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Abstract:

We consider two natural invariants associated to an action of an
abelian group by inner automorphisms of a continuous-trace C*-
algebra: One lies in C.C.Moore's Borel-cochain version of group
cohomology, and- the other is a principal bundle over the spectrum
of the algebra. We discuss a construction of I. Rosenberg which
directly relates these variants. In particular, we extend it to a
relative Moore cohomology group, appropriate to the classification
of action which are only inner on a subgroup, and we obtain a
detailed structure theorem for such actions in terms of induced
C*-algebras.
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§1 Introduction

In recent years both topological and algebraic invariants have been associated to group
actions on C*-algebras. Principal bundles have been used to describe the topological
structure of the spectrum of crossed products {18, 19], and as a result we now know that
crossed products of even the very nicest non-commutative algebras can be substantially
more complicated than those of commutative algebras [19, 5]. The algebraic approach
involves group cohomological invafiéﬁﬁs, and exploits the associated machinery to classify
group actions on C*-algebras; this originated in [2], and has been particularly successful
for actions of R and tori ([19; §4], [21]). Here we shall look in detail at the relationship
between these topological and algebraic invariants, with a view to analyzing the structure
of the systems studied in [19; §§2,3].

Our starting point is a theorem of Rosenberg [21, Theorem 2.5] concerning the locally
unitary actions of [18]. If A has Hausdorff spectrum X, and a : G — Aut(A) is an action
of an abelian group which is locally implemented by homomorphisms v : G — UM(A),
then the spectrum of the crossed product A x4 G is a principal G-bundle over X; the class
¢(a) of the bundle determines a up to exterior equivalence, and all such bundles arisc [18].
If G is connected, the range of « lies in the subgroup Inn(A) of inner automorphisms,
and there is a class ¢(a) in the Moore cohomology group H?(G,C(X, T)) which is trivial
when evaluated at points of X, and which vanishes precisely when « is implemented by a
unitary group u [19, §0]. Rosenberg showed how to construct a principal bundle dircctly
from a pointwise trivial class in H*(G, C(X, T)), and that his construction connects np
the invariants c(a) and {(a).

We aim to prove a version of Rosenberg’s theorem for actions a : G — Aut(A) which
are locally unitary on a subgroup N. It was shown in [19; §2] that, provided X = Aisa

principal G/N-bundle, there is a commutative diamond of principal bundles describing the

spectrum of A X4 G as a principal N-bundle over X/c:

(A %o N)

(A Xq G)A X
G

e

X
When a(N) C Inn(A), we shall associate to « an invariant d(a) lying in a relative Moore
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(()homology group A (G, N; C(X T)), which vanishes cxactly when there is a hon’101‘1161--~
phismu : N — UM(A) such that (4, G,a,u)is a twisted system in the sense of Green.” We :
shall then show how to construct diamonds of principal bundles directly from appropriate -
elements of A(G N;C(X, T)) in such a way that the element vanishes if and only if the
bottom left-hand arrow is a trivial bundle. Since applying our construction to d(«) glvos'

the diamond descubmg (A », G)*, our main result follows immediately:

Theorem. Let (A, G, a) be a separable C*—dynamica,l' system in which G is abelian and
the spéctrum X of A is Hausdorff. Suppose N is a closed subgroup of G such that oz.|N is
locally unitary and X — X/ is a locally trivial principal G/N-bundle. Then (A x4 G)A
is trivial as an N-bundle over X/ if and only if a is given on N by a Green twisting map
w: N - UM(A) (ie u satisﬁves aly = Adu aud as(ty)=u, fors € G,n € N). |

This result has some interesting corollanes First of all, if (4, G, a,u) is a twisted

system then a theorem of Olcscu and Pedersen [12] says that A x, G is 1somorphlc to an

induced algebra Ind NL(B f)—indecd, we can take B to be the restricted crossed product
A ><1" .~ G, and 6 to be the dual action of N+ = (G/N)". Thus, in our sett_iﬁg, the triviality

of (4 Xq G)" as an N-bundle implies that 4 x4 G is an induced C*-algebra. If we have
a system (4,G,a) as in the theorem and X — X/g is trivial as a G/N-bundle, then we
can apply this reasdning to the dual system (A X o G,é, &), and deduce that « is the
translation action on an induced algebra. Even if the bundle X — X/ is only locally
trivial, we can still apply this reasoning locally on G-invariant subsets of X, and the
resulting local structure theorem for the systeins studied in [19,§2] should have some very
interesting consequences. - In particular, we believe Fha(t using it we can identify exactly
which commutative diamonds of principal bundles arise from these actions, and we intend
to pursue this in the near future.

Although we have so far discussed locally unitary actions and locally trivial principal
bundles, it is perhaps more natural to consider pointwise unitary actions, which are easily
described as actions which fix the spectrum and whose Mackey obstructions vanish. It was
shown in [13] that the results of [18] and [19] remain true for pointwise unitary actions,
provided we restrict attention to continuous-trace algebras and use free and proper actions
instead of locally trivial bundles. We shall therefore be studying systems (A4, G, a) in
which A has continuous trace, a|y is pointwise unitary and G/N acts freely and properly
on A. We do need to assume A has continuous trace to ensure (4 X, G)" is Hausdorff

((13, Theorem 1.7]; see also [13, §2(c)]); however, this is also true if a is locally unitary and

A is Hausdorff, and our arguments will apply also in this case, giving the theorem stated
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~ above.

We begin with a short section about free and proper G-spaces, in which we set up
our terminology—we call them G-bundles, and reserve the word “principal” for locally
trivial ones—and prove a couple of routine lemmas. In section 3 we discuss Rosenberg’s
construction of a G-bundle E,, from a pointwise trivial element w of H2 (G, C( X, T ),
presenting it so tha.t 1t works also for arbltra.ry locally compact -abelian groups. We prove

that w — E, is an 1nJect10n of the pointwise trivial part of H? (C C(X, T)) into theg group

of G-bundles over X. Rosenberg’s theorem asserts that this map is surjective when G is
connected, but this is-not the case when G-is not connected, and-we begin the identification
of the range in Corollary 3.10. The methods of section 3 are direct, making no mention of
operator algebras, but in section 4 we connect them up with group actions on continuous-
trace algebras. In particular, using C*-algebraic methods it is easy to identify the range
of the map w — E,,, although this is also done directly in section 8.

We introduce our relative cohomology group A and the invariant d(«) in section 5. The
group A is a Borel version of one which is used by algebraists to classify crossed extensions
(e.g. [4, 20]), and which has also appeared in classifications of discrete group actions
on injective non-Neumann algebras (e.g. ‘[6, 24]); we discuss this further in Remark 5.5
The invariant d(«) lies in a subgroup Ap; of appropriately pointwise trivial elements.

and in section 6 we show how to associate to each element (A, u) of A(G, N;C(X,T)) a

commutative diamond of bundles, and in particular an N-bundle q: Fi,y — X/G. Our

extension of Rosenberg’s theorem asserts that (A, 1) — F(x ,) 1s an injection of Apr into

the group of N-bundles over X/@, and identifies the range; we defer the proof of the last
part to section 8 since we do not need it for our applications to C*-algebras. The results
in section 6 lean heavily on the version of Rosenberg’s construction given in section 3.
We prove our main theorem and its corollaries in section 7. As we mentioned above,
it follows almost immediately from our earlier results, and indeed this is the point we wish
to make. Here we have two natural invariants, the topological one arising concretely as the
spectrum of the crossed product, the algebraic one directly measuring the obstruction to
solving our problem, and it is the relationship between them which is giving the information
we want. Thus while a direct proof would also be possible, we have preferred to stress the

connection between the two invariants.

Acknowledgements. We wish to thank Colin Sutherland for drawing our attention to the
A-invariant and its uses in classification problems for group actions. This rescarch has been

supported by the Australian Research Council. The first author has also been supported
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their colleagues for their warm hospitality.




§2 Free and proper G-spaces

As we mentioned in the introduction, we shall refer to free and proper G-spaces as G-
bundles, and locally trivial principal G-bundles as principal -G-bundles. In this section
we shall make this précise, show how to multiply G-bundles if G is abelian, and see what

happens when we change the structure group G.

Definition 2.1: Let G be a locally compact group and T" a locally compact (Hausdorff)
space. A G-bundle over T is a locally compact space X, together with a free and proper
action of G on X and a continuous G-invariant map p : X — T which induces a homco-
morphism of X/G onto T. Two such G-bundles p: X — T and ¢ : ¥ — T are isomorphuc
if there is a G-equivariant homeomorphism h of X onto Y such that goh = p; we denote by
HP(T, ®) the set of isomorphism classes of G-bundles over T'. (This notation is motivated

by the connection with sheaf cohomology; see Remark 2.5 below.)

Remark 2.2: A G-bundle p: X — T is trivial if it is isomorphic to T x G, or, equivalently,
if there is a continuous section s : T' — X for p. Similarly, a G-bundle is locally trivial if p
has local sections; we shall call a locally trivial G-bundle a principal G-bundle. It follows
from Palais’s slice theorem [16; Theorem 4.1] that is G is a Lie group, then every G-hundle

is a principal G-bundle.
Remark 2.3: If p: X > Tand ¢q:Y — T are G-bundles, andif h : X — Y is a

G-equivariant map satisfying g o h = p, then h must be bijective and Lemma 1.12 of [13]

implies that & is an isomorphism of G-bundles.

Lemma 2.4: Suppose that G is a locally compact abelian group, and that p: X — T and
q:Y — T are G-bundles. Then the action of G on the fibre product

X3FY={(z,y) e X xY :p(z) = q(z)}

defined by s - (z,y) = (s - z,s7! - y) is free and proper. The formula s - [z,y] = [s - 2, y]

defines a free and proper action of G on the quotient space
XxY = (X >T< Y)/G,

and, together with the map r : X *Y — T sending [z,y] to p(z), makes X Y into a
G-bundle over T. The binary operation [X][Y] = [X *Y] is well-defined on HP(T, ®), and
with it HP(T, ®) becomes an abelian group.

Proof: Most of the details are routine, so we shall omit them. We should observe, however.
that the identity in HP(T, ®) is the class [T x G] of the trivial bundle, and that the inverse
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of [\] is the class [X°P] of the opposite G- spau, X°P. (Recall that X°P equals X as a set,
but carries the G-action given by s «x = s7!'-z.) To see that X * X°P is'trivial, notice that
the map z +— [z, 2] is a continuous G-invariant map from X to X * X°P, and hence defines

a continuous section from A/G to X * X°P; the claim follows from Remark 2.2. 0

Remark 2.5: As usual, if we denote by ® the sheaf of germs of continuous G valued

functions, we:can use transition functions to identify the group of isomorphism /cl(asses -
of locally trivial G-bundles with the sheaf cohomology group HY(T, ®), and hence realize

H(T; ®) as a subgroup of HP(T, ®) (see Remark 2.7). It is well-known that H*(T, ®) can

be a proper subgroup of HP(T, ®); for example, let G = [Toe, 22, viewed as a subgroup

of X =T =T[2, T, and define p : X — T by p({z=}) = {22 }. Then G = kerp acts

freely and properly on X, but p cannot have local sections since any open set in T' contains

one of the form (ngl W) X (ITnengt T), and a section defined on this set would, in

© particular, give a section for the map zy4; — 2% 41 - ' O

Proposition 2.6: Suppose that ¢ : G — H is a continuous homomorphism between
1'oca1]y compact groups, and that p : X — T is a G-bundle. Then the action of G on
H x X defined by s-(h,z) = (hq&(s"),s-mj) is free and proper. Furthermore, the action of
H on the quotient ¢,(X) = (H % X)/c: defined by h-[k, 2] = [hk, z] is also free and proper,
and the map 7 : ¢,(X) — T, defined by 7([h,z]) = p(z), induces a homeomorph1sm of
¢«(X)/H onto T; that is, ¢,(X) is an H-bundle over T.

