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ABSTRACT. We develop the theory of the Fourier and Radon transforms of sections of equi-
variant vector bundles over symmetric spaces of the noncompact type. As an application, we
show that wave propagation governed by the Maxwell and massless Dirac equations on the
odd-dimensional hyperboloid is sharp. In particular, we prove Huygens’ principle for these
equations. . -

0. Introduction. Harmonic analysis, in its commutative and noncommutative forms, is
currently one of the most important and useful areas in Mathematics. Harmonic analysis
may be defined as the attempt to decompose function spaces over spaces with symmetry by
taking spectral decompositions of differential operators which respect the symmetry; or in
brief, as the spectral theory of invariant differential operators. The ability to find spectral
decompositions is the ability to solve differential equations, and so one is led inevitably
to the Fourier transform and its variants. Sufficient symmetry, i.e. the presence of a large
enough transformation group, is extremely useful both in finding the “right” differential
equations, and in solving them; it also seems to be the correct setting in which to define a
Fourier transform. A look at the long history of harmonic analysis and of Lie theory helps
explain why this happy convergence of goals and means is not entirely accidental. At the
same time, it allows us to state the purpose of the present paper.

After the early investigations of Gauss and Riemann into the geometry of surfaces and
of space, it became possible to put the study of the physical world and of symmetry on a -
geometric basis. When Sophus Lie began to work, the most sophisticated tools available
for theoretical studies of the physical world were partial differential equations, for example,
the Laplace, wave, Maxwell, and heat equations. Lie noticed that almost all properties
of differential equations that were useful in their solution had to do with behavior under
groups of transformations of the underlying space. He was led to the idea that one might be
able to do for partial differential equations what Galois had done for algebraic equations:
roughly speaking, to reduce their solution to group theory. This core idea has spread to
become ubiquitous in science, sometimes in ways that Lie could not have imagined. In
other ways, the ideas of Lie, Felix Klein, and others have succeeded, remarkably, much
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as planned. Lie groups permeate modern Physics; they operate not just on space or
spacetime, but on phase and configuration spaces, on fibers of bundles, and on a variety
of objects constructed from these. The parallel development of analysis on Lie groups
and homogeneous spaces has made it possible to mount ever better direct and formalized
attacks on differential equations, for example, the wave and Maxwell equations, through
the exploitation of symmetry. This development has also allowed a change of perspective
to take hold, not only in Mathematics, but also in the other sciences: the transformation
group of a space has come to be seen as, in a sense, more fundamental than the space
itsef. Within Lie theory, this thinking is implemented by viewing a homogeneous space
as a quotient G/H of a group G by a subgroup H; that is, by-noticing that the space is
already implicit in: the:group. In Physics, the study of -partial differential equations with
symmetry groups has led to the detailed study of representations of these groups. The
idea is not just to describe known physical particles and fields in terms of representations
(typically carried by the space of solutions of a differential equation, or by the quotient
of some larger function space by this solution space), but rather to construct predictive
theory based on classification results for representations. Slowly, the group representation
aspect of a particle has come to be seen as fundamental, to the point that one often sees
particles defined and labelled by group representations. This motivation has supplied much
of the impetus for the central problem of group representation theory, that of classifying
irreducible unitary representations of a given Lie group. First proposed by Bargmann and
Wigner for the Lorentz group, this problem was then developed in more generality by
Gelfand, Godement, Mackey, Mautner, Naimark, Segal, and others. For semisimple Lie
groups, the study of representations and the related problem of determining the Plancherel
formula was taken up by Harish-Chandra, and this brings us back to harmonic analysis.

On curved spaces, the notions of systems of fields and of differential equations give
way to those of vector bundles and of differential operators on vector bundle sections.
The Maxwell equations are an example of a system that, in the curved space setting,
can be properly understood only in bundle terms (in this case, bundles of differential
forms). The same is true of the Dirac equation, with the added restriction that now, Lie
theory is a prerequisite even for the construction of the bundle involved. In harmonic
analysis, the theory of bundle valued objects is somewhat underdeveloped relative to that
of scalar valued (i.e., trivial bundle valued) objects; the same is true to a lesser extent in
representation theory. For example, various classification problems for invariant differential
operators have long been completely understood in the scalar case, but remain elusive in
the bundle case.

