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Part 1

Introductory Material: Determinants
of Dirac Operators, Spectral

Asymmetry, and Grassmannians of
Elliptic Boundary Projections





CHAPTER 1

The Idea of the Determinant

1

We introduce various notions and problems which will be fun-
damental for the book. In particular, we present the basic
concepts of regularization, geometrization, and variation in a
non–technical way. First, we recall how Gaussian integrals
can be expressed by the determinant. Our model are par-
tition functions of classical statistical mechanics involving a
positive definit quadratic form on a finite–dimensional space.
We discuss various regularization concepts which yield a well–
defined finite determinant even when dropping the conditions
of positiveness and of finite dimension, as required by func-
tional methods in quantum field theory centred around the
Dirac operator. We explain the role of the ζ–function in the
regularization process and show how the η–invariant naturally
appears which measures the asymmetry of the spectrum and
becomes the phase of the determinant.

Next we explain how the concept of the Fredholm deter-
minant can be applied by a geometrization of the underlying
operator space and without any regularization arbitrariness.

1.1. Functional Integrals and Spectral Asymmetry

Several important quantities in quantum mechanics and quantum field
theory are expressed i terms of quadratic functionals and functional inte-
grals. The concept of the determinant for Dirac operators arises naturally
when one wants to evaluate the corresponding path integrals. As Itzykson
and Zuber report in the chapter on Functional Methods of their monograph
[55]: “The path integral formalism of Feynman and Kac provides a unified
view of quantum mechanics, field theory, and statistical models. ... The
original suggestion of an alternative presentation of quantum mechanical
amplitudes in terms of path integrals stems from the work of Dirac (1933)
and was brilliantly elaborated by Feynman in the 1940s. ... This work was
first regarded with some suspicion due to the difficult mathematics required
to give it a decent status. In the 1970s it has, however, proved to be the most
flexible tool in suggesting new developments in field theory and therefore
deserves a thorough presentation.”

1Date: November 15, 2001. File name: BOOK1B.TEX, uses BOOKC.STY and
BOOKREFE.TEX.
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4 1. THE IDEA OF THE DETERMINANT

We shall restrict our discussion to the most easy variant of that com-
plex matter focusing on the partition function of a quadratic functional
given by the Euclidean action of a Dirac operator which is assumed to be
elliptic with imaginary time due to Wick rotation and coupled to contin-
uously varying vector potentials (sources, fields, connections), for the ease
of presentation in vacuum. We refer to Bertlmann, [12] and Schwarz, [90]
for an introduction into the quantum theoretic language for mathematicians
and for a more extensive treatment of general aspects of quadratic function-
als and functional integrals involving the relations to the Lagrangian and
Hamiltonian formalism.

There are various alternative notions around, some are more sophisti-
cated, some less. In the long run, physics perhaps will show which notions
are the “correct”, the most meaningful ones. At present, mathematics has
already confirmed the path integral and the ζ–regularized determinant for
the (Euclidean) Dirac operator as notions which lead to reasonable expres-
sions, permit precise calculations, and can be understood as canonical ob-
jects, independent of particular choices made for regularization. That is
what we want to show in this book.

A special feature of Dirac operators is that their determinants involve
a phase, the imaginary part of the determinant’s logarithm. As we will see
now, this is a consequence of the fact that, unlike the halfbounded Lapla-
cian, Dirac operators as operators of first order have an infinite number of
both positive and negative eigenvalues. Then the phase of the determinant
reflects the spectral asymmetry of the corresponding Dirac operator.

The simplest path integral we meet in quantum field theory takes the
form of the partition function and can be written formally as the integral

(1.1.1) Z(β) :=

∫
Γ

e−βS(ω) dω ,

where dω denotes functional integration over the space Γ := Γ(M ;E) of
sections of a Euclidean vector bundle E over a Riemannian manifold M .

In quantum theoretic language, M is space or space–time; a ω ∈ Γ is
a position function of a particle or a spinor field. The scaling parameter β
is a real or complex parameter, most often β = 1. The functional S is a
quadratic real–valued functional on Γ defined by S(ω) := 〈ω, Tω〉 with a
fixed linear symmetric operator T : Γ→ Γ. Typically T is a Dirac operator
and S(ω) is the action S(ω) =

∫
M
llaω,Dω〉.

Mathematically speaking, the integral 1.1.1 is an oscillating integral like
the Gaussian integral. It is ill–defined in general because

(I) as it stands, it is meaningless when dim Γ(M ;E) = +∞ (i.e., when
dimM ≥ 1); and,

(II) even when dim Γ(M ;E) <∞ (i.e. when dimM = 0 and M consists
of a finite set of points), the integral Z(β) diverges unless βS(ω) is
positive and non–degenerate.
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Newertheless, these expressions have been used and construed in quan-
tum field theory. As a matter of fact, reconsidering the physicists use and
interpretation of these mathematically ill–defined quantities, one can de-
scribe certain formal manipulations which lead to normalizing and evaluat-
ing Z(β) in a mathematically rigorous way.

We begin with a few calculations in Case II, inspired by Adams and
Sen, [1], to show how spectral asymmetry is naturally entering into the
calculations even in the finite–dimensional case and how this suggests the
non–standard definition of the determinant in the infinite–dimensional case
for the Dirac operator.

Then, let dim Γ = d <∞ and set

S(ω) = 〈ω, Tω〉 for all ω ∈ Γ

with a symmetric endomorphism T .

1. calculation. We assume S positive and non–degenerate, i.e. T strictly
positive, T > 0 with specT = {λ1, . . . λd} with all λj > 0. That is the
classical case. We choose an orthonormal system of eigenvectors (e1, . . . , ed)
of T as basis for Γ. We have S(ω) =

∑
λjx

2
j for ω =

∑
xjej and get for

real β > 0

Z(β) =

∫
Γ

e−βS(ω) dω =

∫
Rd

dx1 . . . dxd e
−β

∑
λjx2

j

=

∫ ∞

−∞
e−βλ1x2

1dx1

∫ ∞

−∞
e−βλ2x2

2dx2 . . .

∫ ∞

−∞
e−βλdx2

ddxd

=

√
π

βλ1

√
π

βλ2

. . .

√
π

βλd

= πd/2 · β−d/2 · (detT )−
1
2 .

In that way the determinant appears when evaluating the simplest quadratic
integral.

2. calculation. If the functional S is positive and degenerate, T ≥ 0, the
partition function is given by

Z(β) = πζ/2 · β−ζ/2 · (det T̃ )−
1
2 · vol(kerT ),

where ζ := dim Γ−dim kerT and T̃ := T |(ker T )⊥ , but, of course vol(kerT ) =
∞. For approaches to renormalize this quantity in quantum chromodynam-

ics, we refer to [1], [22], [90]. Still we can take πζ/2β−ζ/2(det T̃ )−
1
2 as our

definition of the integral by discarding vol(kerT ).

3. calculation. Now we assume that the functional S is non–degenerate,
i.e. T invertible, but S is neither positive nor negative. We decompose
Γ = Γ+ × Γ− and T = T+ ⊕ T− with T+,−T− strictly positive in Γ±.
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Formally, we obtain

Z(β) =

(∫
Γ+

dω+e
−β〈ω+,T+ω〉

)(∫
Γ−

dω−e
−(−β)〈ω−,−T−ω〉

)
= πd+/2β−d+/2(detT+)−

1
2 πd−/2(−β)−d−/2(det−T−)−

1
2

= πζ/2β−d+/2(−β)−d−/2(det |T |)−
1
2

where d± := dim Γ±, hence ζ = d+ + d− and |T | :=
√
T̃ 2 = T+ ⊕−T−.

4. calculation. In the preceding formula, the term (β)−d+/2(−β)−d−/2 is
undefined for β ∈ R±. We shall replace it by a more intelligible term for
β = 1 by first expanding Z(β) into the upper complex halfplanes and then
formally setting β = 1. More precisely, let β ∈ C+ = {z ∈ C | =z > 0} and
write β = |β|eiθ with θ ∈ [0, π], hence −β = |β|ei(θ−π) with θ − π ∈ [−π, 0].
We set βa := |β|aeiθa and get

β−d+/2(−β)−d−/2 = (|β|eiθ)−d+/2(|β|ei(θ−π))−d−/2

= |β|−ζ/2 e−i
d+
2

θ e−i
d−
2

θ eiπ
d−
2 .

Moreover,

−d+

2
θ − d−

2
θ + π

d−
2

= −θ
2

(d+ + d−) +
π

2

(
d−
2

+
d+

2
+
d−
2
− d+

2

)
= −θ

2
ζ +

π

4
(ζ − η) = −π

4

(
2θζ

π
+ (η − ζ)

)
,

where ζ := d+ + d− is the finite–dimensional equivalent of the ζ–invariant ,
counting the eigenvalues, and η := d+−d− the finite–dimensional equivalent
of the η–invariant , measuring the spectral asymmetry of T . We obtain

Z(β) = πζ/2 |β|−ζ/2e−i π
4
( 2ζθ

π
+(ζ−η)) (det |T |)−

1
2

and, formally, for β = 1, i.e. θ = 0,

(1.1.2) Z(1) = πζ/2 e−i π
4
(ζ−η) (det |T |)−

1
2︸ ︷︷ ︸

=:det T

.

Remark 1.1.1. (a) The methods and results of this section also apply to
real–valued quadratic functionals on complex vector spaces. Since the in-
tegration in (1.1.1) in this case is over the real vector space underlying
Γ, which has twice the dimension of Γ, the expressions for the partition
functions in this case become the square of those above.
(b) In the preceding calculations we worked with ordinary commuting num-
bers and functions. The resulting Gaussian integrals are also called bosonic
integrals. If we consider fermionic integrals, we work with Grassmannian
variables and obtain the determinant not in the denominator, but in the
nominator (see e.g. [11] or [12]). We shall exploit that aspect later in
Chapter ???.
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(c) Another problem appears even in finite dimensions, namely when a
determinant shall not be defined for a endomorphism but for a homomor-
phism.........

Equation (1.1.2) suggests a non–standard definition of the determinant
for the infinite–dimensional case.

1.2. The ζ–Determinant for Operators of Infinite Rank

Once again, our point of departure is finite–dimensional linear algebra.
Let T : Cd → Cd be an invertible, positive operator with eigenvalues 0 <
λ1 ≤ λ2 ≤ .... ≤ λd . We have the equality

detT =
∏

λj = exp{
∑

lnλje
−s ln λj |s=0}

= exp(− d

ds
(
∑

λ−s
j )|s=0) = e−

d
ds

ζT (s)|s=0 ,

where ζT (s) :=
∑d

j=1 λ
−s
j .

We show that the preceding formula generalizes naturally, when T is
replaced by a positive definite self–adjoint elliptic operator L (for the ease
of presentation, of second order, like the Laplacian) acting on sections of a
Hermitian vector bundle over a closed manifold M of dimension m. Then
L has a discrete spectrum specL = {λj}j∈N with 0 < λ1 ≤ λ2 ≤ . . . ,
satisfying the asymptotic formula λn ∼ nm/2 (see e.g. [45], Lemma 1.6.3).
We extend ζL(s) :=

∑∞
j=1 λ

−s
j in the complex plane by

ζL(s) :=
1

Γ(s)

∫ ∞

0

ts−1 Tr e−tL dt

with the Γ–function Γ(s) :=
∫∞

0
ts−1e−tdt. Note that e−tL is the heat oper-

ator transforming any initial section f0 into a section ft satisfying the heat
equation ∂

∂t
f + Lf = 0. Clearly Tr e−tL =

∑
e−tλj .

One shows that the original definition of ζL(s) yields a holomorphic
function for <(s) large and that its preceding extension is meromorphic in
the entire complex plane with simple poles only. The point s = 0 is a regular
point and ζL(s) is a holomorphic function at s = 0. From the asymptotic
expansion of Γ(s) ∼ 1

s
+ g + sh(s) close to s = 0 with the Euler number g

and a suitable holomorphic function h we obtain an explicit formula

ζ ′L(0) ∼
∫ ∞

0

1

t
Tr e−tL dt− gζL(0) .

This is proved in xxx / will be proved in xxx.
Therefore, Ray and Singer in [84] could introduce detζ(L) by defining:

detζL := e−
d
ds

ζL(s)|s=0 = e−ζ′L(0) .
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The preceding definition does not apply immediately to the main hero
here, the Dirac operator D which has infinitely many positive λj and nega-
tive eigenvalues −µj. Clearly by the preceding argument

detζD2 = e−ζ′
D2 and detζ |D| = e−ζ′|D| = e−

1
2
ζ′
D2 .

For the Dirac operator we set

ln detD := − d

ds
ζD(s)|s=0

with, choosing the branch (−1)−s = eiπs,

ζD(s) =
∑

λ−s
j +

∑
(−1)−sµ−s

j =
∑

λ−s
j + eiπs

∑
µ−s

j

=

∑
λ−s

j +
∑
µ−s

j

2
+

∑
λ−s

j −
∑
µ−s

j

2

+ eiπs

{∑
λ−s

j +
∑
µ−s

j

2
−
∑
λ−s

j −
∑
µ−s

j

2

}
=

1

2

{
ζD2(

s

2
) + ηD(s)

}
+

1

2
eiπs

{
ζD2(

s

2
)− ηD(s)

}
,

where ηD(s) :=
∑
λ−s

j −
∑
µ−s

j . Later we will show that ηT (s) is a holo-
morphic function of s for <(s) large with a meromorphic extension to the
whole complex plane which is holomorphic in the neighborhood of s = 0 .
We obtain

ζ ′D(s) =
1

4
ζ ′D2(

s

2
) +

1

2
η′D(s) +

1

2
iπeiπs{ζD2(

s

2
)− ηD2(s)}

+
1

2
eiπs{1

2
ζ ′D2(

s

2
)− η′D(s)}.

It follows:

ζ ′D(0) =
1

2
ζ ′D2(0) +

iπ

2
{ζD2(0)− ηD(0)}

and

detζD = e−
1
2
ζ′
D2 (0) e−

iπ
2 {ζD2 (0)−ηD(0)}

= e−
iπ
2 {ζ|D|(0)−ηD(0)} e−ζ′|D|(0)

= e−
iπ
2 {ζ|D|(0)−ηD(0)} detζ |D|,

and for the Dirac operator’s ‘partition function’ in the sense of (1.1.1):

Z(1) = πζ|D|(0)(detζD)−
1
2 .

Remark 1.2.1. In the preceding formulas three spectral invariants enter of
the Dirac operator D:
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(1) ζD2(0), it is given by
∫

M
α(x)dx, where α(x) denotes the index den-

sity which is a certain coefficient in the heat kernel expansion and
is locally expressed by the coefficients of D. In particular, ζD2(0)
remains unchanged for small changes of the spectrum. Actually,
ζL(0) vanishes when L is the square of an self–adjoint elliptic op-
erator on a closed manifold.

(2) ηD(0), it is not given by an integral, not by a local formula. It
depends, however, only on finitely many terms of the symbol of
the resolvent (D − λ)−1 and will not change when one changes or
removes a finite number of eigenvalues.

(3) ζ ′D2(0), it is the most delicate of the invariants inmvolved: Neither
it is a local invariant, nor does it depend only on the total symbol
of the Dirac operator. Below in xxx we will show that even small
changes of the eigenvalues will change the ζ ′–invariant and hence
the determinant.

Although Felix Klein in [58] rated the determinant as the most simple
example of an invariant, today we must give an inverse rating. For the
present authors, not the transformation groups and invariants which reveal
the widest symmetries or display the greatest stability are at the centre of
focus, but, according to Dirac’s approach to elementary particle physics, the
finest invariants which can detect small anomalies and will be changed out
of nearly nothing deserve the highest interest. Correspondingly, the deter-
minant and its amplitude (3) are the most subtle and the most fascinating
objects of our study. They are much more difficult to comprehend than (2);
and (2) is much more difficult to comprehend than (1).

For this book, this suggests a scale of stages of investigations. First we
have to show that all three invariants are well defined for Dirac operators on
closed manifolds. Then we shall concentrate on investigating the properties
of (2), the main ingredient into the determinant’s phase. Then we have to
show that all of them make sense for boundary problems belonging to a cer-
tain Grassmannian. Finally, we have to investigate the stability properties
under variation of the coefficients.

1.3. The Determinant as a Canonical Element of a Complex Line

Before we do that we discuss another definition of the determinant. This
one is more algebraic than analytic.

• Fredholm determinant
• Segal determinant line
• Quillen determinant line
• Families





CHAPTER 2

The ζ–Determinant on the Circle

The goal of this chapter is to show how the things works out in
the case of a simple example of the operator Df = −i d

dx +f(x)
on the circle S1 . We study the case of the operator Da =
−i d

dx + a : C∞(S1)→ C∞(S1) . We show that all ingredients
in the formula (7.4.6) are well-defined and that in fact the ζ-
determinant is a true algebraic determinant.

First let us explain why it is enough to study operators Da , when it
seems that we should investigate operators of the form

−i d
dx

+ f(x) ,

where f(x) denotes a smooth real-valued function on S1 . Let us consider
two such operators

Dfi
= −i d

dx
+ fi(x) .

and us introduce functions

gi(x) =

∫ x

0

fi(s)ds .

We have now the following result

Proposition 2.0.1. Assume that

(2.0.1) g1(2π) = g2(2π) ,

then operators Df1 and Df2 are unitary equivalent.

Proof. We define operator U acting on functions on S1 via formula

(Us)(x) = ei(g1(x)−g2(x))s(x) .

The operator U is a unitary operator on L2(S1) , and the straightforward
computations shows

11
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UDf1U
−1 = −i d

dx
+ f2(x)

hence Df1 and Df2 are unitary equivalent, which among the other things
shows that they have the same spectrum. �

Corollary 2.0.2. Operator −i d
dx

+ f(x) is unitary equivalent to the oper-

ator −i d
dx

+ a , where

(2.0.2) a =

∫ 2π

0
f(s)ds

2π
.

Corollary 2.0.3. The spectrum of the operator −i d
dx

+ f(x) is equal to
{k + a}k∈Z , where a is given by the formula (2.0.2).

The last corollary follows from the fact that we know spectrum of the
operator Da = −i d

dx
+ a . It has eigenvalues k + a corresponding to the

eigenfunctions φk(x) = 1√
2π
eikx .

2.1. ζ– and η–Function of a Dirac operator and the Heat Kernel

We study the ζ-determinant of the operator Da using Heat Operator
determined by D2

a . We start with the discussion of the situation in the case
of a general Dirac operator. Later we prove all results for the operator Da

on S1 . Let D : C∞(M ;S)→ C∞(M ;S) denote a Dirac operator acting on
sections of bundle of Clifford modules over a closed manifold M . We want
to solve the Heat Propagation problem for the operator D2 , which means
that having given f0 ∈ C∞(M ;S) , we want to solve the problem:

(2.1.1) (
d

dt
+D2)f(t, x) = 0 for t > 0 with f(0, x) = f0(x) .

The problem (2.1.1) has a unique solution for each smooth initial data f0(x)
(see for instance [?, ?]). The usual way to get the solution is to construct

a family of operators e−tD2
= E(t) : C∞(M ;S) → C∞(M ;S) such that

E(0) = Id and for each f0 and t > 0 we have

(E(t)f0)(x) = f(t, x) .
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It is not difficult to see that E(t) staisfies semigroup property i.e. for
each s, t > 0 we have E(t + s) = E(t)E(s) . Moreover operator E(t) has a
smooth kernel, which means that there exists a smooth function e(t;x, y) ,
where for each x, y ∈M e(t;x, y) is a linear map from Sx to Sy such that

(2.1.2) (e−tD2

f0)(x) = f(t, x) =

∫
M

e(t;x, y)f0(y)dy .

Assuming that we know a spectral decomposition of the operator D we
have a nice abstract formula which gives kernel of the Heat Operator. Let
us denote by λk an eigenvalue of D , which corresponds to the eigensection
φk . Then we have

(2.1.3) e(t;x, y) =
+∞∑
−∞

e−tλ2
kφk(x)⊗ φk(y) .

In other words we have equality

(E(t)s)(x) =
+∞∑
−∞

(

∫
M

< s(y);φk(y) > dy)φk(x) ,

where < ·; · > denote an inner product on the fibre Sy . We refer to [45] and
[?, ?] for more details. In the following we concentrate on a very easy special
case. Although formula (2.1.3) looks nice it has a relatively small value in
the case we want explicit formula for the kernel e(t;x, y) . We start with the
differential operator, for which we know exact formula for the kernel and
then study how the perturbation of the operator affects the Heat Kernel.
This is what we do in the next Section in order to study ζ-function of the
operator D2

0 = − d2

dx2 on the circle. Now we finally justify the introduction
of the Heat Operator. We use this operator in order to study ζ-function and
η-function of the Dirac operators.

Proposition 2.1.1. The following equalities hold for a Dirac operator D

(2.1.4) ζD2(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2

dt for Re(s) >
dim M

2
,

and

ηD(s) =
1

Γ( s+1
2

)

∫ ∞

0

ts−1Tr De−tD2

dt for Re(s) >
1 + dim M

2
.

where in the discussion of ζD2(s) we assume that D is invertible. This
assumption is not necessary in the case of ηD(s) .
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Proof. We prove second equality in (2.1.4). The proof of the first one
is completely analogous. We have

∫ ∞

0

t
s−1
2 Tr De−tD2

dt =
+∞∑
−∞

∫ ∞

0

t
s−1
2 λke

−tλ2
kdt =

+∞∑
−∞

λk(λk)−
s+1
2

∫ ∞

0

(tλ2
k)

s−1
2 e−tλ2

kd(tλ2
k) =

+∞∑
−∞

sign λk·|λk|−s·
∫ ∞

0

r
s−1
2 e−rdr = Γ(

s+ 1

2
)·ηD(s) .

We discuss the suitable domain of s for which (2.1.4) is valid only for the
operator Df .

�

Remark 2.1.2. If we assume that D has eigenvalue 0 , i.e. there exists
nontrivial solution of the equation Ds = 0 , then of course the first formula
in (2.1.4) does not hold as the integral on the right side is divergent. To cure
this problem we proceed as follows. The operator D is an elliptic operator
hence ker D the space of all solutions of D is finite dimensional and consists
of only smooth sections. This is obvious for the operator Df and we refer
to [45], or [?, ?] for the proof of this fact for general Dirac operator. We
consider integral in (2.1.4) on the orthogonal complement of this space, but
to stay consistent with the definition (7.1.7) we have to add the dimension
of ker D . More precisely if we denote by ΠD orthogonal projection onto
ker D , then first formula in (2.1.4) is replaced by

(2.1.5)

ζD2(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr(e−tD2−ΠD)dt+dim ker D for Re(s) >
dim M

2
.

2.2. Heat Kernel and ζ–Function on S1

We discuss ζ-function of the operator D2
0 = ∆ = − d2

dx2 on S1 . We
use formula (2.1.4) hence we need information on the kernel of the operator
e−t∆ . It is not difficult to check that eR1(t;x, y) kernel of the corresponding
operator on R1 is given by the formula

eR1(t;x, y) =
1√
4πt

e−
(x−y)2

4t .

Let me repeat again that this means that the function f(t, x) given by the
formula
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f(t, x) = (e−t(− d2

dx2 )f0)(t, x) =

∫
R1

1√
4πt

e−
(x−y)2

4t f0(y)dy

solves the problem (2.1.1) with the initial data f0(x) . Now we define kernel
on S1 using the formula

(2.2.1) eS1(t;x, y) =
∑
n∈Z

eR1(t;x, y + 2πn) .

In (2.2.1) we use the representation of S1 as R/2πZ . Now as the exercise
reader may check the following fact

Proposition 2.2.1. The kernel of the operator e−t∆ on S1 is equal to
eS1(t;x, y) .

The Proposition 11.3.2 has the following extremely important conse-
quence

Theorem 2.2.2. Let us assume that 0 < t < 1 , then there exists positive
constants c1, c2 , such that the following equality holds

|eS1(t : x, y)− eR1(t;x, y)| < c1·e−
c2
t .

Remark 2.2.3. (1) The statement of the Theorem 2.2.2 is usually written
as

(2.2.2) es1(t;x, y) =
1√
4πt

e−
(x−y)2

t +O(e−
c
t ) for small t .

(2) In the following we really need (7.2.6) for (x, y) close to the diagonal
hence the distance between x and y is indeed given by |x− y| .

Proof. We have

es1(t;x, y) =
1√
4πt

e−
(x−y)2

t +
1√
4πt
·
∑
n6=0

e−
(x−y−2πn)2

t ,
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and we estimate sum as follows

∑
n6=0

e−
(x−y−2πn)2

t =
∞∑

k=1

(e−
(x−y−2πn)2

t + e−
(x−y+2πn)2

t ) < 2·
∞∑

k=1

e−
(πn)2

4t <

2·
∞∑

k=1

(e−
π2

4t )n = 2· 1

e
π2

4t

· 1

1− 1

e
π2
4t

=
2

e
π2

4t
−1

<
2

e
π2

8t

= 2·e−
π2

8t .

Now (7.2.6) follows from the elementary estimate

1√
t
·e−

c
t < c1·e−

c
2t .

�

Let f, g : (0,∞) → R are smooth functions, then we write f ∼ g if
and only if for any natural number m we have

lim
t→0

f(t)− g(t)

tm
= 0 .

In particular we have just shown that for each x, y ∈ S1

eS1(t;x, y) ∼ 1√
4πt

e−
(x−y)2

t .

The next Corollary is the first result, which ties spectral geometry we
study with the number theory. It is also at that point that we introduce
trace of the heat operator.

Corollary 2.2.4.

(2.2.3)
∑
n∈N

e−tn2 ∼
√
π

2
·t−1/2 − 1

2
.

Proof. We study the trace of the Heat Operator e−t∆ on S1 . The
operator ∆ has a complete set of eigenvalues with corresponding eigensec-
tions given a standard basis of L2(S1) . Namely for any integer k , k2 is
an eigenvalue with corresponding eigenfunction φk = 1√

2π
eikx . We know

that the trace of the operator can be represented by the eigensections and
eigenfunctions as follows (see for instance one of our standard references
like [45], and for more of related Functional Analysis [?], or [?, ?]). In our
particular case we have
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Tr e−t∆ =
∑
k∈Z

(e−t∆φk;φk) =
∑
k∈Z

e−tk2

= 1 + 2·
∑
n∈N

e−tn2

,

where

(f ; g) =

∫
S1

f(x)g(x)dx

is standard L2 product on S1 . On the other hand trace of the operator
with a smooth kernel is also given by the integral of this kernel over the
diagonal

Tr e−t∆ =

∫
S1

es1(t;x, x)dx .

Therefore we have

∞∑
n=1

e−tn2

=
1

2
(Tr e−t∆−1) =

1

2
(

∫
S1

eS1(t;x, x)dx−1) =
1

2
(

1√
4πt

∫
S1

dx−1)+O(e−
c
t ) ,

which finally gives (2.2.3). �

Now we investigate ζ∆(s) ζ-function of the operator. Let us observe that
this is immediately related to the number theory. Namely if we introduce
Riemann ζ-function

ζR(s) =
∞∑

n=1

n−s ,

then we have equality

(2.2.4) ζ∆(s) =
∑
k∈Z

(k2)−s = 2·ζR(2s) + 1 .

This is the reason that we can formulate the main result of this Section
in terms of the ζR(s) . We have following Theorem

Theorem 2.2.5. Function ζR(s) is a holomorphic function of s for Re(s) >
1 . It has a meromorphic extension to complex plane. Point s = 1 is the
only pole of ζR(s) . It is a simple pole and we have

(2.2.5)

Ress=1ζR(s) = 1 , ζR(0) = −1

2
and ζR(−2l) = 0 for l = 1, 2, 3, ... .
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Theorem 2.2.5 follows from the corresponding result for the ζ-function
of the operator D0 on S1 . We use representation (2.1.5) . We also need two
properties of the function Γ(s) . First let us recall that in the neighborhood
of s = 0 , Γ(s) has the following form

(2.2.6) Γ(s) =
1

s
+ γ + sf(s) =

1 + sγ + s2f(s)

s
,

where γ denote Euler constant. We also use the identity

(2.2.7) sΓ(s) = Γ(s+ 1) ,

in order to extend Γ(s) , from the holomorphic function on Re(s) > 1 to a
meromorphic function on the whole complex plane. Points sk = −k k =
0, 1, 2, .. are the only poles and

(2.2.8) Ress=−kΓ(s) =
(−1)k

k!
,

as follows from (2.2.6) and (2.2.7). Let us also observe that now we can
easily show that function 1

Γ(s)
is a holomorphic function of s on the whole

complex plane and the only zeros of 1
Γ(s)

are points sk = −k . Now we are

ready to analyze function ζ∆(s) .

Proposition 2.2.6. Let function h(s) be given by the formula

(2.2.9) h(s) =
1

Γ(s)
·
∫ ∞

1

ts−1Tr(e−tD2 − ΠD)dt .

Then h(s) is a holomorphic function of s on the whole complex plane.

Proof. We estimate Tr(e−tD2 − ΠD) for 1 < t as follows

Tr(e−tD2 − ΠD) = 2
∑
k∈N

e−tk2

= 2
∑
k∈N

e−
t
2
k2·e−

t
2
k2

<

2·e−
t
2 ·
∑
k∈N

e−
t
2
k2

< 2·e−
t
2 ·
∑
k∈N

e−
k2

2 < c·e−
t
2 ,

and now result follows from elementary complex ananlysis. �

It is integral on the interval 0 < t < 1 , which determines singularities
of ζ∆(s) . We have
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1

Γ(s)
·
∫ 1

0

ts−1Tr(e−tD2−Π(D))dt =
1

Γ(s)
·
∫ 1

0

ts−1(

∫
S1

(
1√
4πt
−1+O(e−

c
t )dx)dt =

√
π

Γ(s)
·
∫ 1

0

ts−
1
2dt+ g(s) =

√
π

Γ(s)
· 1

s− 1
2

− 1

Γ(s)
·
∫ 1

0

ts−1dt+
1

Γ(s)
·g(s) ,

where g(s) is yet another function holomorphic on the whole complex plane
and we use the fact that

Tr Π(D) = dim ker D = 1 .

We have proved the following Theorem

Theorem 2.2.7. There exists a function g(s) holomorphic on the whole
complex plane such that ζ∆(s) has the following representation

(2.2.10) ζ∆(s) =

√
π

Γ(s)
· 1

s− 1
2

− 1

Γ(s)
·1
s

+ 1 +
1

Γ(s)
·g(s) .

We combine this result with

Γ(
1

2
) =
√
π and

1

Γ(−k)
= 0 for k = 0, 1, 2.. ,

in order to obtain next result

Corollary 2.2.8. The only pole of ζ∆(s) is located at s = 1
2

. It is a simple
pole and the reesiduum of Γ(s) at s = 1 is equal to 1 . Moreover ζ∆(0) = 0
and ζ∆(−k) = 1 for k = 1, 2, 3, .. .

Theorem 2.2.5 follows immediately from Corollary 2.2.8 because now we
can use (2.2.10) to represent ζR(s) as

(2.2.11) ζR(s) =
1

2
(ζ∆(

s

2
)− 1) =

√
π

Γ( s
2
)
· 1

s− 1
− 1

Γ( s
2
)
·1
s

+
1

2Γ( s
2
)
·g(

s

2
) .
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2.3. Duhamel’s Principle and ζ-Function of the Operators ∆f

In this Section we study the ζ-function of the perturbations of the opera-
tor ∆ = ∆0 = D2

0 . We discuss in order with increasing technical difficulties
operators ∆a = ∆ + a , ∆f = ∆ + f(x) , where f(x) is a smooth function

on S1 , and the operator D2
a = − d2

dx2 − 2ia d
dx

+ a2 . The easiest example
here is of course operator ∆a . It seems quite natural, that we expect the
equality

e−t∆a = e−t∆−ta = e−tae−t∆

to hold, especially becuse the bounded operator (Bf)(x) = af(x) commutes
with the operator ∆ and the equality

e−t(A+B) = e−tAe−tB

holds for commuting matrices A , B and for bounded commuting operators
in a Hilbert space as well. The operator ∆ however is an unbounded op-
erator on L2(S1) , which creates technical problems. We discuss standard
way of getting the Heat Operator for the perturbation of the given (Dirac)
operator. We introduce now Duhamel’s Principle . We offer a formal for-
mulation without given detailed assumptions and later on we will show that
everything can be make rigorous in the case of Dirac operators on S1

Duhamel’s Principle Let A and A + B are the operators acting on a
separable Hilbert space such that the operators e−tA and e−t(A+B) exist.
Then

(2.3.1) e−t(A+B) = e−tA −
∫ t

0

e−s(A+B)Be−(t−s)Ads .

Proof. The Heat Operator is equal to identity at t = 0 , therefore

e−t(A+B)−e−tA =

∫ t

0

d

ds
(e−s(A+B)e−(t−s)A)ds =

∫ t

0

e−s(A+B)(−(A+B)+A)e−(t−s)Ads .

�

Now we apply formula (2.3.1) to e−s(A+B) in
∫ t

0
e−s(A+B)Be−(t−s)Ads and

we obtain

e−t(A+B) = e−tA−
∫ t

0

e−sABe−(t−s)Ads+

∫ t

0

ds

∫ s

0

dre−r(A+B)Be−(s−r)ABe−(t−s)A .
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The discussion above shows the way of constructing the operator e−t(A+B)

having given operator e−tA as the infinite series in terms of the operators
e−tA and B . We introduce some notation before getting more specific. Let
B(t) and C(t) denote two 1-parameter families of bounded operators in a
Hilbert space. We introduce (B ∗ C)(t) convolution of B(t) and C(t) as the
operator

(B ∗ C)(t) =

∫ t

0

B(s)C(t− s)ds .

We take

B(t) = e−tA , C(t) = Be−tA and Cn(t) = (C ∗ C ∗ .. ∗ C)(t) ,

where we convoluted C(t) n−times in the last formula. Then the following
formal equation gives the Heat Operator of A+B

(2.3.2) e−t(A+B) = e−tA +
∞∑

n=1

(−1)n(B ∗ Cn)(t) .

At this point it is a formal expression, which becomes rigorous identity
whenever we are able to show that the series on the right side of (2.3.2) is
absolutely convergent. Actually in our case we show even more. We use
(2.3.2) in order to construct kernel of the operator e−t∆f . We take A = ∆
and B = f(x) then en,f (t;x, y) kernel of the operator (B ∗ Cn)(t) is equal to

(2.3.3) en,f (t;x, y) =

∫ t

0

ds1

∫
S1

du1

∫ s1

0

ds2

∫
S1

du2.....

∫ sn−1

0

dsn

∫
S1

dun

e∆(sn;x, un)f(un)e∆(sn−1;un, un−1).....f(u1)e∆(t− s1;u1, y) .

We use this representation in order to prove the absolute and uniform con-
vergence of the series, which represents kernel of the operator e−t∆f .

Theorem 2.3.1. There exists t0 such that series

(2.3.4) e∆(t;x, y) +
∞∑

n=1

(−1)nen,f (t;x, y)

converges uniformly on S1 for 0 < t ≤ t0 .
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Remark 2.3.2. 1. Although we prove Theorem 2.3.1 for small t0 the choice
of t0 is unsignificant. We can easily prove the following variant of the
Theorem:

For any t0 there exists a constant M(t0) such that for any 0 < t ≤ t0
and any x, y ∈ S1

(2.3.5) |e∆f
(t;x, y)− e∆(t;x, y)| = |

∞∑
n=1

(−1)nen(t;x, y)| < M(t0) .

We leave fun with the estimates to the reader.

2. We do not present the optimal result. In fact estimates in the proof
were written down half an hour before the lecture. This is however not
very important matter. We want to show the uninitiated reader the most
crude way of proving that from the fact that e−t∆ is well-defined follows the
existence of the Heat Operator for the operator ∆f . We will use an extra
information on the kernel eS1(t;x, y) later on.

Proof. There exist positive constants c1, c2 such that for any x, y ∈ S1

and for any 0 < t ≤ 1 we have

|e∆(t;x, y)| < c1√
t
, |f(x)| < c2 .

We start with the term e1,f (t;x, y)

|e1, f(t;x, y)| = |
∫ t

0

ds

∫
S1

du e∆(s;x, u)f(u)e∆(t− s;u, y)| <

c21c2
4π

∫ t

0

ds

∫
S1

du
1√

s(t− s)
=
c21c2

2

∫ t

0

ds√
s(t− s)

≤ c21c2

∫ t
2

0

ds√
s· t

2

=

c21c2·
√
t

2
·
∫ t

2

0

ds√
s

= 2c21c2 .

The second inequality is even easier. Let K > 0 denote a constant, then
we have

|
∫ t

0

ds

∫
S1

du Kf(u)e∆(t− s;u, y)| < 2πc1c2K·
∫ t

0

ds√
t− s

= 4πc1c2K
√
t .

Now, we can deal with en,f (t;x, y)



2.3. DUHAMEL’S PRINCIPLE AND ζ-FUNCTION OF THE OPERATORS ∆f 23

|en,f (t;x, y)| = |
∫ t

0

ds1

∫
S1

du1

∫ s1

0

ds2

∫
S1

du2.....

∫ sn−1

0

dsn

∫
S1

dun

e∆(sn;x, un)f(un)e∆(sn−1 − sn;un, un−1).....f(u1)e∆(t− s1;u1, y)| <

2c21c2

∫ t

0

ds1

∫ t

0

ds1

∫
S1

du1

∫ s1

0

ds2

∫
S1

du2...

∫ sn−2

0

dsn−1

∫
S1

dun−1

|f(un−1)e∆(sn−2 − sn−1;un−1, un−2).....f(u1)e∆(t− s1;u1, y)| <

(2c21c2)(4πc1c2)

∫ t

0

ds1

∫
S1

du1

∫ s1

0

ds2

∫
S1

du2...

∫ sn−3

0

dsn−2

∫
S1

dun−2

√
sn−2·|f(un−2)e∆(sn−3 − sn−2;un−2, un−3).....f(u1)e∆(t− s1;u1, y)| <

(2c21c2)(4πc1c2)

∫ t

0

ds1

∫
S1

du1

∫ s1

0

ds2

∫
S1

du2...
√
sn−3

∫ sn−3

0

dsn−2

∫
S1

dun−2

|f(un−2)e∆(sn−3 − sn−2;un−2, un−3).....f(u1)e∆(t− s1;u1, y)| <

(2c21c2)(4πc1c2)
2

∫ t

0

ds1

∫
S1

du1.....

∫ sn−4

0

dsn−3

∫
S1

dun−3sn−3

|f(un−3)e∆(sn−4 − sn−3;un−3, un−4).....f(u1)e∆(t− s1;u1, y)| <

< (2c21c2)(4πc1c2)
n−1·t

n−1
2 = (2c21c2)(4πc1c2

√
t)n−1 .

Now we finally can estimate the whole series.

|
∞∑

n=1

(−1)nen(t;x, y)| <
∞∑

n=1

(2c21c2)(4πc1c2
√
t)n−1 = (2c21c2)(4πc1c2

√
t)· 1

1− 4πc1c2
√
t
.

We proved that the series (2.3.4) is uniformly convergent for 0 < t < 1
(4πc1c2)2

. �

We saw that correction terms entered in the succesive powers of
√
t ,

which leads us to the following fact
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Corollary 2.3.3. There exists a family {un(x)}n∈N of smooth functions
on S1 such that for any natural number N we have

(2.3.6) e∆f
(t;x, x)−

N∑
n=0

t
n−1

2 un(x) = O(tN) .

The last result is not really the best we can get. We know (see for
instance [45, ?]) that actually we have expansion in powers of t . This result
is acxtually quite difficult to establish in the case of a general Dirac operator.
In the case of S1 we can use the fact that, for any 0 < t and any x, y ∈ S1

e∆(t;x, y) > 0 (see (2.2.1). We also use the fact that identity e−s∆e−(t−s)∆ =
e−t∆ reads as follows on the level of the kernel of the operators

(2.3.7)

∫
S1

e∆(s;x, u)e∆(t− s;u, y)du = e∆(t;x, y) .

Theorem 2.3.4. There exists a family {vn(x)}n∈N of smooth functions on
S1 such that for any natural number N we have

(2.3.8) e∆f
(t;x, x)−

N∑
n=0

tn−
1
2vn(x) = O(tN) .

Proof. As I promised we show that indeed correction terms enter in
powers of t . Let us explain that on the level of the first term

|
∫ t

0

ds

∫
S1

du e∆(s;x, u)f(u)e∆(t−s;u, y)| < c2·
∫ t

0

ds

∫
S1

du e∆(s;x, u)e∆(t−s;u, y) =

c2·
∫ t

0

e∆(t;x, y)ds = c2t·e∆(t;x, y) .

The estimate on the n − th term of the expansion follows in the same
way. �

Corollary 2.3.5. For any f(x) smooth function on S1 we have

ζ∆f
(0) = 0 .



2.4. HEAT KERNEL OF THE OPERATOR D2
a 25

Proof. The result follows from the corresponding result for ∆ as we
have just proved that there exists a positive constant c such that the fol-
lowing estimate holds

|e∆f
(t;x, y)− e∆(t;x, y)| < c

√
t ,

for any x, y ∈ S1 and any 0 < t ≤ 1 . Let Π∆f
denote orthogonal projection

onto the kernel of the operator ∆f . Then we have

ζ∆f
(s) =

1

Γ(s)

∫ ∞

0

ts−1Tr(e−t∆f − Π∆f
)dt+ dim ker ∆f =

1

Γ(s)

∫ 1

0

ts−1Tr(e−t∆f − Π∆f
)dt+ dim ker ∆f +

1

Γ(s)
·h(s) ,

where h(s) is a function holomorphic on the whole complex plane. Trace of
Π∆f

is equal to dim ker ∆f and therefore we have

ζ∆f
(s) =

1

Γ(s)

∫ 1

0

ts−1Tr e−t∆fdt+(dim ker ∆f )·(1− 1

Γ(s)

∫ 1

0

ts−1ds)+
1

Γ(s)
·h(s) =

1

Γ(s)

∫ 1

0

ts−1(

√
π√
t

+O(
√
t))dt+ (dim ker ∆f )·(1− s

Γ(s)
) +

1

Γ(s)
·h(s) =

√
π

Γ(s)
· 1

s− 1
2

+
1

Γ(s)

∫ 1

0

ts−1O(
√
t)dt+(dim ker ∆f )·(1− s

Γ(s)
)+

1

Γ(s)
·h(s) .

We take lims→0 and obtain 0 .
�

As the exercise reader may use Duhamel’s Principle to check that

(2.3.9) e∆+a(t;x, y) = e−tae∆(t;x, y) .

2.4. Heat Kernel of the Operator D2
a

In this Section we use Duhamel’s Principle to construct kernel of the
operator e−tD2

a on S1 . Our goal is to prove analogue of Theorem 2.3.4 in
this new situation. We have

D2
a = −∆− 2ia

d

dx
+ a2 = −∆ + 2aD0 + a2 .

We know that we do not have any problem with a2 . We simply have:
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e−∆+2aD0+a2(t;x, y) = e−ta2

e−∆+2aD0(t;x, y) .

The problem here is that the perturbation is now of order 1 , hence it is not
a bounded operator on L2(S1) . Stil we can study kernel of the operator
e−∆+2aD0 the way we did it in a previous Section. We have to show absolute
convergence of the series

(2.4.1) e∆(t;x, y) +
∞∑

n=1

en,Da(t;x, y) ,

where

en,Da(t;x, y) =

∫ t

0

ds1

∫
S1

du1

∫ s1

0

ds2

∫
S1

du2.....

∫ sn−1

0

dsn

∫
S1

dun

e∆(sn;x, un)2aD0e∆(sn−1;un, un−1).....2aD0e∆(t− s1;u1, y) .

Let us first figure out the straightforward estimates on en,Da(t;x, y) . We
have

|e1,Da(t;x, y)| = 2a·|
∫ t

0

ds

∫
S1

e∆(s;x, u)(
d

du
)e∆(t− s;u, y)| ≤

2a
1

4π
·
∫ t

0

ds√
s(t− s)

∫
S1

e−
(x−u)2

4t · |u− y|
2(t− s)

e−
(u−y)2

4t ≤

2a
1

4π
·
∫ t

0

ds√
s(t− s)

∫
S1

|u− y|
2(t− s)

e−
(u−y)2

4t <
2

4π
·
∫ t

0

ds√
s(t− s)

∫ ∞

0

z

2(t− s)
e−

z2

4t =

2a
1

2π

∫ t

0

ds√
s(t− s

≤ 2a
1

2π

2

t
·
∫ t

0

ds = 2a
1

π
.