Proof: The action of G on H X }x is free and proper because the action on X 1s, and
this: 1rnphes that (H x -X)/G is a locally (,ompact Hausdorff space. The action of H on
$.(X) is casily scen to be free; to sce that it is also proper, fix a compact set K in ¢,(X),
and suppose { h; } is anet in {h€ H:hKNK # 0 }. Choose k; € H, z; € X such that
[k;,z:] € K and [h;k;,z;] € K. Since the orbit map ¢ : H x X — ¢.(X) is open, we can
choose a compact set L such that (L) = K. Without loss of generality we may suppose
(k;,z;) € L, and then choose s; such that (hik;¢(s; '), s; - x;) € L; by passing to a subnet
we can assume (k;,z;) — (k,z) and (hiki¢(s;'), sizi) — (h,n). The projection L; of L
on X is compact and the action of G on X is proper, so we can pass to another subnet

and assume s; — s in G. Thus.

h,‘ = h,—k,-q‘)(si_l )¢(31)k,_1 — ’l¢(3)k—la

and we have proved that the action of H is proper.
It is easy to verify that the map 7 : [h, 2] — p(z) induces a bijection of ¢(X)/H onto

T which will be a homeomorphism if 7 is continuous and open. We prove first that it is

6




continuous: if [h;, ;) — [h, z], the openness of the quotient map implies there are a subnect
[hi;,zi;] and elements s; € G such that (h;; ¢(s;]),s]- -xy;) — (h,z), and then p(z;;) =
p(sj - xi;) = p(z). To see that 7 is open, suppose N is open in ¢,(X), and [h,z2] € N. Let
M; and M; be neighborhoods of & and z such that My x M, C ¢~*(N) C H x X. Then

{m([k,m) ke Mine Mz} ={p(n):n€ M}

is a neighborhood of p(z) contained in n(N), so 7 is open and the last assertion is cstab-

lished. 0

Remark 2.7: If X is locally trivial, its isomorphism class is determined by a class ¢(X)
in H(T,®), constructed as follows. Choose local sections z; : N; = X such that T =
UN;, and for each pair 7,j define a continuous function s;; : N;; = N; N N; — G by
z;(t) = s;j(t) - zj(t); then the s;; form a 1-cocycle with values in the sheaf & of G-valued
functions, and ¢(X) is the class in H'(T, ®) of this cocycle. If we apply the construction
of the proposition to X, then 7,;(t) = [e,zi(t)] is a continuous section for ¢.(X) over N;,
so ¢4(X) is also locally trivial; for t € N;; we have

7i(t) = [e,5i5(t) - z;(8)] = [¢(S;'j(t)), z;i(t)] = ¢(s:;(2)) - m;(2)-

Thus the class ¢(¢.(X)) € HY(X, $) is that of the cocycle ¢ o sij, which is the image of
¢(X) under the canonical homomorphism: H(T,®) — H(T, $) induced by 4. O

-J




§3 Moore cohomology and principal bundles

Throughout this secti.on, G will be a second countable locally compact abelian group and- X
a second countable locally compact Hausdorff space on which G acts trivially. Recall that
a Borel cocycle w € Z2(G,C(X,T)) is pointwise trivial, written w € Z2,.(G,C(X, T)), if
composing with each evaluation map €, : C(X, T) — T gives a trivial cocycle in Z%(G, T).
We shall construct from each w € Z2, (G, C(X, T)) a G-bundle E,, over X in such a way
that |

(1) the class [Ey) depends only on the class [w] in H2(G, C(X, T)), and
(2) if A is a continuous trace C*-algebra. with spectrum X, and o : G — Inn(A) is
a pointwise unitary action whose obstruction to being unitary (see [19; Corol-

lary 0.12]) is [w], then Ey, is naturally isomorphic to (4 X4 G)A

The main object of this section is to show that the mép [w] — [E,] defines an injective
homomorphism of HZ,.(G,C(X,T)) into HP(X, @5) (Proposition 3.8). When w is locally |
trivial, our construction reduces to the one given by Rosenberg in the proof of 21, Theorem
2.5(b)], and we merely want to observe that the same construction works in the pointwise
trivial case and for arbitrary locally compact abelian groups, not just connected ones.
Let C’"‘(G, T) denote the space of Borel cochains f : G® — T, and C*(G, T) the quo-
tient obtained by identifying cochains which agree almost everywhere. As in.[9], c*(G,T)
. has a natural Polish topology for which the coboundary maps 8 : C* — C™*! are con-
tinuous [9, Proposition 20]. As in the first paragraph of the proof of [21, Theorem 2.1],
" w determines a continuous map b, of X into the quotient 52(G, T) :.QI(G? Terd =
Q_I(G, T)/G. Now if G is non-discrete, then C'(G, T) is contractible [21, Lemma 2.3]; if G
is also cofnpa,ctly generated, so G is a Lie group, C'(G, T) is a locally trivial é—bundle and
CY(G,T) — B*G,T) is therefore a universal G-bundle [21, Proposition 2.4]. The class
in H'(X, @) associated to w in [21, p. 310] is that of the G-bundle over X pulled back
from the universal bundle C'(G, T) along the map b,. This G-bundle can be concretely

realized as

E,={(f,2) €CY G, T)x X : 8f = bu(z) },

where G acts via 7 - (f,z) = (vf,z). (Taking 8f instead of f will make our formulas
slightly simpler.) Since 8 : C' — B? is a universal @-bundle, the bundle E,, is trivial if
and only if b,, lifts to a continuous map of X into C', and Rosenberg argues that such
a'lifting exists if and only if [w] =0 in H*(G,C(X,T)) (see the second paragraph of the
proof of [21, Theorem 2.1]).




We shall show that for arbitrary locally compact abelian G, the space E,, defined
above is a free and proper @-space with Euw/G = X, and that its a-isomorphism class still
determines [w] € H2(G,C(X, T)). (Notice that C'(G, T) need be neither contractible nor
locally trivial in general). - ' 7 '

Proposition 3.1: Suppose G is a locally compact abelian group, X is a locally compact
Hausdorff space, and b: X — B*(G, T) is a continuous map. Then

Ey={(f,z) e CHG,T)x X :0f =b(z)}

is a locally compact Hausdorff space in the product topology, the action of G defined by
v - (f,z) = (vf,z) is free and proper, and r(f,z) = = induces a homeomorphism of Evc:

onto X. In other words, r : Ey — X is a G-bundle.

For the proof we require the following lemma. In the proofs of both the lemma and the
. proposition we use proper in the sense of [16, Definition 1.2.2]; when Y is locally compact,

this is consistent with standard terminology {16, Theorem 1.2.9)].

Lemma 3.2: G is a locally compact group acting freely and properly on a metric space

Y, and Y /g is locally compact, then Y is also locally compact.

Proof: Let y € Y, and let S be a small closed neighborhood of y. Since p: Y — Y/ is
open and Y/g is locally compact, there is a compact neighborhood M of p(y) such that
M C p(S). We shall show that T = SN p~!(M) is a compact neighborhood of y. It is
obviously a neighborhood, so suppose {y, } C T. By passing to a subsequence, we may
suppose p(yn) converges to w € M, say. Choose z € T with p(z) = w, and let V be a
neighborhood of z which is thin relative to T—in other words, such that

{s€G:s-VNT#0}

is compact in G (this is possible because a subset of a small sct is small). Let {W;}
be a decreasing sequence of neighborhoods of z such that W; C V and N2, Wi = {z }.
Each p(W;) is a neighborhood of w = p(z), so we may choose a subsequence y,; such that
P(yn;) € p(W;). If z; € W; satisfy p(zi) = p(yn;), then z; — z and there exist s; € G such
that s; - 2; = yn,. But then y,, € T and 2; € V, so by passing to another subsequence
we may suppose s; — s in G, and y,, = s; - 2; — s-2. Thus {y, } has a convergent

subsequence, and T is compact, as claimed. 0

Proof of Proposition 3.1: Theorcm 3 of [9] implies that the natural inclusion G —

CY(G, T) induces a continuous bijection of G onto the closed subgroup kerd of C'(G, T),
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and this bijection is therefore a homeomorphism by [9, Proposition 5(b)]. It followg that -
the map (f,vf) — v = (vf)f ™! is continuous, so that _C_"(G, T) is a Cartan @-priﬁcipal- '
bundle [16, §1]. Further, the orbit space is regular [3, Theorem 5.21}, and thus QIV(C? T)is

A proper @—space by {16, Proposition 1.2.5]. Because d and b are continuous, the spacc E;, = -

is a closed G-invariant subset of C!' x X, and as such is itself a proper @'-space, which is.'.

‘metrizable because C' and X are. It can be routinely verified that, because 9 is open, p is’ _

also open, and hence the bijection of E4/& onto X induced by p is a homeomorphism. In - - :

particular, this shows that E/q; is locally compact, and by Lemma 3.2 this in turn unplies
that E, is, too. : d

Remark 3.3: When w € Z2,(G,C(X,T)), we'll write E,, in place of Ey,,.
P.rop(')slition 3.4: Let w € Zf,T(G,'C(X,T))‘ Then [w] = 0 in H2(G,C(X,T)) if and
only if E'wvis a trivial G-bundle. - o ‘ -
Proof: If [w] = 0, then there is a Borel map p : G — C(X,T) such that dp = w. We
define % : X — CYX,T) by ¥(z)(s) = p(s)(z); note that 1(z) is Borel because it is the
composition of p with the continuous map €, defined by f +— f(z). The continuity of p(s)
implies that 1/)(:::,,) — 1(2) pointwise, and it follow easily that v is continuous from X
tp C(G, T)—or, strictly speaking, that the composition Y X A CY(G,T) - CcYG,T)
is continuous. We clearly have d(1(z)) = by(z), so that z + (¥(z),z) is a continuous
section for E;,, and E,, is trivial. ' ‘ ' '
Revérsing this argument is a bit harder: if E,, is trivial, then there is a continuous
map ¥ : X — C'(G, T) such that 9(p(z)) = by(z), but it is not immediately clear how to
use ¥ to define a Borel function p:G — C(X,T). In fact, we do not in general know how
to construct elements of C*(G,C(X,T)) from functions in C(X,C™(G, T)), and we can
only handle the case n = 1 here because we know that 8(3&_ ) can be extended to a function
w which is a cocycle on all of G x G; the argument we use comes from Rosenberg’s proof

of [21; Theorem 2.1]. We need two Lemmas.

