
B . B o o ß ‐ B a v n b e k ,   M a t h   e a s y   a n d   h a r d .   W h y ?                                             1 5 | 1 

 

Math:	Easy	and	Hard.	Why?	
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Abstract. Math is easy and hard, visible and invisible, inspiring and mis-
leading, useful and destructive, free and under restraint, and people love it or 
hate it. Why? 
  I confront encouraging findings on human development and language 
acquisition with rather sceptical views to explain why learning and teaching 
math is easy and hard at the same time; why we in mathematics struggle both 
for product and process; why the meaning of mathematical understanding is 
contextually confined, but the triumph of mathematical experience is to 
become transitional and context free.  
   With this paper I wish to support the resistance of mathematicians against 
administrators’ purely functional demands. We shall refuse when they ask us to 
tune in our teaching to the modern zap generation; and we shall further 
develop original, even risky ideas in our research and not just increase 
numerically our publication output to satisfy budget claims and funding 
agencies’ priorities.   
 
 

PREFACE	
 

1. Logo and topic 
 
The logo for this paper (Fig. 1 below) is from the front page of my recent monograph on 
the index theory of M.F. Atiyah and I.M. Singer1 which started with lectures I gave in 1971 
in Allende’s Chile. The President had given orders that there should be Further Education 
for all junior and senior high school teachers in the country to mark the new era. So, some 
Chilean mathematicians invited me after I had recently finished a PhD on that subject in 
Bonn. They asked me to give a series of elementary lectures to their teachers so that 
everybody could understand what modern mathematics was about and what the content 
was of the Atiyah-Singer Index Theorem. While I was gaving these lectures, someone 
took notes, so that I came back to Europe in September 1971 with a manuscript of 120 
pages. This was my first attempt at making a hard topic easy.   

These 120 pages turned into a book of 769 pages in 2013. The publisher 
chose a front page of the famous Escher graphic of knights walking a never-ending 
ascending path that never reaches higher levels: a good symbol of mathematical studies, 
easy and hard at the same time. You walk and walk, think you have made no progress. 
                                                            
1 Bleecker, David D.; Booß‐Bavnbek, Bernhelm. Index theory — with applications to mathematics and physics. 
International Press, Somerville, MA, 2013. xxii+769 pp. ISBN: 978‐1‐57146‐264‐0 MR3113540. 
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After yet another while you think it’s easy, you are on the same level now, with a better 
understanding, but you feel it was nothing. This is probably the ambiguity of all learning, 
but it is specially so for mathematics. That is the topic of this paper. 

 
 

Figure 1. Logo for this paper 
 
 
Dedication. In respectful memory of Ivor Grattan-Guinness (23 June 1941 – 12 
December 2014). 

2. Outline 
 

This paper is in two parts. In Part I, I’m looking back to see whether the students’ mind-
set has changed since I was a beginner. In Part II, I shall summarize why math is, rightly, 
perceived of as hard. After that I shall turn to the opposite position, that math is easy and 
that it is a pity, when math is not perceived of as easily accessible.  

3. The general meaning of mathematical working experience 
 
Here is an indication of why the mathematical working experience has something to say to 
the general intellectual public.  
 
Pulls and pushes. Our administrators tell us all the time, Make it easy! Remember, it 
must be easy! Don’t lose a student. You are losing the students. Etc. However, our 
working experience is, that  
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 math is confusing and damned hard as long as one has not understood it, and 
when one has understood it, it is easy and clear; and 

 math is invisible for the students in their environment, unless they look a bit 
beneath the surface. 

All people have had their own personal experience: that they got bruises from 
mathematics. We got them when we were students. Later, as professionals, we also got 
bruises from working with mathematics. And for all people (laymen, students, and 
professionals) it can be difficult to recognize how mathematics works behind the scene in 
the real world. Of course, we may share the hope that, for doing, learning, applying, and 
teaching math, we get something interesting out of the theories of communication and 
psychology; get some hints at how to make research, development, and teaching better. 
But do we? 

PART	I	

4. Looking back – have the students’ mind-sets changed? 
 
Recall the functional administrators’ claim: The mind of the students has changed and 
your teaching is worthless unless you change it, too. That claim is supported by the 
general “wisdom” that we deal with a browse-generation or a me-generation, but it is 
misleading; in the sociology and neuropsychology literature, there is no evidence of such 
sudden and general, deep changes regarding our students’ or our own capacity of learning 
and teaching mathematics.2 
 
Evolutionary evidence. Our ancestors have bred dogs for at least 20.000-30.000 years, 
perhaps for 500.000 years.3 Most modern dogs do not look like wolves and each breed 
looks different. But the animal psychologists write in their books that we must expect 80% 
of the behaviour of our dog to be lupine.4 I do not know how they measure and quantify, 
but every dog owner can confirm: After 5.000 generations of breeding adjustments the 
basic behaviour has almost not changed. There is an astonishing stability. 