More general we have

(2.4.2) |en,Da(t;x, y)| < 1

π
(2a)n 1

1
2
·3
2
·...·n−1

2

(
1√
π

)n−1t
n−1

2 ,

and as in Section 2.3 we proved the uniform and absolute convergence of the
series which formally gives kernel of the operator e−∆+2aD0 , hence we have
just constructed this kernel. Actually again we expect that terms with odd
n should disappear. This follows from the general theory (see for instance
[45] Chapter 1, or [?]). However in our case we can offer a simple argument

which shows that Tr e−tD2
a expands in powers of t rather than

√
t .
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Theorem 2.4.1. There exists a sequence of real numbers {rk}∞k=0 such that
for any natural number N we have

(2.4.3) Tr e−tD2
a −

N∑
k=0

tk−
1
2 rk = O(tN) .

Remark 2.4.2. If we work harder we would be able to prove that there
exist a sequence of smooth functions {fk(x)} such that

eD2
a
(t;x, x)−

N∑
k=0

tk−
1
2fk(x) = O(tN) .

This “Local Variant” of Theorem 2.4.1 for the general Dirac operator is
proved in [45, ?] .

Proof. We use the fact that operators ∆ and D0 = −i d
dx

commute.

Now we write a series which gives the operator e−t(∆+2aD0)

e−t(∆+2aD0) = e−t∆ + (−1)nEn(t) ,

where

En(t) = (2a)n

∫ t

0

ds1

∫ s1

0

ds2...

∫ sn−1

0

dsne
−sn∆D0e

−(sn−1−sn)∆D0...D0e
−(t−s1)∆ =

(2a)n(D0)
ne−t∆·

∫ t

0

ds1

∫ s1

0

ds2...

∫ sn−1

0

dsn = (2a)n· t
n

n!
(D0)

ne−t∆ .

Now Theorem 2.4.1 follows from the fact that D0 = −i d
dx

has symmetric
spectrum which implies the equality

Tr D2n+1
0 e−tD2

= 0 ,

for any natural number n .
�

Corollary 2.4.3. For any real a

(2.4.4) ζD2
a
(0) = 0 .
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Proof. The result follows from the fact that we have just proved

Tr e−tD2
a − Tr e−tD2

0 <
c√
t
,

for 0 < t < 1 . �

2.5. η–Invariant - The Phase of the ζ–Determinant

In this Section we study the η-invariant of the operator Da . The main
result is

Theorem 2.5.1. The function ηDa(s) is a holomorphic function of s for
Re(s) > −2 .

Once again we prove this result by studying Heat Kernels. We remember
formula

ηDa(s) =
1

Γ( s+1
2

)
·
∫ ∞

0

t
s−1
2 Tr Dae

−tD2
adt .

We now decompose Tr Dae
−tD2

a and use the fact that Tr D0e
−tD2

0 is equal
to 0

Tr Dae
−tD2

a = Tr Dae
−tD2

a − Tr D0e
−tD2

0 =

Tr(Da−D0)e
−tD2

a−Tr D0(e
−tD2

a−e−tD2
0) = a·Tr e−tD2

a−Tr D0(e
−tD2

a−e−tD2
0) .

We know the expansion of the first summand on the right side

(2.5.1) a·Tr e−tD2
a − a·

√
π

t
+ c1·

√
t = O(t

3
2 ) .

Now we remember that

e−tD2
a = e−ta2

e−t(∆−2aD0) = e−ta2

(e−t(∆−2aD0) − e−t∆) + e−ta2

e−t∆ ,

and we have to study now

(2.5.2)

Tr D0(e
−tD2

a−e−tD2
0) = Tr e−ta2D0(e

−t(∆−2aD0)−e−t∆)+Tr (e−ta2−Id)D0e
−t∆ .
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The second term on the right side is again equal to 0 and finally we only
have to show that Tr e−ta2D0(e

−t(∆−2aD0)−e−t∆) has the correct asymptotic.
It was already observed in Section 2.4 that

(2.5.3) e−t(∆−2aD0) − e−t∆ =
∞∑

n=1

(2at)n

n!
Dn

0 e
−t∆ .

hence we do have

Tr D0(e
−tD2

a − e−tD2
0) = Tr e−ta2D0e

−t(∆−2aD0) =

Tr e−ta2
∞∑

n=1

(2at)n

n!
Dn+1

0 e−t∆ = Tr e−ta2
∞∑

k=1

(2at)2k−1

(2k − 1)!
D2k

0 e
−t∆ .

Now let us use an extra symmetry we have in this formula

(2.5.4) Tr D2k
0 e

−t∆ = (−1)k(
d

dt
)k(Tr e−tD2

) = (−1)k(
d

dt
)k(

√
π√
t

+O(e−
c
t )) .

We have proved following result

Proposition 2.5.2. There exist a sequence of constants {bk} such that

(2.5.5) Tr Dae
−tD2

a ∼ b0√
t

+ b1
√
t+ ... .

However we are not out of trouble if the situation in the neighborhood
of s = 0 is concerned. This is due to the fact that we have to study

lim
s→0

1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr Ddae

−tD2
adt ,

and in this situation factor 1
Γ(s)

is replaced by 1
Γ( s+1

2
)

, hence the singularity

which comes from the heat kernel is not cancelled by singularity of Γ(s) .
Now, when you study more precisely formulas (2.5.1) and (7.2.3) . We come
to a conclusion that actually we have

(2.5.6) b0 = 0 ,
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in (2.5.5), but as in these notes a focus is on different methods related to
Heat Kernel we offer yet another argument. This type of argument is used
quite often in different contexts in Spectral Geometry. We define a function

R(a) = Ress=0ηDa(0) .

Theorem 2.5.3.

(2.5.7)
dR
da

= 0

We need the next Lemma in the proof of Theorem 2.5.3.

Lemma 2.5.4.

(2.5.8) ˙e−tD2
a =

d

da
(e−tD2

a) = −
∫ t

0

e−sD2
a(ḊaDa +DaḊa)e−(t−s)D2

ads .

Remark 2.5.5. Of course (2.5.8) is the formula which holds for the smooth,
1-parameter family of Dirac operators over closed manifold. In the partic-
ular case of the operator Da = −i d

dx
+ a on S1 , we have Ḋa = dDa

da
= 1 and

(2.5.8) becomes

˙e−tD2
a = −2

∫ t

0

Dae
−tD2

ads = −2tDae
−tD2

a .

Proof. In the Lemma 2.5.4 we study variation of the Heat Kernel under
the smooth change of the Dirac operator

d

da
{e−tD2

a} = lim
r→0

1

r
·(e−tD2

a+r − e−tD2
a) = lim

r→0

1

r
·
∫ t

0

d

ds
(e−sD2

a+re−(t−s)D2
a)ds =

lim
r→0

1

r
·
∫ t

0

e−sD2
a+r(D2

a −D2
a+r)e

−(t−s)D2
ads =

lim
r→0

∫ t

0

e−sD2
a
D2

a −D2
a+r

r
e−(t−s)D2

ads+lim
r→0

∫ t

0

1

r
(e−sD2

a+r−e−sD2
a)(D2

a−D2
a+r)e

−(t−s)D2
ads =
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−
∫ t

0

e−sD2
aḊ2

ae
−(t−s)D2

ads+ 0 = −
∫ t

0

e−sD2
a(ḊaDa +DaḊa)e−(t−s)D2

ads .

�

Proof. Now we are ready to prove Theorem 2.5.3.

We have

(2.5.9) R(a) = lim
s→0

s· 1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr Dae

−tD2
adt .

and we study the variation of the integral on the right side of (2.5.9).

d

da
{
∫ ∞

0

t
s−1
2 Tr Dae

−tD2
adt} =

∫ ∞

0

t
s−1
2 Tr Ḋae

−tD2
adt+

∫ ∞

0

t
s−1
2 Tr Da{ ˙e−tD2

a}dt =

∫ ∞

0

t
s−1
2 Tr Ḋae

−tD2
adt+

∫ ∞

0

t
s−1
2 Tr Da

˙e−tD2
adt =

∫ ∞

0

t
s−1
2 Tr Ḋae

−tD2
adt−2

∫ ∞

0

t
s−1
2 Tr tḊaD2

ae
−tD2

a =

∫ ∞

0

t
s−1
2 Tr Ḋae

−tD2
adt+

2

∫ ∞

0

t
s+1
2
d

dt
(Tr Ḋae

−tD2
a)dt =

∫ ∞

0

t
s−1
2 Tr Ḋae

−tD2
adt+2 lim

ε→0
(t

s+1
2 Tr Ḋae

−εD2
a)|

1
ε
ε−

2

∫ ∞

0

d

dt
(t

s+1
2 )Tr Ḋae

−tD2
adt .

The limit

lim
ε→0

(t
s+1
2 Tr Ḋae

−εD2
a)|

1
ε
ε

is equal to 0 for the invertible operator Da and s > 0 and we obtain a crucial
formula

(2.5.10)
d

da
{
∫ ∞

0

t
s−1
2 Tr Dae

−tD2
adt} = −s

∫ ∞

0

t
s−1
2 Tr Ḋae

−tD2
adt .

Once again formula simplifies in the case of Da on S1 as Ḋa = 1 . Now we
finally have information about the variation of the residuum

dR
da

=
d

da
lim
s→0

s·ηDa(s) = − lim
s→0

s

Γ( s+1
2

)

d

da
{
∫ ∞

0

t
s−1
2 Tr Dae

−tD2
adt} =
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− 1√
π

lim
s→0

s2

∫ ∞

0

t
s−1
2 Tr e−tD2

adt = 0

�

Let us observe that in fact we also obtain the formula for the variation
of the η-invariant i.e. the number ηDa(0) .

η̇Da(0) = lim
s→0

−s
Γ( s+1

2
)

∫ ∞

0

t
s−1
2 Tr e−tD2

adt = − 1√
π
· lim

s→0
s·
∫ 1

0

t
s−1
2 Tr e−tD2

adt =

− 1√
π
· lim

s→0
s·
∫ 1

0

t
s−1
2 (

√
π

t
+r1
√
t+O(t

3
2 ))dt = − 1√

π
· lim

s→0
s·
∫ 1

0

t
s−1
2

√
π

t
dt =

− lim
s→0

s·
∫ 1

0

t
s
2
−1dt = − lim

s→0
s·1s

2

= −2 .

Theorem 2.5.3 implies that ηDa(s) is a holomorphic function of s in the
neighborhood of s = 0 , beacause we know that

R(0) = 0 ,

and by Theorem 2.5.3 , this extends to any real number a . In fact we have
proved more, because equality (2.5.5) implies that there exists constant
c > 0 such that for any 0 < t ≤ 1 we have

(2.5.11) |Tr Dae
−tD2

a| < c
√
t ,

which gives us representation

Tr Ddae
−tD2

a = b1
√
t+ b2t

3
2 +O(t

5
2 ) .

Now we can discussed structure of the η-function of Da

1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr De−tD2

adt =
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 (b1

√
t+ b2t

3
2 +O(t

5
2 ))dt =

1

Γ( s+1
2

)

∫ 1

0

t
s−1
2 (b1

√
t+ b2t

3
2 +O(t

5
2 ))dt+ h(s) =

b1
Γ( s+1

2
)

∫ 1

0

t
s
2dt+

b2
Γ( s+1

2
)

∫ 1

0

t
s
2
+1 + h1(s) + h(s) ,

where h(s) is a holomorphic function on the whole complex plane and h1(s)
is holomorphic for Re(s) > −6 . This shows that there exists h2(s) a
function holomorphic for Re(s) > −6 , such that
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(2.5.12) ηDa(s) =
b1

Γ( s+1
2

)
· 2

s+ 2
+

b2
Γ( s+1

2
)
· 2

s+ 4
+ h2(s) .

In particular Theorem 2.5.1 is proved.

Corollary 2.5.6.

(2.5.13) ηDa(0) =
1√
π

∫ ∞

0

1√
t
T r Dae

−tD2
adt .

Proof. Theorem 2.5.1 implies that we can apply second formula in
(2.1.4) for any s with Re(s) > −2 . �

Corollary 2.5.7.

(2.5.14) η̇Da(0) = − 2√
π
· lim

ε→0

√
ε·Tr Ḋae

−εD2
a ,

which in the case of operator Da on S1 gives η̇Da(0) = −2 .

Proof. We differentiate equation (2.5.14)

d

da
ηDa(0) =

d

da
(

1√
π

∫ ∞

0

1√
t
T r Dae

−tD2
adt) =

1√
π

∫ ∞

0

1√
t
T r Ḋae

−tD2
adt+

2√
π

∫ ∞

0

√
t· d
dt

(Tr Ḋae
−tD2

a)dt =
1√
π

∫ ∞

0

1√
t
T r Ḋae

−tD2
adt+

2√
π
· lim

ε→0
(
√
t·Tr Ḋae

−tD2
a)|

1
ε
ε−

1√
π

∫ ∞

0

1√
t
T r Ḋae

−tD2
adt = − 2√

π
· lim

ε→0

√
ε·Tr Ḋae

−εD2
a .

In the case of Da on S1 we have

− 2√
π
· lim

ε→0

√
ε·Tr Ḋae

−εD2
a = − 2√

π
· lim

ε→0

√
ε·(
√
π

ε
+O(

√
ε)) = −2 .

�
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Theorem 2.5.8.

(2.5.15) ηDa(0) = 1− 2a .

Proof. We have just proved that

ηDa(0) = −2a mod Z .

More precisely η̃Da(0) continous part of ηDa(0) (as function of a) is equal to
−2a . Now we see that we can argue that formula

ηDa(s) =
1

as
+
∑
k 6=0

sign(k + a)|k + a|s

invites us to put lims→0 ηDa(s) = 1 + η̃Da(0) = 1 − 2a . However, we can
argue for some other choice as well. As we can see in the next section our
choice of the integer comes from the determinant theory. �

It follows now from Theorem 2.5.8 and Corollary 2.4.3 that we know the
phase of the ζ-determinant of the operator Da

Corollary 2.5.9. The pahse of the detζDa is eqqual to e2a−1 .

In the next Section we deal with the modulus of the ζ-determinant.

2.6. Modulus of detζDa

There are some reason beyond the scope of this notes (see for instance
[94, 95], which tell us that we should pick up the operator D 1

2
= −i d

dx
+ 1

2

and assume that its ζ-determinant is equal to 1 and then obtain the value
of the ζ-determinant for other Da by studying variation of the determinant
with respect to a. We will show later on that we also obtain equality

detζD 1
2

= 1

from the argument from Elementary Number Theory. We start however
with study of the variation of the modulus with respect to the parameter
a . Now, then phase is − half of ζ ′D2

a
(0) = d

ds
z′D2

a
(s)|s=0 . We know that

ζD2
a
(s) is holomorphic in the neighborhood of s = 0 and we can take the

derivative with respect to s , which gives
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lim
s→0

d

ds
(

1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2
adt) = lim

s→0
(−Γ′(s)

Γ(s)2

∫ ∞

0

ts−1Tr e−tD2
adt)+

lim
s→0

(
1

Γ(s)

d

ds
(

∫ ∞

0

ts−1Tr e−tD2
adt)) = lim

s→0
(−Γ′(s)

Γ(s)2

∫ ∞

0

ts−1Tr e−tD2
adt) .

Remark 2.6.1. The fact that lims→0(
1

Γ(s)
d
ds

(
∫∞

0
ts−1Tr e−tD2

adt)) dissapear

is due to the absence of the singularity of the functionK(s) =
∫∞

0
ts−1Tr e−tD2

adt
at s = 0 and it is characteristic for dimension 1 , or more general for odd di-
mensional manifold M . In the even-dimensional case this part may produce
additonal contribution.

We know that Γ′(s) = − 1
s2 +h(s) , where h(s) is a holomorphic function

in the neighborhood of s = 0 , hence we arrived at the equation

(2.6.1)
d

ds
(

1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2
adt)|s=0 = lim

s→0

∫ ∞

0

ts−1Tr e−tD2
adt =

∫ ∞

0

1

t
·Tr e−tD2

adt .

We use Lemma 2.5.4 to study the variation of the right side of (2.6.1)
and obtain

(2.6.2)
d

da

∫ ∞

0

1

t
·Tr e−tD2

adt = −2·
∫ ∞

0

Tr ḊaDae
−tD2

adt = −2·
∫ ∞

0

Tr Dae
−tD2

adt = −2·ηDa(1) .

We work on the expression
∫∞

0
Tr Dae

−tD2
adt in order to obtain the

variation. We may assume that Da is invertible, hence∫ ∞

0

Tr Dae
−tD2

adt =

∫ ∞

0

Tr D−1
a D2

ae
−tD2

adt = −
∫ ∞

0

d

dt
(Tr D−1

a e−tD2
a)dt =

lim
ε→0

(Tr D−1
a e−tD2

a)|
1
ε
ε = − lim

ε→0
Tr D−1

a e−εD2
a .

We have just proved

Proposition 2.6.2.

(2.6.3)
d

da
ζ ′D2

a
(0) = 2· lim

ε→0
Tr D−1

a e−εD2
a .



36 2. THE ζ–DETERMINANT ON THE CIRCLE

We need a formula for the operator D−1
a in order to get the right side of

(2.6.3) . The point is that we have an explicit formula for ka(x, y) kernel of
the operator D−1

a

(2.6.4) ka(x, y) :=

{
− ie−i(x−y)

1−e2πia for x < y

+ ie−i(x−y)

1−e−2πia for x > y
.

Now we have

d

da
ζ ′D2

a
(0) = 2· lim

ε→0

∫
S1

dx

∫
S1

dy ka(x, y)eD2
a
(t; y, x) =

2· lim
ε→0

∫
S1

dx

∫
|x−y|<δ

dy ka(x, y)eD2
a
(t; y, x) .

The last equality follows from the fact that the Heat Kernel e(t;x, y) is
exponentially dying when the distance between x and y is bounded away
from 0 and time is going to 0 . In other words

lim
ε→0

ka(x, y)eD2
a
(t; y, x) = 0 for |x− y| > δ .

Therefore we do have

d

da
ζ ′D2

a
(0) = 2· lim

ε→0

∫
S1

dx

∫
r<δ

dr{ka(x;x+r)eD2
a
(ε;x+r, x)+{ka(x;x−r)eD2

a
(ε;x−r, x)} =

2· lim
ε→0

∫
S1

dx

∫
r<δ

dre−ira{− i

1− e2πia
+

i

1− e−2πia
} 1√

4πε
e−

r2

4ε =

4π· sin 2πa

1− cos 2πa
· lim

ε→0

∫
r<δ

dre−ira 1√
4πε

e−
r2

4ε = 2π· sin 2πa

1− cos 2πa
.

and we have proved

Proposition 2.6.3.

(2.6.5)
d

da
ζ ′D2

a
(0) = 2π· sin 2πa

1− cos 2πa
.



CHAPTER 3

The ζ–Determinant on the Interval

We illustrate both constructions of the determinant, the an-
alytical and the geometrical by the most simple conceivable
example, the determinant of the Dirac operator −i d

dx + r on
the interval and determine the variation of the determinant
under change of the parameter r and the coupling condition.

3.1. Introduction

A long standing question in mathematics and mathematical physics is:

How natural is the ζ–renormalization procedure leading to the definition of
the determinant of the Dirac operator?

We offer a detailed discussion of this question in the general case in
the paper [94] (for work in progress, see also [93]). In this note we give
a presentation of the 1-dimensional toy model for the general theory. The
answer is positive, in the sense that we show using heat kernel methods that
the ζ–determinant is, up to a multiplicative constant, equal to a canonically
defined algebraic determinant. Moreover, we are able to demonstrate all our
analytical tools at work in this simple situation and also to explain several
conceptual problems which arise in the theory. Therefore this note serves
as an announcement and a pilot for a general analysis of the ζ–determinant
of an elliptic boundary value problem to be presented in [94] and to be
elaborated in the sequel.

We avoid discussion of the general theory of the ζ–determinant in di-
mension 1. Our analytical results, though they were not published before,
can be obtained by using different methods. We refer to [?] for related
results and an extensive bibliography of the subject.

We study the ζ–determinant of the operator −i d
dx

, or more generally

−i d
dx

+B(x), where B(x) is a self–adjoint n×n matrix, acting on Cn–valued
functions on the interval [0, 2π]. We have to pose a boundary condition in
order to obtain a self–adjoint operator with a discrete spectrum. Such
boundary conditions are parameterised by unitary operators T : Cn → Cn,
defining DT as the closed self–adjoint extension of the operator D := −i d

dx
with the domain

(3.1.1) {s ∈ C∞([0, 2π]; Cn) | s(2π) = Ts(0)} .
To make a connection with the Grassmannian description of the space of
boundary conditions used in [93] , let us observe that the space of boundary
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data can be identified with Cn⊕Cn = {(s(0), s(2π)) | s ∈ C∞([0, 2π]; Cn)}
and there is an orthogonal projection onto the set of boundary data deter-
mined by condition T

PT =
1

2

(
Id T−1

T Id

)
.

We define the canonical determinant detCDT of the operator DT , by the
formula

(3.1.2) detCDT := det
IdCn − T−1

2
.

Let us recall that the ζ–determinant detζDT of the operator DT , in-
troduced by Ray and Singer in [84] (see also [100], [?]), is given by the
formula

(3.1.3) detζDT = e
iπ
2

(ηDT
(0)−ζD2

T
(0))·e−1/2· (d/ds(ζD2

T
)|s=0)

.

Here is the main result of this note:

Theorem 3.1.1. There exists a constant C such that for any unitary T the
following equality holds

detCDT = C·detζDT .

Actually, for the choices of (3.1.2) and (4.3.1), we shall find (in Propo-
sition 3.3.5 below) that the constant C takes the value 2n.

The Theorem shows that the ζ–determinant can be obtained by a “healthy”
algebraic procedure.

Remark 3.1.2. (a) The canonical determinant, as defined above, appears
naturally in the higher dimensional case (see [93] and [94]). The deter-
minant line bundle over the infinite–dimensional Grassmannian of elliptic
boundary conditions for a Dirac operator is a non-trivial complex line bun-
dle with canonical determinant section, as defined by Quillen. This bundle
restricted to the sub–Grassmannian of self–adjoint conditions becomes a
trivial line bundle, and the canonical section becomes a function once we
fix a trivialization. In [93] it was shown that there is a natural choice of
trivialization; the canonical determinant of an elliptic boundary value prob-
lem for the Dirac operator is precisely the value of the canonical section in
this trivialization.
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Now, in the 1–dimensional case, the Grassmannian is finite–dimensional
and there are no trivializations determined by the Calderón projection or
the tangential operator. Nevertheless we observe that

• The operator D−Id has spectrum {2k+1
2
}k∈Z , hence it corresponds

to the operator −i d
dx

+ 1
2

on S1 , which is the Dirac operator defined
by the non–trivial Spin–structure on S1 . This makes it somewhat
natural to assume that detCD−Id is equal to 1 .
• The operator DId has spectrum equal to the set of integers (more

precisely equal to the direct sum of n copies of Z), hence it is non–
invertible and its determinant should be equal to 0. More generally,
DT is non–invertible, whenever 1 is an eigenvalue of the matrix T .
This narrows a reasonable choice to

det
IdCn − T±1

2
.

• The choice of the −1 in the exponent of T in the formula is also
motivated by the higher dimensional case. It makes (3.1.2) con-
sistent with the definition of the canonical determinant given in
formula (2.4) of [93] if we assume the transformation K in (2.4)
of [93], which determines the Calderon projection, corresponds to
−Id, and the transformation S defining the boundary condition
corresponds to T .

(b) The essential novelty of the results presented here is the method. The
variational formula of [?] is with respect to a variation of an operator with
a fixed boundary condition and is obtained via a contour integral. Here
we deal with the harder problem of proving the variational equality with
respect to the boundary condition and using the heat kernel representation
of the spectral ζ-function. Thus we prove the projective equality of the
determinants as functions on the unitary group U(n) considered as the
parameter space of self-adjoint boundary conditions.

We study the variation of the ζ-determinant to prove Theorem 3.1.1.
We actually show that the variation of the phase of detζ is equal to the
variation of the phase of detC and that the variation of the modulus of detζ

is equal to the variation of the modulus of detC .

Remark 3.1.3. The proof suggests that one can fix the value of detζ of the
operator D−Id as 1 and use the integral from the variation in order to define
detζ on the whole of U(n) . This modified ζ–determinant is equal to detC.
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In Section 1 we present formulas for the variation of detC. In Section 2
we discuss the variation of detζ and, in order to determine the constant C,
compute detζ(D−Id).

3.2. The Variation of the Canonical Determinant

In this Section we discuss the variation of detCDT at a fixed boundary
condition T . We replace T by Tr := eirαT , where α = α∗ is a self–adjoint
n× n matrix and compute

d/dr{detCDTr}|r=0 .

The result is stated in the following Proposition.

Proposition 3.2.1. Let RT (α) denote d/dr{ln detCDTr}|r=0 , then the
phase of the variation d/dr{detCDTr}|r=0 is given by the formula

(3.2.1) Im RT (α) = −tr α

2
and the modulus is equal to

(3.2.2) Re RT (α) = − i
2
· tr α(Id + T )(Id− T )−1 .

Proof. We use the formula

(3.2.3)
d

dr
{ln det Sr} = Tr (

d

dr
{Sr}S−1

r ) ,

which in the case Sr := Id−T−1
r

2
gives

RT (α) = d/dr{ln detCDTr}|r=0 = −i· tr α(Id− T )−1 .

It follows that the phase of the variation of the determinant is equal to

Im RT (α) =
1

2i
· tr {−iα(Id− T )−1 − (−iα(Id− T )−1)∗}

= −1

2
· tr {α(Id− T )−1 + (Id− T−1)−1α}

= −1

2
· tr {α(Id− T )−1 − α(Id− T )−1T} = −tr α

2
.

We compute the modulus of RT (α) in the same way

Re RT (α) =
1

2
· tr {−iα(Id− T )−1 + (−iα(Id− T )−1)∗}

= − i
2
· tr {α(Id− T )−1 − α(Id− T−1)−1} = − i

2
· tr α(Id− T )−1(Id + T ) .

�
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3.3. The Variation of the ζ–Determinant

Now we study the variation of the ζ–determinant under the change of
the boundary condition described at the beginning of Section 1. We use a
unitary twist in order to keep the boundary condition fixed and vary the
operator inside the interval away from the boundary. This method was
used for the first time in this context in [40] and since then has been crucial
in obtaining several interesting results in spectral geometry (see [62], [93],
[?]). We introduce a smooth cut–off function f : [0, 2π] → [0, 1] equal to 1
for 0 ≤ x ≤ π/2 and equal to 0 for 3π/2 ≤ x ≤ 2π and define a unitary
transformation of the (trivial) bundle S1 ×Cn as follows

(3.3.1) Ur(x) := T−1eirf(x)αT .

The operator DTr is unitarily equivalent to the operator

Dr := (Ur(−i
d

dx
)U−1

r )T ,

hence we can compute the variation of the ζ–determinant of DTr by com-
puting the variation of the family of operators

Dr = −i d
dx
− rf ′(x)T−1αT ,

with fixed domain {s | s(2π) = Ts(0)} . Equivalently, we can study the
operator

−i d
dx
− rf ′(x)T−1αT : C∞(S1;VT )→ C∞(S1;VT ),

where VT denotes the complex bundle over S1 defined by T . Now, we can
(as in [93]) directly compute the value of the invariants of the operator Dr

which contribute to the phase. Alternatively, we can use the result from
the case of closed manifolds, see [45]. In any case we have the following
well–known result.

Lemma 3.3.1. For any T ∈ U(n) and for any self–adjoint n × n matrix α
the following equalities hold

(3.3.2) ζD2
T
(0) = 0 and

d

dr
{ηDr(0)}|r=0 = −tr α

π
.

Corollary 3.3.2. The variation of the phase of detζ is equal to the vari-
ation of the phase of detC .
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We need to do more extensive work in order to compute the variation
of the modulus of detζ . We have to study the variation of ζ ′D2

T
(0) , which is

given by the regularized integral∫ ∞

0

1

t
·Tr e−tD2

T dt = lim
s→0
{
∫ ∞

0

ts−1·Tr e−tD2
T dt−

ζD2
T
(0)

s
} .

Actually, ζD2
T
(0) vanishes by Lemma 4.3.2 and the integral on the left side

of the identity is well–defined. Now we differentiate with respect to the
parameter and obtain

d

dr
{ζ ′D2

r
(0)}|r=0 =

∫ ∞

0

1

t
·Tr(−2tḊ0D0e

−tD2
0)dt

= −2

∫ ∞

0

Tr Ḋ0D−1
0 D2

0e
−tD2

0dt

= 2

∫ ∞

0

Tr Ḋ0D−1
0

d

dt
(e−tD2

0)dt

= 2· lim
ε→0

(Tr Ḋ0D−1
0 e−tD2

0)|t=1/ε
t=ε = −2· lim

ε→0
Tr Ḋ0D−1

0 e−εD2
0 .

This gives us the following formula for the variation of the modulus

(3.3.3)
d

dr
{−1

2
ζ ′D2

r
(0)}|r=0 = lim

ε→0
Tr Ḋ0D−1

0 e−εD2
0 .

We only need an explicit formula for the kernel of the operator D−1
0 =

D−1
T , to evaluate this formula.

Lemma 3.3.3. Let kT (x, y) denote the kernel of the operator D−1
T . Then

kT (x, y) =

{
−i(Id− T )−1 for x < y

i(Id− T−1)−1 for x > y .

Now we can evaluate the variation of the modulus of detζ . We have:

d

dr
{−1

2
ζ ′D2

r
(0)}|r=0 = lim

ε→0
Tr Ḋ0D−1

0 e−εD2
0

= − lim
ε→0

∫ 2π

0

dx tr
(
f ′(x)T−1αT

∫ 2π

0

kT (x, y)E(ε; y, x)dy
)
,

where E(ε; y, x) denotes the kernel of the operator e−εD2
0 . It is immediate

from the properties of the heat kernel that

(3.3.4) lim
ε→0

∫ 2π

0

dx tr
(
f ′(x)T−1αT

∫
{y;|x−y|>σ}

kT (x, y)E(ε; y, x)dy
)

= 0
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for any σ > 0 . Moreover, f ′(x) is equal to 0 for x outside of the interval
[π/2, 3π/2] , hence we use Duhamel’s Principle and replace the original heat
kernel by the heat kernel of the operator −d2/dx2 on the real line. We have

d

dr
{−1

2
ζ ′D2

r
(0)}|r=0

= − lim
ε→0

∫ 2π

0

dx tr
(
f ′(x)T−1αT

∫
{y;|x−y|<σ}

kT (x, y)E(ε; y, x)dy
)

= − lim
ε→0

∫ 2π

0

dx tr
(
f ′(x)T−1αT{−i(Id− T )−1

∫ σ

0

1√
4πε

e−r2/4εdr

+ i(Id− T−1)−1

∫ σ

0

1√
4πε

e−r2/4εdr}
)

= − i√
π
·
∫ 2π

0

tr
(
f ′(x)T−1αT{(Id− T−1)−1 − (Id− T )−1}

)
dx

· lim
ε→0

∫ σ

0

e−r2/4ε dr

2
√
ε

=
i√
π
·
√
π

2
· tr
(
T−1αT{(Id− T−1)−1 − (Id− T )−1}

)
= − i

2
· tr T−1αT (Id− T )−1(Id + T ) .

This ends the proof of Theorem 0.1.

A particular corollary of our computations, which may be of independent
interest, (at least in dimensions higher than 1) is that the only critical point
of the modulus of the determinant is the ‘normalizing’ and ‘diagonalizing’
boundary condition given in dimension 1 by T = −Id:

Corollary 3.3.4. The variation of the modulus of the determinants detζ

and detC at T = −Id is equal to 0.

We determine the proportionality constant between detζ and detC by cal-
culating the precise value of detζ(DT ) at T = −Id. Recall that by definition
detC(D−Id) = 1 .

Proposition 3.3.5. For the operator D = −i d
dx

acting on Cn–valued func-
tions on the interval [0, 2π] we have

detζ(D−Id) = 2n .
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Proof. We use well-known formulas for the Hurwitz ζ function. As
noted in Remark 0.2, D−Id has the same spectrum as −i d

dx
+ 1

2
Id acting on

C∞(S1; Cn). More generally, consider the operator DA = −i d
dx

+A where A
is a n×n diagonal matrix with diagonal entries 0 < ai ≤ 1. Since obviously

(3.3.5) detζDA =
n∏

i=1

detζDai

where Dai
= −i d

dx
+ ai is acting on C∞(S1; C), it will be enough for us to

consider the rank n = 1 case. So we are going to compute the ζ determinant

(3.3.6) detζ(Da) = e
iπ
2

ηDa (0) · (detζD
2
a)1/2

of Da = −i d
dx

+a with 0 < a ≤ 1. To do so we use the Hurwitz zeta-function

(3.3.7) ζ(s, a) =
∞∑

n=0

1

(n+ a)s
.

So ζ(s, 1) = ζ(s). This has the analytically continued values

(3.3.8) ζ(0, a) =
1

2
− a, ζ ′(0, a) = log Γ(a)− 1

2
log(2π).

We then have (choosing (−1)−s = eiπs):

(3.3.9)
∑
n∈Z

1

(n+ a)s
= ζ(s, a) + eiπsζ(s, 1− a).

We also have

(3.3.10) spec(Da) = {n+a | n ∈ Z} and spec(D2
a) = {(n+a)2 | n ∈ Z}.

So that:
(3.3.11)
ζDa(s) = ζ(s, a) + eiπsζ(s, 1− a) and ζD2

a
(s) = ζ(2s, a) + ζ(2s, 1− a).

Hence using (11.2.1)

(3.3.12) ζDa(0) = 0 and ζD2
a
(0) = 0.

Using Γ(z)Γ(1 − z) = π/ sin(πz) and (11.2.1), an elementary computation
from (11.2.6) gives

(3.3.13) ζ ′Da
(0) = − log(2 sin(πa))− iπ

2
(1− 2a)

and

(3.3.14) ζ ′D2
a
(0) = − log(4 sin2(πa)).

Thus by (3.3.6)

(3.3.15) detζDa = e
iπ
2

(1−2a) · 2 sin(πa) = e
iπ
2

(1−2a)(detζD
2
a)1/2 .

One can easily check the exponent is η(0). In particular, then for a = 1/2

(3.3.16) (detζD
2
a=1/2)

1/2 = 2 sin(π/2) = 2
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and from (10.2.10) we arrive at 2n for the modulus of the zeta determinant
at T = −Id. �

Remark 3.3.6. Proposition 3.3.5 also follows from [91] where contour in-
tegral methods were used to prove the equality

(3.3.17) detζ(DT ) = det(Id +R−1) .

[Notice the different sign of R in (10.2.9) , since in this note we are consider-
ing the boundary condition (i.e. f(2π) = Tf(0)) orthogonal to the one con-
sidered in [91] (i.e. f(2π) = −Rf(0) or, equivalently, PR(f(0), f(2π)) = 0)].

3.4. The Operator −i d
dx

+B(x) - still erronneous

Let us observe that, in fact, the case of the operator D = −i d
dx

+
B(x) , where {B(x)}x∈[0,2π] denotes a smooth family of self–adjoint n × n
matrices does not introduce new features. We can explain this by using
the unitary twist again. We define a holonomy operator (holonomy of a
connection ∇ = iD) by the formula

(3.4.1) h(x) = ei
∫ x
0 B(u)du .

Proposition 3.4.1. The operator DT is unitary equivalent to the operator
(−i d

dx
)HT , where the matrix H is equal to h(2π).

Proof. Let Ds = λs and s(2π) = Ts(0) , then we have

−i d
dx

(hs) = h(h−1(−i d
dx

)h)s = h(−i d
dx

+ h−1(−i)iB(x)h)s

= h(−i d
dx

+B(x))s = λ(hs) ,

and
(hs)(2π) = H(s(2π)) = HT (s(0)) .

�





CHAPTER 4

EBVP and Grassmannians

4.1. Dirac Operators - Clifford, Compatible Conn., Product
Structure, Index on Closed Mf., Green’s Formula, Calderon

Projector

. . .
We now give a more detailed presentation of the situation discussed in

this paper. Let D : C∞(M ;S) → C∞(M ;S) denote a compatible Dirac
operator acting on the space of sections of a bundle of Clifford modules S
over compact manifold M with boundary Y . It is not actually necessary to
assume that D is a Compatible Dirac Operator. Further technical comments
are made in the final Section of the paper.

In the present paper we always assume that M is an odd-dimensional
manifold; the even-dimensional case will be discussed separately. And we
discuss only the Product Case. Namely we assume that the Riemannian
metric on M and the Hermitian structure on S are products in a certain
collar neighborhood of the boundary. Let us fix a parameterization N =
[0, 1]× Y of the collar. Then in N the operator D has the form

(4.1.1) D = G(∂u +B) ,

where G : S|Y → S|Y is a unitary bundle isomorphism (Clifford multi-
plication by the unit normal vector) and B : C∞(Y ;S|Y ) → C∞(Y ;S|Y )
is the corresponding Dirac operator on Y , which is an elliptic self-adjoint
operator of first order. Furthermore, G and B do not depend on the normal
coordinate u and they satisfy the identities

(4.1.2) G2 = −Id and GB = −BG .

Since Y has dimension 2m the bundle S|Y decomposes into its positive and
negative chirality components S|Y = S+

⊕
S− and we have a corresponding

splitting of the operator B into B± : C∞(Y ;S±) → C∞(Y ;S∓) , where
(B+)∗ = B− . Equation (7.1.2) can be rewritten in the form(

i 0
0 −i

)(
∂u +

(
0 B−

B+ 0

))
.
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4.2. Global Elliptic Boundary Conditions and Grassmannian(s)

In order to obtain an unbounded Fredholm operator with good elliptic reg-
ularity properties we have to impose a boundary condition on the opera-
tor D . Let Π≥ denote the spectral projection of B onto the subspace of
L2(Y ;S|Y ) spanned by the eigenvectors corresponding to the nonnegative
eigenvalues of B. It is well known that Π≥ is an elliptic boundary condi-
tion for the operator D (see [5], [27]). The meaning of the ellipticity is as
follows. We introduce the unbounded operator DΠ≥ equal to the operator
D with domain

dom DΠ≥ = {s ∈ H1(M ;S) ; Π≥(s|Y ) = 0} ,
where H1 denotes the first Sobolev space. Then the operator

DΠ≥ = D : dom(DΠ≥)→ L2(M ;S)

is a Fredholm operator with kernel and cokernel consisting only of smooth
sections.

The orthogonal projection Π≥ is a pseudodifferential operator of order
0 (see [27]). In fact we can take any pseudodifferential operator R of order
0 with principal symbol equal to the principal symbol of Π≥ and obtain an
operator DR which satisfies the aforementioned properties.

In order to explain this phenomenon, we give a short exposition of the
necessary facts from the theory of elliptic boundary problems. In contrast
to the case of an elliptic operator on a closed manifold, the operator D has
an infinite-dimensional space of solutions. More precisely, the space

{s ∈ C∞(M : S) ; Ds = 0 in M \ Y }

is infinite-dimensional. We introduce Calderon projection, which is the
projection onto H(D) the Cauchy Data space of the operator D

H(D) = {f ∈ C∞(Y ;S|Y ) ; ∃s∈C∞(M ;S) D(s) = 0 in M \ Y and s|Y = f} .

The projection P (D) is a pseudodifferential operator with principal symbol
equal to the symbol of Π≥ . It is also an orthogonal projection in the
case of a Dirac operator on an odd-dimensional manifold (see [27]). The
operator D has the Unique Continuation Property, and hence we have a
one to one correspondence between solutions of the operator D and the
traces of the solutions on the boundary Y . This explains roughly, why only
the projection PR onto the kernel of the boundary conditions R matters.
If the difference PR − P (D) is an operator of order −1 , then it follows
that we must choose the domain of the operator DR in such a way that
we throw away almost all solutions of the operator D on M \ Y , with the
possible exception of a finite dimensional subspace. The above condition
on PR allows us also to construct a parametrix for the operator DR, hence
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we obtain regularity of the solutions of the operator DR . We refer to the
monograph [27] for more details.

We can therefore restrict ourselves to the study of the Grassmannian
Gr(D) of all pseudodifferential projections which differ from Π≥ by an op-
erator of order −1. The space Gr(D) has infinitely many connected compo-
nents and two boundary conditions P1 and P2 belong to the same connected
component if and only if

index DP1 = index DP2 .

We are interested, however, in self-adjoint realizations of the operator
D. The involution G : S|Y → S|Y equips L2(Y ;S|Y ) with a symplectic
structure, and Green’s formula (see [27])

(4.2.1) (Ds1, s2)− (s1,Ds2) = −
∫

Y

< G(s1|Y ); s2|Y > dy

shows that the boundary condition R provides a self-adjoint realization DR

of the operatorD if and only if ker R is a Lagrangian subspace of L2(Y ;S|Y )
(see [26], [27], [40]). We may therefore restrict our attention to those el-
ements of Gr(D) which are Lagrangian subspaces of L2(Y ;S|Y ). More
precisely, we introduce Gr∗(D), the Grassmannian of orthogonal, pseudo-
differential projections P such that P − Π≥ is an operator of order -1 and

(4.2.2) −GPG = Id− P .

The space Gr∗(D) is contained in the connected component of Gr(D) pa-
rameterizing projections P with index DP = 0 .

For analytical reasons associated with the existence of the ζ-determinant,
in this paper we discuss only the Smooth, Self-adjoint Grassmannian, a
dense subset of the space Gr∗(D), defined by

(4.2.3) Gr∗∞(D) = {P ∈ Gr∗(D) ; P − Π≥ has a smooth kernel} .

The spectral projection Π≥ is an element of Gr∗∞(D) if and only if ker B =
{0} . However, it is well-known that P (D) the (orthogonal) Calderon pro-
jection is an element of Gr∗(D) (see for instance [26]), and it was proved
by the first author that P (D) − Π≥ is a smoothing operator (see [91],
Proposition 2.2.), and hence that P (D) is an element of Gr∗∞(D). The
finite-dimensional perturbations of Π≥ discussed below (see also [40], [62]
and [112]) provide further examples of boundary conditions from Gr∗∞(D) .
The latter were introduced by Jeff Cheeger, who called them Ideal Boundary
Conditions (see [34], [35]).
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For any P ∈ Gr∗(D) the operator DP has a discrete spectrum nicely
distributed along the real line (see [26], [40]). It was shown by the second
author that for any P ∈ Gr∗∞(D), ηDP

(s) and ζD2
P

(s) are well-defined func-

tions, holomorphic for Re(s) large and with meromorphic extensions to the
whole complex plane with only simple poles. In particular both functions
are holomorphic in a neighborhood of s = 0 . Therefore detζDP defined by
formula (??) is a well-defined, smooth function on Gr∗∞(D) (see [113]).

. . .

4.3. Boundary Problems defined by Gr∗∞(D): Inverse Operator
and Poisson Maps

For any P ∈ Gr(D) the operator DP is a Fredholm operator, hence it has
closed range. As a consequence we can define an inverse to the induced
operator domDP/ker DP → L2(M ;S)/coker DP . If we assume that P
is an element of Gr∗(D) , the operator DP is self-adjoint and ker DP =
coker DP . It follows that if we assume ker DP = {0}, then there exists an
inverse D−1

P to the operator DP .

In this section we give an explicit formula for the operator D−1
P . This

formula plays a key role in the proof of the main result of the paper. The
operator D−1

P is a sum of two operators. The first is the interior inverse of
D−1 . The second is a correction term which lives on the boundary.

We start with the ”interior” part of the inverse. Let M̃ = M− ∪Y M
denote the closed double of the manifold M (M− is a copy of M with
reversed orientation). The bundle of Clifford modules S extends to a bundle
S̃ of Clifford modules over M̃ and the operator D determines a compatible
Dirac operator D̃ over M̃ (equal to D on M and −D on M−). We refer
to [109], [39] for the details of these constructions and applications to the
analytic realization of K − homology. The operator D̃ : C∞(M̃ ; S̃) →
C∞(M̃ ; S̃) is an invertible self-adjoint operator, hence its inverse D̃−1 is a
well-defined elliptic operator of order −1 over the manifold M̃ . We also
have natural extension and restriction maps acting on sections of S and S̃.
The extension (by zero) operator e+ : L2(M ;S) → L2(M̃ ; S̃) is given by
the formula:

(4.3.1) e+(s) :=

{
s on M̃ \M−

0 on M−
.

The restriction operator r+ : Hs(M̃ ; S̃)→ Hs(M ;S) , where Hs denotes the

s − th Sobolev space, is given by f̃ → f = f̃ |M . To simplify the notation
in the following we always write
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(4.3.2) D−1 = r+D̃−1e+ .

