Abegg74  P. W. Abegg and T.K. Ha, “Ab initio calculation of spinorbitcoupling constant from Gaussian lobe SCF molecular wavefunctions,” Mol. Phys., 27 (1974) 76367. 
Abegg75  P. W. Abegg, “Ab initio calculation of spinorbitcoupling constants for Gaussian lobe and Gaussiantype wavefunctions,” Mol. Phys., 30 (1975) 57996. 
Abraham93  M. H. Abraham, “Scales of solute hydrogenbonding: their construction and application to physicochemical and biochemical processes,” Chem. Soc. Reviews, 22 (1993) 73. 
Adamo90  C. Adamo, M. Cossi, N. Rega, and V. Barone, in Theoretical Biochemistry: Processes and Properties of Biological Systems, Theoretical and Computational Chemistry, Vol. 9 (Elsevier, New York, 1990). 
Adamo97  C. Adamo and V. Barone, “Toward reliable adiabatic connection models free from adjustable parameters,” Chem. Phys. Lett., 274 (1997) 24250. 
Adamo98  C. Adamo and V. Barone, “Exchange functionals with improved longrange behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models,” J. Chem. Phys., 108 (1998) 66475. 
Adamo98a  C. Adamo and V. Barone, “Implementation and validation of the LacksGordon exchange functional in conventional density functional and adiabatic connection methods,” J. Comp. Chem., 19 (1998) 41829. 
Adamo99a  C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., 110 (1999) 615869. 
Almlof82  J. Almlöf, K. Korsell, and K. Fægri Jr., “Principles for a direct SCF approach to LCAOMO abinitio calculations,” J. Comp. Chem., 3 (1982) 38599. 
Amos82  R. D. Amos, “Electric and Magnetic Properties of CO, HF, HCl and CH3F,” Chem. Phys. Lett., 87 (1982) 2326. 
Amos84  R. D. Amos, “Dipolemoment derivatives of H2O and H2S,” Chem. Phys. Lett., 108 (1984) 18590. 
Anders93  E. Anders, R. Koch, and P. Freunscht, “Optimization and application of lithium parameters for PM3,” J. Comp. Chem., 14 (1993) 130112. 
Anderson86  W. P. Anderson, W. D. Edwards, and M. C. Zerner, “Calculated Spectra of Hydrated Ions of the First TransitionMetal Series,” Inorganic Chem., 25 (1986) 272832. 
Andrae90  D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, “Energyadjusted ab initio pseudopotentials for the 2nd and 3rd row transitionelements,” Theor. Chem. Acc., 77 (1990) 12341. 
Andzelm92  J. Andzelm and E. Wimmer, “Density functional Gaussiantypeorbital approach to molecular geometries, vibrations, and reaction energies,” J. Chem. Phys., 96 (1992) 1280303. 
Atkins69  P. W. Atkins and L. D. Barron, “Rayleigh Scattering of Polarized Photons by Molecules,” Mol. Phys., 16 (1969) 453. 
Austin02  A. J. Austin, M. J. Frisch, J. A. Montgomery Jr., and G. A. Petersson, “An overlap criterion for selection of core orbitals,” Theor. Chem. Acc., 107 (2002) 18086. 
Autschbach02  J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, and E. J. Baerends, “Chiroptical properties from timedependent density functional theory. I. Circular dichroism spectra of organic molecules,” J. Chem. Phys., 116 (2002) 693040. 
Ayala97  P. Y. Ayala and H. B. Schlegel, “A combined method for determining reaction paths, minima and transition state geometries,” J. Chem. Phys., 107 (1997) 37584. 
Ayala98  P. Y. Ayala and H. B. Schlegel, “Identification and treatment of internal rotation in normal mode vibrational analysis,” J. Chem. Phys., 108 (1998) 231425. 
Baboul97  A. G. Baboul and H. B. Schlegel, “Improved Method for Calculating Projected Frequencies along a Reaction Path,” J. Chem. Phys., 107 (1997) 941317. 
Baboul99  A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian3 theory using density functional geometries and zeropoint energies,” J. Chem. Phys., 110 (1999) 765057. 
Bacon79  A. D. Bacon and M. C. Zerner, “An Intermediate Neglect of Differential Overlap Theory for Transition Metal Complexes: Fe, Co, and Cu Chlorides,” Theor. Chem. Acc., 53 (1979) 2154. 
Bacskay81  G. B. Bacskay, “A Quadratically Convergent HartreeFock (QCSCF) Method. Application to Closed Systems,” Chem. Phys., 61 (1981) 385404. 
Bak93  K. L. Bak, P. Jørgensen, T. Helgaker, K. Ruud, and H. J. A. Jensen, “GaugeOrigin Independent Multiconfigurational SelfConsistentField Theory for Vibrational CircularDichroism,” J. Chem. Phys., 98 (1993) 887387. 
Bak94  K. L. Bak, P. Jørgensen, T. Helgaker, and K. Ruud, “Basis Set Convergence and Correlation Effects in Vibrational Circular Dichroism Calculations Using London Atomic Orbitals,” Faraday Discuss., 99 (1994) 121. 
Bak95  K. L. Bak, A. E. Hansen, K. Ruud, T. Helgaker, J. Olsen, and P. Jørgensen, “Ab Initio Calculation of Electronic CircularDichroism for transCyclooctene Using London Atomic Orbitals,” Theor. Chem. Acc., 90 (1995) 44158. 
Baker86  J. Baker, “An algorithm for the location of transitionstates,” J. Comp. Chem., 7 (1986) 38595. 
Baker87  J. Baker, “An algorithm for geometry optimization without analytical gradients,” J. Comp. Chem., 8 (1987) 56374. 
Baker93  J. Baker, “Techniques for geometry optimization  a comparison of cartesian and natural internal coordinates,” J. Comp. Chem., 14 (1993) 1085100. 
Bakken99  V. Bakken, J. M. Millam, and H. B. Schlegel, “Ab initio classical trajectories on the BornOppenheimer Surface: Updating methods for HessianBased Integrators,” J. Chem. Phys., 111 (1999) 877377. 
Banerjee85  A. Banerjee, N. Adams, J. Simons, and R. Shepard, “Search for Stationary Points on Surfaces,” J. Phys. Chem., 89 (1985) 5257. 
Barnes09  E. C. F. Barnes, M.J., G. A. Petersson, and J. M. L. Martin, (2009) in prep. 
Barone02  V. Barone, J. E. Peralta, R. H. Contreras, and J. P. Snyder, “DFT Calculation of NMR JFF SpinSpin Coupling Constants in Fluorinated Pyridines,” J. Phys. Chem. A, 106 (2002) 560712. 
Barone03  V. Barone, M. Cossi, N. Rega, and G. Scalmani, “Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model,” J. Comp. Chem., 24 (2003) 66981. 
Barone04  V. Barone, “Vibrational zeropoint energies and thermodynamic functions beyond the harmonic approximation,” J. Chem. Phys., 120 (2004) 305965. 
Barone05  V. Barone, “Anharmonic vibrational properties by a fully automated secondorder perturbative approach,” J. Chem. Phys., 122 (2005) 014108: 110. 
Barone09  V. Barone, J. Bloino, M. Biczysko, and F. Santoro, “Fully integrated approach to compute vibrationally resolved optical spectra: From small molecules to macrosystems,” J. Chem. Theory and Comput., 5 (2009) 54054. 
Barone94  V. Barone, “Characterization of the potential energy surface of the HO2 molecular system by a density functional approach,” J. Chem. Phys., 101 (1994) 1066676. 
Barone95  V. Barone and C. Minichino, “From concepts to algorithms for the treatment of largeamplitude internal motions and unimolecular reactions,” J. Mol. Struct. (Theochem), 330 (1995) 36576. 
Barone96  V. Barone, “Electronic, vibrational and environmental effects on the hyperfine coupling constants of nitroside radicals. H2NO as a case study,” Chem. Phys. Lett., 262 (1996) 20106. 
Barone96a  V. Barone, in Recent Advances in Density Functional Methods, Part I, Ed. D. P. Chong (World Scientific Publ. Co., Singapore, 1996). 
Barone97  V. Barone, M. Cossi, and J. Tomasi, “A new definition of cavities for the computation of solvation free energies by the polarizable continuum model,” J. Chem. Phys., 107 (1997) 321021. 
Barone98  V. Barone and M. Cossi, “Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model,” J. Phys. Chem. A, 102 (1998) 19952001. 
Barone98a  V. Barone, M. Cossi, and J. Tomasi, “Geometry optimization of molecular structures in solution by the polarizable continuum model,” J. Comp. Chem., 19 (1998) 40417. 
Barron04  L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, Cambridge, UK, 2004). 
Barron71  L. D. Barron and A. D. Buckingham, “Rayleigh and Raman Scattering from Optically Active Molecules,” Mol. Phys., 20 (1971) 1111. 
Bartlett78  R. J. Bartlett and G. D. Purvis III, “Manybody perturbationtheory, coupledpair manyelectron theory, and importance of quadruple excitations for correlation problem,” Int. J. Quantum Chem., 14 (1978) 56181. 
Barysz01  M. Barysz and A. J. Sadlej, “Twocomponent methods of relativistic quantum chemistry: From the DouglasKroll approximation to the exact twocomponent formalism,” J. Mol. Struct. (Theochem), 573 (2001) 181200. 
Bauernschmitt96  R. Bauernschmitt and R. Ahlrichs, “Stability analysis for solutions of the closed shell KohnSham equation,” J. Chem. Phys., 104 (1996) 904752. 
Bauernschmitt96a  R. Bauernschmitt and R. Ahlrichs, “Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory,” Chem. Phys. Lett., 256 (1996) 45464. 
Bearpark94  M. J. Bearpark, M. A. Robb, and H. B. Schlegel, “A Direct Method for the Location of the Lowest Energy Point on a Potential Surface Crossing,” Chem. Phys. Lett., 223 (1994) 26974. 
Becke88b  A. D. Becke, “Densityfunctional exchangeenergy approximation with correct asymptoticbehavior,” Phys. Rev. A, 38 (1988) 3098100. 
Becke89a  A. D. Becke and M. R. Roussel, “Exchange holes in inhomogeneous systems: A coordinatespace model,” Phys. Rev. A, 39 (1989) 376167. 
Becke92  A. D. Becke, “Densityfunctional thermochemistry. I. The effect of the exchangeonly gradient correction,” J. Chem. Phys., 96 (1992) 215560. 
Becke92a  A. D. Becke, “Densityfunctional thermochemistry. II. The effect of the PerdewWang generalizedgradient correlation correction,” J. Chem. Phys., 97 (1992) 917377. 
Becke93  A. D. Becke, “A new mixing of HartreeFock and local densityfunctional theories,” J. Chem. Phys., 98 (1993) 137277. 
Becke93a  A. D. Becke, “Densityfunctional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98 (1993) 564852. 
Becke96  A. D. Becke, “Densityfunctional thermochemistry. IV. A new dynamical correlation functional and implications for exactexchange mixing,” J. Chem. Phys., 104 (1996) 104046. 
Becke97  A. D. Becke, “Densityfunctional thermochemistry. V. Systematic optimization of exchangecorrelation functionals,” J. Chem. Phys., 107 (1997) 855460. 
Benson68  S. W. Benson, Thermochemical Kinetics (Wiley and Sons, New York, 1968). 
Berger97  R. Berger and M. Klessinger, “Algorithms for exact counting of energy levels of spectroscopic transitions at different temperatures,” J. Comp. Chem., 18 (1997) 131219. 
Berger98  R. Berger, C. Fischer, and M. Klessinger, “Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine,” J. Phys. Chem. A, 102 (1998) 715767. 
Bergner93  A. Bergner, M. Dolg, W. Kuechle, H. Stoll, and H. Preuss, “Abinitio energyadjusted pseudopotentials for elements of groups 1317,” Mol. Phys., 80 (1993) 143141. 
Bernardi84  F. Bernardi, A. Bottini, J. J. W. McDougall, M. A. Robb, and H. B. Schlegel, “MCSCF gradient calculation of transition structures in organic reactions,” Far. Symp. Chem. Soc., 19 (1984) 13747. 
Bernardi88  F. Bernardi, A. Bottoni, M. J. Field, M. F. Guest, I. H. Hillier, M. A. Robb, and A. Venturini, “MCSCF Study of the DielsAlder Reaction Between Ethylene and Butadiene,” J. Am. Chem. Soc., 110 (1988) 305055. 
Bernardi88a  F. Bernardi, A. Bottoni, M. Olivucci, M. A. Robb, H. B. Schlegel, and G. Tonachini, “Do SupraAntara Paths Really Exist for 2+2 Cycloaddition Reactions? Analytical Computation of the MCSCF Hessians for Transition States of C2H4 with C2H4, Singlet O2, and Ketene,” J. Am. Chem. Soc., 110 (1988) 599395. 
Bernardi90  F. Bernardi, A. Bottoni, M. A. Robb, and A. Venturini, “MCSCF study of the cycloaddition reaction between ketene and ethylene,” J. Am. Chem. Soc., 112 (1990) 210614. 
Bernardi92  F. Bernardi, M. Olivucci, I. Palmer, and M. A. Robb, “An MCSCF study of the thermal and photochemical cycloaddition of Dewar benzene,” J. Organic Chem., 57 (1992) 508187. 
Bernardi96  F. Bernardi, M. A. Robb, and M. Olivucci, “Potential energy surface crossings in organic photochemistry,” Chem. Soc. Reviews, 25 (1996) 321. 
Besler90  B. H. Besler, K. M. Merz Jr., and P. A. Kollman, “Atomic charges derived from semiempirical methods,” J. Comp. Chem., 11 (1990) 43139. 
Bingham75  R. C. Bingham, M. J. S. Dewar, and D. H. Lo, “Groundstates of molecules. 25. MINDO3  Improved version of MINDO semiempirical SCFMO method,” J. Am. Chem. Soc., 97 (1975) 128593. 
Binkley80a  J. S. Binkley, J. A. Pople, and W. J. Hehre, “SelfConsistent Molecular Orbital Methods. 21. Small SplitValence Basis Sets for FirstRow Elements,” J. Am. Chem. Soc., 102 (1980) 93947. 
Binning90  R. C. Binning Jr. and L. A. Curtiss, “Compact contracted basissets for 3rdrow atoms  GAKR,” J. Comp. Chem., 11 (1990) 120616. 
Blaudeau97  J.P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom, “Extension of Gaussian2 (G2) theory to molecules containing thirdrow atoms K and Ca,” J. Chem. Phys., 107 (1997) 501621. 
Bobrowicz77  F. W. Bobrowicz and W. A. Goddard III, in Methods of Electronic Structure Theory, Ed. H. F. Schaefer III, Modern Theoretical Chemistry, Vol. 3 (Plenum, New York, 1977) 79126. 
Boese00  A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, “New generalized gradient approximation functionals,” J. Chem. Phys., 112 (2000) 167078. 
Boese01  A. D. Boese and N. C. Handy, “A new parametrization of exchangecorrelation generalized gradient approximation functionals,” J. Chem. Phys., 114 (2001) 5497503. 
Boese04  A. D. Boese and J. M. L. Martin, “Development of Density Functionals for Thermochemical Kinetics,” J. Chem. Phys., 121 (2004) 340516. 
Bofill89  J. M. Bofill and P. Pulay, “The unrestricted natural orbitalcomplete active space (UNOCAS) method: An inexpensive alternative to the complete active spaceselfconsistentfield (CASSCF) method,” J. Chem. Phys., 90 (1989) 363746. 
Bofill94  J. M. Bofill, “Updated Hessian matrix and the restricted step method for locating transition structures,” J. Comp. Chem., 15 (1994) 111. 
Bofill95  J. M. Bofill and M. Comajuan, “Analysis of the updated Hessian matrices for locating transition structures,” J. Comp. Chem., 16 (1995) 132638. 
Bohmann97  J. A. Bohmann, F. Weinhold, and T. C. Farrar, “Natural Chemical Shielding Analysis of Nuclear Magnetic Resonance Shielding Tensors from GaugeIncluding Atomic Orbital Calculations,” J. Chem. Phys., 107 (1997) 117384. 
Bolton98  K. Bolton, W. L. Hase, and G. H. Peslherbe, in Modern Methods for Multidimensional Dynamics Computation in Chemistry, Ed. D. L. Thompson (World Scientific, Singapore, 1998) 143. 
Borrelli03  R. Borrelli and A. Peluso, “Dynamics of radiationless transitions in large molecular systems: A FranckCondonbased method accounting for displacements and rotations of all the normal coordinates,” J. Chem. Phys., 119 (2003) 843748. 
Boys60  S. F. Boys, “Construction of Molecular Orbitals to be Approximately Invariant for Changes from One Molecule to Another,” Rev. Mod. Phys., 32 (1960) 29699. 
Boys66  S. F. Boys, in Quantum Theory of Atoms, Molecules and the Solid State, Ed. P.O. Löwdin (Academic Press, New York, 1966) 253. 
Boys70  S. F. Boys and F. Bernardi, “Calculation of Small Molecular Interactions by Differences of Separate Total Energies  Some Procedures with Reduced Errors,” Mol. Phys., 19 (1970) 553. 