Lemma 3.5: Let A be an abelian Polish G-module, and let p € Z*(G,A) and f €
C'(G, A) satisfy f = p almost everywhere in G x G. Then there is a unique element f
of CY(G, A) such that f; = f almost everywhere and df, = p everywhere on G x G.
Proof: Since the natural inclusion induces an isomorphism of H? = Z2/32 onto H? =
Z2/ B? [9; Theorem 5], and we are given [¢] = 0in H?, we know that there exists a Borel

map ¢ : G — A such that 9g = everywhere. Then we have 8(f~'g) =01in Z2, so that
(F~'o)(st) = (f 7 g)(s)s - ((f M 9)(D))
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for almost all pairs (s,t) in G x G. By [9; Theorem 3], there is a continuous cocycle
v € ZY(G, A) such that f~'¢g = v almost everywhere. Then f; = v~ !¢ equals f almost
everywhere, and satisfies 0f; = 0g = p everywhere. ,
Suppose that f; is anothex such elemcnt of C'(G, A). Then 8f, = 8f, = p implies
‘that fy = v f; for some vy € ZI(G A), and f] = v f; = f almost everywhere implies that
= 1 almost everywhere; thus v =1 and fl fa. O

Lemma 3.6: Suppose that w € Z%.(G,C(X,T)), and that we have a sequence (f,., 2, )
in E,, which converges to (f,z). Let gn,g be elements of CY(G, T) which represent f,. f in
CY(G, T) and which satisfy 8g, = (€2, )«(w) and 8g = (€, )«(w) everywhere. Then g,(s)
converges to ¢(s) for all s € G.

Proof: Suppose there exists s € G such that gn(s) does not converge to g(s). By passing

to a subsequence, we may suppose that
lgn(s) —g(s)| > € for all n, (3.1)

which ensures that no subsequence of { g,(s) } can converge to g(s). We know that f, — f
in CY(G, T), and hence by [9; Proposition 6] there is a subsequence { f } converging
almost everywhere to f. Since g,; = f,; almost everywhere, there is a Borel null-set L
such that .

gn; (1) — g(t) forallt € G~ L. (3.2)

Since w takes values in C(X, T), gn;(5t)gn;(s) ' gn,;(t)™" = w(s,t)(z,;) converges to
w(s,t)(z) = g(st)g(s)~'g(t)~*, which, in view of (3.1) and (3.2), implies that { g, (st) }
cannot converge to g(st) for our fixed s and any ¢t € G \ L. Therefore, t € G \ L implies
that st € L, and we have G = LU s~ - L, which is impossible sincc L has Haar measurc

Zero. 0

End of the proof of Proposition 3.4: As before, if E,, is trivial, then there is a
continuous map 3 : X — CYG, T) such that o Y = by. By Lemma 3.5, foreachz ¢ X
there is a unique element t(z) of C'(X, T) such that t(z) represents 3(z), and such that
0(¥(z)) = w(-,-)(x) everywhere. Lemma 3.6 implies that if 2, — z, then 1(z,) — ¥(2)
pointwise. Thus we can define p : G — C(X, T) by p(s)(z) = %(z)(s). Then formally we
have

[Bp(s,t)](x) = 6(1,6(:1:))(3, t) = w(s, t)(z),

but we still have to show that p is Borel.

[y
ot




Since the Borel structure on C(X, T) is generated by the (compact-open) topology, it - :
will be enough to prove that for cach ¢ € C(X,T), K compact in X, and € > 0, the set -~

E=p'({feCX,T):|f(z)—g(z)|<e forallze K})
={s€G:p(x)(s)~g(z)|<e forallz € K}

is Borel in G. Let { z, } be a countable dense set in K. Since for each fixed z, the function
P(x) is Borel,
' E, = {S €G: l’b(‘bn)(s) - g(-’”n)‘ < 6}

is Borel, and hence so is ﬂ°6 E,... But both 9 (-)(s) and g are continuous, so E = (., En,

n=1

and E is Borel too. : RE

Remark 3.7: We have actually shown that every global section o of E,, has the form .

for some p € C'(G,C(X,T)) such that 85 = w.

Proposition 3.8: The map w — E,, constructed in Proposition 3.1 induces an injective
homomorphism of H2,(G,C(X,T)) into HP(X, ®). |

Proof: If b and ¢ are continuous maps of X into B*(G,T), then it can be routinely
vgriﬁed thpt the map ((f, z), (g, m)) — (fg,z) induces a continuous bijection of Ej * E, =
(Ep >\< Ec)/@ onto'Ebc, and by Remark 2.3 this must be an isomorphism of G-bundles.
Thus, in particular, [Ey.] = [Ew][E.] in HP(X,®). If (w] = [r] in H2(G,C(X,T)), then
[w#] = 0, and hence by Proposition 3.4, [E,] = [Ew:][E+]. Therefore the map [w] — [Ey)

is a well-defined homomorphism, which is injective by Proposition 3.4. O

We shall now start the process of identifying the range of the homomorphism w +— E,,.
We shall show that, if ¢, : G — T denotes evaluation at s € G, then the T-bundle
(Ys)s(Ew) (see Proposition 2.6) is trivial for all s €G. In fact, this property characterizes
the é-bundleé of the form E,,, and we shall later give two proofs of this: the first, in §4,
uses operator algebras, whereas the second, which is a special case of the argument in §8,
is direct but harder. ‘
Proposition 3.9: Suppose that ¢ : H — G is a continuous homomorphism of locally
compact abelian groups. Then the induced homomorphism ¢* : H*(G,C(X,T)) —
HY(H,C(X,T)) carries H,(G,C(X,T)) into H,(H,C(X,T)), and the bundle Eq- (s,

is naturally isomorphic to @(Ew).
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Proof: The induced homomorphism ¢* is defined by
8 (w)(h, k) = w($(h), 4(k))

for w € ZZ(G,C(X,T)), so if p:G—-T satisfies 3p = (éz)«(w), then I(p o @) =
(€z)«(¢*(w)), and ¢*(w) is pointwise trivial if w is. We define a map & : HxE, — Eyr (w)
by ®(v, f,z) = (v(g 0 4),z), where g is the unique function in C'(G, T) representing
f € CY(G, T) and satisfying 8g = (€, ).(w) (see Lemma 3.5): since v is a homomorphism,

3(v(go¢)) =8(god)=0g0(sx )
= (€z)a(w) 0 (¢ X @) = (ex)u(w o ¢ X @) = (&) (¢*(w))’

so ® does take valuesin Eys (). To see that @ is continuous, we suppose that (v, f, ) —
(7, f,z). Lemma 3.6 implies that g,, — ¢ pointwise on G, and hence y(g, 0 ¢) — v(g 0 ¢)
pointwise on H. By [9; Proposition 6], this implies that (g, 0 ¢) = v(go0 ¢) in C'(H, T),
and hence (7(gn 0 8),2.) — (v(g0 ¢),2) in Ege(y)-

The space a*(Ew) is by definition the orbit space for the action of G on H x E,, given
by

x- (1 Fr2) = (1(8007"), xf>2) = (v(x 0 8), x£>2);

if ¢ is the unique lifting of f to C'(G, T), then xg is the unique lifting of xf, and hence
& is constant on G-orbits. We now have a continuous H -equivariant map @' of @(Ew) =
(ﬁ X Ew)/G into E4+(w), which clearly respects the bundle projections onto X, and is

therefore a bundle isomorphism by Remark 2.3. O

Corollary 3.10: For s € G, define b, : G — T by 1,(y) = v(s). Ifw € 22,(G,C(X,T)),
then (1,)«(Ey) is a trivial T-bundle for all s € G.

Proof: The map ¢, is 53, where ¢, : Z — G is defined by ¢,(n) = s™. Thus the proposition
implies that (1,)«(Ey) = Egs(w)- But H*(Z,C(X,T)) = 0 (because the associated group

extentions obviously split), so Eg.(,,) must be trivial by Proposition 3.4. O
Remark 3.11: The class of G-bundles E over X satisfying
(Ys)e(BE) =X xT forallse G (3.3)

has occurred before in work of Smith [22, 23]. He calls a G-bundle p : E — X characteristic
if there is a function f : G x E — T, which is Borel on G and continuous on E, and which

satisfies

F(s,7-8) =1(8)f(s,€) (3.4)
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forseG,E€E, and v E G. It is easy to LhLCk that, given such an f and s € G the Indp,«'“ |
¢ : (s )a (E) — X x T defined by ;

#(12:€]) = (p(€), £(5,€),2) (3.5)

is a bundle isomorphism, and hence his characteristic bundles satisfy our criterion (3.3).
On the other hand, it follows from Theorem 4.4 (or from §8) that (3.3) implies E ’E E.
for some w € Z2, (G,C(X,T)); and then we can set f(s,(g,2)) = g1(s), where g; is the
unique representative of ¢ € C'(G, T) such that 891 = (€, ).(w) everywhere. (Lemma 3.6
implies that f(s,-) is continuous on E,, for cach fixed 8, and the argument used to prove
Proposition 3.4 shows that s + f(s,-) is Borel as a map from G to C(E,T).) Therefore
a bundle satisfies criterion (33) if and only if it is characteristic. It is mildly interesting
to note that, if for each's € G we can find f(s,-) satisfying (3.4), then (3.5) defines a
trivialization of (¥s)+(E), and E is characteristic; thus the medsurability requirement on
f appears to be unnecessary.

Smith was interested in those principal G-bundles over X which could arise as the
spectrum of commutative twisted crossed products A X, G [22]. (Here we use the C*-
algebraic twisted crossed products of [15], rather than those based on LI(G A) which Smith

was using, but his results would apply to these ones too.) For such a crossed product to be
commutative, A must be commutative, say A = Co(X ), G must be abelian and act trivially
on X, and u € Z? (G,C(X,T)) must be syihmetfic; since Kleppner has shown that for G
abelian abcoéycle in Z%(G, T) is symmetric if and only if it is trivial in H*(G, T) [7], and
since éymxﬁetry of an element of Z%(G, C(X, T)) is a pointwise property, u is symmetric
if and only if it is pointwise trivial in our sense. Hence Smith was studying the spectrum
of the twisted crossed products Co(X) Xjq,w G for w € z2z, (G, C(X,T)). He showed that
it was always a principal G-bundle over X, and that the G-bundles which arose this way
were precisely the ‘cl“;.é.ractcristic ones.

Smith’s results are of course compatible with ours. Indeed, by Theorem 3.7 of [15],

there is an action # of G on Cy(X,K) by inner automorphisms such that ¢(8) = [w] and
Co(X) Xia,w G = Co(X,K) %5 G.

Since w is pointwise trivial, # is pointwise unitary, and the spectrum (Co(X,K) x5 G)"
will be a G-bundle which is isomorphic to E,, by Proposition 4.1. Thus characterizing
the bundles of the form (Co(X) Xiaw G)" amounts to identifying the range of the map
we By | O

¥ "
i

14



§4 Pointwise unitary actions

Suppose now that a : G — Aut(A) is a pointwise unitary action on a continuous-trace
algebra consisting of inner automorphisms. We want to show that the map [w] +— [Ey] -
carries ¢(a) € H2,(G,C(X,T)), the algebraic obstruction to lifting a : G — i?“,(-”i)
to a homomorphism u : G — UM(A) [19; Theorem 0.11], into the class ((a) of the
G-bundle Res : (A xq G)" — X defined by restriction of irreducible representations to
A C M(A x4 G) [13; Theorem 1.7]. We shall then use this to complete our identification
of the image of the homomorphism [w] — [E,,], and discuss the relationship of our results

to Rosenberg’s.