Our purpose here is to develop the theory of the Fourier and Radon transform of vector
bundle sections over symmetric spaces of the noncompact type, to show how such tools
can be used to solve invariant differential equations, and to deduce important properties of
solutions. Specifically, we work with the Maxwell and (massless) Dirac equations, with a
special view toward properties that imply sharp propagation of information; that is, prop-
agation at characteristic speed (the “speed of light”), without dispersion. The best-known
such property is Huygens’ principle; this is also the most elementary in the sense of being
directly expressable in terms of support properties of solutions (as opposed to functional
analytic constructs or conservation laws). We also consider the somewhat weaker property
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of equipartition of energy or of charge. In earlier work, we considered similar questions in
the scalar case [3, 17]. The direct inspiration for those papers and for this one is Helgason’s
direct (i.e. non-transform) treatment [12] of Huygens’ principle for the wave equation on
a symmetric space. Our work can also be seen as a further development of fundamental
work of Harish-Chandra and of Helgason on the Fourier and Radon transforms.

The organization of our paper is as follows. Secs. 1 and 4 relate objects from differential
geometry, for example connections and Laplacians, to objects from Lie theory, for example
differentiation from the left and right, and the Casimir operator. These relations are almost
trivial in the case of scalar valued functions on homogeneous spaces, but require a certain
degree of care in the case of bundles. Qur central result here is Proposition 4.1, which
relates the geometer’s Bochner Laplacian to the Casimir operator of G acting in bundles
over a (suitably reductive) homogeneous space G/H. The Bochner Laplacian is easily
related to, for example, differential form and spin Laplacians, and it is straightforward to
follow the effect of the Casimir operator as Fourier and Radon transforms are applied, so
Proposition 4.1 is a “bridge” sufficient for our purposes. In Sec. 2, we develop the theory
of the bundle-valued Fourier transform on symmetric spaces G/K of the noncompact type,
for semisimple groups G with one conjugacy class of Cartan subgroup. The main result
is Theorem 2.2, which gives the Fourier inversion and Plancherel formulas in the bundle
setting. Here the analytic power derives from Harish-Chandra’s theory of the operator
valued Fourier transform.. The most convenient tool for the study of support properties
of solutions of differential equations is the Radon transform, which we develop in the
bundle setting in Sec. 3. The main result here is a support lemma of Paley-Wiener type,
Lemma 3.3, which relates the support of a vector bundle section, the support of its Radon
transform, and an exponential type estimate on its Founer transform. The analytic power
. is supplied by Delorme’s Paley-Wiener theorem for functions on G.

*In Sec. 5, we specialize some of our results to the case of the odd-dimensional hyperboloid
SOo(2k +1,1)/SO¢(2k + 1) = Spiny(2k + 1,1)/Spiny(2k + 1), the setting in which we
shall apply the Radon transform to questions about the Dirac and Maxwell equations. In
particular, we make contact with weight arithmetic for Spiny(2k + 1,1) and for the groups
Spin(m), and express our Laplacians in these terms. Sec. 6 treats the Dirac equation
and a spinor wave equation. The main results are Theorem 6.8 (Huygens’ principle and
-equipartition of charge for the Dirac equation), and Corollary 6.9 (equipartition of energy
for the spinor wave equation). In Sec. 7, we treat the Maxwell equations. The main
results are Theorem 7.6 (Huygens’ principle and equipartition of energy for Maxwell’s
equations), and Theorem 7.8 (equipartition of energy for a differential form wave equation
with side condition). Huygens’ principle for the Dirac and Maxwell systems on the odd-
dimensional hyperboloid H?**! can also be derived from @rsted’s results in [18], which are
obtained in the somewhat different setting of intrinsically Lorentzian, locally conformally
flat spaces. Huygens’ principle for Maxwell’s equations on H2?**! was also proved by
Strichartz [20] using different methods. Our approach to sharp wave propagation in the