Breneman90  C. M. Breneman and K. B. Wiberg, “Determining atomcentered monopoles from molecular electrostatic potentials  the need for high sampling density in formamide conformationalanalysis,” J. Comp. Chem., 11 (1990) 36173. 
Buckingham67  A. D. Buckingham, in Advances in Chemical Physics, Ed. I. Prigogine, Vol. 12 (Wiley Interscience, New York, 1967) 107. 
Buckingham68  A. D. Buckingham and G. C. LonguetHiggins, “Quadrupole Moments of Dipolar Molecules,” Mol. Phys., 14 (1968) 63. 
Bunker71  D. L. Bunker, “Classical Trajectory Methods,” Meth. Comp. Phys., 10 (1971) 287. 
Burant96  J. C. Burant, M. C. Strain, G. E. Scuseria, and M. J. Frisch, “KohnSham Analytic Energy Second Derivatives with the Gaussian Very Fast Multipole Method (GvFMM),” Chem. Phys. Lett., 258 (1996) 4552. 
Burant96a  J. C. Burant, M. C. Strain, G. E. Scuseria, and M. J. Frisch, “Analytic Energy Gradients for the Gaussian Very Fast Multipole Method (GvFMM),” Chem. Phys. Lett., 248 (1996) 4349. 
Burant96b  J. C. Burant, G. E. Scuseria, and M. J. Frisch, “Linear scaling method for HartreeFock exchange calculations of large molecules,” J. Chem. Phys., 105 (1996) 896972. 
Burke98  K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das (Plenum, 1998). 
Califano76  S. Califano, Vibrational States (Wiley, London, 1976). 
Cammi00  R. Cammi, B. Mennucci, and J. Tomasi, “Fast evaluation of geometries and properties of excited molecules in solution: A TammDancoff model with application to 4dimethylaminobenzonitrile,” J. Phys. Chem. A, 104 (2000) 563137. 
Cammi99  R. Cammi, B. Mennucci, and J. Tomasi, “Secondorder MøllerPlesset analytical derivatives for the polarizable continuum model using the relaxed density approach,” J. Phys. Chem. A, 103 (1999) 910008. 
Cances01  E. Cancès and B. Mennucci, “Comment on‘Reaction field treatment of charge penetration‘,” J. Chem. Phys., 114 (2001) 474445. 
Cances97  E. Cancès, B. Mennucci, and J. Tomasi, “A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anistropic dielectrics,” J. Chem. Phys., 107 (1997) 303241. 
Cao01  X. Y. Cao and M. Dolg, “Valence basis sets for relativistic energyconsistent smallcore lanthanide pseudopotentials,” J. Chem. Phys., 115 (2001) 734855. 
Cao02  X. Y. Cao and M. Dolg, “Segmented contraction scheme for smallcore lanthanide pseudopotential basis sets,” J. Mol. Struct. (Theochem), 581 (2002) 13947. 
Cappelli02  C. Cappelli, S. Corni, B. Mennucci, R. Cammi, and J. Tomasi, “Vibrational Circular Dichroism within the Polarizable Continuum Model: A Theoretical Evidence of Conformation Effects and Hydrogen Bonding for (S)()3Butyn2ol in CCl4 Solution,” J. Phys. Chem. A, 106 (2002) 1233139. 
Car85  R. Car and M. Parrinello, “Unified Approach for MolecularDynamics and DensityFunctional Theory,” Phys. Rev. Lett., 55 (1985) 247174. 
Caricato06  M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni, and G. Scalmani, “Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory,” J. Chem. Phys., 124 (2006) 124520. 
Carpenter87  J. E. Carpenter, Extension of Lewis structure concepts to openshell and excitedstate molecular species, Ph. D. thesis, University of Wisconsin, Madison, WI, 1987. 
Carpenter88  J. E. Carpenter and F. Weinhold, “Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure,” J. Mol. Struct. (Theochem), 46 (1988) 4162. 
Carsky91  P. Cársky and E. Hubak, “Restricted HartreeFock and Unrestricted HartreeFock as reference states in manybody perturbationtheory: A critical comparison of the two approaches,” Theor. Chem. Acc., 80 (1991) 40725. 
Casida98  M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, “Molecular excitation energies to highlying bound states from timedependent densityfunctional response theory: Characterization and correction of the timedependent local density approximation ionization threshold,” J. Chem. Phys., 108 (1998) 443949. 
Cederbaum75  L. S. Cederbaum, “Onebody Green's function for atoms and molecules: theory and application,” J. Phys. B, 8 (1975) 290303. 
Cederbaum77  L. S. Cederbaum and W. Domcke, in Advances in Chemical Physics, Ed. I. Prigogine and S. A. Rice, Vol. 36 (Wiley & Sons, New York, 1977) 205. 
Cerjan81  C. J. Cerjan and W. H. Miller, “On Finding Transition States,” J. Chem. Phys., 75 (1981) 280006. 
Chai08  J.D. Chai and M. HeadGordon, “Systematic optimization of longrange corrected hybrid density functionals,” J. Chem. Phys., 128 (2008) 084106. 
Chai08a  J.D. Chai and M. HeadGordon, “Longrange corrected hybrid density functionals with damped atomatom dispersion corrections,” Phys. Chem. Chem. Phys., 10 (2008) 661520. 
Charney79  E. Charney, The Molecular Basis of Optical Activity (Wiley, New York, 1979). 
Cheeseman09  J. R. Cheeseman, G. S. Scalmani, and M. J. Frisch, “Analytic Vibrational Raman Optical Activity Intensities,” J. Chem. Theory and Comput., (2009) to be submitted. 
Cheeseman96  J. R. Cheeseman, G. W. Trucks, T. A. Keith, and M. J. Frisch, “A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors,” J. Chem. Phys., 104 (1996) 5497509. 
Cheeseman96a  J. R. Cheeseman, M. J. Frisch, F. J. Devlin, and P. J. Stephens, “Ab Initio Calculation of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory,” Chem. Phys. Lett., 252 (1996) 21120. 
Chen94  W. Chen, W. L. Hase, and H. B. Schlegel, “Ab initio classical trajectory study of H2C > H2 + CO dissociation,” Chem. Phys. Lett., 228 (1994) 43642. 
Chipman00  D. M. Chipman, “Reaction field treatment of charge penetration,” J. Chem. Phys., 112 (2000) 555865. 
Chirlian87  L. E. Chirlian and M. M. Francl, “Atomic charges derived from electrostatic potentials  a detailed study,” J. Comp. Chem., 8 (1987) 894905. 
Cimiraglia80  R. Cimiraglia, M. Persico, and J. Tomasi, “Rotoelectronic and spinorbit couplings in the predissociation of HNO  a theoretical calculation,” Chem. Phys. Lett., 76 (1980) 16971. 
Cioslowski89  J. Cioslowski, “A New Population Analysis Based on Atomic Polar Tensors,” J. Am. Chem. Soc., 111 (1989) 833336. 
Cizek69  J. Cizek, in Advances in Chemical Physics, Ed. P. C. Hariharan, Vol. 14 (Wiley Interscience, New York, 1969) 35. 
Clabo88  D. A. Clabo, W. D. Allen, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer III, “A systematic study of molecular vibrational anharmonicity and vibrationrotation interaction by selfconsistentfield higherderivative methods  asymmetrictop molecules,” Chem. Phys., 123 (1988) 187239. 
Clark83  T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, “Efficient diffuse functionaugmented basissets for anion calculations. 3. The 321+G basis set for 1strow elements, LiF,” J. Comp. Chem., 4 (1983) 294301. 
Clifford96  S. Clifford, M. J. Bearpark, and M. A. Robb, “A hybrid MCSCF method: Generalized valence bond (GVB) with complete active space SCF (CASSCF),” Chem. Phys. Lett., 255 (1996) 32026. 
Cohen01  A. J. Cohen and N. C. Handy, “Dynamic correlation,” Mol. Phys., 99 (2001) 60715. 
Cohen86  E. R. Cohen and B. N. Taylor, The 1986 Adjustment of the Fundamental Physical Constants, CODATA Bulletin (Pergamon, Elmsford, NY, 1986). 
Collins76  J. B. Collins, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 17. Geometries and binding energies of secondrow molecules. A comparison of three basis sets,” J. Chem. Phys., 64 (1976) 514251. 
Condon37  E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys., 9 (1937) 43257. 
Constyear73  Pure and Applied Chemistry, 2 (1973) 717. 
Constyear79  Pure and Applied Chemistry, 51 (1979) 1. 
Cornell95  W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation forcefield for the simulation of proteins, nucleicacids, and organicmolecules,” J. Am. Chem. Soc., 117 (1995) 517997. 
Cossi00  M. Cossi and V. Barone, “Solvent effect on vertical electronic transitions by the polarizable continuum model,” J. Chem. Phys., 112 (2000) 242735. 
Cossi01  M. Cossi and V. Barone, “Timedependent density functional theory for molecules in liquid solutions,” J. Chem. Phys., 115 (2001) 470817. 
Cossi01a  M. Cossi, N. Rega, G. Scalmani, and V. Barone, “Polarizable dielectric model of solvation with inclusion of charge penetration effects,” J. Chem. Phys., 114 (2001) 5691701. 
Cossi02  M. Cossi, G. Scalmani, N. Rega, and V. Barone, “New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution,” J. Chem. Phys., 117 (2002) 4354. 
Cossi03  M. Cossi, N. Rega, G. Scalmani, and V. Barone, “Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model,” J. Comp. Chem., 24 (2003) 66981. 
Cossi96  M. Cossi, V. Barone, R. Cammi, and J. Tomasi, “Ab initio study of solvated molecules: A new implementation of the polarizable continuum model,” Chem. Phys. Lett., 255 (1996) 32735. 
Cossi98  M. Cossi, V. Barone, B. Mennucci, and J. Tomasi, “Ab initio study of ionic solutions by a polarizable continuum dielectric model,” Chem. Phys. Lett., 286 (1998) 25360. 
Cossi99  M. Cossi, V. Barone, and M. A. Robb, “A direct procedure for the evaluation of solvent effects in MCSCF calculations,” J. Chem. Phys., 111 (1999) 5295302. 
Coutsias04  E. A. Coutsias, C. Seok, and K. A. Dill, “Using quaternions to calculate RMSD,” J. Comp. Chem., 25 (2004) 184957. 
CRC80  CRC Handbook of Chemistry and Physics, 60th ed., Ed. D. R. Lide (CRC Press, Boca Raton, FL, 1980). 
Csaszar84  P. Csaszar and P. Pulay, “Geometry optimization by direct inversion in the iterative subspace,” J. Mol. Struct. (Theochem), 114 (1984) 3134. 
Cundari93  T. R. Cundari and W. J. Stevens, “Effective core potential methods for the lanthanides,” J. Chem. Phys., 98 (1993) 555565. 
Curl65  R. F. Curl Jr., “Relationship between Electron Spin Rotation Coupling Constants and GTensor Components,” Mol. Phys., 9 (1965) 585. 
Curtiss07  L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian4 theory,” J. Chem. Phys., 126 (2007) 084108. 
Curtiss07a  L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian4 theory using reduced order perturbation theory,” J. Chem. Phys., 127 (2007) 124105. 
Curtiss90  L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, “Gaussian1 theory of molecular energies for secondrow compounds,” J. Chem. Phys., 93 (1990) 253745. 
Curtiss91  L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, “Gaussian2 theory for molecular energies of first and secondrow compounds,” J. Chem. Phys., 94 (1991) 722130. 
Curtiss93  L. A. Curtiss, K. Raghavachari, and J. A. Pople, “Gaussian2 theory using reduced MøllerPlesset orders,” J. Chem. Phys., 98 (1993) 129398. 
Curtiss95  L. A. Curtiss, M. P. McGrath, J.P. Blaudeau, N. E. Davis, R. C. Binning Jr., and L. Radom, “Extension of Gaussian2 theory to molecules containing thirdrow atoms GaKr,” J. Chem. Phys., 103 (1995) 610413. 
Curtiss98  L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, “Gaussian3 (G3) theory for molecules containing first and secondrow atoms,” J. Chem. Phys., 109 (1998) 776476. 
Curtiss99  L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, “Gaussian3 theory using reduced MøllerPlesset order,” J. Chem. Phys., 110 (1999) 470309. 
daCosta87  H. F. M. da Costa, M. Trsic, and J. R. Mohallem, “Universal Gaussian and Slatertype basissets for atoms He to Ar based on an integral version of the HartreeFock equations,” Mol. Phys., 62 (1987) 9195. 
Daniels97  A. D. Daniels, J. M. Millam, and G. E. Scuseria, “Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms,” J. Chem. Phys., 107 (1997) 42531. 
Dapprich99  S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, “A New ONIOM Implementation in Gaussian 98. 1. The Calculation of Energies, Gradients and Vibrational Frequencies and Electric Field Derivatives,” J. Mol. Struct. (Theochem), 462 (1999) 121. 
daSilva89  A. B. F. da Silva, H. F. M. da Costa, and M. Trsic, “Universal Gaussian and Slatertype bases for atoms H to Xe based on the generatorcoordinate HartreeFock method .1. Ground and certain lowlying excitedstates of the neutral atoms,” Mol. Phys., 68 (1989) 43345. 
Davidson96  E. R. Davidson, “Comment on "Comment on Dunning's correlationconsistent basis sets",” Chem. Phys. Lett., 260 (1996) 51418. 
Davis81  L. P. Davis, et. al., “MNDO calculations for compounds containing aluminum and boron,” J. Comp. Chem., 2 (1981) 43345. 
deCastro98  E. V. R. de Castro and F. E. Jorge, “Accurate universal gaussian basis set for all atoms of the periodic table,” J. Chem. Phys., 108 (1998) 522529. 
deJong01  W. A. deJong, R. J. Harrison, and D. A. Dixon, “Parallel DouglasKroll energy and gradients in NWChem: Estimating scalar relativistic effects using DouglasKroll contracted basis sets,” J. Chem. Phys., 114 (2001) 4853. 
Deng06  W. Deng, J. R. Cheeseman, and M. J. Frisch, “Calculation of Nuclear SpinSpin Coupling Constants of Molecules with First and Second Row Atoms in Study of Basis Set Dependence,” J. Chem. Theory and Comput., 2 (2006) 102837. 
Dewar77  M. J. S. Dewar and W. Thiel, “GroundStates of Molecules. 38. The MNDO Method: Approximations and Parameters,” J. Am. Chem. Soc., 99 (1977) 4899907. 
Dewar78  M. J. S. Dewar and H. S. Rzepa, “Groundstates of molecules. 45. MNDO results for molecules containing beryllium,” J. Am. Chem. Soc., 100 (1978) 77784. 
Dewar78a  M. J. S. Dewar, M. L. McKee, and H. S. Rzepa, “MNDO parameters for 3rd period elements,” J. Am. Chem. Soc., 100 (1978) 360707. 
Dewar83  M. J. S. Dewar and M. L. McKee, “Groundstates of molecules. 56. MNDO calculations for molecules containing sulfur,” J. Comp. Chem., 4 (1983) 84103. 
Dewar83a  M. J. S. Dewar and E. F. Healy, “Groundstates of molecules. 64. MNDO calculations for compounds containing bromine,” J. Comp. Chem., 4 (1983) 54251. 
Dewar84  M. J. S. Dewar, G. L. Grady, and J. J. P. Stewart, “Groundstates of molecules. 68. MNDO calculations for compounds containing tin,” J. Am. Chem. Soc., 106 (1984) 677173. 
Dewar85  M. J. S. Dewar, E. G. Zoebisch, and E. F. Healy, “AM1: A New General Purpose Quantum Mechanical Molecular Model,” J. Am. Chem. Soc., 107 (1985) 390209. 
Dewar85a  M. J. S. Dewar, et. al., “Groundstates of molecules. 74. MNDO calculations for compounds containing mercury,” Organometallics, 4 (1985) 196466. 
Dewar86  M. J. S. Dewar and C. H. Reynolds, “An improved set of MNDO parameters for sulfur,” J. Comp. Chem., 7 (1986) 14043. 
Dewar88  M. J. S. Dewar, C. Jie, and E. G. Zoebisch, “AM1 calculations for compounds containing boron,” Organometallics, 7 (1988) 51321. 
Dewar88a  M. J. S. Dewar and K. M. Merz Jr., “AM1 parameters for zinc,” Organometallics, 7 (1988) 52224. 
Dewar89  M. J. S. Dewar and C. Jie, “AM1 parameters for phosphorus,” J. Mol. Struct. (Theochem), 187 (1989) 1. 
Dewar90  M. J. S. Dewar and Y.C. Yuan, “AM1 parameters for sulfur,” Inorganic Chem., 29 (1990) 388190. 
Dewar90a  M. J. S. Dewar and A. J. Holder, “AM1 parameters for aluminum,” Organometallics, 9 (1990) 50811. 
Diercksen81  G. H. F. Diercksen, B. O. Roos, and A. J. Sadlej, “Legitimate calculation of 1storder molecularproperties in the case of limited CI functions  dipolemoments,” Chem. Phys., 59 (1981) 2939. 
