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Abstract.

Age-dependent host mortality in the dynamics of endemic infectious diseases
page 1

For human populations, the age-dependent survival is well described by a fixed duration of
life. In such a population the endemic equilibrium of a model for a contagious, immunizing disease
with a short infectious period is locally asymptotically stable. The analysis utilizes an asymptotic
expansion in the ratio between the time scale associated with the hosts’ life span and the period of
infectiousness and gives implicit but algebraically simple expressions for the dominant part of the
linearization.

SIR-models of the epidemiology and natural selection of
co-circulating influenza virus with partial cross-immunity
page 17

Infection with influenza A virus confers only a partial protection against infections by similar
viral variants. An extension of the SIR-model allows us to study the epidemiology and genetics
of two co-circulating strains with partial cross-immunity. The condition for polymorphy or co-
existence takes the form of an invasion criterion where the invading strain can establish only if it
can invade when the other strain is already endemic. In the presence of a cross-reacting strain, the
incidence of the individual strain as well as the observed basic reproductive number is decreased.
For a model with constant host life length, I find that the local stability analysis suggests the
existence of oscillations in the prevalence of each strain for certain parameter values. The analysis
utilizes an asymptotic expansion in the ratio between the duration of infection and the host life
length.



AGE-DEPENDENT HOST MORTALITY IN THE DYNAMICS OF
ENDEMIC INFECTIOUS DISEASES

The purpose of this paper is to study the effect of host demographic structure on the dynamics
of an endemic disease under the simplest possible assumptions about disease course and transmis-
sion. Classical models of epidemiology assume a constant mortality and hence — with a constant
population size — an exponentially distributed duration of life. In contrast I here assume that host
life has a fixed duration. Disease models with this mortality structure were proposed by Ander-
son and May (1983) because such a mortality fits well to the observed age-dependent survival in
industrialized countries. If exposed individuals acquire permanent immunity, older individuals are
more likely to be immune due to previous exposure (Dietz, 1975). Therefore, in a population with
fixed duration of life, more deaths will occur among immune individuals than in a population with
constant mortality. Thus the vital dynamics of the host population affect disease transmission.
Our aim is to understand the effect of the mortality structure on the dynamics near the endemic
state.

Recently, age-structured models of epidemics have been studied intensively for both biological
and mathematical reasons. Biologically the host age-structure is important for several aspects
of infectious disease epidemiology: (i) The rate of contacts between hosts appears to be highly
age-dependent with transmission peaking at school age (Anderson and May, 1982, 1985); (ii) the
severity of many childhood diseases, e.g., rubella, increases with age (Knox, 1980; Dietz, 1981;
Anderson and May, 1983); and (iii) often empirical data are available in an age-stratified form
making it desirable to utilize this type of information (Dietz, 1975; Muench, 1959; Griffiths, 1974).
Finally age structure has been added to make the models more realistic and their predictions closer
to observed disease statistics (Schenzle, 1984).

The numerical simulations that are included in these investigations usually assume some kind
of age-dependent host mortality, in part because this adds significantly to the realism of the models,
in part because a finite maximum host life span is easier to handle numerically. In this study we
isolate the eflects of age-dependent host mortality, thus providing a baseline to which one can
compare the effects of additional age-dependent factors. '

Parallel to the biological interest, age-structured models have received much attention in the
mathematical literature starting with the work of Hoppensteadt (1974) and Dietz (1975). By now
it is well known that age-dependent SIS- and SIR-models are well posed for reasonable choices of
age-dependent parameters. In addition, Dietz and Schenzle (1985) identified a threshold quantity
that determines the existence of an endemic equilibrium and the local stability of the disease-free
equilibrium (Castillo-Chavez et al., 1989; Busenberg et al., 1988; Greenhalgh, 1987). Busenberg
et al. (1988) show that in an SIS model the endemic equilibrium is always stable when it exists.
However, the stability of the endemic equilibrium in SIR models remains an open question.

Clearly the gencral question of the local stability of the endemic equilibrium is hard since
the Lotka-type characteristic equation is transcendental and quite complicated. To simplify the
computations, I focus on realistic parameter values. All studies of the problem report on the
background of numerical investigations that for such parameters the endemic equilibrium is stable,
and I here give an explanation for these observations. The key property of realistic parameter
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Table 1. Duration of infectiousness D and basic reproductive number Ry for some viral
diseases. The basic reproductive number varies with population density and social conditions. The
ratio € of D to average host life span A is computed for A = 71.6 years. Data for influenza from
Spicer (1982) and Bailey (1986); all other data from Anderson (1982).

D=yv"! e=DJ/A Ry

in days B 7 7
Measles 6-7 2.3-2.7 x104 5-16
Chicken pox 10~-11 3.9-4.2 x104 7-10
Rubella 11-12 4.2-4.6 x10~* 6-7
Influenza 2-3 0.8-1.2 x10~* 2-5

values is demonstrated in Table 1. The table shows that for many viral diseases, the system
involves processes at two different time scales, namely the host death and renewal processes and
the duration of infection. The ratio between the two time scales can be 3-4 orders of magnitude
thus allowing for simplification by the use of asymptotic expansions (Andreasen, 1989a).

The presence of multiple time scales has been recognized in connection with numerical diffi-
culties (Castillo-Chavez et al., 1989). Anderson and May (1983) use first order approximations to
give approximate expressions for the age-dependent disease incidence and a discretization in time
to asses the period of the oscillations in the model we study here.

In the first section of the paper, I discuss the implications of the two time scales for the stability
of the standard SIR-model with constant host mortality. [ then formulate the age-structured version
of the SIR-model with fixed host life span and demonstrate by rescaling how ¢, the ratio between
the two time scales, enter. In order to determine the stability properties of the model, we will
need second order approximations of the Lotka characteristic equation. As a first step, I analyze
the endemic equilibrium and obtain an expansion in ¢ of the force of infection at equilibrium. The
machinery is now set up for the final section which describes the dominant part of the spectrum
for the linearization. The computations in the final section get quite involved and are done using
a symbol manipulator MACSYMA.

Host population with constant mortality

Our starting point is the classical SIR model of the transmission dynamics of an immunizing
contagious disease in a host population where we take into account the host’s vital dynamics
(Hethcote, 1974; Dietz, 1975). The host population is divided into 3 classes, susceptibles, S,
infectious, I, and recovered and immune, R. Assuming that the per capita mortality rate is p for
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all classes, and that births balance deaths, we arrive at the SIR-model:

S =—BSI—uS+uN ,
I=pSI—(p+v)I 1)
: R:uI—uR.

Here v is the recovery rate, and BST gives the rate at which the susceptibles get infected. As is
common when modeling the spread of a directly transmitted disease, the incidence rate ST is
thus assumed to be proportional to as well the number of infectious as to the number of suscep-
tible (Anderson, 1982). For large populations it is biologically more reasonable to assume that
the incidence rate is proportional to the fraction of individuals who are infectious (Schenzle and
Dietz 1987; Andreasen, 1989b), but since we are concerned solely with models of fixed population
size N this will lead to the same basic model.

It is well known (Hethcote, 1974; Dietz 1975) that (1) has an endemic equilibrium, an equi-
librium where the disease is present, if and only if Ry > 1, where Ry is the number of secondary
cases per primary case in a totally susceptible population: ‘

BN
pt+v

1< Ry =

The quantity Iy, a dimensionless number, is known as the basic reproductive number, and it provides
a measure of how easily the disease spreads in the population. For many infectious diseases the
magnitude of Rp is on the order of 2-20 (Table 1). After elimination of the redundant R-equation
from (1), the stability of the fixed point is determined by the dominant eigenvalue X of the linearized
S, I-equations near equilibrium:

>
Il

- a4 ) Ro = ) - (Guko)?
~ —H% tivpv(Ry - 1).

The eigenvalues are complex with negative real part, therefore the model exhibits damped
oscillations. Since the average life span of a host p~! is about 70 years, the real part of the
eigenvalue is about 1/35 year~!, so the half life of the amplitude is about 20 years (May, 1986).
The period of the oscillations, the interepidemic period, is determined as T = 27 fw, where w is the
imaginary part of the cigenvalue. Thus T ~ 2r/AD/(Ry — 1), where D = v~ is the duration of
infections. In most cases, T" is on the order of 2-5 years, and the model (1) predicts weakly damped
oscillations. Notice that the damping term, the real part of the eigenvalue, is determined by the
time scale associated with the host life span A while the period of the oscillations is determined by
the geometric average of A and D. ‘
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Figure 1. Number of deaths per year for a cohort of 100,000 danish men, based on the vital
statistics for 1984-85 (solid line). In 1984-85 the expectation of life for danish men was 71.6
years. The broken line shows the number of deaths that will occur in a population which
experiences a constant mortality of 1/71.6 years. The doted line indicates a delta function at
71.6 years corresponding to a fixed host life of 71.6 years. (Data from Danmarks Statistik,
1987).

Age-dependent mortality

In model (1) the host mortality is a constant independent of age, corresponding to an expo-
nentially distributed duration of life. For human populations in industrialized countries, this gives
only a crude description of the vital dynamics as the number of deaths in a given cohort is negligible
up to age 50-60 years, peaks at age 75 and then falls off (Figure 1). Figure 1 shows two approxi-
mations to the age-dependent incidence of death. The broken line shows the number of deaths per
year that would occur under the assumptions of model (1), while the dotted line, symbolizing a
Dirac delta-function at the average life expectancy, indicates the death incidence that would occur
if host life had a fixed length. Clearly the model with fixed duration of life approximates better
the observed data.

