to Schappacher,

Scholz, et al.
. 237/93 The Wedderburn principal theorem and : .
Shukla cohomology by: B. Booss-Bavnbek

. ) With comments by W.Abikoff, L.Ahlfors
: K . ! r - ’
af: Lars Kadison J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner,
J.Cost, J.-P.Kahdne, R.Lohan, L.Lorch,
238/93 SEMIOTIK 0OG SYSTEMEGENSKABER (2) J.Radkau and T.Sodergvist

Vektorba&nd og tenscrer
250/93 EULER OG BOLZANO - MATEMATISK ANALYSE SET I ET
VIDENSKABSTEORETTSK PERSPEKTIV

. Projektrapport af: Anja Juul, Lone Mzchelsen,
239/93 Valgsystemer - Modelbygning og analyse Tomas hwag&wiJensen

af: Peder Voetmann Christiansen

Matematik 2. modul Vejleder: Stig Andur Pedersen

af: Charlotte Gjerrild, Jane Hansen,
Maria Hermannsson, Allan Jgrgensen,
Ragna Clauson-Kaas, Poul Lutzen

Vejleder: Mogens Niss

. 240/93 Patologiske eksempler.
Om szre matematiske fisks betydning for
den matematiske udvikling

af: Claus Dreby, Jern Skov Hansen, Runa
Ulsee Johansen, Peter Meibom, "Johannes
Kristoffer Nielsen -

Vejleder: Mogens Niss

241/93 FOTOVOLTAISK STATUSNOTAT 1
af: Bent Sorensen

242/93 Brovedligeholdelse - bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer

af: Linda Kyndlev, Kare Fundal, Kamma
Tulinius, Ivar Zeck

Vejleder: Jesper Larsen

243/93 TANKEERKSPERIMENTER I FYSIKKEN
Et l.modul fysikprojekt
af: Karen Birkelund, Stine Sofia Korremann
Vejleder: Dorthe Posselt

244/93 RADONTRANSFORMATIONEN oq dens anvendelse
i CT-scanning

Projektrapport

. ’ af: Trine Andreasen, Tine Guldager Christiansen,
i Nina Skov Hansen og Christine Iversen

Vejledere: Gestur Olafsson og Jesper Larsen

245a+b
/93 Time-Of-Flight mdlinger pd krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Boye Olsen

246/93 HVERDAGSVIDEN OG MATEMATIK
- LEREPROCESSER I SKOLEN

af: Lena Lindenskov, Statens Humanisﬁiske

Forskningsrdd, RUC, IMFUFA