Diercksen81a  G. H. F. Diercksen and A. J. Sadlej, “Perturbationtheory of the electron correlationeffects for atomic and molecularproperties  2ndorder and 3rdorder correlation corrections to molecular dipolemoments and polarizabilities,” J. Chem. Phys., 75 (1981) 125366. 
Dierksen04  M. Dierksen and S. Grimme, “Density functional calculations of the vibronic structure of electronic absorption spectra,” J. Chem. Phys., 120 (2004) 354454. 
Dierksen04a  M. Dierksen and S. Grimme, “The vibronic structure of electronic absorption spectra of large molecules: A timedependent density functional study on the influence of ‘Exact‘ HartreeFock exchange,” J. Phys. Chem. A, 108 (2004) 1022537. 
Dierksen05  M. Dierksen and S. Grimme, “An efficient approach for the calculation of FranckCondon integrals of large molecules,” J. Chem. Phys., 122 (2005) 244101. 
Ditchfield71  R. Ditchfield, W. J. Hehre, and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 9. Extended Gaussiantype basis for molecularorbital studies of organic molecules,” J. Chem. Phys., 54 (1971) 724. 
Ditchfield74  R. Ditchfield, “Selfconsistent perturbation theory of diamagnetism. 1. Gaugeinvariant LCAO method for N.M.R. chemical shifts,” Mol. Phys., 27 (1974) 789807. 
Dobbs86  K. D. Dobbs and W. J. Hehre, “Molecularorbital theory of the properties of inorganic and organometallic compounds. 4. Extended basissets for 3rd row and 4th row, maingroup elements,” J. Comp. Chem., 7 (1986) 35978. 
Dobbs87  K. D. Dobbs and W. J. Hehre, “Molecularorbital theory of the properties of inorganic and organometallic compounds. 5. Extended basissets for 1strow transitionmetals,” J. Comp. Chem., 8 (1987) 86179. 
Dobbs87a  K. D. Dobbs and W. J. Hehre, “Molecularorbital theory of the properties of inorganic and organometallic compounds. 6. Extended basissets for 2ndrow transitionmetals,” J. Comp. Chem., 8 (1987) 88093. 
Dodds77  J. L. Dodds, R. McWeeny, W. T. Raynes, and J. P. Riley, “SCF theory for multiple perturbations,” Mol. Phys., 33 (1977) 61117. 
Dodds77a  J. L. Dodds, R. McWeeny, and A. J. Sadlej, “Selfconsistent perturbation theory: Generalization for perturbationdependent nonorthogonal basis set,” Mol. Phys., 34 (1977) 177991. 
Doktorov77  E. V. Doktorov, I. A. Malkin, and V. I. Manko, “Dynamical symmetry of vibronic transitions in polyatomicmolecules and FranckCondon principle. 2. ,” J. Mol. Spec., 64 (1977) 30226. 
Dolg87  M. Dolg, U. Wedig, H. Stoll, and H. Preuss, “Energyadjusted ab initio pseudopotentials for the first row transition elements,” J. Chem. Phys., 86 (1987) 86672. 
Dolg89  M. Dolg, H. Stoll, and H. Preuss, “Energyadjusted ab initio pseudopotentials for the rare earth elements,” J. Chem. Phys., 90 (1989) 173034. 
Dolg89a  M. Dolg, H. Stoll, A. Savin, and H. Preuss, “Energyadjusted pseudopotentials for the rareearth elements,” Theor. Chem. Acc., 75 (1989) 17394. 
Dolg91  M. Dolg, P. Fulde, W. Kuechle, C.S. Neumann, and H. Stoll, “Ground state calculations of dipicyclooctatetraene cerium,” J. Chem. Phys., 94 (1991) 301117. 
Dolg92  M. Dolg, H. Stoll, H.J. Flad, and H. Preuss, “Ab initio pseudopotential study of Yb and YbO,” J. Chem. Phys., 97 (1992) 116273. 
Dolg93  M. Dolg, H. Stoll, and H. Preuss, “A combination of quasirelativistic pseudopotential and ligandfield calculations for lanthanoid compounds,” Theor. Chem. Acc., 85 (1993) 44150. 
Dolg93a  M. Dolg, H. Stoll, H. Preuss, and R. M. Pitzer, “Relativistic and correlationeffects for element 105 (Hahnium, Ha)  a comparativestudy of M and MO (M = NB, TA, HA) using energyadjusted ab initio pseudopotentials,” J. Phys. Chem., 97 (1993) 585259. 
Douglas74  M. Douglas and N. M. Kroll, “Quantum electrodynamical corrections to finestructure of helium,” Ann. Phys. (NY), 82 (1974) 89155. 
Dukor00  R. K. Dukor and L. A. Nafie, in Encyclopedia of Analytical Chemistry: Instrumentation and Applications, Ed. R. A. Meyers (Wiley & Sons, Chichester, 2000) 66276. 
Dunlap00  B. I. Dunlap, “Robust and variational fitting: Removing the fourcenter integrals from center stage in quantum chemistry,” J. Mol. Struct. (Theochem), 529 (2000) 3740. 
Dunlap83  B. I. Dunlap, “Fitting the Coulomb Potential Variationally in XAlpha Molecular Calculations,” J. Chem. Phys., 78 (1983) 314042. 
Dunning76  T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1976) 128. 
Dunning89  T. H. Dunning Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys., 90 (1989) 100723. 
Dupuis76  M. Dupuis, J. Rys, and H. F. King, “Evaluation of molecular integrals over Gaussian basis functions,” J. Chem. Phys., 65 (1976) 11116. 
Dykstra77  C. E. Dykstra, “Examination of Brueckner condition for selection of molecularorbitals in correlated wavefunctions,” Chem. Phys. Lett., 45 (1977) 46669. 
Dykstra84  C. E. Dykstra and P. G. Jasien, “Derivative HartreeFock theory to all orders,” Chem. Phys. Lett., 109 (1984) 38893. 
Eade81  R. H. A. Eade and M. A. Robb, “Direct minimization in MC SCF theory  the QuasiNewton method,” Chem. Phys. Lett., 83 (1981) 36268. 
Easton96  R. E. Easton, D. J. Giesen, A. Welch, C. J. Cramer, and D. G. Truhlar, “The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges,” Theor. Chem. Acc., 93 (1996) 281301. 
Ehara02  M. Ehara, M. Ishida, K. Toyota, and H. Nakatsuji, in Reviews in Modern Quantum Chemistry, Ed. K. D. Sen (World Scientific, Singapore, 2002) 293. 
Eichkorn95  K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs, “Auxiliary basissets to approximate Coulomb potentials,” Chem. Phys. Lett., 240 (1995) 28389. 
Eichkorn97  K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, “Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials,” Theor. Chem. Acc., 97 (1997) 11924. 
Elstner98  M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, “Selfconsistentcharge densityfunctional tightbinding method for simulations of complex materials properties,” Phys. Rev. B, 58 (1998) 726068. 
Ernzerhof98  M. Ernzerhof and J. P. Perdew, “Generalized gradient approximation to the angle and systemaveraged exchange hole,” J. Chem. Phys., 109 (1998)

Eyring35  H. Eyring, “The activated complex in chemical reactions,” J. Chem. Phys., 3 (1935) 10715. 
Eyring44  H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, New York, 1944). 
Farkas95  Ö. Farkas, PhD (CsC) thesis, Eötvös Loránd University and Hungarian Academy of Sciences, Budapest, 1995 (in Hungarian). 
Farkas98  Ö. Farkas and H. B. Schlegel, “Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces,” J. Chem. Phys., 109 (1998) 710004. 
Farkas99  Ö. Farkas and H. B. Schlegel, “Methods for optimizing large molecules. II. Quadratic search,” J. Chem. Phys., 111 (1999) 1080614. 
Ferreira01  A. M. Ferreira, G. Seabra, O. Dolgounitcheva, V. G. Zakrzewski, and J. V. Ortiz, in QuantumMechanical Prediction of Thermochemical Data, Ed. J. Cioslowski, Understanding Chemical Reactivity, Vol. 22 (Kluwer Academic, Dordrecht, 2001) 13160. 
Fitzpatrick86  N. J. Fitzpatrick and G. H. Murphy, “Double ZetaD Radial WaveFunctions for TransitionElements,” Inorg. Chim. Acta, 111 (1986) 13940. 
Fletcher63  R. Fletcher and M. J. D. Powell, “A Rapidly Convergent Descent Method for Minimization,” Comput. J., 6 (1963) 16368. 
Fletcher80  R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1980). 
Floris89  F. Florsi and J. Tomasi, “Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation,” J. Comp. Chem., 10 (1989) 616. 
Floris91  F. Florsi, J. Tomasi, and J. L. PascualAhuir, “Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation,” J. Comp. Chem., 12 (1991) 784. 
Fogarasi92  G. Fogarasi, X. Zhou, P. Taylor, and P. Pulay, “The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces,” J. Am. Chem. Soc., 114 (1992) 8191201. 
Foresman92  J. B. Foresman, M. HeadGordon, J. A. Pople, and M. J. Frisch, “Toward a Systematic Molecular Orbital Theory for Excited States,” J. Phys. Chem., 96 (1992) 13549. 
Foresman93  J. B. Foresman and H. B. Schlegel, in Recent experimental and computational advances in molecular spectroscopy, Ed. R. Fausto and J. M. Hollas, NATOASI Series C, vol. 406 (Kluwer Academic, The Netherlands, 1993) 1126. 
Foresman96  J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch, “Solvent Effects 5. The Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab initio Reaction Field Calculations,” J. Phys. Chem., 100 (1996) 16098104. 
Foresman96b  J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, PA, 1996). 
Foster60  J. M. Foster and S. F. Boys, “Canonical configurational interaction procedure,” Rev. Mod. Phys., 32 (1960) 30002. 
Foster80  J. P. Foster and F. Weinhold, “Natural hybrid orbitals,” J. Am. Chem. Soc., 102 (1980) 721118. 
Francl82  M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, “SelfConsistent Molecular Orbital Methods. 23. A polarizationtype basis set for 2ndrow elements,” J. Chem. Phys., 77 (1982) 365465. 
Frauenheim00  T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, and R. Scholz, “A selfconsistent charge densityfunctional based tightbinding method for predictive materials simulations in physics, chemistry and biology,” Physica Stat. Sol. B, 217 (2000) 4162. 
Frauenheim02  T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. D. Carlo, and S. Suhai, “Atomistic simulations of complex materials: groundstate and excitedstate properties,” J. Phys.: Condens. Matter, 14 (2002) 301547. 
Frisch09  M. J. Frisch, G. Scalmani, T. Vreven, and G. Zheng, “Analytic second derivatives for semiempirical models based on MNDO,” (for Mol. Phys.), (2009)

Frisch84  M. J. Frisch, J. A. Pople, and J. S. Binkley, “SelfConsistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets,” J. Chem. Phys., 80 (1984) 326569. 
Frisch86a  M. J. Frisch, Y. Yamaguchi, J. Gaw, H. F. Schaefer III, and J. S. Binkley, “Analytic Raman intensities from molecular electronic wave functions,” J. Chem. Phys., 84 (1986) 53132. 
Frisch90a  M. J. Frisch, M. HeadGordon, and J. A. Pople, “Direct analytic SCF second derivatives and electric field properties,” Chem. Phys., 141 (1990) 18996. 
Frisch90b  M. J. Frisch, M. HeadGordon, and J. A. Pople, “Direct MP2 gradient method,” Chem. Phys. Lett., 166 (1990) 27580. 
Frisch90c  M. J. Frisch, M. HeadGordon, and J. A. Pople, “Semidirect algorithms for the MP2 energy and gradient,” Chem. Phys. Lett., 166 (1990) 28189. 
Frisch92  M. J. Frisch, I. N. Ragazos, M. A. Robb, and H. B. Schlegel, “An Evaluation of 3 Direct MCSCF Procedures,” Chem. Phys. Lett., 189 (1992) 52428. 
Fuentealba82  P. Fuentealba, H. Preuss, H. Stoll, and L. v. Szentpaly, “A Proper Account of Corepolarization with Pseudopotentials  Single ValenceElectron Alkali Compounds,” Chem. Phys. Lett., 89 (1982) 41822. 
Fuentealba83  P. Fuentealba, H. Stoll, L. v. Szentpaly, P. Schwerdtfeger, and H. Preuss, “On the reliability of semiempirical pseudopotentials  simulation of HartreeFock and DiracFock results,” J. Phys. B, 16 (1983) L323L28. 
Fuentealba85  P. Fuentealba, L. v. Szentpaly, H. Preuss, and H. Stoll, “Pseudopotential calculations for alkalineearth atoms,” J. Phys. B, 18 (1985) 128796. 
Furche02  F. Furche and R. Ahlrichs, “Adiabatic timedependent density functional methods for excited state properties,” J. Chem. Phys., 117 (2002) 743347. 
G03  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003). 
G70  W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70 (Quantum Chemistry Program Exchange, Program No. 237, 1970). 
G76  J. S. Binkley, R. A. Whiteside, P. C. Hariharan, R. Seeger, J. A. Pople, W. J. Hehre, and M. D. Newton, Gaussian 76 (CarnegieMellon University, Pittsburgh, PA, 1976). 
G80  J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. Defrees, H. B. Schlegel, S. Topiol, L. R. Kahn, and J. A. Pople, Gaussian 80 (CarnegieMellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1980). 
G82  J. S. Binkley, M. J. Frisch, D. J. Defrees, R. Krishnan, R. A. Whiteside, H. B. Schlegel, E. M. Fluder, and J. A. Pople, Gaussian 82 (CarnegieMellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1982). 
G86  M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. Defrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fluder, and J. A. Pople, Gaussian 86 (Gaussian, Inc., Pittsburgh, PA, 1986). 
G88  M. J. Frisch, M. HeadGordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, Gaussian 88 (Gaussian, Inc., Pittsburgh, PA, 1988). 
G90  M. J. Frisch, M. HeadGordon, G. W. Trucks, J. B. Foresman, K. Raghavachari, H. B. Schlegel, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, Gaussian 90 (Gaussian, Inc., Pittsburgh, PA, 1990). 
G92  M. J. Frisch, G. W. Trucks, M. HeadGordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian 92 (Gaussian, Inc., Pittsburgh, PA, 1992). 
G92DFT  M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. HeadGordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian 92/DFT (Gaussian, Inc., Pittsburgh, PA, 1993). 
G94  M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery Jr., K. Raghavachari, M. A. AlLaham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. HeadGordon, C. Gonzalez, and J. A. Pople, Gaussian 94 (Gaussian, Inc., Pittsburgh, PA, 1995). 
G98  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. HeadGordon, E. S. Replogle, and J. A. Pople, Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998). 
Garrett80  B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnusson, “Improved treatment of threshold contributions in variational transitionstate theory,” J. Phys. Chem., 84 (1980) 173048. 
Gauss88  J. Gauss and D. Cremer, “Analytical evaluation of energy gradients in quadratic configurationinteraction theory,” Chem. Phys. Lett., 150 (1988) 28086. 
Gauss92  J. Gauss, “Calculation of NMR chemical shifts at secondorder manybody perturbation theory using gaugeincluding atomic orbitals,” Chem. Phys. Lett., 191 (1992) 61420. 
Gauss93  J. Gauss, “Effects of Electron Correlation in the Calculation of Nuclear MagneticResonance ChemicalShifts,” J. Chem. Phys., 99 (1993) 362943. 
Gauss95  J. Gauss, “Accurate Calculation of NMR ChemicalShifts,” Phys. Chem. Chem. Phys., 99 (1995) 100108. 
Gauss96  J. Gauss, K. Ruud, and T. Helgaker, “Perturbationdependent atomic orbitals for the calculation of spinrotation constants and rotational g tensors,” J. Chem. Phys., 105 (1996) 280412. 
Gerratt68  J. Gerratt and I. M. Mills, “Force constants and dipolemoment derivatives of molecules from perturbed HartreeFock calculations. I.,” J. Chem. Phys., 49 (1968) 1719. 
Gill92  P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, “The performance of the BeckeLeeYangParr (BLYP) density functional theory with various basis sets,” Chem. Phys. Lett., 197 (1992) 499505. 
Gill94  P. M. W. Gill, in Advances in Quantum Chemistry, Vol. 25 (Academic Press, San Diego, CA, 1994) 141205. 
Gill96  P. M. W. Gill, “A new gradientcorrected exchange functional,” Mol. Phys., 89 (1996) 43345. 
Godbout92  N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, “Optimization of Gaussiantype basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation,” Can. J. Chem., 70 (1992) 56071. 
Goddard78  W. A. Goddard III and L. B. Harding, in Annual Review of Physical Chemistry, Ed. B. S. Rabinovitch, Vol. 29 (Annual Reviews, Inc., Palo Alto, CA, 1978) 36396. 
Golab83  J. T. Golab, D. L. Yeager, and P. Jørgensen, “Proper characterization of MC SCF stationarypoints,” Chem. Phys., 78 (1983) 17599. 