In terms of mortality the fixed duration of host life A correspond to zero mortality up to age
A and an “infinite mortality” at age A.

Since we assume that mortality is age-dependent, we need to reformulate (1) for an age-
structured population. This formulation can be found in Hoppensteadt (1974) and in Dietz (1975).
The special case of a fixed duration of host life is discussed by Anderson and May (1983) and by
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Greenhalgh (1987, 1988). With the notation from above, we have

9S  9S _

20 o T A8

ar oI

9a T “AS VI |
OR OR (2)
9t =

A
AQY) =ﬂ/o I da
S0, 0)=0  1(0,¢) = R(0,¢) = 0.

Here A denotes the force of infection and a the age of the host. The variables S(a,t),I(a,t),
and R(a,t) give the age distribution of susceptibles, infectious, and recovered respectively, so.that
f: S(a,t) da gives the number of susceptibles between age a and age b at time ¢, etc. New individuals
are born susceptible, and the birth rate g is constant, insuring that the total population size is fixed:

A
/ (S+I+R)da=pA=N.
0

The equation for R is thus redundant. The equations (2) are valid for 0 < a < A; at age A all
individuals die, and S(a,t) = I(a,t) = R(a,t) = 0 for a > A. Since we are concerned with the limit
behavior, we omit explicit reference to initial conditions. ‘

Explicit construction of solutions along characteristics shows that model (2) is well posed in
the sense that solutions exists and are unique and that solutions with positive initial conditions will
remain positive and finite (Castillo-Chavez et al., 1989; Busenberg et al., 1988; Greenhalgh, 1987).

Furthermore — as for model (1) — one can identify a basic reproductive number Ry as the
number of secondary cases per primary case in a susceptible population (Diekmann et al., 1989).
If Ro is less than unity the disease-free equilibrium at § = 0, I = R = 0 is the only non-negative
equilibrium. If Ry exceeds unity, an additional endemic equilibrium appears (Dietz and Schenz-
le, 1985).

Multiple time scales

The analysis of the endemic equilibrium in age-structured STR-models has proved to be dif-
ficult hecause the Lotka-type characteristic equation is too complex (Castillo-Chavez et al., 1989;
Greenhalgh, 1987). I here simplify the analysis by observing that (2) encompasses two different
time scales, since the host renewal process is associated with the host life span A while the recovery
process is associated with the duration of the disease D = v=!. In industrialized countries humans
live for around 70 years (Figure 1) and for many viral diseases, the infectious period lasts on the
order of one week, so the time scales differ by 3-4 orders of magnitude (Table 1).

The effect of the two time scales becomes clear after rescaling time t and age a in units of
host life span and measuring S and I in units of p. The new dimensionless variables s = S/e and
¢ = I/p give the fraction of a given cohort which is susceptible and infectious respectively.
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The rescaled equations become

ds 0Os

%— 5{ = —AS

éi ?_l_ = As — li o :

da ' Ot £ (3)

/\(t) = g/o ido
s(0,2)=1  i(0,2) = 0,

where the two dimensionless parameters are b = BN D and ¢ = D/A. The ratio between the
two time scales £ < 1 now appears explicitly in the model. The remaining parameter b is closely
related to the reproductive number Ry since:b gives the number of secondary infections per primary
infection in a susceptible population if we neglect deaths during the infections peried. For many
viral diseases including childhood diseases and influenza, Ry is on the order of 2-20 so we assume
that b is on the order of 1 > €.

The equilibrium -age distribution

Direct application of asymptotic expansions to (3) does not appear to yield new insights and
I focus on the analysis of the equilibria. I first derive a second order expansion of A*, the force of
infection at the endemic equilibrium and show that A* is on the order of unity.

Any equilibrium age-distribution (s*,¢*) for (3) can be found by the use of the method of
Dietz (1975). The crucial point in Dietz’s method is to observe that at equilibrium, the force of
infection A(¢) is a constant A* independent of age. Therefore we can use a two-step process to
find A*. In the first step, we solve the steady-state equations assuming that A* is an (unknown)

constant: ds*
s
- A* *
da 8
A7 _ et = L (4)
da €

s*(0)=1 *(0)=0.
It is easy to see that the solution to (4) will remain positive for all @ > 0, and hence that they

correspond to biologically meaningful age distributions (Greenhalgh, 1987). In the second step, we
determine A* implicitly by requiring that

. b, bA* [1-e 1-eV¢
/\_E/OZda_l—s/\‘( o 1fe ) (5)

Since limy—o(1 — e™*)/A = 1, equation (5) has a root at A* = 0, corresponding to a disease free
equilibrium. For fixed b,¢, the equation has at most one positive root and hence at most one
endemic equilibrium (Dietz and Schenzle, 1985). Regarded as an equation in b, (5) is linear, and
we can get some insight into the behavior of the root A* by studying b(A*). The function b(A*) is
monotonically increasing; further more its range is determined by the limits

.
1—¢+ec Ve

,\l-lgo b(A*) =by =
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Figure 2. Force of infection A as a function of the transmission coefficient b at the endemic equi-
librium, for model (3) with fixed host life span. Force of infection and transmission coefficient
are in dimensionless units, see text.

and
b— oo as \* — oo.

The graph of b(A*) is shown on Figure 2.

The lower limit, bg, is the smallest transmission rate that allows the disease to persist. This
gives the following condition for the existence of an endemic equilibrium:

1

1<b/——-—-—1_€+66_1/5.

(6)

The right hand side of (6) gives the basic reproductive number Ry (Dietz and Schenzle, 1985;
Busenberg et al., 1988). That is
1

Ry Zb/_—_—l—e+ee‘1/€'

(7)

In other words: an endemic equilibrium exists if and only if Ry > 1, just as in the non-age-structured
model (1).




For small ¢, the equilibrium -condition (5) simplifies to

_ p=A 1= -1/e
1/b = 1 1 e e ) 7
PErma\ 1/e (8)

=(1—e )X —ee™ + O(e?).

Here and in the following section, we have omitted the *. At the equilibrium, the value of A is on
the-order 1/Ry = O(1), and near the endemic equilibrium, (3) contains rates that differ by 3-4
orders of magnitude. Hence, near the equilibrium the proportion of infectious i(a,t) will track the
proportion of susceptibles s(a,t) closely, i(a,t) ~ A(t)s(a,t)e (Anderson and May, 1985). Since
the magnitude of A(t) is known only near the endemic equilibrium, we cannot use this approach
to solve (3) in general. However, the fact that ¢ < 1 facilitates the local analysis of the endemic
equilibrium.

Stability of the endemic equilibrium

The local stability of an equilibrium of (3) can be determined by linearizing the equations near
the equilibrium and examining separable perturbations of the form

§(a,t) = s(a)e
i(a,t) = i(a)er
é(t) = fePt,
where § and i denote displacements away from the equilibrium values of s and 7 respectively, while
6 is the displacement of A. Castillo-Chavez et al. (1989) and Busenberg et al. (1988) show, under
more general conditions, that the disease free equilibrium is stable if and only if Ry < 1; i.e., if and

only if there is no endemic equilibrium. The age distributions of the perturbations off the endemic
equilibrium must to the first order follow the equations

ds . .

E(;—_A s—60s* —ps
-(zi——)\*s+03" (p+1/e)i
da ~ P

s(0) = i(0) = 0.

In order for the perturbation to be consistent with the definition of , we in addition require
(Castillo-Chavez et al., 1989)

b 1
8=- i(a) da.
. /0 i(a) da
This yields the stability equation in the eigenvalue, p,

€ _ P + de=A-P
b Mp+1/e)p+2)  (A-1/e)p(p+ 2)
(p—Ae? e~Pi/e
Top(p=A+1/e) " €3 =1/e)(p+1/e)(p— X+ 1/e)

8

(9)




.(Greenhalgh, 1987).

Equation (9) can not be solved analytically, but the fact that ¢ < 1 allows us to find approxi-
mate solutions for the roots near the imaginary axis. These roots give the dominant eigenvalues
and are hence the ones that determine the stability of the model.

The term involving e ?~1/¢ can be important only when either e=?~1/¢ is large or when
p=~ —1/e, A—1/e. In both cases the real part of p is much smaller than —1, so the term is not
relevant for determining the stability of (3). Multiplying through in (9) by the common denominator
shows that the remaining part of the equation is essentially of the form w(p) = u(p)e™? where w(p)
and u(p) are polynomials of degree 4 and 2 respectively. Equations of this form have at most a
finite number of roots with positive real part (Bellman and Cooke, 1963).

To simplify (9) first multiply through by p(p + A)/e and omit the order e~1/¢ term:

_pp+A) P AemAP (pP = M)e?

O = X 4ep) " 1ex  Mitep—en)

Multiplying through by p(p + A) introduces extraneous roots in (10) at p = 0,—A, which are not
roots for (9). The equation contains terms that are of different magnitude since by (7) and (8), b
and X are of order 1 while ¢ € 1. The order of p is determined by trying roots of the form |p| ~ ce?.