bundle valued case seems to indicate, as indeed all other approaches do, that the first-

order Dirac and Maxwell systems are extremely natural: our arguments go through only
because of special characteristics of the representations defining the appropriate bundles,
and of the equations; it is not possible simply to constuct first-order systems in arbitrary
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equivariant vector bundles which behave in this way.

We would like thank Sigurdur Helgason and Bent Orsted for stimulating and help-
ful discussions. We also thank Sonderforschungsbereich 170: Geometrie und Analysis in
Gottingen, the Danish Research Council, and the NATO Collaborative Research Program
for financial support.

1. Preliminary remarks. In this section, we assume that M = G/H is a homogeneous
space of a connected, semisimple Lie group G with closed isotropy subgroup H. We adopt
the usual convention of denoting the Lie algebra of a Lie group by the corresponding
small German letter; in particular, we have h C g. We assume further that M is strongly
reductive in the sense that there is there is a vector subspace s of g with

(1.1) ' g = h @ s (as vector spaces),
(1.2) Ad(H)sCs, [s,;s]Ch.

For example, M could be a symmetric space like the hyperboloxd H™ = S04(n,1)/ SO(n)
or sphere SO(n + 1)/ SO(n).

Remark 1.1. Let Bg(X,Y) = trad X adY be the Killing form of g. Under the above
assumptions, the restriction of By to s is nondegenerate, and thus defines a nondegenerate
pseudo-Riemannian metric on M as follows. The splitting (1.1) nges rise to an identifica-
tion of s with the tangent space T, M at the identity coset, or origin 0o = eH of M, and
thus to a nondegenerate bilinear form g, on T, M. By the Ad(G) invariance of the Killing
form, g, can be pulled back to a nondegenerate bilinear form g, on T; M for each = € M;
the desired metric is then g : 2 — g, . In general, g is not positive or negative definite. In
special cases, we shall choose normalizations of the Killing form distinguished by the desire
for a certain normalized curvature (for example, constant sectional curvature F1 on the
hyperboloid and sphere respectively), or by the desire (when relevant and possible) to have
a restricted Killing form that agrees with an intrinsic Killing form. Such renormalizations
will, of course, have an effect on the computation of the Casimir operator of g or one of its
Lie subalgebras. Note that without an assumption of positive definiteness, when we speak
of “orthonormal” bases and local frames {X;} in this section and in Sec. 4, the sense is that
the inner product of X; and X; is £6;;. The definition of the Casimir operator of a Lie
subalgebra q of g can be given in these terms as follows: if b is some chosen nondegenerate
bilinear form on q (usually a normalization of the restriction of By), and if X;,...,X, is
a basis of q with (X, X;) = €65, €i = 1, then Casg = -3, €iX? € U(g). Since we
are mainly interested here in Riemannian symmetric spaces, indefinite inner products will
appear only in auxiliary propositions which we wish to prove in reasonable generality.

Remark 1.2. The splitting (1.1) defines a natural left-invariant connection V on the
principal bundle H# — G — M (take § to be vertical and s to be horizontal), and thus on
the vector bundle V, = G x; V; associated to a finite-dimensional representation (7, V;)
of H. We call this the canonical connectionon H —- G — M oron V,. By [15,X.3.3], V
agrees with the Levi-Civita (pseudo-Riemannian) connection V1€ on the tangent bundle
TM = G xaq 5 in our setting. We fix this choice of connection throughout this paper.
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Remark 1.3. There is a standard identification of the space C*°(M, V) of C* sections
f of V, with the space C®(G;7) of C* functions f1 : G — V, satisfying fi(gh) =
T(h™1)f%(g) for all g € G, h € H. (In fact, when it causes no difficulty, we shall sometimes
blur the distinction between f and f%.) We can use this identification to state the standard
relation between the connection and its covariant derivative: if g € G, X € C*(TM),