Gonzalez89  C. Gonzalez and H. B. Schlegel, “An Improved Algorithm for Reaction Path Following,” J. Chem. Phys., 90 (1989) 215461. 
Gonzalez90  C. Gonzalez and H. B. Schlegel, “Reaction Path Following in MassWeighted Internal Coordinates,” J. Phys. Chem., 94 (1990) 552327. 
Gordon80  M. S. Gordon, “The isomers of silacyclopropane,” Chem. Phys. Lett., 76 (1980) 16368. 
Gordon82  M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, “SelfConsistent Molecular Orbital Methods. 22. Small SplitValence Basis Sets for SecondRow Elements,” J. Am. Chem. Soc., 104 (1982) 2797803. 
Gready77  J. E. Gready, G. B. Bacskay, and N. S. Hush, “Finitefield Method Calculations. III. Dipole moment gradients, polarisability gradients and fieldinduced shifts in bond lengths, vibrational levels, spectroscopic constants and dipole functions  Application to LiH,” Chem. Phys., 24 (1977) 33341. 
Greengard87  L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comp. Phys., 73 (1987) 32548. 
Greengard88  L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press, Cambridge, MA, 1988). 
Greengard94  L. Greengard, “Fast algorithms for classical physics,” Science, 265 (1994) 90914. 
Grimme06  S. Grimme, “Semiempirical GGAtype density functional constructed with a longrange dispersion correction,” J. Comp. Chem., 27 (2006) 178799. 
Grimme06a  S. Grimme, “Semiempirical hybrid density functional with perturbative secondorder correlation,” J. Chem. Phys., 124 (2006) 034108. 
Haeussermann93  U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, “Accuracy of energyadjusted quasirelativistic ab initio pseudopotentials  allelectron and pseudopotential benchmark calculations for HG, HGH and their cations,” Mol. Phys., 78 (1993) 121124. 
Halgren77  T. A. Halgren and W. N. Lipscomb, “The Synchronous Transit Method for Determining Reaction Pathways and Locating Transition States,” Chem. Phys. Lett., 49 (1977) 22532. 
Hall84  G. G. Hall and C. M. Smith, “Fitting electrondensities of molecules,” Int. J. Quantum Chem., 25 (1984) 88190. 
Hamilton88  T. P. Hamilton and P. Pulay, “UHF natural orbitals for defining and starting MCSCF calculations,” J. Chem. Phys., 88 (1988) 492633. 
Hamprecht98  F. A. Hamprecht, A. Cohen, D. J. Tozer, and N. C. Handy, “Development and assessment of new exchangecorrelation functionals,” J. Chem. Phys., 109 (1998) 626471. 
Handy01  N. C. Handy and A. J. Cohen, “Leftright correlation energy,” Mol. Phys., 99 (2001) 40312. 
Handy84  N. C. Handy and H. F. Schaefer III, “On the evaluation of analytic energy derivatives for correlated wavefunctions,” J. Chem. Phys., 81 (1984) 503133. 
Handy89  N. C. Handy, J. A. Pople, M. HeadGordon, K. Raghavachari, and G. W. Trucks, “Sizeconsistent Brueckner theory limited to double substitutions,” Chem. Phys. Lett., 164 (1989) 18592. 
Hansen99  A. E. Hansen and K. L. Bak, “Ab initio calculations of electronic circular dichroism,” ENANTIOMER, 4 (1999) 45576. 
Hanson87  L. K. Hanson, J. Fajer, M. A. Thompson, and M. C. Zerner, “Electrochromic Effects of Charge Separation in Bacterial Photosynthesis  Theoretical Models,” J. Am. Chem. Soc., 109 (1987) 472830. 
Hariharan73  P. C. Hariharan and J. A. Pople, “Influence of polarization functions on molecularorbital hydrogenation energies,” Theor. Chem. Acc., 28 (1973) 21322. 
Hariharan74  P. C. Hariharan and J. A. Pople, “Accuracy of AH equilibrium geometries by single determinant molecularorbital theory,” Mol. Phys., 27 (1974) 20914. 
Harris85  J. Harris, “Simplified method for calculating the energy of weakly interacting fragments,” Phys. Rev. B, 31 (1985) 177079. 
Hase91  Advances in Classical Trajectory Methods, Vol. 13, Ed. W. L. Hase (JAI, Stamford, CT, 1991). 
Hase96  W. L. Hase, R. J. Duchovic, X. Hu, A. Komornicki, K. F. Lim, D.H. Lu, G. H. Peslherbe, K. N. Swamy, S. R. V. Linde, A. Varandas, H. Wang, and R. J. Wolfe, “VENUS96: A General Chemical Dynamics Computer Program,” QCPE, 16 (1996) 671. 
Hay77  P. J. Hay, “Gaussian basis sets for molecular calculations  representation of 3D orbitals in transitionmetal atoms,” J. Chem. Phys., 66 (1977) 437784. 
Hay85  P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations  potentials for the transitionmetal atoms Sc to Hg,” J. Chem. Phys., 82 (1985) 27083. 
Hay85a  P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations  potentials for K to Au including the outermost core orbitals,” J. Chem. Phys., 82 (1985) 299310. 
HeadGordon88  M. HeadGordon and J. A. Pople, “A Method for TwoElectron Gaussian Integral and Integral Derivative Evaluation Using Recurrence Relations,” J. Chem. Phys., 89 (1988) 577786. 
HeadGordon88a  M. HeadGordon, J. A. Pople, and M. J. Frisch, “MP2 energy evaluation by direct methods,” Chem. Phys. Lett., 153 (1988) 50306. 
HeadGordon94  M. HeadGordon and T. HeadGordon, “Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer,” Chem. Phys. Lett., 220 (1994) 12228. 
HeadGordon94a  M. HeadGordon, R. J. Rico, M. Oumi, and T. J. Lee, “A Doubles Correction to Electronic ExcitedStates from ConfigurationInteraction in the Space of Single Substitutions,” Chem. Phys. Lett., 219 (1994) 2129. 
HeadGordon95  M. HeadGordon, D. Maurice, and M. Oumi, “A Perturbative Correction to Restricted OpenShell ConfigurationInteraction with Single Substitutions for ExcitedStates of Radicals,” Chem. Phys. Lett., 246 (1995) 11421. 
Hegarty79  D. Hegarty and M. A. Robb, “Application of unitary groupmethods to configurationinteraction calculations,” Mol. Phys., 38 (1979) 1795812. 
Hehre69  W. J. Hehre, R. F. Stewart, and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 1. Use of Gaussian expansions of Slatertype atomic orbitals,” J. Chem. Phys., 51 (1969) 265764. 
Hehre72  W. J. Hehre, R. Ditchfield, and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 12. Further extensions of Gaussiantype basis sets for use in molecularorbital studies of organicmolecules,” J. Chem. Phys., 56 (1972) 2257. 
Helgaker00  T. Helgaker, M. Watson, and N. C. Handy, “Analytical calculation of nuclear magnetic resonance indirect spinspin coupling constants at the generalized gradient approximation and hybrid levels of densityfunctional theory,” J. Chem. Phys., 113 (2000) 940209. 
Helgaker90  T. Helgaker, E. Uggerud, and H. J. A. Jensen, “Integration of the Classical Equations of Motion on ab initio MolecularPotential Energy Surfaces Using Gradients and Hessians  Application to Translational EnergyRelease Upon Fragmentation,” Chem. Phys. Lett., 173 (1990) 14550. 
Helgaker91  T. Helgaker and P. Jørgensen, “An Electronic Hamiltonian for Origin Independent Calculations of MagneticProperties,” J. Chem. Phys., 95 (1991) 2595601. 
Helgaker94  T. Helgaker, K. Ruud, K. L. Bak, P. Jørgensen, and J. Olsen, “Vibrational Raman OpticalActivity Calculations Using London Atomic Orbitals,” Faraday Discuss., 99 (1994) 16580. 
Herzberg33  G. Herzberg and E. Teller, “Fluctuation structure of electron transfer in multiatomic molecules,” Z. Phys. Chemie, 21 (1933) 410. 
Hess85  B. A. Hess, “Applicability of the nopair equation with freeparticle projection operators to atomic and molecularstructure calculations,” Phys. Rev. A, 32 (1985) 75663. 
Hess86  B. A. Hess, “Relativistic electronicstructure calculations employing a 2component nopair formalism with externalfield projection operators,” Phys. Rev. A, 33 (1986) 374248. 
Heyd03  J. Heyd, G. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., 118 (2003) 820715. 
Heyd04  J. Heyd and G. Scuseria, “Efficient hybrid density functional calculations in solids: The HSErnzerhof screened Coulomb hybrid functional,” J. Chem. Phys., 121 (2004) 118792. 
Heyd04a  J. Heyd and G. E. Scuseria, “Assessment and validation of a screened Coulomb hybrid density functional,” J. Chem. Phys., 120 (2004) 7274. 
Heyd05  J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the HeydScuseriaErnzerhof screened hybrid functional,” J. Chem. Phys., 123 (2005) 174101: 18. 
Heyd06  J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: "Hybrid functionals based on a screened Coulomb potential",” J. Chem. Phys., 124 (2006) 219906. 
Hirota85  E. Hirota, HighResolution Spectroscopy of Transient Molecules, Springer Series in Chemical Physics, Vol. 40 (SpringerVerlag, Berlin, 1985). 
Hirota94  E. Hirota, J. M. Brown, J. T. Hougen, T. Shida, and N. Hirota, “Symbols for fine and hyperfinestructure parameters,” Pure & Appl. Chem., 66 (1994) 57176. 
Hirshfeld77  F. L. Hirshfeld, “Bondedatom fragments for describing molecular charge densities,” Theor. Chem. Acc., 44 (1977) 12938. 
Hoe01  W.M. Hoe, A. Cohen, and N. C. Handy, “Assessment of a new local exchange functional OPTX,” Chem. Phys. Lett., 341 (2001) 31928. 
Hoffmann63  R. Hoffmann, “An Extended Huckel Theory. I. Hydrocarbons,” J. Chem. Phys., 39 (1963) 1397. 
Hoffmann64  R. Hoffmann, “An Extended Huckel Theory. II. Sigma Orbitals in the Azines,” J. Chem. Phys., 40 (1964) 2745. 
Hoffmann64a  R. Hoffmann, “An Extended Huckel Theory. III. Compounds of Boron and Nitrogen,” J. Chem. Phys., 40 (1964) 2474. 
Hoffmann64b  R. Hoffmann, “An Extended Huckel Theory. IV. Carbonium Ions,” J. Chem. Phys., 40 (1964) 2480. 
Hoffmann66  R. Hoffmann, “Extended Huckel Theory. V. Cumulenes, Polyenes, Polyacetylenes and Cn,” Tetrahedron, 22 (1966) 521. 
Hohenberg64  P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136 (1964) B864B71. 
Hratchian02  H. P. Hratchian and H. B. Schlegel, “Following reaction pathways using a damped classical trajectory algorithm,” J. Phys. Chem. A, 106 (2002) 16569. 
Hratchian04a  H. P. Hratchian and H. B. Schlegel, “Accurate reaction paths using a Hessian based predictorcorrector integrator,” J. Chem. Phys., 120 (2004) 991824. 
Hratchian05a  H. P. Hratchian and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years, Ed. C. E. Dykstra, G. Frenking, K. S. Kim, and G. Scuseria (Elsevier, Amsterdam, 2005) 195249. 
Hratchian05b  H. P. Hratchian and H. B. Schlegel, “Using Hessian updating to increase the efficiency of a Hessian based predictorcorrector reaction path following method,” J. Chem. Theory and Comput., 1 (2005) 6169. 
Humbel96  S. Humbel, S. Sieber, and K. Morokuma, “The IMOMO method: Integration of different levels of molecular orbital approximations for geometry optimization of large systems: Test for nbutane conformation and SN2 reaction: RCI+Cl,” J. Chem. Phys., 105 (1996) 195967. 
IgelMann88  G. IgelMann, H. Stoll, and H. Preuss, “Pseudopotentials for main group elements (IIIA through VIIA),” Mol. Phys., 65 (1988) 132128. 
Iikura01  H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, “Longrange correction scheme for generalizedgradientapproximation exchange functionals,” J. Chem. Phys., 115 (2001) 354044. 
Improta06  R. Improta, V. Barone, G. Scalmani, and M. J. Frisch, “A statespecific polarizable continuum model time dependent density functional method for excited state calculations in solution,” J. Chem. Phys., 125 (2006) 054103: 19. 
Improta07  R. Improta, G. Scalmani, M. J. Frisch, and V. Barone, “Toward effective and reliable fluorescence energies in solution by a new State Specific Polarizable Continuum Model Time Dependent Density Functional Theory Approach,” J. Chem. Phys., 127 (2007) 074504: 19. 
Ishida01  M. Ishida, K. Toyota, M. Ehara, and H. Nakatsuji, “Analytical energy gradients of the excited, ionized and electronattached states calculated by the SACCI generalR method,” Chem. Phys. Lett., 347 (2001) 49398. 
Ishida01a  M. Ishida, K. Toyota, M. Ehara, and H. Nakatsuji, “Analytical energy gradient of highspin multiplet state calculated by the SACCI method,” Chem. Phys. Lett., 350 (2001) 35158. 
Iyengar01  S. S. Iyengar, H. B. Schlegel, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. II. Generalizations based on massweighting, idempotency, energy conservation and choice of initial conditions,” J. Chem. Phys., 115 (2001) 10291302. 
Jankowiak07  H.C. Jankowiak, J. L. Stuber, and R. Berger, “Vibronic transitions in large molecular systems: rigorous prescreening conditions for FranckCondon factors,” J. Chem. Phys., 127 (2007) 234101. 
Jansen89  G. Jansen and B. A. Hess, “Revision of the DouglasKroll transformation,” Phys. Rev. A, 39 (1989) 601617. 
Johnson93  B. G. Johnson, P. M. W. Gill, and J. A. Pople, “Computing Molecular Electrostatic Potentials with the PRISM Algorithm,” Chem. Phys. Lett., 206 (1993) 23946. 
Johnson93a  B. G. Johnson and M. J. Frisch, “Analytic second derivatives of the gradientcorrected density functional energy: Effect of quadrature weight derivatives,” Chem. Phys. Lett., 216 (1993) 13340. 
Johnson94  B. G. Johnson and M. J. Frisch, “An implementation of analytic second derivatives of the gradientcorrected density functional energy,” J. Chem. Phys., 100 (1994) 742942. 
Jorge97  F. E. Jorge, E. V. R. de Castro, and A. B. F. da Silva, “A universal Gaussian basis set for atoms Cerium through Lawrencium generated with the generator coordinate HartreeFock method,” J. Comp. Chem., 18 (1997) 156569. 
Jorge97a  F. E. Jorge, E. V. R. de Castro, and A. B. F. da Silva, “Accurate universal Gaussian basis set for hydrogen through lanthanum generated with the generator coordinate HartreeFock method,” Chem. Phys., 216 (1997) 31721. 
Jorgensen88  P. Jørgensen, H. J. A. Jensen, and J. Olsen, “Linear Response Calculations for LargeScale Multiconfiguration SelfConsistent Field WaveFunctions,” J. Chem. Phys., 89 (1988) 365461. 
Kallay04  M. Kállay and J. Gauss, “Calculation of excitedstate properties using general coupledcluster and configurationinteraction models,” J. Chem. Phys., 121 (2004) 9257. 
Karna91  S. P. Karna and M. Dupuis, “FrequencyDependent Nonlinear OpticalProperties of Molecules  Formulation and Implementation in the Hondo Program,” J. Comp. Chem., 12 (1991) 487504. 
Kaupp91  M. Kaupp, P. v. R. Schleyer, H. Stoll, and H. Preuss, “Pseudopotential approaches to CA, SR, and BA hydrides. Why are some alkalineearth MX2 compounds bent?,” J. Chem. Phys., 94 (1991) 136066. 
Keith92  T. A. Keith and R. F. W. Bader, “Calculation of magnetic response properties using atoms in molecules,” Chem. Phys. Lett., 194 (1992) 18. 
Keith93  T. A. Keith and R. F. W. Bader, “Calculation of magnetic response properties using a continuous set of gauge transformations,” Chem. Phys. Lett., 210 (1993) 22331. 
Kendall92  R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, “Electron affinities of the firstrow atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys., 96 (1992) 6796806. 
King76  H. F. King and M. Dupuis, “Numerical Integration Using Rys Polynomials,” J. Comp. Phys., 21 (1976) 14465. 
Kirkwood34  J. G. Kirkwood, “Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions,” J. Chem. Phys., 2 (1934) 351. 
Klene00  M. Klene, M. A. Robb, M. J. Frisch, and P. Celani, “Parallel implementation of the CIvector evaluation in full CI/CASSCF,” J. Chem. Phys., 113 (2000) 565365. 
Klene03  M. Klene, M. A. Robb, L. Blancafort, and M. J. Frisch, “A New Efficient Approach to the Direct RASSCF Method,” J. Chem. Phys., 119 (2003) 71328. 
Knowles91  P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy, and J. A. Pople, “Restricted MøllerPlesset theory for open shell molecules,” Chem. Phys. Lett., 186 (1991) 13036. 