The operator D−1 is the interior part of the inverse. It is used in several
crucial constructions in the theory of boundary problems. It maps L2(M :
S) into H1(M ;S), however the range is not necessarily inside the domain of
DP . For this reason we have to introduce an additional term to obtain an
operator with the correct range. To do this, we need to study the situation
in a neighborhood of the boundary Y . The restriction of smooth sections
tom the boundary extends to a continuous map:

γ0 : Hs(M ;S)→ Hs− 1
2 (Y ;S|Y ) ,

which is well-defined for s > 1/2 (see [27]). The corresponding adjoint
operator γ∗0 (in the distributional sense) provides us with a well-defined
map

γ∗0 : Hs(Y ;S|Y )→ Hs− 1
2 (M ;S) ,

for s < −1/2 . Now for any real s the mapping

K = r+D̃−1γ∗0Γ : C∞(Y ;S|Y )→ C∞(M ;S)

extends to a continuous map K : Hs−1/2(Y ;S|Y ) → Hs(M ;S), with range
equal to the space

ker(D, s) = {f ∈ Hs(M ;S) : Df = 0 in M \ Y } .

In fact, the map

(4.3.3)
K : H(D, s) = Ran{P (D) : Hs−1/2(Y ;S|Y )→ Hs−1/2(Y ;S|Y )} → ker(D, s)

is an isomorphism (see [27]). We have the following equality:

(4.3.4) D−1D = Id−Kγ0 ,

which holds on the space of smooth sections (see [27] Lemma 12.7).

The operator K is called the Poisson operator of D. It defines the
Calderon projection:

(4.3.5) P (D) = γ0K

(see [27] Theorem 12.4).
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Remark 4.3.1. Formula (4.3.5) gives, a priori, only a projector, not an
orthogonal projection, onto H(D) . In the situation discussed in this paper,
however, the resulting projector is orthogonal. We refer to [27] for the
details of the construction, which is originally due to Calderon and Seeley.

To construct the correction term to the parametrix we require that the
operator S(P ) be invertible, but this requirement is equivalent to DP being
invertibility:

Lemma 4.3.2. The operator DP is an invertible operator if and only if the
operator S(P ) = PP (D) : H(D)→ Ran P is invertible.

Proof. GrassmannianGr∗∞(D) is a subspace of the ”big” Grassmannian
Gr(D) (see [110], [26], [40] Appendix B). The space Gr(D) has countably
many connected components distinguished by the index of the operator
S(P ), i.e. P1 and P2 belong to the same connected component of Gr(D) if
and only if index S(P1) = index S(P2). The space Gr∗∞(D) is contained in
the index zero component of Gr(D) . Now we have

ker S(P ) = {f : P (D)f = f and P (f) = 0}
and

coker S(P ) = {g : Pg = g and P (D)g = 0}

If P is an element of Gr∗(D) , then index S(P ) = index DP = 0 . We
see that the operator S(P ) is invertible if and only if it has trivial kernel.
Similarly a self-adjoint Fredholm operator DP is invertible only if it has
trivial kernel. On the other hand, the operator K defines an isomorphism

K : ker S(P )→ ker DP .

This ends the proof of Lemma. �

Remark 4.3.3. Note that the lemma proves a somewhat stronger state-
ment: via the Poisson operator K, constructing solutions for the operator
S(P ) is equivalent to constructing solutions to the elliptic boundary value
problem DP (and the same for the adjoints). In particular this implies that
the index of the two operators coincide. This is the underlying reason why
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it is easier to compute determinants on manifolds with boundary than on
closed manifolds.

From now on we assume that DP is invertible. The operator S(P )−1

is not a pseudodifferential operator, as it acts from Ran P into H(D) .
However, we can show that it is a restriction of an elliptic pseudodifferential
operator of order 0. More precisely, the operator PP (D) + (Id − P )(Id −
P )(D) is an elliptic pseudodifferential operator, which can be written as

S(P )⊕ (Id− P )(Id− P (D)) : H(D)⊕H(D)⊥ → W ⊕W⊥ ,

where W = Ran P . It can be seen that:

ker S(P ) = coker (Id− P )(Id− P (D))

and

coker S(P ) = ker (Id− P )(Id− P (D)) .

Therefore if we assume that ker S(P ) = {0}, then the operator PP (D) +
(Id − P )(Id − P )(D)) is invertible. Its inverse is an elliptic operator (see
for instance [27]) and it follows that

(4.3.6) S(P )−1 = P (D) [PP (D) + (Id− P )(Id− P (D))]−1 P .

We can now present the formula for the inverse of the operator DP .

Theorem 4.3.4. Assume that the operator DP : dom DP → L2(M ;S) is
invertible, then its inverse is given by the formula:

(4.3.7) D−1
P = D−1 −KS(P )−1Pγ0D−1 .

Proof. The equality (4.3.3) shows that DK is equal to 0 in M \Y , and
hence that DD−1

P is equal to Id on L2(M ;S). Now let f ∈ L2(M ;S), then:

Pγ0(D−1
P f) = P (γ0(D−1f)− Pγ0KS(P )−1Pγ0D−1(f) =

P (γ0(D−1f)−PP (D)S(P )−1Pγ0D−1(f) = P (γ0(D−1f)−P (γ0(D−1f) = 0 ,
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and hence D−1
P f ∈ dom(DP ). We have shown that DPD−1

P : L2(M ;S) →
L2(M ;S) is equal to IdL2 and that D−1

P : L2(M ;S)→ dom DP , hence the
operator D−1

P is indeed a right inverse of DP , and obviously it is also a left
inverse. �

Corollary 4.3.5. Let P1, P2 ∈ Gr∗∞(D) such that the operators DP1 and
DP2 are invertible. Then the difference D−1

P1
− D−1

P2
is an operator with

smooth kernel.

Proof. It follows from Theorem 4.3.4 that

(4.3.8) D−1
P1
−D−1

P2
= K(S(P2)

−1P2 − S(P1)
−1P1)γ0D−1 .

Now the fact that P1−P2 is an operator with a smooth kernel and equation
(4.3.6) implies that the operator S(P2)

−1P2−S(P1)
−1P1 also has a smooth

kernel. �

For the rest of this Section we take a closer look at the operator D−1
P DP ,

as it allows us to introduce another important operator K(P ) -the Poisson
operator of the operator DP . From formula (4.3.4) we have that

D−1
P DP = Id−Kγ0 −KS(P )−1Pγ0(Id−Kγ0) =

Id−Kγ0 +KS(P )−1PP (D)γ0 −KS(P )−1Pγ0 = Id−KS(P )−1Pγ0 .

Hence if f ∈ dom DP , then Pγ0(f) = 0 and

D−1
P DPf = (Id−KS(P )−1Pγ0)f = f .

We define the Poisson operator of DP by

(4.3.9) K(P ) = KS(P )−1P ,

which appeared in the second term of the operator D−1
P DP and vanishes on

dom DP .

Let g denote an element in the range of the projection P . More precisely,
assume that g ∈ Hs(Y ;S|Y ) and Pg = g . Then K(P )g is an element of
ker(D, s + 1/2) and hence γ0K(P )g is an element of the space H(D, s), in
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general not equal to g . However, the part of γ0K(P )g along P is in fact
equal to the original element g :

Pγ0K(P )g = Pγ0KS(P )−1Pg = PP (D)S(P )−1Pg = Pg .

In Section 4 we also need the following result.

Proposition 4.3.6. Let P1, P2 ∈ Gr∗∞(D) such that the operators DP1 and
DP2 are invertible. Let f1, f2 ∈ Ran P2 and assume that

P1γ0K(P2)f1 = P1γ0K(P2)f2 .

Then, f1 = f2 and K(P2)f1 = K(P2)f2 .

Proof. We have

P1γ0(K(P2)fi) = S(P1)S(P2)
−1fi ,

hence the first equality follows from the invertibility of the operators S(P1)
and S(P2). The second is a consequence of the Unique Continuation Prop-
erty for Dirac operators. We have

γ0(K(P2)f1 = P (D)S(P2)
−1f1 = S(P1)

−1(S(P1)S(P2)
−1f1) =

S(P1)
−1(S(P1)S(P2)

−1f2) = γ0(K(P2)f2

and hence two solutions of D with the same Cauchy data, hence they are
equal. �

Remark 4.3.7. (1) Let us observe that the construction of the inverse pre-
sented in this Section gives, in fact, a parametrix for any elliptic boundary
problem for the Dirac operator. First of all if P is an element of Gr(D)
we still can use formula (4.3.7) in order to construct the aforementioned
parametrix. The operator S(P )−1 has to be replaced by the operator R(P )
, which is of the form

P (D)RP : Ran P → H(D) ,

where R denotes any parametrix of the operator PP (D) + (Id − P )(Id −
P (D)) . The formula
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CP = D−1 −KR(P )Pγ0D1

now gives the operator, such that DPCP −Id and CPDP −Id have smooth
kernels.

(2) More generally, this formula gives a parametrix for any elliptic
boundary problem DT as defined in [27] (where the authors were following
Seeley’s exposition [97]). The reason is that NT , the kernel of the boundary
condition T , and H(D) form a Fredholm pair of subspaces of L2(Y ;S|Y ),
which allows a parametrix R to be constructed. This fact was well-known
to Booss and Wojciechowski and is implicit in their work [?] and [25] (see
also Proposition 1.4. in [22]. Last but not least, we are not really restricted
in this construction of the parametrix only to Dirac operators. This con-
struction holds for any first order elliptic differential operator on a compact
manifold with boundary. The details will be presented elsewhere.



CHAPTER 5

Determinant Line Bundles and the Canonical
Determinant

5.1. Determinant Bundle

Associated to the family of elliptic boundary value problems {DP : P ∈
Gr∞(D)} one has a determinant line bundle DET (D) over Gr∞(D), as
explained in Section 1, which is non-trivial over Gr∞(D). Further for each
choice of basepoint P0 ∈ Gr∞(D) one has a smooth family of Fredholm
operators

{SP0(P ) := PP0 : Ran P0 → Ran P P ∈ Gr∞(D)}

with associated (Segal) determinant line bundle DETP0 equipped with its
canonical determinant section P → det SP0(P ) ∈ DetP0(P ), whereDetP0(P )
is the determinant line of the Fredholm operator SP0(P ). Moreover, for
P0, P1 ∈ Gr∞(D) there is a canonical line bundle isomorphism

(5.1.1) DETP0 = DetP0(P1)⊗DETP1 ,

defined where the operators are invertible by

(5.1.2) det [SP1(P )SP0(P1)] = det SP0(P1)⊗ det SP1(P ) .

The first factor on the right-side of (11.1.1) refers to the trivial bundle
with fibre DetP0(P1). The determinant line bundle of the family of elliptic
boundary value problems is classified in this sense by

(5.1.3) DET (D) = DETP (D) ,

where P (D) is the Calderon projection, preserving the canonical determi-
nant sections

(5.1.4) det DP ←→ det S(P ) ,

where we have written S(P ) for SP (D)(P ). We may therefore rewrite (11.1.1)
fibrewise as

57
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(5.1.5) DET DP = DET DP0 ⊗DetP0(P ) .

We refer to [91] for all these facts.
Let σ(DP0) denote the image of the canonical element det SP0(P1) ⊗

det DP0 ∈ DET DP0 ⊗DetP0(P ) under the isomorphism (11.1.5). Relative
to the choice of the basepoint P0, we therefore have two canonical elements
in DET DP , namely det DP and σ(DP0). Thus over the open subset where
the operators are invertible, according to our earlier discussion we obtain
a regularized determinant of DP by taking the quotient of these elements.
The point however is to make a canonical choice of the basepoint P0.

In the following, to make the presentation smoother we assume that
ker B = {0} . This is in fact not a serious restriction and we can easily
relax this condition. The point is that now the operators

B± : F± = C∞(Y ;S±)→ F∓ = C∞(Y ;S∓)

are invertible. (We use also F± to denote the space of L2 sections of the
bundle of spinors of ”positive′ (resp. ”negative”) chirality.)

Coming back to the canonical choice of the basepoint, in our situation
we are interested just in the real submanifold Gr∗∞(D) of self-adjoint bound-
ary conditions and the ‘correct’ choice is indicated by the fact any elliptic
boundary condition P ∈ Gr∗∞(D) is described precisely by the property that
its range is the graph of an elliptic unitary isomorphism T : F+ → F−

such that T − (B+B−)−1/2B+ has a smooth kernel.
There is a further subtlety that the corresponding orthogonal projection

P+ onto F+ is not actually an element of the Grassmannian. But from
(11.1.2) the isomorphism (11.1.5) is well-defined if we include the correc-
tion factor τ = det(S(P (D))/det[SP (D)(P

+)SP+(P (D))], which introduces
a factor of 1/2 in the final formula (see (5.2.6)). The canonical determinant
is then defined to be the quotient taken in DET DP

(5.1.6) detCDP =
det DP

σ(DP+)
.

Roughly speaking this is the quotient det DP/det D+
P , the precise definition

takes account of the fact that the domains of the operators DP and D+
P

are different and hence that their canonical determinant elements live in
different complex lines. In Section 1 we carry out a precise computation
and we see that detCDP is actually the Fredholm determinant of an operator
living on the boundary Y constructed from projections P and P (D) .The
main result of the paper is the following Theorem:
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Theorem 5.1.1. The following equality holds over Gr∗∞(D)

(5.1.7) detζDP = detζDP (D)·detCDP .

Remark 5.1.2. (1) Theorem 11.1.1 shows that, at least on Gr∗∞(D) , the
ζ-determinant is an object which is a natural extension of the well-defined
algebraic concept of the determinant.

(2) Our results show that the ζ-determinant of the boundary problem
DP is actually equal to the Fredholm determinant of the operator S(P )
living on the boundary. This extends the corresponding result for the index
, which is well-known (see Theorem 20.8 [27]).

(3) With Theorem 11.1.1 at our disposal we can now try a new approach
to the pasting formula for the ζ-determinant with respect to a partitioning
of a closed manifold. The pasting formula for detC was introduced in [91]. It
is hoped that a new insight into the pasting mechanism of the ζ-determinant
will be obtained by combining results of [91] and formula (11.1.7).

. . .

5.2. Canonical Determinant on the Grassmannian Gr∗∞(D)

In this Section we give a brief review of the construction of the de-
terminant line bundle and give an explicit construction of the canonical
determinant.

The determinant line bundle over the space of Fredholm operators was
first introduced in a seminal paper of Quillen [83]. An equivalent construc-
tion which is better suited to our purposes here was subsequently given
by Segal (see [98]), and so we follow his approach. Let Fred(H) denote
the space of Fredholm operators on a separable Hilbert space H. We work
first in the connected component Fred0(H) of this space parameterizing
operators of index zero. For A ∈ Fred0(H) define

FredA = {S ∈ Fred(H) ; S − A is trace− class} .

Fix a trace-class operator A such that S = A+A is an invertible operator.
Then the determinant line of the operator A is defined as

(5.2.1) Det A = FredA ×C/∼= ,
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where the equivalence relation is defined as follows

(R, z) = (S(S−1R), z) ' (S, z·detFr(S
−1R)) .

The Fredholm determinant of the operator S−1R is well-defined, as it is of
the form IdH plus a trace class operator. Denoting the equivalence class of
a pair (R, z) by [R, z], complex multiplication is defined on Det A by

(5.2.2) λ·[R, z] = [R, λz].

The canonical determinant element is defined by

(5.2.3) det A := [A, 1]

and is non-zero if and only if A is invertible.

The complex lines fit together over Fred0(H) to define a complex line
bundle L, the determinant line bundle. To see this, observe first that over
the open set UA in Fred0(H) defined by

UA = {F ∈ Fred0(H) ; F +A is invertible} ,

the assignment F → det F defines a trivializing (non-vanishing) section
of L|UA . The transition map between the canonical determinant elements
over UA ∩ UB is the smooth (holomorphic) function

gAB(F ) = detFr((F +A)(F + B)−1) .

This defines L globally as a complex line bundle over Fred0(H), endowed
with the canonical section A → det A . If ind A = d we define Det A to
be the determinant line of A ⊕ 0 as an operator H −→ H ⊕ Cd if d > 0
, or H ⊕ C−d −→ H if d < 0 and the construction extends in the obvious
way to the other components of Fred(H). Note that the canonical section
is zero outside of Fred0(H).

We use this construction in order to define the determinant line bun-
dle over Gr∞(D). For each projection P ∈ Gr∞(D) we have the (Segal)
determinant line Det(P (D), P ) of the operator PP (D) : H(D) → Ran P
and the determinant line Det DP of the boundary value problem DP :
dom (DP ) −→ L2(M ;S). These lines fit together in the manner explained
above to define determinant line bundles DETP (D) and DET D, respec-
tively, over the Grassmannian (some care has to be taken as the operator
acts between two different Hilbert spaces, but with the obvious notational
modifications we once again obtain well-defined determinant line bundles).
The canonical isomorphism (11.1.3) identifies the two line bundles and pre-
serves the determinant elements (equation (11.1.4)). The bundle DETP (D)
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is a non-trivial line bundle over Gr∞(D), but when restricted to the Grass-
mannian Gr∗∞(D) it is canonically trivial.

We use the specific trivialization introduced in [91]. Recall that we
work here with orthogonal projections onto the Lagrangian subspaces of
L2(Y ;S|Y ) , which are a compact perturbation of the Cauchy data space
H(D). We have assumed that ker B = {0}, and hence Π>(B) is an ele-
ment of Gr∗∞(D). The range of Π>(B) is actually the graph of the unitary
operator V> : F+ → F− given by the formula:

V> = (B+B−)−1/2B+ .

This identification extends to the whole Grassmannian Gr∗∞(D): elements
are in 1 − to − 1 correspondence with unitary maps V : F+ → F−, such
that the difference V − V> is an operator with a smooth kernel. The corre-
sponding orthogonal projection P is given by the formula

P =
1

2

(
IdF+ V −1

V IdF−

)
.

By choosing a basepoint, the correspondence defined above allows us to
establish an isomorphism between Gr∗∞(D) and the group U∞(F−) of uni-
taries acting on F− = L2(Y ;S−) which differ from IdS− by an operator
with a smooth kernel. It is convenient for us to work with the Calderon
projection as basepoint, hence let K : C∞(Y ;S+)→ C∞(Y ;S−) denote the
unitary such that H(D) is equal to the graph(K). Now for any projection
P ∈ Gr∗∞(D) there exists T = T (P ) : F+ → F− such that P = graph(T ),
and so we have a natural isomorphism Gr∗∞(D) ∼= U∞(F−) defined by the
map P → TK−1 . This is expressed in terms of the homogeneous structure
of the Grassmannian by

(5.2.4) P =

(
IdF+ 0

0 TK−1

)
P (D)

(
IdF+ 0

0 KT−1

)
.

Now we can define a non-vanishing section l of the determinant line bundle
DETP (D) over Gr∗∞(D). The value of l at the projection P is the class in
DetP (D)(P ) of the couple

(U(P ) =

(
IdF+ 0

0 TK−1

)
; 1) ,

where the operator U(P ) acts from H(D) to Ran(P ). That is, l(P ) =
det U(P ). The fact that l(P ) is an element of DetP (D)(P ) ∼= Det DP

follows from the following elementary result.



62 5. DETERMINANT LINE BUNDLES AND THE CANONICAL DETERMINANT

Lemma 5.2.1. The difference between U(P ) and the operator S(P ) = PP (D) :
H(D) → RanP is an operator with a smooth kernel, hence det U(P ) =
[U(P ), 1] is an element of Det P .

Proof. The operator U(P ) acts from graph(K) = H(D) to graph(T ) =
Ran(P ) and acts by(

x
Kx

)
→
(
IdF+ 0

0 TK−1

)(
x
Kx

)
=

(
x
Tx

)
.

The operator PP (D) is given by the following formula

PP (D) =
1

4

(
IdF+ + T−1K T−1 +K−1

T +K IdF− + TK−1

)
,

leading to the following expression for the operator S(P ) = PP (D) :
H(D)→ Ran(P )

(5.2.5)

S(P )

(
x
Kx

)
=

(
IdF++T−1K

2
x

IdF−+TK−1

2
Kx

)
=

(
IdF++T−1K

2
0

0
IdF−+TK−1

2

)(
x
Kx

)
.

Because T−1K (resp. TK−1) differs from IdF+ (resp. IdF+) by a smoothing
operator, it is now obvious that the difference U(P )− S(P ) is an operator
with a smooth kernel. �

The discussion above allows us to now define the Canonical Determinant
over Gr∗∞(D). Let A : H(D) → Ran P denote an invertible Fredholm
operator such that A− S(P ) is an operator of trace class. We have:

det A := [(A, 1)]

= [(U(P )(U(P )−1A), 1)]

= [(U(P ); detFr(U(P )−1A)]

= detFr(U(P )−1A)[(U(P ); 1]

:= detFr(U(P )−1A)·det U(P ) .

where we use equations (5.2.2) and (5.2.2). The above identity means we
can define the determinant of the operator A as the ratio in Det A of the
non-vanishing canonical elements det A and det U(P ), or equivalently as
the Fredholm determinant of the operator U(P )−1A . This leads to the
following definition of the Canonical Determinant of the operator DP .
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Definition 5.2.2. We define the Canonical determinant of the elliptic
boundary value problem DP by:

(5.2.6) detCDP := detCS(P ) := detFr (U(P )−1S(P )) ,

where S(P ) := S(P, P (D)).

The essential point is that the determinants of the Fredholm operators DP

and S(P ) regarded as elements of the complex lines Det DP and DetP (D)(P )
are canonically identified by the isomorphism (11.1.3). It is straightforward
to check that the Fredholm determinant on the right-side of (5.2.6) is pre-
cisely the quotient (11.1.6). In fact, from the proof of Lemma 5.2.1 we see
that the determinant on the right side of the equality (5.2.6) is the Fredholm
determinant of the operator(

IdF++T−1K

2
0

0
IdF−+TK−1

2

)

acting on the graph of the operator K . Hence we obtain:

Lemma 5.2.3.

(5.2.7) detCDP = detFr

(
Id+KT−1

2

)
,

where the Fredholm determinant on the right-side is taken on F−.

We may therefore reformulate Theorem 11.1.1 as:

Theorem 5.2.4. The following equality holds over Gr∗∞(D)

(5.2.8) detζDP = detζDP (D)·detFr
Id+KT−1

2
,

Equivalently, (since detCDP (D) = 1)

(5.2.9)
detζDP

detζDP (D)

=
detCDP

detCDP (D)

.
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Remark 5.2.5. In Section 4 we also use the determinants of operators of
the form

S(P1)S(P2)
−1 : Ran P2 → Ran P1 ,

under the assumption that the operator S(P2) is invertible. It follows
from the discussion presented above that for any Fredholm operator A :
Ran P2 → Ran P1 , such that the difference between the operator A and
the operator P1P2 : Ran P2 → Ran P1 is of trace class we can define the
determinant of A using the formula

(5.2.10) det A = detFr

(
IdF+ 0

0 T2T
−1
1

)
A ,

where Ran Pi is equal to graph Ti .

5.3. Canonical Determinant and Metric

. . .



Part 2

Spectral Invariants - The Heat
Kernel Approach





CHAPTER 6

The Heat Kernel on Gr∞

1

In this chapter we first summarize the basic properties of op-
erators with heat kernels, recall the definition of Γ–regularized
spectral functions and invariants, and derive variation formu-
las for them. Then we explain Duhamel’s principle and discuss
various simple, but characteristic examples for its application.
Also by Duhamel’s principle we establish the ζ–function , the
η–function , and the ζ–determinant first for ideal boundary
conditions and subsequently on the smooth self–adjoint Grass-
mannian Gr∗∞ (and on Ugraph).

6.1. Introduction

The spectral invariants discussed in this book are constructed from the
kernels of the heat operators determined by a Dirac operator D. In this
chapter we discuss the construction of the kernels of the operators e−tD 2

P and
De−tD 2

P where DP is a L2–realization of D subject to a boundary condition
P .

Our approach in this book is based on Duhamel’s principle in the spirit
of the classical paper of McKean and Singer [67]. The heat kernel is ei-
ther constructed from the heat kernel of one or several slightly modified,
related operators or it is patched together from heat kernels coming from
a decomposition of the manifold into parts. For manifolds with boundary
and with product metric close to the boundary it suffices to glue two heat
kernels together, one coming from the interior of the manifold (or from the
closed double) and one coming from a half infinite cylinder over the bound-
ary with suitable boundary conditions imposed. The difficulty we face here
is due to the fact that the heat kernels are not local objects and we have
the error term. The good news is that the differences between the precise
and the glued (approximate) heat kernels can be estimated in a sufficiently
nice and operational way. The aforementioned estimates allows us to prove
the existence of the spectral invariants, we use in the construction of the
ζ-determinant. Those invariants can be also constructed in a different ways
using parametrix of D. Both methods are essentially equivalent. However,
we prefer Duhamel’s principle because it leads us ‘naturally’ to estimates of
the differences between true and approximate kernels; to estimates about

1Date: November 15, 2001. File name: BOOKHEAT.TEX, uses BOOKC.STY and
BOOKREFE.TEX.
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the true kernels; to formulas and proofs for additivity theorems for spectral
invariants over partitioned manifolds; and to variational formulas.

6.2. Duhamel’s Principle and Heat Kernel Estimates

Let D : C∞(M ;S) → C∞(M ;S) denote a compatible Dirac operator
acting on sections of a bundle of Clifford modules S/ over a compact ma-
nifold M (possibly with boundary Y ). Let D0 denote the operator Dd in
the boundaryless case and DP the operator where P is an ideal boundary
condition in the case of a nontrivial boundary Y .

Whenever we can split a manifold into parts we can approximate the
heat kernel by the heat kernel of the parts. This follows from Duhamel’s
principle. More precisely we have

Theorem 6.2.1 (Duhamel’s Formula). Let M be a compact manifold with
or without boundary and D : dom(D) → L2(M ; S/) be a L2–extension of an
elliptic differential operator with heat kernel e(t;x, x′). Let {U1, U2} be a
covering of M by two open submanifolds. For j = 1, 2 we assume that Uj is
isometric to an open submanifold of a (not necessarily compact) manifold
Mj and that there is given on Mj a L2–extension Dj : dom(Dj)→ L2(Mj; S/j)

of a differential operator with heat kernel ej(t;x, x
′) such that Dj and D

coincide over Uj.
2 Then there exist positive real constants c1, c2 such that

for any 0 < t < 1

(6.2.1)
∣∣∣e(t;x, x′)− ej(t;x, x

′)
∣∣∣ < c1e

− c2
t for x, x′ ∈ Uj ,

and, more generally,

(6.2.2)
∣∣∣e(t;x, x′)−Q(t;x, x′)

∣∣∣ < c1e
− c2

t for arbitrary x, x′ ∈M ,

where Q(t;x, x′) is an integral kernel over M obtained by suitably gluing the
heat kernels e1 and e2.

Proof. First we define on C∞(M ; S/) for any parameter t > 0 an oper-
ator Q(t) with a smooth kernel, given by

Q(t;x, x′) :=
2∑

j=1

ψj(x) ej(t;x, x
′)ϕj(x

′) ,

where {ϕ1, ϕ2} is a smooth partition of unity on M suitable for the covering
{U1, U2} and ψ1, ψ2 are non–negative smooth functions such that

ψj ≡ 1 on {x ∈M | d(x, suppϕj) < δ}
and ψj ≡ 0 on {x ∈M | d(x, suppϕj) ≥ 2δ}

2The equality Dj |Uj
= D|Uj

is to be understood with regard to the domains.
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for a suitable δ > 0. We notice

(6.2.3) dist(suppψ′j, suppϕj) = dist(suppψ′′j , suppϕj) ≥ δ .

Then, for x′ ∈ Uj with ϕj(x
′) = 1, we have by definition:

(6.2.4) Q(t;x, x′) =

{
ej(t;x, x

′) if d(x, suppϕj) < δ, and

0 if d(x, suppϕj) ≥ 2δ.

For fixed t > 0, we determine the difference between the precise heat
kernel e(t;x, x′) and the approximate one Q(t;x, x′). By Duhamel’s Formula
(Proposition 6.3.1), we have

e(t;x, x′)−Q(t;x, x′) = −
∫ t

0

ds

∫
M

dz e(s;x, z)C(t− s; z, x′)

with

C(t− s; z, x′) =

(
D2

0 (z) +
d

d(t− s)

)
Q(t− s; z, x′)

=

(
D2

0 (z) −
d

ds

)
Q(t− s; z, x′)

=
2∑

j=1

{
ψ′′j (z) ej(t− s; z, x′)ϕj(x

′) + 2ψ′j(z)
d

dz
(ej(t− s; z, x′))ϕj(x

′)

+ ψj(z)

(
D2

0 (z) −
d

ds

)
ej(t− s; z, x′)︸ ︷︷ ︸

=0

ϕj(x
′)
}
.

As stated in (8.2.5), the supports of ϕj and ψ′j (and, equally, ψ′′j ) are
disjoint and separated from each other by a distance ≥ δ. Then, in fine
correspondence to (6.3.10), the error term C(t − s; z, x′) vanishes both for
d(z, x′) < δ and, as well, for sufficiently large geodesic distance, say if
x′ ∈M \ suppϕ2 and z ∈M \ suppϕ1. Moreover, since we have t ≥ s ≥ 0,
we obtain

(t− s)−m/2e−c′ d2(z,x′)
(t−s) ≤ ct−m/2e−c′ d2(z,x′)

t ≤ c̃e−c′ d2(z,x′)
2t .

Thus we can estimate the first sum

|ψ′′j (z) ej(t− s; z, x′)ϕj(x
′)| ≤ c1e

−c′δ2/2t = c1e
− c2

t .

Similarly we estimate the second sum. We have

2|ψ′j(z)
d

dz
ej(t− s; z, x′)ϕj(x

′)| ≤ ct−m/2

t
e−

c′
t ≤ c1e

− c2
t .

Renaming the constants, we have obtained the crucial estimate

|C(t, x, x′)| < c1e
− c2

t for d(x, x′) > δ.

We recall from Lemma 6.2.2 the other crucial estimate

|e(t, x, x′)| < c1e
− c2

t .
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This gives∣∣e(t;x, x′)−Q(t;x, x′)
∣∣ ≤ ∫ t

0

ds

∫
M

dz |e(s;x, z)C(t− s; z, x′)|

≤
∫ t

0

ds

∫
M

dz c1e
− c2

t c1e
− c2

t = vol(M)c21

∫ t

0

e−
c2t

s(t−s) ds

s(t−s)=(t−s)s
= 2vol(M)c21

∫ t
2

0

e−
c2t

s(t−s) ds

t−s≤t/2

≤ 2vol(M)c21

∫ t
2

0

e−
c2 t
s t/2 ds

= 2vol(M)c21

∫ t
2

0

e−
2c2
s ds ≤ 2vol(M)c21e

− 4c2
t

∫ t
2

0

ds

= vol(M)c21te
− 4c2

t < c3e
− c4

t .

�

We make a review of the estimates for the kernel e0(t;x, y) of the oper-

ator e0(t) = e−tD0
2

and E0(t;x, y) the kernel of the operator De−tD0
2

. First
of all, there exists positive constants c1 and c2 such that for any 0 < t < 8
we have
(6.2.5)

‖e0(t;x, y)‖ < c1t
−m/2e−c2d2(x,y)/tand‖ E0(t;x, y)‖ < c1t

−(m+1)/2e−c2d2(x,y)/t

The estimate for the heat kernels of the operator DP was proved in
[BBKW93] (see [BBKW93], Theorem 22.14) using the variant of the Duha-
mel’s principle stated above. In the following we also need estimates, which
implies vanishing of the heat kernels as time goes to ∞ .

Lemma 6.2.2. There exist positive constants c1 and c2 such that for all
x, y ∈M and any t > 0

|E0(t;x, x
′)| ≤ c1t

− 1+m
2 · e−

t
4
λ2
0 · e−c2

d2(x,x′)
t ≤ c1t

− 1+m
2 · e−c2

d2(x,x′)
t ,

where d(x, x′) denotes the geodesic distance. This results holds also for the
e0(t, x, y) in the case of the invertible operator D0 (otherwise limit of the
operator e0(t) as t→∞ is equal to the projection onto kernel of D0)

|e0(t;x, x
′)| ≤ c1t

−m
2 · e−

t
4
λ2
0 · e−c2

d2(x,x′)
t ≤ c1t

−m
2 · e−c2

d2(x,x′)
t

Proof. Let {fk;λk}k∈Z denote a discrete spectral resolution of D0 (see
also Remark ??c). We have

|E0(t;x, x
′)| ≤

∑
k:λk=0

|λk|e−tλ2
k · |fk(x)| · |fk(x′)|.
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According to the Sobolev Lemma (see for instance [45], Lemma 1.1.4), the
imbedding Hm(M ; S/) ↪→ C0(M ; S/) is continuous. Thus we get a uniform
pointwise estimate for the eigensections:

(6.2.6) ‖fk(x)‖ ≤ b · (1 + λ2m
k ) ,

where the constant b > 0 does not depend on k. Clearly(
1 + λ2m

k

m!

)2

≤ e2λ2
k .

It follows

|E0(t;x, x
′)| ≤ b2

∑
k

|λk|e−tλ2
k · (1 + λ2m

k )2 ≤ b2(m!)2
∑

k

|λk|e−(t−2)λ2
k

≤ b1e
−(t−4)λ2

0 ·
∑

k

e−λ2
k ≤ b2e

−(t/2)λ2
0

for t ≥ 8. Let us observe that there exist positive constants b3, b4, b5 such
that

tm/2 · e−(t/4)·λ2
0 ≤ b3 for any 0 < t < +∞,

b4 ≤ e−c2
d2(x,x′)

t ≤ b5 for t ≥ 6,

which proves for t ≥ 8 the assertion for the kernel E0 of e−tD2
0 . In the same

way we prove the assertion for the kernel ε0 . �

6.3. Duhamel’s Principle

In the functional analytical setting, Duhamel’s Principle can be con-
sidered as expressing the difference between a given heat kernel and any
arbitrary symmetric integral kernel in the following simple form.

Proposition 6.3.1 (Duhamel’s Formula). Let M be a Riemannian mani-
fold with or without boundary and S/ a Hermitian vector bundle over M . Let
D0 : domD0 → L2(M ; S/) be an operator with heat kernel(s). Let Q(t;x, x′)
be a smooth symmetric kernel for a smooth family of operators of trace class
Q(t) such that Q(t; ·, x′) ∈ domD0 for all t > 0 and limt→0Q(t) = Id. Then
we have for all t > 0, x, x′ ∈M

(6.3.1) e0(t;x, x
′) = Q(t;x, x′)

−
∫ t

0

ds

∫
M

dz e0(s;x, z)

(
D2

0(z) +
d

d(t− s)

)
Q(t− s; z, x′)

= Q(t;x, x′)− (e0 ∗C1)(t;x, x
′)

and

(6.3.2) e0(t;x, x
′) = Q(t;x, x′) +

∞∑
k=1

(−1)k(Q ∗ Ck)(t;x, x′).
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Here

(α ∗ β)(t;x, x′) :=

∫ t

0

ds

∫
M

dz α(s;x, z)β(t− s; z, x′)

denotes the convolution; and

C1(t) := (D2
0 +

d

dt
)Q(t) with C1(t;x, x

′) := (D2
0 (x) +

d

dt
)Q(t;x, x′)

denotes the error term with the recursive formula

Ck(t) := (C1 ∗ Ck−1)(t) for k > 1.

Note . In (6.3.2), the infinite series of kernels converges uniformly on
compact subsets of R+ ×M ×M and defines an absolute convergent series
of operators under suitable assumptions about the kernel Q, e.g. when Q
itself is a true heat kernel.

Proof. We fix t > 0 and define for s ∈ (0, t] the operator Θ(s) :=
e0(s)Q(t− s). Since e0(0) = Q(0) = Id, we have

e0(t)−Q(t) = Θ(t)−Θ(0) =

∫ t

0

d

ds
Θ(s)ds

=

∫ t

0

{(
d

ds
e0(s)

)
Q(t− s) + e0(s)

d

ds
Q(t− s)

}
ds

=

∫ t

0

e0(s)

(
−D2

0 +
d

ds

)
Q(t− s)ds,

which proves (6.3.1). To prove (6.3.2) we substitute recursively Q(t) −
(e0 ∗C)(t) for e0(t) on the right side of (6.3.1). �

Remark 6.3.2. (a) The preceding proposition remains valid when we re-

place the kernel e0 of e−tD2
0 by the kernel E0 of the operator D0e

−tD2
0 . Recall

that E0(t;x, x
′) = D0 e0(t;x, x

′). Then equation (6.3.1) has to be replaced
by

(6.3.3) E0(t;x, x
′) = D0Q(t;x, x′)− (e0 ∗D0C1)(t;x, x

′)

and equation (6.3.2) by

(6.3.4) E0(t;x, x
′) = D0Q(t;x, x′) +

∞∑
k=1

(−1)k(Q ∗ Ck)(t;x, x′)

with

C1(t;x, x′) := D0C1(t;x, x
′) and Ck(t) := (C1 ∗ Ck−1)(t) for k > 1.

(b) To apply Duhamel’s principle a typical situation is met when we want to
estimate the difference between the heat kernels e0 and ea of two operators,
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say a given D0 and an alternative Da. Clearly (Da + d
ds

) ea(s) = 0. Thus we
can replace (6.3.1) and (6.3.2) by

(6.3.5) e0 = ea− e0 ∗(D2
0 −D2

a) ea

and

(6.3.6) e0 = ea− ea ∗(D2
0 −D2

a) ea + ea ∗(D2
0 −D2

a) ea ∗(D2
0 −D2

a) ea− . . .
+ (−1)k ea ∗(D2

0 −D2
a) ea ∗ · · · ∗ (D2

0 −D2
a) ea± . . .

Whenever we can split a manifold into parts we can approximate the
heat kernel by the heat kernel of the parts. This follows from Duhamel’s
principle. More precisely we have

Theorem 6.3.3 (Duhamel’s Splitting Formula). Let M be a compact ma-
nifold with or without boundary and D : dom(D) → L2(M ; S/) be a L2–
extension of an elliptic differential operator with heat kernel e(t;x, x′). Let
{U1, U2} be a covering of M by two open submanifolds. For j = 1, 2 we
assume that Uj is isometric to an open submanifold of a (not necessar-
ily compact) manifold Mj and that there is given on Mj a L2–extension
Dj : dom(Dj) → L2(Mj; S/j) of a differential operator with heat kernel

ej(t;x, x
′) such that Dj and D coincide over Uj.

3 Then there exist posi-
tive real constants c1, c2 such that for any 0 < t < 1

(6.3.7)
∣∣∣e(t;x, x′)− ej(t;x, x

′)
∣∣∣ < c1e

− c2
t for x, x′ ∈ Uj ,

and, more generally,

(6.3.8)
∣∣∣e(t;x, x′)−Q(t;x, x′)

∣∣∣ < c1e
− c2

t for arbitrary x, x′ ∈M ,

where Q(t;x, x′) is an integral kernel over M obtained by suitably gluing the
heat kernels e1 and e2.

Proof. First we define on C∞(M ; S/) for any parameter t > 0 an oper-
ator Q(t) with a smooth kernel, given by

Q(t;x, x′) :=
2∑

j=1

ψj(x) ej(t;x, x
′)ϕj(x

′) ,

where {ϕ1, ϕ2} is a smooth partition of unity on M suitable for the covering
{U1, U2} and ψ1, ψ2 are non–negative smooth functions such that

ψj ≡ 1 on {x ∈M | d(x, suppϕj) < δ}
and ψj ≡ 0 on {x ∈M | d(x, suppϕj) ≥ 2δ}

3The equality Dj |Uj
= D|Uj

is to be understood with regard to the domains.
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for a suitable δ > 0. We notice

(6.3.9) dist(suppψ′j, suppϕj) = dist(suppψ′′j , suppϕj) ≥ δ .

Then, for x′ ∈ Uj with ϕj(x
′) = 1, we have by definition:

(6.3.10) Q(t;x, x′) =

{
ej(t;x, x

′) if d(x, suppϕj) < δ, and

0 if d(x, suppϕj) ≥ 2δ.

For fixed t > 0, we determine the difference between the precise heat
kernel e(t;x, x′) and the approximate one Q(t;x, x′). By Duhamel’s Formula
(Proposition 6.3.1), we have

e(t;x, x′)−Q(t;x, x′) = −
∫ t

0

ds

∫
M

dz e(s;x, z)C(t− s; z, x′)

with

C(t− s; z, x′) =

(
D2

0 (z) +
d

d(t− s)

)
Q(t− s; z, x′)

=

(
D2

0 (z) −
d

ds

)
Q(t− s; z, x′)

=
2∑

j=1

{
ψ′′j (z) ej(t− s; z, x′)ϕj(x

′) + 2ψ′j(z)
d

dz
(ej(t− s; z, x′))ϕj(x

′)

+ ψj(z)

(
D2

0 (z) −
d

ds

)
ej(t− s; z, x′)︸ ︷︷ ︸

=0

ϕj(x
′)
}
.

As stated in (8.2.5), the supports of ϕj and ψ′j (and, equally, ψ′′j ) are
disjoint and separated from each other by a distance ≥ δ. Then, in fine
correspondence to (6.3.10), the error term C(t − s; z, x′) vanishes both for
d(z, x′) < δ and, as well, for sufficiently large geodesic distance, say if
x′ ∈M \ suppϕ2 and z ∈M \ suppϕ1. Moreover, since we have t ≥ s ≥ 0,
we obtain

(t− s)−m/2e−c′ d2(z,x′)
(t−s) ≤ ct−m/2e−c′ d2(z,x′)

t ≤ c̃e−c′ d2(z,x′)
2t .

Thus we can estimate the first sum

|ψ′′j (z) ej(t− s; z, x′)ϕj(x
′)| ≤ c1e

−c′δ2/2t = c1e
− c2

t .

Similarly we estimate the second sum. We have

2|ψ′j(z)
d

dz
ej(t− s; z, x′)ϕj(x

′)| ≤ ct−m/2

t
e−

c′
t ≤ c1e

− c2
t .

Renaming the constants, we have obtained the crucial estimate

|C(t, x, x′)| < c1e
− c2

t for d(x, x′) > δ.

We recall from Lemma 6.2.2 the other crucial estimate

|e(t, x, x′)| < c1e
− c2

t .
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This gives∣∣e(t;x, x′)−Q(t;x, x′)
∣∣ ≤ ∫ t

0

ds

∫
M

dz |e(s;x, z)C(t− s; z, x′)|

≤
∫ t

0

ds

∫
M

dz c1e
− c2

t c1e
− c2

t = vol(M)c21

∫ t

0

e−
c2t

s(t−s) ds

s(t−s)=(t−s)s
= 2vol(M)c21

∫ t
2

0

e−
c2t

s(t−s) ds

t−s≤t/2

≤ 2vol(M)c21

∫ t
2

0

e−
c2 t
s t/2 ds

= 2vol(M)c21

∫ t
2

0

e−
2c2
s ds ≤ 2vol(M)c21e

− 4c2
t

∫ t
2

0

ds

= vol(M)c21te
− 4c2

t < c3e
− c4

t .

�

Remark 6.3.4. For the calculation of the estimation of the poles and the
limiting behaviour of tr(e0(t;x, x)) and tr(E0(t;x, x)) up to an exponentially
small error, we shall replace M by Rm and suppose that

D0 = ∆ = − ∂2

∂x2
1

− · · · − ∂2

∂x2
m

far out. This is permissible, because of the preceding Splitting Theorem.
Then we consider a coordinate patch U of M and consider it as Rm. We
define the alternative operatorDa to beD0 with its coefficients frozen at x′ ∈
U and denote the corresponding heat kernel by ea. We denote the difference
D2

0|U − D2
a by R. Then we have one more reformulation of Duhamel’s

principle:

(6.3.11) e0(t;x, x
′) = ea(t;x, x′)−

∫ t

0

ds

∫
Rm

e0(s;x, z)R(z) ea(t−s; z, x′) dz

and

(6.3.12)

e0(t;x, x
′) = ea(t;x, x′) +

∞∑
k=1

(−1)k

∫ t

0

ds

∫
Rm

dz

∫ s

0

ds1

∫
Rm

dx1 . . .

. . .

∫ sk−2

0

dsk−1

∫
Rm

dxk−1 ea(sk−1;x, xk−1)R(xk−1) ea(sk−2−sk−1;xk−1, xk−2)

. . .R(x1) ea(s− s1;x1, z)R(z) ea(t− s; z, x′).