                                                            
2 For the systematic underestimation of dedicated students’ capacity to protect themselves against the media 
dominance see McLuhan, Marshall; with Fiore, Quentin; produced by Jerome Agel. The medium is the massage: An 
inventory of effects. 1st Ed.: Random House 1967; reissued by Gingko Press, 2001. ISBN 1‐58423‐070‐3; Hurrelmann, 
Klaus. Selbstsozialisation oder Selbstorganisation? Ein sympathisierender, aber kritischer Kommentar. Zeitschrift für 
Soziologie der Erziehung und Sozialisation, 22/2 (2002), 155‐166; Sutter, Tilmann. Medienanalyse und Medienkritik: 
Forschungsfelder einer konstruktivistischen Soziologie der Medien. VS Verlag für Sozialwissenschaften. Wiesbaden. 
2010. ISBN 978‐3‐531‐16910‐1. Girls of 12 or 13 years who can’t resist the social press or their own wish to upload 
naked selfies to the internet most probably must change later when they wish to study mathematics; see Politiken 
Digitalt. Unge sender hinanden afslørende nøgenbilleder i stort omfang. 3 April, 2014. 
3 Larson, Greger; et al. Rethinking dog domestication by integrating genetics, archaeology, and biogeography. Proc 
Natl Acad Sci U S A. Jun 5, 2012; 109(23), 8878–8883. 
4 Svartberg, Kenth; Forkman, Björn. Personality traits in the domestic dog (Canis familiaris). Applied Animal Behaviour 
Science 79 (2002), 133–155; McBride, Anne. The human–dog relationship. In: Robinson, I. (Ed.), The Waltham Book of 
Human–Animal Interaction: Benefits and Responsibilities of Pet Ownership. Pergamon, Oxford, 1995. ISBN 978‐
1483234748, pp. 99–112; Tami, Gabriela; Gallagher, Anne. Description of the behaviour of domestic dog (Canis 
familiaris) by experienced and inexperienced people. Applied Animal Behaviour Science 120 (2009), 159–169.  



B . B o o ß ‐ B a v n b e k ,   M a t h   e a s y   a n d   h a r d .   W h y ?                                             1 5 | 4 

 

When talking about learning and teaching mathematics, we also deal with the human 
mind: it is quite different from that of dogs, much more variable, namely much more able 
to adapt to new situations. But is there evolutionary evidence for deep changes in basic 
human behaviour? 
 
One answer is the Cro-Magnon aesthetics in La grotte de Lascaux, in Le tombe di 
Tarquinia, and in the works of Tiziano Vecellio, Paula Modersohn-Becker, and Jackson 
Pollock. All of them give strong evidences of the apparently indestructible stability of 
human curiosity and imagination, of creativity and concentration. Exactly what we want 
from our students. 
  
 
What then is the supposed ongoing secular media-generated change of 
consciousness about? Can we easily discard all the present talking on ongoing media-
generated changes of our own and our students’ life style and ways of thinking?  
 
The short answer is yes and no!  

 No: social influences cannot be discarded. Otherwise, showing our personal 
example and delivering our teaching would be dispensable. And we don’t want to 
believe that. 

 Yes: for doing math, disturbing social influences must be eliminated or at least 
confined; learning math requires time and full concentration, and a student will 
hardly make progress, if he or she is not able to let her be absorbed by 
mathematics for hours, days and years.  

 
A. Luria (1902–1977). In 1974, the Soviet neuropsychologist and developmental 
psychologist Alexander Romanovich Luria published a comprehensive empirical study 
about cognitive changes induced by social conditions – under the extreme social changes 
of the first years after the Bolshevist revolution.5 

He found indeed remarkable differences, e.g., that people raised in larger and more 
urban places were good at taxonomic classification, i.e., the use of abstract categories like 
tools while people raised in remote areas were better at classifications regarding practical 
situations like the work process of sawing and chopping wood. 

For doing mathematical research and developing applications, for learning and 
teaching math, Luria’s message is that all people can easily adapt to radical new ways of 
thinking in new environments. The only precondition is that the new environments are 
presented in a peaceful way, notwithstanding how dramatic and even painful the changes 
and the challenges may be.   
 
Preliminary conclusion. There is no evidence of short term changes of the students’ 
mind-set.  
   

                                                            
5 Luria, Alexander R. The cognitive development: its cultural and social foundations. Harvard University Press. 1976 
(Translation from the Russian original of 1974). ISBN 0‐674‐13731‐0. Here pp. v and, in particular, pp. 64 and 164. 
Similarly, but from a religious (Roman Catholic) perspective the essay Ong, Walter J. Interfaces of the word: studies in 
the evolution of consciousness and culture. Ithaca, N. Y. Cornell University Press, 1977. ‐ 352 s. ISBN 0‐8014‐1105‐x. 
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PART	II	

5. Math is hard – How and why? 
 
The vest trick. Some time ago, I was consultant/supervisor of a third semester project. 
In the semester opening I presented myself with the entertaining vest trick, to illustrate 
what a topologist (my speciality) is doing, namely to think about questions like How is it 
possible that I can remove a vest under my jacket? Has it something to do with the 
uneven number of my heads or the even number of my arms etc.? The students asked Is 
this mathematics? We discussed it. I had to admit that a similar problem in two 
dimensions is well understood. It is the question whether a closed curve in the punctured 
plane (a plane where one point, e.g., the origin is removed) is contractible. The question 
can be easily decided by calculating the winding number of the curve; and there are 
various and seemingly very different methods to do that (calculating a path integral, 
solving a differential equation, by combinatorics, etc.). The curve is contractible if and only 
if the winding number vanishes. But what can we do with the three-dimensional case?  