Kobayashi91  R. Kobayashi, N. C. Handy, R. D. Amos, G. W. Trucks, M. J. Frisch, and J. A. Pople, “Gradient theory applied to the Brueckner doubles method,” J. Chem. Phys., 95 (1991) 672333. 
Koch90  H. Koch and P. Jørgensen, “Coupled cluster response functions,” J. Chem. Phys., 93 (1990) 333344. 
Koch94a  H. Koch, R. Kobayashi, A. Sánchez de Merás, and P. Jørgensen, “Calculation of sizeintensive transition moments from the coupled cluster singles and doubles linear response function,” J. Chem. Phys., 100 (1994) 4393. 
Kohn65  W. Kohn and L. J. Sham, “SelfConsistent Equations Including Exchange and Correlation Effects,” Phys. Rev., 140 (1965) A1133A38. 
Komornicki79  A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys., 71 (1979) 215055. 
Kondru98  R. K. Kondru, P. Wipf, and D. N. Beratan, “Theoryassisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles,” J. Am. Chem. Soc., 120 (1998) 220405. 
Koseki92  S. Koseki, M. W. Schmidt, and M. S. Gordon, “MCSCF/631G(d,p) calculations of oneelectron spinorbitcoupling constants in diatomicmolecules,” J. Phys. Chem., 96 (1992) 1076872. 
Koseki95  S. Koseki, M. S. Gordon, M. W. Schmidt, and N. Matsunaga, “Maingroup effective nuclear charges for spinorbit calculations,” J. Phys. Chem., 99 (1995) 1276472. 
Koseki98  S. Koseki, M. W. Schmidt, and M. S. Gordon, “Effective nuclear charges for the first through thirdrow transition metal elements in spinorbit calculations,” J. Phys. Chem. A, 102 (1998) 1043035. 
Krack98  M. Krack and A. M. Köster, “An adaptive numerical integrator for molecular integrals,” J. Chem. Phys., 108 (1998) 322634. 
Krieger01  J. B. Krieger, J. Q. Chen, and S. Kurth, in Density Functional Theory and its Application to Materials, Ed. V. VanDoren, C. VanAlsenoy, and P. Geerlings, A.I.P. Conference Proceedings, Vol. 577 (A.I.P., New York, 2001) 4869. 
Krieger99  J. B. Krieger, J. Q. Chen, G. J. Iafrate, and A. Savin, in Electron Correlations and Materials Properties, Ed. A. Gonis, N. Kioussis, and M. Ciftan (Kluwer Academic, New York, 1999) 46377. 
Krukau06  A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys., 125 (2006) 224106. 
Kudin02  K. N. Kudin, G. E. Scuseria, and E. Cancès, “A blackbox selfconsistent field convergence algorithm: One step closer,” J. Chem. Phys., 116 (2002) 825561. 
Kuechle91  W. Kuechle, M. Dolg, H. Stoll, and H. Preuss, “Ab initio pseudopotentials for HG through RN. 1. Parameter sets and atomic calculations,” Mol. Phys., 74 (1991) 124563. 
Kuechle94  W. Kuechle, M. Dolg, H. Stoll, and H. Preuss, “Energyadjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium molecules,” J. Chem. Phys., 100 (1994) 753542. 
Kupka86  H. Kupka and P. H. Cribb, “Multidimensional FranckCondon integrals and Duschinsky mixing effects,” J. Chem. Phys., 85 (1986) 130315. 
Labanowski91  Density Functional Methods in Chemistry, Ed. J. K. Labanowski and J. W. Andzelm (SpringerVerlag, New York, 1991). 
Lami04  A. Lami, C. Petrongolo, and F. Santoro, in Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, Ed. W. Domcke, D. R. Yarkony, and H. Koppel (World Scientific, Singapore, 2004). 
Lauderdale91  W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, “Manybody perturbation theory with a restricted openshell HartreeFock reference,” Chem. Phys. Lett., 187 (1991)

Lauderdale92  W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, “Restricted openshell HartreeFock based manybody perturbation theory: Theory and application of energy and gradient calculations,” J. Chem. Phys., 97 (1992)

Lebedev75  V. I. Lebedev, “Weights and Nodes of GaussMarkov Quadrature Formulas of Orders 9 to 17 for the Sphere that are Invariant under the Octahedron Group with Inversion,” Zh. Vychisl. Mat. Mat. Fiz., 15 (1975) 4854. 
Lebedev76  V. I. Lebedev, “Quadratures on a Sphere,” Zh. Vychisl. Mat. Mat. Fiz., 16 (1976) 293306. 
Lebedev80  V. I. Lebedev, in Theory of Cubature Formulas and Computational Mathematics, Ed. S. L. Sobolev (Nauka, Novosibirsk, 1980) 7582 [in Russian]. 
Lebedev92  V. I. Lebedev and L. Skorokhodov, “Quadrature formulas of orders 41,47 and 53 for the sphere,” Russian Acad. Sci. Dokl. Math., 45 (1992) 58792. 
Lee88  C. Lee, W. Yang, and R. G. Parr, “Development of the ColleSalvetti correlationenergy formula into a functional of the electron density,” Phys. Rev. B, 37 (1988) 78589. 
Lee89  T. J. Lee and P. R. Taylor, “A diagnostic for determining the quality of singlereference electron correlation methods,” Int. J. Quantum Chem., Quant. Chem. Symp., S23 (1989) 199207. 
Lee90  T. J. Lee, A. P. Rendell, and P. R. Taylor, “Comparison of the Quadratic Configuration Interaction and CoupledCluster Approaches to Electron Correlation Including the Effect of Triple Excitations,” J. Phys. Chem., 94 (1990) 546368. 
Leininger96  T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger, “The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCI,” J. Chem. Phys., 105 (1996) 105259. 
Li00  X. Li, J. M. Millam, and H. B. Schlegel, “Ab initio molecular dynamics studies of the photodissociation of formaldehyde, H2CO > H2+CO: Direct classical trajectory calculations by MP2 and density functional theory,” J. Chem. Phys., 113 (2000) 1006267. 
Li06  X. Li and M. J. Frisch, “Energyrepresented DIIS within a hybrid geometry optimization method,” J. Chem. Theory and Comput., 2 (2006) 83539. 
Liang05  J. Liang and H. Y. Li, “Calculation of the multimode FranckCondon factors based on the coherent state method,” Mol. Phys., 103 (2005) 333742. 
Lin74  S. H. Lin and H. Eyring, “Study of FranckCondon and HerzbergTeller approximations,” Proceedings of the National Acad. of Sciences, 71 (1974) 380204. 
Linderberg04  J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry, 2nd ed. (Wiley & Sons, Hoboken, NJ, 2004). 
Lippert97  G. Lippert, J. Hutter, and M. Parrinello, “A hybrid Gaussian and plane wave density functional scheme,” Mol. Phys., 92 (1997) 47787. 
Lippert99  G. Lippert, J. Hutter, and M. Parrinello, “The Gaussian and augmentedplanewave density functional method for ab initio molecular dynamics simulations,” Theor. Chem. Acc., 103 (1999) 12440. 
London37  F. London, “The quantic theory of interatomic currents in aromatic combinations,” J. Phys. Radium, 8 (1937) 397409. 
Lundberg09  M. Lundberg, T. Kawatsu, T. Vreven, M. J. Frisch, and K. Morokuma, “Transition States in the Protein Environment  ONIOM QM:MM Modeling of Isopenicillin N Synthesis,” J. Chem. Theory and Comput., 5 (2009) 22234. 
Macbeth  W. Shakespeare, Macbeth, III.iv.40107 (London, c.16061611). 
Malick98  D. K. Malick, G. A. Petersson, and J. A. Montgomery Jr., “Transition states for chemical reactions. I. Geometry and classical barrier height,” J. Chem. Phys., 108 (1998) 570413. 
Marenich09  A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions,” J. Phys. Chem. B, (2009) in press. 
Martin03  R. L. Martin, “Natural transition orbitals,” J. Chem. Phys., 118 (2003) 477577. 
Martin99  J. M. L. Martin and G. de Oliveira, “Towards standard methods for benchmark quality ab initio thermochemistry  W1 and W2 theory,” J. Chem. Phys., 111 (1999) 184356. 
Martyna91  G. Martyna, C. Cheng, and M. L. Klein, “Electronic States and Dynamic Behavior of Lixen and Csxen Clusters,” J. Chem. Phys., 95 (1991) 131836. 
Maseras95  F. Maseras and K. Morokuma, “IMOMM  A new integrated abinitio plus molecular mechanics geometry optimization scheme of equilibrium structures and transitionstates,” J. Comp. Chem., 16 (1995) 117079. 
Matsubara96  T. Matsubara, S. Sieber, and K. Morokuma, “A Test of the New "Integrated MO + MM" (IMOMM) Method for the Conformational Energy of Ethane and nButane,” Int. J. Quantum Chem., 60 (1996) 110109. 
Mayo90  S. L. Mayo, B. D. Olafson, and W. A. Goddard III, “Dreiding  A generic forcefield for molecular simulations,” J. Phys. Chem., 94 (1990) 8897909. 
McClurg97  R. B. McClurg, R. C. Flagan, and W. A. Goddard III, “The hindered rotor densityofstates interpolation function,” J. Chem. Phys., 106 (1997) 6675. 
McClurg99  R. B. McClurg, “Comment on: 'The hindered rotor densityofstates interpolation function' [J. Chem. Phys. 106, 6675 (1997)] and 'The hindered rotor densityofstates' [J. Chem. Phys. 108, 2314 (1998)],” J. Chem. Phys., 111 (1999) 7163. 
McDouall88  J. J. McDouall, K. Peasley, and M. A. Robb, “A Simple MCSCF Perturbation Theory: Orthogonal Valence Bond MøllerPlesset 2 (OVBMP2),” Chem. Phys. Lett., 148 (1988) 18389. 
McGrath91  M. P. McGrath and L. Radom, “Extension of Gaussian1 (G1) theory to brominecontaining molecules,” J. Chem. Phys., 94 (1991) 51116. 
McLaren63  A. D. McLaren, “Optimal Numerical Integration on a Sphere,” Math. Comp., 17 (1963) 36183. 
McLean80  A. D. McLean and G. S. Chandler, “Contracted Gaussianbasis sets for molecular calculations. 1. 2nd row atoms, Z=1118,” J. Chem. Phys., 72 (1980) 563948. 
McQuarrie73  D. A. McQuarrie, Statistical Thermodynamics (Harper and Row, New York, 1973). 
McWeeny60  R. McWeeny, “Some recent advances in density matrix theory,” Rev. Mod. Phys., 32 (1960) 33569. 
McWeeny62  R. McWeeny, “Perturbation Theory for FockDirac Density Matrix,” Phys. Rev., 126 (1962) 1028. 
McWeeny68  R. McWeeny and G. Dierksen, “Selfconsistent perturbation theory. 2. Extension to open shells,” J. Chem. Phys., 49 (1968) 4852. 
Mennucci02  B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, and P. J. Stephens, “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” J. Phys. Chem. A, 106 (2002) 610213. 
Mennucci97  B. Mennucci and J. Tomasi, “Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries,” J. Chem. Phys., 106 (1997) 515158. 
Mennucci97a  B. Mennucci, E. Cancès, and J. Tomasi, “Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics, and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation and Numerical Applications,” J. Phys. Chem. B, 101 (1997) 1050617. 
Miehlich89  B. Miehlich, A. Savin, H. Stoll, and H. Preuss, “Results obtained with the correlationenergy density functionals of Becke and Lee, Yang and Parr,” Chem. Phys. Lett., 157 (1989) 20006. 
Miertus81  S. Miertuš, E. Scrocco, and J. Tomasi, “Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects,” Chem. Phys., 55 (1981) 11729. 
Miertus82  S. Miertuš and J. Tomasi, “Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes,” Chem. Phys., 65 (1982) 23945. 
Millam97  J. M. Millam and G. E. Scuseria, “Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations,” J. Chem. Phys., 106 (1997) 556977. 
Millam99  J. M. Millam, V. Bakken, W. Chen, W. L. Hase, and H. B. Schlegel, “Ab initio classical trajectories on the BornOppenheimer Surface: HessianBased Integrators using Fifth Order Polynomial and Rational Function Fits,” J. Chem. Phys., 111 (1999) 380005. 
Miller80  W. H. Miller, N. C. Handy, and J. E. Adams, “Reactionpath Hamiltonian for polyatomicmolecules,” J. Chem. Phys., 72 (1980) 99112. 
Miller81  W. H. Miller, in Potential Energy Surfaces and Dynamical Calculations, Ed. D. G. Truhlar (Plenum, New York, 1981) 265. 
Miller88  W. H. Miller, B. A. Ruf, and Y. T. Chang, “A diabatic reaction path Hamiltonian,” J. Chem. Phys., 89 (1988) 6298304. 
Miller90  W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willets, “Ab initio calculation of anharmonic constants for a transitionstate, with application to semiclassical transitionstate tunneling probabilities,” Chem. Phys. Lett., 172 (1990) 6268. 
Mills93  Quantities, Units and Symbols in Physical Chemistry, 2nd ed., Ed. I. Mills, T. Cvitaš, K. Homann, N. Kállay, and K. Kuchitsu (Blackwell, Oxford; dist. CRC Press, Boca Raton, 1993). 
Minichino94  C. Minichino and V. Barone, “From concepts to algorithms for the characterization of reaction mechanisms. H2CS as a case study,” J. Chem. Phys., 100 (1994) 371741. 
Mo03  S. J. Mo, T. Vreven, B. Mennucci, K. Morokuma, and J. Tomasi, “Theoretical study of the SN2 reaction of Cl(H2O) + CH3Cl using our own Nlayered integrated molecular orbital and molecular mechanics polarizable continuum model method (ONIOMPCM),” Theor. Chem. Acc., 111 (2003) 15461. 
Mohallem86  J. R. Mohallem, R. M. Dreizler, and M. Trsic, “A GriffinHillWheeler version of the HartreeFock equations,” Int. J. Quantum Chem., Quant. Chem. Symp., 30 (S20) (1986) 4555. 
Mohallem87  J. R. Mohallem and M. Trsic, “A universal Gaussian basis set for atoms Li through Ne based on a generator coordinate version of the HartreeFock equations,” J. Chem. Phys., 86 (1987) 504344. 
Mohr00  P. J. Mohr and B. N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 1998,” Rev. Mod. Phys., 72 (2000) 351495. 
Mohr08  P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2006,” Rev. Mod. Phys., 80 (2008) 633730. 
Moller34  C. Møller and M. S. Plesset, “Note on an approximation treatment for manyelectron systems,” Phys. Rev., 46 (1934) 061822. 
Montgomery00  J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 112 (2000) 653242. 
Montgomery94  J. A. Montgomery Jr., J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. IV. An improved atomic pair natural orbital method,” J. Chem. Phys., 101 (1994) 590009. 
Montgomery99  J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys., 110 (1999) 282227. 
Morokuma01  K. Morokuma, D. G. Musaev, T. Vreven, H. Basch, M. Torrent, and D. V. Khoroshun, “Model Studies of the Structures, Reactivities, and Reaction Mechanisms of Metalloenzymes,” IBM J. Res. & Dev., 45 (2001) 36795. 
Mulliken55  R. S. Mulliken, “Electronic Population Analysis on LCAOMO Molecular Wave Functions,” J. Chem. Phys., 23 (1955) 183340. 
Murtaugh70  B. A. Murtaugh and R. W. H. Sargent, “Computational Experience with Quadratically Convergent Minimization Methods,” Comput. J., 13 (1970) 18594. 
Nakajima97  T. Nakajima and H. Nakatsuji, “Analytical energy gradient of the ground, excited, ionized and electronattached states calculated by the SAC/SACCI method,” Chem. Phys. Lett., 280 (1997) 7984. 
Nakajima99  T. Nakajima and H. Nakatsuji, “Energy gradient method for the ground, excited, ionized, and electronattached states calculated by the SAC (symmetryadapted cluster)/SACCI (configuration interaction) method,” Chem. Phys., 242 (1999) 17793. 
Nakatsuji78  H. Nakatsuji and K. Hirao, “Cluster expansion of the wavefunction: Symmetryadaptedcluster expansion, its variational determination, and extension of openshell orbital theory,” J. Chem. Phys., 68 (1978) 205365. 
Nakatsuji79  H. Nakatsuji, “Cluster expansion of the wavefunction: Calculation of electron correlations in ground and excited states by SAC and SAC CI theories,” Chem. Phys. Lett., 67 (1979) 33442. 
Nakatsuji79a  H. Nakatsuji, “Cluster expansion of the wavefunction: Electron correlations in ground and excited states by SAC (SymmetryAdaptedCluster) and SAC CI theories,” Chem. Phys. Lett., 67 (1979) 32933. 
Nakatsuji91  H. Nakatsuji, “Description of 2electron and manyelectron processes by the SACCI method,” Chem. Phys. Lett., 177 (1991) 33137. 
Nakatsuji91a  H. Nakatsuji, “Exponentially generated configuration interaction theory. Descriptions of excited, ionized and electron attached states,” J. Chem. Phys., 94 (1991) 671627. 