Example 6.3.5. To give a simple example, we consider the Laplacian ∆0

with domain L2(R
m) and its perturbation ∆1 := ∆0 + V (x) by a potential



76 6. THE HEAT KERNEL ON Gr∞ (November 15, 2001)

V ∈ C∞
0 (Rm). Then

e∆0(t;x, x
′) = e0(t;x, x

′) = (4πt)−m/2 e−
‖x−x′‖2

4t .

Let us assume that e−t∆1 exists. (This is not hard to prove). Then its inte-
gral kernel is unique and satisfies the conditions formulated in the Proposi-
tion 6.3.1. We apply equation (6.3.12) of the preceding Remark and obtain
for R = V :

e−t∆1 = e−t∆0+
∞∑

k=1

(−1)k

∫ t

0

ds

∫ s

0

ds1 . . .

∫ sk−2

0

dsk−1e
−sk−1∆0V e−(sk−2−sk−1)∆0 . . .

. . . V e−(s−s1)∆0V e−(t−s)∆0 .

We consider the first term

q0(t;x, x
′) =

∫ t

0

e−s∆0 V e−(t−s)∆0 ds.

Setting

Vmax := sup
Rm

|V (x)|

we obtain on the diagonal

|q0(t;x, x)| = |
∫ t

0

ds

∫
Rm

dz e0(s;x, z)V (z) e0(t− s; z, x)|

≤
∫ t

0

ds

∫
Rm

dz |e0(s;x, z)V (z) e0(t− s; z, x)|

≤ Vmax

∫ t

0

ds

∫
Rm

dz (4πs)−m/2(4π(t− s))−m/2e−
‖x−z‖2

4s e−
‖x−z‖2
4(t−s)

≤ Vmax(4π)−m

∫ t

0

(s(t− s))−m/2ds

∫
Rm

e−
t‖x−z‖2
4s(t−s) dz.

Since
∫
R
e−x2/α dx =

√
πα we have∫

Rm

e−x2/α dx = (πα)m/2 .

Thus we have

|q0(t;x, x)| ≤ Vmax(4π)−mπm/2 ·
∫ t

0

(s(t− s))−m/2

(
4s(t− s)

t

)m/2

ds

= Vmax4−m/2π−m/2 · t−m/2

∫ t

0

ds =
Vmax

(4π)m/2
t

2−m
2 .

The same type of computations shows that the kernel qk−1(t;x, x) of the
operator ∫ t

0

ds

∫ s

0

ds1 . . .

∫ sk−2

0

dsk−1e
−sk−1∆0V . . . V e−(t−s)∆0
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is bounded as follows:

|qk−1(t;x, x)| ≤
(

Vmax

(4π)m/2

)k
1

k!
t

2k−m
2 .

This proves

Lemma 6.3.6. Let ∆1 := ∆0 + V (x) be a Laplacian with potential V ∈
C∞

0 (Rm). Then there exist positive real constants c1, c2 such that for all
t > 0 and x ∈ Rm the kernel e1 of the heat operator e−t∆1 can be estimated
by

|e1(t;x, x)| ≤ c1
(4πt)m/2

· ec2t





CHAPTER 7

The ζ–Determinant on the Smooth, Self-adjoint
Grassmannian

In this chapter we discuss the existence of the ζ-determinant
of a Dirac operator D on a compact manifold with boundary.
We show that the determinant is well defined in the case of the
operator D with a domain determined by a boundary condition
from the smooth, self-adjoint Grassmannian Gr∗∞(D).

7.1. Introduction

Recent studies in Quantum Field Theory and Topology have stressed
the importance of the correct definition of the renormalized determinant of
the Dirac operator over a manifold with boundary. The renormalization
successufully used in the case of a closed manifold is the ζ-renormalization
introduced by Ray and Singer in [84] (see also [100]). The ζ-determinant
of the Dirac operator D on a closed manifold is given by the formula:

(7.1.1) detζD = e
iπ
2

(ηD(0)−ζD2 (0))·e−1/2·(d/ds(ζD2 (s))|s=0) ,

where ζD2(s) and ηD(s) are functions constructed from the eigenvalues of
the operator D .

Now let us assume that D : C∞(M ;S) → C∞(M ;S) is a compatible
Dirac operator acting on sections of a bundle of Clifford modules S over a
compact Riemannian manifold M with boundary Y . We concentrate on
the case of an odd-dimensional manifold M , and from now on we assume
that n = dim M = 2m+ 1 .

Let us point out, however, that our results are true for Dirac operators
on an even-dimensional manifold as well. The necessary modifications due
to the different algebraic structure of the spinors in the odd and even case
can be found in [?], where we discuss the applications of our results in the
even-dimensional situation (see also [22] for an introductory discussion of
applications of the ζ-determinant of elliptic boundary problems in Quantum
Chromodynamics).

We discuss only the Product Case. Namely we assume that the Rie-
mannian metric on M and the Hermitian structure on S are products in a
certain collar neighborhood of the boundary. Let us fix N = [0, 1]× Y the
collar. Then in N the operator D has the form

(7.1.2) D = G(∂u +B)

79
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where G : S|Y → S|Y is a unitary bundle isomorphism (Clifford multi-
plication by the unit normal vector) and B : C∞(Y ;S|Y ) → C∞(Y ;S|Y )
is the corresponding Dirac operator on Y , which is an elliptic self-adjoint
operator of first order. Furthermore, G and B do not depend on the normal
coordinate u and they satisfy the identities

(7.1.3) G2 = −Id and GB = −BG .

Since Y has dimension 2m the bundle S|Y decomposes into its positive and
negative chirality components S|Y = S+

⊕
S− and we have a corresponding

splitting of the operator B into B± : C∞(Y ;S±) → C∞(Y ;S∓) , where
(B+)∗ = B− . The equation (7.1.2) can be rewritten in the following form(

i 0
0 −i

)(
∂u +

(
0 B−

B+ 0

))
.

In order to obtain a nice unbounded Fredholm operator we have to impose
a boundary condition on the operator D . Let Π≥ denote the spectral
projection of B onto the subspace of L2(Y ;S|Y ) spanned by the eigenvectors
corresponding to the nonnegative eigenvalues of B. It is well known that
Π≥ is an elliptic boundary condition for the operator D (see [5], [27]).
The meaning of the ellipticity is as follows. We introduce the unbounded
operator DΠ≥ equal to the operator D with domain

dom DΠ≥ = {s ∈ H1(M ;S) ; Π≥(s|Y ) = 0} ,
where H1 denotes the first Sobolev space. Then the operator DΠ≥ = D :
dom(DΠ≥) → L2(M ;S) is a Fredholm operator with kernel and cokernel
consisting only of smooth sections.

The orthogonal projection Π≥ is a pseudodifferential operator of order
0 (see [27]) . In fact we can take any pseudodifferential operator R of order
0 with principal symbol equal to the principal symbol of Π≥ and obtain an
operator DR which satisfies the aforementioned properties. Let us point out,
however, that only the projection onto the kernel of the operator R is used in
the construction of the operator DR . Therefore we can restrict ourselves to
the study of the Grassmannian Gr(D) of all pseudodifferential projections
which differ from Π≥ by an operator of order −1 . The space Gr(D) has
infinitely many connected components and two boundary conditions P1 and
P2 belong to the same connected component if and only if

index DP1 = index DP2 .

We are interested however in self-adjoint realizations of the operator D
. The involution G : S|Y → S|Y equips L2(Y ;S|Y ) with a symplectic
structure, and Green’s formula (see [27])

(7.1.4) (Ds1, s2)− (s1,Ds2) = −
∫

Y

< G(s1|Y ); s2|Y > dy
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shows that the boundary condition R provides a self-adjoint realization DR

of the operatorD if and only if ker R is a Lagrangian subspace of L2(Y ;S|Y )
(see [26], [27], [40]). It is therefore reasonable to restrict ourselves to those
elements of Gr(D) which are Lagrangian subspaces of L2(Y ;S|Y ) . More
precisely we introduce Gr∗(D), the Grassmannian of orthogonal, pseudodif-
ferential projections P such that P − Π≥ is an operator of order -1 and

(7.1.5) −GPG = Id− P.
The space Gr∗(D) is contained in the connected component of Gr(D) pa-
rameterizing projections P with index DP = 0 .

We discuss only the Smooth, Self-adjoint Grassmannian, a dense subset
of the space Gr∗(D) , defined by

(7.1.6) Gr∗∞(D) = {P ∈ Gr∗(D) ; P − Π≥ has a smooth kernel} .

Remark 7.1.1. The spectral projection Π≥ is an element of Gr∗∞(D) if and
only if ker B = {0} . However, it is well-known that P (D) the (orthogonal)
Calderon projection is an element of Gr∗(D) (see for instance [26]), and it
has been recently observed by Simon Scott (see [91], Proposition 2.2.) that
P (D)−Π≥ is a smoothing operator, and hence that P (D) is an element of
Gr∗∞(D) . The finite-dimensional perturbations of Π≥ discussed below (see
also [40], [62] and [112]) provide further examples of boundary conditions
from Gr∗∞(D) . The latter were introduced by Jeff Cheeger, who called
them Ideal Boundary Conditions (see [34], [35]).

For any P ∈ Gr∗(D) the operator DP has a discrete spectrum nicely dis-
tributed along the real line (see [26], [40]). Therefore one might expect that
detζ(DP ) is well defined. To see that, we have to study the asymptotic ex-
pansion of the heat kernels involved in the construction of the determinant,
or equivalently the expansion of the operator (DP − λ)−1. The existence
of a nice asymptotic expansion of the trace of the heat kernels used in the
constructions of ηDP

(s) and ζD2
P

(s) was established in a recent work of Gerd

Grubb [?] . She used the machinery developed in her earlier work and her
joint work with Bob Seeley (see [?], [?], [?]). However, at the moment,
the problem of explicit computation of the coefficents in the expansion is
open. From this point of view the existence of the invariants used to define
detζ depends on the vanishing of particular coefficients in the corresponding
expansions.

We choose a different route. It follows from our earlier work on Grass-
mannians (see [26], [27], and [40] Appendix B) that Gr∗∞(D) is a path
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connected space. As a consequence we can perform a Unitary Twist and re-
place the operator DP by a unitarily equivalent operator (D+R)Πσ , where
Πσ ∈ Gr∗∞(D) denotes an appropriate finite-dimensional modification of
Π≥ defined below in Section 1. The operator DΠσ has a well-defined ζ-
determinant and the correction term R lives in the collar N . The operator
R is no longer a differential operator, but for any 0 ≤ u ≤ 1 , Ru = R|{u}×Y

is a pseudodifferential operator. If we assume that P − Π≥ has a smooth
kernel then the operator Ru has a smooth kernel for each 0 ≤ u ≤ 1 and
this is all that one needs in order to study the correction terms appearing in
the corresponding heat kernels. This is the reason why we restrict attention
to the space Gr∗∞(D). The arguments and the results hold also in the case
of P ∈ Gr∗(D) and P − Π≥ of trace class.

The main result of this chapter is the following Theorem.

Theorem 7.1.2. For any projection P ∈ Gr∗∞(D), ηDP
(s) and ζD2

P
(s) are

holomorphic functions of s in a neighborhood of s = 0.

Corollary 7.1.3. The ζ-determinant is a well-defined smooth function on
Gr∗∞(D).

Remark 7.1.4. (1) The result stated above implies the existence of the
Quillen ζ-function metric for families of elliptic boundary value problems.
This metric was studied before by Piazza [81] in the context of b-calculus
developed by Melrose and his collaborators.

(2) In fact, we are able to obtain complete asymptotic expansions of the
heat kernels for the operator DP . The reason is that Duhamel’s Principle
allows one to study the interior contribution and the boundary contribution
separately and identify the singularities caused by the boundary contribu-
tion. This procedure was used before in [40] (Section 4 and Appendix A)
and [60] (Section 1). As the asymptotic expansion has been already studied
(see [?], [?], [?]) we leave the details to the reader and concentrate instead
on the analysis of the ζ-determinant.

(3) A more difficult problem than the existence of the asymptotic ex-
pansion is to show that the invariants used in the construction of the de-
terminant are well defined. For instance Grubb and Seeley showed the
regularity of the η-function only for finite-dimensional perturbations of the
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Atiyah-Patodi-Singer boundary condition (see [?]). A similar result was also
obtained by Dai and Freed (see [37]). The η-invariant of a more general
class of boundary problems was also studied recently by Brüning and Lesch
(see [?]). There, however, the authors had to deal with the residuum of the
η-function at s = 0 , which is not present in our situation.

(4) The results of this chapter were announced in a talk K.P. Wojcie-
chowski gave at the Annual Meeting of the AMS in San Francisco in January
1995.

We also want to single out one particular result, which is related to the
discussion of the dependence of spectral invariants on the symbol of the
operator given in [?].

Proposition 7.1.5. The value of the ζ-function at s = 0 is constant on
Gr∗∞(D), i.e.

(7.1.7) ζD2
P1

(0) = ζD2
P2

(0) .

for any P1, P2 ∈ Gr∗∞(D) .

The results of this chapter allow us to study the ζ-determinant as a
function on Gr∗∞(D) . In particular, we are interested in the relation of the
ζ-determinant and the Quillen determinant defined as a canonical section
of the determinant line bundle over the Grassmannian. It was observed
by Scott [91] that when restricted to the self-adjoint Grassmannian the
determinant line bundle over Gr(D) becomes trivial. Moreover, it has a
natural trivialization over Gr∗∞(D) . The Quillen determinant expressed in
this trivialization becomes a function. We refer to the determinant obtained
in this way as the canonical determinant and we denote it by detCDP (see
[91] for details). In recent work of the author and Simon Scott the relation
between detζDP and detCDP is studied. In fact, it has been shown that,
up to a natural multiplicative constant, the two determinants are equal.
Proposition 7.1.5 and Proposition ?? are used in an essential way in the
proof of this result. We refer the reader to [?], [23], [93], [94] for details.

In this chapter we discuss another application of Theorem 0.2, the ex-
tension of the additivity formula for the η-invariant to boundary condi-
tions from Gr∗∞(D). This formula has been previously known only for
finite-dimensional perturbations of the Atiyah-Patodi-Singer condition (see
[112]). Let us point out that the additivity formula for the η-invariant
stated in Theorem ?? and Proposition 7.1.5 implies the additivity of the
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phase of the ζ-determinant under the pasting of two manifolds with the
same boundary. This extends the result of Dai and Freed (see [37]).

In the following two sections we study the η-function of DP . We obtain
the following result as a conclusion of our computations.

Theorem 7.1.6. For any P ∈ Gr∗∞(D) the function ηDP
(s) is a holomorphic

function of s in the half-plane Re(s) > −1 .

Section 4 contains a discussion of ζD2
P

(s) and d/ds(ζD2
P

(s))|s=0.

In Section 5 we present proofs of two technical results used in Section 3
and Section 4.

7.2. Boundary Contribution to the η-Function. I. Unitary Twist
and Duhamel’s Principle

Let us assume for a moment that the manifold M does not have a
boundary. The Dirac operator D is then a self-adjoint elliptic operator with
a discrete spectrum {λk}k∈Z . We define the η-function of D as follows:

(7.2.1) ηD(s) =
∑
λk 6=0

sign(λk)|λk|−s .

The function ηD(s) is a holomorphic function of s for Re(s) > dim(M)
and it has a meromorphic extension to C with isolated simple poles on the
real axis. The point s = 0 is not a pole and ηD = ηD(0) the η-invariant
of the operator D is an important invariant, which has found numerous
applications in geometry, topology and physics. In the case of a compatible
Dirac operator D the η-function is actually a holomorphic function of s for
Re(s) > −2 . This was shown by Bismut and Freed [17] , who used the
heat kernel representation of the η-function

(7.2.2) ηD(s) =
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 ·Tr De−tD2

dt ,

which in particular allows us to express the η-invariant as

(7.2.3) ηD(0) =
1√
π

∫ ∞

0

1√
t
·Tr De−tD2

dt .

It follows from (7.2.2) that the estimate

|Tr De−tD2| < c
√
t
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implies the regularity of the η-function. In fact, Bismut and Freed proved
a sharper result: Let E(t;x, y) denote the kernel of the operator De−tD2

,
then there exists a positive constant c such that for any x ∈M and for any
0 < t < 1

(7.2.4) |tr E(t;x, x)| < c
√
t .

We argue along the same lines and prove the following Proposition,
which implies Theorem 7.1.6.

Proposition 7.2.1. For any P ∈ Gr∗∞(D) there exists a positive constant
c > 0 such that for any 0 < t < 1 the following estimate holds

(7.2.5) |Tr DP e
−tD2

P | < c .

The proof of Proposition 7.2.1 occupies Section 2 and Section 3 of the
chapter. Proposition 7.2.1 is a statement on the small time asymptotics,
which by Duhamel’s Principle allows us to replace the kernel of the operator
by a suitable parametrix built from the heat kernel of the operator on M̃ ,
the closed double of the manifold M , and the heat kernel of the operator
G(∂u +B) subject to the boundary condition P on a cylinder [0,∞)× Y .

However, we need to start with a concrete representation of the heat
kernel on the cylinder. Such a representation is well-known for the original
Atiyah-Patodi-Singer condition Π≥ (see [5], or [27] Section 22). In general
the projection Π≥ is not an element of the Grassmannian Gr∗∞(D) . Nev-
ertheless, one can find easily a finite-dimensional modification of Π≥ which
belongs to this Grassmannian and then use the explicit formulas for the
heat kernel on the cylinder.

We obtain our modification of the Atiyah-Patodi-Singer condition in the
following way. The involution G (see (7.1.3)) restricted to ker(B) defines
a symplectic structure on this subspace of L2(Y ;S|Y ) and the Cobordism
Theorem for Dirac Operators (see for instance [27], Corollary 21.16) implies

dim ker(B+) = dim ker(B−) .

The last equality shows the existence of Lagrangian subspaces of ker(B).
We choose such a subspace W and let σ : L2(Y ;S|Y )→ L2(Y ;S|Y ) denote
the orthogonal projection of L2(Y ;S|Y ) onto W . Let Π> denote the orthog-
onal projection of L2(Y ;S|Y ) onto the subspace spanned by eigenvectors of
B corresponding to the positive eigenvalues. Then
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(7.2.6) Πσ = Π> + σ ∈ Gr∗∞(D)

gives an element of Gr∗∞(D), which is a finite-dimensional perturbation of
the Atiyah-Patodi-Singer condition. The operator Dσ = DΠσ is a self-
adjoint operator and the properties of its η-function were studied in [40]
(see Section 4 and Appendix A). It follows that ηDσ(s) is a holomorphic
function for Re(s) > −2. To make a connection with the operator DP we
need the following result, which is an easy consequence of the topological
structure of the Grassmannians studied in [26], [27], [40] (Appendix B).

Lemma 7.2.2. For any P ∈ Gr∗∞(D) there exists a smooth path {gu}0≤u≤1

of unitary operators on L2(Y ;S|Y ) which satisfies

Ggu = guG and gu − Id has a smooth kernel ,

such that g1 = Id and the path {Pu = guΠσg
−1
u } ⊂ Gr∗∞(D) connects P0 = P

with P1 = Πσ .

We can always assume that the path {gu} is constant on subintervals
[0, 1/4] and [3/4, 1] . We introduce U a unitary operator on L2(M ;S) using
the formula

(7.2.7) U :=

{
Id on M \N
gu on N

.

The following Lemma introduces the Unitary Twist, which allows us
to replace the operator DP by a modified operator D + R subject to the
boundary condition Πσ . This makes possible an explicit construction of
the heat kernels on a cylinder.

Lemma 7.2.3. The operators DP and DU,σ = (U−1DU)Πσ are unitarily
equivalent operators.

Proof. Let {fk;µk}k∈Z denote a spectral resolution of the operator
DP . This means that for each k we have

Dfk = µkfk and P (fk|Y ) = 0 .

This implies
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U−1DU(U−1fk) = µk(U−1fk) and Πσ((U−1fk)|Y ) = g−1
0 P (fk|Y ) = 0 ,

hence {U−1fk;µk} is a spectral resolution of (U−1DU)Πσ .
�

In the collar N , we have formulas

U−1DU = D +GU−1∂U

∂u
+GU−1[B,U ] ,

and

U−1D2U = D2 − 2U−1∂U

∂u
∂u − U−1∂

2U

∂u2
+ U−1[B2, U ] ,

which restricted to the collar [0, 1/4]× Y give

(7.2.8) U−1DU = D +GU−1[B,U ] and U−1D2U = D2 + U−1[B2, U ] .

It follows from Lemma 7.2.3 that we can study the operator DU,σ instead of
the operator DP . We use the representation (7.2.8) in the construction of

the parametrix of the kernel of the operator DU,σe
−tD2

U,σ . This parametrix is

built from the heat kernel on the double manifold M̃ and the heat kernel on
the cylinder. The bundle S and the operator D extend to the corresponding
objects S̃ and D̃ on M̃ (see [40]; see [27] for a detailed discussion of the
glueing constructions). There is also the obvious double Ũ of the unitary
transformation U . We introduce the operator

Ũ−1D̃Ũ : C∞(M̃ ; S̃)→ C∞(M̃ ; S̃) ,

which is unitarily equivalent to D̃ . Therefore the estimate (7.2.4) holds for
the kernel ẼU(t;x, y) of the operator

Ũ−1D̃Ũe−t(Ũ−1D̃Ũ)2 = Ũ−1D̃e−tD̃2

Ũ .

It follows from Duhamel’s Principle that on M \ N up to exponen-

tially small error (in t), the kernel of Ũ−1D̃e−tD̃2
Ũ is equal to the kernel of

DU,σe
−tD2

U,σ for 0 < t < 1 (see [40], [60]; see [27] for a detailed discussion
of the variant of Duhamel’s Principle we need in this chapter). More pre-
cisely, we have the following Lemma, which takes care of the situation in
the interior of M

Lemma 7.2.4. Let EU,σ(t;x, y) denote the kernel of the operator

DU,σe
−tD2

U,σ ,

then there exist positive constants c1, c2 such that for any x ∈ M1/8 = M \
[0, 1/8]× Y and any 0 < t < 1 the following estimate holds
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(7.2.9) ‖EU,σ(t;x, x)− ẼU(t;x, x)‖ ≤ c1e
− c2

t .

Hence the estimate (7.2.4) holds for the kernel of the operator DU,σe
−tD2

U,σ

in M1/8 .

Now, we study the heat kernel in the collar neighborhood of Y . Once
again we apply Duhamel’s Principle to replace the kernel EU,σ(t;x, y) of the

operator DU,σe
−tD2

U,σ by the corresponding kernel on [0,+∞)×Y . It follows

from equation (7.2.8) that up to an exponentially small error we can use
the kernel of the operator

(7.2.10) (G(∂u +B) +K1)e
−t(−∂2

u+B2+K2)σ ,

where

K1 = GU−1[B,U ] and K2 = U−1[B2, U ] .

Let us observe that K1 anticommutes and K2 commutes with the involution
G. The symbol exp(−t(−∂2

u +B2 +K2)σ) in (7.2.10) denotes the following
operator. We consider the operator G(∂u + B)Πσ on the infinite cylinder
[0,+∞)×Y and its square, which we denote by (−∂2

u +B2)σ . The operator
(−∂2

u+B2)σ is an unbounded self-adjoint operator in L2([0,+∞)×Y ;S) and
the kernel of the operator exp(−t(−∂2

u +B2)σ) is given by explicit formulas
(see [5], [27]). We add the bounded operator K2 and obtain the operator
(−∂2

u + B2 + K2)σ . It follows from standard theory (see for instance [86])
that the semigroup exp(−t(−∂2

u +B2 +K2)σ) is well defined. We study the

trace of the kernel of (G(∂u +B) +K1)e
−t(−∂2

u+B2+K2)σ in the next Section.

7.3. Boundary Contribution to the η-Function. II. Heat Kernel
on the Cylinder

In this Section we continue the proof of the Proposition 7.2.1. We have
to show that the boundary contribution to Tr DP e

−tD2
P is bounded for t

sufficiently small. Let e(t) denote the operator exp(−t(−∂2
u + B2 + K2)σ)

and e1(t) denote the operator exp(−t(−∂2
u +B2)σ) . We have the formula

(7.3.1) e(t) = e1(t) +
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}(t) ,

where the term K2e1 appears n-times in the curly bracket under the sum-
mation sign and ∗ denotes convolution (see for instance [27]; Section 22C).
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It follows from the explicit formulas giving the kernel of the operator e1(t)
(see (7.3.5) and Appendix formula (7.5.1)) that∫

Y

tr G(∂u +B)e1(t; (u, y), (v, z))|y=z
u=v
dy = 0 , y, z ∈ Y .

We want to show that there exists a positive constant C such that for any
0 ≤ u ≤ 1/8

(7.3.2) |
∫

Y

tr (G(∂u +B) +K1)e(t; (u, y), (v, z))|y=z
u=v
dy| < C , y, z ∈ Y .

It follows from Formula (7.3.1) that we have to study the trace

∫
Y

tr (G(∂u +B) +K1)

{e1 +
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t; (u, y), (v, z))|y=z
u=v
dy .

The involution G commutes with the operators e1 and K2 and anticommutes
with B and K1 , which gives us∫

Y

tr GB{e1(t)+
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t; (u, y), (v, z))|y=z
u=v
dy = 0 ,

and∫
Y

tr K1{e1(t)+
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t; (u, y), (v, z))|y=z
u=v
dy = 0 .

Therefore we have the equality

(7.3.3)

∫
Y

tr G(∂u +B) +K1)e(t; (u, y), (v, z))|y=z
u=v
dy =

∫
Y

tr G∂u{e1(t)+
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t; (u, y), (v, z))|y=z
u=v
dy =



90 7. THE ζ–DETERMINANT ON THE SMOOTH GRASSMANNIAN

∫
Y

tr G∂u{
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t; (u, y), (v, z))|y=z
u=v
dy .

The last equality in (7.3.3) follows from the fact that∫
Y

tr G(∂ue1)(t; (u, y), (v, z))|y=z
u=v
dy = 0

(see formula (7.5.1)). We have to study the right side of (7.3.3). The crucial
point here is to estimate the first term∫

Y

tr G(∂ue1) ∗ K2e1(t; (u, y), (v, z))|y=z
u=v
dy .

We estimate the trace in the Y − direction of the operator

G(∂ue1) ∗ K2e1(t) =

∫ t

0

G(∂ue1(s))K2e1(t− s)ds .

Our result essentially follows from the fact that E1(t − s; (u, y), (v, z)),
the kernel of the operator e1(t− s), and F(s; (u, y), (v, z)), the kernel of the
operator ∂ue1(s), have nice ”diagonal” representations on the cylinder. We
can choose a spectral resolution {ϕn;µn}n∈Z\{0} of the tangential operator
B, such that ϕn corresponds to a positive eigenvalue or is an element of
Ran σ and Gϕn = ϕ−n . This means that one has

(7.3.4) Bϕn = µnϕn and Πσϕn = 0

for µn ≥ 0 , and

B(Gϕn) = −µn(Gϕn) and Πσ(Gϕn) = Gϕn .

Now we can represent our kernels in the following way.

(7.3.5) E1(t; (u, y), (v, z)) =
∑

n∈Z\{0}

gn(t;u, v)ϕn(y)⊗ϕ∗n(z) ,

and

F(t; (u, y), (v, z)) =
∑

n∈Z\{0}

hn(t;u, v)ϕn(y)⊗ϕ∗n(z) ,

where gn(t;u, v) and hn(t;u, v) are given by explicit formulas (see (7.5.1)).
We have

TrY G(∂ue1(s))K2e1(t− s)|u=u0
=∑

n∈Z\{0}

(G(∂ue1(s))K2e1(t− s)(ϕn);ϕn)|u=u0
,
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and

(∂ue1(s))K2e1(t− s)(ϕn)(y)|u=u0
=∑

m∈Z\{0}

∫ ∞

0

dv·gm(s;u0, v)hn(t− s; v, u0)(ϕm;K2ϕn)ϕm(y) .

This gives us the following expressions

(7.3.6) TrY G(∂ue1(s))K2e1(t− s)|u=u0
=∑

m∈Z\{0}

∫ ∞

0

h−n(s;u0, v)gn(t− s; v, u0)dv·(ϕn;K2ϕn) ,

and

TrY e1(s)K2e1(t− s)|u=u0
=∑

m∈Z\{0}

∫ ∞

0

gn(s;u0, v)gn(t− s; v, u0)dv·(ϕn;K2ϕn) .

The existence of the η-invariant for the operatorDP is now a consequence
of the first part of the following Theorem. The second part of the Theorem is
used below in Section 3, where we deal with the ζ-function and its derivative.

Theorem 7.3.1. There exists a positive constant c > 0 such that for any
n 6= 0 and for any 0 < t < 1 we have the following estimates

(7.3.7) |
∫ ∞

0

h−n(s;u0, v)gn(t− s; v, u0)dv| <
c√

s(t− s)
,

and

(7.3.8) |
∫ ∞

0

gn(s;u0, v)gn(t− s; v, u0)dv| <
c√
t
.

The proof of the Theorem 7.3.1 is completely elementary and consists of
long and tedious computations. We present the proof in the closing section
of this chapter. Theorem 7.3.1 has the following immediate Corollary.
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Corollary 7.3.2. Let γ(u) denote a non-increasing smooth function equal
to 1 for u ≤ 1/8 , and equal to 0 for u ≥ 1/4 . Then there exists a positive
constant c such that

(7.3.9) |Tr γ(u){G(∂ue1) ∗ K2e1}(t)| ≤ c·Tr|K2| and

|Tr γ(u){e1 ∗ K2e1}(t)| ≤ c
√
t·Tr|K2| .

Proof. We prove the first estimate in (7.3.9), the proof of the second
is completely analogous.

|Tr γ(u){G(∂ue1) ∗ K2e1}(t)| ≤

|
∑

n∈Z\{0}

∫ t

0

ds

∫ ∞

0

γ(u)du

∫ ∞

0

h−n(s;u0, v)gn(t− s; v, u0)dv·(ϕn;K2ϕn)| ≤

c1·
∑

n∈Z\{0}

∫ t

0

ds|
∫ ∞

0

γ(u)du

∫ ∞

0

h−n(s;u0, v)gn(t− s; v, u0)dv|·|(ϕn;K2ϕn)| <

c2·(
∑

n∈Z\{0}

|(ϕn;K2ϕn)|)·
∫ t

0

ds√
s(t− s)

≤ c3·Tr|K2|·
∫ t/2

0

ds√
s(t− s)

<

c3·Tr|K2|·
1√
t/2
·
∫ t/2

0

ds√
s
< c4·Tr|K2| .

�

Proof of Proposition 7.2.1



7.4. THE MODULUS OF THE ζ-DETERMINANT ON THE GRASSMANNIAN 93

We have

|Tr γ(u){G(∂u +B) +K1)e}(t)|

= |Tr γ(u)G∂u{
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t)

≤ |Tr γ(u){G(∂ue1) ∗ K2e1}(t)|

+ |Tr
∞∑

n=2

γ(u){G(∂ue1) ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}(t)|

≤ c·Tr|K2|+
∞∑

n=2

|Tr
∫ t

0

ds1

∫ s1

0

ds2...

∫ sn−1

0

dsn ·

γ(u)(G∂ue1)(sn)◦(K2e1)(sn−1 − sn)◦...◦(K2e1)(t− s1)|

≤ c·Tr|K2|+
∞∑

n=2

∫ t

0

ds1

∫ s1

0

ds2..

∫ sn−1

0

dsn

{Tr|γ(u)(G∂ue1)(sn)◦(K2e1)(sn−1 − sn)|·
‖(K2e1)(sn−2 − sn−1‖..‖(K2e1)(t− s1)‖}

≤ c·Tr|K2|+
∞∑

n=2

∫ t

0

ds1

∫ s1

0

ds2...

∫ sn−1

0

dsn ·

Tr|γ(u)(G∂ue1)(sn)◦(K2e1)(sn−1 − sn)|·‖K2‖n−1

≤ c·Tr|K2|{1 + c·
∞∑

n=2

‖K2‖n−1

∫ t

0

ds1

∫ s1

0

ds2...

∫ sn−2

0

dsn−1}

= c·Tr|K2|{1 + c·‖K2‖·
∞∑

n=2

(‖K2‖t)n−2

(n− 2)!
} ≤ c1·Tr|K2|·ec2t‖K2‖

for some positive constants c1 and c2 . This ends the proof of Proposition

7.2.1.

7.4. The Modulus of the ζ-Determinant on the Grassmannian

In this Section we study the spectral invariants of the operator D2
P used

in the construction of the ζ-determinant, namely ζD2
P

(0) and d/ds(ζD2
P

(s))|s=0

(see (7.1.1)). Let us review briefly the situation in the case of a closed ma-
nifold M . We follow here the presentation in [100] and the necessary tech-
nicalities can be found in [45]. We assume that D is an invertible operator.
Otherwise detζD = 0 . We have

(7.4.1) ζD2(s) = Tr (D2)−s =
1

Γ(s)

∫ ∞

0

ts−1Tr e−tD2

dt
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which is a well defined holomorphic function of s for Re(s) > n
2

, where
n = dim M , and has a meromorphic extension to the whole complex plane
with only simple poles. The poles and residues are determined by the small
time asymptotics of the heat kernel. Let E(t;x, y) denote the kernel of the
operator exp(−tD2) . The pointwise trace tr E(t;x, x) has an asymptotic
expansion as t→ 0

(7.4.2) tr E(t;x, x) = t−n/2

N∑
k=0

tk/2ak(D2;x) + o(t
N−n

2 ) ,

where ak(D2;x) are computed from the coefficients of the operator D2 at
the point x (see [45]). It follows that the meromorphic extension of ζD2(s)
has poles at the points sk = n−k

2
with residues given by

(7.4.3) Ress=sk
ζD2(s) =

1

Γ(n−k
2

)
ak(D2) ,

where ak(D2) denotes the integral

ak(D2) =

∫
M

ak(D2;x)dx .

In particular, there are no poles at non-positive integers and ζD2(0) is
given by

(7.4.4) ζD2(0) = an(D2) .

The functions Γ(s) and
∫∞

0
ts−1Tr e−tD2

dt have the following asymptotic
expansion in a neighborhood of s = 0.

(7.4.5)

∫ ∞

0

ts−1Tr e−tD2

dt =
an(D2)

s
+b+sf(s) and Γ(s) =

1

s
+γ+sh(s) ,

where f(s) and h(s) are holomorphic functions of s and γ denotes Eu-
ler’s constant. The number b denotes the regularized value of the integral∫∞

0
t−1Tr e−tD2

dt . Now we differentiate

(7.4.6) − ln detζ(D2) = d/ds(ζD2)|s=0

=
d

ds
{

an(D2)
s

+ b+ sf(s)
1
s

+ γ + sh(s)
}|s=0 = b− γ·an(D2) ,

and obtain the formula for the derivative of ζD2(s) at s = 0.

We want to study the corresponding invariants on a manifold with
boundary for the operator DP , where P ∈ Gr∗∞(D) . We show that de-
spite the additonal poles, caused by the boundary contribution, at least in
a neighborhood of s = 0 the situation is not different from the case of a
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closed manifold. First we have the following result which holds in the case
of the operator Dσ.

Proposition 7.4.1. The function Γ(s)ζDσ(s) =
∫∞

0
ts−1Tr e−tD2

σdt has a
simple pole at s = 0. Hence ζD2

σ
(0) and, according to formula (7.4.6),

ln detζ(Dσ)2 = −d/ds(ζD2
σ
(s))|s=0

are well defined.

The proof of Proposition 7.4.1 consists of a straightforward computation
of the boundary contribution and is included in the Appendix.

Now the fact that ζD2
P

(0) and d/ds(ζD2
P

(s))|s=0 are well defined is an
immediate consequence of the next Theorem.

Theorem 7.4.2. For any P ∈ Gr∗∞(D) there exists a constant c > 0 such
that the following estimate holds for any 0 < t < 1:

(7.4.7) |Tr e−tD2
P − Tr e−tD2

σ | < c
√
t·Tr|K2|et‖K2‖ .

Proof. We essentially repeat the proof of Proposition 7.2.1. We replace
the operator DP by the operator DU,σ and use Duhamel’s Principle to obtain

(7.4.8) |Tr e−tD2
P − Tr e−tD2

Πs | =

|Tr
∞∑

n=1

{e1 ∗ K2e1 ∗ K2e1 ∗ ... ∗ K2e1}}(t)|+O(e−c/t) .

Now we use the second part of Theorem 7.3.1 in order to estimate the
sum on the right side of (7.4.8) in exactly the same way as in the proof of
Proposition 7.2.1.

�

Theorem 7.4.2 shows that the difference ζD2
P

(s) − ζD2
σ
(s) is a holo-

morphic function of s for Re(s) > −1
2

. Therefore ζD2
P

(s) is a holomorphic
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function of s in a neighborhood of s = 0 . The proof of Theorem 7.1.2 is
now complete.

Proof of Proposition 7.1.5

The Proposition is an easy Corollary of Theorem 7.4.2. It follows from
(7.4.1) and (7.4.5) that we have the equality

ζD2
P

(0)− ζD2
σ
(0) = lim

s→0

1

Γ(s)

∫ ∞

0

ts−1Tr(e−tD2
P − e−tD2

σ)dt =

lim
s→0

s

∫ 1

0

ts−1Tr(e−tD2
P − e−tD2

σ)dt .

Now we apply Theorem 7.4.2 and obtain

|ζD2
P

(0)− ζD2
σ
(0)| < lim

s→0
s

∫ 1

0

ts−1|Tr e−tD2
P − Tr e−tD2

σ |dt

< c·lim
s→0

s

∫ 1

0

ts−1/2dt = 0 .

This ends the Proof of Proposition 7.1.5.

7.5. Proof of Theorem 7.3.1 and Proposition 7.4.1

We start with a discussion of Theorem 7.3.1. Recall the formulas for the
functions gn(t;u, v) (see for instance [27], (22.33) and (22.35))

(7.5.1) gn(t;u, v) =
e−µ2

nt

2
√
πt
·{e−

(u−v)2

4t − e−
(u+v)2

4t } for n > 0 ,

and

gn(t;u, v) =
e−(−µn)2t

2
√
πt
·{e−

(u−v)2

4t + e−
(u+v)2

4t }+

(−µn)e−(−µn)(u+v)·erfc(u+ v

2
√
t
− (−µn)

√
t) for n < 0 ,

where

erfc(x) =
2√
π

∫ ∞

x

e−r2

dr <
2√
π
e−x2

.

We begin with the estimate of the integral
∫∞

0
gn(s;u0, v)gn(t−s; v, u0)dv

. The most singular term is
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∫ ∞

0

e−µ2
ns

2
√
πs
·e−

(u0−v)2

4s · e
−µ2

n(t−s)

2
√
π(t− s)

·e−
(u0+v)2

4(t−s) dv =

1

4π

e−µ2
nt√

s(t− s)

∫ ∞

0

e−
t(u0−v)2

4s(t−s) dv <

1

4π

e−µ2
nt√

s(t− s)
2

√
s(t− s
t

∫ +∞

−∞
e−r2

dr =
1

2
√
πt
e−µ2

nt <
1

2
√
πt

.

We also have the inequality

e−
(u+v)2

4t ≤ e−
(u−v)2

4t ,

which holds for u, v ≥ 0 and implies the estimate

∫ ∞

0

e−µ2
ns

2
√
πs
·e−

(u0∓v)2

4s · e
−µ2

n(t−s)

2
√
π(t− s)

·e−
(u0±v)2

4(t−s) dv ≤ 1

2
√
πt

.

This gives ∫ ∞

0

gn(s;u0, v)gn(t− s; v, u0)dv <
1

2
√
πt

,

for positive n . If n < 0 we also have to discuss the terms of the form

∫ ∞

0

e−µ2
ns

2
√
πs
·e−

(u0−v)2

4s ·µne
µn(u0+v)·erfc( u0 + v

2
√
t− s

+ µn

√
t− s)dv .

We have

∫ ∞

0

e−µ2
ns

2
√
πs
·e−

(u0−v)2

4s ·µne
µn(u+v)·erfc( u+ v

2
√
t− s

+ µn

√
t− s) <

µne
−µ2

nt

π
√
s

∫ ∞

0

e−
t(u0−v)2

4s(t−s) dv <
µne

−µ2
nt

√
π

√
t− s
t

< ce−µ2
nt .

Finally, we have to estimate the term in which the erfc function appears
twice.
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∫ ∞

0

µne
µn(u0+v)erfc(

u0 + v

2
√
s

+ µn

√
s) ·

µne
µn(u0+v)erfc(

u0 + v

2
√
t− s

+ µn

√
t− s)dv

<
4

π

∫ ∞

0

µ2
ne

2µn(u0+v)e
−(

u0+v

2
√

s
+µn

√
s)2·e−(

u0+v

2
√

t−s
+µn

√
t−s)2

dv

=
4

π
µ2

ne
−µ2

nt

∫ ∞

0

e−
t(u0+v)2

4s(t−s) dv =
4

π
µ2

ne
−µ2

nt2

√
s(t− s)

t

∫ +∞

−∞
e−r2

dr

≤ 8√
π
µ2

ne
−µ2

nt2
√
t
√
π < c

√
te−µ2

nt .

The computations given above finish the proof of (7.3.8). We work the
same way in order to obtain the estimate (7.3.7). The only difference is the
appearence of hn(t;u0, v) = ∂gn

∂u
(t;u0, v) . The first term we have to consider

has the form∫ ∞

0

e−µ2
ns

2
√
πs

|u0 − v|
2s

e−
(u0−v)2

4s · e
−µ2

n(t−s)

2
√
π(t− s)

e−
(u0−v)2

4(t−s) dv <

1

4π

e−µ2
nt

2
√
s(t− s)

∫ ∞

0

|u0 − v|
2s

e−
(u0−v)2

4s dv =

1

4π

e−µ2
nt√

s(t− s)
{
∫ u0

0

u0 − v
2s

e−
(u0−v)2

4s dv +

∫ ∞

u0

v − u0

2s
e−

(u0−v)2

4s dv} =

1

4π

e−µ2
nt√

s(t− s)
{
∫ u0

0

d(e−
(u0−v)2

4s )−
∫ ∞

u0

d(e−
t(u0−v)2

4s } < e−µ2
nt

2π
· 1√

s(t− s)
.

We work on the other terms which appear in
∫∞

0
h−n(s;u0, v)gn(t−s; v, u0)dv

in the same way. The details are left to the reader.

Now, we show that the function Γ(s)ζDσ(s) has a simple pole at s = 0 .
We follow the method applied in Section 4 of [40] to study the η-invariant
of Dσ . Let us point out that the situation is simpler in the case of the
η-invariant due to the absence of the boundary contribution. Nevertheless,
the result corresponding to Lemma 4.2 of [40] holds also in the present
case. Namely modulo a function holomorphic on the whole complex plane,
Γ(s)ζDσ(s) splits into an interior contribution and a cylinder contribution.
This again follows from Duhamel’s Principle. First of all,∫ ∞

1

ts−1Tr e−tDσdt

is a holomorphic function on the whole complex plane. For 0 < t < 1,
we replace exp(−tD2

σ) by the operator exp(−tD̃2) inside of M and by the
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operator exp(−t(−∂2
u + B2)σ) on N . The interior contribution produces

simple poles at the points sk = k−n
2

with residues given by the formula∫
M

ak(D̃2;x)dx ,

where D̃ denotes the double of the Dirac operator D on M̃ , the closed double
of M (see formulas (7.4.2) and (7.4.3)). In particular the contribution to
the residuum at s = 0 is equal to∫

M

an(D̃2;x)dx = 0 .

This is due to the point-wise vanishing of an(D̃2;x) , which follows from
the fact that n = dim M is odd (see for instance [45]). The cylinder
contribution has the form

∫ ∞

0

ts−1Tr γ(u)e−t(−∂2
u+B2)Πσdt

=
∑

n∈Z\{0}

∫ ∞

0

ts−1dt

∫ ∞

0

γ(u)gn(t;u, u)du ,

where γ(u) denotes the cut-off function. The integral∫ ∞

0

ts−1dt

∫ ∞

0

γ(u)gn(t;u, u)du

consists of two terms. The first term produces the contribution∫ ∞

0

ts−1dt{
∑

n∈Z\{0}

∫ ∞

0

γ(u)
e−µ2

nt

2
√
πt
·(1− sign(n)e−

u2

t )du} .

This is convergent for Re(s) > n/2 and in fact it is equal to

∫ ∞

0

ts−1dt{
∑

n∈Z\{0}

∫ ∞

0

γ(u)
e−µ2

nt

2
√
πt
·(1− sign(n)e−

u2

t )du} =

∫∞
0
γ(u)du

2
√
π
·
∫ ∞

0

ts−3/2Tr e−tB2

dt .