One sees that the p?/b is unbalanced if ¢ < ~1. For ¢ = —1 the terms of order p? and
p*/(ep + 1) must cancel but by (8) this is only possible when ep+ 1 = 1 + O(e). We conclude that
g > —1 and expand in powers of ¢:

+A) 7P
_&r—)+1—i\—(l—sp+e2p2+...)

~de” P14+ ed+ 2N +.0)

_ @ = X)e?
)

0=

Q=e(p=-N+(p-22+...).

Using (8) to remove the p? terms and to simplify the ep® term, we get

0=[~pA/b+ e (1 ~eP)
+e[-p2/b—de (e P +p - N) (10)
+ Xpt b + O(e2p) + O(®).

By trying roots of the form |p| & cc?, one sees that there are only two possible types of other
roots for (10) with real part near the imaginary axis, |p| =~ ¢ + O(¢) and |p| = cc~1/2 4+ O(1).
For |p| =~ ¢, the equation becomes
—pA/b+xe™ (1 -e7P)+0() = 0 (11)

In appendix A we prove that all roots of (11), except the ones at 0 and at —\ have real part less
than z; where z, is given implicitly by

ale” ™ =t f4 4 (a - 1),

9
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Force of infection

Figure 3. Bounds for the eigenvalues determining the stability of the endemic equilibrium of
model (3). The two curves (a) and (d) give upper and lower bound for the real part of the
eigenvalues with imaginary part close to /A/e. The curve (c) is an upper estimate of the real
part of roots with imaginary part near 0. The line (b) shows the real part of the eigenvalue
in the non-age-structured model (1). The dots represent numerical solutions of (9) at selected
values of A.

and a = A/(e* - 1) > 0.

-1/2

For |p| = ce~1/%, the roots are

p = +iv/Afe + O(1). (12)

In appendix B, we show by computing the second order term that for roots of type (12), the real
part of p is negative. A more careful analysis, which also can be found in appendix B, shows that
the real part of p must be less than a critical value z implicitly determined by the largest root to
the equation
6—23:0 — (_2_1:_0 + eA)Z.
a

A heuristic argument indicates that as b varies the dominant eigenvalue will fluctuate rapidly within
an interval [z,,;2¢]. Numerical solutions of (9) support this claim (Figure 3).

Numerical solutions of (9) show that the order e~'/2 roots arc the dominant ones, although
the heuristically derived lower bound for the real part of the order e ~1/2-roots ., is always smaller
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than z;, the upper limit for the real part of the order 1 roots. Therefore, the model is stable, and
the stability is characterized by the weakly damped, long period oscillations associated with the
roots of type (12), see Figure 3.

For ¢ = 1074, a typical value for viral diseases (Table 1), roots of the type (12) have an
imaginary part that is about 100 times as large as the real part. This explains why several authors
(Anderson and May, 1983; Castillo-Chavez et al., 1989) find numerically that age-structured models
tend to be weakly damped. The numerical values for real and imaginary parts correspond well with
the values reported by Castillo-Chavez et al. (1989) for a closely related discrete time model.

The imaginary part of the eigenvalue w = \/vg determines the period of the oscillation.
Therefore, the interepidemic period predicted by the model is T = 27/w = 271/¢/X measured in
units of A — or in dimensional variables: T = 27+/D/A = 2rv DI, where K is the average age
at which an individual contracts the disease and D is the duration of the disease (Dietz, 1975).
The age-structured model (3) thus predicts the same interepidemic period as does the standard
non-age-structured SIR-model (1), since in the non-age-structured model X' = A/(Ro — 1). The
damping time in the age-structured model is similar to that of the model (1), but in most cases’
somewhat larger (Figure 3). o '

Discussion

The presence of an endemic infectious disease is due to a balance between the introduction of
new susceptibles and the loss of susceptibles through infection and subsequent recovery or death.
For a disease that confers permanent immunity, new susceptibles appear only through host births,
and the time scale of this process is closely linked to the host life span (Yorke et al., 1979). Sus-
ceptibles become infected through contact with infectious individuals so the course of the disease
within the individual host determines the disease transmission. The maintenance of an endemic
disease thus depends on the interaction between two biologically distinct phenomena. The key
observation in this paper is that for many infectious diseases, host renewal and individual infection
take place on time scales that differ by 3-4 orders of magnitude.

After a rescaling of the variables, the ratio between the two time scales appears explicitly
in the age-dependent SIR-model. Asymptotic expansion of the stability equation at the endemic
equilibrium yields implicit but manageable expressions for the dominant elements of the spectrum.

With the aid of this analysis, the effect of the human demography on disease transmission
dynamics becomes clear. The survival curve for human populations is described well by a fixed
duration of life with the life span set to the mean life expectancy. For a population with this
mortality structure, the incidence of a contagious, immunizing disease exhibits damped oscillations
with a period of approximately 2rv DK, where D denotes the duration of infection and K is the
average age at infection. The period of the oscillation is the same as in the model with constant
mortality, but for most parameter values the fixed life span model leads to less damped oscillations.

The analysis thus confirms the popular wisdom that age-structured models in epidemiology
exhibit slowly damped, long period oscillations (Anderson and May, 1983), but it also shows that
the damping time is not well determined. To the first order, the dominant eigenvalues are purely
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imaginary, so the stability of the model is determined by the second order equation. The real part
of the eigenvalue z is always negative. I give a rigorous upper bound for z and a heuristically
derived lower bound. Within those bounds, 2 appears to be extremely sensitive to variation in
the transmission factor 8. For many airborne diseases, 8 varies with the season, probably due to
people’s tendency to stay inside more in the winter (e.g. influenza and measles, Beveridge, 1977;
London and Yorke, 1973; Fine and Clarkson 1982). Due to the sensitivity to 8, the dynamics may
be altered significantly by temporal variation in the transmission coefficient. Simulations with the
discrete time model-of Castillo-Chavez et al. (1989) show very complex dynamics even for modest
seasonal variations in 3 (5%410%); but T hesitate to draw conclusions about the continuous model
from these result because the discretization of Castillo-Chavez et al. (1989) may have introduced
adventitious oscillations.

Although the age-dependent host mortality itself cannot cause sustained oscillations in SIR-
models, it enhances the oscillatory propensity of the models. In a companion paper (Andreasen,
1990) I demonstrate that the mortality structure indeed can induce oscillations in an epidemic model
that would otherwise not oscillate. The model in question describes the co-circulation of influenza
strains that confer partial cross-immunity (Castillo-Chavez et al., 1988, 1989). Using asymptotic
expansions on the ratio between the time scales, I can demonstrate in a special case that there
exist parameter values such that the characteristic equation has purely imaginary eigenvalues. The
imaginary eigenvalues indicate the possibility of a Hopf-bifurcation in a direction associated with
the deviation in incidence of the two strains. Since the corresponding model with constant mortality
is always stable in the deviation between the two strains, we conclude that age-dependent mortality
can indeed cause sustained oscillations in STR-models that would otherwise be stable.
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Appendix A

First order approximation to roots of order 1

In this appendix we estimate the magnitude of the real part of roots for

—pA/b+ e (1~ €e7P)+ O(e) = 0. (11)

As a first step we observe that by (8), A/b = (1 — e™*) + O(¢), so that equation (11) may be
rewritten as
p-a(l-e) =0, (41)

where a = A/(e* — 1) > 0.

Equation (A1) has two real roots at p = 0,—A. As observed in the main text, these T0O0tS
are not roots for the characteristic equation (9), so the roots of interest must be complex. Setting
p =z + 1y, we get '

a—z=ae “cosy ' (A2)

y = ae”“siny. (A3)

Focusing on the roots with positive imaginary part, y > 0, we observe that since siny < y, (A3)
shows that 1 < ae™® or 2z < loga < a — 1, so that '

l<a-z.
Rewriting (A2)—-(A3) gives
y/(a—z)=tany (A4)
y2 + (a - 2)? = a’e7?". (A5)

Simple geometry and (A4) now show that y > /2, and (A5) yields
e =y 4 (a—2)* > 1 /4 4 (a - 2)?,

giving an upper limit for the value of z.
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Appendix B

_ Second order approximation to roots of order ¢~/2

Since the first order approkimation to (9)1gave p;grely irrrlja,gina,riy roots of the form iw =i /\/ é,
the stability of the model is determined by the second order terms. We assume that the terms are of
order 1 and set p = z+i(y+w). After some algebra, well suited for symbolic computer manipulation,
we-arrive-at the following equation, where we-have retained-only terms of order 1+

e~ cos(y +w) — z2(e* — 1)/A - &*
+ie™ (e " sin(y + w)— y2(e* - 1)/A) + O(e'/?) = 0.

With @ = A/(e* — 1) > 0, as in the previous appendix, we have

e~ cos(y + w) = 2z/a + e
e “sin(y + w) = 2y/a.

It follows that '
e = (2z/a + ) + (2y/a)’. (A6)

Since e* > 1, the right hand side of (A6) is greater than 1 for z > 0, while the left hand side is less
than 1, hence (A6) has no positive roots and model (3) is always stable for small ¢.

The real part of the order ¢~1/2 eigenvalue z is determined by the intersection of the graph for
e~ 2% and the parabola (2z/a +e*)? + (2y/a)?. The rightmost intersection of e~2% and the parabola
(2z/a + €*)? thus determines an upper bound o on the real part of the order ¢~'/? eigenvalue
(Figure 3).