Nakatsuji93  H. Nakatsuji and M. Ehara, “Symmetryadapted clusterconfiguration interaction method applied to highspin multiplicity,” J. Chem. Phys., 98 (1993) 717984. 
Nakatsuji96  H. Nakatsuji, “Dipped adcluster model for chemisorption and catalytic reactions,” Prog. Surf. Sci., 54 (1996) 1. 
Nakatsuji97  H. Nakatsuji, in Computational Chemistry: Reviews of Current Trends, Ed. J. Leszczynski, Vol. 2 (World Scientific, Singapore, 1997) 62124. 
Neese01  F. Neese, “Prediction of electron paramagnetic resonance g values using coupled perturbed HartreeFock and KohnSham theory,” J. Chem. Phys., 115 (2001) 1108096. 
Nicklass95  A. Nicklass, M. Dolg, H. Stoll, and H. Preuss, “Ab initio energyadjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities,” J. Chem. Phys., 102 (1995) 894252. 
Nyden81  M. R. Nyden and G. A. Petersson, “Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions,” J. Chem. Phys., 75 (1981) 184362. 
Ochterski96  J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr., “A complete basis set model chemistry. V. Extensions to six or more heavy atoms,” J. Chem. Phys., 104 (1996) 2598619. 
Ohrn81  Y. Öhrn and G. Born, in Advances in Quantum Chemistry, Ed. P.O. Löwdin, Vol. 13 (Academic Press, San Diego, CA, 1981) 188. 
Olsen85  J. Olsen and P. Jørgensen, “Linear and Nonlinear Response Functions for an Exact State and for an MCSCF State,” J. Chem. Phys., 82 (1985) 323564. 
Olsen88  J. Olsen, B. O. Roos, P. Jørgensen, and H. J. A. Jensen, “Determinant Based ConfigurationInteraction Algorithms for Complete and Restricted ConfigurationInteraction Spaces,” J. Chem. Phys., 89 (1988) 218592. 
Olsen95  J. Olsen, K. L. Bak, K. Ruud, T. Helgaker, and P. Jørgensen, “Orbital Connections for PerturbationDependent BasisSets,” Theor. Chem. Acc., 90 (1995) 42139. 
Onsager36  L. Onsager, “Electric Moments of Molecules in Liquids,” J. Am. Chem. Soc., 58 (1936) 148693. 
Orlandi73  G. Orlandi and W. Siebrand, “Theory of vibronic intensity borrowing  Comparison of HerzbergTeller and BornOppenheimer coupling,” J. Chem. Phys., 58 (1973) 451323. 
Ortiz88  J. V. Ortiz, “Electron binding energies of anionic alkali metal atoms from partial fourth order electron propagator theory calculations,” J. Chem. Phys., 89 (1988) 634852. 
Ortiz88a  J. V. Ortiz, “Partial fourth order electron propagator theory,” Int. J. Quantum Chem., Quant. Chem. Symp., 34 (S22) (1988) 43136. 
Ortiz89  J. V. Ortiz, “Electron propagator calculations with nondiagonal partial 4thorder selfenergies and unrestricted HartreeFock reference states,” Int. J. Quantum Chem., Quant. Chem. Symp., S23 (1989) 32132. 
Ortiz96  J. V. Ortiz, “Partial thirdorder quasiparticle theory: Comparisons for closedshell ionization energies and an application to the Borazine photoelectron spectrum,” J. Chem. Phys., 104 (1996) 7599605. 
Ortiz97  J. V. Ortiz, V. G. Zakrzewski, and O. Dolgounircheva, in Conceptual Perspectives in Quantum Chemistry, Ed. J.L. Calais and E. Kryachko (Kluwer Academic, Dordrecht, 1997) 465518. 
Osamura81  Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, “Analytic configurationinteraction (CI) gradient techniques for potentialenergy hypersurfaces  a method for openshell molecular wavefunctions,” J. Chem. Phys., 75 (1981) 291922. 
Osamura82  Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, “Generalization of analytic configurationinteraction (CI) gradient techniques for potentialenergy hypersurfaces, including a solution to the coupled perturbed HartreeFock equations for multiconfiguration SCF molecular wavefunctions,” J. Chem. Phys., 77 (1982) 38390. 
Otte07  N. Otte, M. Scholten, and W. Thiel, “Looking at selfconsistentcharge density functional tight binding from a semiempirical perspective,” J. Phys. Chem. A, 111 (2007) 575155. 
Page88  M. Page and J. W. McIver Jr., “On evaluating the reaction path Hamiltonian,” J. Chem. Phys., 88 (1988) 92235. 
Page90  M. Page, C. Doubleday Jr., and J. W. McIver Jr., “Following steepest descent reaction paths  the use of higher energy derivatives with ab initio electronicstructure methods,” J. Chem. Phys., 93 (1990) 563442. 
Palmer94  I. J. Palmer, F. Bernardi, M. Olivucci, I. N. Ragazos, and M. A. Robb, “An MCSCF study of the (photochemical) PaternoBuchi reaction,” J. Am. Chem. Soc., 116 (1994) 212132. 
Papousek82  D. Papousek and M. R. Aliev, in Molecular Vibrational Spectra, Ed. J. R. Durig (Elsevier, New York, 1982). 
Parr89  R. G. Parr and W. Yang, Densityfunctional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989). 
Parthiban01  S. Parthiban and J. M. L. Martin, “Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities,” J. Chem. Phys., 114 (2001) 601429. 
PascualAhuir94  J. L. PascualAhuir, E. Silla, and I. Tuñón, “GEPOL: An improved description of molecularsurfaces. 3. A new algorithm for the computation of a solventexcluding surface,” J. Comp. Chem., 15 (1994) 112738. 
Pedersen95  T. B. Pederson and A. E. Hansen, “Ab initio calculation and display of the rotatory strength tensor in the random phase approximation. Method and model studies,” Chem. Phys. Lett., 246 (1995) 18. 
Peluso97  A. Peluso, F. Santoro, and G. del Re, “Vibronic coupling in electronic transitions with significant Duschinsky effect,” Int. J. Quantum Chem., 63 (1997) 23344. 
Peng93  C. Peng and H. B. Schlegel, “Combining Synchronous Transit and QuasiNewton Methods for Finding Transition States,” Israel J. Chem., 33 (1993) 44954. 
Peng96  C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comp. Chem., 17 (1996) 4956. 
Peralta03  J. E. Peralta, G. E. Scuseria, J. R. Cheeseman, and M. J. Frisch, “Basis set dependence of NMR SpinSpin Couplings in Density Functional Theory Calculations: First row and hydrogen atoms,” Chem. Phys. Lett., 375 (2003) 45258. 
Perdew81  J. P. Perdew and A. Zunger, “Selfinteraction correction to densityfunctional approximations for manyelectron systems,” Phys. Rev. B, 23 (1981) 504879. 
Perdew86  J. P. Perdew, “Densityfunctional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B, 33 (1986) 882224. 
Perdew91  J. P. Perdew, in Electronic Structure of Solids ‘91, Ed. P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) 11. 
Perdew92  J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 46 (1992) 667187. 
Perdew92a  J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy,” Phys. Rev. B, 45 (1992) 1324449. 
Perdew93a  J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Erratum: Atoms, molecules, solids, and surfaces  Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 48 (1993) 4978. 
Perdew96  J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchangecorrelation hole of a manyelectron system,” Phys. Rev. B, 54 (1996) 1653339. 
Perdew96a  J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77 (1996) 386568. 
Perdew97  J. P. Perdew, K. Burke, and M. Ernzerhof, “Errata: Generalized gradient approximation made simple,” Phys. Rev. Lett., 78 (1997) 1396. 
Perdew99  J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation,” Phys. Rev. Lett., 82 (1999) 254447. 
Peterson94  K. A. Peterson, D. E. Woon, and T. H. Dunning Jr., “Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2 ® H2+H reaction,” J. Chem. Phys., 100 (1994) 741015. 
Petersson88  G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. AlLaham, W. A. Shirley, and J. Mantzaris, “A complete basis set model chemistry. I. The total energies of closedshell atoms and hydrides of the firstrow atoms,” J. Chem. Phys., 89 (1988) 2193218. 
Petersson91  G. A. Petersson and M. A. AlLaham, “A complete basis set model chemistry. II. Openshell systems and the total energies of the firstrow atoms,” J. Chem. Phys., 94 (1991) 608190. 
Petersson91a  G. A. Petersson, T. G. Tensfeldt, and J. A. Montgomery Jr., “A complete basis set model chemistry. III. The complete basis setquadratic configuration interaction family of methods,” J. Chem. Phys., 94 (1991) 6091101. 
Petersson98  G. A. Petersson, in Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics, Ed. K. K. Irikura and D. J. Frurip, ACS Symposium Series, Vol. 677 (ACS, Washington, D.C., 1998) 237. 
Petersson98a  G. A. Petersson, D. K. Malick, W. G. Wilson, J. W. Ochterski, J. A. Montgomery Jr., and M. J. Frisch, “Calibration and comparison of the Gaussian2, complete basis set, and density functional methods for computational thermochemistry,” J. Chem. Phys., 109 (1998) 1057079. 
Pickett91  H. M. Pickett, “The Fitting and Prediction of VibrationRotation Spectra with Spin Interactions,” J. Mol. Spec., 148 (1991) 37177. 
Pierotti76  R. A. Pierotti, “A scaled particle theory of aqueous and nonaqueous solutions,” Chem. Rev., 76 (1976) 717. 
Pietro82  W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. Defrees, J. A. Pople, and J. S. Binkley, “SelfConsistent Molecular Orbital Methods. 24. Supplemented small splitvalence basissets for 2ndrow elements,” J. Am. Chem. Soc., 104 (1982) 503948. 
Pipek89  J. Pipek and P. G. Mezey, “A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions,” J. Chem. Phys., 90 (1989) 491626. 
Pople54  J. A. Pople and R. K. Nesbet, “SelfConsistent Orbitals for Radicals,” J. Chem. Phys., 22 (1954) 57172. 
Pople67  J. A. Pople, D. Beveridge, and P. Dobosh, “Approximate selfconsistent molecularorbital theory. 5. Intermediate neglect of differential overlap,” J. Chem. Phys., 47 (1967) 202633. 
Pople67a  J. A. Pople and M. S. Gordon, “Molecular orbital theory of electronic structure of organic compounds. 1. Substituent effects and dipole methods,” J. Am. Chem. Soc., 89 (1967) 4253. 
Pople76  J. A. Pople, J. S. Binkley, and R. Seeger, “Theoretical Models Incorporating Electron Correlation,” Int. J. Quantum Chem., Suppl. Y10 (1976) 119. 
Pople77  J. A. Pople, R. Seeger, and R. Krishnan, “Variational Configuration Interaction Methods and Comparison with Perturbation Theory,” Int. J. Quantum Chem., Suppl. Y11 (1977) 14963. 
Pople78  J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, “Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces,” Int. J. Quantum Chem., 14 (1978) 54560. 
Pople79  J. A. Pople, K. Raghavachari, H. B. Schlegel, and J. S. Binkley, “Derivative Studies in HartreeFock and MøllerPlesset Theories,” Int. J. Quantum Chem., Quant. Chem. Symp., S13 (1979) 22541. 
Pople87  J. A. Pople, M. HeadGordon, and K. Raghavachari, “Quadratic configuration interaction  a general technique for determining electron correlation energies,” J. Chem. Phys., 87 (1987) 596875. 
Pople89  J. A. Pople, M. HeadGordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, “Gaussian1 theory: A general procedure for prediction of molecular energies,” J. Chem. Phys., 90 (1989) 562229. 
Pople92  J. A. Pople, P. M. W. Gill, and B. G. Johnson, “KohnSham densityfunctional theory within a finite basis set,” Chem. Phys. Lett., 199 (1992) 55760. 
Porezag95  D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, “Construction of tightbindinglike potentials on the basis of densityfunctional theory: Application to carbon,” Phys. Rev. B, 51 (1995) 1294757. 
Pulay72  P. Pulay and W. Meyer, “Force constants and dipolemoment derivatives of ammonia from HartreeFock calculations,” J. Chem. Phys., 57 (1972) 3337. 
Pulay79  P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, “Systematic ab initio gradient calculation of molecular geometries, force constants, and dipolemoment derivatives,” J. Am. Chem. Soc., 101 (1979) 255060. 
Pulay82  P. Pulay, “Improved SCF convergence acceleration,” J. Comp. Chem., 3 (1982) 55660. 
Pulay83  P. Pulay, “2nd and 3rd derivatives of variational energy expressions  application to multiconfigurational selfconsistent field wavefunctions,” J. Chem. Phys., 78 (1983) 504351. 
Pulay92  P. Pulay and G. Fogarasi, “Geometry optimization in redundant internal coordinates,” J. Chem. Phys., 96 (1992) 285660. 
Purvis82  G. D. Purvis III and R. J. Bartlett, “A full coupledcluster singles and doubles model  the inclusion of disconnected triples,” J. Chem. Phys., 76 (1982) 191018. 
Pyykko81  P. Pyykko and L. L. Lohr, “Relativistically Parameterized Extended Huckel Calculations. 3. Structure and Bonding for Some Compounds of Uranium and Other HeavyElements,” Inorganic Chem., 20 (1981) 195059. 
Pyykko84  P. Pyykko and L. Laaksonen, “Relativistically Parameterized Extended Huckel Calculations. 8. DoubleZeta Parameters for the Actinoids Th, Pa, U, Np, Pu, and Am and an Application on Uranyl,” J. Phys. Chem., 88 (1984) 489295. 
Rabuck99  A. Rabuck and G. E. Scuseria, “Improving selfconsistent field convergence by varying occupation numbers,” J. Chem. Phys., 110 (1999) 695700. 
Raff85  L. M. Raff and D. L. Thompson, in Theory of Chemical Reaction Dynamics, Ed. M. Baer (CRC, Boca Raton, FL, 1985). 
Raffenetti73  R. C. Raffenetti, “Preprocessing TwoElectron Integrals for Efficient Utilization in ManyElectron SelfConsistent Field Calculations,” Chem. Phys. Lett., 20 (1973) 33538. 
Ragazos92  I. N. Ragazos, M. A. Robb, F. Bernardi, and M. Olivucci, “Optimization and Characterization of the Lowest Energy Point on a Conical Intersection using an MCSCF Lagrangian,” Chem. Phys. Lett., 197 (1992) 21723. 
Raghavachari78  K. Raghavachari and J. A. Pople, “Approximate 4thorder perturbationtheory of electron correlation energy,” Int. J. Quantum Chem., 14 (1978) 91100. 
Raghavachari80  K. Raghavachari, M. J. Frisch, and J. A. Pople, “Contribution of triple substitutions to the electron correlation energy in fourthorder perturbation theory,” Chem. Phys. Lett., 72 (1980) 424445. 
Raghavachari80a  K. Raghavachari, H. B. Schlegel, and J. A. Pople, “Derivative studies in configurationinteraction theory,” J. Chem. Phys., 72 (1980) 465455. 
Raghavachari80b  K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 20. Basis set for correlated wavefunctions,” J. Chem. Phys., 72 (1980) 65054. 
Raghavachari81  K. Raghavachari and J. A. Pople, “Calculation of oneelectron properties using limited configurationinteraction techniques,” Int. J. Quantum Chem., 20 (1981) 106771. 
Raghavachari89  K. Raghavachari and G. W. Trucks, “Highly correlated systems: Excitation energies of first row transition metals ScCu,” J. Chem. Phys., 91 (1989) 106265. 
Raghavachari90  K. Raghavachari, J. A. Pople, E. S. Replogle, and M. HeadGordon, “Fifth Order MøllerPlesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth Order,” J. Phys. Chem., 94 (1990) 557986. 
Rappe81  A. K. Rappé, T. Smedly, and W. A. Goddard III, “The Shape and Hamiltonian Consistent (SHC) Effective Potentials,” J. Phys. Chem., 85 (1981) 166266. 
Rappe91  A. K. Rappé and W. A. Goddard III, “Charge equilibration for moleculardynamics simulations,” J. Phys. Chem., 95 (1991) 335863. 
Rappe92  A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. G. III, and W. M. Skiff, “UFF, a full periodictable forcefield for molecular mechanics and moleculardynamics simulations,” J. Am. Chem. Soc., 114 (1992) 1002435. 
Rassolov01  V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, “631G* Basis Set for ThirdRow Atoms,” J. Comp. Chem., 22 (2001) 97684. 
Rassolov98  V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “631G* basis set for atoms K through Zn,” J. Chem. Phys., 109 (1998) 122329. 
Reed83a  A. E. Reed and F. Weinhold, “Natural bond orbital analysis of nearHartreeFock water dimer,” J. Chem. Phys., 78 (1983) 406673. 
Reed85  A. E. Reed, R. B. Weinstock, and F. Weinhold, “Naturalpopulation analysis,” J. Chem. Phys., 83 (1985) 73546. 
Reed85a  A. E. Reed and F. Weinhold, “Natural Localized Molecular Orbitals,” J. Chem. Phys., 83 (1985) 173640. 