(1.3) - (Vx ) g) = (X*f*)g),

where X! is the horizontal lift of X to G via V. We would also like a formula for the
canonical connection that is more adapted to Lie-theoretic calculations. Since V is left-
invariant and the expression Vx f is C*(M)-linear in the X argument, all information
will be contained in a formula for (Vx f)¥(e) in terms of (X"), and f%. Let X € g be
the image of (X*), under the usual identification of T.G with g; since (X"). is horizontal,
~ X €s. Since X, = (X"),, it is immediate from (1.3) that :

(Vx i) = o

_ fHexp(tX)).

t

By the left invariance of V, if £ = gH is arbitrary in G/H, then

d
(Vxf)i(g) = ¥ fi(gexp(tX)),
1=0
where A’ € s is determined by
X, = (XY, .
Remark 1.4. Choose an orthonormal basis X; _,'. .. ;.X’,, for s in some normalization b, =

Bglsxs of the Killing form, b:(X;,X;) = €:6ij, €; = £1. Then it is immediate from the

last remark that .

(21, 2n) = exp()_ z:X)H
1=

gives a normal coordinate system at at o € M.

2. The bundle valued Fourier transform. Let G be a connected semisimple Lie group
and K a maximal compact subgroup. Then X = G/K is a Riemannian symmetric space
of the noncompact type. Suppose that G has one conjugacy class of Cartan subgroups
(occC). (See [22, Sec. 7.9] or {11, Theorem IX.6.1].) In this section, we would like to
define a Fourier transform ~ on sections of K-bundles V, = G x, V over X, (V,7) an
irreducible representation of K, and use Harish-Chandra’s theory of the operator-valued
Fourier transform F on the space C>°(G) to write down Fourier inversion and Plancherel
formulas for ~. Here and below, C2® means C* with compact support.

To introduce the Fourier transform, we shall need some basic definitions from semisimple
structure theory. Take a Cartan decomposition g = ¢ + p, choose a maximal abelian
subalgebra a of p, fix a positive open Weyl chamber a} ina*,andlet G = KAN, g = t+a+n
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be the corresponding Iwasawa decomposition. Let p be half the sum of the positive (g, a)
roots:

p(H) = jtr(adH)| , He€a.

The Weyl group of (g,a) is W = M' /M, where M and M’ are respectively the centralizer
and normalizer of a in K. Note that there are natural actions of W on the set M of
equivalence classes (0, Uy ) of irreducible representations of M, and on a*. The exponential
map is a diffeomorphism of a onto A. If a € A and v € ag, let

a’ = eu(log a)'

Consider the minimal parabolic subgroup MAN cox:respondingrto our choices. Principal
series representations are parameterized by (o,v) € M x ag. The representation 7, , acts
by left translation in the Hilbert space H, , obtained by completion of the space

{¢ € C(G,U,) | ¢(gman) = a=""Pa(m) ™ ¢(g), g € G}

in the norm
1) 18|17 = / l6(k)|2dk.
;

To,v 15 unitary for v purely imaginary on a. As a K-module, (74, |, He,, ) is independent
of v, because restriction to A is an isometry of H, , onto the K-module H, obtained by
completion of

{6 € C(K,Us) | ¢(km) = o(m)™'¢(k), k € K}

in the norm (2.1), for all v. In the following we identify H,, and H, whenever it is
convenient.

For 7 € K, 0 € M, we write 7 | 0 or o T 7 if the multiplicity m,(7) of o in the
restriction of 7 to M is nonzero. Frobenius reciprocity sets up a natural identification of
Hom g (H,, V) with Homa (U, V7).