We now describe the behavior of the roots as a bifurcation sequence in A by the following
heuristic argument. The imaginary, second order correction term, y, is determined by the equation

tan(y + w) = (A7)

% + aer '
I conjecture that (A7) has a root between —x /2 and 7/2. (This is not clear, since (A7) depends
on z, but I argue that 2 does not matter in the sense that for any given z, (A7) has at least one
solution between ~7/2 and 7/2.) The equation will have additional roots with larger magnitude of
y, but by (A6) they cannot give rise to the dominant order ¢~!/? eigenvalue. Since w = {/A/e, w
changes rapidly when A varies, and we expect that the roots of (A7) will vary rapidly between —n /2
and /2. The variation in y will force z to vary between z¢ and z,,, where z,, is the intersection
between e~2% and the parabola (2z/a + e*)? + (7 /a)? (Figure 3).

Notice that the bifurcation sequence may just as well be regarded as a sequence in the trans-
mission factor b, since A is a monotonically increasing function of b.
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SIR-MODELS OF THE EPIDEMIOLOGY AND NATURAL SELECTION OF
CO-CIRCULATING INFLUENZA VIRUS WITH PARTIAL CROSS-IMMUNITY

Unlike most other contagious viral diseases, infection with influenza virus type A gives only a
partial immunity (cross-immunity) to other variants of influenza (Thacker, 1986). The virus variants
therefore interact indirectly by modifying the susceptibility of their shared host population. In this
paper I develope epidemic models to describe the dynamics of this co-circulation of viral strains
in order to understand the effect of cross-immunity on the epldemlology of influenza A and on the
natural selection experienced by these virus.

On the basis of marked serological differences, the influenza virus family is divided into 3 types
A, B, and C. Of these, type A is the most common and the one we will be concerned with in this
paper. The influenza virus consists of 8 strands of RNA surrounded by an inner shell of matrix
protein and an outer lipid bilayered membrane. The outer membrane is covered densely with spikes
of the two glycosylated proteins, hemagglutinin (HA) and neuraminidase (NA). The hemagglutinin
is believed to play a role in the initial attachment of the virus to the cell while the neuraminidase
facilitates the release of the virus particles from the infected cell (Fraenhel-Conrat et al., 1988).

Immunity to the influenza virus is induced in response to stimulation by the two surface
proteins, HA and NA, and the variation in the virus’ antigenic properties is due to variation in the
composition of these proteins. Both the HA and the NA proteins undergo two kinds of change.
The most significant changes are referred to as shifts, the less dramatic changes as drift. In the
process known as virus drift, new variants with minor biochemical differences continuously arise
through point mutations changing the amino acid composition of the antigenic sites on the HA
and NA structures (Webster et al., 1982; Palese and Young, 1982). A shift is characterized by
the appearance of a new subtype with antigenically distinct HA and/or NA surface regions. The
mechanism that gives rise to virus shift is not known but shift may be due to virus recombination
involving wild life subtypes or due to a sudden change in the surface structure caused by the
accumulating mutations (Dowdle et al.,1974; Thacker, 1986).

To the human immune-system, different subtypes appear as antigenically unrelated infectious
agents if both surface antigens are distinct, while viral strains of the same subtype exhibit con-
siderable variation in the cross-reactive immune response (Couch and Kassel, 1983). Although
reinfection with the same influenza drift variant has been observed (Thacker, 1986) such events
probably are rare and we will not consider reinfections by the same variant here. Experiments
using artificial infection (Larson et al., 1978; Potter et al., 1977) and observations of natural dis-
ease patterns (Gill and Murphy, 1976; Couch and Kassel, 1983; Davies et al., 1986) show that the
probability of infection often is reduced for individuals which have a history of previous infection
with a related strain. Thus virus drift and perhaps shift can be responsible for the existence of
viral strains that confer the type of partial cross-immunity we are studying. The observations in
this paper do not depend on the way in which the cross-reacting strains were created.

Simultaneous occurrence of different subtypes was not observed until 1977 when the H1N1
and H3N2 subtypes both were found in the United States during the epidemic season (Kendal et
al., 1979). Currently both of these subtypes are active in the human population. Also different
variants of the same subtype can be active at the same time; usually one variant accounts for
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most of the infections while other strains occur sporadically and are detected only by large scale
surveillance programs (Kendal et al., 1979; Glezen et al., 1982; Chakraverty et al., 1986).

How can one represent the co-circulation of viral strains ?

Simple SIR-models give good fit to the time series of a single epidemic with a basic reproductive
number Ry &~ 2-5 and an infectious period on the order of 3-5 days depending on the strain and
community in question (Spicer and Lawrence, 1984; Bailey, 1986). For other modelling approaches,
see Fine (1982a). As observed by Levin and Pimentel (1981) and Dietz (1979), SIR-models with
multiple infectious classes can describe the interaction between related strains by keeping track of
the number of hosts infected with each strain since superinfection, i.e. simultaneous infection with
two different strains rarely is observed. I therefore use a generalized: version of the SIR-models to
characterize co-circulation.

Only few studies address the transmission dynamics of co-circulating strains. Elveback et al.
(1971) and Dietz (1979) describe the two-strain interactions that are manifest as temporary immu-
nity, prohibiting superinfection (“virus interference”). For diseascs with short duration, such as in-
fluenza, the strains have only weak influence on each other’s host population, and virus interference
does not alter significantly the stable, endemic equilibria. The situation where interacting strains
confer complete cross-immunity has been studied extensively in connection with the myxoma-rabbit
system (Fenner and Ratcliffe, 1965; Anderson and May, 1982a; May and Anderson, 1983; Saun-
ders, 1981; Bremermann and Thieme, 1989). Standard SIR-models with full cross-immunity among
strains in homogeneous host populations show that all but one strain will be excluded, but the con-
clusion rely heavily on the assumed linearity in these models (Andreasen, in prep.). The observed
co-circulation of different myxoma strains in natural systems probably is due to heterogeneity in
such factors as space and rabbit resistance (Dwyer et al., 1990).

The interaction of influenza strains with partial cross-immunity is described first by Castillo-
Chavez et al. (1988, 1989) who propose to model partial cross-immunity as a reduction in the
transmission rates for previously exposed individuals. In a host population without age-structure,
they find — depending on the parameter values — that partial cross-immunity can lead to exclusion
of one of the two strains or to co-existence at a stable, endemic equilibrium where the prevalence of
either strain is reduced by the presence of the other strain relative to the prevalence it would attain
in isolation. Castillo-Chavez et al. (1989) generalize their model to allow for age-dependence in the
parameters, and they find numerically that cross-immunity in conjunction with a fixed duration
of host life span causes sustained oscillations in the relative abundance of the two strains when
the cross-immunity is sufficiently high. Our aim in this paper is to provide a better biological and
analytical understanding of these phenomena.

In the first section of the paper, I introduce the model of Castillo-Chavez et al. with age-
independent mortality and interpret the model’s asymptotic behavior in the context of invasion by
a competing organism or polymorphy in a haploid population. I then extend the model allowing for
age-dependent mortality thus making the underlying epidemiological assumptions more realistic.

In order to analyze this situation, we need a technical trick which essentially consists in ob-
serving that for influenza as for most infectious discascs, the SIR-models contain two different time
scales, the duration of infection D and the host life length A. Andreasen (1990) uses asymptotic
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expansions in ¢ = D/A < 1, the ratio between the two time scales to analyze the stability of an SIR-
model with constant host life span. I here generalize that method to allow for multiple infections
and transform the coordinate system in order to display the structure of the endemic equilibrium.
The following sections are concerned with obtaining asymptotic expressions for the endemic force
of infection and stability equation respectively. This analysis will allow us to determine how the
presence of cross-immunity affects the age-dependent attack rates. After the analysis, I discuss the
model’s implications for the frequency dependent natural selection experienced by related influenza
strains and for the epidemiology of influenza.

Two strains with partial cross-immunity

If an SIR-type model is to describe the simultaneous presence of interacting viral strains, it
must i) record the serology of the host population, i.e. the hosts’ history of previous infections, and
i1) specify for each strain the infection rate. For two co-circulating variants, Figure 1 shows how
eight epidemic classes can summarize the population’s serological status. Since the number of ways
to achieve full immunity to n interacting strains is n!, this approach quickly becomes unreasonably
complex when more strains are involved. In this paper we study only two strain interactions.

The force of strain 1 infection experienced by the fully susceptibles, depends on the number
of individuals infectious with strain 1. We will assume that cross-response does not interfere
with the production of virus particles in infected hosts and hence that infectious with no previous
exposure I; and infectious with a previous infection Vj are equally good at transmitting the disease.
Furthermore we will make the usual “mass-action” assumption that the force of infection A, is
proportional to the prevalence of strain 1,

Ay = Bi(h + V).

Following the idea of Castillo-Chavez et al. (1988) and Pease (1987), we model the reduced proba-
bility of infection for the partially immune R2 by a cross-immunity factor o1 (0 £ oy < 1) that
denote the fraction by which the force of infection is reduced. Hence for the individuals in the -
R; class, the force of infection is 63A,. Assuming constant mortality and recovery rates u and v
respectively, we obtain a model of 8 0.D.E.s

S = =B+ V4)§ = Ba(lo + Vo)§ — puS + uN

5L = Bl + Vi)S = (m + ),

Ry =wvl— o (I + V)R — Iy =12 k=21 (4)
Vi = a1y + V)R — (i + m)Vi

Z =V + V- uz.