It follows now from (7.4.2) and (7.4.3) that the expression on the right side
has a meromorphic extension to the whole complex plane with simple poles.
Moreover, it is regular at s = 0 . The reason is that the residuum at s = 0
is given by the formula ∫∞

0
γ(u)du

2
√
π

adim(Y )+1(B
2) ,
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and adim(Y )+1(B
2) is equal to 0 due to the fact that dim(Y ) + 1 is an odd

number (see for instance [45]). We are left with∫ ∞

0

ts−1dt

∫ ∞

0

γ(u){
∑
n>0

µne
2uµnerfc(

u√
t

+ µn

√
t)}du .

We only have to show that this term produces at most a simple pole at
s = 0 . We can neglect the presence of the cut-off function γ(u) and then
we obtain for large Re(s)∫ ∞

0

ts−1dt

∫ ∞

0

{
∑
n>0

µne
2uµnerfc(

u√
t

+ µn

√
t)}du =

1

2

∫ ∞

0

ts−1dt

∫ ∞

0

{
∑
n>0

d

du
(e2uµn)erfc(

u√
t

+ µn

√
t)}du =

1

2

∫ ∞

0

ts−1dt{
∑
n>0

{e2uµnerfc(
u√
t

+ µn

√
t)}|∞0 −∫ ∞

0

e2uµn(
d

du
{erfc( u√

t
+ µn

√
t)})du} =

1

2

∫ ∞

0

ts−1{
∑
n>0

e−µ2
nt 2√

π
(

∫ ∞

0

e−u2/t du√
t
)−

∑
n>0

erfc(µn

√
t)}dt =

1

2

∫ ∞

0

ts−1Tr e−tB2

dt− 1

2

∫ ∞

0

ts−1{
∑
n>0

erfc(µn

√
t)}dt .

The first sum on the right side is equal to 1
2
Γ(s)ζB2(s), hence it produces

the correct asymptotic expansion with a simple pole at s = 0 . We need
the next identity in order to deal with the second sum .∫ ∞

0

ts−1erfc(µn

√
t)dt =

1

s

∫ ∞

0

d

dt
(ts)erfc(µn

√
t)dt =

{1

s
tserfc(µn

√
t)}|∞0 −

1

s

∫ ∞

0

tse−µ2
nt µn

2
√
t
dt =

− 1

2s
µn

∫ ∞

0

ts−1/2e−µ2
ntdt = −Γ(s+ 1/2)

2s
(µ2

n)−s .

Therefore we obtain

− 1

2

∫ ∞

0

ts−1{
∑
n>0

erfc(µn

√
t)}dt

=
Γ(s+ 1/2)

4s

1

2
ζB2(s) =

Γ(s+ 1/2)

8s
ζB2(s) ,

and the expression on the right side has a meromorphic extension to the
whole complex plane, with a simple pole at s = 0 with residuum
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Ress=0
Γ(s+ 1/2)

8s
ζB2(s) =

√
π

8
adim(Y )(B

2) .

We have shown that the cylinder contribution to the trace integral∫∞
0
ts−1Tr e−tD2

Πσdt has a meromorphic extension to the whole complex
plane with an isolated simple pole at s = 0 , which ends the proof of Propo-
sition 7.4.1.





Part 3

Pasting of η–Invariants





CHAPTER 8

The Adiabatic Duhamel Principle

1

Let D = D1 ∪ D2 be a compatible Dirac operator on a closed
manifold M which is partitioned M = M1 ∪Y M2 into two
compact manifolds with common boundary Y . Consider its
cylindrical prolongation DR = DR

1 ∪ DR
2 on the stretched ma-

nifold

MR = M1 ∪ ([−R,R]× Y ) ∪M2 = MR
1 ∪MR

2 .

Imposing the Atiyah–Patodi–Singer boundary condition Π> on
the right part M2, we prove a different version of the Duhamel
Principle and derive an adiabatic formula for the η–invariant

lim
R→∞

{
ηDR

2,Π>
(0)−

∫
MR

2

ηDR(0;x) dx

}
= 0.

Since neither the η–invariant nor the η–density depend, mod-
ulo Z, on the length R, we obtain the splitting formula

ηD(0) = ηD1,Π<
(0) + ηD2,Π>

(0).

8.1. Introduction

In this and the following chapter, the third part of our book, we derive
pasting formulas for the η–invariant . Below, in the fourth part, we then
derive pasting formulas for the determinant line bundle, the ζ–determinant
, and for the curvature of the ζ–determinant : how do these invariants split
when the manifold is split? One reason for this question is, of course, that
we wish to understand the invariants of a complicated manifold in terms of
more simple building blocks.

Various pasting formulas for topological invariants are well–established.
The master formula is the Novikov additivity for the signatures of parti-
tioned 4k–dimensional manifolds. It can be generalized to additivity theo-
rems for the index and to Bojarski type formulas. That are formulas which
give the index on the closed partitioned manifold in terms of the Cauchy
data spaces along the separating hypersurface in even dimension and, cor-
respondingly, the spectral flow of a continuous family of Dirac operators in
terms of the Maslov index of the Cauchy data spaces in odd dimension.

1Date: November 15, 2001. File name: BOOK7C.TEX, uses BOOKC.STY and
BOOKREFE.TEX.
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From a topological viewpoint these splitting formulas are not very sur-
prising although the precise determination of the correction terms can de-
mand considerable effort. The Novikov additivity, for instance, where all
correction terms are cancelled, is an easy consequence of Poincaré duality
and the Mayer–Vietoris sequence of singular homology.

However, analytical explanations for the various additivity formulas for
the index can also be obtained. They help to understand the nature of
the correction terms. Here the master problem is the Riemann–Hilbert
problem of complex analysis, expressing the index of a coupling problem
along a curve solely by the coupling data.

Unfortunately, we need a little more topology, differential geometry,
functional analysis, and elliptic partial differential equation analysis when
we base our pasting laws on the decomposition of a given closed manifold
into two manifolds with boundary (that is the analytical approach) instead
of basing the calculations on triangulations of the manifold (as it is the sin-
gular homology’s approach). The benefit of the analytical approach is that
we can describe and follow the cutting and pasting process explicitly on the
level of the operators and their eigenvalues and not only on the level of the
homology groups and their invariants.

By now, it seems that splitting formulas for the index are rather well
understood. The reason is that the index is given by a local formula and
the splitting is rather obvious as soon as the process of cutting and pasting
of operators is understood. To understand the underlying idea it suffices
to read the concluding Chapter 26 of our monograph [27]. One major
topic of that book has been the cutting and pasting of Dirac operators
over partitioned manifolds and the various corresponding index additivity
theorems.

For a different approach we refer to the work by N. Teleman (see, in
particular, [103], [104]) and others on a true discretisation of the Dirac
operator over a triangulated manifold. These authors carry out the analysis
in intimate analogy to the topology. The discrete methods have been proved
successful in some instances (see e.g. Müller [72] and Lück [63]), but a
discrete description of spectral and other global elliptic boundary conditions
and the corresponding calculation of topological and spectral invariants is
missing (1997).

Splitting formulas for spectral quantities like the η–invariant and the
determinant which are not topological invariants are a veritable challenge.
Surprisingly, here the process of understanding was running in reverse order.
First the analysis was understood, i.e. the additivity of the η–invariant, later
the underlying procedure of algebraic topology, i.e. the pasting formula for
the canonical determinant. All that will be explained in the following.

In this chapter we shall use the following notations and make the fol-
lowing assumptions.
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Figure 8.1.1. a) Partitioned manifold M = M1 ∪M2 with
hypersurface Y , neck N , and normal coordinate u.
b) Stretched partitioned manifold MR = MR

1 ∪MR
2

Assumptions 8.1.1. (a) Let M be an odd–dimensional closed partitioned
Riemannian manifold M = M1∪Y M2 with M1,M2 compact manifolds with
common boundary Y . Let S be a bundle of Clifford modules over M .
(b) To begin with we assume that D is a compatible (= true) Dirac operator
over M . Thus, in particular, D is symmetric and has a unique self–adjoint
extension in L2(M ;S).
(c) We assume that there exists a bi–collar cylindrical neighbourhood (a
neck) N ' (−1, 1) × Y of the separating hypersurface Y such that the
Riemannian structure on M and the Hermitian structure on S are product
inN , i.e. they do not depend on the normal coordinate u, when restricted to
Yu = {u}×Y . Our convention for the orientation of the coordinate u is that
it runs from M1 to M2, i.e. M1∩N = (−1, 0]×Y and N ∩M2 = [0, 1)×Y .
Then the operator D takes the following form on N :

(8.1.1) D|N = G(∂u +B),

where the principal symbol in u–direction G : S|Y → S|Y is a unitary
bundle isomorphism (Clifford multiplication by the normal vector du) and
the tangential operator B : C∞(Y ;S|Y )→ C∞(Y ;S|Y ) is the corresponding
Dirac operator on Y . Note that G and B do not depend on the normal
coordinate u in N and they satisfy the following identities

(8.1.2) G2 = −Id , G∗ = −G , G ·B = −B ·G , B∗ = B.
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Hence, G is a skew–adjoint involution and S, the bundle of spinors, decom-
poses in N into ±i–eigenspaces of G, S|N = S+⊕S−. It follows that (8.1.1)
leads to the following representation of the operator D in N

(8.1.3) D|N =

(
i 0
0 −i

)
·
(
∂u +

(
0 B− = B∗

+

B+ 0

))
,

where B+ : C∞(Y ;S+)→ C∞(Y ;S−) maps the spinors of positive chirality
into the spinors of negative chirality.
(d) To begin with we consider only the case of kerB = {0}. That implies
that B is an invertible operator. More precisely, there exists a pseudo–
differential elliptic operator L of order −1 such that BL = IdS = LB (see,
for instance, [27], Proposition 9.5).
(e) For real R > 0 we study the closed stretched manifold MR which we
obtain from M by inserting a cylinder of length 2R, i.e. replacing the collar
N by the cylinder (−2R− 1,+1)× Y

MR = M1 ∪ ([−2R, 0]× Y ) ∪M2 .

We extend the bundle S to the stretched manifold MR in a natural way. The
extended bundle will be also denoted by S. The Riemannian structure on
M and the Hermitian structure on S are product in N , hence we can extend
them to smooth metrics on MR in a natural way and, at the end, we can
extend the operator D to an operator DR on MR by using formula (8.1.1).
Then MR splits into two manifolds with boundary: MR = MR

1 ∪MR
2 with

MR
1 = M1∪

(
(−2R,R]×Y

)
, MR

2 =
(
[−R, 0)×Y

)
∪M2, and ∂M1 = ∂MR

2 =

{−R} × Y . Consequently, the operator DR splits into DR = DR
1 ∪ DR

2 . We
shall impose spectral boundary conditions to obtain self–adjoint operators
D1,Π< , DR

1,Π<
, D2,Π> , and DR

2,Π>
in the corresponding L2 spaces on the parts

(see (8.1.4)).
(f) We also introduce the complete, non–compact Riemannian manifold with
cylindrical end

M∞
2 :=

(
(−∞, 0]× Y

)
∪M2

by gluing the half–cylinder (−∞, 0] × Y to the boundary Y of M2.
Clearly, the Dirac operator D extends also to C∞(M∞

2 ,S).

To fix our notation we recall from part II of this book. Let Π> (re-
spectively Π<) denote the spectral projection of B onto the subspace of
L2(Y ;S|Y ) spanned by the eigensections corresponding to the positive (re-
spectively negative) eigenvalues. Then Π> is a self–adjoint elliptic bound-
ary condition for the operator D2 = D|M2 (see [27], Proposition 20.3). This
means that the operator D2,Π> defined by

(8.1.4)

{
D2,Π> = D|M2

dom(D2,Π>) = {s ∈ H1(M2;S|M2) | Π>(s|Y ) = 0}
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manifolds operators integral kernels
M = M1 ∪Y M2 D, e−tD2

, De−tD2
e(t;x, x′), E(t;x, x′)

MR = MR
1 ∪Y MR

2 DR, e−t(DR)2 , DRe−t(DR)2 eR(t;x, x′), ER(t;x, x′)
M2 D2, e

−tD 2
2,Π> , D2e

−tD 2
2,Π> e2(t;x, x′), E2(t;x, x′)

MR
2 = ([−R, 0]× Y ) ∪M2 DR

2 , e
−t(DR

2,Π>
)2

, DR
2 e

−t(DR
2,Π>

)2 eR
2 (t;x, x′), ER

2 (t;x, x′)
QR

2 (t), CR(t) =
(
(DR

2,Π>
)2 + d

dt

)
QR

2 (t) QR
2 (t;x, x′), CR(t;x, x′)

M∞
2 = ((−∞, 0]× Y ) ∪M2 D∞2 , e−t(D∞2 )2 , D∞2 e−t(D∞2 )2 e∞2 (t;x, x′), E∞2 (t;x, x′)
Y ∞

cyl = (−∞,+∞)× Y Dcyl, e−tD2
cyl , Dcyle

−tD2
cyl ecyl(t;x, x′), Ecyl(t;x, x′)

Y ∞
cyl /2 = [0,+∞)× Y Daps, e−tD2

aps , Dapse
−tD2

aps eaps(t;x, x′), Eaps(t;x, x′)

Table 1. Table of manifolds, operators, and integral kernels

is an unbounded self–adjoint operator in L2(M2;S|M2) with compact resol-
vent. In particular,

D2,Π> : dom(D2,Π>) −→ L2(M2;S|M2)

is a Fredholm operator with discrete real spectrum and the kernel of D2,Π>

consists of smooth sections of S|M2 . As shown before (see Chapter 6),
the η–function of D2,Π> is well defined and enjoys all the properties of the
η–function of the Dirac operator defined on a closed manifold. In particu-
lar, ηD2,Π>

(0), the η–invariant of D2,Π> , is well defined. Similarly, Π< is a

self–adjoint boundary condition for the operator D|M1 , and we define the
operator D1,Π< using a formula corresponding to (8.1.4). To keep track of
the various manifolds, operators, and integral kernels we refer to Table 1
where we have collected the major notations.

The main results of this chapter are the following theorem on the adia-
batic limits of the η–invariants and its additivity corollary:

Theorem 8.1.2. Attaching a cylinder of length R > 0 at the boundary of the
manifold M2, we can approximate the η–invariant of the spectral boundary
condition on the prolonged manifold MR

2 by the corresponding integral of the
‘local’ η–function of the closed stretched manifold MR:

lim
R→∞

{
ηDR

2,Π>
(0)−

∫
MR

2

ηDR(0; x) dx

}
≡ 0 mod Z.

and

Corollary 8.1.3. ηD(0) ≡ ηD1,Π<
(0) + ηD2,Π>

(0) mod Z.
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Remark 8.1.4. With hindsight, it is not surprising that modulo the inte-
gers the preceding additivity formula for the η–invariant on a partitioned
manifold is precise. An intuitive argument runs along the following lines:
‘almost’ all eigensections and eigenvalues of the operator D on the closed
partitioned manifold M = M1 ∪ M2 can be traced back either to eigen-
sections ψ1,k and eigenvalues µ1,k of the spectral boundary problem D1,Π<

on the part M1 or to eigensections ψ2,` and eigenvalues µ2,` of the spectral
boundary problem D2,Π> on the part M2. Unfortunately, we have no explicit
method for doing an exact correspondence. But we have an approximate
method: due to the product form of the Dirac operator in a neighbourhood
of the separating hypersurface, eigensections on one part M1 or M2 of the
manifold M can be extended to smooth sections on the whole of M . Not as
true eigensections of D, but with a relative error which is rapidly decreasing
with R → ∞ when we attach cylinders of length R to the part manifolds
or, equivalently, insert a cylinder of length 2R in M . So much about the
great majority of eigensections and eigenvalues.

There is also a residual set {µ0,j} of eigenvalues of D which can neither
be traced back to eigenvalues of D1,Π< nor of D2,Π> . These eigenvalues
can, however, be traced back to the kernel of the Dirac operators D∞1 and
D∞2 on the part manifolds with cylindrical ends M∞

1 and M∞
2 . Because of

Fredholm properties the residual set is finite and, hence (by Appendix 2)
can be discarded for calculating the η–invariant .

Therefore no R, no prolongation of the bicollar neighbourhood N enters
the formula. Nevertheless, our arguments rely on an adiabatic argument to
strain the spectrum of D into its three parts

(8.1.5) specD ∼ {µ0,j} ∪ {µ1,k} ∪ {µ2,`}.

For the most part of this chapter, however, we shall not make all arguments
explicit on the level of the single eigenvalue. It suffices to keep to the level
of the η–invariant . Roughly speaking, the reason is the following. Con-
trary to the index, the η–invariant can not be described by a local formula.
Nevertheless, it can be described by an integral over the manifold. The
integrand, however, is not defined in local terms solely. In particular, when
writing the η–function in integral form and decomposing the η–integral

ηD(s) =

∫
M

ηD(s;x, x) dx =

∫
M1

ηD(s;x1, x1) dx1 +

∫
M2

ηD(s;x2, x2) dx2

there is no geometrical interpretation of the integrals on the right over the
two parts of the manifold. This is very unfortunate. But for sufficiently large
R, the integrals become intelligible and can be read as the η–invariants of
DR

1,Π<
and DR

2,Π>
. That is the meaning of the adiabatic limit.
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8.2. Heat Kernels on the Manifold MR
2

Let ER
2 (t) denote the integral kernel of the operator DR

2 e
−t(DR

2,Π>
)2 defined

on the manifold MR
2 = ([−R, 0] × Y ) ∪M2. According to Theorem ?? the

η–invariant of the self–adjoint operator DR
2,Π>

is well defined and we have

ηDR
2,Π>

(0) =
1√
π

∫ ∞

0

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx

=
1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx(8.2.1)

+
1√
π

∫ ∞

√
R

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx.(8.2.2)

We first deal with the integral of (8.2.1) and show that it splits into an
interior contribution and a cylinder contribution as R → ∞. Then we will
show that the integral of (8.2.2) disappears as R→∞.

The most simple construction of a parametrix for ER
2 (t), i.e. of an ap-

proximate heat kernel is the one which we introduced in Theorem ?? (Du-
hamel’s Splitting Formula of Chapter 6 and which we applied later to es-
tablish the η–invariant : we glue the kernel E of the operator De−tD2

, given
on the whole, closed manifold M and the kernel E∞aps of the L2–extension

of the operator G(∂u + B)e−t(G(∂u+B))2 , given on the half–infinite cylinder
[−R,∞)× Y and subject to the Atiyah–Patodi–Singer boundary condition
at the end u = −R. In that construction the gluing happens on the neck
N = [0, 1)× Y with suitable cut–off functions (see Figure 8.2.1a).

Locally, the heat kernel is always of the form (4πt)−m/2ec1te−|x−x′|2/4t (see
Chapter 5.??). By Duhamel’s Principle we get after gluing a similar global

result for the kernel eR
2 (t;x, x′) of the operator e−t(DR

2,Π>
)2 and, putting a

factor t−1/2 in front, for the kernel of the combined operator De−t(DR
2,Π>

)2

(see, e.g. Gilkey [45], Lemma 1.9.1). That proves two crucial estimates:

Lemma 8.2.1. There exist positive reals c1, c2, and c3 which do not depend
on R such that for all x, x′ ∈MR

2 and any t > 0 and R > 0

|eR
2 (t;x, x′)| ≤ c1 · t−

m
2 · ec2t · e−c3

d2(x,x′)
t ,(8.2.3)

|ER
2 (t;x, x′)| ≤ c1t

− 1+m
2 · ec2t · e−c3

d2(x,x′)
t .(8.2.4)

Here d(x, x′) denotes the geodesic distance.

Note . Notice that exactly the same type of estimate is also valid for the
kernel ER(t;x, x′) on the stretched closed manifold MR and for the kernel
E∞aps(t;x, x

′) on the infinite cylinder. For details see also [27], Theorem
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Figure 8.2.1. Two constructions of a parametrix for ER
2

over MR
2 . a) Gluing E∞aps and E over N . b) Gluing E∞aps and

ER over NR

Figure 8.2.2. The choice of the cut–off functions

22.14. There, however, the term ec2t was suppressed in the final formula
because the emphasis was on small time asymptotic.



8.2. HEAT KERNELS ON THE MANIFOLD MR
2 113

As mentioned before, for R →∞ we want to separate the contribution
to the kernel ER

2 which comes from the cylinder and the contribution from
the interior by a gluing process. Unfortunately, the inequality 8.2.4 does
not suffice to show that the contribution to the η–invariant , more precisely
to the integral (8.2.1), which comes from the ‘error’ term vanishes with
R→∞. Therefore, we introduce a different parametrix for the kernel ER

2 .
Instead of gluing over the fixed neck N = [0, 1)2 × Y we glue over

a segment NR of growing length of the attached cylinder, say NR :=
(−4

7
R,−3

7
R) × Y (see Figure 8.2.1b). Thus, we choose a smooth par-

tition of unity {χaps, χint} on MR
2 suitable for the covering {Uaps, Uint}

with Uaps := [−R,−3
7
R) × Y and Uint :=

(
(−4

7
R, 0] × Y

)
∪ M2, hence

Uaps ∩ Uint = NR. Moreover, we choose non–negative smooth cut–off func-
tions {ψaps, ψint} such that

ψj ≡ 1 on {x ∈MR
2 | dist(x, suppχj) <

1

7
R}

and ψj ≡ 0 on {x ∈MR
2 | dist(x, suppχj) ≥

2

7
R}

for j ∈ {aps, int} (see Figure 8.2.2). We notice

(8.2.5) dist(suppψ′j, suppχj) = dist(suppψ′′j , suppχj) ≥
1

7
R .

Moreover, we may assume that

(8.2.6) |∂
kψj

∂uk
| ≤ c0/R

for all k, where c0 is a certain positive constant.
For any parameter t > 0 we define an operator QR

2 (t) on C∞(MR
2 ;S)

with a smooth kernel, given by
(8.2.7)
QR

2 (t;x, x′) := ψaps(x) E∞aps(t;x, x
′)χaps(x

′) + ψint(x) ER(t;x, x′)χint(x
′).

Recall that ER denotes the kernel of the operator DRe−t(DR)2 , given on the
stretched closed manifold MR. Notice that, by construction, QR

2 (t) maps
L2(M

R
2 ;S) into the domain of the operator DR

2,Π>
.

Then, for x′ ∈ Uaps with χaps(x
′) = 1, we have by definition:

(8.2.8) QR
2 (t;x, x′) =

{
E∞aps(t;x, x

′) if d(x, suppχaps) <
1
7
R, and

0 if d(x, suppχaps) ≥ 2
7
R.

Correspondingly, we have for x′ ∈ Uint with χint(x
′) = 1

(8.2.9) QR
2 (t;x, x′) =

{
ER(t;x, x′) if d(x, suppχint) <

1
7
R, and

0 if d(x, suppχint) ≥ 2
7
R.

For fixed t > 0, we determine the difference between the precise kernel
ER

2 (t;x, x′) and the approximate one QR
2 (t;x, x′). Let CR(t) denote the

operator
(
(DR

2,Π>
)2 + d

dt

)
◦QR

2 (t) and CR(t;x, x′) its kernel. By definition, we
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have
(
(DR

2,Π>
)2 + d

dt

)
◦ER

2 (t) = 0. Thus, CR(t) ‘measures’ the error we make

when replacing the precise kernel ER
2 (t;x, x′) by the glued, approximate one.

More precisely, we have by Duhamel’s Formula (Proposition 6.3.1)

ER
2 (t;x, x′)−QR

2 (t;x, x′) = −
∫ t

0

ds

∫
MR

2

dz ER
2 (s;x, z)CR(t− s; z, x′)

with

CR(t− s; z, x′) =

(
(DR

2,(z))
2 +

d

d(t− s)

)
QR

2 (t− s; z, x′)

=

(
(DR

2 (z))
2 − d

ds

)
QR

2 (t− s; z, x′)

= ψ′′aps(z) ER
aps(t− s; z, x′)χaps(x

′) + 2ψ′aps(z)
∂

∂u
(ER

aps(t− s; z, x′))χaps(x
′)

+ ψaps(z)

(
D2

(z) −
d

ds

)
ER

aps(t− s; z, x′)︸ ︷︷ ︸
=0

χaps(x
′)

+ ψ′′int(z) ER(t− s; z, x′)χint(x
′) + 2ψ′int(z)

∂

∂u
(ER(t− s; z, x′))χint(x

′)

+ ψint(z)

(
(DR

(z))
2 − d

ds

)
ER(t− s; z, x′)︸ ︷︷ ︸

=0

χint(x
′).

Here, D(z) denotes the operator D acting on the z variable; and in the partial

derivative ∂
∂u

the letter u denotes the normal coordinate of the variable z.
As stated in (8.2.5), the supports of χj and ψ′j (and, equally, ψ′′j ) are

disjoint and separated from each other by a distance R/7 in the normal
variable for j ∈ {aps, int}. Then the error term CR(t − s; z, x′) vanishes
both for the distance in the normal variable d(z, x′) < R/7 and, actually,
whenever z or x′ are outside the segment [−6

7
R, 1

7
R]× Y .

Let z and x′ be on the cylinder and |u− v| > R/7 where u and v denote
their normal coordinates. We investigate the error term CR(t − s; z, x′)
which consists of six summands. Two of them vanish as we have pointed out
above. The remaining four summands involve the kernels E∞aps(t−s; z, x′) on

the infinite cylinder [−R,∞)×Y and ER(t−s; z, x′) on the stretched closed
manifold MR. We shall use that both kernels can be estimated according
to inequality (8.2.4).

We estimate the first summand

|ψ′′aps(z) E∞aps(t− s; z, x′)χaps(x
′)| ≤ c0

R
c1(t− s)−

1+m
2 ec2te−c3

d2(z,x′)
t−s

≤ c′1e
c′2te−c′3R2/t .

Here we have exploited that t ≥ s ≥ 0 and

(t− s)−(1+m)/2e−c2
d2(z,x′)
(t−s) ≤ ct−(1+m)/2e−c2

d2(z,x′)
t ≤ c̃e−c2

d2(z,x′)
2t .



8.2. HEAT KERNELS ON THE MANIFOLD MR
2 115

Similarly we estimate the second summand

2|ψ′aps(z)
∂

∂u
E∞aps(t− s; z, x′)χaps(x

′)|

≤ c0
R
c1

(t− s)− 1+m
2

√
t

ec2te−c3
d2(z,x′)

t−s ≤ c′1e
c′2te−c′3R2/t ,

where the factor 1/
√
t comes from the differentiation of the kernel as ex-

plained before.
The third and forth summands, involving the kernel ER of the closed

stretched manifold MR, are treated in exactly the same way.
Altogether we have proved

Lemma 8.2.2. The error kernel CR(t;u, v) vanishes for u /∈ [−6
7
R,−1

7
R].

Moreover, CR(t;u, v) vanishes whenever |u−v| ≤ R/7. For arbitrary x, x′ ∈
MR

2 we have the estimate

|CR(t;x, x′)| ≤ c1e
c2te−c3R2/t

with constants c1, c2, c3 independent of x, x′, t, R.

We consider the pointwise error

ER
2 (t;x, x)−QR

2 (t;x, x) =

∫ t

0

ds

∫
MR

2

dz ER
2 (s;x, z)CR(t− s; z, x).

We obtain the following proposition as a consequence of the preceding
lemma.

Proposition 8.2.3. For all x ∈MR
2 and all t > 0 we have

tr ER
2 (t;x, x)− trQR

2 (t;x, x) = tr
(
ER

2 (t;x, x)−QR
2 (t;x, x)

)
.

Moreover, there exist positive constants c1, c2, c3, independent of R, such
that the ‘error’ term satisfies the inequality

|ER
2 (t;x, x)−QR

2 (t;x, x)| ≤ c1 · ec2t · e−c3(R2/t) .
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Proof. We estimate the error term

|ER
2 (t;x, x)−QR

2 (t;x, x)|

≤
∫ t

0

ds

∫
MR

2

dz |ER
2 (s;x, z)CR(t− s; z, x)|

≤ c21e
c2t ·

∫ t

0

ds

∫
MR

2

dz

{
s−

d+1
2 · e−c3

d2(x,z)
s

}
· e−c3

d2(x,z)
t−s

≤ c21e
c2t ·

∫ t

0

ds

∫
suppz CR(t−s;z,x)

dz e−c4
d2(x,z)

s · e−c3
d2(x,z)

t−s

≤ c21e
c2t ·

∫ t

0

ds

∫
suppz CR(t−s;z,x)

dz e−c5
t·R2

s(t−s)

≤ c21e
c2t · cR ·

∫ t

0

ds e−c5
t·R2

s(t−s) ≤ c21e
c2t · 2cR ·

∫ t/2

0

ds e−c5
t·R2

s(t/2)

= c21e
c2t · 2cR ·

∫ t/2

0

ds e−2c5
R2

s .

Here we have used that vol(suppz C
R(t− s; z, x)) ∼ vol(Y ) ·R according to

Lemma 8.2.2.
We investigate the last integral.∫ t

0

e−
c
s ds = −

∫ t

0

s2

c
· e−

c
s · (− c

s2
) ds

< −
∫ t

0

t2

c
· e−

c
s · (− c

s2
) ds = −t

2

c

∫ c
t

∞
e−r dr =

t2

c
e−

c
t .

Thus we have

|ER
2 (t;x, x)−QR

2 (t;x, x)| ≤ c21e
c2t · 2cR · t2

c6R2
e−

c6R2

t ≤ c7e
c2t · e−c8(R2/t) .

�

The preceding proposition shows that, for t smaller than
√
R, the trace

tr ER
2 (t;x, x) of the kernel of the operator DR

2 e
−t(DR

2,Π>
)2 approaches the trace

trQR
2 (t;x, x) of the approximative kernel pointwise as R→∞. In particu-

lar, we have:

Corollary 8.2.4. The following equality holds

1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx

=
1√
π

∫ √
R

0

dt√
t

∫
MR

2

trQR
2 (t;x, x) dx+O(e−cR)

as R→∞.
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Proof. We have

1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx

=
1√
π

∫ √
R

0

dt√
t

∫
MR

2

trQR
2 (t;x, x) dx

+
1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr
(
ER

2 (t;x, x)−QR
2 (t;x, x)

)
dx,

and we have to show that the second summand on the right side is O(e−cR)
as R→∞. We estimate

| 1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr
(
ER

2 (t;x, x)−QR
2 (t;x, x)

)
dx|

≤ 1√
π

∫ √
R

0

dt√
t

∫
MR

2

|ER
2 (t;x, x)−QR

2 (t;x, x)| dx

≤ 1√
π

∫ √
R

0

dt√
t

∫
MR

2

c1 · ec2t · e−c3(R2/t) dx

≤ c1vol(MR
2 )√

π

∫ √
R

0

ec2t · e−c3(R2/t)

√
t

dt

≤ c4R

∫ √
R

0

ec2
√

R · e−c5R3/2

dt ≤ c4R
3/2 · e−c6R ≤ c7 · e−c8R .

�

Corollary 8.2.4 shows that the essential part of the local η–function of
the spectral boundary condition on the half manifold with attached cylinder
of length R, namely the ‘small–time’ integral from 0 to

√
R can be replaced,

as R→∞, by the corresponding integral over the trace trQR
2 (t;x, x) of the

approximate kernel, constructed in (8.2.7). Now we show that trQR
2 (t;x, x)

can be replaced pointwise (for x ∈ MR
2 ) by the trace tr ER(t;x, x) of the

kernel of the operator DRe−t(DR)2 which is defined on the stretched closed
manifold MR.

Consider the Dirac operator

G(∂u +B) : C∞([0,∞)× Y ;S) −→ C∞([0,∞)× Y ;S),

on the half–infinite cylinder with the domain

{s ∈ C∞
0 ([0,∞)× Y ;S) | Π>(s|{0}×Y = 0.

It has a unique self–adjoint extension which we denote by Daps. Recall that

the integral kernel E∞aps of the operator Dapse
−t(Daps)2 enters in the definition
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of the approximative kernelQR
2 as given in (8.2.7). We show that E∞aps(t;x, x)

is traceless for all x ∈ [0,∞)× Y . Then

(8.2.10) trQR
2 (t;x, x) = tr ER(t;x, x) for all x ∈MR

2 ,

follows.
To prove that a product TV is traceless, the following quick argument

can be applied occasionally.

Lemma 8.2.5. Let G be unitary with G2 = −Id. We consider an operator
V of trace class which is ‘even’, i.e. it commutes with G. Moreover, T is
odd, i.e. it anticommutes with G. Then

Tr(TV ) = 0.

Proof. We have, by unitary equivalence,

Tr(TV ) = Tr(−G(TV )G) = Tr(−GTGV ) = Tr(G2TV ) = Tr(−TV ).

�

Lemma 8.2.6. Let χ : [0,∞) → R be a smooth function with compact

support and t > 0. Then the trace of the operator χ ·Dapse
−t(Daps)2 vanishes.

In particular, ∫
Y

tr E∞aps(t;u, y;u, y) dy = 0

for all u ∈ [0,∞).

Proof. Clearly, D2
aps =

(
G(∂u + B)

)2
= −∂2

u + B2 is even, hence also

the power series e−t(Daps)2 is even. On the other side, with B also GB is
odd. Thus, by Lemmma 9.2.6:

Tr
(
χ ·GBe−t(Daps)2

)
= 0.

To show that

Tr
(
χ ·G∂ue

−t(Daps)2
)

= 0,

we need a slightly more specific argument: Let e∞aps denote the heat kernel
of the operator Daps. For u, v ∈ [0,∞) and y, z ∈ Y it has the following
form (see e.g. [27], Formulae 22.33 and 22.35):

eaps(t;u, y; v, z) =
∑
k∈Z

ek(t;u, v)ϕk(y)⊗ ϕ∗k(z)

for an orthonormal system {ϕk} of eigensections of B. Hence,

G∂u eaps(t;u, y; v, z) =
∑
k∈Z

e′k(t;u, v)Gϕk(y)⊗ ϕ∗k(z).
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But 〈Gϕk;ϕk〉 = 0 on Y since Gϕk is orthogonal to ϕk. �

So far we found

ηDR
2,Π>

(0) =
1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr ER(t;x, x) dx+O(e−cR)

+
1√
π

∫ ∞

√
R

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx

as R→∞. To prove Theorem 8.1.2, we still have to show

1√
π

∫ ∞

√
R

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx = O(e−cR),(8.2.11)

1√
π

∫ ∞

√
R

dt√
t

∫
MR

2

tr ER(t;x, x) dx = O(e−cR)(8.2.12)

as R → ∞. Recall that ER
2 (t;x, x′) denotes the kernel of the operator

DR
2 e

−t(DR
2,Π>

)2 on the compact manifold MR
2 with boundary {−R}× Y , and

ER(t;x, x′) the kernel of the operator DRe−t(DR)2 on the closed stretched
manifold MR.

In the following we show (8.2.11), i.e. that we can neglect the contri-
bution to the η–invariant of DR

2,Π>
which comes from the large time asymp-

totic of ER
2 (t;x, x′). The key to that is that the eigenvalue of DR

2,Π>
with

the smallest absolute value is uniformly bounded away from zero.

Theorem 8.2.7. Let µ0(R) denote the smallest (in absolute value) non–
vanishing eigenvalue of the operator DR

2,Π>
on the manifold MR

2 . Let us
assume, as always in this chapter, that kerB = {0}. Then there exists a
positive constant c0, which does not depend on R such that

µ0(R) > c0

for R sufficiently large.

Remark 8.2.8. The preceding result differs from the behaviour of the small
eigenvalues on the stretched, closed manifold MR. On the manifold with
boundary MR

2 with the attached cylinder of length R, the eigenvalues are
bounded away from 0 when R→∞ due to the spectral boundary condition.
That is the statement of the preceding theorem which we are going to prove
in the next two sections. On MR, on the contrary, the set of eigenvalues
splits into one set of eigenvalues becoming exponentially small and another
one of eigenvalues being uniformly bounded away from 0 as R → ∞. This
we are going to show further below. Clearly, the reason for the different be-
haviour is that on MR

2 the eigensections must satisfy the spectral boundary
condition. Therefore they are exponentially decreasing on the cylinder. But
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on MR we have to do with eigensections on a closed manifold which need
not decrease, but require part of the eigenvalues to decrease exponentially
(for details see Theorem 8.5.1 below).

8.3. Dirac Operators on Manifolds with Cylindrical Ends

To prove Theorem 8.2.7 we first recall a few properties of the cylin-
drical Dirac operator Dcyl := G(∂u + B) on the infinite cylinder Y ∞

cyl :=
(−∞,+∞) × Y . A special feature of the cylindrical manifold Y ∞

cyl is that
we may apply the theory of Sobolev spaces exactly as in the case of Rm.
The point is that we can choose a covering of the open manifold Y ∞

cyl by
a finite number of coordinate charts. We can also choose a finite trivial-
ization of the bundle S|Y∞cyl

. Let {Uι, κι}Kι=1 be such a trivialization, where

κι : S|Uι → Vι×CN is a bundle isomorphism and Vι an open (possibly non–
compact) subset of Rm. Let {fι} be a corresponding partition of unity. We
assume that for any ι the derivatives of the function fι are bounded.

Definition 8.3.1. We say that a section (or distribution) s of the bundle
S over Y ∞

cyl belongs to the p-th Sobolev space Hp(Y ∞
cyl ;S), p ∈ R, if and only

if fι · s belongs to the Sobolev space Hp(Rm; CN) for any ι. We define the
p-th Sobolev norm

‖s‖p :=
K∑

ι=1

‖(Id + ∆ι)
p/2(fι · s)‖L2(Rm) ,

where ∆ι denotes the Laplacian on the trivial bundle Vι×CN ⊂ Rm×CN .

Lemma 8.3.2. (a) For the unique self–adjoint L2–extension of Dcyl (denoted
by the same symbol) we have

dom(Dcyl) = H1(Y ∞
cyl ;S).

(b) Let λ1 denote the smallest positive eigenvalue of the operator B on the
manifold Y . Then we have

(8.3.1) 〈(Dcyl)
2s; s〉 ≥ λ2

1‖s‖2

for all s ∈ dom(Dcyl), and for any µ ∈ (−λ1,+λ1) the operator

Dcyl − µ : H1(Y ∞
cyl ;S) −→ L2(Y

∞
cyl ;S)

is an isomorphism of Hilbert spaces.
(c) Let Rcyl(µ) denote the inverse of the operator Dcyl−µ. Then the family
{Rcyl(µ)}µ∈(−λ1,λ1) is a smooth family of elliptic pseudo–differential opera-
tors of order −1.
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Proof. (a) follows immediately from the corresponding result on the
model manifold Rm.
To prove (b) we consider a spectral resolution {ϕk, λk}k∈Z\0 of L2(Y ;S)
generated by the tangential operator B. Because of (8.1.2) we have λ−k =
−λk. We consider a section s belonging to the dense subspace C∞

0 (Y ∞
cyl ;S)

of dom(Dcyl), and expand it in terms of the preceding spectral resolution

s(u, y) =
∑

k∈Z\{0}

fk(u)ϕk(y).

Since (Dcyl)
2 = −∂2

u +B2, we obtain

(Dcyl)
2s =

∑
(λ2

kfk − f ′′k )ϕk,

hence

〈(Dcyl)
2s; s〉 =

∑∫ ∞

−∞
(λ2

kfk(u)− f ′′k (u))f̄k(u)du

≥ λ2
1‖s‖2 −

∑∫ ∞

−∞
f ′′k (u)f̄k(u)du

= λ2
1‖s‖2 +

∑∫ ∞

−∞
f ′k(u)f̄ ′k(u)du ≥ λ2

1‖s‖2 .

It follows that (Dcyl)
2 (and therefore Dcyl) has bounded inverse in L2(Y

∞
cyl ;S)

and, more generally, that (Dcyl)
2 − µ is invertible for µ ∈ (−λ1, λ1).

To prove (c) we apply the symbolic calculus and construct a parametrix S
for the operator Dcyl, i.e. S is an elliptic pseudo–differential operator of
order −1 such that

SDcyl = Id + T,

where T is a smoothing operator. Thus

D−1
cyl = S − TD−1

cyl .

The operator TD−1
cyl is a smoothing operator, henceD−1

cyl is an elliptic pseudo–
differential operator of order −1. The same argument can be applied to the
resolvent Rcyl(µ) = (Dcyl − µ)−1 for arbitrary µ ∈ (−λ1, λ1). The smooth-
ness of the family follows by standard calculation. �

To prove Theorem 8.2.7 we need to refine the preceding results on the
infinite cylinder Y ∞

cyl to the Dirac operator, naturally extended to the ma-

nifold M∞
2 =

(
(−∞, 0] × Y

)
∪M2 with cylindrical end. Let C∞

0 (M∞
2 ,S)

denote the space of compactly supported smooth sections of S over M2.
Then

(8.3.2) D∞2 |C∞0 (M∞
2 ,S) : C∞

0 (M∞
2 ,S)→ L2(M

∞
2 ,S)

is symmetric. Moreover, we have
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Lemma 8.3.3. Let s ∈ C∞(M∞
2 ;S) be an eigensection of D∞2 . Then there

exist C, c > 0 such that, on (−∞, 0]× Y , we have |s(u, y)| ≤ Cecu.

Proof. Let {ϕk, λk}k∈Z\0 be a spectral resolution of the tangential op-
erator B. Because of (8.1.2) we have λ−k = −λk and we can assume that
ϕ−k = Gϕk for k ∈ N. Then

(8.3.3)

{
ϕ±k =

1√
2

(
ϕk ±Gϕk

)
,±λk

}
k∈N

is a spectral resolution of the composed operator GB on Y . Notice that we
have

(8.3.4) Gϕ+
k = −ϕ−k and Gϕ−k = ϕ+

k .

Let s ∈ C∞(M∞
2 ;S) and

(8.3.5) D∞L2
ψ = µψ

with µ ∈ R. We expand s|(−∞,0]×Y in terms of the spectral resolution of
GB just constructed:

s(u, y) =
∞∑

k=1

fk(u)ϕ+
k (y) + gk(u)ϕ−k .

Because of (8.3.3), (8.3.4), and (8.3.5) the coefficients fk, gk must satisfy
the system of ordinary differential equations(

λk ∂/∂u
−∂/∂u −λk

)(
fk

gk

)
= µ

(
fk

gk

)
or, equivalently,(

f ′k
g′k

)
= A

(
fk

gk

)
with A :=

(
0 −(µ+ λk)

µ− λk 0

)
.

Since s ∈ L2, of the eigenvalues ±
√
λ2

k − µ2 of A only those which are on
the positive real line enter in the construction of s by solving the preced-
ing differential equation. In particular, all coefficients fk, gk must vanish
identically for λk ≤ µ. Thus

(8.3.6) s(u, y) =
∑
λk>µ

ak

(
exp
(√

λ2
k − µ2 u

)
ϕ+

k

− λk − µ√
λ2

k − µ2
exp
(√

λ2
k − µ2 u

)
ϕ−k

)
,

and, in particular,

|s(u, y)| ≤ C exp
(√

λ2
k0
− µ2

u

2

)
, u < 0,

for some constant C when λk0 denotes the smallest positive eigenvalue of B
such that λk0 > |µ|. �
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In spectral theory we are looking for self–adjoint L2–extensions of a
symmetric operator. We recall: on a closed manifold, the Dirac operator
is essentially self–adjoint; i.e. its minimal closed extension is self–adjoint
(and therefore there do not exist other self–adjoint extensions) and it is a
Fredholm operator. On a compact manifold with boundary, the situation is
much more complicated. There is a huge variety of dense domains to which
the Dirac operator can be extended such that it becomes self–adjoint; and
there is a smaller, but still large variety where the extension of the Dirac
operator becomes self–adjoint and Fredholm (see e.g. Booß-Bavnbek and
Furutani [20]); a special type of self–adjoint and Fredholm domains are
the domains specified by the boundary conditions belonging to the Grass-
mannian of all self–adjoint generalized Atiyah–Patodi–Singer projections.
These boundary conditions are treated in this book.

Now we shall show that the situation on manifolds with (infinite) cylin-
drical ends resembles the situation on closed manifolds.

We recall the following simple lemma (see also Reed and Simon [85],
Theorem VIII.3, Corollary, p. 257).

Lemma 8.3.4. Let A be a densely defined symmetric operator in a separable
complex Hilbert space H. We assume that range(A+ i) is dense in H. Then
A is essentially self–adjoint.