The operator-valued Fourier transform of F € C(G) is

2.2) (FF)o,v) = /G F(g)o,(9)dg € HS(H,,),

where “HS” stands for “Hilbert-Schmidt”. The corresponding Plancherel decomposition is
as follows: let £ and R be the left and right regular representations of G in L?(G). Then

®

23) PO %oxc @ [ Hew@ s
N uE\/:Ta;_

where dv is a choice of Lebesgue measure on /—1a*, and the representation acting on the
left-hand side is L@ R.
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Remark 2 1. By a theorem of Bruhat [4, Theorem 7.2], the 7,, are. u'reducxble for
almost all v € /—1a* when G is semisimple. In our occC. setting, they are irreducible for
“all v € \/=1a* by [7, Theorem 41.1). Moreover, for v,v' € /=1a*, 7, is equivalent to
Mo, if and only if there is a w € W with (o',v') = (wo,wv) [4, Theorem 7.2].

To invert F, it suffices to recover F(e) from FF, since we can then apply the result
~to any left translate of F. By Harish-Chandra’s inversion formula, [22, Theorem 8.15.4],
there exists a positive normalization of dv such that

(2.4) F(e) = Z / o (GFF) oo, v)ds

where m(o,v) is the Plancherel density. A formula for —m(o,v) is given in [22, p. 294)
(see also [7, Theorem 24.1]). It follows from this formula that m(o,v) can be written as
- m(o,v) = |n(o,v)|?, where 5(0,-) is a complex polynomial on a? which is real on a*. (7 is
unique up to multiplication by £1.) When o is the trivial M-type then 5(o,v) is (plus or
minus) the inverse of Harish-Chandra’s c-function. The corresponding Plancherel formula
is '

(25) LiFora=3 [ G CRR

cEM vev-1

Let (7, V,.) be an irreducible representation of K, and consider the vector bundle V, =
G x, V; associated to 7 and the principal fibration K - G — G/K. We identify the
section space C*(G/K,V,) with C*°(G; 1) as in Remark 1.3. Because K is compact, this
also identifies C®(G/K,V,) with C®(G;7). Similarly, we denote by L?(G; ) the space
of V,-valued L2-functions on G satisfving the above transformation rule, and by £ the
- natural representation of G on this space.
The Plancherel decomposition of £ on L?(G;7) follows from (2.3) above. Indeed,

L2(G V ) =GxG @/ 7ra,u ® ﬂ’;'y ® V‘r dl/,
E\/_u+

so the right transformation rule defining L?(G; 1) gives .

L¥(G;7) G@/E\/_ Tow @ (7, ® V;)Fdy,
la3

where L is the representation acting on the left-hand side. But (w;’,,®V,-)K = Homp (H,, V)
is naturally identified with Hom(U,, V), so

(53]
L =g @/ Tow & 1H°mAI(U¢7|Vr)dV’

olr ve _“;—
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where 1 denotes the trivial representation.

This decomposition of £ is implemented by the following Fourier transform. If a €
Homg(Vy, H, ), we define

f(o,v)(a) = /G o0l 6)AGK) € Ho, 0 €M, v €t

for f € C*(G; 7). In this way, f(a, v) can be viewed as an element of
H, @ Homg (Vs Hs)* = He @ Homg (He, Vr) = H, ® Homps (Us, Vr).

Here we employ the natural identification of Homy (Mg, Vi) with Homy (Vy,H,)*, and use
Frobenius reciprocity to identify Homg(H,, V) with Homa(Us, V;). In partxcular only
finitely many o can contribute: f(o,v)(a) = 0 unless o T 7. Notice that f — f maps
C(G; 1) equivariantly into H,,, ® Homps(Uy, V).

We can now state:

Theorem 2.2. Suppose 7 is an irreducible representation of K, and let n = dimr. Let
f € CX(G;). 7 , , ,
(a) (Fourier inversion formula.) Let &, : H, ® Hompy(H,,V:) — V; be the contraction

®,(h ® ¢) = @(h). Then

@=2 [ eereste™) @ Do mmia.ian

UT"' € —lﬂ+

(b) (Plancherel formula.) We have

£ = = Z/ If (e, v)|m(a, v)dv.

oflr _l°+

Proof. It suffices to prove (a) for g = e, since we can then apply this result to left translates
of f. Thus the claim is that

(26) f L 23 [ &l mo, ).