To avoid the complications of a changing population size, the vital dynamics of the host are kept
as crude as possible: All individuals are born susceptible, and the number of births pN equals
the number of deaths, making the total population size a constant N. Since N is a constant, the
Z-equation is redundant.

Model (4) may be seen as a generalization of Dietz’s (1979) model of virus interference, though
the biological assumptions are very different. Dietz’s model includes only the effect of the temporary
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Figure 1. Transfer diagram for the 8 epidemic classes in a model with two strains conferring
partial cross-immunity. Individuals are born into the susceptible class 5 and can get infected
with either strain 1 or 2. When recovered from infection with strain 1, the individuals enter
R, the class of hosts immune to strain 1. Such individuals still can get infected by strain 2.
When recovering from the second infection, they enter Z, the class of completely protecteds.
Thus there are two ways to achieve full immunity to both strains. For simplicity the diagram
does not show the vital dynamics. (After Castillo-Chavez et al., 1989).

immunity that prohibits superinfection, while the present model also includes permanent decreases
in susceptibility.

Castillo-Chavez et al. (1989) characterize the stability of the model (4). Rather than repeating
their detailed analysis, I here give a biological interpretation of their findings. Figure 2 schemati-
cally show the four possible equilibria: The disease-free equilibrium G,; the two equilibria where
only one strain is present, (G1,G2; and the equilibrium G, where both strains are present. The
stability and non-negativity of the equilibria are determined by the two reproductive numbers

BN
i+ vy

R = 1=1,2
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Figure 2. Position of the four possible equilibria in model (4).

and by the two reduced susceptibilities

1 [N 1 u
M = =4 + o N(l— — 1=12 k=21
! N{R,+”'°( 'Rl)/t-f-u,} ’ ’

The reduced susceptibility M, gives the fraction of the population that is susceptible to strain
k at G| so that MR gives the number of secondary infections resulting from one person infected
with strain k& at the equilibrium G; where strain [ is already established.

Table 1 shows the stability of the equilibria. In any parameter region at most one equilibrium
is stable. Strain ! can persist if R; > 1 and it will persist always if it can invade when the other
strain is already established.
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The situation is analogous to competition between two species where the two strains compete
by exploiting the available space in the human immune response. Since the two strains do not
utilize exactly the same resource, their co-existence does not contradict the extended competitive
exclusion principle Levin (1970). In the special case of full cross-immunity o = 0, the two strains
share a common resource, and we have M; = 1/R; prohibiting the existence of G,. The competitive
exclusion principle of virus thus applies to model (4) (Bremermann and Thieme, 1989). If no cross-
immunity is present¢ = 1, N(1— 721—‘) 7eir individuals are temporarily removed from the susceptible
pool for strain k due to an on-going infection by strain I (Dietz, 1979). Since the duration of infection
v~ is short compared to the host life span p~!, we have v/(v + p) € 1. Hence the effect of strain
! on strain k is negligible when o = 1.

When Ry > 1/M; and Ry > 1/M;, the two strain fixed point G, exists and numerical solution
of the stability equation shows that G, is always stable. However even the local analysis for
this 7-dimensional model is too complicated and we here focus on the symmetric case f; = 3, =
B o01=093=0 viy=vy=vr and on symmetric equilibria. The situation where two strains have
similar parameter values could arise when two viral strains-only recently have become antigenically
distinct, so it may be the situation of interest for virus evolution. In contrast to Castillo-Chavez et
al. (1989), we here assume arbitrary positive initial conditions.

After a change of coordinate system
I= il + '1:2 1= il - '1:2 etc., (5)

the model becomes )
S=-pI+V)S—uS+uN

I=BI+V)S—(w4+p)
Rt=vI= ZoB((I+ V)R~ (i +v)r] - uR

V = 2oBII+ VIR~ i+ o))~ (v + 1)V (6)
= B+ 0)S - (v 4 )
P =vi— -;—0,3 (T+V)r—(i+v)R] - pr

5= —%aﬁ (T +V)r = (i + )R] = (v + p)o.

In the symmetric case, model (6) has a unique, endemic equilibrium if and only if Ry =Rz > 1.
At low disease prevalence, the two strains both experience a population of only susceptibles, so the
threshold for their establishment is independent of the presence of the other strain.

At the symmetric equilibrium ¢ = r = v =0, the linearization decouples in a block describing
the perturbations of (§,I,R,V) and a block for (i, r,v), indicating that locally near the endemic
equilibrium, the host-disease interaction is independent of the interaction between strains.

Assuming that A/D = v/p = ¢ € 1 and /v = R = O(1), the subsystem (¢,7,v) has
eigenvalues of the form p = i\/vA*a/2+ O(p). The Routh-Ilurwitz-criterion shows that the (Z,r,v)
subsystem is always locally asymptotically stable so the subsystem will exhibit slowly damped
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oscillations with a period of T' = 27/2D [aA* = 2x\/D/aA*, where A* is the force of infection for
one strain at cquilibrium. Tor the (5,1, R, V) block, Castillo-Chavez et al. (1989) use the symbol
manipulator MACSYMA to show that the Routh-Hurwitz criteria are always satisfied and hence
that this subsystem is stable. We conclude that the symmetric equilibrium of model (6) is stable
with slowly damped oscillations in the relative abundance of the strains.

Age-dependent mortality

Host age-structure affects several epidemiological factors such as host mortality and contact
rates (Anderson and May, 1982D; Longini et al., 1982). The frequency of immunity grows with host
age since older individuals are more likely to previously have contracted the disease (Dietz, 1975).
We therefore expect that the partial protection by cross-immunity is most important for older
individuals, and we focus on this interaction between cross-protection and host age in order to
understand its effects on the previous results. I concentrate on the results of assuming a fixed host
life span since this is the simplest model for which Castillo-Chavez et al. (1989) found that age-
dependent parameters can induce oscillations. For a more general approach allowing age-dependent
contact rates, see Castillo-Chavez et al. (1989). ‘

The SIR-model of one infections é.gellt in an age-structured population by Hoppensteadt (1974)
can be modified to include two strains yielding an age-structured version of (4). The techniques
developed by Dietz and Schenzle (1985), Busenberg et al. (1988), and Castillo-Chavez et al. (1989)
to analyze fixed points and their local stability in the Hoppensteaedt model generalize in a straight
forward manner (Castillo-Chavez et al., 1989). For the local analysis of the SIR-model with constant
duration of host life, see Greenhalgh (1987). With the same notation as in the previous section,
the model becomes '

a5 9§

B + N = (A1 + A2)S
oI oI
oL, 0l
-a—a' + = Ao S — 1015
OR oR
_c')_al + —Ot—l =vh —o2Aa
o O vt - o, 0<a<A o
7
aV Wi
%l‘ + %—tl- = 01A1R2 - Vl‘/l
0‘/" ?‘/’)
2 (az- = g2 As Ry — Vi
0z 07
T A
e o =vth)

A A
Al(t):,@]/ (I1+V1)da Ag(t):ﬂz/ (I2+V2)da
0 0

50,t)=p IL =L =Ry =Ry =V, =V2(0,2) = 0.
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Table 1. Stability of the two strain model (4). For the 8 possible parameter regions, the
table shows the stable equilibrium. Unstable, non-negative equilibria are indicated in parenthesis.
Strain ! can persist in isolation if R; > 1 and it can invade the other strain when R; > 1/Mj. Here
R, is the basic reproductive number for strain [ and M; gives the fraction of the population which
is susceptible to strain k at G;. For the location of the fixed points, see Figure 2. The stability and
uniqueness of G, has been established only in special cases, see text.

S~ Ru<l - 1< Ri<1My 1/ My <Ry
Rz <1 Go 7 A G] *’G]
| (©) (©)
<Ry < 1My Gs i impossible G
(0) (02)
1/M; < Ry Gy Gs G,
(o) (0 1) (012)

Here A; denotes the force of infection of strain / and a the age of the host. The number of
susceptibles between age a and b is f: S(a) da and the definition of the other variables is similar.
The equation (7) is valid for ages up to the host life span 0 < a < A; at @ = A, individuals die,
and S(e,t) = Ii(a,t) =...= 0fora > A. :

Since the number of births per time is a constant p, the population size N is constant
A
N = / (S(a,t) + Li(a,t) +...) da = Ap.
0

Furthermore, the total population P of any age a is a constant g as % + % = 0. The equation for
Z is therefore redundant. For simplicity we have assumed that no vertical transmission of infection
or immunity takes place so that all individuals are born susceptible.

In situations where at most one strain is endemic, the introduction of age-structured mortality
does not alter the stability property of the model: the disease-free equilibrium is stable iff Ry < 1
and Ry < 1 where R, is the basic reproductive number for strain /.