Proposition 4.1: Suppose A is a sepdrab]e continuous-trace C*-algebra with spectrum X,
o : G — Inn A is a pointwise unitary action of an abelian group as inner automorphisms,
and u : G — UM(A) is a Borel map implementing «, so that c(a) € H*(G,C(X,T)) is
represented by the cocycle w € Z2(G,C(X,T)) satisfying u,u, = w(s,t)u,,. Then the
map h : (f,7) » m x fr(u) is a G-equivariant homeomorphism of E,, onto (A x, G)"
such that

Ey h - (A xq O

\ Res

X
commutes.

Proof: We view A as the algebra T'o(E) of sections of a C*-bundle E over X, so that A
can be naturally identified with the set of evaluation maps €, : a — a(z). Next we observe
that h(f,z) is a well-defined representation of A x4 G: if (f,z) € Ey, then s — f(s)uy(v)
is almost everywhere a Borel homomorphism, and hence is equal almost everywhere to a
continuous homomorphism U : G — UM(A;) such that (e;,U) is a covariant represcu-
tation of (4, G, @), which we shall denote by (e,, fu(z)). By [18, Proposition 2.1], every

element of Res™'(z) then has the form
7 (€2 X fu(z)) = & x (vfu(z)) = h(vf,z) = k(v (f,2)),

so h is @-equivariant and surjective and two such clements h(f;, ) agree if and only if
fi = f; almost everywhere, i.c., if and only if f; = f; in C'(G,T). Since the diagram
trivially commutes and A is a bijection, it will automatically be a homeomorphism 1f 1t 15
continuous ([13, Theorem 1.7] and Remark 2.3). Suppose (fn,z,) — (f,2) in E,,. Then

15



x, — z, and by passing to a subsequence we may assume f, — f almost everyWheré n G
(9, Proposition 6], To establish that =, = h(fn,z.) converges to * = h(f,z), we have to
show that for each € > 0, unit vector n € H(r) and z € C(G, A)CA x4 G, there exists N
such that if n > N, we can find a unit vector £ € H(m,) satisfying

|(7n(2)€ | €) = (7(2)n | 77)| <e

Since the problem is local in X, we may as well suppose that A is the C*-algebra defined
by a Hilbert bundle H over X. Then H(r,) = H,,, H(n) = Hz‘, and each unit vector in
H; has the form 5(z) for some 7 € I‘(H ): by localizing and normalizing, we may suppose
[In(zn)|| = 1 for all n. For any a € A, the functlon y = (a(y)n(y) | n(y)) is continuous,

and each z(s)u, is in 4, so

Fa(s)(z(s)(@n)us(@n)a(@a) | n(2n)) — f(5)(z(s)@)us(z)n(2) | n(2))

for almost all s € G. Further, we have

[Fu(s)(#()@a)ua(@aln(@a) | n(za))] < Wz,

and the dominated convergence theorem implies
(mul ) () = / (=(5) (@) fu(Yua(a)n(za) [ n(zn)ds

= [ @ @) | i)ds
= (n(2)n() | n(2))-
Thus 7, — 7 in (4 x4 G)", h is continuous, and the result follows, O

Lemma 4.2: Suppose ¢ : G — H is a continuous homomorphism between two locally
compact abelian groups, A is a separable continuous-trace algebra and oo : H — Aut A is

poiﬁtwise‘unitaa'y. Then the map
O:(v,txU)—mxv(Uodg)

induces a G-equivariant homeomorphism h of §. ((A xq H)") onto (A Maog G)" such that

6u((4 36 H)") (4 Xaop G)"

aok Rcs

A
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commutes.

Proof: It follows easily from [18, Proposition 2.1] that 6 is a well-defined map of (4 x, H)"

" onto (A Xaog G)". To see that 8 is continuous, first observe that it is the composition
G x(Ax H)" 2224 G x (A Xgop G)" Suzbaction (45 s G)",

where $ sends 7 X U to w X (U o ¢). The homomorphism ¢ induces a homomorphism
idX ¢ : AXgop G — M(A Xq H), and it in turn induces a continuous map (id x ¢)* from
the space Z(A x H) of closed ideals to T(A x G) (1, Proposition 9]: if 7 x U € (4 %, H\",
then

(id x ¢)* (ker(r x U)) = {z € Ax G : (id x ¢)(z) - (A x H) € kerm x U}
={z€AxG:7er(idx¢(z))=0}
= ker(r x (U 0 ¢)).

Since both 7 x U, m x (U o ¢) are irreducible, and A X 4oy G, A Xy H are type I (they have
Hausdorff spectrum by [13, Proposition 1.5]), this implies that p:mxU— 7mx(Uod)is
continuous. It follows that 8 is continuous.

It is easy to check that 6 is constant on H -cosets, and hence induces a continuous
map h of (@ x (A Xq H)A)/ﬁ onto (A Xgep G)". We trivially have that Resoh = p and /.
is é—equivaria.nt. Since both actions of G are free and proper ([13, Theorem 1.7] and our

Proposition 3.1), it follows from Remark 2.3 that h is a homeomorphism. |

Corollary 4.3: Suppose G is a locally compact abelian group, A is a continuous-tracc
C*-algebra and a : G — Aut A is pointwise unitary. For s € G, we define ¢, : L — G by
#s(n) = s™. Then a, is inner if and only if the T-bundle &((A Xo G)") is trivial.

Proof: The automorphism o, is inner if and only if the action ao @, of Z is unitary, which
happens if and only if (A Xgog Z)" is a trivial T-bundle [18, Proposition 2.5]. Thercfore

the result follows from the proposition. Cl

Theorem 4.4: Let G be a second countable locally compact abelian group acting trivially
on a second countable locally compact space X, and for s € G define 9, : G- T by
Ys(y) = 4(s). Then the map w — E,, of Proposition 3.1 induccs an isomorphism of
H: (G,C(X,T)) onto

{ 1Bl € HP(X, 8) : ($,).(B) is trivial for all s € G b
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Proof: After the results of section 3, it only remains to show the surjectivity. So su-p‘p'oséi -
E is a G-bundle over X such that (¥4)+(E) is a trivial T-bundle for all s € G. By [13,
Proposition 1.13] there is a pointwise unitary action « of G on A = Co(X,K) such that

(AxqG) is @—isommphic to E. By Lemma 4.2, we have

(#3)(E) = ($)+(E) = (A Naog, 1),

and because this is trivial, &y = a 0 ¢4(1) is inner (Corollary 4.3). Thus a : G — Inn A,
and is implemented by a Borel map u : G — UM(A). If uu, = w(s,t)uy, then w €
ZZ(G,C'(X,T)) is pointwise trivial because « is pointwise unitary, and Proposition 4.1

implies By, & (4 x4 G)" 2 E, as required. A - O

As we mentioned in the introduction, our results have been motivated by a theorem of
Rosenberg concerning connected groups [21; Theorem 2.5, and this can be deduced from

our Propositioh 4.1 using duality.

Theorem 4.5: (Rosenberg) Let G be a second countable connected locally compact
abelian group, and X a second countable locally compact space. Suppose that H*(X:;Z) is
countable, and that G acts trivially on X. Then the map w — E,, induces an isomtnphism
of H2, (G, C(X, T)) onto H'(X,®). |

Proof: Since G is connected, it is compactly generated, G is a Lie group, and all G-
hundles are locally trivial [16; Theorem 4.1]; hence H!(X,®) = HP(X,®). Thus we
only have to prove that every principal G-bundle E has the form E,. But if E is a G-
bundle, the dual action of G on A = Co(E) x G is locally unitary [19; Proposition 3.1],
~and a(G) C Inn(A) because G is connected and Inn(A) is open in Autgyx)(4) [19;
Theorem 0.8]. If w € Z%(G,C(X, T)) represents c(a), then i is pointwise trivial because
a is pointwise unitary, and E,, = (A X, G)A by Proposition 4.1. Since (A x4 G)A = E by
[18; Proposition 3.1], this proves the result. ' O

This proof of Rosenberg’s theorem does use some fairly heavy tools from operator
algebras, and therefore seems to be substantially more complicated than the original.
However, Rosenberg agrees with us that the argument in [21] may be inadequate as it
stands, and the alternative direct proof of Theorem 4.5 which he has shown us also relies
on some sophisticated machinery. The potential problem in {21] occurs at the end of the
proof of part. (b), where it is asserted that a continuous function f : X — B%*(G,T) gives

an element of Z%(G,C(X,T)) (see the comments concerning Lemma 3.5 above); for this
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to be true one will certainly need some hypotheses on G, since we give an example below
(Example 4.7) where G is non-discrete, so C'(G, T) is still contractible, but w — [E,] is
not surjective. , _ , o

Putting our theorem together with Rosenberg’s gives an amusing topological corol-

lary:

Corollary 4.6: If G is connected and E is a G-bundle with H?*(E/G, 1) countable, then
(5)x(E) is a trivial T-bundle for all s € G.

Of course, the above proof of this purely topological fact must be unnecessarily con-
voluted, and at least for compact X a simple direct argument can be given. For if E
has transition functions A;; : N;; — G and X is compact, we may suppose the cover
is finite and the ranges of the A;; all lie in a compaét subset K of G. Then Y, — Py
uniformly on K as t — s, and there is a neighborhood N of s such that ¢ € NV implies
that |Ai;(z)(2) = Xij(z)(s)| < V2 for all 4, j and = € Njj. Then applying the principal
branch of log to A\;;(-)(t)A;;(:)(s)~! gives a cocycle with values in R, which has the forin
dp since H'(X,R) = 0, and we have d(exp p) { s 0 Aij } = {0 Ai;}. Since G is con-
nected and (¢.)«(F) is the trivial bundle, this proves that (1,).(E) is trivial for all s.
Presumably some sort of abstract nonsense will allow one to extend this argument to the
locally compact case provided X is not too nasty—maybe H2(X,Z) countable is just what

is needed.

Example 4.7: Let G = R x Z. The map (r,s) — (r,exp(27is)) of R? onto R x T in-

duces (via the long exact sequence of sheaf cohomology) an isomorphism of H'(X, @)

onto H%(X,Z), and the evaluation map (o) : (r,z) — z induces an isomorphism of

HY(X, @) onto H'(X,S). Thus there are no non-trivial locally trivial G-bundles E
such that (1,).(E) is trivial for all s € G. This is consistent with our theorem, since
H:,.(G,C(X,T)) =0 for any spacc X. To see this, we recall from [19, Theorem 4.1] that

H*(R,C(X,T)) = H*(R,C(X,T)) = 0= H*(Z,C(X,T)).

We can therefore deduce from the Lyndon-Hochschild-Serre spectral sequence for Moore

cohomology that
H*(RxZ,C(X,T)) = H'(R,H (Z,C(X, T)));

indeed, a specific isomorphism is given by sending ¢ € Z‘(R,H1 (Z,C(X,T))) to the
cocycle pug € Z%(G,C(X,T)) given by

o((s,m), (t,m)) = $()(n)
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(sce, for example, [14, Appendix 2]). Now
H'(R,H'(Z,C(X,T))) = Hom(R, C(X,T)) = C(X,R),

and this isomorphism is functorial in X, so we have a commutative diagram

H*(Rx Z,C(X,T)) C(X,R)
(51:)— €z
H*RxZ,T) — R.