(Here and in the rest of the proof, the sum is over o with o T 7, and the v-integral is over
v—1a% .) We apply (2.4) to the function F(g) = (f(g),v) where v € V,. It follows from
(2.2) that (FF)(o,v) = (FF)(o,v)Pr, where P is the orthogonal projection of H, onto
its T-isotypic component. (2.4) becomes

@2.7) Fle)=Y" / tx(P,(FF)(0,v)P, ym(o,v)dv.
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Now pick orthonormal bases v;,... ,v, and ¢1,... ,¢m for V; and Homg(V;,H,) re-

spectively, with respect to K-invariant inner products on V; and H,. The @jv; are an
orthonormal basis for P,H, , and we get from (2.7) that

Fo) = X [ SUFFNow)esm osmimio,v)d
By (2.2),

(FF)(o,v)p5v: = /G (F(9), ) a0 (g)e50:dg

(2.8)
=/G/K‘/I‘((T(k'l)f(g),v)ﬂa,.,(g)(pjr(k)v,-dkd(gI{)_

For any endomorphism A of V; we have f}\ T(k)AT(k~ 1)dk = (tr A)I/n by Schur’s Lemma.
With Au = (u,v)w, we get :

/;{(T(k'l)u,v)r(k)w dk = —l-(w,v)u

n

for any three vectors u,v,w € V. Applie'd to (2.8), this gives
1 . 1
(2.9)  (FF)o,v)p;vi = —(vi,v) /G/I’wa,u(g)saj(f(g))d(gh) ={viy v)f(o,v)(;)-

Inserting this into (2.7), we get

(f(e),v Z/Z Vi,V f(a,v)(c,o,) w;vi)m(o, v)dv.

Z(via v)(f(a, V)(‘Pj)a ‘Pjvi) = Z(f(aa V)(‘l’j)v ‘Pjv) = (QU(f(oa V))’ v>

) t

Since

and v was arbitrary, (2.6) and hence (a) is established.
By definition,

(2.10) T /G MICZOOESY /G [(£(g), ) 2ds.
=1

We want to apply the operator-valued Plancherel formula (2.5) to F(g) = (f(g),v). By
(2.9), ‘

211)  IFF)olEs = X NFF)o el = 2 3 o) P, w)e)I
)

iy
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Let Fi(g) = (f(g),v:) and apply (2.5) and (2.11) in (2.10):

=3y / |F Fi(o, v) s mlo, v)dv

=1 o

= 23 [ Sl e, v

1,i,g

=13 [ S m)eitmo, s
=2 ¥ [ Wi mime,v)d,

proving (b). DO

Remark 2.3. Notice that though the Hilbert space L?(G; 7) decomposes as a finite direct
sum over o 1 7 of invariant subspaces, this decomposition is in general not inherited by
the subspace C®(G; 7). Indeed, any continuous intertwining operator A from a 7, to a
Tgr + With complex valued v and v' will give rise to the relation

Afo)@) = [ | Ameslg)a(S(e)MeE)

- / ot (9)Aa(f(9))d(gK)
G/K
= f(a',v')(.4a').

Since f is holomorphic, it follows that the Fourier transforms f(o,:) and f(o',-) are not
independent.

3. The bundle valued Radon transform. For f € C°(G; 1) we define the Radon
transform as the V; valued function

fl9) = a(g)p/Nf(gn)dn.

on G. Here a(g) € A is defined by the Iwasawa decomposition: g € Ka(g)N, and again,
a’ =¢"198%) fora e A,v € ag. The defining integral of f converges locally uniformly in g
since N is closed and f has compact support. Hence f is smooth.