Reed88  A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donoracceptor viewpoint,” Chem. Rev., 88 (1988) 899926. 
Rega96  N. Rega, M. Cossi, and V. Barone, “Development and validation of reliable quantum mechanical approaches for the study of free radicals in solution,” J. Chem. Phys., 105 (1996) 1106067. 
Repasky02  M. P. Repasky, J. Chandrasekhar, and W. L. Jorgensen, “PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods,” J. Comp. Chem., 23 (2002) 160122. 
Rey98  J. Rey and A. Savin, “Virtual space level shifting and correlation energies,” Int. J. Quantum Chem., 69 (1998) 58190. 
Ricca95  A. Ricca and C. W. Bauschlicher Jr., “Successive H2O binding energies for Fe(H2O)N+,” J. Phys. Chem., 99 (1995) 900307. 
Rice90  J. E. Rice, R. D. Amos, S. M. Colwell, N. C. Handy, and J. Sanz, “FrequencyDependent Hyperpolarizabilities with Application to Formaldehyde and MethylFluoride,” J. Chem. Phys., 93 (1990) 882839. 
Rice91  J. E. Rice and N. C. Handy, “The Calculation of FrequencyDependent Polarizabilities as PseudoEnergy Derivatives,” J. Chem. Phys., 94 (1991) 495971. 
Rice92  J. E. Rice and N. C. Handy, “The Calculation of FrequencyDependent Hyperpolarizabilities Including Electron CorrelationEffects,” Int. J. Quantum Chem., 43 (1992) 91118. 
Ridley73  J. E. Ridley and M. C. Zerner, “An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines,” Theor. Chem. Acc., 32 (1973) 11134. 
Ridley76  J. E. Ridley and M. C. Zerner, “Triplet states via Intermediate Neglect of Differential Overlap: Benzene, Pyridine, and Diazines,” Theor. Chem. Acc., 42 (1976) 22336. 
Ritchie85  J. P. Ritchie, “Electron density distribution analysis for nitromethane, nitromethide, and nitramide,” J. Am. Chem. Soc., 107 (1985) 182937. 
Ritchie87  J. P. Ritchie and S. M. Bachrach, “Some methods and applications of electron density distribution analysis,” J. Comp. Chem., 8 (1987) 499509. 
Robb90  M. A. Robb and U. Niazi, Reports in Molecular Theory, 1 (1990) 23. 
Roothaan51  C. C. J. Roothaan, “New Developments in Molecular Orbital Theory,” Rev. Mod. Phys., 23 (1951) 69. 
Rosenfeld28  L. Z. Rosenfeld, Physik, 52 (1928) 161. 
Ruud02  K. Ruud and T. Helgaker, “Optical rotation studied by densityfunctional and coupledcluster methods,” Chem. Phys. Lett., 352 (2002) 53339. 
Ruud02a  K. Ruud, T. Helgaker, and P. Bour, “Gaugeorigin independent densityfunctional theory calculations of vibrational Raman optical activity,” J. Phys. Chem. A, 106 (2002) 744855. 
Ruud93  K. Ruud, T. Helgaker, K. L. Bak, P. Jørgensen, and H. J. A. Jensen, “HartreeFock Limit Magnetizabilities from London Orbitals,” J. Chem. Phys., 99 (1993) 384759. 
Rys83  J. Rys, M. Dupuis, and H. F. King, “Computation of electron repulsion integrals using the Rys quadrature method,” J. Comp. Chem., 4 (1983) 15457. 
Saebo89  S. Saebø and J. Almlöf, “Avoiding the integral storage bottleneck in LCAO calculations of electron correlation,” Chem. Phys. Lett., 154 (1989) 8389. 
Salahub89  The Challenge of d and f Electrons, Ed. D. R. Salahub and M. C. Zerner (ACS, Washington, D.C., 1989). 
Salter89  E. A. Salter, G. W. Trucks, and R. J. Bartlett, “Analytic Energy Derivatives in ManyBody Methods. I. First Derivatives,” J. Chem. Phys., 90 (1989) 175266. 
Santoro07  F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute FranckCondon integrals for optical spectra of large molecules in solution,” J. Chem. Phys., 126 (2007) 084509 113. 
Santoro07a  F. Santoro, A. Lami, R. Improta, and V. Barone, “Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution,” J. Chem. Phys., 126 (2007) 184102. 
Santoro08  F. Santoro, A. Lami, R. Improta, J. Bloino, and V. Barone, “Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and HerzbergTeller effect: The Qx band of porphyrin as a case study,” J. Chem. Phys., 128 (2008) 224311. 
Sattelmeyer06  K. W. Sattelmeyer, J. TiradoRives, and W. L. Jorgensen, “Comparison of SCCDFTB and NDDObased semiempirical molecular orbital methods for organic molecules,” J. Phys. Chem. A, 110 (2006) 1355159. 
Scalmani06  G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, “Geometries and properties of excited states in the gas phase and in solution: Theory and application of a timedependent density functional theory polarizable continuum model,” J. Chem. Phys., 124 (2006) 094107: 115. 
Scalmani09  G. Scalmani and M. J. Frisch, “A continuous surface charge formalism for the polarizable continuum model of solvation,” (2009) in prep. 
Schaefer92  A. Schaefer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussianbasis sets for atoms Li to Kr,” J. Chem. Phys., 97 (1992) 257177. 
Schaefer94  A. Schaefer, C. Huber, and R. Ahlrichs, “Fully optimized contracted Gaussianbasis sets of triple zeta valence quality for atoms Li to Kr,” J. Chem. Phys., 100 (1994) 582935. 
Schlegel01  H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, G. E. Scuseria, A. D. Daniels, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals,” J. Chem. Phys., 114 (2001) 975863. 
Schlegel02  H. B. Schlegel, S. S. Iyengar, X. Li, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. III. Comparison with BornOppenheimer dynamics,” J. Chem. Phys., 117 (2002) 8694704. 
Schlegel82  H. B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” J. Comp. Chem., 3 (1982) 21418. 
Schlegel82a  H. B. Schlegel and M. A. Robb, “MC SCF gradient optimization of the H2CO > H2 + CO transition structure,” Chem. Phys. Lett., 93 (1982) 4346. 
Schlegel84  H. B. Schlegel, J. S. Binkley, and J. A. Pople, “First and Second Derivatives of Two Electron Integrals over Cartesian Gaussians using Rys Polynomials,” J. Chem. Phys., 80 (1984) 197681. 
Schlegel84a  H. B. Schlegel, “Estimating the Hessian for gradienttype geometry optimizations,” Theor. Chem. Acc., 66 (1984) 33340. 
Schlegel89  H. B. Schlegel, in New Theoretical Concepts for Understanding Organic Reactions, Ed. J. Bertran and I. G. Csizmadia, NATOASI series C, vol. 267 (Kluwer Academic, The Netherlands, 1989) 3353. 
Schlegel91  H. B. Schlegel and M. J. Frisch, in Theoretical and Computational Models for Organic Chemistry, Ed. J. S. Formosinho, I. G. Csizmadia, and L. G. Arnaut, NATOASI Series C, vol. 339 (Kluwer Academic, The Netherlands, 1991) 533. 
Schlegel91a  H. B. Schlegel and J. J. McDouall, in Computational Advances in Organic Chemistry, Ed. C. Ögretir and I. G. Csizmadia (Kluwer Academic, The Netherlands, 1991) 16785. 
Schlegel95  H. B. Schlegel, in Modern Electronic Structure Theory, Ed. D. R. Yarkony (World Scientific Publishing, Singapore, 1995) 459500. 
Schlegel95a  H. B. Schlegel and M. J. Frisch, “Transformation between Cartesian and Pure Spherical Harmonic Gaussians,” Int. J. Quantum Chem., 54 (1995) 8387. 
Schmider98  H. L. Schmider and A. D. Becke, “Optimized density functionals from the extended G2 test set,” J. Chem. Phys., 108 (1998) 962431. 
Schwabe06  T. Schwabe and S. Grimme, “Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including nonlocal correlation effects,” Phys. Chem. Chem. Phys., 8 (2006) 4398. 
Schwabe07  T. Schwabe and S. Grimme, “Doublehybrid density functionals with longrange dispersion corrections: higher accuracy and extended applicability,” Phys. Chem. Chem. Phys., 9 (2007) 3397. 
Schwartz98  M. Schwartz, P. Marshall, R. J. Berry, C. J. Ehlers, and G. A. Petersson, “Computational study of the kinetics of hydrogen abstraction from fluoromethanes by the hydroxyl radical,” J. Phys. Chem. A, 102 (1998) 1007481. 
Schwerdtfeger89  P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, and P. D. W. Boyd, “Relativistic effects in gold chemistry. 1. Diatomic gold compounds,” J. Chem. Phys., 91 (1989) 176274. 
Scuseria88  G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, “An efficient reformulation of the closedshell coupled cluster single and double excitation (CCSD) equations,” J. Chem. Phys., 89 (1988) 738287. 
Scuseria89  G. E. Scuseria and H. F. Schaefer III, “Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configurationinteraction (QCISD)?,” J. Chem. Phys., 90 (1989) 370003. 
Scuseria92  G. E. Scuseria, “Comparison of coupledcluster results with a hybrid of HartreeFock and density functional theory,” J. Chem. Phys., 97 (1992) 752830. 
Seeger76  R. Seeger and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 16. Numerically stable direct energy minimization procedures for solution of HartreeFock equations,” J. Chem. Phys., 65 (1976) 26571. 
Seeger77  R. Seeger and J. A. Pople, “SelfConsistent Molecular Orbital Methods. 28. Constraints and Stability in HartreeFock Theory,” J. Chem. Phys., 66 (1977) 304550. 
Segal66  G. Segal and J. Pople, “Approximate selfconsistent molecular orbital theory. 3. CNDO results for AB2 and AB3 systems,” J. Chem. Phys., 44 (1966) 328996. 
Sekino86  H. Sekino and R. J. Bartlett, “FrequencyDependent Nonlinear OpticalProperties of Molecules,” J. Chem. Phys., 85 (1986) 97689. 
Sharp64  T. E. Sharp and H. M. Rosenstock, “FranckCondon factors for polyatomic molecules,” J. Chem. Phys., 41 (1964) 3453. 
Siegbahn84  P. E. M. Siegbahn, “A new direct CI method for large CI expansions in a small orbital space,” Chem. Phys. Lett., 109 (1984) 41723. 
Silver78  D. M. Silver, S. Wilson, and W. C. Nieuwpoort, “Universal basis sets and transferability of integrals,” Int. J. Quantum Chem., 14 (1978) 63539. 
Silver78a  D. M. Silver and W. C. Nieuwpoort, “Universal atomic basis sets,” Chem. Phys. Lett., 57 (1978) 42122. 
Simon96  S. Simon, M. Duran, and J. J. Dannenberg, “How does basis set superposition error change the potential surfaces for hydrogen bonded dimers?,” J. Chem. Phys., 105 (1996) 1102431. 
Simons83  J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, “Walking on Potential Energy Surfaces,” J. Phys. Chem., 87 (1983) 274553. 
Singh84  U. C. Singh and P. A. Kollman, “An approach to computing electrostatic charges for molecules,” J. Comp. Chem., 5 (1984) 12945. 
Skodje82  R. T. Skodje, D. G. Truhlar, and B. C. Garrett, “Vibrationally adiabatic models for reactive tunneling,” J. Chem. Phys., 77 (1982) 595576. 
Slater74  J. C. Slater, The SelfConsistent Field for Molecular and Solids, Quantum Theory of Molecular and Solids, Vol. 4 (McGrawHill, New York, 1974). 
Small71  G. J. Small, “HerzbergTeller vibronic coupling and Duschinsky effect,” J. Chem. Phys., 54 (1971) 3300. 
Smith86  C. M. Smith and G. G. Hall, “Approximation of electrondensities,” Theor. Chem. Acc., 69 (1986) 6369. 
Sosa92  C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, and D. A. Dixon, “A Local Density Functional Study of the Structure and Vibrational Frequencies of Molecular TransitionMetal Compounds,” J. Phys. Chem., 96 (1992) 663036. 
Sosa93a  C. Sosa and C. Lee, “Densityfunctional description of transition structures using nonlocal corrections: Silylene insertion reactions into the hydrogen molecule,” J. Chem. Phys., 98 (1993) 800411. 
Stanton93  J. F. Stanton and R. J. Bartlett, “Equation of motion coupledcluster method: A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties,” J. Chem. Phys., 98 (1993) 702939. 
Stephens01  P. J. Stephens, F. J. Devlin, J. R. Cheeseman, and M. J. Frisch, “Calculation of optical rotation using density functional theory,” J. Phys. Chem. A, 105 (2001) 535671. 
Stephens02a  P. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch, and C. Rosini, “Determination of Absolute Configuration Using Optical Rotation Calculated Using Density Functional Theory,” Org. Lett., 4 (2002) 459598. 
Stephens03  P. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch, O. Bortolini, and P. Besse, “Determination of Absolute Configuration Using Ab Initio Calculation of Optical Rotation,” Chirality, 15 (2003) S57S64. 
Stephens05  P. J. Stephens, D. M. McCann, J. R. Cheeseman, and M. J. Frisch, “Determination of absolute configurations of chiral molecules using ab initio timedependent density functional theory calculations of optical rotation: How reliable are absolute configurations obtained for molecules with small rotations?,” Chirality, 17 (2005) S52S64. 
Stephens08  J. P. Stephens, J. J. Pan, F. J. Devlin, and J. R. Cheeseman, “Determination of the Absolute Configurations of Natural Products Using TDDFT Optical Rotation Calculations: The Iridoid Oruwacin,” J. Natural Prod., 71 (2008) 28588. 
Stephens94  P. J. Stephens, F. J. Devlin, M. J. Frisch, and C. F. Chabalowski, “Ab initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” J. Phys. Chem., 98 (1994) 1162327. 
Stephens94a  P. J. Stephens, F. J. Devlin, C. S. Ashvar, C. F. Chabalowski, and M. J. Frisch, “Theoretical Calculation of Vibrational Circular Dichroism Spectra,” Faraday Discuss., 99 (1994) 10319. 
Stevens63  R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, “Perturbed HartreeFock calculations. 1. Magnetic susceptibility and shielding in LiH molecule,” J. Chem. Phys., 38 (1963) 550. 
Stevens84  W. J. Stevens, H. Basch, and M. Krauss, “Compact effective potentials and efficient sharedexponent basissets for the 1strow and 2ndrow atoms,” J. Chem. Phys., 81 (1984) 602633. 
Stevens92  W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, sharedexponent basissets for the 3rdrow, 4throw, and 5throw atoms,” Can. J. Chem., 70 (1992) 61230. 
Stewart07  J. J. P. Stewart, “Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements,” J. Mol. Model., 13 (2007) 1173213. 
Stewart89  J. J. P. Stewart, “Optimization of parameters for semiempirical methods. I. Method,” J. Comp. Chem., 10 (1989) 20920. 
Stewart89a  J. J. P. Stewart, “Optimization of parameters for semiempirical methods. II. Applications,” J. Comp. Chem., 10 (1989) 22164. 
Stoll84  H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpaly, and H. Preuss, “Cu and Ag as onevalenceelectron atoms  CI results and quadrupole corrections of Cu2, Ag2, CuH, and AgH,” J. Chem. Phys., 81 (1984) 273236. 
Strain96  M. C. Strain, G. E. Scuseria, and M. J. Frisch, “Achieving Linear Scaling for the Electronic Quantum Coulomb Problem,” Science, 271 (1996) 5153. 
Stratmann96  R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “Achieving linear scaling in exchangecorrelation density functional quadratures,” Chem. Phys. Lett., 257 (1996) 21323. 
Stratmann97  R. E. Stratmann, J. C. Burant, G. E. Scuseria, and M. J. Frisch, “Improving harmonic vibrational frequencies calculations in density functional theory,” J. Chem. Phys., 106 (1997) 1017583. 
Stratmann98  R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “An efficient implementation of timedependent densityfunctional theory for the calculation of excitation energies of large molecules,” J. Chem. Phys., 109 (1998) 821824. 
Svensson96  M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, “ONIOM: A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for DielsAlder reactions and Pt(P(tBu)3)2+H2 oxidative addition,” J. Phys. Chem., 100 (1996) 1935763. 
Svensson96a  M. Svensson, S. Humbel, and K. Morokuma, “Energetics using the single point IMOMO (integrated molecular orbital plus molecular orbital) calculations: Choices of computational levels and model system,” J. Chem. Phys., 105 (1996) 365461. 
Sychrovsky00  V. Sychrovsky, J. Gräfenstein, and D. Cremer, “Nuclear magnetic resonance spinspin coupling constants from coupled perturbed density functional theory,” J. Chem. Phys., 113 (2000) 353047. 
Szentpaly82  L. v. Szentpaly, P. Fuentealba, H. Preuss, and H. Stoll, “Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions ” Chem. Phys. Lett., 93 (1982) 55559. 
Tao03  J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical metageneralized gradient approximation designed for molecules and solids,” Phys. Rev. Lett., 91 (2003) 146401. 