In particular, (€;). () = 0 for all 2 if and only if the corresponding function vanishes
1dent1cally, and therefore the pomtwm trivial part of H2(Rx Z, C(X T)) is 0, as (,lalm( d.
. O

20




§5 The A-invariant

We are interested in the Moore groups H?(G,-) because they contain the obstruction to
implementing -an automorphism group o : G — Inn(A) by a unitary group v : G —
UM(A). When this happens, of course, the system is easy to analyze; for example, the
crossed product A X, G is isomorphic to A ®@max C*(G). Even if @ does not consist of
inner automorphisms we can try to implement a|y whenever N is a normal subgroup of G
such that &(N) C Inn(A). However, in order to obtain useful information about A x, G,
we have to know also that the resulting homomorphism v : N — UM(4) is compatible

with the action of all of G; specifically, we require that
as(Un) = Ugne-1 forn € N, and's € G. (5.1)

We shall call a strictly continuous homomorphism u : N — UM(A) satisfying afy = Adu
and Equation (5.1) a Green twisting map for a on N, for reasons we shall shortly explain.

When o has a Green twisting map v on N, we can form the restricted crossed product
A %y n G, which is the quotient of 4 x4 G whose representations are given by covariant
pairs (7,U) satisfying 7(u,) = Uy, for all n € N. These crossed products were introduced
and used by Green in his version of the Mackey machine for crossed products [1] (scc
also [11]). They behave very much like ordinary crossed products by G/, and it is often
possible to obtain information about A x4 G from Axj y G. Indeed, Olesen and Pedersen

[12; Theorem 2.4] showed that when G is abelian we can recover A X, G as the induced

C*-algebra Ind$ . (Axy xG,@) consisting of those functions f € Cy(G, Axg yG) satisfying

(a) flyx) = a5 (f(y)) for x € N+, and

(B) 9NL > |f(7)] vanishes at infinity on G/N-.

We would like, then, a group cohomological invariant which measures the obstruction
to implementing an action « : G — Aut(A4) with a(N) C Inn(A4) by a Green twisting map
u: N — UM(A). For this section, we shall not assume that G is abelian or that A4 is
continuous-trace, but we do still require G to be second countable and A to be separable.

We proceed exactly as in the case where a(G) C Inn(A). Since a : N — Inn(A4) is
continuous for the quotient topology on Inn(A) = UM(A)jyz M(A) [19; Corollary 0.2],
we can find a Borel map u : N — UM(A) such that «,, = Adu,, for all n € N. As usual.
there is a Borel map p: N x N — UZM(A) such that

UpUp = (m,n)um, form,ne N, (5.2)
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and [;1] € H*(N,UM(A)) is the obstruction ¢(a) to implementing oy by a. unltary group.
For s € G,n € N, and a € A we have

Ad (1110 )(@) = s (A g1y (051 (a))
= a,(@,-1ns(a5-1(a)))
= Adu,(a),
and therefore a (uy-1,,,) and u,, differ by an element of UZM(A). Thus there is a Borel
map A: G x N - UZM(A) such that
ag(ty-10y) = A(s,n) - u,, fors€G,neN. ' (5.3)
(We have chosen this rather than the more obvious comparison of a,(un) With ugy,-1 to

make (5.8) below more palatable. ) We can, and shall, always assume that the pair (), )

has becn normalized so that : .
| Hny€) = 1= pi(e,n) 5
Me,n) =1 = A(s, e) (5.5)
for all n € N and s € G. (This is done by insisting that v, = 1.) |
Lemma 5.1: S"uppose that (A,G,a) Is a separable dynamical system and that N is a
closed normal subgroup of G such that a(N) C Inn(A). Choose a Borel map u : N —

UM(A) such that a|y = Adu and u, = 1. Define A\, i by (5.2) and (5.3), respectively.
Then for m,n,p € N and s,t € G we have, in addition to Equations (5.4) and (5.5),

iy m)a(mm, p) = i, )y, p), . (5.6)
M) = plomy = rn)ps(, m) (5.7)
Alst, n) = A(s, 7'&)013(/\(t,8—177,3)), and (5.8)
s, mn) = a,(p(s™ ms, s_lns))_l/i.(m, n)A(s, m)A(s, n). (5.9)

Proof: Item (5.6) is just the usual cocycle identity for y, and to establish (5.7), expand
Equation (5.3) using (5.2) and «,, = Adu,. The identities (5.8) and (5.9) follow from

similar calculations. . ]

Remark 5.2: Condition (5.8) says that the function A : G — C! (N, UZM(A)) defined
by :\(.s)(n) = A(s,n) is a 1-cocycle for the action of G on CI(N,I/IZM(A)) given by
(s - d)n) = as(d(s7'ns)). There is also a natural action of G on Z2(N,Z/{ZM.(A))
given by s-p(m,n) = a,(u(s~'ms, s~ ns)), and then Condition (5.9) says that o(\(s)) =
1~ (s" ). We observe'that X is a Borel cocycle if we pass to the quotient C" (N, UZM(A))
of C'(N,UZM(A)). (This follows from the first part of the proof of [10; Theorem 1].)

' ' O
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The pairs (A, p) will form the cocycles in our relative cohomology group A. To identify
the appropriate equivalence relation, we suppose that we had chosen a different Borel map
v N = UM(A) satisfying a|y = Adwu'. Then there is a Borel function p. . N —
UZM(A) such that u' = p-u. As usual the 2-cocycles are related by ,uf = (dp)s, and the
A’s by ,

_ N(sin) = s (p(s7ns)) p(n) I A(s, n)-

If we let Ap denote the pair (A1, g1 ), where

pi(m,n) = dp(m,n) = p(m)p(n)p(mn)~", and (5.10)
M(s,n) = a,(p(s™'ns))p(n) ™", (5.11)

then we have (M, p') = Ap(A,p). We are now ready for the formal definition of our

A-invariant.

Definition 5.3: Let G be a second countable locally compact group, N a closed normal
subgroup, and M an abelian Polish G/N-module. For consistency, denote the action of
s € Gonm € M by a,(m). Let Z(G,N;M) denote the group of pairs (A, ), where
p:NxN— Mand A:GxN — M are Borel maps satisfying Conditions (5.4)-(5.9), and
the group operation is pointwise multiplication. Let B(G,N ; M) denote the subgroup of
all pairs of the form Ap (see Conditions (5.10), (5.11)) for some Borcl map p: N — M,

and let A(G, N; M) be the quotient Z(G,N;M)/B(G,N; M)

Proposition 5.4: Let (A, G, a) be a separable C*-dynamical system, and suppose that N
is a closed subgroup of G such that o(N) C Inn(A). Define (A, ) € Z(G,N;UZM(A)) in
terms of a Borel lifting u for a|y by Equations (5.2) and (5.3). Then the class d(a) = [A, j]
of (A, p) in A (G, N;L{ZM(A)) is independent of any of the choices made, and vanishes if

and only if there is a Green twisting map for « on N.

Proof: We have already proved everything except the last statement. But one dircction
is obvious—if u is a Green twisting map, then u and A are identically 1. Conversely, if
(A, 1) are defined using u : N — UM(A) and (A, i) = Ap, then v, = p(n)'u, defines a

Borel homomorphism v : N — UM(A), which is automatically continuous and satisfies

ay = Adu, = Adv,, and

as(vn) = ay (p(n))_qas(un) = ay (p(n))—l/\(s,sns_l Vi grg=t

= p(sns“] )_]usns“l = Usns—1.




Remark 5.5: We have referred to the group A (G, N; ]\/I) as a relative Moore cohomology
group, and of course we should explain why we have done this. For discrete G, it has been

shown by several authors that the group A fits into an eight term exact sequence

0 —— HY(G/N, M) 24+ H'(G, M) =2~ H'(N,M) — H*(G/N,M) —~

It H2(G, M) — A(G,N; M) — H3(G/n, M) L B3 (G, M)

(e.g., [4], [6], [8], [20)); indecd, in Loday’s proof of this, he defined the relative cohomology
to be that of the quotient complex { c*(G,M )/C*(G/N M) } so that there is almost by
definition a long exact sequence, and then identified H 3 with A [8]. Huebschmann [4]
and Ratcliffe [20] defined A(G, N:M ) to consxst of the G-crossed extensions of N by M;
roughly speaking, these are the ordinary g,loup extensions with a compatible action of G.
Although we shall not pursue them here, there will be similar results relating our Borel
- version of A to Moore cohomology and to Polish crossed extensions—in fact, we originally
formulated our arguments in terms of Polish extensions, and one still appears in §8. -
The relevance of A to group actions on operator algebras was pointed out to us by
Colin Sutherland, who has been h(,avﬂy involved in the classification of discrete group
actions on injective von Neumann algebras (e.g., [6], [24]). If a : G — Aut(M) is such
an action, two ingredients in the classification are the subgroup N = o~ '(Inn(M)) and
the obstruction d(aly) to implementing @ on N by a homomorphism v : N — U(M)
satisfying Equation (5.1). Our Borel version will not be so useful for actions of locally
compact groups, since Inn(M) is in general not a closed subgroup of Aut(M); however, for
continuous-trace C*-algebras we do often have Inn(A) closed in Aut(A4) [19; Theorem 0. 8]

and hence our invariant should be particularly relevant in this case,




§6 The A-invariant and diamonds of bundlés

We say that an element (A, p) of Z(G,N;C(X,T)) is pointwise trivial if p belongs to
Z%,(N,C(X,T)), and we write (A\; 1) € Z3r (G, N;C(X, T)):"Suppose that G is abelian.
Our goal here is to construct from each pointwise trivial (A, 1) a.commutative diamond

F(’\vl‘)

in which the southeast arrows are N-bundles and the southwest arrows are G/N “bundles,
such that Fi ,) — X/@ is trivial if and only if [\, x] = 0 in A(G, N;C(X,T)). The idea
is to take E = E,,, use A to define an action of G on E which commutes with the action

of N, and define F}, ,y = E/G. We begin with two-straightforward results on diamonds of
(X 1) g g
bundles.

Lemma 6.1: Suppose that H and @ are locally compact groups, that p : X — T is a
()-bundle, and that r : E — X is an H-bundle. Suppose there is a free and proper action
of @ on E which commutes with the action of H and for which r is equivariant. Then the
formula h-(Q-€) = Q- (h-£) defines a free and proper action of H on E/Q Further, the

map por : E — T induces a continuous open surjection q : E/Q — T, which in turn induces

a homeomorphism of (E/Q)/H onto T'; in other words, q : E/Q — T 1s an H-bundle.

Proof: The action of H on E/Q is well-defined because the actions on E commute, and it
is free because r is equivariant, Q acts freely on X, and H acts freely on E. To sce that
the action is proper on E/Q, consider nets @-£x — Q-€ and hi-Q- &, — Q- n; it will suffice
to show that { At } has a convergent subnet. By passing to a subnet, we may suppose that
€r — € in E| and that there are s; € Q such that hy - s; - € — 5 in E. However, this
implies that r(£x) — r(€) and that »(hg - sk - &) = sx - 7(Ex) — (1), so the properness of
the @-action allows us to assume, by passing to yet another subnet, that { sx } converges
to some s € (). Now we have sg - {¢ — s - € and hy - (sk + £&k) — n, which since N acts
properly on E implies that { ks } has a convergent subnct. Thus, H acts properly on £/Q.
The map por is open and constant on (Q-orbits, and hence induces a continuous open map

q: E/Q — T which is easily seen to be surjective. This map is constant on H-orbits since
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r is, and induces a bijection of (E/Q)/ H onto T = (E/H )/Q, which 1s a homeomorphiSm '

because g 1s open and continuous. : O -

Lemma 6.2: Suppose we have a commutative diamond

in which i and p are Q-bundles; r and q arec H-bundles; and ¢ and r are H- and Q-

¢quivariant, respectively. Then the map f(€) = (i(€),r(¢)) is an isomorphism of the
H-bundle E onto the pull back p*(Y'), and carries the action of @ into that given by

¢ (,2) = (1.0 -) |
Proof: This follows from Remark 2.3. d

We now return to the main construction. For the rest of this section, G will be a
second countable locally compact abelian group, N a closed subgroup, and X, T second

countable locally compact spaces such that p: X — T is a G/N-bundle.