Let = = G/MN be the space of horocycles in G/K [9]. Since f(gmn) = r(m)~1f(g)
for g € G, m € M, and n € N, we may view f as a section of the vector bundle G x pn V5
over =, where M acts on V, by 7|y and N acts trivially.

Notice that if T is the trivial representation then f is the Radon transform of f in
the sense of [8], except for the factor a®. In this case there is a simple relation between
the Radon and Fourier transforms of functions on X: essentially f is obtained from f
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by a (Euchdea.n) Fourier transform on A [10, p. 458, equation 7). This relation can be
generalized to the present situation, where we work in bundles over X and Z, as follows.
For each 0 € M we define the o-Radon transform of f by

fo(B) = Bof, B € Homm(V:,Us).

f,(ﬂ) may be viewed as a section of the vector bundle G xpn U, over =, where N as
before acts trivially. For a € HomK(V,,'H,) let & denote the element of Hom(V;,Us)
given by a(v) = a(v)(e). Then a — & sets up the 1somorphxsm of Homg (V:, He) with
Homp(V,,U,) implied by Frobenius reciprocity.

Lemma 3.1. Let f € C>(G;1). Then
f(ov)(a)(k) = /A o f,(é)(ka)da

forallo € M, v € a, a € Homy(Vy, H,), k € K.

Proof. By definition of f and invariance of the measure on G /K we have
fe)@®) = [ maulgda(e)(RMK)
G/k
= [ mosl@alfka))e)dgK)
G/K

which by the Iwasawa decomposition G = ANK can be written as an integral over A x N:

=/A/Nwa,,(an)a(f(kan))(e)dnda

=/A/Na"+”a(f(kan))(e)dnda.

The latter identity follows f_rom the fact that by definition of the representation (74, ,Ho)
we have 7, ,(an)h(e) = a¥*?h(e) for any element h € H,.
The lemma now follows immediately from the definition of f,. O

Let (7, Vi), i = 1,2 be finite dimensional representations of Ii'. Notice that the elements
of Sq¢(a) ® Homps(V1, V2) naturally define invariant differential operators of order < d from
the vector bundle G X pn 71|p to the vector bundle G x prn T2|ar. Here Sq(a) denotes the
set of elements in the symmetric algebra S(a) of degree < d.

Lemma 3.2. Let D : C*(G;m) — C*(G;72) be an invariant differential operator of
orc!er d € N. Then there exists an element D € S4(a) ® Homa(V1,V,) such that (Df)"=
Df for all f € CX(G;my). ,

Proof. By 22, 5.4.11], D is given by an element u of (Us(@) ® Hom(V;, %)), (In general,
if V is a K-module, V¥ denotes the vector space of K-invariant elements of V'.) By
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the Poincare-Birkhoff-Witt Theorem, there exist finitely many elements v; € Uj(a),w; €
Uq(t),z; € Hom(V;,V;) such that u = ;v ® w; ® z; modulo nU(g) ® Hom(V1,V2).
Moreover, the K invariance of u implies that Y, vi ® wi ® z; is M-invariant, because M
~ normalizes n. Asin Sec. 2, we let R denote the right regular action of G, and use the same
notation for the corresponding action of g, and the extension of this latter action to U(g).

Then
(Df)(z) =) _a(z) / ziR(viwi)f(zn)dn =) _ a(z)? / zimy(w] )R(vi)f(zn)dn,
i N i N
where w — wV is the anti-automorphism of U(g) generated by X + —X for X € g, and
hence

(PN @) =T sa@) [ (R an)dn
with z! = z;7;(w)) € Hom(V;, V). By a change of variables it is easily seen that

| a(z)? /N (R(X)$)(zn)dn = R(X + p(X)) (a(-)" /N o(- n)dn) (2)
for X € a,¢ € C.(G). Hence we obtain
(DfY" =D =AR@)S, -

t

where v| is a p-shift of v;. Since we have
> v ® 2| € (Ua(a) ® Hom(V, V2))M = Ug(a) ® Homr(V1,12))
the lemma is proved. O
Let D be as above, let D = 3 vi ® 2z € Sq(a) @ Homps(Vi, V2), and let 0 € M. Then