Proof. Since A is symmetric, the operator A + i is injective and the
operator (A + i)−1 is well defined and bounded on the dense subspace
range(A + i) of H. Then the closure Ri of (A + i)−1 has the whole space
H as domain and Ri is bounded and injective. Now a standard argument
of functional analysis (see e.g. Pedersen [80], Proposition 5.1.7) says that
the inverse R−1

i of a densely defined, closed, and injective operator Ri has
the same properties. Thus our R−1

i is closed; and by construction it is the
minimal closed extension of A+ i. Therefore, R−1

i − i is symmetric and the
minimal closed extension of A, hence self–adjoint and equal A∗. �

We apply the lemma for H = L2(M
∞
2 ;S) and take for A the operator

of (8.3.2). To prove that the range (D∞2 + i)(C∞
0 (M∞

2 ;S)) is dense in
L2(M

∞
2 ;S) we consider a section s ∈ L2(M

∞
2 ;S) which is orthogonal to

(D∞2 +i)(C∞
0 (M∞

2 ;S)); i.e. the distribution (D∞2 −i)s vanishes when applied
to any test function, hence

(8.3.7) (D∞2 − i)s = 0.

Since D∞2 − i is elliptic, by elliptic regularity s is smooth in all inner points,
that is for our complete manifold in all points. On the cylinder (−∞, 0]×Y
we expand s in terms of the eigensections of the composed operator GB on
Y . It follows that s satisfies an estimate of the form

(8.3.8) |s(u, y)| ≤ Cecu, (u, y) ∈ (−∞, 0]× Y,
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for some constants C, c > 0 (according to Lemma 8.3.3). On the manifold
MR

2 with cylindrical end of finite length R we apply Green’s formula and
get

(8.3.9) 〈DR
2 s

R; sR〉 − 〈sR;DR
2 s

R〉 = −
∫
{−R}×Y

(Gs|{−R}×Y dy, s|{−R}×Y ),

where sR denotes the restriction of s to the manifold MR
2 with boundary

{−R}× Y . For R→∞, the right side of (8.3.9) vanishes; and the left side
becomes 2i‖s‖2 by (8.3.7). Hence s = 0.

Thus we have proved

Lemma 8.3.5. The operator (8.3.2) is essentially self–adjoint.

We denote the (unique) self–adjoint L2–extension by the same symbol
D∞2 .

We define the Sobolev spaces on the manifold M∞
2 like in Definition

8.3.1. Once again, the point is that manifolds with cylindrical ends, even
they are not compact but only complete, are like the infinite cylinder suffi-
cient simple to be covered by a finite system of local charts. Clearly

dom(D∞2 ) = H1(M∞
2 ;S)

and

D∞2 : H1(M∞
2 ;S)→ L2(M

∞
2 ;S)

is bounded. There are, however, substantial differences between the proper-
ties of the simple Dirac operator Dcyl on the infinite cylinder and the Dirac
operator D∞2 on the manifold with cylindrical end. For instance, from B
the discreteness of the spectrum and the regularity at 0 (i.e., 0 is not an
eigenvalue) are passed on to Dcyl, but not to D∞2 . Yet we can prove the
following result:

Proposition 8.3.6. The operator

D∞2 : dom(D∞2 ) = H1(M∞
2 ;S) −→ L2(M

∞
2 ;S)

is a Fredholm operator and its spectrum in the interval (−λ1, λ1) consists of
finitely many eigenvalues of finite multiplicity. Here λ1 denotes the smallest
positive eigenvalue of B.

Note . The first part of the proposition is false, if we drop the assump-
tion of invertible tangential operator B, see Example ?? below. The second
part of the proposition remains true also for singular B. Actually, using
more advanced methods one can show that the essential spectrum of D∞2 is
equal to (−∞,−λ1] ∪ [λ1,∞) (see for instance Müller [73], Section 4).
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Before proving the proposition we shall collect various criteria for the
compactness of a bounded operator between Sobolev spaces on an open
manifold. Let X be a complete (not necessarily compact) Riemannian ma-
nifold with a fixed Hermitian bundle. Recall the three cornerstones of the
Sobolev analysis of Dirac operators for X closed.

Rellich Lemma: The inclusion H1(X) ↪→ L2(X) is compact.
Compact Resolvent: To each Dirac operatorD we have a parametrix
R which is an elliptic pseudo–differential operator of order −1 with
principal symbol equal to the inverse of the principal symbol of D.
So it is a bounded operator from L2(X) to H1(X), hence compact
in L2(X). In particular, for µ in the resolvent set the resolvent
(D − µ)−1 is compact as operator in L2(X).

Smoothing Operator: Any integral operator over X with smooth
kernel is a smoothing operator, i.e. it maps distributional sections
of arbitrary low order into smooth sections. Moreover, it is of trace
class and thus compact.

In the general case, i.e. for not necessarily compact X, the Rellich
Lemma remains valid for sections with compact support. A compact re-
solvent is not attainable, hence the essential spectrum appears. Operators
with smooth kernel remain smoothing operators, but in general they are no
longer of trace class nor compact. We recall:

Lemma 8.3.7. Let X be a complete (not necessarily compact) Riemannian
manifold with fixed Hermitian bundle. Let K be a compact subset of X.
(a) The injection H1(X) ↪→ L2(X) defines a compact operator when we
restrict it to all sections with support in K. In particular, for any cut–
off function χ with support in K and any bounded operator R : L2(X) →
H1(X) the operator χR is compact in L2(X).
(b) Let T : L2(X)→ L2(X) be an integral operator with a kernel k(x, y) ∈
L2(X

2). Then the operator T is a bounded, compact operator (in fact it is
of Hilbert–Schmidt class).
(c) Let T : L2(X)→ L2(X) be a bounded compact operator and H′ a closed
subspace of L2(X), e.g. H′ := L2(X

′) where X ′ is a submanifold of X of
codimension 0. Assume that T (H′) ⊂ H′. Then T |H′ is compact as operator
from H′ to H′.

Proof. (a) follows immediately from the local Rellich Lemma. (b)
is the famous Hilbert–Schmidt Lemma. Also (c) is well known, see e.g.
Hörmander [54], Proposition 19.1.13 where (c) is proved within the category
of trace class operators. �

In general an integral operator T with smooth kernel is not compact
even if either suppx k(x, x′) or suppx′ k(x, x′) are contained in a compact
subset K ⊂ X. Consider for instance on Y ∞

cyl = (−∞,+∞)× Y an integral
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operator T with a smooth kernel of the form

k(x, x′) = χ(x)d(x, x′),

where d(x, x′) denotes the distance and χ is a function with support in a
ball of radius 1 (and equal 1 in a smaller ball). Then T is not a compact
operator on L2(Y

∞
cyl): choose a sequence {sn} of L2 functions of norm 1 and

with supp sn contained in a ball of radius 1 such that d(suppχ, supp sn) = n.
Then for any n we have ‖Tsn‖ > Cn. Thus T is not compact, in fact not
even bounded.

For the bounded resolvent (see Lemma 8.3.2)

Rcyl : L2(Y
∞
cyl ;S)→ H1(Y ∞

cyl ;S)

we have, however, the following corollary to the preceding lemma. It pro-
vides an example of a compact integral operator on an open manifold with
a smooth kernel which is compactly supported only in one variable.

Corollary 8.3.8. Let χ and ψ be smooth cut–off functions on Y ∞
cyl with

support contained in the half–cylinder (−∞, 0)×Y . Let suppχ be compact.
Then the operators χRcylψ and ψRcylχ are compact in L2(Y

∞
cyl ;S).

Proof. The operator χRcylψ is compact according to the preceding
lemma, claim (a). Its adjoint operator is ψRcylχ, since Rcyl is self–adjoint.
Thus it is also compact (even if its range is not compactly supported). �

Proof of the Proposition. Let µ ∈ (−λ1, λ1). We show that the
operator D∞2 − µ is an (unbounded) Fredholm operator in L2(M

∞
2 ;S). To

do that we construct a parametrix R∞2 (µ) for D∞2 − µ. Let Rcyl(µ) denote
the inverse operator of Dcyl − µ on the infinite cylinder Y ∞

cyl introduced in
Lemma 8.3.2. Let R(µ) be a parametrix for the operator D − µ on the
closed partitioned manifold M . We may assume that R(µ) is an elliptic
pseudo–differential operators of order −1 such that

R(µ)
(
D − µ

)
= Id− T (µ) and

(
D − µ

)
R(µ) = Id− T ′(µ),

where T (µ), T ′(µ) are operators with smooth kernels, hence compact and
even of trace class because they are on a closed manifold. Moreover, we
may assume that the operator family {R(µ)} is a smooth family.

We glue the two parametrices Rcyl(µ) and R(µ) over a narrow segment
of the neck, say N 1 = (−4

7
,−3

7
) × Y (see Figure 8.3.1) in a similar way

as we have done before for the heat kernels. Thus, we choose a smooth
partition of unity {χcyl, χint} on M∞

2 suitable for the covering {Ucyl, Uint}
with Ucyl := (−∞,−3

7
)×Y and Uint := (−4

7
, 0]×Y ∪M2, hence Ucyl∩Uint =

N 1. Moreover, we choose non–negative smooth cut–off functions {ψcyl, ψint}



8.3. DIRAC OPERATORS ON MANIFOLDS WITH CYLINDRICAL ENDS 127

Figure 8.3.1. The construction of a parametrix for D∞2 −µ
over M∞

2

such that

ψj ≡ 1 on {x ∈M∞
2 | dist(x, suppχj) <

1

7
}

and ψj ≡ 0 on {x ∈M∞
2 | dist(x, suppχj) ≥

2

7
}

for j ∈ {cyl, int} (see Figure 8.2.2 with R = 1). Like before, we have

dist(suppψ′j, suppχj) = dist(suppψ′′j , suppχj) ≥
1

7
.

We define the parametrix R∞2 by the formula

(8.3.10) R∞2 (µ) := ψcylRcyl(µ)χcyl + ψintR(µ)χint.

Clearly, on the cylinder (−∞,+1)× Y we have

χjDs = χjG(∂u +B)s

= G(∂u +B)(χjs)−G ·
(∂χj

∂u

)
s = D(χjs)−G ·

(∂χj

∂u

)
s

for j ∈ {cyl, int}. Thus

R∞2 (µ)
(
D∞2 − µ

)
s

= ψcylRcyl(µ)χcyl

(
D∞2 − µ

)
s+ ψintR(µ)χint

(
D∞2 − µ

)
s

=



Rcyl(µ)
(
Dcyl − µ

)
s = s

on the cylinder for u < −4
7

s− ψcylRcyl(µ)G ·
(∂χcyl

∂u

)
s− ψintR(µ)G ·

(
∂χint

∂u

)
s

on the neck N 1

RDs = s− Tχints

in the interior, for u > −3
7

.
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Now we show that the operator

(8.3.11) Id−R∞2 (µ)
(
D∞2 − µ

)
= ψcylRcyl(µ)G ·

(∂χcyl

∂u

)
+ ψintR(µ)G ·

(∂χint

∂u

)
+ Tχint

is compact. Since M is closed, the operators Tχint and ψintR(µ)G·
(

∂χint

∂u

)
are

compact in L2(M ;S). Thus, they are compact in L2(M ;S)∩L2(M
∞
2 ;S) and

hence in L2(M
∞
2 ;S) (see also Lemma 8.3.7.c). The first summand on the

right side of (8.3.11) is also compact by Corollary 8.3.8. This proves that the
operator of (8.3.11) is compact. Restricted to the eigenspace ker(D∞2 − µ)
it is the identity by definition, hence the eigenspace is finite–dimensional.
This proves the main part of the proposition.

To see that there are only finitely many eigenvalues in the interval we
recall that D∞2 −µ is self–adjoint and, by the preceding argument, Fredholm.
In particular, its range is closed. So we can apply the standard argument
(see e.g. [27], Proposition 16.1) showing that the spectrum is discrete. �

8.4. The Estimate of the Lowest Non–Trivial Eigenvalue

In this section we prove Theorem 8.2.7. Recall that the tangential op-
erator B is assumed to be non–singular and that λ1 denotes the smallest
positive eigenvalue of B. So far, we have established that

I: the operator Dcyl on the infinite cylinder Y ∞
cyl has no eigenvalues in

the interval (−λ1,+λ1), and
II: the operator D∞2 on the manifold M∞

2 with infinite cylindrical
end has only finitely many eigenvalues in the interval (−λ1,+λ1),
each of finite multiplicity.

We have to show that

III: the non–vanishing eigenvalues of (DR
2 )Π> are bounded away from

0 by a bound independent of R.

Proof of Theorem 8.2.7. The idea of the proof is the following. We
define a positive constant µ1 independent of R. Then let R be a positive
real (more precisely R > R0 for a suitable positive R0), and s ∈ L2(M

R
2 ;S)

any eigensection with eigenvalue µ ∈ (−λ1/
√

2,+λ1/
√

2), i.e.

s ∈ dom(DR
2 )Π> i.e. Π>(s|{−R}×Y ) = 0 and DR

2 s = µs.

Then we show that

µ2 > µ1/2

for a certain real µ1 > 0 which is independent of R and s. A natural choice
of µ1 is

(8.4.1) µ1 = min

{
‖D∞2 Ψ‖2

‖Ψ‖2
| Ψ ∈ H1(M∞

2 ;S) and Ψ ⊥ kerD∞2
}
.
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Figure 8.4.1. a) Continuous extension of a given eigensec-
tion by a nullsection. b) With growing R the enlargement α
and the cosine β decrease exponentially and the norm of the
projection s̃ goes to 1

Note that by II above (Proposition 8.3.6) the nullspace kerD∞2 is of finite
dimension. We shall define a certain extension s∞ ∈ H1(M∞

2 ;S) of s.
Quite a comfortable reasoning would be achieved, if we could extend s

to an eigensection of D∞2 on all of M∞
2 . Then it follows at once that the

discrete part of the spectrum of D∞2 is not empty, µ belongs to it,
√
µ1 is

the smallest eigenvalue > 0, and hence we have µ2 > µ1/2 as wanted.
In general, such a convenient extension of the given eigensection s can

not be achieved. But due to the spectral boundary condition satisfied by s in
the hypersurface {−R}×Y , the eigensection s over MR

2 can be continuously
extended by a section over (−∞,−R] × Y on which the Dirac operator
vanishes (see Figure 8.4.1a). By construction, both the enlargement α of
the L2 norm of s by the chosen extension and the cosine β of the angle
between s∞ and kerD∞2 can be estimated independently of the specific
choice of s and µ. It turns out that they both decrease exponentially with
growing R (see Figure 8.4.1b).
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Let {s1, . . . , sq} be an orthonormal basis of kerD∞2 and set

s̃ := s∞ −
q∑

j=1

〈s∞; sj〉sj .

Clearly, the section s̃ belongs to H1(M∞
2 ;S) and is orthogonal to kerD∞2 .

Hence, on one side,

(8.4.2)
‖D∞2 s̃‖2

‖s̃‖2
≥ µ1 .

On the other side, we have by construction

‖D∞2 s̃‖2 = ‖D∞2 s∞‖2 = ‖DR
2 s‖2MR

2
= µ2 .

Finally, we shall prove that

(8.4.3) ‖s̃‖ → 1 as R→∞.

Then the estimate

(8.4.4) µ2 >
µ1

2

follows for sufficiently large R. Since we have assumed that µ2 <
λ2
1

2
, we

have also µ1 < λ2
1, hence µ1 belongs to the discrete part of the spectrum of

(D∞2 )2 and, by the Min–Max Principle (see, for instance, [87]), must be its
smallest eigenvalue > 0.

Thus, to prove the theorem we are left with the task of first constructing
a suitable extension s̃ of s and then proving (8.4.3).

We expand s|[−R,0]×Y in terms of a spectral resolution

{ϕk, λk;Gϕk,−λk}k∈N

of L2(Y ;S) generated by B:

s(u, y) =
∞∑

k=1

fk(u)ϕk(y) + gk(u)Gϕk .

Since G(∂u + B)s|[−R,0]×Y = 0, the coefficients must satisfy the system of
ordinary differential equations

(8.4.5)

(
f ′k
g′k

)
= Ak

(
fk

gk

)
with Ak :=

(
−λk µ
−µ λk

)
.

Moreover, since Π>s|{−R}×Y = 0 we have

(8.4.6) fk(−R) = 0 for any k ≥ 1.

Thus, for each k the pair (fk, gk) is uniquely determined up to a constant
ak. More explicitly, since the eigenvalues of Ak are ±(λ2

k−µ2)1/2, a suitable
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choice of the eigenvectors of Ak gives

fk(u) = ak
µ√

λ2
k − µ2

sinh
√
λ2

k − µ2(R + u) and

gk(u) = ak

(
cosh

√
λ2

k − µ2(R + u) +
λk√
λ2

k − µ2
sinh(λ2

k − µ2)1/2(R + u)
)
.

We assume ‖s‖L2 = 1. Then we have, with v := (λ2
k − µ2)1/2(R + u):

1 ≥
∫

[−R,0]×Y

|s(u, y)|2 dudy =
∞∑

k=1

∫ 0

−R

(
|fk(u)|2 + |gk|2

)
du

=
∞∑

k=1

|ak|2
1

(λ2
k − µ2)1/2

∫ (λ2
k−µ2)1/2R

0

( µ2

λ2
k − µ2

· sinh2 v

+ cosh2 v + 2
λk

(λ2
k − µ2)1/2

· cosh v · sinh v +
λ2

k

λ2
k − µ2

· sinh2 v
)
dv

=
∞∑

k=1

|ak|2
{
− λ2

k

λ2
k − µ2

·R + (1/4) · µ2

(λ2
k − µ)3/2

· sinh(2(λ2
k − µ2)1/2R)

+ (1/4) ·
(

1 +
λ2

k

λ2
k − µ2

)
· (λ2

k − µ2)1/2 · sinh(2(λ2
k − µ2)1/2R)

+
λ2

k

λ2
k − µ2

· cosh2((λ2
k − µ2)1/2R)

}
.

Since λ2
k ≥ λ2

1 > 2µ2 we have 2(λ2
k − µ2)1/2 >

√
2λk > λk. Moreover, we

have for all k ≥ 1

− λ2
k

λ2
k − µ2

·R +
λ2

k

λ2
k − µ2

· (λ2
k − µ2)1/2

4
· sinh(2(λ2

k − µ2)1/2R)

> −R +
(λ2

1 − µ2)1/2

4
· sinh(2(λ2

1 − µ2)1/2R)

> −R +

√
2

8
λ1 · sinh(

√
2λ1R) > 0,

if R ≥ R0 for some positive R0 which depends only on λ1 and not on µ nor
on s nor on k.

Thus, for any k the sum in the braces can be estimated in the following
way:{

. . .
}
>

λ2
k

λ2
k − µ2

· cosh2((λ2
k − µ2)1/2R) >

1

4
e2(λ

2
k−µ2)1/2R >

1

4
eλkR .

Hence, we have

(8.4.7)
∞∑

k=1

|ak|2 · eλkR ≤ 4 .
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Note that the preceding estimate does not depend on R (provided that
R > R0) nor on k nor on the specific choice of s, and that R0 only depends
on λ1.

According to (8.4.7) the absolute value of the coefficients ak is rapidly
decreasing in such a way that, in particular, we can extend the eigensection
s of DR

2,Π>
, given on MR

2 to a continuous section on M∞
2 by the formula

s∞(x) :=

{
s(x) for x ∈MR

2∑∞
k=1 ake

λk(R+u)Gϕk(y) for x = (u, y) ∈ (−∞,−r]× Y .

By construction, s∞ is smooth on M∞
2 \ ({−R} × Y ) and belongs to the

Sobolev space H1(M∞
2 ;S). It follows from (8.4.7) that

‖s∞‖2L2
= ‖s‖2L2

+
∞∑

k=1

|ak|2
∫ −R

−∞
e2λk(R+u) du = 1 +

∞∑
k=1

|ak|2
1

2λk

≤ 1 +
1

2λ1

·
∞∑

k=1

|ak|2 ≤ 1 +
1

2λ1

·
( ∞∑

k=1

|ak|2 · eλkR
)
· e−λ1R

≤ 1 +
2

λ1

· e−λ1R .(8.4.8)

Next, let Ψ ∈ kerD∞2 and assume that ‖Ψ‖ = 1. By (8.3.6), the section
Ψ has on (−∞, 0]× Y the form

(8.4.9) Ψ((u, y) =
∞∑

k=1

bke
λkuG(y)ϕk(y)

with ∑∫ 0

−∞
|bk|2e2λku du =

∑ 1

2λk

· |bk|2 < +∞.

Set l := Ψ|MR
2

. Then l satisfies the equations

DR
2 l = 0 and Π>(l|{−R}×Y ) = 0.

Hence, l belongs to kerDR
2,Π>

. This implies the following equality:∫
MR

2

〈s∞(x); Ψ(x)〉dx =
1

µ
·
∫

MR
2

〈DR
2 s

∞(x); l(x)〉dx

=
1

µ
·
∫

MR
2

〈s∞(x);DR
2 l(x)〉dx− 1

µ
·
∫

Y

〈Gs∞(−R, y); l(−R, y)〉dx.

On the other hand,∫
(−∞,−r]×Y

〈s∞(x); Ψ(x)〉dx =
∑
k>0

akbk
2µ
· e−λkR ≤ C1e−λ1R .

Therefore

(8.4.10) |〈s∞; Ψ〉| ≤ C1e
−λ1R .

Hence, we have proved
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Lemma 8.4.1. Any eigensection s ∈ H1(MR
2 ;S) of DR

2,Π>
with eigenvalue

µ ∈ (−λ1/
√

2, λ1/
√

2) can be extended to a continuous section s∞ on M∞
2

which is smooth on M∞
2 \ ({−R} × Y ) and belongs to the first Sobolev space

H1(M∞
2 ;S). Moreover, the enlargement of the norm of s by the extension

and the cosine of the angle between s∞ and kerD∞2 are exponentially de-
creasing by formulae (8.4.8) and (8.4.10).

The final step in proving the theorem follows at once from the preceding
lemma. We recall: by definition of µ1 we have ‖D∞2 s̃‖2/‖s̃‖2 ≥ µ1 and by
construction of s̃ we have ‖D∞2 s̃‖2 = µ2. Thus, we have µ2 ≥ ‖s̃‖2 · µ1. To
establish the wanted bound µ2 > µ1/2, it remains to show that ‖s̃‖2 > 1/2
for sufficiently large R.

Since s̃ is the orthogonal projection of s∞ onto (kerD∞2 )⊥ and by the
orthonormality of the basis {s1, . . . , sq} of kerD∞2 , we have

‖s̃‖2 = ‖s∞‖2 −
q∑

j=1

|〈s∞; sj〉|2 ≤ 1 +
2

λ1

e−λ1R −
q∑

j=1

|〈s∞; sj〉|2 .

Thus,

|‖s̃‖2 − 1| ≤ 2

λ1

e−λ1R + qC1e
−2λ1R ≤ C2e

−C3R ,

which proves the theorem. �

We finish this section by proving the asymptotic estimate (8.2.11). Re-

call that ER
2 (t;x, x′) denotes the kernel of the operator DR

2,Π>
e−t(DR

2,Π>
)2

where DR
2,Π>

denotes the Dirac operator over the manifold MR
2 with the

spectral boundary condition at the boundary {−R} × Y . Then we have:

Lemma 8.4.2.

1√
π

∫ ∞

√
R

dt√
t

∫
MR

2

tr ER
2 (t;x, x) dx = O(e−cR).

Proof. For any eigenvalue µ 6= 0 of DR
2,Π>

and R > 0 sufficiently large

(R · c20 ≥ 1, where c0 denotes the lower uniform bound for µ2 of Theorem
8.2.7) we have

(8.4.11) |
∫ ∞

√
R

1√
t
µe−tµ2

dt| ≤
∫ ∞

√
R

1√
t
|µ|e−tµ2

dt =

∫ ∞

|µ|R1/4

e−τ2

dτ

≤
∫ ∞

|µ|R1/4

τe−τ2

dτ =

[
−1

2
e−τ2

]∞
|µ|R1/4

1

2
e−µ2

√
R ,
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which gives

|
∫ ∞

√
R

dt√
t

∫
MR

2

Tr
(
DR

2,Π>
e−t(DR

2,Π>
)2
)
| ≤

∫ ∞

√
R

dt√
t

∫
MR

2

∑
µ 6=0

|µ|e−tµ2

dt

≤ 1

2
·
∑
µ 6=0

e−µ2
√

R =
1

2
·
∑
µ 6=0

e−(
√

R−1)µ2 · e−µ2

≤ C1 · e−
√

Rµ2
0 Tr
(
e
−

(
DR

2,Π>

)2)
≤ C2 · e−

√
Rµ2

0vol(MR
2 )

≤ C3 · e−
√

Rµ2
0 ≤ C3 · e−C4

√
R .

Here we have exploited that the heat kernel eR
2 (t;x, x′) of the operator DR

2,Π>

can be estimated by

|eR
2 (t;x, x′)| ≤ c1 · t−

m
2 · ec2t · e−c3

d2(x,x′)
t

according to (8.2.3). Thus,

(8.4.12) |Tr
(
e
−

(
DR

2,Π>

)2)
| ≤

∫
MR

2

|tr eR
2 (1; x, x)| dx ≤ c1 · ec2 ·

∫
MR

2

dx.

�

8.5. The Spectrum on the Closed Stretched Manifold

So far we proved the asymptotic equation

1√
π

∫ √
R

0

dt√
t

∫
MR

2

tr ER(t;x, x) dx+O(e−cR) = ηDR
2,Π>

(0)

as R→∞. It follows that

lim
R→∞

ηR = lim
R→∞

(
ηDR

1,Π<
(0) + ηDR

2,Π>
(0)
)
,

where

ηR :=
1√
π

∫ √
R

0

dt√
t

∫
MR

tr ER(t;x, x) dx.

To prove Theorem 8.1.2, we still have to show (8.2.12), i.e., that we can

extend the integration from
√
R to infinity:

1√
π

∫ ∞

√
R

dt√
t

∫
MR

2

tr ER(t;x, x) dx = O(e−cR) as R→∞.

Recall that ER(t;x, x′) denotes the kernel of the operator DRe−t(DR)2 on the
closed stretched manifold MR.

Formally, our task of proving the preceding estimate reminds of our pre-
vious task of proving the corresponding estimate for the kernel ER

2 (t;x, x′)

of the operator DR
2 e

−t(DR
2,Π>

)2 (see Lemma 8.4.2). Both integrals are over
the same prolonged compact manifold MR

2 with boundary {−R} × Y . The
methods we can apply are, however, different: In the previous case, we had a
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uniform positive bound for the absolute value of the smallest non–vanishing
eigenvalue of the boundary value problem DR

2,Π>
for sufficiently large R.

As mentioned above in Remark 8.2.8, such a bound does not exist for
the Dirac operator DR on the closed stretched manifold MR. Moreover, for
the spectral boundary condition we shall show

dim kerDR
2,Π>

= dim kerD2,Π> and ηDR
2,Π>

(0) = ηD2,Π>
(0)

for any R (see Proposition 8.6.2 below). For DR, on the contrary, the
dimension of the kernel can change and, thus, ηDR can admit an integer
jump in value as R→∞. This is due to the presence of ‘small’ eigenvalues
created by L2–solutions of the operators D∞1 and D∞2 on the half–manifolds
with cylindrical ends. We use a straightforward analysis of small eigenvalues
inspired by the proof of Theorem 8.2.7 to prove the following result

Theorem 8.5.1. There exists R0 > 0 and positive constants a1, a2, and a3,
such that for any R > R0, the eigenvalue µ of the operator DR is either
bounded away from 0 with a1 < |µ|, or is exponentially small |µ| < a2e

−a3R.
Let WR denote the subspace of L2(M

R;S) spanned by the eigensections of
DR corresponding to the exponentially small eigenvalues. Then dimWR =
q, where q = dim(kerD∞1 ) + dim(kerD∞2 ).

Recall from Proposition 8.3.6 that the operator D∞j , acting on the first

Sobolev space H1(M∞
j ;S), is an (unbounded) self–adjoint Fredholm opera-

tor in L2(M
∞
j ;S) which has a discrete spectrum in the interval (−λ1,+λ1)

where λ1 denotes the smallest positive eigenvalue of the tangential operator
B. Thus, the space kerD∞j of L2–solutions is of finite dimension.

To prove the theorem we first investigate the small eigenvalues of the
operatorDR and the pasting of L2–solutions. Let R > 0. We re–parametrize
the normal coordinate u such that MR

1 = M1 ∪
(
(−R, 0] × Y

)
and MR

2 =(
[0, R) × Y

)
∪M2. We introduce the subspace VR ⊂ L2(M

R;S) spanned
by L2–solutions of the operators D∞j . We choose an auxiliary smooth real

function fR = fR
1 ∪ fR

2 on MR. We assume that fR is equal 1 outside the
cylinder [−R,R]× Y , and fR is a function of the normal variable u on the
cylinder. Moreover, fR(−u) = fR(u), or, in other words, fR

1 (−u) = fR
2 (u).

We assume that fR
2 is an increasing function of u such that

fR
2 (u) =

{
0 for 0 ≤ u ≤ R

4

1 for R
2
≤ u ≤ R

.
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We also assume that there exists a constant γ > 0 such that |∂
pfR

2

∂up (u)| <
γR−p. If sj ∈ C∞(M∞

j ;S), we define s1 ∪fR s2 by the formula

(
s1 ∪fR s2

)
(x) :=

{
fR

1 (x)s1(x) for x ∈MR
1

fR
2 (x)s2(x) for x ∈MR

2

.

Clearly, we have

s1 ∪fR s2 = s1 ∪fR 0 + 0 ∪fR s2(8.5.1)

DR(s1 ∪fR s2) = (D∞1 s1) ∪fR (D∞2 s2) + s1 ∪gR s2 and(8.5.2)

‖s1 ∪fR s2‖2 = ‖s1 ∪fR 0‖2 + ‖0 ∪fR s2‖2,(8.5.3)

where gR := gR
1 ∪ gR

2 with gR
j (u, y) = G(y)

∂fR
j

∂u
(u, y) and ‖·‖ denotes the

L2–norm on the manifold MR.

Definition 8.5.2. We denote by VR the subspace of C∞(MR;S) defined
by

VR := span{s1 ∪fR s2 | sj ∈ kerD∞j }.

Let {s1,1, . . . , s1,q1} be a basis of kerD∞1 and {s2,1, . . . , s2,q2} a basis of
kerD∞2 . Then the q = q1 + q2 sections {s1,ν1 ∪fR 0} ∪ {0 ∪fR s2,ν2} form a
basis of VR. We want to show that VR approximates the spaceWR of eigen-
sections of DR corresponding to the ‘small’ eigenvalues, for R sufficiently
large. We begin with an elementary result:

Lemma 8.5.3. There exists R0 such that for any R > R0 and any s ∈ VR,
the following estimate holds

‖DRs‖ ≤ e−λ1R‖s‖,

Proof. It suffices to prove the estimate for basis sections of VR. Thus,
let s = s1 ∪fR 0 with s1 ∈ kerD∞1 . By (8.5.2) we have
(8.5.4)

DRs(x) =

{
0 for x ∈M1 ∪M2

G(y)
∂fR

1

∂u
(u, y) · s1(u, y) for x = (u, y) ∈ [−R,R]× Y .

Here fR
1 is continued in a trivial way on the whole cylinder [−R,R] × Y .

Now, s1 is a L2–solution of D∞1 , hence s1(u, y) =
∑

k cke
−(R+u)λkϕk(y) on

this cylinder where {ϕk, λk;Gϕk,−λk}k∈N is, as above, a spectral resolution
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of L2(Y ;S) generated by B. We estimate the norm of DRs:

‖DRs‖2 = ‖G∂f
R
1

∂u
· s1‖2

=
∑

k

∫ −R
4

−R
2

∫
Y

(
∂fR

1

∂u

)2

· |ck|2 · e−2(R+u)λk(ϕk(y);ϕk(y)) dy du

=

∫ −R
4

−R
2

(
∂fR

1

∂u

)2

·
∑

k

|ck|2 · e−2(R+u)λk · 1 · du

≤ γ2

R2
·
∑

k

(
|ck|2 ·

∫ −R
4

−R
2

e−2(R+u)λk du
)

=
γ2

R2
·
∑

k

(
|ck|2 ·

∫ 3
2
Rλk

Rλk

e−v dv

2λk

)
≤ γ2

R2
·
∑

k

|ck|2 ·
e−Rλk − e− 3

2
Rλk

2λk

≤ γ2

R2
·
∑

k

e−Rλk

2λk

|ck|2 ≤
γ2

R2
e−Rλ1 ·

∑
k

|ck|2

2λk

.

On the other hand we have the elementary inequality

‖s‖2 = ‖s1 ∪fR 0‖2 ≥
∫ −R+1

−R

∫
Y

|s1(u, y)|2 dy du

=
∑
|ck|2 ·

1− e−2λk

2λk

≥ d ·
∑ |ck|2

2λk

with 0 < d ≤ 1−e−2λ1 . Thus, we have the following estimate for any s ∈ VR

of the form s1 ∪fR 0 and for sufficiently large R

‖DRs‖2 ≤ γ2

R2d
e−Rλ1 · d ·

∑
k

|ck|2

2λk

≤ γ2

R2d
e−Rλ1 · ‖s‖2 ≤ e−Rλ1 · ‖s‖2 .

For s = 0∪fRs2, we estimate the norm of DRs in the same way, taking regard

that s2 has the form s2(u, y) =
∑

k dke
(u+R)λkG(y)ϕk(y) on the cylinder. �

Let {ρk;ψk} denote a spectral decomposition of the space L2(M
R;S)

generated by the operator DR. For a > 0, let Pa denote the orthogonal
projection onto the space Ha := span{ψk | |ρk| > a}.

Lemma 8.5.4. For sufficiently large R, the following estimate holds for any
s ∈ VR

‖
(

Id− P
e−

Rλ1
4

)
‖ ≤ e−

Rλ1
2 · ‖s‖.
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Proof. We represent s as the series s =
∑

k akψk . We have

‖Id− P
e−

Rλ1
4
‖ =

∑
ρ 2

k >e−Rλ1/2

a2
k ≤

∑
ρ 2

k >e−Rλ1/2

e
Rλ1

2 · ρ 2
k a

2
k

≤
∑

e
Rλ1

2 · ρ 2
k a

2
k = e

Rλ1
2 ‖DRs‖2

≤ e
Rλ1

2 e−Rλ1‖s‖2 = e−
Rλ1

2 ‖s‖2 .

�

Proposition 8.5.5. The spectral projection P
e−

Rλ1
4

restricted to the sub-

space VR is an injection. In particular, DR has at least q eigenvalues ρ such

that |ρ| ≤ e−
Rλ1

4 , where q is the sum of the dimensions of the spaces kerD∞j
of L2–solutions of the operators D∞1 and D∞2 .

Proof. Let s ∈ VR, and assume that Pe−Rλ1/4(s) = 0. We have

‖s‖ = ‖
(

Id− P
e−

Rλ1
4

)
s‖ ≤ e−

Rλ1
2 · ‖s‖ ≤ 1

2
‖s‖,

for R sufficiently large. �

The proposition shows that the operator DR has at least q exponen-
tially small eigensections, which we can approximate by pasting together
L2–solutions. Now we will show that this makes the list of eigenvalues
approaching 0 as R→ +∞ complete.

Let ψ be an eigensection of DR corresponding to an eigenvalue µ, where
|µ| < λ1. Like in the proof of Theorem 8.2.7 we expand ψ|[−R,R]×Y in terms
of a spectral resolution

{ϕk, λk;Gϕk,−λk}k∈N

of L2(Y ;S) generated by B:

ψ(u, y) =
∞∑

k=1

fk(u)ϕk(y) + gk(u)Gϕk ,

where the coefficients must satisfy the system of ordinary differential equa-
tions of (8.4.5)(

f ′k
g′k

)
= Ak

(
fk

gk

)
with Ak :=

(
−λk µ
−µ λk

)
.

For the eigenvalues ±
√
λ2

k − µ2 of Ak and the eigenvectors(
λk +

√
λ2

k − µ2

µ

)
and

(
µ

λk +
√
λ2

k − µ2

)
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we get a natural splitting of ψ(u, y) in the form ψ(u, y) = ψ+(u, y)+ψ−(u, y)
with

ψ+(u, y) =
∑

k

ake
−
√

λ2
k−µ2u

{(
λk +

√
λ2

k − µ2
)
ϕk(y) + µG(y)ϕk(y)

}
, and

ψ−(u, y) =
∑

k

bke
√

λ2
k−µ2u

{
µϕk(y) +

(
λk +

√
λ2

k − µ2
)
G(y)ϕk(y)

}
.

Then we have the following estimate of the L2–norm of ψ in the y–
direction on the cylinder:

Lemma 8.5.6. Assume that ‖ψ‖ = 1. There exist positive constants c1, c2
such that ‖ψ|{u}×Y ‖ ≤ c1e

−c2R for −3
4
R ≤ u ≤ 3

4
R.

Proof. We have

‖ψ+|{−R+r}×Y ‖2

≤ e−2r
√

λ2
k−µ2 · ‖

∑
k

ake
−R
√

λ2
k−µ2

{(
λk +

√
λ2

k − µ2
)
ϕk + µGϕk

}
‖2

= e−2r
√

λ2
k−µ2 · ‖ψ+|{−R}×Y ‖2 .

In the same way we get

‖ψ−|{R−r}×Y ‖2 ≤ e−2r
√

λ2
k−µ2 · ‖ψ−|{R}×Y ‖2.

Let us observe that, in fact, the used argument proves that

‖ψ+|{r}×Y ‖ ≤ e−(r−s)
√

λ2
k−µ2 · ‖ψ+|{s}×Y ‖, and

‖ψ−|{s}×Y ‖ ≤ e−(r−s)
√

λ2
k−µ2 · ‖ψ−|{r}×Y ‖,

for any −R < s < r < R. We also have another elementary inequality

‖ψ|{r}×Y ‖2 ≥ ‖ψ+|{r}×Y ‖2 − 2 · ‖ψ+|{r}×Y ‖ · ‖ψ−|{r}×Y ‖.

This helps estimate the L2–norm of ψ± in the y–direction. We have

‖ψ‖2 ≥
∫ −R+1

−R

‖ψ|{u}×Y ‖2 du

≥
∫ −R+1

−R

(
‖ψ+|{u}×Y ‖2 − 2‖ψ+|{u}×Y ‖ ‖ψ−|{u}×Y ‖

)
du

≥ ‖ψ+|{−R}×Y ‖2

− 2

∫ −R+1

−R

‖ψ+|{−R}×Y ‖ e−2R
√

λ2
k−µ2‖ψ−|{R}×Y ‖ du

≥ ‖ψ+|{−R}×Y ‖2 − 2e−2R
√

λ2
k−µ2‖ψ+|{−R}×Y ‖‖ψ−|{R}×Y ‖.
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In the same way we have

‖ψ‖2 ≥ ‖ψ−|{R}×Y ‖2 − 2e−2R
√

λ2
k−µ2‖ψ+|{−R}×Y ‖ ‖ψ−|{R}×Y ‖.

We add the last two inequalities and use

2‖ψ+|{−R}×Y ‖ ‖ψ−|{R}×Y ‖ ≤ ‖ψ+|{−R}×Y ‖2 + ‖ψ−|{R}×Y ‖2

to obtain

2‖ψ‖2 ≥
(

1− e−2R
√

λ2
k−µ2

)(
‖ψ+|{−R}×Y ‖2 + ‖ψ−|{R}×Y ‖2

)
.

This gives us the inequality we need, namely

‖ψ±|{∓R}×Y ‖2 ≤ 4‖ψ‖2 .

Now we finish the proof of the lemma.

‖ψ|{u}×Y ‖ = ‖ψ+|{u}×Y + ψ−|{u}×Y ‖

≤ e−(u+R)
√

λ2
k−µ2‖ψ+|{−R}×Y ‖+ e−(R−u)

√
λ2

k−µ2‖ψ−|{R}×Y ‖

≤ 2
(
e−(u+R)

√
λ2

k−µ2
+ e−(R−u)

√
λ2

k−µ2
)
‖ψ‖ ≤ c1e

−c2R ,

for certain positive constants c1, c2 when −3
4
R ≤ u ≤ 3

4
R. �

We are ready to state the technical main result of this section.

Theorem 8.5.7. Let ψ denote an eigensection of the operator DR corre-
sponding to an eigenvalue µ, where |µ| < λ1 . Assume that ψ is orthogonal
to the subspace Pe−Rλ1/4VR ⊂ L2(M

R,S). Then there exists a positive con-
stant c such that |λ| > c.

To prove the theorem we may assume that ‖ψ‖ = 1. We begin with an
elementary consequence of Lemma 8.5.4.

Lemma 8.5.8. For any s ∈ VR we have

|〈ψ; s〉| ≤ e−
Rλ1

2 ‖s‖.

Proof. We have

|〈ψ; s〉| = |〈ψ;P
e−

Rλ1
4

(s) + (Pe−Rλ1/4) (s)〉| = |〈ψ;
(
P

e−
Rλ1

4

)
(s)〉|

≤ ‖ψ‖ ‖
(
P

e−
Rλ1

4

)
(s)‖ ≤ e−

Rλ1
2 ‖s‖.

�
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We want to compare ψ with the eigensections on the corresponding
manifolds with cylindrical ends. We use ψ to construct a suitable section
on M∞

2 =
(
(−∞, R]×Y

)
∪M2 (Note the re–parametrization compared with

the convention chosen in the beginning of this chapter). Let h : M∞
2 → R

be a smooth increasing function such that h is equal to 1 on M2 and h is a
function of the normal variable on the cylinder, equal to 0 for u ≤ 1

2
R, and

equal to 1 for 3
4
R ≤ u. We also assume, as usual, that |∂ph

∂up | ≤ γR−p for a
certain constant γ > 0. We define

ψ∞2 (x) :=

{
h(x)ψ(x) for x ∈MR

2

0 for x ∈ (−∞, 0]× Y .

Proposition 8.5.9. There exist positive constants c1, c2 such that

|〈ψ∞2 ; s〉| ≤ c1e
−c2R ‖s‖

for any s ∈ kerD∞2 .

Proof. For a suitable cut–off function fR
2 we have

|〈ψ∞2 ; s〉| = |
∫

M∞
2

(
ψ∞2 (x); s(x)

)
dx| = |

∫
MR

2

(
h(x)ψ(x); fR

2 (x)s(x)
)
dx|

≤ |
∫

MR
2

(
ψ(x); fR

2 (x)s(x)
)
dx|+ |

∫
MR

2

(
(1− h(x))ψ(x); fR

2 (x)s(x)
)
dx|.

We use Lemma 8.5.8 to estimate the first summand:

|
∫

MR
2

(
ψ(x); fR

2 (x)s(x)
)
dx| = |

∫
MR

2

(
ψ(x);

(
0 ∪fR s

)
(x)
)
dx|

= |〈ψ; 0 ∪fR s〉| ≤ e−
Rλ1

2 ‖s‖.
We use Lemma 8.5.6 to estimate the second summand:

|
∫

MR
2

(
(1− h(x))ψ(x); fR

2 (x)s(x)
)
dx|

≤
∫

MR
2

|
(

(1− h(x))ψ(x); fR
2 (x)s(x)

)
|dx

≤
∫

MR
2

‖(1− h(x))ψ(x)‖ ‖fR
2 (x)s(x)‖dx

≤
(∫

MR
2

‖(1− h(x))ψ(x)‖2 dx
) 1

2‖s‖

≤
(∫ 3

4
R

0

‖ψ|{u}×Y ‖2
) 1

2‖s‖ du

≤
(
c21e

−2c2R 3

4
R
) 1

2‖s‖ ≤ c3e
−c4R‖s‖.
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�

Proof of Theorem 8.5.7. Now we estimate µ2 from below by fol-
lowing the proof of Theorem 8.2.7. We choose

{sk}q2

k=1 ,

an orthonormal basis of the kernel of the operator D∞2 . Let us define

ψ̃ := ψ∞2 −
q2∑

k=1

〈ψ∞2 ; sk〉sk.

Then ψ̃ is orthogonal to kerD∞2 and it follows from Proposition 8.5.9 that

‖ψ̃‖ ≥ 1
3
‖ψ∞2 ‖ > κ > 0 for R large enough where κ is independent of R, of

the specific choice of the eigensection ψ, and of the cut–off function h. Let
µ 2

1 denote the smallest non–zero eigenvalue of the operator (D∞2 )2 . Once

again, it follows from the Min–Max Principle, that 〈(D∞2 )2ψ̃; ψ̃〉 ≥ µ 2κ2 .
We have

µ2 = 〈(DR)2ψ;ψ〉 =

∫
MR

‖
(
DRψ

)
(x)‖2 dx ≥

∫
MR

2

‖
(
DRψ

)
(x)‖2 dx

=

∫
MR

2

‖DR
(
h(x)ψ(x) + (1− h(x))ψ(x)

)
‖2 dx

≥
∫

M∞
2

‖(D∞2 ψ∞2 ) (x)‖2 dx−
∫

MR
2

‖DR
(

(1− h)ψ
)

(x)‖2 dx.