The steady state with strain [ present and the other strain not occurring is stable iff i) strain
l is stable in isolation, and ii)

1 a
bk/ / S/ (a) + aR}"(a)]e"(“’“)da da < 1. k#1 (8)
0o Jo

Here S} (a) and Ry(a) denote the equilibrium age-distribution of susceptibles and individuals im-
mune to infection by strain [ respectively. The expression (8) gives the number of secondary
infections per primary infection of strain & in a population which is partially immunized by strain
l. For influenza with its short infectious period the results of Andreasen (1990) show that condition
i) is satisfied — i.e. strain [ is stable in isolation — iff R; > 1. Finally we note that condition
(8) cannot be satisfied for both strains simultaneously. Excepting the case where both strains are
endemic, the local asymptotic stability of model (7) is therefore characterized by Table 1.
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The symmetric equilibrium

For the remainder of this paper, I concentrate on the analysis of the equilibrium where the two
strains circulate simultaneously. I first transform the model to display the structure of the multiple
time scales and of the decomposition from last section. As in the study of the model with constant
mortality, we assume that the two strains are similar so that their parameters are identical and
focus on the properties of the symmetric equilibria. '

The transformation of model (7) consists of two steps. In the first step we change into non-
dimensional variables § = S/p,I; = Ii/o ... and measure time and age in units of A, the host
life length (Andreasen, 1990). In the second step, the coordinate system is turned using the
transformation (5).

LY

o o —As-i

%§+%§:§I—%(AR—/\1~)

%-Z-}-%—‘{:%(AR—/\T)—%V

%+%=As—-}i | 0<a<l (9)
%-{-%?:—%(Ar—AR)—%v

A(t):-g/o (I +V)da /\(t)zg/o (i + v) da

S(0,t)=1 I=R=V=i=r=2(0,t)=0.

The non-dimensional parameter b = N D gives the number of secondary infections per primary
infection if the entire population is susceptible and we neglect death during the infection. Hence
b~ R = O(1). The ratio between the time scales ¢ = D/A < 1 now appears explicitly.

In order to determine the equilibrium age-distribution and infection rate, we use a modification
of the method of Dietz (1975) to obtain an implicit expression for A*, the total force of infection
experienced by the population at the endemic equilibrium. Knowing the value of A*, one can
casily obtain the steady state age distribution. Possible symmetric steady state age distributions,
(§*, 1", R*,V*,i*, r*,v*), are determined by the steady state for the first 4 variables in (9) since
i* = 71" = v* = A* = 0 at any symmetric equilibrium. By our assumptions, the force of infection
A* is proportional to the total prevalence of the two strains:

b 1
A" = -/ (I* +V*) da.
€Jo
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After some tedious but uneventful algebra and omitting the *, we obtain an:implicit expression for
A:

1-21-¢A E1—Z§1—5A%+EL(A)

b €Nt g '
t o2 (e = (1 +e)e1/e),
e(l-eA)(1—-eA%) ( ( ) )

£ LA b 1 L(Ag) b
- (10)

TA [1-eA 17l
L(A)_l—eA( A 1/ )

where

The function L(A) gives the fraction of the population that is infected at equilibrium if only one
strain is present. Equation (10) has a root at A = 0 corresponding to.a disease free equilibrium.

Since (10) is linear in b, b(A) is uniquely determined for each A > 0 and we can use the methods
of Andreasen (1990) to study b(A). The threshold transmission coefficient by is determined by

b (5 L) 3 LR L)
€ 3-0\1-ZAeA-1) 1-3FAZ(eAF-1) A

bo H eA% 7 —1/e
t A Ao DEaz —p e T +e))
bo ..
= E-}l_r%L(A)/A.
Thus,
b = 1
T 1 e tee /e

is identical to the threshold for the one strain model obtained by Andreasen (1990).

For € < 1, (10) yields the approximate formula

1—al—e‘A+ 1—e9A/2
-2 A 1-% AZ
N (35 —1)e™A — ge~9M/2

-3

1_ 7
P" : |

(11)
£+ O(e?).

It is easy to show that b(A) in the approximation (11) is a monotonically increasing function, and
therefore that for small €, the model has exactly one symmetric, endemic equilibrium for b > b,.

Since A gives the total force of infection, the force of infection for each strain is A/2. Figure 3
shows b(A/2), giving the relationship between b and the force of infection for one of the strains
for various values of the cross-immunity coefficient 0. As expected, the force of infection for each
strain decreases in the presence of a second strain. Equation (11) and Figure 3 give a one-to-one
correspondence between b and A; for practical reasons we will regard in the remainder of this paper
the model as parameterized by o, A, and €.

In the special case ¢ = 1, model (7) is an age-structured version of Dietz’s (1979) model of
virus interference, and equation (10) gives the effect of virus interference on infection rate. For
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Figure 3. Force of infection A for one strain as a function of the transmission coefficient b at
the endemic equilibrium for various values of the cross-immunity factor ¢. Small values of o
correspond to strong cross-reactivity and reduces A the most. The parameters b and A are in
non-dimensional units, see text. A

o = l,the approximation (11) gives the same value of A/2 as the one strain approximation of
Andreasen (1990) indicating that virus interference to order O(e) has no effect significant on the
force of infection. Since virus interference takes place only during infection, we would not expect
to sce any cffect of virus interference under such circumstances.

For 0 < o < 1, the value of A facilitates the computation of the age-dependent attack rates
for one strain at the endemic state:

1 1 €A
= 1* * S ~alA
ST HVI@) =g 1t

1 E%A 1 ~aoA/2 1 —aA -
L I SN B
21-%[(1—5%/\)26 -erp® | TFe

In Figure 4, the attack rates are compared to those of one strain in isolation with the same trans-
mission coefficient b and ¢ « 1. The presence of a cross-reacting strain has two effects: first it
reduces the force of infection A as indicated on Figure 3; second individuals previously recovered
from infection with the cross-reacting strain introduce a second cohort of infectious with a longer
tail. Therefore a subtype which has circulated for some years — and hence has conferred partial
immunity to a portion of the hosts — will tend to be more common among older individuals than
is a newly introduced influenza subtype or other viral disease. The shift towards older individuals
is most pronounced for intermediate values of the cross-immunity factor o.
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Figure 4. The effect of an antigenically cross-reacting strain on the age-dependent attack rates.
The figure shows the percentage of the incidence that occurs in a year-class. The transmission
factor b is 6 in non-dimensional units corresponding to a basic reproductive number R of
approximately 6, the cross-immunity factor is ¢ = 0 (broken line) and ¢ = 0.3 (solid line).

Stability of the two strain model

The stability of the symmetric, endemic equilibrium can be studied by means of separable
perturbations of the form S(e,t) = S(a)e?! etc. where bold face indicates perturbations off the
endemic equilibrium age-distributions ($*,I*, R*,V*,0,0,0) while the perturbations of A and A
take the form O(t) = @eP! and J(t) = YeP! respectively.

Since A* = r* = 0, the system decouples in the same manner as (9) into an (S,I,R, V,©)-block
and an (i,r,v,d)-block. Here I focus on the latter block since the simulations of Castillo-Chavez
et al. (1989) indicate that I is a constant during the observed oscillations, so that instability in the

i-direction is most likely to explain their results.
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The (i,r,v,d)-system simplifies to

di . 1 .

E—’ﬁs —(-g+p)1

dr 1, o . o . .

(—l;_-s-l-i-gﬂl?, —(2/\ + p)r

dv_ O, - 1 (12)
da——i(A r—JR") (E+p)v

bt
ﬂ:E/O (i+v)da
i(0)=r(0)=v(0)=0

where A*, §*, and R* are solutions to the steady state equations.
I
Equation (12) can be solved in a two step process since ¥ may be regarded as an (unknown)

constant when one is solving the linear differential equations (12). In order that the exponent1a1
perturbation be consistent with the linearized equations, the value of ¥ must satisfy 9 = bfo i+
v) da. Since i and v are proportional to ¥, 9 is a scaling factor and I obtain the stability equation

in p:
1 p(2+efA+e2p) e A

b~ (1+ep)(5A+pA  (L+ep—ch)A
ZALZA — p+£FA(D — FA) + eptleoh27
(1-eSA)2 (A +p)lp— (1 - A1~ eFA—ep)p
(A ple—or? (13)
(1 - 5)(1-eFA)1+ep—eGA)Ap
El3A = p) +e(1= HAT — e(p— AP
(- eA)d +ep—eA)2(1- 2)p— (1 - AIA
+ fe(p)ee.

The function f.(p) has a singularity near p = —1/¢ but when ¢ < 1, this last term will have no
influence on the dominant eigenvalues. For the exact form of f.(p), see Andreasen (1988).

To faf:ilita,te the analysis, multiply through by the common denominator pip+ §A)p -~ (1%)A]

Plp-(1- ZIAI(2+ c§A +€2p)
(1+ep)*A

THp+ T - (1= S)A) =
e M p(p + FA)p — (1= §)A]
(1+ep—cA)A

ZAISA —p+eSA(p - $A) + epleoA/2-P
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£p(p+ §M(§A —p) +e(1 = $)A? —e(p— A)’le™”
(1 —eA)(1+ep—eA)?(1-5)A

+ fe(p)e™/e.