(3.1) (Df)3(B) = 3 (R(v:)fo)(Boz)
for 8 € Hom(V1,U,), and hence by Lemma 3.1 we obtain that
(3.2) (Df)~(o,v)(a) = > vi(~v)f(0,v)(a:)

1
for « € Homp(Vi,H,). Here a; € Homp(V2,H,) is the element determined by a; =
dozi € Homp(Va,U,).

For the Fourier and Radon transforms we have the following support theorem which
generalizes results of Helgason in the case where 7 is the trivial representation {10, Lemma
8.1].

Let B, denote the ball of radius r > 0 around the origin in X. Since G = NAK and
the distance function is K-invariant, we have

B,={kaK e X |ke N, a€ A, |loga|] <r}.
Similarly we define
Br={kaMN € =Z| k€ R, a€ A, |loga| <r}.
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Lemma 3.3. Let f€CX(G;7) and let r > 0. The following conditions are equivalent:

(1) supp f is contained in B,.
(2) supp f is contained in f;. )
(3) sup,gq(1+ lv||)Ne~rIRe¥ll|| f(o,v)]] < 00 forall N € R, 0 € M.

Proof. Let “dist” be the Riemannian distance function on G /K. From [11, p. 278, Exercise
B.2(iv)], we have that dist(anK,o0) > dist(aK,o0) for all a € A,n € N, where 0o = eK
is the origin. It follows from this and the K-invariance of the distance function that
dist(kanK,o0) > dist(aK,o0) for all k € K,a € A,n € N. Hence ||logal| > r implies
kanK ¢ B, for all n € N, and we get that (1) implies (2).

Notice that by the Paley-Wiener theorem for R", (3) is the condition for the map
v — f(o,v) to be the (Euclidean) Fourier transform of a function on A, supported on the
set where || logal| < r, for each 0. Hence (2) is equivalent to (3) by Lemma 3.1. It remains
to prove that (2) 1mp11es (1).

We shall use the left K-finite expansions f = 3 ;. fé and f = E&el\(f)6 of f

and f. f6e K, flis the component of f that transforms according to the represen-
tation 6 from the left. We have that f®(g) = (dim$é) f,. xs(k)f(k~'g)dk and feg) =
(dim ) [, xg(k)f(k ~1g)dk, where x; is the character of §, and hence we see that supp f C
‘B, (resp supp f C Br) if and only if supp f® C B, (resp. supp f¢ C 8,) for all §, and that
fé = f5 (the order of the integrals over i’ and N can be interchanged).

Assume that (2) holds. To obtain (1) we may (and hence do) assume f to be left
K -finite, by the remarks in the previous paragraph.

We now apply the Paley-Wiener theorem of Delorme [5], which shows that F € C>(G)
has support in B, if and only if for all u,u' € U(#) and all natural numbers N,

sup (14 |lof| + [[v])N e NRe N ||my (u)(FF)(0,v)mo (u')] < 0. )
oc€EM,vEag

Here the operator norm is used on the operator T = 7w, (u)(FF)(o,v)r(u'), which is
defined on H®, the space of smooth functions in H,:

(33) T = sup [Ty
veHs lvlisr

As in the proof of Theorem 2.2, we apply to F(g) = (f(g),v), v € V,. Since f is left K-
finite and transforms according to the trivial representation of i” on the right, F' is '-finite
from both sides. Hence the applications of 7,(u) and 7,(u') are superfluous. Furthermore,
as we know from before, only finitely many o (those for which ¢ 7 7) contribute. Hence
supp F C B, if and only if for each o T 7 and N € N,

(3.4) o sup(1+ |l )Ne IRV F R (0, )| < o0.

veag