It is not difficult to estimate the first term from below. We have∫
M∞

2

‖(D∞2 ψ∞2 ) (x)‖2 dx = 〈(D∞2 )2 ψ∞2 ;ψ∞2 〉 = 〈(D∞2 )2ψ̃; ψ̃〉 ≥ µ 2
1 κ

2 .

We estimate the second term as follows:∫
MR

2

‖DR
(

(1− h)ψ
)

(x)‖2 dx

=

∫
MR

2

‖(1− h(x))
(
DRψ

)
(x)−G(x)

∂h

∂u
(x)ψ(x)‖2 dx

≤
∫

MR
2

(
‖µ (1− h(x))ψ(x)‖2 + 2‖µ (1− h(x))ψ(x)‖

+ ‖G(x)
∂h

∂u
(x)ψ(x)‖2

)
dx

Now we use Lemma 8.5.6 successively to estimate each summand on the
right side by c1e

−c2R . This gives us∫
MR

2

‖DR
(

(1− h)ψ
)

(x)‖2 dx ≤ c3e
−c4R ,

and finally we have µ2 ≥ µ2
1κ

2 − c3e−c4R ≥ µ2
1κ2

2
, for R large enough. �

Theorem 8.5.1 is an easy consequence of Theorem 8.5.7.
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8.6. The Additivity for Spectral Boundary Conditions

We finish the proof of Theorem 8.1.2. We still have to show equation
(8.2.12), i.e.

Lemma 8.6.1. We have ηR = O(e−cR) where

ηR :=
1√
π

∫ ∞

√
R

1√
t

Tr
(
DRe−tD2

R

)
dt.

Proof. It follows from Theorem 8.5.1 that we have

• ‘exponentially small’ eigenvalues corresponding to the eigensections
from the subspace WR

• and the eigenvalues µ bounded away from 0, with |µ| ≥ a1 , corre-
sponding to the eigensections from the orthogonal complement of
WR .

First we show that we can neglect the contribution due to the eigenvalues
that are bounded away from 0. We are precisely in the same situation as
with the large time asymptotic of the corresponding integral for the Atiyah–
Patodi–Singer boundary problem on the half manifold with the cylinder
attached. Literally, we can repeat the proof of Lemma 8.4.2 by replacing
DR

2,Π>
by DR and the uniform bound for the smallest positive eigenvalue of

DR
2,Π>

by our present bound a1. Thus, we have

|
∫ ∞

√
R

1√
t

Tr
(
DRe−tD2

R |(WR)⊥

)
dt| ≤

∫ ∞

√
R

1√
t

{ ∑
|µ|≥a1

|µ|e−tµ2
}
dt

≤
∫ ∞

√
R

1√
t

{ ∑
|µ|≥a1

e−(t−1)µ2
}
dt ≤

∫ ∞

√
R

1√
t

{ ∑
|µ|≥a1

e−µ2
}
e−(t−2)a2

1 dt

≤ e2a2
1 Tr
(
e−tD2

R

)∫ ∞

√
R

1√
t
e−ta2

1 dt = e2a2
1 Tr
(
e−tD2

R

) 1

a1

∫ ∞

√
R

1√
t
e−ta2

1 a1 dt

≤ e2a2
1

2a1

Tr
(
e−tD2

R

)
e−a2

1

√
R .

For the last inequality see (8.4.11). A standard estimate on the heat kernel

of the operator DR gives (like in (8.4.12)) the inequality Tr
(
e−tD2

R

)
≤ b3 ·

vol(MR) ≤ b4R, which implies that

(8.6.1) |
∫ ∞

√
R

1√
t

Tr
(
DRe−tD2

R |(WR)⊥

)
dt| ≤ b5e

−b6
√

R .
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That proves that the contribution from the large eigenvalues disappears as
R→∞. The essential part of ηR comes from the subspace WR:

(8.6.2)
1√
π

∫ ∞

√
R

1√
t

Tr
(
DRe−tD2

R |WR

)
dt

=
∑
|µ|<a1

1√
π

∫ ∞

√
R

1√
t
µe−tµ2

dt =
∑
|µ|<a1

sign(µ)
2√
π

∫ ∞

|µ|R1/4

e−v2

dv.

It follows from Theorem 8.5.1 that limR→∞|µ|R1/4 = 0. Thus, the right side
of (8.6.2) is equal to

signR(D) :=
∑
|µ|<a1

sign(µ)

plus the smooth error term which is rapidly decreasing as R→∞. �

Thus we have proved Theorem 8.1.2. In particular, we have proved

lim
R→∞

ηDR(0) ≡ lim
R→∞

{
ηDR

1,Π<
(0) + ηDR

2,Π>
(0)
}

mod Z.

To establish the true additivity assertion of Corollary 8.1.3, we show that
the preceding η–invariants do not depend on R modulo integers.

Proposition 8.6.2. (W. Müller.) The η–invariant ηDR
2,Π>

(0) ∈ R/Z is

independent of the cylinder length R.

Proof. Near to the boundary of MR
2 we parametrize the normal co-

ordinate u ∈ [−R, 1) with the boundary at u = −R. First we show that
dim kerDR

2,Π>
is independent of R. Let s ∈ kerDR

2,Π>
. This is equivalent to

(8.6.3) s ∈ C∞(MR
2 ;S), DR

2 s = 0, and Π>(s|{−R}×Y ) = 0.

As in equation (8.3.6) (and in equation (8.4.9) of the proof of Theorem 8.2.7)
we may expand s|[−R,0]×Y in terms of the eigensections of the tangential
operator B:

s(u, y) =
∞∑

k=1

eλkuG(y)ϕk(y).

Let R′ > R. Then s can be extended in the obvious way to s̃ ∈ kerDR′
2,Π>

,

and the map s 7→ s̃ defines an isomorphism of kerDR
2,Π>

onto kerDR′
2,Π>

.
Next, observe that there exists a smooth family of diffeomorphism fR :

[0, 1)→ [−R, 1) which have the following cut–off properties

fR(u) =

{
u for 2

3
< u < 1

u+R for 0 ≤ u < 1
3
.

Let ψR : [0, 1) × Y → [−R, 1) × Y be defined by ψR(u, y) := (fR(u), y),
and extend ψR to a diffeomorphism ψR : M2 → MR

2 in the canonical
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way, i.e., ψR becomes the identity on M2 \
(
(0, 1) × Y

)
. There is also

a bundle isomorphism which covers ψR. This induces an isomorphism

ψ∗R : C∞(MR
2 ;S)→ C∞(M2;S). Let D̃R

2 := ψ∗R ◦DR
2 ◦(ψ∗R)−1 . Then {D̃R

2 }R
is a family of Dirac operators on M2, and D̃R

2 = G(∂u + B) near Y . We

pick the self–adjoint L2–extension defined by dom D̃R
2,Π>

:= ψ∗R
(
domDR

2,Π>

)
.

Hence,

ηD̃R
2,Π>

(s) = ηDR
2,Π>

(s) and ker D̃R
2,Π>

= ψ∗R kerDR
2,Π>

.

In particular, dim D̃R
2,Π>

is constant, and we apply our variation formula
Proposition ??? (identical with the formula 8.1.5 of Remark 8.1.3 - though
established only for closed manifolds and families of invertible Dirac opera-
tors in Chapter 8) to get

d

dR

(
ηDR

2,Π>
(0)
)

= − 2√
π
cm(R),

where cm(R) is determined by the asymptotic expansion ???.
Now let S1

R denote the circle of radius 2R. We lift the Clifford bun-

dle from Y to the torus TR := S1
R × Y . We define the action of D̂R :

C∞(TR,S) → C∞(TR,S) by D̂R = G(∂u + B). Since cm(R) is locally
computable, it follows in the same way as above that

d

dR

(
ηD̂R(0)

)
= − 2√

π
cm(R).

But a direct computation shows that the spectrum of D̂R is symmetric.
Hence ηD̂R(s) = 0 and, therefore, cm(R) = 0. �

In the same way we show that ηDR is independent of R. This proves the
additivity assertion of Corollary 8.1.3. We have proved, in fact, a little bit
more:

Theorem 8.6.3. The following formula holds for R large enough

ηD(0) = ηD1,Π<
(0) + ηD2,Π>

(0) + signR(D).

Theorem 8.6.3 has an immediate corollary which describes the case in
which our additivity formula holds in R, not just in R/Z.

Corollary 8.6.4. If kerD∞1 = {0} = kerD∞2 , then

ηD(0) = ηD1,Π<
(0) + ηD2,Π>

(0).





CHAPTER 9

η–Invariant and Variation of the Boundary Condition

1

In this section we study the variation of the η–invariant . First
we recall the variation formula for a smooth 1–parameter fam-
ily of Dirac operators over a closed manifold. Then we fix
one Dirac operator and study a path in the connected Grass-
mannian of self–adjoint boundary conditions of generalized
Atiyah–Patodi–Singer type, starting at the Atiyah–Patodi–Singer
boundary condition. We apply the variation formula for the
η–invariant and determine the difference between the two η–
invariants. It turns out that, modulo integers, this real number
is precisely the η–invariant of the finite cylinder subject to the
given boundary condition on one end and the Atiyah–Patodi–
Singer boundary condition on the other end. Together with
the adiabatic Duhamel’s formula of the preceding Chapter this
yields the general additivity formula

ηD = ηD1,P1 + ηD2,−G(Id−P2)G + ηNP1,P2

for the η–invariant on a closed partitioned manifold M =
M1∪Y M2 with M1,M2 compact manifolds with common bound-
ary Y . Generalizations for singular tangential operators and
non–compatible Dirac operators are given.

9.1. Variation of η on a Closed Manifold

In this section we study the variation of the η–invariant on a closed ma-
nifold. Let {Dr}r∈[0,1] be a smooth 1–parameter family of Dirac operators.
To begin with we assume that all of them are compatible. Afterwards we
show what to do for non–compatible operators.

We recall the formula for large <(s)

(9.1.1) ηD(s) =
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr(De−tD2

) dt.

For compatible Dirac operators we have derived (see Theorem A.0.5) the
estimate

(9.1.2) |TrDe−tD2| < C
√
t

1Date: November 15, 2001. File name: BOOK8B.TEX, uses BOOKC.STY,
BOOKAPP.TEX, and BOOKREFE.TEX.

147
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for small t > 0. Hence the η–function is a holomorphic function of s for
Re s > −2, and we get

(9.1.3) ηD(0) =
1√
π

∫ ∞

0

1√
t

Tr(De−tD2

) dt.

In the following computations we assume that the operators Dr are invert-
ible. It was explained earlier that we can modify the operator Dr to an
invertible operator which modulo integers does not change the value of the
η–function at s = 0. Therefore, in general, the formula of Lemma 9.1.1
holds only mod Z.

Now we differentiate equation (9.1.3) with respect to the parameter r
(we write shorthand D for Dr and dot for differentiation with regard to r):

η̇Dr(0) =
1√
π

∫ ∞

0

1√
t

Tr(Ḋe−tD2 − 2tḊD2e−tD2

) dt

=
1√
π

∫ ∞

0

1√
t

Tr Ḋe−tD2

dt+
2√
π

∫ ∞

0

√
t
d

dt

(
Tr Ḋe−tD2

)
dt

=
1√
π

∫ ∞

0

1√
t

Tr Ḋe−tD2

dt+
2√
π

[√
t Tr Ḋe−tD2

]∞
0

− 2√
π

∫ ∞

0

1

2
√
t

Tr Ḋe−tD2

dt

=
2√
π

lim
ε→0

[√
t Tr Ḋe−tD2

]1/ε

ε
= − 2√

π
lim
ε→0

√
ε Tr Ḋe−εD2

.

Note that the vanishing of limt→∞
√
tTr Ḋe−tD2

follows from the assumption
of invertibility of D. This proves

Lemma 9.1.1. Let M be a closed Riemannian manifold. Set I := [0, 1] and
let {Dr}r∈I be a smooth family of invertible compatible Dirac operators on
M . Then

d

dr
ηDr(0) = − 2√

π
lim
ε→0

√
εTr Ḋre

−εD2
r .

For not necessarily compatible Dirac operators the estimate (9.1.2) is not
available, and thus nor is the formula (9.1.3). Therefore, to determine the
variation of η(0) we go back to η(s) for <(s) sufficiently large, differentiate
with regard to the parameter r, exploit the asymptotic expansion of the
corresponding heat kernel traces, and then study the analytic extension to
the point s = 0. For the technical details see Gilkey [45], Section 1.13.
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That way, we get

η̇Dr(s) =
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr(Ḋe−tD2 − 2tḊD2e−tD2

) dt

=
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr Ḋe−tD2

dt

+
2

Γ( s+1
2

)

∫ ∞

0

t
s+1
2
d

dt

(
Tr Ḋe−tD2

)
dt

=
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr Ḋe−tD2

dt+
2

Γ( s+1
2

)

[
t

s+1
2 Tr Ḋe−tD2

]∞
0︸ ︷︷ ︸

=0

− 2

Γ( s+1
2

)

∫ ∞

0

s+ 1

2
t

s−1
2 Tr Ḋe−tD2

dt

= − s

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 Tr Ḋe−tD2

dt .

By splitting the integral into a meromorphic part and a part holomorphic
in 0 we obtain

lim
s→0

η̇Dr(s) = lim
s→0
− s

Γ( s+1
2

)


∫ 1

0

t
s−1
2 Tr Ḋe−tD2

dt+

∫ ∞

1

t
s−1
2 Tr Ḋe−tD2

dt︸ ︷︷ ︸
bounded


= lim

s→0
− s

Γ( s+1
2

)

∫ 1

0

t
s−1
2 Tr Ḋe−tD2

dt.

Since the η–invariant ηDr(0) depends on r in a differentiable way, the pre-
ceding limit must be finite and equal to the variation η̇Dr(0).

We can determine the limit in terms of the heat kernel expansion. As-
sume that for any r the operator Dr −D0 is of order 0, i.e. Dr = D0 + Tr ,
where Tr : S/→ S/ is a smooth family of endomorphisms of the spinor bundle.
Then Ḋ = Ṫ and we have the following asymptotic expansion for small
t > 0

(9.1.4) Tr Ḋre
−tD 2

r ∼ t−
m
2

∞∑
ι=0

tι bι(Dr) ,

where m := dimM . We consider a single term t
−m+2ι

2 bι.∫ 1

0

t
s−1
2 · t

−m+2ι
2 bι =

∫ 1

0

t
s−1−m+2ι

2 bι =

[
t

s+1−m+2ι
2

s+1−m+2ι
2

bι

]1

0

=
2bι

s+ 1−m+ 2ι
.
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Thus we have

lim
s→0

η̇Dr(s) = − lim
s→0

s

Γ( s+1
2

)

∞∑
ι=0

2bι
s+ 1−m+ 2ι

= −
2bm−1

2√
π

because in the limit s→ 0 the denominator 1−m+ 2ι vanishes, if and only
if ι = m−1

2
. This proves

Lemma 9.1.2. Let M be a closed Riemannian manifold of dimension m.
Let {Dr}r∈I be a differentiable family of invertible Dirac operators on M .
Then we have

η̇Dr(0) = − lim
s→0

s

Γ( s+1
2

)

∫ 1

0

t
s−1
2 Tr Ḋe−tD2

dt

=

{
−2bm−1

2
(Dr)/

√
π if m is odd,

0 if m is even.

Remark 9.1.3. Assume that Ḋ is of the first order. In this case the corre-
sponding expansion is

(9.1.5) Tr Ḋre
−tD 2

r ∼ t−
m+1

2

∞∑
ι=0

t(2ι+1)/2 c2ι+1(Dr) ,

and the result is

η̇Dr(0) =

{
−2cm(Dr)/

√
π if m is odd,

0 if m is even.

9.2. Variation of the Boundary Condition

In this section D denotes a fixed compatible Dirac operator on a smooth
compact Riemannian manifold X of odd dimension m with boundary Y
and with product structure in a fixed collar neighbourhood N of Y .

Our calculation of the change of the η–invariant under a smooth varia-
tion of the boundary condition will be based on the following formula which
has been proved in chapter ??? of this book.

Lemma 9.2.1. Let {Pr}0≤r≤1 be a smooth path of projections in the smooth
self–adjoint Grassmannian Gr∗∞(D). We assume that all operators Dr :=
DPr are invertible. Then we have

d

dr
(ηDr(0)) = − 2√

π
lim
ε→0

√
εTr Ḋre

−εD 2
r .
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Let P be a fixed projection in Gr∗∞. Without loss of generality (see
Simon’s observation on the domains in Chapter ???) we can assume that a
smooth curve

{Pr = g#
r Π>(g#

r )−1}r∈I

connects the spectral projection Π> with P . Here gr : L2(Y ; (S/ |Y )−) →
L2(Y ; (S/ |Y )−) is a unitary operator of the form Id + Kr where Kr is an
operator with a smooth kernel and

g#
r :=

(
Id 0
0 gr

)
,

and gr = Id, constant, for small r (r close to 0), and gr = g1 for large r (r
close to 1).

Example 9.2.2. Note that the operators with smooth kernel form the Lie
algebra of the group

GL∞ := {g invertible | g = Id + operator with smooth kernel}.

Therefore, for a small real parameter r ≥ 0, it would suffice to consider
curves generated by a family

(9.2.1) {gr := erθ} ,

where

θ : C∞(Y, S/− |Y ) −→ C∞(Y, S/− |Y )

is a fixed operator with smooth kernel specifying the ‘direction’ of the de-
rivative, and then applying a cut–off function.

A technical problem arises, namely that the domain of the corresponding
L2–extensions DPr changes. To avoid dealing with this problem we apply a
unitary twist. We replace the operator Dr := DPr by a unitarily equivalent

operator D̃(r)
Π>

. In that way all the original spectra are retained, and the

domain of the operators D̃(r)
Π>

is now fixed.
This method was introduced in [40], Appendix A and used in a number

of related papers (see [60], [62], [?]). It can be formulated as follows:

Lemma 9.2.3. For all r ∈ I the operator Dr is unitarily equivalent with the
operator (U−1

r DUr)Π>, where

Ur :=

{
Id on M \ N
g#

r·f(u) on N

and f is a smooth monoton–decreasing function equal to 0 close to u = 1
and 1 near u = 0.
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Proof. By definition Ur provides a bijection of dom(U−1
r DUr)Π> onto

domDr; and for each s ∈ dom(U−1
r DUr)Π> the action of first applying Ur,

then D, and then U−1
r coincides precisely with the action of U−1

r DUr. �

Instead of analyzing the operators Dr, Ḋr, and Ḋre
−εD 2

r , we analyze
the corresponding unitarily equivalent operators obtained by the unitary
twist with the chosen cut–off function f(u). We shall denote the mapping
(u, r, y) 7→ gr·f(u)(y) by the same letter g and the partial derivative ∂r(gr·f(u))
by ġr. Then we obtain

ġ−1
r·f(u) = −g−1

r·f(u)ġr·f(u)g
−1
r·f(u)

as derivative of the inverse family, and

˙
(g−1

∂g

∂u
) = −g−1ġg−1 ∂g

∂u
+ g−1

˙(
∂g

∂u

)
.

Proposition 9.2.4. (a) On the set M \N the operator U −1
r DUr coincides

with D, while on the collar N we get

U −1
r DUr −D

=

(
0 0
0 g−1

r·f(u)∂u(gr·f(u))

)
+

(
i 0
0 −i

)(
0 B−(gr·f(u) − Id)

(g−1
r·f(u) − Id)B+ 0

)
.

(b) The first derivate of the twisted family vanishes on M \N , while we get
on the collar N

˙(U −1
r DUr) =

(
0 0

0 −i ˙(
g−1 ∂g

∂u

)) +

(
i 0
0 −i

)(
0 B−ġ

−g−1ġg−1B+ 0

)
.

Remark 9.2.5. The difference between the twisted operator and the orig-
inal operator is a smoothing operator in ‘tangential’ direction (i.e. in the
direction parallel with the boundary) and is an operator of order zero in
normal direction; hence it is not a true pseudodifferential operator.

Proof. We prove (a) by straight forward calculation.

U −1
r DUr

=

(
1 0
0 g−1

)(
i 0
0 −i

){
∂u +

(
0 B−

B+ 0

)}(
1 0
0 g

)
=

(
i 0
0 −ig−1

)
∂u

(
1 0
0 g

)
+

(
1 0
0 g−1

)(
i 0
0 −ig−1

)(
0 B−

B+ 0

)(
1 0
0 g

)
.
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The first summand is equal to(
i 0
0 −ig−1

)(
1 0
0 g

)
∂u +

(
i 0
0 −ig−1

)(
0 0

0 −ig−1 ∂g
∂u

)
=

(
i 0
0 −i

)
∂u +

(
0 0

0 −ig−1 ∂g
∂u

)
.

The second summand yields(
i 0
0 −i

)(
0 B−g

g−1B+ 0

)
,

which proves assertion (a).

The proof of (b) follows at once. �

For the chosen curve {Pr}r∈I , connecting P0 := Π> and a given projec-
tion P1 = P , we write

η̇r0 :=
d

dr
ηDPr

(0)|r=r0

for the variation of the η–invariant at a point r0 ∈ I. Choosing a cut–off
function f we obtain from the preceding proposition

η̇r0 = η̇(U −1
r DUr)Π>

(0) = − 2√
π

lim
ε→0

√
εTr ˙(U −1

r DUr)e
−ε(U −1

r DUr) 2
Π> |r=r0

=
2√
π

lim
ε→0

√
εTr

({(
0 0
0 Rr0

)
+GS

}
e−ε(U −1

r DUr) 2
Π>

)
|r=r0 ,(9.2.2)

where the operators in the brackets {. . . } are given by

Rr0 := i

·︷ ︸︸ ︷(
g−1 ∂g

∂u

)
|r=r0 , G :=

(
i 0
0 −i

)
, S :=

(
0 B−ġ

−g−1ġg−1B+ 0

)
.

Fortunately, the preceding expression for η̇r0 can be simplified substan-
tially. Notice that in formula (9.2.2) the operators in the brackets {. . . }
vanish outside of the neck N = [0, 1] × Y of the boundary. Actually, the
first term, involving Rr0 has support completely inside the neck since ∂g

∂u
= 0

at u = 0 and u = 1. The second term GS disappears only at u = 1 where
ġ vanishes.

First we shall consider the case r = 0, i.e. the η–variation precisely at
the spectral projection. By Duhamel’s Principle we may replace the kernel

of the heat operator e−ε(U −1
0 DU0) 2

Π> = e−εD 2
Π> by the heat kernel e−εD2

cyl on
the infinite cylinder for analyzing the first term and by the heat kernel
e−εD2

aps on the half–infinite cylinder with the spectral boundary condition
at u = 0 for analyzing the second term. More precisely (see Chapter 6) we
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have for cut–off functions ϕ with ϕ(u) equal 0 near 0 and 1 and ψ with ψ(u)
equal 1 near 0 and equal 0 near 1 ψ(1) = 0

ϕe−εD2
Π> = ϕe−εD2

cyl +O(e−
c
ε )(9.2.3)

ψe−εD2
Π> = ψe−εD2

aps +O(e−
c
ε )(9.2.4)

We consider the second term of formula (9.2.2). Up to the error term
which disappears for ε → 0, it is of the form Tr(ψTV ) where the original

heat operator e−εD2
Π is according to (9.2.4) replaced by V := e−εD2

aps . V is
of trace class and ‘even’, i.e. it commutes with G (that is not the case for
the original heat operator). Moreover, T = GS is odd, i.e. it anticommutes
with G.

Lemma 9.2.6.

Tr(ψTV ) = 0

Proof. We have

Tr(ψTV ) = Tr(−ψG2TV ) = Tr(−ψG(TV )G)

= Tr(−ψGTGV ) = Tr(ψG2TV ) = Tr(−ψTV ).

�

We consider the first term of the formula (9.2.2) for η̇r0 , still at r0 = 0.

According to (9.2.3), we can replace the true heat operator e−εD 2
Π> by the

heat operator on the bi–infinite cylinder e−εD 2
cyl which can be written in the

form
1√
4πε

e
−(u−v)2

4ε e−εB 2

.

We obtain

2√
π

lim
ε→0

√
εTr

((
0 0
0 R0

)
e−εD 2

Π>

)
=

2√
π

(
lim
ε→0

√
εTr

(
0 0
0 R0

)
e−εD 2

cyl +O(e
−c
ε )

)
=

2√
π

lim
ε→0

√
εTr

((
0 0
0 R0

)
e−εD 2

cyl

)
=

2√
π

lim
ε→0

√
ε

∫ 1

0

du TrY

((
0 0
0 R0

)
e−εB 2

)
1√
4πε

=
1

π
lim
ε→0

∫ 1

0

du TrY

((
0 0
0 R0

)
e−εB 2

)
=

1

π

∫ 1

0

du TrY

(
0 0
0 R0

)
.
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Thus we have proved

(9.2.5) η̇|r=0 =
1

π

∫ 1

0

du TrY


0 0

0 i

·︷ ︸︸ ︷(
g−1 ∂g

∂u

)
|r=0

 .

We show that the preceding formula remains valid in the general situa-
tion r = r0. As in the case r0 = 0 we begin with the second term of formula
(9.2.2)

(9.2.6)
2√
π

lim
ε→0

√
εTr

(
GSe−ε(U −1

r DUr) 2
Π>

)
|r=r0

=
2√
π

lim
ε→0

√
εTr

(
GSe−ε(U −1

r0
DUr0 ) 2

aps +O
(
e−

c
ε

))
according to (9.2.4). Recall that GS is odd. Thus, we need only to show

that the operator e−ε(U −1
r0

DUr0 ) 2
aps is even. Then we can apply Lemma 9.2.6

and the vanishing of (9.2.6) follows.
On the cylinder, we have

U −1
r0
D2Ur0 = U −1

r0
(−∂u

2 +B2)Ur0 = U −1
r0

(−∂u
2Ur0 +B2Ur0)

= −∂u
2 − 2U −1

r0

∂Ur0

∂u
∂u − U −1

r0

∂2Ur0

∂u2
+ U −1

r0
B2Ur0

= −∂u
2 +B2−2U −1

r0

∂Ur0

∂u
∂u − U −1

r0

∂2Ur0

∂u2
+ U −1

r0
[B2, Ur0 ]︸ ︷︷ ︸

=:W

.

Clearly, the perturbation term W is even. By Duhamel’s recursive formula
(Proposition 6.3.1, see also formula (6.3.2)) we have

e−ε(U −1
r0

D2Ur0 )aps = e−εD2
aps −

∫ ε

0

ds e−sD2
apsWe−(ε−s)D2

aps

+
∞∑

k=2

(−1)k

∫ ε

0

ds

∫ s

0

ds1 . . .

∫ sk−2

0

dsk−1 e
−sk−1D2

aps W e−(sk−2−sk−1)D2
aps

. . .W e−(s−s1)D2
aps W e−(ε−s)D2

aps .

Thus, with W also e−ε(U −1
r0

D2Ur0 )aps is even, and by Lemma 9.2.6

Tr
(
GS e−ε(U −1

r0
D2Ur0 )aps

)
= 0

and the second term in the formula for η̇|r=r0 vanishes.
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We are left with the first term in formula (9.2.2). For ε sufficiently small
we have suppRr0 ⊂ (ε, 1− ε), hence

Tr
((

0 0
0 Rr0

)
e−ε(U −1

r D2Ur)Π>

)
|r=r0

= Tr
((

0 0
0 Rr0

)
e−ε(U −1

r0

on (−∞, +∞)× Y︷ ︸︸ ︷
(−∂2

u +B2) Ur0 ) +O
(
e
−c
ε

))
= Tr

((
0 0
0 Rr0

)
U −1

r0
e−ε(−∂2

u+B2)Ur0 +O
(
e
−c
ε

))
(∗)
= Tr

(
U −1

r0

(
0 0
0 Rr0

)
e−ε(−∂2

u+B2)Ur0 +O
(
e
−c
ε

))
= Tr

((
0 0
0 Rr0

)
e−ε(−∂2

u+B2) +O
(
e
−c
ε

))
.

In (*) we used that Rr0 is made up by derivatives of Ur0 , hence U −1
r0

com-

mutes with

(
0 0
0 Rr0

)
.

Now we can argue as above for the case r0 = 0 and obtain:

Proposition 9.2.7.

η̇|r=r0 =
1

π

∫ 1

0

du TrY


0 0

0 i

·︷ ︸︸ ︷(
g−1 ∂g

∂u

)
|r=r0

 .

The main result of this section is an immediate consequence of the pre-
ceding proposition:

Theorem 9.2.8. For any path in the smooth self–adjoint Grassmannian,
beginning at the Atiyah–Patodi–Singer boundary condition we have

ηDP
(0)− ηDΠ>

(0) ≡ i

π

∫ 1

0

dr Tr

·︷ ︸︸ ︷(
g−1 ∂g

∂u

)
|r mod Z.

Remark 9.2.9. For the constant direction path of Example 9.2.2, we have
g(r, u) = eirf(u)θ, hence

·︷ ︸︸ ︷(
g−1 ∂g

∂u

)
=

·︷ ︸︸ ︷
(irf ′(u)θ) = if ′(u)θ
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and therefore

ηDP
− ηDΠ>

≡ − 1

π
Tr θ mod Z.

9.3. η on the Neck and Additivity Formula

Thus, given the η–invariant ηDΠ>
of the Atiyah–Patodi–Singer boundary

condition, we can obtain the η–invariant ηDP
of the new boundary condition

P ∈ Gr∗∞(D), roughly speaking, by attaching a second copy [−1, 0] × Y of
the neck N with boundary condition Π< in 0 (i.e. on the end flanking the
manifold X), and with the new boundary condition P at −1 (i.e. at the
new end).

To make the argument rigorous we consider the Grassmannian of self–
adjoint boundary conditions of Atiyah–Patodi–Singer type for the Dirac
operator DN = G(∂u +B) on the collar manifold N = [−1, 0]×Y . Then all
self–adjoint boundary conditions for DN at the left −1–end are perturba-
tions of Π> (by symmetric smoothing operators); i.e. belong to the smooth
self–adjoint Grassmannian Gr∗∞(D) of the original D on the manifold X.

On the right 0–end we rewrite the operator DN = −G(−∂u + B) so
that we have an inward orientated normal derivative −∂u. Then all self–
adjoint boundary conditions for DN at the 0–end are perturbations of Π< =
−GΠ>G = Id− Π (by symmetric smoothing operators); i.e can be written
as Id− P with P as above.

More generally, let us consider the L2–realizations of a given Dirac op-
erator on the neck N = [−1, 0]× Y of the form G(∂u + B), defined by the
smooth self–adjoint Grassmannian. These operators, which we denote by
DNP,Id−P , are specified by their domain

dom(DNP,Id−P ′)

:= {ψ ∈ H1(N ; S/) | P (ψ|{−1}×Y ) = 0 and (Id− P ′)(ψ|{0}×Y ) = 0},

where P and P ′ belong to the smooth self–adjoint Grassmannian, defined
by B.

Lemma 9.3.1. On the neck, the η–function of DNP,Id−P ) vanishes and in
particular

ηDNP,Id−P
(0) = 0.

Proof. We show that the spectrum is symmetric. Let a section ψ and
a real λ be given such that

Dψ = λψ, Pψ(−1, y) = 0 and (Id− P )ψ(0, y) = 0
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for any y ∈ Y . We introduce the mirror operator

(Tψ)(u, y) := G(y)ψ(−1− u, y)

and obtain by the tangential identities of 8.1.2

D(Tψ)(u, y) = G(∂u +B)G(y)ψ(−1− u, y)

= G∂uGψ(−1− u, y) +GBGψ(−1− u, y)

= −∂uψ(−1− u, y) +Bψ(−1− u, y)

= −G2 (−∂uψ(−1− u, y) +Bψ(−1− u, y))

= −G G (−∂uψ(−1− u, y) +Bψ(−1− u, y))

= −Gλψ(−1− u, y) = −λ(Gψ(−1− u, y)) = −λ(Tψ)(u, y).

It remains to show that the section Tψ belongs to the domain of the operator
DNP,Id−P ). We have −GPG = Id − P since P belongs to the self–adjoint
Grassmannian of B. Thus at the left end

P ((Tψ)(u, y)|u=−1 = P Gψ(−1− 1, y) = −G (Id− P )ψ(0, y)︸ ︷︷ ︸
=0

and, similarly, at the right end

(Id− P )((Tψ)(u, y)|u=0 = (Id− P )Gψ(−1, y) = −GPψ(−1, y)︸ ︷︷ ︸
=0

�

All this together gives us

Theorem 9.3.2. Let D be a Dirac operator on a smooth compact manifold
X with boundary Y and let P ∈ Gr∗∞. Then the difference between the η–
invariants on X, defined by the given P and by the spectral projection Π>,
equals the corresponding η–invariant on the neck

ηDP
(0)− ηΠ> ≡ ηDNP,Π<

(0).

Proof. Let {gr} denote a family connecting Π> and P in Gr∗∞(D)

as in the beginning of this section. Then

(
Id 0
0 gr

)
connects the pairs

Π(B ⊕ −B) = (Π>,Π<) and (P,Π<) in Gr∗∞(DN ). By Theorem 9.2.8 the
differences of the corresponding η–invariants are both expressed by the same
analytical expression. Thus

ηDP
(0)− ηΠ> ≡ ηDNP,Π<

(0)− ηDN
Π>,(Id−Π>)

(0).

But the last term vanishes according to Lemma 9.3.1. �

Together with the adiabatic Duhamel’s formula of the preceding Chapter
this yields the general additivity formula
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Corollary 9.3.3. For the η–invariant on a closed partitioned manifold
M = M1 ∪Y M2 with M1,M2 compact manifolds with common boundary Y
we have

ηD = ηD1,P1 + ηD2,−G(Id−P2)G + ηNP1,P2
.





Part 4

ζ–Determinant and Fredholm
Determinant





CHAPTER 10

The Variation of the Modulus

1

We derive formulas for the change of the modulus of the ζ–
determinant of a fixed Dirac operator on a compact smooth
manifold with boundary under variation of the boundary con-
dition.

10.1. Introduction

Before deriving our variational formulas of the modulus we shall empha-
size the different levels of subtlety of the various spectral invariants involved
into the definition of the determinant. To begin with we restrict ourselves
to the case of a closed manifold. Recall that the ζ–determinant is given by
the following formula

detD := e
iπ
2

(ηD(0)−ζD2 (0)) · e−
1
2
ζ′
D2 (0) .

Let {Dr}r∈I be a smooth family of compatible Dirac operators parametrized
over the interval I = [0, 1]. Then, as noticed before, we have the following
formula for the variation η̇ of the η–invariant ηDr(0)

(10.1.1) η̇ = − 2√
π

lim
ε→0

√
εTr Ḋe−εD2

.

Assuming thatD0 is invertible we find the variation of the modulus−1
2
ζ ′D2(0)

of the determinant:

d

dr

(
−1

2
ζ ′D2(0)

)
=

˙(
−1

2

∫ ∞

0

1

t
e−tD2 dt

)
=

∫ ∞

0

Tr ḊDe−tD2

dt

=

∫ ∞

0

Tr ḊD−1D2e−tD2

dt =

∫ ∞

0

Tr ḊD−1 d

dt

(
e−tD2

)
dt

= lim
ε→0

(
Tr ḊD−1e−tD2

dt
)
|t=

1
ε

t=ε = − lim
ε→0

Tr ḊD−1e−εD2

.(10.1.2)

Note . Formula (10.1.1) for the variation of the η–invariant requires
that the family consists of compatible Dirac operators. In the general case,
it can be replaced by another formula involving the heat kernel asymptotics
of the operator Ḋe−tD2

. Formula (10.1.2) for the variation of the modulus
of the ζ–determinant remains valid in the general non–compatible case.

1Date: November 15, 2001. File name: BOOKMOD1.TEX, uses BOOKC.STY and
BOOKREFE.TEX.
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Notice the very different sensitivity of the various invariants for changes
of the underlying data:

• Recall that the index of an elliptic operator depends solely on the
principal symbol and can be expressed by a local formula. More-
over, it is a homotopy invariant of the principal symbol.
• The variation η̇ behaves, roughly speaking, like the index because

it is local, i.e. it can be expressed by an integral, and it depends
only on finitely many terms in the asymptotic expansion of the
total symbol.
• Also the η–invariant depends only on finitely many terms of the

asymptotic expansion of the total symbol of the operator D (or,
equivalently, of the inverse D−1), but it is non–local. In particular,
it is invariant under perturbation by pseudo–differential operators
of order less than −m− 1 and other operators of trace class. Here,
m denotes the dimension of the manifold.
• The same is true for the variation d

dr

(
−1

2
ζ ′D2(0)

)
: it depends only

on finitely many terms of the asymptotic expansion of the total
symbol, thus being a polynomial or, better, an algebraic function
of the total symbol.
• Finally, the modulus ζ ′D2(0) of the determinant depends on all

(infinitely–many) terms of the asymptotic expansion of the symbol.
As shown before, it can change by perturbation with a smoothing
operator. This is a peculiar aspect of the widely studied non–
multiplicativity property of the ζ–determinant .

Assuming that the derivative Ḋ is of trace class we get

lim
ε→0

√
εTr Ḋe−εD2

= 0

and

lim
ε→0

Tr ḊD−1e−εD2

= Tr ḊD−1
(

lim
ε→0

e−εD2
)

= Tr ḊD−1 .

By (10.1.1) and (10.1.2) it follows

Lemma 10.1.1. Let {Dr} be a smooth family of Dirac operators on a fixed
closed manifold operating on sections in a fixed bundle S of Clifford modules
and let Ḋ|r=0 be of trace class. Then we have

η̇ = 0 and
d

dr
ln det|D| = d

dr

(
−1

2
ζ ′D2(0)

)
= −Tr ḊD−1 ,

all taken at r = 0.

The vanishing of η̇ is not surprising since

(10.1.3) ηD(0) = ηD+T (0)
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for any T of trace class, as mentioned before. For the modulus of the deter-
minant, however, the preceding Lemma shows how delicate the modulus of
the determinant really is and that it changes even under perturbation by a
trace class operator - contrary to the η–invariant which remains according
to (10.1.3) unchanged under such perturbation.

Having Ḋ of trace class is, however, rather untypical. Variation of the
connection would e.g. lead to a perturbation by a bundle endomorphism.
Neither a variation of the boundary condition within the Grassmannian
would lead to a Ḋ of trace class. Actually, this is a very fortunate instance
because the more substantial perturbations we are going to consider have
the nice property that they permit the replacement of the precise inverse
D−1 by any parametrix for D in the formula (10.1.2).

We proceed with our analysis on a closed manifold M for a short while.
We consider a fixed Dirac operator

D : C∞(M ;S) −→ C∞(M ;S)

and a not everywhere vanishing self–adjoint endomorphism V : S → S of
the fixed bundle S of Clifford modules. Then the family

{Dr := D + rV }, r ∈ [0, 1]

is a smooth family of self–adjoint operators of Dirac type. For r 6= 0,
notice that Dr is not necessarily a true (compatible) Dirac operator because
we admit any endomorphism V which needs not to be compatible with
the Clifford multiplication. For the ease of presentation we assume that
m := dimM is odd, hence ζD2

r
(0) = 0.

First we study the variation η̇. Since V is not of trace class, TrV e−εD2

explodes for ε→ 0. But the factor
√
ε keeps the trace bounded and gives fi-

nally the result (which replaces (10.1.1) for non–compatible Dirac operators,
see our Chapter on the variation of eta)

η̇ =
a2m−1√

π
.

Here m := dimM and a2m−1 denotes the 2m−1 coefficient in the asymptotic
expansion of the kernel of the operator V e−tD2

.
For the variation of the modulus we meet a different situation due to

the absence of the regularizing factor
√
ε. According to (10.1.2) we have to

determine limε→0 TrVD−1e−εD2
. We shall prove the following remarkable

fact:

Proposition 10.1.2. For a family {Dr := D+rV } with self–adjoint bundle
endomorphism V the variation of the modulus of the determinant

lim
ε→0

TrVD−1e−εD2

depends only on finitely many terms of the asymptotic expansion of the
symbol of D−1.
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Proof. First we express the integral kernel of the operator D−1 in local
coordinates in terms of the symbol σ(D) = d1 + d0 where d1 denotes the
principal symbol and d0 the order–0 term. Then we have (see e.g. [45],
Lemma 1.7.2.c)

σ(D−1) =
∞∑

j=1

q−j

with

q−1 = d−1
1 and for n > 1

q−n = −q−1

 ∑
|α|+j=n,j<n

Dα
ξ d0 ·Dα

xq−j/α! +
∑

|α|+j=n+1,j<n

Dα
ξ d1 ·Dα

xq−j/α!

 .

By construction, the term q−n is homogeneous of order −n in the covariant
variable ξ.

Locally, the jth term in the expansion of the kernel

K =
∞∑

j=1

K−j

of the operator D−1 is completely determined by the jth term q−j in the
expansion of the symbol of D−1:

K−j(x, y) :=

∫
ei〈x−y,ξ〉q−j(x, ξ) dξ .

We shall write K−j(x, x − y) instead of K−j(x, y) because the y does not
appear as an isolated variable. We show that K−j(x, x−y) is a homogeneous
function of the argument x− y of order j −m. Recall yhat m denotes the
dimension of the manifold M . We have with the variable transformation
ξ = (ξ1, . . . ξm) 7→ η := rξ

K−j(x, r(x− y)) =

∫
ei〈r(x−y),ξ〉q−j(x, ξ) dξ

= r−m

∫
ei〈x−y,η〉q−j(x, r

−1η) dη

= r−mr−j(−1)

∫
ei〈x−y,η〉q−j(x, η) dη

= rj−m

∫
ei〈x−y,η〉q−j(x, η) dη .

In particular we have

K−j(x, x− y) = |x− y|j−mK
(
x,

x− y
|x− y|

)
.

Next we consider the heat operator e−tD2
. It can be expressed in the form

e−tD2

=
1

2πi

∫
Γ

e−tλ(D2 − λ)−1 dλ .
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Expanding the symbol of (D2 − λ)−1 in homogeneous rational functions
shows that the kernel of the heat operator has the following form for small
t > 0 (see e.g. [102], Proposition 13.3)

E(t;x, y) ∼
∞∑

k=0

t(k−m)/2pk(x,
x− y√

t
)e−Qx(x−y)/4t .

Here pk(x, z) are homogeneous polynomials of order k in z and Qx denotes
the positive definite quadratic form

Qx(ξ) = Qx(ξ1, . . . , ξm) = σ2(D2)(x, ξ) =
∑

aij(x)ξiξj

given by the principal symbol of the operator D2 at the point x ∈ M . We
shall write E(t;x, x− y) instead of E(t;x, y) because the y does not appear
as an isolated variable. We obtain

E(t;x,
x− y√

t
) ∼ t−m/2

∞∑
k=0

|x− y|kpk(x,
x− y
|x− y|

)e−Qx(x−y)/4t .

We return to our variational formula and find

lim
ε→0

TrVD−1e−εD2

= lim
ε→0

∫
dx tr

(
V (x)bigl(D−1e−εD2)

(ε;x, x)
)

= lim
ε→0

∫
dx

∫
tr
(
V (x)K(x, x− y)E(ε;x, x− y)

)
dy

= lim
ε→0

∫
dx trV (x) ·

{ ∑
j≥1,k≥0

ε−m/2

∫
|x− y|j−mK−j(x,

x− y
|x− y|

)|x− y|kpk(x,
x− y
|x− y|

)e−Qx(x−y)/4ε dy
}
.

We investigate the sum in the big brackets∑
j≥1,k≥0

∫
dy |x− y|j+k−mK−j(x,

x− y
|x− y|

)pk(x,
x− y
|x− y|

) ε−m/2e−Qx(x−y)/4ε .

Clearly the factor ε−m/2 will blow up for ε→ 0. Each term in the preceding
sum, however, is kept bounded by the Gaussian integral type expression

(10.1.4) lim
ε→0

∫ δ

0

e−a r2

4ε
1

2
√
ε
dr = lim

ε→0
lim

∫ δ/2
√

ε

0

e−aζ2

dζ

= lim

∫ ∞

0

e−aζ2

dζ =
1

2

√
π

a
.

If j + k < m, the term |x − y|j+k−m will blow up for small |x − y|.
But the variation exists and is finite. So, the whole integral must vanish if
j + k < m.