+

+
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The multiplication introduces roots at p = 0, —%A, and (1 - £)A which do not correspond to roots
in (13). The order of the roots p are determined by trying roots of the form |p| = ¢£9. For ¢ < —1,
the term p®/b is unbalanced and for ¢ = —1, the p®-terms are only balanced if 1 + ep =1+ 0(e),
so we conclude that ¢ > —1 and hence that lep| < 1. f

To simplify the equations further, I expand in poweis of ¢ and replace 1/b by the approximation
(11). After some involved but trivial algebra, (14) reduces to

1—-070 A, 1—-0
- 1-¢

={ Zpp? 4 |91 -2y g 2T T =oA/2 g =oA/2-p| Ty
0—{2¢p+[2(1 D)~ TTaye e e Sy

+ (%A)ze‘”“”(l - e_”)}

(15)
+ s{%p“ + [—2 + % +(1- %)e‘A + e‘”A/z]p“}
+e (-2} + 0(er’) +O(E%),
where - .
p=2- e~M — e~ M2, (16)

1-¢ 1-£

In the case o = 0, the highest order term vanishes, and one expects a degeneracy at this point.
Biologically, this is not surprising, since ¢ = 0 corresponds to a situation where the virus population
1s divided into two identical strains with full cross immunity. In this situation co-existence is not
possible (Levin and Pimentel, 1981; Anderson and May, 1982a; Bremermann and Thieme, 1989),
and the degeneracy is a consequence of the assumption that the two strains be exactly identical.

For 0 > 0, there are two possible types of roots for the stability equation, |p| = 1, and
p = +i\/oA/(2¢). In the appendix, I argue that roots with positive real part and large imaginary
part can exist only in the region indicated on Figure 5, and I conjecture that such roots occur near
the boundary of the region. This indicates the possibility of limit cycles appearing through Hopf
bifurcations in the region.

For small values of o, the two strains are antigenically similar, and the model predicts that
the relative abundance of the strains will oscillate with a period of T = 2my/D/(0AA) in units of
A, where A and D denote the host life span and the duration of the disease respectively, and A
is the force of infection for one strain (in non-dimensional units). In dimensional quantities this
gives T =~ 2m1/D/[(c)). As the strains become antigenically more dissimilar, the period decreases,
and the system eventually becomes stable. When o = 1, the model reduces to an age-dependent
version of Dietz’s (1979) model of virus interference, the dynamics of the two strains are essentially
decoupled, and the stability property of the system is the same as for a one strain model, i.e., the
system is stable, with an the interepidemic period of T ~ 27/D /A
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Figure 5. Approximate bifurcation diagram for the two-strain model (7). Purely imaginary roots
can occur only below the curve. Numerical solution of the stability equation indicates that
there are several curves of purely imaginary eigenvalues in the region. The force of infection A
for one strain at equilibrium is in non-dimensional units, see text.

Conclusion and discussion

The co-circulation of viral strains with antigenic cross-reaction can be described by modified
SIR-epidemic models since the number of infected hosts measures the amount of each virus variant
present in the population. I model the v1ral interaction mediated by the immunologic memory of
the hosts by assuming that previous infeCtion with a related strain decreases the probability that
an individual gets infected when challenged with the new virus. Thus in the model, a few epidemic
classes captures the entire immune history of the host population. The simplicity of the approach
quickly disappears with the introduction of more interacting strains.

The analysis shows that partial cross-immunity has implications for both the epidemiology
and the genetics of the influenza A virus. In the presence of a related strain, the force of infection
— i.e. the rate at which individuals get infected — is reduced. A decrease in the force of infection
increases the average age at infection (Dietz, 1975). For older individuals who are more likely
to have experienced a previous infection with a related strain, the apparent force of infection
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Table 2. Dynamical behavior of one-strain and two-strain, symmetric SIR-models under
different assumptions about host mortality in the case where both strains can invade.
denotes the duration of infections, while A is the force of infection at for one strain equlhbnum. T

‘is the interepidemic period, and T" is the period between epidemics of a given strain.

Constant host
mortality

Fixed duration
of host life span

One strain

Stable, endemic
equilibrium

Damped oscillations,

T =2n/D/A

Stable, endemic
equilibrium.
Damped oscillations,
T = 2n/D/[A

Two strains,
partial cross-

immunity, o

Stable, endemic
equilibrium with

both strains present.

T ~ 2r\/D]oX

Symmetric, endemic
equilibrium. Limit

cycles for high levels
of cross-immunity.

Here D

T = 2n/D]oX

is further reduced. Thus, the age-dependent attack rate will be more uniform than for other
contagious diseases. Chin et al., (1960) observed this trend during two consecutive epidemics of
Asian (H2N2) influenza, but a detailed comparison with data would not be meaningful since the
effect is confounded by age-dependent contact rates (Longini et al., 1982) and by the significant
deviation from the endemic state during epidemics.

Since a new strain usually enters a population in which some individuals are only partially
susceptible, the basic reproductive number R, obtained by fitting to a time series will tend to under-
estimate the true number of “secondary cases per primary case in a fully susceptible population.”
This fits well with Spicer’s (1979) tentative observation that R for the resident H2N2 subtype
gradually declined from 1958 to 1965 while R for the new H3N2 subtype in 1969-1970 was high.
For our understanding of the influenza transmission dynamics during the period between subtype
shifts, it may be more useful to introduce a quantity which accounts for the communicability of the
disease within a population with a history of previous infections by related strains (Elveback, 1982;
Fine 1982b). However, it is not clear that the invasion criterion captures the true complexity of
the host population’s past exposure to similar variants of influenza A.

Host age-structure interacts with the cross-immunity in an unexpected way. For a model with
constant host life-span, analysis of the Lotka-type characteristic equation suggests that for virus
with high transmissibility and strong cross-reaction, the incidence of both strains — but not their
combined incidence — will oscillate. As shown in Table 2, the oscillations are produced by the
synergistic effects of age-dependent mortality and cross-immunity. The oscillations may explain
the “herald wave” phenomenon in influenza epidemiology which refers to the observation that next
season’s viral strain often appear in low prevalence towards the end of the previous epidemic season
(Six et al., 1981; Fox et al., 1982; Glezen et al., 1982). The herald wave fits well with the slow build
up associated with the model’s oscillations. However, the oscillations are predicted solely from a
partial mathematical analysis and their possible biological explanation is not clear.

32




The use of SIR-models provides an epidemiologically justified characterization of the frequency
dependent natural selection experienced by the influenza A virus and it allows for a discussion of
the haploid genetics of the virus. The persistence of the virus variants is determined by an invasion
criterion similar to the one known from competition models and diploid genetics: If one person
infected with a new strain can produce more than one secondary infection in a population where
the existing strain has already (partially) immunized the hosts, then the new strain will persist.
For some parameter values, the two strains will co-exist. Influenza surveillance programs have
shown that only one variant circulate in the population with high prevalence at any time and that
the emergence of a new strain implies the disappearance of the previous one (Kendal et al., 1979;
Thacker, 1986). The invasion criterion shows that the selective advantage of the new strain is not
enough to explain the fade out of the old one.

Although the model assumes that both strains continuously circulate in the population, the
simultaneous presence need not apply to any given area in any given epidemic season. The virus
interact indirectly through the hosts’ immune memory, and the “simultaneous presence” therefore
applies to the time scale of the host life span. In practice the persistence of a viral strain is
affected by the heterogeneity in human contact patterns and by the seasonal variation in disease
transmission. While the latter factor decreases the chances for persistence of a rare type, especially
for influenza with its short infectious period, heterogeneity may facilitate virus perpetuation (Yorke
et al., 1979; Fine, 1982b; Travis and Lenhart, 1987).

In addition to the decrease in susceptibility, a previous infection can reduce the severity of
the disease and maybe the transmission potential of the infected person. Where as antibodies to
HA help prevent infection of the cell, NA-antibodies reduces the amount of virus synthesized in
the cell (Couch and Kassel, 1983). Davies et al. (1984) found that subclinical infections were more
common among boys which had previously been infected with a related strain. It is unknown
‘how a cross-reaction which gives rise to as a reduction in transmission potential will affect the
co-circulation. ‘

The two-strain interaction model of this paper presents a static picture of influenza virus
evolution focusing on the frequency dependent selection mediated by the host population. In the
model there is no room for the introduction of new strains through virus drift or shift. Pease (1987)
presents the dual picture of influenza evolution where only one strain circulates at any time but
where this strain slowly drifts in antigenic type with the new variant instantaneously replacing
the previously dominant one in the entire population. Pcase’ model of “evolutionary epidemics”
thus describes the continuous change of the influenza virus but it cannot capture the selective
mechanisms responsible for this drift.

One of the unsolved puzzles of influenza genetics concerns this mechanism. Although several
strains occur in low numbers in the population, only one strain dominates during an epidemic
(Kendal et al., 1979). Why do the other strains not increase in numbers in spite of their selective
advantage of having a larger susceptible pool? The interaction between influenza genetics and
disease transmission dynamics with partial cross-immunity may provide an answer, but in order
to describe the interaction one must in the same model include the virus drift with its creation of
multiple strains, the complex serology of a host population exposed to multiple strains, and the
disease epidemiology. The combination of Pease’ evolutionary epidemiology and the present model
of interacting strains will be the topic of a future publication.
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Appendix

1/2

Bifurcation condition for the order ¢!/ eigenvalues

The real part of the root p = ie~*/2,/oA/2 + O(1) is determined by the second order terms in
(15). We will not give explicit expressions for the real part of p, but show that purely imaginary
roots occur on curves lying in a certain region of the (A, o) parameter space.

The approximate location of the purely imaginary roots are determined by by setting p =
i(y + w), where w = £71/2, /g A /2. Retaining only terms of order £¢~1/2 (15) reduces to

0 =2%¢wy + %Ae“"A/zw sin(w + ¥)

(17)
+ iw (-%A - A1 - %)e‘A + Ae™ M2 cos(y + w)) ,

where 9 is given by (16).