Tawada04  Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, “A longrangecorrected timedependent density functional theory,” J. Chem. Phys., 120 (2004) 8425. 
Taylor87  P. R. Taylor, “Integral processing in beyondHartreeFock calculations,” Int. J. Quantum Chem., 31 (1987) 52134. 
Thiel92  W. Thiel and A. A. Voityuk, “Extension of the MNDO formalism to d orbitals: Integral approximations and preliminary numerical results,” Theor. Chem. Acc., 81 (1992) 391404. 
Thiel96  W. Thiel and A. A. Voityuk, “Extension of MNDO to d orbitals: Parameters and results for the secondrow elements and for the zinc group,” J. Phys. Chem., 100 (1996) 61626. 
Thompson91  M. A. Thompson and M. C. Zerner, “A Theoretical Examination of the Electronic Structure and Spectroscopy of the Photosynthetic Reaction Center from Rhodopseudomonas viridis,” J. Am. Chem. Soc., 113 (1991) 821015. 
Thompson98  D. L. Thompson, in Encyclopedia of Computational Chemistry, Ed. P. v. R. Schleyer, N. L. Allinger, P. A. Kollman, T. Clark, H. F. Schaefer III, J. Gasteiger, and P. R. Schreiner (Wiley, Chichester, 1998) 305673. 
Thorvaldsen08  A. J. Thorvaldsen, K. Ruud, K. Kristensen, P. Jørgensen, and S. Coriani, “A density matrixbased quasienergy formulation of the KohnSham density functional response theory using perturbation and timedependent basis sets,” J. Chem. Phys., 129 (2008) 214108. 
TiradoRives08  J. TiradoRives and W. L. Jorgensen, “Performance of B3LYP density functional methods for a large set of organic molecules,” J. Chem. Theory and Comput., 4 (2008) 297306. 
Tomasi02  J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, and S. Corni, “Molecular properties in solution described with a continuum solvation model,” Phys. Chem. Chem. Phys., 4 (2002) 5697712. 
Tomasi05  J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., 105 (2005) 29993093. 
Tomasi99  J. Tomasi, B. Mennucci, and E. Cancès, “The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level,” J. Mol. Struct. (Theochem), 464 (1999) 21126. 
Tonachini90  G. Tonachini, H. B. Schlegel, F. Bernardi, and M. A. Robb, “MCSCF Study of the Addition Reaction of the 1Dg Oxygen Molecule to Ethene,” J. Am. Chem. Soc., 112 (1990) 48391. 
Torrent02  M. Torrent, T. Vreven, D. G. Musaev, K. Morokuma, Ö. Farkas, and H. B. Schlegel, “Effects of the protein environment on the structure and energetics of active sites of metalloenzymes: ONIOM study of methane monooxygenase and ribonucleotide reductase,” J. Am. Chem. Soc., 124 (2002) 19293. 
Toulouse02  J. Toulouse, A. Savin, and C. Adamo, “Validation and assessment of an accurate approach to the correlation problem in density functional theory: The KriegerChenIafrateSavin model,” J. Chem. Phys., 117 (2002) 1046573. 
Toyota02  K. Toyota, M. Ehara, and H. Nakatsuji, “Elimination of singularities in molecular orbital derivatives: Minimum orbitaldeformation (MOD) method,” Chem. Phys. Lett., 356 (2002) 16. 
Toyota03  K. Toyota, I. Mayumi, M. Ehara, M. J. Frisch, and H. Nakatsuji, “Singularityfree analytical energy gradients for the SAC/SACCI method: Coupled perturbed minimum orbitaldeformation (CPMOD) approach,” Chem. Phys. Lett., 367 (2003) 73036. 
Trucks88  G. W. Trucks, J. D. Watts, E. A. Salter, and R. J. Bartlett, “Analytical MBPT(4) Gradients,” Chem. Phys. Lett., 153 (1988) 49095. 
Trucks88a  G. W. Trucks, E. A. Salter, C. Sosa, and R. J. Bartlett, “Theory and Implementation of the MBPT Density Matrix: An Application to OneElectron Properties,” Chem. Phys. Lett., 147 (1988) 35966. 
Truhlar70  D. G. Truhlar, “Adiabatic theory of chemical reactions,” J. Chem. Phys., 53 (1970) 2041. 
Truhlar71  D. G. Truhlar and A. Kuppermann, “Exact tunneling calculations,” J. Am. Chem. Soc., 93 (1971) 1840. 
TubertBrohman04  I. TubertBrohman, C. R. W. Guimaraes, M. P. Repasky, and W. L. Jorgensen, “Extension of the PDDG/PM3 and PDDG/MNDO Semiempirical Molecular Orbital Methods to the Halogens,” J. Comp. Chem., 25 (2004) 13850. 
TubertBrohman05  I. TubertBrohman, C. R. W. Guimaraes, and W. L. Jorgensen, “Extension of the PDDG/PM3 Semiempirical Molecular Orbit Method to Sulfur, Silicon, and Phosphorus,” J. Chem. Theory and Comput., 1 (2005) 81723. 
Uggerud92  E. Uggerud and T. Helgaker, “Dynamics of the Reaction CH2OH+ > CHO+ + H2. Translational EnergyRelease from ab initio Trajectory Calculations,” J. Am. Chem. Soc., 114 (1992) 426568. 
VanCaillie00  C. Van Caillie and R. D. Amos, “Geometric derivatives of density functional theory excitation energies using gradientcorrected functionals,” Chem. Phys. Lett., 317 (2000) 15964. 
VanCaillie99  C. Van Caillie and R. D. Amos, “Geometric derivatives of excitation energies using SCF and DFT,” Chem. Phys. Lett., 308 (1999) 24955. 
VanVoorhis98  T. Van Voorhis and G. E. Scuseria, “A never form for the exchangecorrelation energy functional,” J. Chem. Phys., 109 (1998) 40010. 
Visscher97  L. Visscher and K. G. Dyall, “DiracFock atomic electronic structure calculations using different nuclear charge distributions,” Atomic Data and Nuclear Data Tables, 67 (1997) 20724. 
vonNiessen84  W. von Niessen, J. Schirmer, and L. S. Cederbaum, “Computational methods for the oneparticle Green's function,” Comp. Phys. Rep., 1 (1984) 57125. 
Vosko80  S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis,” Can. J. Phys., 58 (1980) 120011. 
Vreven00  T. Vreven and K. Morokuma, “On the application of the IMOMO (Integrated Molecular Orbital + Molecular Orbital) method,” J. Comp. Chem., 21 (2000) 141932. 
Vreven01  T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi, “The ONIOMPCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution,” J. Chem. Phys., 115 (2001) 6272. 
Vreven03  T. Vreven, K. Morokuma, Ö. Farkas, H. B. Schlegel, and M. J. Frisch, “Geometry optimization with QM/MM, ONIOM and other combined methods. I. Microiterations and constraints,” J. Comp. Chem., 24 (2003) 76069. 
Vreven06  T. Vreven, K. S. Byun, I. Komáromi, S. Dapprich, J. A. Montgomery Jr., K. Morokuma, and M. J. Frisch, “Combining quantum mechanics methods with molecular mechanics methods in ONIOM,” J. Chem. Theory and Comput., 2 (2006) 81526. 
Vreven06a  T. Vreven, M. J. Frisch, K. N. Kudin, H. B. Schlegel, and K. Morokuma, “Geometry optimization with QM/MM Methods. II. Explicit Quadratic Coupling,” Mol. Phys., 104 (2006) 70114. 
Vreven06b  T. Vreven and K. Morokuma, in Annual Reports in Computational Chemistry, Ed. D. C. Spellmeyer, Vol. 2 (Elsevier, 2006) 35  51. 
Vreven08  T. Vreven and K. Morokuma, in Continuum Solvation Models in Chemical Physics: From Theory to Applications , Ed. B. Mennucci and R. Cammi (Wiley, 2008). 
Vreven97  T. Vreven, F. Bernardi, M. Garavelli, M. Olivucci, M. A. Robb, and H. B. Schlegel, “Ab initio photoisomerization dynamics of a simple retinal chromophore model,” J. Am. Chem. Soc., 119 (1997) 1268788. 
Vydrov06  O. A. Vydrov and G. E. Scuseria, “Assessment of a long range corrected hybrid functional,” J. Chem. Phys., 125 (2006) 234109. 
Vydrov06a  O. A. Vydrov, J. Heyd, A. Krukau, and G. E. Scuseria, “Importance of shortrange versus longrange HartreeFock exchange for the performance of hybrid density functionals,” J. Chem. Phys., 125 (2006) 074106. 
Vydrov07  O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, “Tests of functionals for systems with fractional electron number,” J. Chem. Phys., 126 (2007) 154109. 
Wachters70  A. J. H. Wachters, “Gaussian basis set for molecular wavefunctions containing thirdrow atoms,” J. Chem. Phys., 52 (1970) 1033. 
Wadt85  W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations  potentials for main group elements Na to Bi,” J. Chem. Phys., 82 (1985) 28498. 
Walker70  T. E. H. Walker, “Molecular spinorbit coupling constants. Role of core polarization,” J. Chem. Phys., 52 (1970) 1311. 
Watts93  J. D. Watts, J. Gauss, and R. J. Bartlett, “Coupledcluster methods with noniterative triple excitations for restricted openshell HartreeFock and other general single determinant reference functions. Energies and analytical gradients,” J. Chem. Phys., 98 (1993)

Weber03  J. Weber and G. Hohlneicher, “FranckCondon factors for polyatomic molecules,” Mol. Phys., 101 (2003) 212544. 
Wedig86  U. Wedig, M. Dolg, H. Stoll, and H. Preuss, in Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, Ed. A. Veillard, Reidel, and Dordrecht (1986) 79. 
Weigend03  F. Weigend, F. Furche, and R. Ahlrichs, “Gaussian basis sets of quadruple zeta valence quality for atoms HKr,” J. Chem. Phys., 119 (2003) 1275362. 
Weigend05  F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Phys. Chem. Chem. Phys., 7 (2005) 3297305. 
Weigend06  F. Weigend, “Accurate Coulombfitting basis sets for H to Rn,” Phys. Chem. Chem. Phys., 8 (2006) 105765. 
Weinhold88  F. Weinhold and J. E. Carpenter, in The Structure of Small Molecules and Ions, Ed. R. Naaman and Z. Vager (Plenum, 1988) 22736. 
Wiberg92  K. B. Wiberg, C. M. Hadad, T. J. LePage, C. M. Breneman, and M. J. Frisch, “An Analysis of the Effect of Electron Correlation on Charge Density Distributions,” J. Phys. Chem., 96 (1992) 67179. 
Wilson01a  P. J. Wilson, T. J. Bradley, and D. J. Tozer, “Hybrid exchangecorrelation functional determined from thermochemical data and ab initio potentials,” J. Chem. Phys., 115 (2001) 923342. 
Wilson05  S. M. Wilson, K. B. Wiberg, J. R. Cheeseman, M. J. Frisch, and P. H. Vaccaro, “Nonresonant optical activity of isolated organic molecules,” J. Phys. Chem. A, 109 (2005) 1175264. 
Wilson96  A. K. Wilson, T. van Mourik, and T. H. Dunning Jr., “Gaussian Basis Sets for use in Correlated Molecular Calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon,” J. Mol. Struct. (Theochem), 388 (1996) 33949. 
Wolinski80  K. Wolinski and A. Sadlej, “Selfconsistent perturbation theory: Openshell states in perturbationdependent nonorthogonal basis sets,” Mol. Phys., 41 (1980) 141930. 
Wolinski90  K. Wolinski, J. F. Hilton, and P. Pulay, “Efficient Implementation of the GaugeIndependent Atomic Orbital Method for NMR Chemical Shift Calculations,” J. Am. Chem. Soc., 112 (1990) 825160. 
Wong91  M. W. Wong, M. J. Frisch, and K. B. Wiberg, “Solvent Effects 1. The Mediation of Electrostatic Effects by Solvents,” J. Am. Chem. Soc., 113 (1991) 477682. 
Wong91a  M. W. Wong, K. B. Wiberg, and M. J. Frisch, “HartreeFock Second Derivatives and Electric Field Properties in a Solvent Reaction Field  Theory and Application,” J. Chem. Phys., 95 (1991) 899198. 
Wong92  M. W. Wong, K. B. Wiberg, and M. J. Frisch, “Solvent Effects 2. Medium Effect on the Structure, Energy, Charge Density, and Vibrational Frequencies of Sulfamic Acid,” J. Am. Chem. Soc., 114 (1992) 52329. 
Wong92a  M. W. Wong, K. B. Wiberg, and M. J. Frisch, “Solvent Effects 3. Tautomeric Equilibria of Formamide and 2Pyridone in the Gas Phase and Solution: An ab initio SCRF Study,” J. Am. Chem. Soc., 114 (1992) 164552. 
Wood06  G. P. F. Wood, L. Radom, G. A. Petersson, E. C. Barnes, M. J. Frisch, and J. A. Montgomery Jr. , “A restrictedopenshell completebasisset model chemistry,” J. Chem. Phys., 125 (2006) 094106: 116. 
Woon93  D. E. Woon and T. H. Dunning Jr., “Gaussianbasis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon,” J. Chem. Phys., 98 (1993) 135871. 
Xu04  X. Xu and W. A. Goddard III, “The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties,” Proc. Natl. Acad. Sci. USA, 101 (2004) 267377. 
Yamaguchi86  Y. Yamaguchi, M. J. Frisch, J. Gaw, H. F. Schaefer III, and J. S. Binkley, “Analytic computation and basis set dependence of Intensities of Infrared Spectra,” J. Chem. Phys., 84 (1986) 226278. 
Yamamoto96  N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch, and H. B. Schlegel, “A Direct Derivative MCSCF Procedure,” Chem. Phys. Lett., 250 (1996) 37378. 
Yanai04  T. Yanai, D. Tew, and N. Handy, “A new hybrid exchangecorrelation functional using the Coulombattenuating method (CAMB3LYP),” Chem. Phys. Lett., 393 (2004) 5157. 
York99  D. M. York and M. Karplus, “Smooth solvation potential based on the conductorlike screening model,” J. Phys. Chem. A, 103 (1999) 1106079. 
Zakrzewski93  V. G. Zakrzewski and W. von Niessen, “Vectorizable algorithm for Green function and manybody perturbation methods,” J. Comp. Chem., 14 (1993) 1318. 
Zakrzewski94a  V. G. Zakrzewski and J. V. Ortiz, “Semidirect algorithms in electron propagator calculations,” Int. J. Quantum Chem., Quant. Chem. Symp., S28 (1994) 2327. 
Zakrzewski95  V. G. Zakrzewski and J. V. Ortiz, “Semidirect algorithms for thirdorder electron propagator calculations,” Int. J. Quantum Chem., 53 (1995) 58390. 
Zakrzewski96  V. G. Zakrzewski, J. V. Ortiz, J. A. Nichols, D. Heryadi, D. L. Yeager, and J. T. Golab, “Comparison of perturbative and multiconfigurational electron propagator methods,” Int. J. Quant. Chem., 60 (1996) 2936. 
Zerner80  M. C. Zerner, G. H. Lowe, R. F. Kirchner, and U. T. MuellerWesterhoff, “An Intermediate Neglect of Differential Overlap Technique for Spectroscopy of TransitionMetal Complexes. Ferrocene,” J. Am. Chem. Soc., 102 (1980) 58999. 
Zerner82  M. C. Zerner, P. Correa de Mello, and M. Hehenberger, “Converging SCF Calculations on Excited States,” Int. J. Quantum Chem., 21 (1982) 25159. 
Zerner91  M. C. Zerner, in Reviews of Computational Chemistry, Ed. K. B. Lipkowitz and D. B. Boyd, Vol. 2 (VCH Publishing, New York, 1991) 31366. 
Zhao06a  Y. Zhao and D. G. Truhlar, “A new local density functional for maingroup thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions,” J. Chem. Phys., 125 (2006)

Zhao06b  Y. Zhao and D. G. Truhlar, “Comparative DFT study of van der Waals complexes: Raregas dimers, alkalineearth dimers, zinc dimer, and zincraregas dimers,” J. Phys. Chem., 110 (2006) 512129. 
Zhao08  Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06class functionals and 12 other functionals,” Theor. Chem. Acc., 120 (2008) 21541. 
Zheng05  G. Zheng, S. Irle, and K. Morokuma, “Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20C86 fullerene isomers,” Chem. Phys. Lett., 412 (2005) 21016. 
Zheng07  G. Zheng, H. Witek, P. BobadovaParvanova, S. Irle, D. G. Musaev, R. Prabhakar, K. Morokuma, M. Lundberg, M. Elstner, C. Kohler, and T. Frauenheim, “Parameter calibration of transitionmetal elements for the spinpolarized selfconsistentcharge densityfunctional tightbinding (DFTB) method: Sc, Ti, Fe, Co and Ni,” J. Chem. Theory and Comput., 3 (2007) 134967. 
Zhixing89  C. Zhixing, “Rotation procedure in intrinsic reaction coordinate calculations,” Theor. Chim. Acta., 75 (1989) 48184. 