For a pair (j, k) with j + k > m, the summand∫
dy |x− y|j+k−mK−j(x,

x− y
|x− y|

)pk(x,
x− y
|x− y|

) ε−m/2e−Qx(x−y)/4ε
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will, actually, vanish. To prove that we choose a δ > 0 and split the integra-
tion domain into |x − y| > δ which is bounded by the manifold’s diameter
and |x − y| < δ. For each x, the homogeneous functions K−j(x,

x−y
|x−y|) and

pk(x, x−y
|x−y|) are actually functions on the unit sphere and hence baunded.

We obtain

lim
ε→0

∣∣∣∫
|x−y|>δ

dy |x− y|j+k−mK−j(x,
x− y
|x− y|

)pk(x,
x− y
|x− y|

) ε−m/2e−Qx(x−y)/4ε
∣∣∣

≤ lim
ε→0

C

∫
|x−y|>δ

ε−m/2e−Qx(x−y)/4ε dy and with z =
x− y√

ε

≤ lim
ε→0

C

∫
|z|> δ√

ε

e−Qx(z)/4 dz = 0.

Similarly we get

lim
ε→0

∣∣∣∫
|x−y|<δ

. . . dy
∣∣∣ ≤ lim

ε→0
dj+k−mC

∫
|z|< δ√

ε

e−Qx(z)/4 dz

≤ lim
ε→0

dj+k−mC

∫
e−Qx(z)/4 dz = C ′dj+k−m

because of the finiteness of the Gaussian integral. But δ > 0 could be chosen
arbitrary small and j + k −m > 0, so also that integral must vanish.

So, only the finitely many terms with j ≥ 1, k ≥ 0, and j + k = m
contribute to the variation

lim
ε→0

TrVD−1e−εD2

= lim
ε→0

∑
j+k=m

∫
dx trV (x)

∫
K−j(x,

x− y
|x− y|

)pk(x,
x− y
|x− y|

)ε−m/2e−Qx(x−y)/4ε dy .

�

Our proposition has two corollaries:

Corollary 10.1.3. (a) For the calculation of the variation of the modulus
of the determiant we can replace D−1 by any parametrix Q for D, i.e. an
operator with D−1 −Q is a smoothing operator.
(b) The computation of limε→0 TrVD−1e−εD2

localizes.

Proof. (a) is an obvious consequence of the proposition. To prove (b),
we consider a smooth partition of unity {Uα, ψα} and define Dα := D|Uα

and Qα := (Dα)−1. Moreover, we set

Q :=
∑

α

ϕαQαψα
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for suitable bumpfunctions ϕα with ϕα ≡ 1 on Uα). Then we have

Q = D−1DQ = D−1(Id +
∑

α

[D, ϕα]Qαψα) ,

hence
D−1 = Q−

∑
α

D−1[D, ϕα]Qαψα.

The commutator [D, ϕα] has compact support in the complement of Uα,
hence disjoint of the support of Qαψα. Therefore, the combined operator
[D, ϕα]Qαψα is a smoothing operator, and so is the whole difference D−1 −
Q. �

10.2. Variation of the ζ-Determinant on Gr∗∞(D)

In this Section we study the variation of the ζ-determinant of the operator
DP , where P ∈ Gr∗∞(D) , under a change of boundary condition. From
Section 1 we know that the Grassmannian Gr∗∞(D) can be identified with
the group U∞(F−) . If we fix a base projection, for instance P (D), then
any other projection is of the form:

P =

(
IdF+ 0

0 g

)
P (D)

(
IdF+ 0

0 g−1

)
,

where g : F− → F− is a unitary operator such that g − Id has smooth
kernel.

We introduce a smooth one-parameter family {gr}−ε<r<ε of operators
from U∞(F−) with g0 = IdF− . Let {Pr} denote the corresponding family
of projections:

Pr =

(
IdF+ 0

0 gr

)
P

(
IdF+ 0

0 g−1
r

)
.

We want to compute the variation

˙ln detζDPr =
d

dr
{ln detζDPr}|r=0 .

For the purposes of this paper, it is enough to solve an easier problem.
Let us fix two elements of the Grassmannian P1 and P2 such that DP1 and
DP2 are invertible operators. The family {gr} determines two 1-parameter
families of projections

(10.2.1) Pi,r =

(
IdF+ 0

0 gr

)
Pi

(
IdF+ 0

0 g−1
r

)
with respect to which we may study the relative variation



170 10. VARIATION OF THE MODULUS (November 15, 2001)

(10.2.2)
d

dr
{ln detζDP1,r − ln detζDP2,r}|r=0 .

The first obstacle here is that the domains of the unbounded operators DPi,r

are varying with the parameter r. It was explained a long time ago how
to solve this problem. We apply a “Unitary Twist” (see [40], [62]). The
point is that we may extend the family of unitary isomorphisms {gr} on the
boundary sections to a family of unitary transformations {Ur} on L2(M ;S).
To do that, fix a smooth non-decreasing function κ(u) such that

κ(u) = 1 for u < 1/4 and κ(u) = 0 for u > 3/4 ,

and for each r introduce the 2-parameter family

(10.2.3) gr,u = grκ(u) for 0 ≤ u ≤ 1 .

Now we define a transformation Ur as follows:

(10.2.4) Ur :=


(
IdF+ 0

0 gr,u

)
on {u} × Y ⊂ N = [0, 1]× Y

Id on M \N
.

We then have the following elementary result

Lemma 10.2.1. The operators DPi,r
and (U−1

r DUr)Pi
are unitary equivalent

operators.

Clearly, the operators Ur depend upon the choice of the extension function
κ, however by Lemma 10.2.1 the ζ-determinant does not, which is all that
we need. In the following we use the notation

(10.2.5) Dr = U−1
r DUr and Ḋ0 =

d

dr
Dr|r=0 .

Note that the variation Ḋ0 is localized in the collar neighbourhood N of
the boundary, using the representation (7.1.2) one has

(10.2.6) Ḋ0 = GU−1
r

{
∂

∂u
Ûr + [B, Ûr]

}
Ur,

where Ûr = dUr

dr
U−1

r .
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The Canonical determinant is also independent of the choice of the family
{Ur} . This follows from the fact that Pi,rP (D) and the operator PiP (Dr)
are unitarily equivalent

(10.2.7)
Pi,rP (D) = grPig

−1
r P (D) = gr(Pig

−1
r P (D)gr)g

−1
r = grPiP (Dr)g

−1
r .

The main result of this section is the following Theorem:

Theorem 10.2.2. The following equality holds for any pair of projections
P1, P2 ∈ Gr∗∞(D) such that DP1 and DP2 are invertible operators and for any
smooth 1− parameter family {gr} of operators from U∞(F−) with go = Id
:

(10.2.8)
d

dr
{ln detζDP1,r − ln detζDP2,r}|r=0 = TrḊ0(D−1

P1
−D−1

P2
) .

From equations (4.3.8) and (10.2.6) we can write as

d

dr
{ln detζDP1,r − ln detζDP2,r}|r=0 =

Tr

(
GU−1

r (
∂

∂u
Ûr + [B, Ûr])UrK

(
S(P2)

−1P2 − S(P1)
−1P1

)
γ0D−1

)
.

Notice that although the variation Ḋ0 is localized in N , the variation of
the ζ-determinant is not, it depends on global data because of the term
D−1

P1
−D−1

P2
. This is what makes the ζ-determinant a more difficult spectral

invariant than the η-invariant which corresponds to the phase of the deter-
minant. Indeed, in the formula (10.2.8) a mathematician working in spectral
geometry will recognize only a variation of the difference of logarithms of
the modulus of the ζ-determinant. The reason is that the variation of the
phase of the determinant of DP1,r is equal to the variation of the phase of
the determinant of DP2,r .

Theorem 10.2.3. The variation of the phase of the ζ-determinant of the
operator DPr depends only on the family of the unitaries {gr} on F− such
that

Pr =

(
IdF+ 0

0 gr

)
P0

(
IdF+ 0

0 g−1
r

)
,
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not on the choice of the base-point projection P0 . More specifically ζD2
P

(0) is
a constant function of the projection P and the variation of the η-invariant
depends only on the family {gr} .

Proof. The Theorem follows from two technical results proved in the
work of the second author [113]. The phase of the determinant is equal to

exp{iπ
2

(ζD2
Pr

(0)− ηDPr
(0))} .

It was shown in [113] (Proposition 0.5) that ζD2
P

(0) is constant on Gr∗∞(D)
, hence the variation of the logarithm of the phase is equal to the variation
of the η-invariant times −( iπ

2
) . The formula for the variation of the η-

invariant was derived in the proof of Theorem 4.3. in [113]. We have

(10.2.9)
d

dr
ηDPi,r

(0)|r=0 =
i

π

∫ 1

0

du Tr (
d

dr
(g−1

r,u

∂gr,u

∂u
)|r=0) .

In particular the right side of (10.2.9) does not depend on Pi . �

Remark 10.2.4. A special case of the formula (10.2.9) was discussed in the
paper [93].

Next we study the logarithm of the modulus of the determinant

ln |detζDP | = −
1

2
ζ ′D2

P
(0).

It is well-known (see Section 3 of [113]) that

(10.2.10) ζ ′D2
P

(0) = lim
s→0
{
∫ ∞

0

ts−1Tr e−tD2
P dt−

ζD2
P

(0)

s
} − γ·ζD2

P
(0) ,

where γ denotes the Euler constant. The fact that ζD2
P

(0) does not depend

on P allows us to study just the variation of the integral in formula (10.2.10)
and with the help of Duhamel’s Principle we obtain

d

dr
(ζ ′D2

Pi,r

(0))|r=0 =

∫ ∞

0

1

t
·Tr(−2tḊ0DPi

e−tD2
Pi )dt =
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−2

∫ ∞

0

Tr Ḋ0D−1
Pi
D2

Pi
e−tD2

Pidt = 2

∫ ∞

0

d

dt
(Tr Ḋ0D−1

Pi
e−tD2

Pi )dt =

2· lim
ε→0

(Tr Ḋ0D−1
Pi
e−tD2

Pi )|
1
ε
ε = −2· lim

ε→0
Tr Ḋ0D−1

Pi
e−εD2

Pi .

We then have the following result:

Lemma 10.2.5.

(10.2.11)
d

dr
(−1

2
ζ ′D2

Pr
(0))|r=0 = lim

ε→0
Tr Ḋ0D−1

Pi
e−εD2

Pi .

In general the limit on the right hand of the equation (10.2.11) is just
the constant term in the asymptotic expansion of the heat kernel. However,
since we discuss the difference (10.2.2), in this situation we actually obtain
the true operator trace:

d

dr
{ln detζDP1,r−ln detζDP2,r}|r=0 = lim

ε→0
Tr Ḋ0D−1

P1
e−εD2

P1−lim
ε→0

Tr Ḋ0D−1
P2
e−εD2

P2 =

lim
ε→0

Tr Ḋ0(D−1
P1
−D−1

P2
)e−εD2

P1 = Tr Ḋ0(D−1
P1
−D−1

P2
) ,

where for the final step we use Corollary 7.3.2. This completes the proof of
Theorem 10.2.2.





CHAPTER 11

Projective equality of the ζ-determinant and Quillen
determinant

In this chapter we show that the ζ-regularized determinant
detζDP is equal to detCDP modulo a natural multiplicative
constant.

11.1. Introduction

The purpose of this paper is to explain a direct and precise identity
between the ζ-determinant of a self-adjoint elliptic boundary value problem
for the Dirac operator over an odd-dimensional manifold with boundary
and a regularization of the determinant as the Fredholm determinant of a
canonically associated operator over the boundary. We consider an infinite-
dimensional Grassmannian of elliptic boundary conditions commensurable
with Atiyah-Patodi-Singer condition. The latter regularization is defined,
in the sense explained below, as the ratio of the determinant of the Dirac
operator with given elliptic boundary condition to the determinant of the
Dirac operator with the basepoint chiral spinor boundary condition. It is a
regularization canonically constructed from the topology of the associated
determinant line bundle and hence called the canonical determinant. The
canonical determinant is a robust algebraic operator-theoretic object, while
the ζ-determinant is a highly delicate analytic object, and so it is surprising
that they coincide. (Though, the equality of the torsions mentioned above at
least suggests that the ζ-determinant may be somehow related to Fredholm
determinants.) Note however that the fundamental multiplicative property
of the Fredholm determinant (??) does not hold for the ζ-determinant; if  L1

and  L2 denote two positive elliptic operator of positive order on a Hilbert
space H then in general

detζ  L1  L2 6= detζ  L1·detζ  L2 .

We refer to [61] for a detailed study of the so-called Multiplicative Anom-
aly. But this is not contradictory, the canonical determinant is also not mul-
tiplicative, due to the process of taking ratios. To formalise the construction
of taking the ratios of determinants used to define the canonical determinant
we need the machinery of the determinant line bundle. This was introduced
in a fundamental paper of Quillen [83] for a family of Cauchy-Riemann oper-
ators acting on a Hermitian bundle over a Riemann surface, as the pull-back

175
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of the corresponding ‘universal’ determinant bundle over the space of Fred-
holm operators on a separable Hilbert space. The determinant line bundle
DET comes equipped with a canonical determinant section A 7→ det A,
non-zero if and only if A is invertible, where detA lives in the fibre over
A, isomorphic to the complex line DET A := ∧maxKer A⊗ ∧maxCoker A
. Quillen showed that in this context one can use the ζ-function in order
to construct a natural metric on this bundle and that the curvature of this
metric provides a natural representative of the 1 − st Chern class. This
was extended by Bismut and Freed to the context of the families of Dirac
operators on closed manifolds (see [17]) and the curvature identified with
the 2-form component of the local families index density. Inspired by the
Witten’s work [107], they also studied the holonomy of the corresponding
connection and provided the first proof of the Witten Holonomy Theorem.
This result was also proved independently by Jeff Cheeger (see [35]).

The Bismut and Freed construction showed that the ζ-regularization
provides a natural metric on the determinant bundle, but did not provide a
straightforward correspondence between the ζ-determinant and the canon-
ical determinant section. The problem is this: Given a non-zero section σ
of DET one can assign a complex function detσ to the determinant section
by taking the ratio of the two sections: det A = detσ(A)·σ(A); given that
A is an operator with a ζ-determinant, find σ such that detσ(A) = detζ(A).
Clearly the global existence of such a section σ is equivalent to the triviality
of the determinant line bundle. The function detσ may regarded as a reg-
ularized determinant defined relative to the ‘basepoint’ σ. In order to link
this up with Fredholm determinants we use an equivalent construction of
the determinant line bundle due to Segal. This formalises the idea of defin-
ing a regularized determinant by taking the quotient of two comparable
operators.

Associated to the family of elliptic boundary value problems {DP : P ∈
Gr∞(D)} one has a determinant line bundle DET (D) over Gr∞(D), as
explained in Section 1, which is non-trivial over Gr∞(D). Further for each
choice of basepoint P0 ∈ Gr∞(D) one has a smooth family of Fredholm
operators

{SP0(P ) := PP0 : Ran P0 → Ran P P ∈ Gr∞(D)}

with associated (Segal) determinant line bundle DETP0 equipped with its
canonical determinant section P → det SP0(P ) ∈ DetP0(P ), whereDetP0(P )
is the determinant line of the Fredholm operator SP0(P ). Moreover, for
P0, P1 ∈ Gr∞(D) there is a canonical line bundle isomorphism

(11.1.1) DETP0 = DetP0(P1)⊗DETP1 ,

defined where the operators are invertible by
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(11.1.2) det [SP1(P )SP0(P1)] = det SP0(P1)⊗ det SP1(P ) .

The first factor on the right-side of (11.1.1) refers to the trivial bundle
with fibre DetP0(P1). The determinant line bundle of the family of elliptic
boundary value problems is classified in this sense by

(11.1.3) DET (D) = DETP (D) ,

where P (D) is the Calderon projection, preserving the canonical determi-
nant sections

(11.1.4) det DP ←→ det S(P ) ,

where we have written S(P ) for SP (D)(P ). We may therefore rewrite (11.1.1)
fibrewise as

(11.1.5) DET DP = DET DP0 ⊗DetP0(P ) .

We refer to [91] for all these facts.
Let σ(DP0) denote the image of the canonical element det SP0(P1) ⊗

det DP0 ∈ DET DP0 ⊗DetP0(P ) under the isomorphism (11.1.5). Relative
to the choice of the basepoint P0, we therefore have two canonical elements
in DET DP , namely det DP and σ(DP0). Thus over the open subset where
the operators are invertible, according to our earlier discussion we obtain
a regularized determinant of DP by taking the quotient of these elements.
The point however is to make a canonical choice of the basepoint P0.

In the following, to make the presentation smoother we assume that
ker B = {0} . This is in fact not a serious restriction and we can easily
relax this condition. The point is that now the operators

B± : F± = C∞(Y ;S±)→ F∓ = C∞(Y ;S∓)

are invertible. (We use also F± to denote the space of L2 sections of the
bundle of spinors of ”positive′ (resp. ”negative”) chirality.)

Coming back to the canonical choice of the basepoint, in our situation
we are interested just in the real submanifold Gr∗∞(D) of self-adjoint bound-
ary conditions and the ‘correct’ choice is indicated by the fact any elliptic
boundary condition P ∈ Gr∗∞(D) is described precisely by the property that
its range is the graph of an elliptic unitary isomorphism T : F+ → F−

such that T − (B+B−)−1/2B+ has a smooth kernel.
There is a further subtlety that the corresponding orthogonal projection

P+ onto F+ is not actually an element of the Grassmannian. But from
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(11.1.2) the isomorphism (11.1.5) is well-defined if we include the correc-
tion factor τ = det(S(P (D))/det[SP (D)(P

+)SP+(P (D))], which introduces
a factor of 1/2 in the final formula (see (5.2.6)). The canonical determinant
is then defined to be the quotient taken in DET DP

(11.1.6) detCDP =
det DP

σ(DP+)
.

Roughly speaking this is the quotient det DP/det D+
P , the precise definition

takes account of the fact that the domains of the operators DP and D+
P

are different and hence that their canonical determinant elements live in
different complex lines. In Section 1 we carry out a precise computation
and we see that detCDP is actually the Fredholm determinant of an operator
living on the boundary Y constructed from projections P and P (D) .The
main result of the paper is the following Theorem:

Theorem 11.1.1. The following equality holds over Gr∗∞(D)

(11.1.7) detζDP = detζDP (D)·detCDP .

Remark 11.1.2. (1) Theorem 11.1.1 shows that, at least on Gr∗∞(D) , the
ζ-determinant is an object which is a natural extension of the well-defined
algebraic concept of the determinant.

(2) Our results show that the ζ-determinant of the boundary problem
DP is actually equal to the Fredholm determinant of the operator S(P )
living on the boundary. This extends the corresponding result for the index
, which is well-known (see Theorem 20.8 [27]).

(3) With Theorem 11.1.1 at our disposal we can now try a new approach
to the pasting formula for the ζ-determinant with respect to a partitioning
of a closed manifold. The pasting formula for detC was introduced in [91]. It
is hoped that a new insight into the pasting mechanism of the ζ-determinant
will be obtained by combining results of [91] and formula (11.1.7).

We study the variation of the determinants in order to prove Theorem
11.1.1. More precisely, we fix two projections P1, P2 ∈ Gr∗∞(D) such that the
operators DPi

are invertible. Next we choose a family of unitary operators
of the form
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{
(
IdS+ 0

0 gr

)
}0≤r≤1 ,

where gr : F− → F− is a unitary operator, and such that gr − IdF− is an
operator with a smooth kernel for any r , and g0 = IdF− . We define two
families of boundary conditions:

Pi,r =

(
IdF+ 0

0 gr

)
}Pi

(
IdF+ 0

0 g−1
r

)
,

and study the relative variation:

d

dr
{ln det DP1,r − ln det DP2,r}|r=0 ,

for both the Canonical determinant and the ζ-determinant. Of course we
face the technical problem of dealing with a family of unbounded operators
with varying domain. To circumvent this and make sense of the variation
with respect to the boundary condition we follow Douglas and Wojciechow-
ski [40] and apply their ”Unitary Trick”. This defines an extension of our
family of unitary operators on the boundary sections to a family {Ur} of
unitary operators acting on L2(M ;S) (see formula (10.2.4)). The operator
DPi,r

is unitarily equivalent to the operator (Dr)Pi
, where

Dr = U−1
r DUr .

Both the ζ-determinant and the canonical determinant are invariant under
this unitary twist which allows us to compute that both determinants have
variation given by the expression

(11.1.8)
d

dr
{ln det DP1,r − ln det DP2,r}|r=0 = Tr Ḋ0(DP1 −DP2) ,

where Ḋ0 denotes the operator d
dr
Dr|r=0. Now we use the fact that the set of

projections P ∈ Gr∗∞(D), such that the operator DP is invertible is actually
path connected ( see [78]) and integrate the equality

d

dr
{ln detζ DP1,r−ln detζ DP2,r}|r=0 =

d

dr
{ln detC DP1,r−ln detC DP2,r}|r=0 ,

in order to obtain formula (11.1.7) of Theorem 11.1.1.
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Remark 11.1.3. The reader might think that formula (11.1.8) is incorrect
as it does not contain the variation of the phase of the ζ-determinant. The
variation of logarithm of the modulus of ζ-determinant (at DPi

) is known
to be

lim
ε→0

Tr Ḋ0D−1
Pi
e−εD2

Pi ,

and this leads to the right side of (11.1.8), understood as

1

2

d

dr
(ln detζ D2

P1
− ln detζ D2

P2
) .

However, it follows from a result of the work [113], that in the situation
studied in this paper the variation of the phase of ζ-determinant depends
only on the family of unitaries {Ur} and the operator D . Therefore the
phase contributions cancel each other. For more details we refer to Section
3.

In Section 1 we explain construction of the Canonical Determinant. We
follow here the exposition of [91].

Assume that for given P ∈ Gr∗∞(D) the operator DP is invertible. In
Section 2 we present our construction of an inverse D−1

P . To do that we
have to discuss certain aspects of the theory of elliptic boundary problems.
We also introduce K the Poisson map of the operator D and K(P ) the
Poisson map of the operator DP . The first is used in the construction
of the Calderon projection. The operator K(P ) appears in several crucial
places in our computation of the variation of the Canonical Determinant.

In Section 3 we discuss the variation of the ζ-determinant and in Section
4 we study the variation of the Canonical Determinant. It has already
been mentioned that the work [113] was crucial for the study here of the
ζ-determinant, while in the calculation of the variation of the Canonical
Determinant we were influenced by the work of Robin Forman [43].

With (11.1.8) at hand, Section 5 contains the final steps of the proof of
Theorem 0.1.

11.2. Variation of the Canonical Determinant

In this section we prove the corresponding result to Theorem 10.2.2 for the
canonical determinant and show that it coincides with the relative variation
of the ζ-determinant (10.2.8). We begin with the following result:
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Proposition 11.2.1. The following formula holds for any P1, P2 ∈ Gr∗∞(D)
such that DP1 and DP2 are invertible operators.

(11.2.1) detCDP1,r(detCDP2,r)−1 = detFr

(
Id 0
0 T2T

−1
1

)
Sr(P1)Sr(P2)

−1 ,

where Sr(Pi) denotes the operator PiP (Dr) : H(Dr)→ Ran Pi .

Proof. Let

UT1,T2 =

(
Id 0
0 T2T

−1
1

)
: RanP1 → RanP2

and observe that

(11.2.2) UT1,T2UT3,T1 = UT3,T2 , U−1
T1,T2

= UT2,T1

and that if A : RanP1 → RanP1 is of the form Id plus trace-class then

(11.2.3) detFr A = detFr U
−1
T1,T2

AUT1,T2 ,

where the determinant on the left-side is taken on RanP1 and the determi-
nant on the right-side is taken on RanP2. Then since U(P ) = UK,T , we have
using the invariance (10.2.7) of the canonical determinant under a unitary
twist and the multiplicativity (??) of the Fredholm determinant

detCDP1,r(detCDP2,r)−1 = detFr(U
−1
Kr,T1
Sr(P1)) detFr((U

−1
Kr,T2
Sr(P2))

−1)

= detFr(U
−1
Kr,T1
Sr(P1)S(P2)

−1UKr,T2)

= detFr(U
−1
Kr,T2

UT1,T2Sr(P1)S(P2)
−1UKr,T2)

= detFr(UT1,T2Sr(P1)Sr(P2)
−1),

where the last two lines use (11.2.2) and (11.2.3), respectively. �

Hence setting

Sr =

(
Id 0
0 T2T

−1
1

)
P1P (Dr)(P2P (Dr))

−1P2 : Ran P2 → Ran P2

we have proved
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Corollary 11.2.2.
(11.2.4)
d

dr
{ln detCDP1,r − ln detCDP2,r}|r=0 = Tr ((

d

dr
Sr)S−1

r )|r=0 = Tr Ṡ0S−1
0 .

Lemma 11.2.3.

(11.2.5) Tr Ṡ0S−1
0 = Tr P1γ0(

d

dr
Kr(P2)|r=0P2γ0K(P1)

Proof. We compute

d

dr
ln det Sr|r=0 = Tr ((

d

dr
Sr)S−1

r )|r=0 = Tr Ṡ0S−1
0

= Tr

(
Id 0
0 T2T

−1
1

)
{ d
dr

(P1P (Dr)(P2P (Dr))
−1P2)|r=0}(P2P (D)(P1P (D))−1

(
Id 0
0 T1T

−1
2

)
= Tr

d

dr
(P1γ0Sr(P2)

−1P2)|r=0P2γ0KS(P1)
−1P1

= Tr
d

dr
(P1γ0Kr(P2))|r=0P2γ0K(P1)

= Tr P1γ0(
d

dr
Kr(P2)|r=0P2γ0K(P1) .

The lemma is proved. �

The next Lemma takes care of the variation of the operator Kr(P2)

Lemma 11.2.4. The following formula holds at r = 0

(11.2.6) K̇0(P2) :=
d

dr
Kr(P2)|r=0 = −DP2Ḋ0K(P2) .

Proof. Let us fix f ∈ Ran P2 and let sr = Kr(P2)f . We have

Drsr = 0 and P2γ0sr = f ,

hence differentiation with respect to r gives

(
d

dr
Dr)sr = −Dr(

d

dr
sr) and

d

dr
(P2(γ0sr)) = P2(γ0

d

dr
sr) = 0 ,
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hence d
dr
sr ∈ dom DP2 . We obtain

d

dr
Kr(P2)f =

d

dr
sr = −D−1

r,P2
(
d

dr
Dr)sr = −D−1

r,P2
(
d

dr
Dr)Kr(P2)f .

This gives at r = 0

K̇0(P2) = −D−1
P2
Ḋ0K(P2) .

�

The trace of Ṡ0S−1
0 is therefore given by the following formula

(11.2.7) Tr Ṡ0S−1
0 = Tr P1γ0(−D−1

P2
)Ḋ0K(P2)P2γ0K(P1) .

The next important step is to change the order of the operator under
the trace:

Tr P1γ0(−D−1
P2

)Ḋ0K(P2)P2γ0K(P1) = Tr (P1γ0(−D−1
P2

)Ḋ0K(P2)P2)(P2γ0K(P1))

= Tr (P2γ0K(P1))(P1γ0(−D−1
P2

)Ḋ0K(P2)P2) .

The exchange is justified by the fact that

P2γ0K(P1) = P2PP (D)S(P1)
−1P1

is a pseudodifferential operator of order 0 (with the symbol equal to the
symbol of P (D)), and hence that it is a bounded operator on L2(Y ;S|Y ) .
Thus we have

(11.2.8) Tr Ṡ0S−1
0 = Tr (P2γ0K(P1))(P1γ0(−D−1

P2
)Ḋ0K(P2)P2) .

Now the formula for the variation of the Canonical determinant follows
from the next result:

Lemma 11.2.5.

(11.2.9) K(P1)P1γ0D−1
P2

= D−1
P2
−D−1

P1
.
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Proof. We fix f ∈ L2(M ;S) . Let

h = K(P1)P1γ0(D−1
P2
f) .

Observe that the section h is the unique solution of D with boundary data
along P1 equal to P1γ0(D−1

P2
f). Indeed

P1(γ0h) = P1(g0K(P1)P1γ0(D−1
P2
f)) = P1P (D)S(P1)

−1P1γ0(D−1
P2
f) = P1γ0(D−1

P2
f) ,

and uniqueness is a consequence of Proposition 4.3.6. Now, the section
g = (D−1

P2
− D−1

P1
)f is also a solution of D and the restriction of g to the

boundary has P1-component equal to

P1(γ0g) = P1(γ0K(S(P1)
−1P1 − S(P2)

−1P2)γ0D−1f)

= P1P (D)(S(P1)
−1P1 − S(P2)

−1P2)γ0D−1f

= P1γ0D−1f − P1γ0(KS(P2)
−1P2γ0D−1f

= P1γ0(D−1
P2

)f

and therefore h and g are the same section. �

Hence we obtain from equation (11.2.8) and Lemma 11.2.5 that

(11.2.10) TrṠ0S−1
0 = Tr P2γ0(D−1

P1
−D−1

P2
)Ḋ0K(P2)P2 .

The operator on the right side of (11.2.10) has a smooth kernel (see Corollary
7.3.2) and so we can again switch the order of operators:

Tr (P2γ0(D−1
P1
−D−1

P2
)Ḋ0)(K(P2)P2) = Tr (K(P2)P2)(P2γ0(D−1

P1
−DP21)Ḋ0)

= Tr K(S(P2)
−1P2γ0K)(S(P2)

−1P2 − S(P1)
−1P1)γ0D−1Ḋ0

= Tr K(S(P2)
−1P2 − S(P1)

−1P1)γ0D−1Ḋ0 = Tr (D−1
P1
−D−1

P2
)Ḋ0

where we have used (4.3.5) and (4.3.8).

Thus we have

TrṠ0S−1
0 = Tr (D−1

P1
−D−1

P2
)Ḋ0.

This completes the proof of the following Theorem.
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Theorem 11.2.6. With the assumptions of Theorem 10.2.2 one has

(11.2.11)
d

dr
{ln detζDP1,r − ln detζDP2,r}|r=0 =

d

dr
{ln detCDP1,r − ln detCDP2,r}|r=0 .

11.3. Equality of the Determinants

In this Section we prove the main result of the paper. The key point here
is the following elementary result, which allows us to integrate the equality
(11.2.11). We refer to [78] for a more detailed discussion of the topology of
G̃r∗∞(D) .

Proposition 11.3.1. The space G̃r∗∞(D) , which consists of projections
P ∈ Gr∗∞(D) such that the operator DP is invertible, is path connected.

Proof. We show that for any P ∈ G̃r∗∞(D) there exists a path {Pr}0≤r≤1 ∈
G̃r∗∞(D) such that

P0 = P and P1 = P (D) .

Let H denote the range of the projection P . Lemma 4.3.2 tells us that if
DP is invertible then

(11.3.1) H⊥ ⊕H(D) = L2(Y ;S|Y ) and H⊥ ∩H(D) = {0} .

Equivalently we can write the first equality in (11.3.1) as

H ⊕H(D)⊥ = L2(Y ;S|Y ) .

The equality above implies the existence of a linear operator T : H(D)→
H(D)⊥ , such that H = graph(T ) . The subspace H is closed, and as a
consequence of the Closed Graph Theorem T is a continuous map. The fact
that H is Lagrangian gives the equality

(11.3.2) T ∗G+GT = 0
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where bundle anti-involution G (see (7.1.2), (7.1.3)) determines symplectic
structure on L2(Y ;S|Y ) . If we now write the projection P with respect to
the decomposition L2(Y ;S|Y ) = H(D)⊕H(D)⊥, we obtain

(11.3.3) P =

(
(Id+ T ∗T )−1 (Id+ TT ∗)−1T ∗

T (Id+ T ∗T )−1 T (Id+ TT ∗)−1T ∗

)
.

Since P ∈ Gr∗∞(D) then P − P (D) is a smoothing operator and so the
operator T has a smooth kernel. For each value of the parameter r we
define the operator Tr = rT and the corresponding projection

Pr =

(
(Id+ T ∗r Tr)

−1 (Id+ TrT
∗
r )−1T ∗r

Tr(Id+ T ∗r Tr)
−1 Tr(Id+ TrT

∗
r )−1T ∗r

)
.

It is obvious that

ker P (D)Pr
∼= coker S(Pr) ∼= Graph(Tr) ∩H(D)⊥ = {0}.

We know that index S(Pr) is equal to 0 and hence that S(Pr) also has
a trivial kernel. The operators Tr satisfy condition (11.3.2), hence Hr =
Ran Pr is a Lagrangian subspace satisfying condition (11.3.1). It follows
that the operators DPr are invertible. Moreover P0 = P (D), which ends the
proof.

�

The next result is a consequence of Theorem 11.2.6 and Proposition
11.3.1.

Proposition 11.3.2. Assume that we have P1, P2 ∈ Gr∗∞(D) and g ∈
U∞(F−) such that all four operators DP1, DUP1U−1, DP2, DUP2U−1 are in-
vertible, then

(11.3.4)
detζDUP1U−1/detCDUP1U−1

detζDP1/detCDP1

=
detζDUP2U−1/detCDUP2U−1

detζDP2/detCDP2

.

In particular, the ratio of the determinants does not depend on the choice
of the base projection.

Proof. From Proposition 11.3.1, given any two projections fromGr∗∞(D)
such that DP1 and DP2 are invertible operators, we can find a path {Pr} in
the subspace G̃r∗∞(D) which connects P1 and P2. Hence we can use Theorem
11.2.6 and integrate equation (11.2.11), which gives the identity
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(11.3.5)
detζDP1,1/detCDP1,1

detζDP1,0/detCDP1,0

=
detζDP2,1/detCDP2,1

detζDP2,0/detCDP2,0

,

where by construction

Pi,1 = gPi,0g
−1 = gPig

−1 Pi,0 = Pi .

�

We introduce an invariant A(g) using (11.3.4):

(11.3.6) A(g) =
detζDUPU−1/detCDUPU−1

detζDP/detCDP

.

The next result follows from Proposition 11.3.2 and gives the first for-
mula directly relating detζ to the detC.

Theorem 11.3.3. There is the following relation between detζ and detC on
Gr∗∞(D):

(11.3.7) detζDP = detζDP (D)·detCDP ·A(g) ,

where, as before, P =

(
Id 0
0 g

)
P (D)

(
Id 0
0 g−1

)
.

Proof. The result is immediate from the identity (11.3.4) with P1 =

P (D) and P2 = P =

(
Id 0
0 g

)
P (D)

(
Id 0
0 g−1

)
. �

The main result of this Section is the following Theorem.

Theorem 11.3.4. The function A(g) is the trivial character on the group
U∞(F−), i.e. for any g ∈ U∞(F−)

A(g) = 1 .
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Proof. Let g and h be elements of Gr∗∞(D) such that DUgP (D)U−1
g

,

DUhP (D)U−1
h

and DUhUgP (D)U−1
g U−1

h
are invertible. We have

A(hg) =
detζDUhgPU−1

hg
/detCDUhgPU−1

hg

detζDP/detCDP

=

detζDUhgPU−1
hg
/detCDUhgPU−1

hg

detζDUgPU−1
g
/detCDUgPU−1

g

·
detζDUgPU−1

g
/detCDUgPU−1

g

detζDP/detCDP

= A(h)A(g) ,

hence A(g) is a character. It is well-known that there are only two non-
trivial characters on the group U∞(F−)

(11.3.8) A+(g) = detFr g and A−(g) = (detFr g)−1 .

We study the variation of detζ at the Calderon projection P (D) to show
that A(g) is actually the trivial character. Let α : F− → F− denote a self-
adjoint operator with a smooth kernel. We define the 1-parameter smooth
family of operators {gr = eirα} in U∞(F−) and the corresponding family of
operators on M

Ur =


Id on M \N(
Id 0

0 eirκ(u)α

)
on N

.

with κ as in equation (10.2.3). The variation of the phase of the ζ-determinant
is equal to the variation of the η-invariant times the factor −( iπ

2
) . It follows

now from formula (10.2.9) that

d

dr
ηDPi,r

(0)|r=0 =
i

π

∫ 1

0

du Tr (
d

dr
(g−1

r,u

∂gr,u

∂u
)|r=0) =

i

π

∫ 1

0

du Tr
d

dr
(irκ′(u)α) = −Tr α

π

∫ 1

0

κ′(u)du =
Tr α

π
,

and so we see that variation of the ζ-determinant in this case is equal to
−iTr α

2
. On the other hand, the canonical determinant of DgrP (D)g−1

r
is

equal to

detCDgrP (D)g−1
r

= detFr
Id+KT−1

r

2
= detFr

Id+ e−irα

2

= detFr(e
−r iα

2
er iα

2 + e−r iα
2

2
) = detFr(e

−r iα
2 cos r

α

2
) = e−

ir
2

Tr αdetFr(cos r
α

2
) .
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Therefore the variation of the phase of the canonical determinant is equal
to the variation of the phase of the ζ-determinant. From equation (??), the
variation of the only two non-trivial characters (11.3.8) of the group U(F−)
are in our case equal to

d

dr
(A±(gr))|r=0 = ±i·Tr α ,

and hence A(g) is the trivial character of the group U∞(F−). �

This completes the proof of the main Theorem.





CHAPTER 12

Pasting of Determinants
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APPENDIX A

The Regularity of the Local η–Function at s = 0

We prove the regularity of the local η–function over a closed
manifold at s = 0, proved first by Bismut and Freed [17] us-
ing non–trivial results from stochastic analysis. The details of
our proof are inspired by calculations presented in Bismut and
Cheeger [14], Section 3.

Theorem A.0.5. Let D : C∞(M ; S/)→ C∞(M ; S/) denote a compatible Dirac
operator over a closed manifold M of odd dimension m. Let e(t;x, x′) denote

the integral kernel of the heat operator e−tD2
. Then there exists a positive

constant C such that

|trDxe(t;x, x
′)|x=x′| < C

√
t

for all x ∈M and 0 < t < 1.

We recall the definition of the ‘local’ η–function .

Definition A.0.6. Let {fk;λk}k∈Z be a discrete spectral resolution of D.
Then we define

ηD(s;x) :=
∑
λk 6=0

sign(λk)|λk|−s〈fk(x), fk(x)〉

=
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2

(∑
λk 6=0

λke
−tλ2

k〈fk(x), fk(x)〉

)
dt

=
1

Γ( s+1
2

)

∫ ∞

0

t
s−1
2 trD e(t;x, x)dt.

Corollary A.0.7. Under the assumptions of the preceding theorem the
‘local’ η–function ηD(s;x) is holomorphic in the halfplane <(s) ≥ −2 for
any x ∈M .

Proof of the Corollary. . . .
�

193
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Proof of the Theorem. ****************
We follow KPW, On the Bismut-Cheeger proof...

�
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Math. 131, 173–197.

[62] Lesch, M., and Wojciechowski, K.P.: 1996, ‘On the η–invariant of generalized
Atiyah–Patodi–Singer problems’, Illinois J. Math. 40, 30–46.

[63] Lück, W.: 1993, ‘Analytic and topological torsion for manifolds with boundary and
symmetry’, J. Diff. Geom. 37, 263–322.

[64] Matthews, P. T. and Salam, A.: 1954, ‘The Green’s function of quantized field’,
Nuovo Cimento Series 9 12, 563–565.

[65] —, —: 1954, ‘Propagators of quantized field’, Nuovo Cimento Series 10 2, 120–134.
[66] Mazzeo, R.R., and Melrose, R.B.: 1995, ‘Analytic surgery and the eta invariant’,

GAFA – Geometric And Functional Analysis 5, 14–75.
[67] McKean, H., and Singer, I.M.: 1967, ‘Curvature and the eigenvalues of the Lapla-

cian’, J. Diff. Geom. 1, 43–69.
[68] Melrose, R.B., and Piazza, P.: 1997, ‘Families of Dirac operators, boundaries and

the b–calculus’, J. Diff. Geom. 46, 99–167.
[69] Meyerhoff, R., and Rubermann, D.: 1990, ‘Cutting and pasting the η–invariant’, J.

Diff. Geom. 31, 101–130.



198 BIBLIOGRAPHY

[70] Mickelsson, J.: 1989, Current Algebras and Groups, Plenum Press, New York, 1989.
[71] Morchio, G., and Strocchi, F.: 1990, ‘Boundary terms, long range effects, and chiral

symmetry breaking’, in: Mitter, H., and Schweifer, W. (eds.), Fields and Particles,
Proceedings Schladming, Austria, 1990, Springer–Verlag, Berlin–Heidelberg–New
York, pp. 171–214.

[72] Müller, W.:1978, ‘Analytic torsion and R-torsion of Riemannian manifolds’, Adv. in
Math. 28, 233–305.

[73] —: 1994, ‘Eta invariants and manifolds with boundary’, J. Diff. Geom. 40, 311–377.
[74] —: 1997, ‘On the relative determinant’, Preprint.
[75] Nash, C.: 1991, Differential Topology and Quantum Field Theory , Academic Press,

London.
[76] Nicolaescu, L.: 1993, ‘The Maslov index, the spectral flow, and splittings of mani-

folds’, C. R. Acad. Sci. Paris 317, Série I, 515–519.
[77] —: 1995, ‘The Maslov index, the spectral flow, and decomposition of manifolds’,

Duke Math. J. 80 (1995), 485–533.
[78] —: 1997, Generalized Symplectic Geometries and the Index of Families of Elliptic

Problems, Memoirs of AMS 609, Providence.
[79] Palais, R.S. (ed.): 1965, Seminar on the Atiyah–Singer Index Theorem, Ann. of

Math. Studies 57, Princeton University Press, Princeton.
[80] Pedersen, G.K., 1989, Analysis Now , Springer, New York.
[81] Piazza, P.: 1996, ‘Determinant bundles, manifolds with boundary and surgery’,

Comm. Math. Phys. 178, 597–626.
[82] Pressley, A., and Segal, G.B.: 1986, Loop Groups, Clarendon Press – Oxford Uni-

versity Press, Oxford.
[83] Quillen, D. G.: 1985, ‘Determinants of Cauchy-Riemann operators over a Riemann

surface’, Funkcionalnyi Analiz i ego Prilozhenya 19, 37–41.
[84] Ray, D., and Singer, I.M.: 1971, ‘R–torsion and the Laplacian on Riemannian ma-

nifolds’, Adv. Math. 7, 145–210.
[85] Reed, M., and Simon, B.: 1972, Methods of Modern Mathematical Physics. I , Aca-

demic Press, New York.
[86] —, —: 1975, Methods of Modern Mathematical Physics, vol II, Academic Press,

New York.
[87] —, —: 1978, Methods of Modern Mathematical Physics. IV , Academic Press, New

York.
[88] Rees, H.D.: 1984, ‘The η–invariant and Wall non–additivity’, Math. Ann. 267, 449–

452.
[89] Roe, J.: 1988, Elliptic Operators, Topology and Asymptotic Methods, Pitman, Lon-

don.
[90] Schwarz, A.S.: 1993, Quantum Field Theory and Topology , Springer, Berlin–

Heidelberg–New York. (Russian original: Kvantovaya teoriya polya i topologiya,
Nauka, Moscow 1989).

[91] Scott, S.G.: 1995, ‘Determinants of Dirac boundary value problems over odd–
dimensional manifolds’, Comm. Math. Phys. 173, 43–76.

[92] Scott, S.G.: ‘Splitting the curvature of the determinant line bundle’, Proc. Am.
Math. Soc., to appear.

[93] Scott, S.G., and Wojciechowski, K.P.: 1997, ‘Determinants, Grassmannians and
elliptic boundary problems for the Dirac operator’,Lett. Math. Phys. 40, 135–145.

[94] —, —: 1998, ‘ζ-determinant and the Quillen determinant on the Grassmannian of
elliptic self-adjoint boundary conditions’, C. R. Acad. Sci., Série I, 328, 139–144.

[95] —, —: 1999, ‘The ζ–determinant and Quillen determinant for a Dirac operator on
a manifold with boundary’, GAFA (in print).

[96] Seeley, R. T.: 1967 ‘Complex powers of an elliptic operator’. AMS Proc. Symp. Pure
Math. X. AMS Providence, 288–307.



BIBLIOGRAPHY 199

[97] Seeley, R. T.: 1969, ‘Topics in pseudodifferential operators’. In: CIME Conference
on Pseudo-Differential operators (Stresa 1968), pp. 167–305. Cremonese 1969.

[98] Segal, G.B.: ‘The definition of conformal field theory’, Oxford preprint, 1990.
[99] Shubin, M.A.: 1978, Pseudodifferential Operators and Spectral Theory, Nauka,

Moscow, (Russian, English translation Springer, Berlin, 1986).
[100] Singer, I.M.: 1985, ‘Families of Dirac operators with applications to physics’, As-

terisque, hors série’, 323–340.
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