A necessary condition for the existence of roots of (17) is that there exist real solutions to
o
4Py = AN - [T+ (1- e (18)

and hence that o -
Ae~7A% 5 7+~ —2—)e'A. (19)

Figure 5 shows the parameter region where (18) has roots.

The exact location of the purely imaginary roots depend on w and hence on £, but numerical
solutions with ¢ < 1 indicate that there are several branches of solution curves in the region defined
by (19), and that there are solutions close to its boundary, indicating that positive eigenvalues can
occur in almost the entire region. Castillo-Chavez et al. (1989) report that a closely related discrete
time model has stable limit cycles for some parameter values in this region, confirming that there
are eigenvalues with positive real part.
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137/87

“THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AsSeTe SYSTEM"
Authors: M.B.El-Den, N.B.leen, Ib Hest Pedersen,
Petr VisCor

"INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES~
TEORETISKE FORUDSETNINGER"

MASTEMATIKSPECIALE: Claus Larsen
&
Vejledere: Anton Jensen og Stig Andur Pedersen

"Mystisk og naturlig filosofi: En skitse af kristendommens
forste og andet mede med grask filosofi"

Projektrapport af Frank Colding Ludvigsen

Vejledere: Historie: Ib Thiersen
Fysik: Jens Hejgaard Jensen

"HOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE
FASTE STOFFER" - Resume af licentiatafhandling

Af: Jeppe Dyre

Niels Boye Olsen og

Vejledere:
Peder Voetmann Christiansen.



138/87 "JOSEPHSON EFFECT AND CIRCLE MAP."

-Paper presented at The International

‘Workshop on Teaching Nonlinear Phenomena

.at Universities and Schools, "Chaos in

Education". Balaton, Hungary, 26 April-2 May 1987.

By: Peder Voetmann Christiansen

.13 9/877 "Machbarkeit nichtbeherrschbarer Technik
durch Fortschritte in der Erkennbarkeit
der Natur'

Af: Bernhelm Booss-Bavnbek
Martin Bohle-Carbonell

140/87 "ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"

By: Jens Gravesen

141/87 "RADIOMETERS UDVIKLING AF BLODGASAPPARATUR -
ET TEKNOLOGIHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderdn Projektor for Operators With
Splitting Elliptic Symbols"

by: Bernhelm Booss-Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik pd NAT-BAS"

af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peircan Approach

Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camo Lecture.
Joensuu, Finland, 6 - 8 august 1987.

By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscript of a plenary lecture delivered at
ICMTA 3, Kassel, FRG 8.-11.9.1987

By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM"
- en ny frekvensbaseret milemetode.
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petr VisCor

147/87 "Rapport om BIS pd NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med
Samfundsperspektiv®

af: Peter Colding-Jergensen DLH
Albert Chr. Paulsen
149/87 "In-Situ Measurcments of the density of amorphous
germanium prepared in ultra high vacuum"
by: Petr Viidor
150/87 "Structure and the Existence of the first sharp

diffraction peak in amorphous germanium
prepared in UHV and measured in-situ"

by: Petr Vii&or

151/87 “DYNAMISK PROGRAMMERING"

Matematikprojekt af:
Birgit Andresen, Keld Nielsen og Jimmy Staal

Vejleder: Mogens Niss

152/87

"PSEUDO-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY
OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE _
PROBLEMS"

by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechdowski

153/88

154/88

155/88

156/88

157/88

158/88

159/88

160/88

161/88

162/88

163/88

164/88

1e5/88

"HALVLEDERTEKNOLOGIENS UDVIKLING MELLEM MILITERE
0G CIVILE KREFTER"

Et eksempel pd humanistisk teknologihistorie
Historiespeciale

Af: Hans Hedal
Vejleder: Ib Thiersen — -

"MASTER EQUATION -APPROACH TO VISCOUS 1.1QUIDS AND
THE GLASS TRANSITION"

By: Jeppe Dyre

"A NOTE ON THE ACTION OF THE POISSON SOLUTION

OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY

SELFADJOINT DIFFERENTIAL OPERATOR"

by: Michael Pedersen

"THE RANDOM FREE ENERGY BARRIER MODEL FOR AC
CONDUCTION IN DISORDERED SOLIDS"

by: Jeppe C. Dyre

" STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-differential approach." i

by: Michael Pedersen

"UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN
RANDOM WALK MODELS"

by: Jeppe Dyre

"STUDIES IN SOLAR ENERGY"

by: Bent Serensen

"LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"

by: Jens Gravesen

"PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION

OF DISTRIBUTED PARAMETER SYSTEMS:
Dirichlet feedback control problems®

by: Michael Pedersen

"PIGER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Sussanne Blegaa, Birthe Olsen,

Jette Reich , Mette Vedelsby

"EN MATEMATISK MODEL TIL BESTEMMELSE AF
PERMEABILITETEN FOR BLOD~-NETHINDE-BARRIEREN"

Af: Finn Langberg, Michael Jarden, Lars Frellesen

Vejleder: Jesper Larsen

"Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"

Af: Bernhelm Booss-Bavnbek, Glcn Pate med
Martin Bohle-Carbonell og Jens Hejgaard Jenszen

"COMPLEX STRUCTURES IN THE NASH-MOSER CATEGORY"

by: Jens Gravesen




156/88 '"Grundbegreber i Sandsynligheds--.
regningen"

Af: Jergen Larsen

167a/88 "BASISSTATISTIK 1. Diskrete modeller"

Af: Jergen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerte
modeller"

Af: Jorgen Larsen

168/88 "OVERFLADEN AF PLANETEN MARS"
Laboratorie-simulering og MARS-analoger
undersegt ved Mossbauerspektroskopi.

Fysikspeciale af:
Birger Lundgren

Vejleder: Jens Martin Knudsen
Fys.Lab./HCO

169/88 "CHARLES S. PEIRCE: MURSTEN OG M@RTEL
TIL EN METAFYSIK."

Fem artikler fra tidsskriftet "The Monist".
1891-93.
Introduktion og oversazttelse:

Peder Voetﬁanﬁ Christéansen

170/88 "OPGAVESAMLING I MATEMATIK"

Samtlige opgaver stillet i tiden
1974 - juni 1988

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

.172/88 "FYSIK OG VIRKELIGHED"

Kvantemekanikkens grundlagsproblém
i gymnasiet.

Fysikprojekt af:
Erik Lund og Kurt Jensen

Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen

173/89 '"NUMERISKE ALGORITMER"

af: Mogens Brun Heefelt

174/89 " GRAFISK FREMSTILLING AF
FRAKTALER 0G KAOQS"

af: Peder Voetmann Christiansen

175/8y " AN ELEMENTARY ANALYSIS OF THE TIME
DEPENDENT SPECTRUM OF THE NON-STATONARY
SOLUTION TO THE OPERATOR RICCATI EQUATION

af: Michael Pedersen

176/89 " A MAXIUM ENTROPY ANSATZ FOR NONLINEAR
RESPONSE THEORY"

af : Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"

af: Morten Andersen, Ulla Engstrom,
Thomas Gravesen, Nanna Lund, Pia

Madsen, Dina Rawat, Peter Torstensen

Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTESEN AF PENICILLIN - en matematisk model®

af: Ulla Eghave Rasmussen, Hans Oxvang Mortensen,
Michael Jarden

vejleder i matematik: Jesper Larsen
biologi: Erling Lauridsen

179a/89 "LERERVEJLEDNING M.M. til et eksperimentelt forleb
om kaos'

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

l79b/8§ "ELEVHEFTE: Noter til et eksperimentelt kursus om
kaos"
af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

180/89 "KAOS I FYSISKE SYSTEMER eksemplificeret ved
torsions- og dobbeltpendul”.

af: Andy Wierzé, Seren Brend og Jimmy Staal

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE
SHEAR VISCOELASTICITY"

by: Jeppe Dyre

183/89 "“MATEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS
AND LINKS TO OTHER SUBJECTS - State. trends and

issues in mathematics instruction

by: WERNER BLUM, Kassel (FRG) og
MOGENS NISS, Roskilde (Denmark)

184/89 “En metode til bestemmelse af den frekvensafhsngige

varmefylde af en underafkelet vaske ved glasovergangen"

af: Tage Emil Christensen

185/90 "EN NESTEN PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grode og Thomas Jessen

Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
redigeret af Arne Jakobgen og Stig Andur Pedersen

187/90 "RSA ~ et kryptisk system"
af: Annemette Sofie Olufsen, Lars Frellesen

og Ole Moller Nielsen

Vejledere: Michael Pedersen og Finn Munk

188/90 “FERMICONDENSATION - AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre )

189/90 "DATAMATER I MATEMATIKUNDERVISNINGEN PA
GYMNASIET OG HOJERE LAREANSTALTER

af: Finn Langberg




190/90

191/90

"FIVE REQUIREMENTS FOR- AN
APPROXIMATE NONLINEAR RESPONSE
THEQRY"

by: Jeppe Dyre

"MOORE COHOMOLOGY, PRINCIPAL -
BUNDLES- AND ACTIONS OF GROUPS
ON C*-ALGEBRAS"

by: Iain Raeburn and Dana P. Williams
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