P‘roposition. 6.3: Let (A1) € Z, (G, N;C(X, T)), and let E, be the N -bundle of Propo-
sition 3.1. The formula

s-(fyx) = (A(s, )(s-2)f, s x) | (6.1)
defines an action of G on E,,, which is free and proper, and commutes with the action of
N on E,. If we sct ¢(G - (f,2)) = p(z) and Fonuy = E./G, then q : Foou — T is an
N-bundle. ‘

Proof: We first observe that since G is abelian, Equation (5.9) implies that

I(\(s, )(.> ) f)(m,n) = Ms,m)(s - ) f(m)A(s,n)(s - a:)f(n)A(s, mn)(s - z)f(mn)
= as(;t(7zz n))(s - @)p(m, n)(s -z)8f(m,n)

= p(m,n)(z)pu(in,n)(s - Il,)p,(m n)(:l:)
= b,(s - z)(m,n),
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s0 s-(f,z) does belong to E,. Similarly, Equation (5.8) implies that s-(¢-(f,z)) = st-(f,2),
and Equation (6.1) does define an action of G on E,,.

To see that this action is jointly continuous, recall that Ql_(N ,C(X,T)), topologize
as in [9], is a polish G-module for the G-action given pointwise on C(X, T). It follows from
Remark 5.2 and [9; Theorem 3] that A is continuous from G to C" (N ,C(X,T)). Therefore

if sy — sin G and 2 — z in X, then we need to show that f; — f in _Q;(N, T), where

fi(n) = A(sk)(n)(xe) = Alsi, n)(a).

Replacing { frx } by a subsequence and relabeling, it will suffice to show that { fi } has
a subsequence converging almost everywhere on N. But by again replacing { fi } by a
subsequence and relabeling, we can assume that A(sy) — A(s) almost everywherc on N,
say on N \ § [9; Proposition 6]. Of course, then A(sg)(n)(zr) — A(s)(n)(z) for each
n € N \'S, since C(X, T) carries the topology of uniform convergence on compacta. It
now follows that the action is jointly continuous.

Since p is pointwise trivial, it is symmetric, and condition (5.7) of Lernma 5.1 implies
that :\(n) = 1 for all n € N. Thus, our G-action has constant isotropy N. Since the

action of G on “the second factor” of E, is already proper, we have now established that

E, is a G/N-bundle. Because the actions of G and N commute, the result follows from
Lemma 6.1. OJ

Proposition 6.4: Suppose that (A, ) € Zpr(G,N;C(X,T)). Then the N-bundle q :
Fix,uy — T of Proposition 6.3 is trivial if and only if (A, u] =0 in A(G,N; C(X,T)).

Proof: If (A, ) = Ap, then as in the proof of Proposition 3.4, h(z) = (p(-)(z)™',z) is a

continuous section of E,. Furfher, we have from Equation (5.11) that

s h(s™h ) = (A, N@)p()(s™" - a)ys- (57" - 2))
= ([A(s,)p() ' ](2), 2)
= h(z),
and we can therefore define a section k of F(, ) = Eu/G by k(G - z) = G - h(x).
Conversely, suppose that F{y ,) = E,/G is trivial. It follows from Lemma 6.2 that
E, = p*(F(»,,)) is trivial and has a continuous section k : X — E,. By Remark 3.7, /

has the form

hx) = (p()(a) ™, 2)
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for some Borel map p: N — C(X,T) with dp = p. The equivariance of h implies that .
(p()(s - x),s-a) = h(s-z)=s-h(x) = (Ms, )s - 2)p(-)(x),s z),
which reduces to Equation '(5.11) since G is abelian, and we have (A, p) = Ap. O

Theorem 6.5: Let G be a second countable locally compa(;f abelian group, N a closed
subgroup, and X a sccond countable Ioéall_y compact G-space such that the orbit map
p: X — X/ is a G/N-bundle. Then the map (X, p) — F(5, ) of Proposition 6.3 induces a
well-defined isomorphism of A(G, N;C(X, T)) onto

{ [F) € HP(X/G, ) : (). (p*(F)) is  trivial T-bundle for all n € N } o

Proof of all but surjectivity: It follows from the definition of F, ,) as E./g and
Lemma 6.2 that P (Fix ) & E,, and Corollary 3.10 implies that [F( A )] lies in the given
subgroup of HP(X/G, M). If we can show that

Foowy * Fov gy = Foar

then the argument of Proposition 3.8, using Proposition 6.4 in place of Proposition 3.4,
will show that [A, y] — [Fia,m] 18 a well-defined monomorphism. o ' |

Suppoée, therefore, that (A, j) and (X, ') are in Zpr(G,N;C(X,T)). We start by
defining a G action on the N-bundle E,*E, by the formula s - [£,7] = [s- €, s n)] (this
is well-defined because the G- and N-actions commute). Notice that if s [¢,n] = ‘[ﬁ, ],
then there exists v € N such that (s-&s-n) = (v€,7n). Because the bundle projéct1011
r: E, — X is G-equivariant and N-invariant, we scc that such an s must be in N. Thus,
E, x E, is a free G/N-space. It is also proper. To see this, suppose that [£x, 7] — [€,7]
while s - [€x, i) = [€',7']. Without loss of generality, we may assume that (€, i) — (&,m)
and that there are v; € N so that (sk Ak €k Sk k- mk) — (€,7'). Then we also have
r(&e) — (&) and sg - 7(€k) = sk - & - &) — r(€'). Tt follows that { sr } has a convergent
subsequence, and hence that E, * E,» is a G/N -bundle.

Now Lemma 6.2 implies that E, * E;u/G is a N-bundle over X/G. Definey : E,xE, —
Fiam * Foar ey by ‘

Y((f,0), (g,2)) = (G- (f,2),G - (9,2)).

Since 1 is continuous, constant on G-orbits, N-equivariant, and induces the identity on

X/, 1 implements an isomorphism of Eyx * Eu /iy onto Fia* Fiar py- On the other hand,
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we have already observed that the map ((f,z),(g,2)) — (fg,2) induces an isomorphism
¢ of E, x E,» onto E,, (see the proof of Proposition 3.8), and since ¢ is ‘G-equivariant.
it implements an isomorphism of £, * Ey/G and Fixar,upy- This completes the proof that

¥ is an injective homomorphism. ]
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87 N-proper actions

Let (A, G, a) be a separable dynamical system in which A is a continuous-trace algéb’ra
ﬁvith spectrum X, G is abelian, « is pointwise unitary on a closed subgroup N of G, and
p: X — X/ is a G/N-bundle; we shall sum this up by saying that (4, G, «) is an N-pfbpcv-
systemn. We now want to show that if in addition a(N) C Inn(A), then the construction of
the previous section connects up the algebraic and topological invariants associated with

«. From this we shall deduce our structure theorems for N-proper actions.

Proposition 7.1: Suppose that (A, G,«) is an N-proper dynamical system such that
a(N) C Inn(A) and A = X. If () is the class of ¢ : (A x4 G)" — X/G in HP(X/q, ‘?l)
([13; Corollary 2.1]), d(a) is the class in Ay (G, N; C(X,T)) corresponding to (A, G, a),
and ¥ is the isomorphism defined in Theorem 6.5, then ¥ (d(a)) = ¢(a).

Proof: Recall that we obtain a representative (A, ) for d(a) by choosing a Borel map
u: N —»Z/IM(A) satisfying «,(a) = unau}, for all n € N and a € A, and using Equa-
tions (5.2) and (5.3) to determine (A, ;1) We resume the notation of Proposition 3.8. ‘As in
that Proposition, each (f,«) € .E,, determines a unitary representation fu(z) of N which
is defined by n — f(n)u,(x). Furthermore, (éx, fu(z)) is an irreducible covariant repre-
sentation of 4 x4, N, and there is an N-bundle isomorphism h : E, — (A Xo N )A defined
by (f,z) — (&g, fu(z)). For the moment, fix s € Gand z € X. We have .

h(s-(f, .’L‘)) = (Gs-lz:, fas(u)(s- :c)),

where fa(u)(s - 2) stands for the representation which coincides almost everywhere with
n o f(n)a,(uy)(s - z). Recall that s - €, is defined by a = €, (a;(a)). By assumption,
s - €, 1s unitarily equivalent to €,.,: let V be a unitary which implements the equivalence,

so that

Va(s - 2)V* = o] (a)(z)
for a € A. Now onc computes that V' implements an equivalence between the representa-
tions L = (€., fas(u)(s2)) and M = (s-el.,f'u.(:zr)). That is, h(s-(f,x)) = [s-€g, fu(z)]. It
follows from the proof of [19; Proposition 2.2] that h is G-equivariant from E, to (4 xo N )"
and.induces the identity on X/. Thus the proposition follows from Remark 2.3 and [19;

Proposition 2.2]. ’ ' O

Theorem 7.2: Suppose that (A, G, «) is a N-proper dynamical system with A= X. Then
(A x4 G)" is a trivial N-bundle over X/G if and only if there is a Green twisting map for

o over N,
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Proof: By [13; Proposition 2.1] and Lemma 6.2, (A x4 N Y™ is isomorphic to the pull-back
of (A x4 G)A over the orbit map p : X — X/g. Therefore, if (4 Xq G)" is a trivial bundle.
then so is (A x4 N)". It then follows from [13; Corollary 1.11) that a(N) C Inn(4). Thus
Proposition 7.1 applies and the result follows from Proposition 6.4 and Proposition 5.4.
On the other ha,r;d, if there is a Green twisting ﬁmp for & over N, then by definition
a(N)C Inn(A). Therefore the converse also follows from Proposition 7.1, Proposition 6.4,
and Proposition 5.4. ) - o 7 - O

Corollary 7.3: Let (A,G,a) be an N-proper dynamical system with A = X. Then
(A %o G)" is trivial as an N-bundle over X/g if and only if there is a continuous-trace

C*-algebra B with spectrum X/G and a pointwise unitary action f of N L on B such that
(A %, G, @, @) is covariantly isomorphic to (Ind,(\;“ (B, B), G, 7).

Proof: Since Ind§. (B, 8) has spectrum (G/N L) X B = N x (X/g) (c.g., [19; Proposi-
tion 3.2]), one direction is easy. Conversely, if (4 x, G)" is trivial, the theorem implies
that there is a Green twisting map u : N — UM(A) for «. By [12; Theorem 2.4], there is

then an isomorphism

Axy G=Indd. (A%, G alye)

which carries the dual action of G into the canonical action 7 of G by translation on the
induced algebra. Thus it only remains to verify that 4 xy, y G is a continuous-trace algebra
with spectrum X/, and that @ is pointwise unitary on N-L.

The twisted covariant system (A, G, N,a,u) is essentially free in the sense of Green
[1], and hence it follows from Theorem 24 of [1] that A x* y G has spectrum X/g; it has
continuous trace because it is a quotient of A X, G, which has coutinuous tracc by [19;
Corollary 2.5(2)]. It also follows from [1; Theorem 24] that every irreducible represen-
tation of A X y G is equivalent to one of the form Ind$ (), where 7 is an irreducible
representation of A = A x}; y N. The covariant representation of (4, G, @) corresponding
to Ind(n) can be identified with (7, A), acting on the Hilbert space H consisting of thosc

Borel functions f : G — H, which satisfy
f(sn) =m(n)"(f(s)) for s€ G,n €N and / 1F(s)II* d(sN) < oo,
GIN

according to the formulas

Ha)f(t) = m(ar (@) (1), and A (F)D) = f(s7'1).
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(It is easy to check directly that this covz-\.ria.ntL representation preserves the twist';—'i'.e.;
that 7 o w = A|y-—and hence gives a representation of A Xy n G.) The dual action of Q-
fixes the copy i4(A) of A in M(A x, G), and multiplies the generators :g(s) for s €G by

v(s). Thus we may define U : Nt — H by U,(f)(s) = v(s)f(s), and verify easily that for
7€N a € A, and s € G, we have

T X A(@y(1a(a))) = 77(71/1(“)) = Uy (ia(@))U5 = UyT X A(ia(a))U7, and
7 x M@y (i(s)) = 1A = U,\U5 = Uy x Aia(s)) U,

The action &@|y1 is therefore pointwise unitary, and the Corollary is proved. O

Corollary 7.4: Let (A, G, «) be an N-proper dynamical system with A= X, and suppose
that p: X — X/q is trivial as a G/N-bundle. Then there is a pointwise unitary action 8 of

N on a continuous-trace algebra B with spectrum X/G such that (A ® K(L*(G)),G,a®
Ad p) is covariantly isomorphic to (In(l (B,0),G,1). (So that essentially the only exam-

ples with A trivial are the ones studied in [19; §3(a)].)

Proof: We abply the previous corollary to the dual system (4 X4 G, G, a): we know from
[13; Proposition 2.1] that 6‘/]\/’~L = N acts frecly and prbperly on (A x4 G)", so the only
point to check is that @ is pointwise unitary on N1, But [19; Proposition 2.1] implies in
particular that every irreducible representation of A Xy G has the form Indg(w x U) for
some 7 x U € (A x4 N)*, and the a.rgumeﬁt in the proof of the previous corollary carries
over verbatim. We can therefore deduce that

(A %4 G) 3 G, G, &) = (Ind§(B,8),G,7),

[4 4

and the result follows from the Takai duality theorem [17; Theorem 7.9.3]. O




§8 Surjectivity

In this section we merely want to fill in the remaining bit of the proof of Theorem 6.5—

namely, we need to show that the map ¥ defined in Theorem 6.5 1s surjective. Precisely, -

we must show that#given a G/N-bundlef;b : X - X/g and a ]’i -bundle q: F — X /G, such
that the pull-back E = p*(F) has the property that (1, ).(E) is a trivial T-bundle for each
n € N, then there are invariants (A, ) representing a class in Ap. (G, N;C (X,J'_)) with
F{»,) isomorphic to F as N-bundles. Equivalently, we will show that E is isomorphic to

E, both as a N- and as a G/N-bundle.

First observe that T x N x E becomes a N-bundle when given the action
¥+ (t,n,€) = (v(n)t,n,7 - €).
The quotient B is a T-bundle over N x X with the bundle map given by h([t,n,f]) =
(n,7(€)). Define continuous maps « : B — X and § : B — N by the formulas
w(1m€]) = r(€), and
§([t,n,€]) = n.

Finally, notice that the spaces
B, =1""({(n,z):2€ X})

are easily seen to be isomorphic to (¥,,).(E). Since the latter space is a trivial T-bundle
over X, there will be continuous sections. The next lemma will be useful for describing

these sections. We shall need the extra generality later.

Lemma 8.1: Let B' = E ¥ B = {({,b)€e E x B:r(£) = k(b)}. For each (£,b) € B'.
define 6(€,b) to be the unique value in T such that

[6(¢,b),6(b),€] = b.

Then 8 : B' — T is continuous.

Proof: Suppose that {(£k,br)} converges to (€,b): it suffices to show that every subse-
quence of { 8(&;,bi) } has a convergent subscquence. Thus we may as well assume that
there are ;. € N such that Vi - (9(§k,§k),5(bk),§k) — (8(¢,0), 5(b),§). Now as £ — £ and
Yr - €k — €, we may also assume that v, — 1. Since 8(b) — 6(), it follows from

7k (8(bx))8(E, br) — 6(€, )
that 8(&x, br) — 6(€,b) as well. O
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Definition 8.2: Let € denote the collection of continuous functions ¢ : X — B which - -

satisfy -

(1) w(c(z)) = =z, for all z € X; and
(2) there exists ny € N so that §(c(z)) = ng for all z € X.

We give C the relative topology as a subspace of C(X, B) with the compact-open topology.

Lemma 8.3: Suppose that f : E — T is continuous and there exists ny € N such that
f(y-&=7(n)f(€) forallye N and€E. ®1)

(1) The function ¢; : X — B defined by

cs (1({)) = [(f(ﬁ)a ny, 6)]

belongs to C, and every clement of C has this form for some continuous f : E —» T
satisfying Equation (8.1).

(2) A sequence {cy, } converges to ¢y in C if and only if ny, — ny and fx — f
uniformly on compacta in E.

(3) Givenn € N, thereis a ¢y € C with ny = §(¢s) = n.

Proof: It is easy to verify that ¢, € C. To see that every ¢ € C has this form we just
apply Lemma 8.1 to the subset { ({,c(r(f_))) } of B', and define f by f(£) = (¢, c(r(€))).
Part (3) follows immediately from part (1) and the observation that each B, is a trivial
T-bundle. Now suppose ¢y, — ¢5 in C, and £ — £ is an arbitrary convergent sequence in

FE. Then
fu(€x) = 0(&x,cp (r(Ex))) — 8(&,¢£(r(€))) = f(E),

and hence fi — f uniformly on compacta. Since we trivially have that the constant value
ny, of §ocy, converges to ny, this gives one implication of part (2). Since any compact set

in X has a compact preimage in E, the converse implication is straightforward. O

In view of this lemma we can define a group structure on C by the rules csc, = cy,

and c}l = cj, where

cre(r(6)) = [f(f)g(f),nﬂlg,ﬁ] , and |

c; (r(8)) = [F(&),n}".¢€],
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and these operations are continuous for the topology of C(X, B). Since C is clearly a

closed subspace of the polish space C(X, B), we have shown that C is an abelian polish

group. , , :
Now it is evident from Lemma 8.3 that §|c is a continuous surjection of C onto N
with kernel :(C(X, T)), where ¢ : C(X, T) — C is the continuous injection defined by

@) = (b)) 1) -

It is a consequence of [9; Proposition 5] that

1— (X, T) =4~ C 2+ N —+1 (8.2)

is an exact sequence of polish groups.

Since C is polish, we can choose a Borel cross section o for §. Define g : N x E — T
by
a(n)(r(€)) = [9(n, &), n, €]

In the notation of Lemma 8.1, g(n,¢) = 6(¢,a(n)(r(€))). Therefore, we can conclude that

g is Borel, that ¢ is continuous in the second variable, and that ¢ satisfies
g(n,7 - €) = 1n)g(n, €)
for eachn € N, ¢ € E, and v € N. Now we can define u : N x N — C(X,T) and
AM:GxN—-C(X,T) by
u(n,m)(r(£)) = g(n,€)g(m, E)g(nm, £) (8.3)
s, m)(r(€)) = g(n,)g(n,s7" - £). (8.4)

It is a routine matter to verify that (A, ) satisfy conditions (5.6)-(5.9). Furthermore,
p is symmetric, and hence is pointwise trivial [7], so that (A, u) represents a class in

Apz(G,N;C(X, T)). Finally, we can define © : E — E, by

0(e) = (g(- ), (e)).

Since the action of G on E,, is defined in terms of the A given by Equation (8.4), onc can

verify that © is G-invariant as well as N-invariant; since




commutes, © will be the required isomorphism provided it is continuous (R(nmxl\ 2 3)
However, since ¢ is continuous iu its sc scond variable, €, — € implies that g(-, {k) — g( §)
pointwise, and hence in C'(N, T). This completes the proof that ¥ is surjective.

. O
Remark 8.4: The Polish group C carries a natural action of G, given by s - ¢(z) =
5 (c(s7! - z)), and the extension (8.2) is then a G-crossed extension of N by C(X,T),
- Thus although we have deliberately chosen to work in terms of cocycles, a Polish version

‘of the theory of crossed extensions is lurking close by. O
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Projektrapport af: Niels Ole Dam og Kurt JEnsen.
Vejleder: Bent Sgrensen.

104/85 "ANALOGREGNEMASKINEN OC LORENZLIGNINGER".
Af: Jens Jager.

105/85"THE FREQUENCY DEPENDENCE OF THF SPRCIFIC HEAT AF THE
(FASS REANSITIOH".
Af: Tace Christensen.

""A SIMPLE MODEL AF AC HOPPING CONDUCTIVITY".

Af: Jeppe C. Dyre.

Contributions to the Third International Conference
on the Structure of Non - Crystalllne Materials held
in Grenoble July 1985.

106/85 "QUANTUM THEORY OF EXTENDED PARTICLES".
Af: Bent Sgrensen.

107/85 "EN MYG GPR INGEN EPICFMI",
- flodblindhed som eksempel pd matematisk modelle-
ring af et epidemiologisk problem.
Projektrapport af: Per Hedegdrd Andersen, Lars Boye,
Carstentiolst Jensen, Else Marie Pedersen og Erling
Mpller Pedersen.
Vejleder: Jesper Larsen.

108/85 "APPLICATIONS AND MODELLING IN THE MATEMATTCS CUR -
RICULUM" - state and trends -
Af: Mogens Niss.

109/85 "COX I STUDIETIDEN" - Cox's regressionsmodel anvendt pd
studenteroplysninger fra RUC.

ler og Torben J. Andreasen.
Vejleder: Jprgen Larsen.

110/85"PLANNING FOR SECURITY".
Af: Bent Sgrensen

111/85 JORCEN RUNDT PA FLADE KO
Projektrapport af: Birgit Andresen, Beatriz Quinones
og Jimmy Staal.
Vejleder: Mogens Niss.

112/85 "VILENSKABELIGGZRELSE AF DANSK TEKNOLOGISK INNCOVATION
FREM TIL 1950 - BELYST VED EKSEMPIER".
Projektrapoort af: Erik Odgaard Gade, Hans Hedal,
Frank C. Iuadvigsen, Annette Post Nielsen og Finn
Physant.
Vejleder: Claus Bryld og Bent C. Jprgensen.

113/85 "DESUSPENSION OF SPLITTING ELLIPTIC SYMBOLS 11".
Af: Bernhelm Booss og Krzysztof Wojciechowski.

114/85 "ANVENDELSE AF GRAFISKE METODER TIL ANALYSE
AF KONTIGENSTABELLER".
Projektrapport af: Lone Biilmann, Ole R. Jensen
og Arine-Lise von Moos.
Vejleder: J@rgen Larsen.
115/85 “MATEMATTKKENS UDVIKLING OP TIL RENESSANCEN".
Af: Mogens Niss.
116/85 "A PHENOMENOLOGICAL MODEL FOR THE MEYER-
NELDEL RULE".

Af: Jeppe C. Dyre.

"KRAFT & FJERNVARMEOPTIMERING"
Af: Jacoh Mprch Pedersen.
Vejleder: Bent Sgrensen

117/85

n

118/85 TILFFLDIGHEDEN OG NODVENDIGHEDEN IFYLGE
PEIRCE OG FYSIKKEN".
4f: Peder Voetmann Christiansen

119/86 "DET ER GANSKE VIST - - EUKLIDS FEMIE POSTULAT
KUNNE NOK SKABE RRE I ANDEDAMMEN".
Af: Tben Maj Christiansen
Veiledexr: Mogens Niss.

120/86 "ET ANTAL STATISTISKE STANDARDMODELLER".

121/86

122/86

123/86

124/86

-125/86

126/86

127/86

128/86

Af: Jgprgen Larsen

"SIMULATION I KONTINUERT TID".
Af: Peder Voetmann Christiansen.

"ON THE MECHANISM OF GLASS IONIC CONDUCTIVITY".
Af: Jeppe C. Dyre.

"GYMNASIEFYSIKKEN OG DEN STORE VERDEN".
Fysiklererforeningen, IMFUFA, RC.

"OPGAVESAMLING INBﬂm@ﬂTK
Samtlige opgaver stillet i tiden 1974-jan. 1986.

"UVBY,@ — systemet - en-effektiv fotometrisk spektral- .
klassifikation af B-,A- og F-stjemer".
Projektrapport af: Birger ILundgren.

"OM UDVIKLINGEN AF DEN SPECIELLE RELATIVITEISTEORI".
rojektrapport af: Lise Odgaard & Linda Szkotak Jensen
Vejledere: Karin Beyer & Stig Andur Pedersen.

"GALOIS' BIDRAG TIL UDVIMLINGEN AF DEN ABSTRAKTE
ALGEBRA" .

Projektrapport af: Pernille Sand, leine Larsen &
Lars Frandsen.

Vejleder: Mogens Miss.

"SMAKRYB" - aa ikke-standard analyse.
pProjektrapport af: Niels Jergensen & Mikael Klintorp.

Vejleder: Jeppe Dyre.

129/86 "PHYSICS IN SOCIETY"
Projektrapport af: Mikael Wennerberg Johansen, Poul Kat-

Lecture Notes 1983 (1986)
Af: Bent Sgrensen

130/86 "Studies in Wind Power"
Af: Bent Serensen
131/86 "FYSIK OG SAMFUND" - Et integreret fysik/historie-

132/86

133/86

projekt om naturanskuelsens historiske udvikling
og dens samfundsma@ssige betingethed.
Projektrapport af: Jakob Heckscher,
Andy Wiered.

Vejledere: Jens Heyrup,
Jens Hejgaard Jensen.

Seren Brend,

Jorgen Vogelius,

"FYSIK OG DANNELSE"
Projektrapport af: Seren Brond, Andy Wiered.
Vejledere: Karin Beyer, Jorgen Vogelius.

"CHERNOBYL ACCIDENT: ASSESSING THE DATA.
ENERGY SERIES NO. 15.
AF: Bent Serensen.

134/87

135/87

136/87

137/87

"THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AsSeTe SYSTIHM"
Authors: M.B.El-Den, N.B.Olsen, Ib Hgost Pedersen,
Petr Vistor

"INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES-
TEORETISKE FORUDSETNINGER"

MASTEMATIKSPECIALE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

"Mystisk og naturlig filosofi: En skitse af kristendammens
forste og andet mpde med gresk filosofi"

Projektrapport af Frank Colding Ludvigsen

Vejledere: Historie: Ib Thiersen
Fysik: Jens Hpjgaard Jensen

YHOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE

FASTE STOFFER" - Resume af licentiatafhandling
Af:
Vejledere:

Jeppe Dyre

Niels Boye Olsen og
Peder Voetmann Christiansen.
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138/87 "J0SEPHSON EFFECT AND CIRCLE MAP."

Paper presented at The International

Workshop on Teaching Nonlinear Phenomena

at Universities and Schools, "Chaos in

Education”. Balaton, Hungary, 26 April-2 May 1987.

By: Peder Voetmann Christiansen
13 /87 "Machbarkeit nichtbeherrschbarer Technik

durch Fortschritte in der Erkennbarkelt
der Natur"

Af: Bernhelm Booss-Bavnbek
Martin Bohle—Carbonell

140/87 "ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"

By: Jens Gravesen

" 141/87 "RADIOMETERS UDVIKLING AF BLODGASAPPARATUR -

ET TEKNOLOGIHISTORISK PROJEKT"

Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderdn Projektor for Operators With
Spllttlng Elliptic Symbols"

by Bernhelm Booss—Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik pa NAT—BAs"

af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Pei;can-Approach

Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camo Lecture.
Joensuu, Finland, 6 - 8 august 1987.

By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscript of a plenary lecture delivered at
ICMTA 3, Kassel, FRG 8.-11.9.1987

By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM"
- en ny frekvensbaseret malemetode.
Fysikspeciale af Jan Vedde.

Vejledere: Niels Boye Olsen & Petr Visor

147/87 “Rapport am BIS p& NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med
Samfundsperspektiv”

af: Peter Colding-Jergensen DLH
Albert Chr. Paulsen
149/87 "In-Situ Measurements of the density of amorphous
germanium prepared in ultra high vacuum®
by: Petr ViScor
150/87 "Structure and the Existence of the first sharp

diffraction peak in amorphous germanium
prepared in UHV and measured in-situ"

by: Petr Viédor

151/87 "DYNAMISK PROGRAMMERING"

Matematikprojekt af:
Birgit Andresen, Keld Nielsen og Jimmy Staal

Vejleder: Mogens Niss

152/87

"PSEUDO-DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY
‘OF CERTAIN SPACES OF ELL1PTIC BOUNDARY VALUE
PROBLEMS"

by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechowski

153/88

154/88

155/88

156/88

157/88

158/88

159/88

160/88

161/88

162/88

163/88

164/88

165/88

"HALVLEDERTEKNOLOGIENS UDVIKLING MELLEM MILITARE
OG CIVILE KREFTER"

Et eksempel p& humanistisk teknologihistorie
Historiespeciale

Af: Hans Hedal
Vejleder: Ib Thiersen

"“"MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND
THE GLASS TRANSITION"

By: Jeppe Dyre

"A NOTE ON THE ACTION OF THE POISSON SOLUTION
OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY
SELFADJOINT DIFFERENTIAL OPERATOR"

by: Michael Pedersen
"THE RANDOM FREE ENERGY BARRIER MODEL FOR AC
* CONDUCTION IN DISORDERED SOLIDS"

by: Jeppe C. Dyre

" STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-differential approach."

by: Michael Pedersen

"UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN
RANDOM WALK MODELS"

by: Jeppe Dyre

"STUDIES IN SOLAR ENERGY"

by: Bent Serensen

""LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"
by: Jens Gravesen

W
)

'PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
OF DISTRIBUTED PARAMETER SYSTEMS:

Dirichlet feedback control problems"

‘by: Michael Pedersen’

"PIGER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Sussanne Blegaa, Birthe Olsen,

Jette Reich , Mette Vedelsby

"EN MATEMATISK MODEL TIL BESTEMMELSE AF
PERMEABILITETEN FOR BLOD-NETHINDE-BARRIEREN"

Af: Finn Langberg, Michael Jarden, Lars frellesen

Vejleder: Jesper Larsen

"Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"

Af: Bernhelm Booss-Bavnbek, Glen Pate med
Martin Bohle-Carbonell og Jens Hojgaard Jensen

"COMPLEX bTRUbTURLq IN THE NASH-MOSER - CATEGORY

by Jens Gravesen




166/88 "Grundbegreber i Séndsynliéheds—,
regningen”

Af: Jergen Larsen

167a/88 "BASISSTATISTIK 1. Diskrete modeller"

Af: Jergen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerte
modeller"

Af: .Jergen Larsen

168/88 "OVERFLADEN AF PLANETEN MARS"
Laboratorie-simulering og MARS-analoger
undersegt ved Mossbauerspektroskopi.

Fysikspeciale af:
Birger Lundgren

Vejleder: Jens Martin Knudsen
Fys.lab./HC@

169/88 “CHARLES S. PEIRCE: MURSTEN O0G M@RTEL
TIL EN METAFYSIK."

Fem artikler fra tidsskriftét "The Monist"
1891-93.
Introduktion og oversattelse:

Peder Voetmann Christéansen

170/88 "OPGAVESAMLING I MATEMATIK"

Samtlige opgaver stillet i tiden
1974 - juni 1988

171/88 "The Dirac Equation with Light—Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"

Kvantemekanikkens grundlagsproblém
i gymnasiet.

Fysikprojekt af:
Erik Lund og Kurt Jensen

Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen
"

173/89 "NUMERISKE ALGORITMER"

af: Mogens Brun Heefelt

174/89 " GRAFISK FREMSTILLING AF
FRAKTALER OG KAOS"

af: Peder Voetmann Christiansen

175/89 '* AN ELEMENTARY ANALYSIS OF THE TIME
DEPENDENT SPECTRUM OF THE NON-STATONARY
SOLUTTON TO THE OPERATOR RICCATI EQUATION

af: Michael Pedersen

176/89 " A MAXIUM ENTROPY ANSATZ FOR NONLINEAR
RESPONSE THEORY"

af : Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"

af: Morten Andersen, Ulla Engstrom,
Thomas Gravesen, Nanna Lund, Pia
Madsen, Dina Rawat, Peter Torstensen

Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTESEN ‘AF PENICILLIN - -en matematisk model"

af: Ulla Eghave Rasmussen, Hans Oxvang Mortensen,
Michael Jarden

vejleder i matematik: Jesper Larsen
bioclogi: Erling Lauridsen

179a/89 "LERERVEJLEDNING M.M. til et eksperimentelt forleb
om :kaos" :

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer -

I o
179b/89 "ELEVHEFTE: Noter til et eksperimentelt kursus om
kaos"

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

180/89 "KAOS I FYSiSKE SYSTEMER eksemplificeret ved
torsions- og dobbeltpendul".

af: Andy Wiered, Seren Brend og Jimmy Staal

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE
SHEAR VISCOELASTICITY" .

by: Jeppe Dyre

183/89 "MATEMATICAL PROBLEM SOLVING, -MODELLING. APPLICATIONS
AND LINKS TO OTHER SUBJECTS -~ State. trends and

issues in mathematics instruction

by: WERNER BLUM, Kassel (FRG) og
MOGENS NISS, Roskilde (Denmark)

184/89 "En metode til bestemmelse af den frekvensafhmngige

varmefylde af en underafkelet vaske ved glasovergangen"

af: Tage Emil Christensen

185/90 "EN NESTEN PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grode og Thomas Jessen

Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
redigeret af Arne Jakobsen og Stig Andur Pedersen

187/90 "RSA — et kryptisk system"
af: Annemette Sofie Olufsen, Lars Frellesen
og Ole Moller Nielsen

Vejledere: Michael Pedersen og Finn Munk

188/90 “FERMICONDENSATION — AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATER I MRTEMATIKUNDERVISNINGEN P
GYMNASIET OC HQJERE LEREANSTALTER

af: Finn Langberg