Those were not the questions which the students were most interested in. 
Neither were they surprised over that I could not tell them a solution at once. What so 
triggered their curiosity and gave a full semester’s work was their own question, namely 
can one tell from the outside whether a mathematical problem is hard or easy. More 
precisely: How can it be that many problems in mathematics are easy to formulate but 
difficult to solve? They investigated that question by looking carefully at various historical 
examples (long and fascinating stories). Anyway, in this way they gave me the idea for 
this Part II of my paper: What were the answers of the giants of mathematics? 
 
J.-L. Lagrange (1736-1813). To me, Giuseppe Lodovico (Luigi) Lagrangia (Joseph-Louis 
Lagrange) is one of the most important figures in the history of mathematics. He was 
extremely successful in introducing radically new and often highly abstract concepts to 
make mathematical ideas clear and comprehensible also to a non-genius which otherwise 
would have remained the domain of the intuition of outstanding people. He replaced 
Euclid’s polygons and Descartes’s curves by homotopies; to me, his Second letter to Euler, 
of 12 August, 1755, is the birth certificate of deformation theory and differential topology; 
and he replaced the Eulerian mechanic that intended following the ever more confusing 
visible orbits of single pieces by his mechanic of the easier capable underlying invisible 
potentials. 

When he died on the 10 April 1813, there were an official obituary (by 
Delambre) and a ‘Supplement’ by a G. The supplement dealt with his last days and the 
thoughts he expressed shortly before his death. Nobody knows who the G. was. There are 
some speculations which were investigated in a paper by the math historian Ivor Grattan-
Guinness.6 He argues that G.’s Supplement is believable.  

The following quotes of Lagrange are from Grattan-Guinness’ paper. Until his 
death, according to these documents, Lagrange war so sorry for his students, that they 

                                                            
6 Grattan‐Guinness, Ivor. A Paris curiosity, 1814: Delambre's obituary of Lagrange, and its "supplement''. Mathemata, 
493‐‐510, Boethius Texte Abh. Gesch. Exakt. Wissensch., XII, Steiner, Wiesbaden, 1985. MR0799763. 
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had to read his textbooks, Lagrange’s masterpieces in Mechanics that are so much more 
elaborated, intricate, and harder than all previous mechanics treatises. Of course, 
Lagrange was right: His books were dispensable for the calculation of simple mechanical 
systems - but indispensable for making complex mechanical systems transparent for the 
human brain and understandable and calculable. He felt “sorry for the young geometers 
who have such thorns to swallow. If I had to start again, I would not study: These large 
in-4° would make me too scared”. He proposed instead a one-volume reprint of original 
works of the calculus by Fermat, Leibniz, l'Hôpital and especially John Bernoulli's lectures 
on the integral calculus, together with another volume comprising items by Euler and 
d'Alembert. 

Already Delambre quoted Lagrange for “If I had had a fortune, I would 
probably not have made my profession [état] in mathematics.” G. supplemented by 
recalling an occasion when Lagrange had met 'a young man devoting himself to the exact 
sciences with much ardour', and upon asking him 'Do you have a fortune?' and receiving a 
negative answer had replied: 'so much the worse, sir. The lack of fortune and of the 
existence it can give in the world, is a constant stimulus which nothing can replace, and 
without which one cannot bring to hard tasks all the necessary progress [suite]’. 

When Lagrange was teaching, his ‘researching intelligence’ (G.) could cause 
sudden lapses in conversation. G. described the effect on his lectures at the École 
Polytechnique: 

Who has not seen him suddenly interrupt himself thus in the lectures which he gave at the 
École Polytechnique, appearing sometimes embarrassed like a beginner, leaving the blackboard 
and coming to sit down opposite the audience, while teachers and students, confused on the 
seats [bans] expected in a respectful silence that he would have led his thought back from the 
spaces that it had gone to travel through. 

To Lagrange, all mathematics was hard, also when it was seemingly easy for the student 
and would relieve its hardness only for the expert. So, the main goal of a mathematician’s 
life was to think how to make math easier and more accessible, sometimes at the cost of 
introducing further abstract and more elaborated concepts.  

In essence and in my reformulation: Math can be made easy and 
comprehensible only by accepting and enduring its hardness. Students are exposed to the 
cultural clash immanent in abstractions, formalism and symbol processing. Teachers must 
help them to experience that clash as a positive step like processes of adolescence or 
seeking work abroad, and not as a series of defeats. For sure, it doesn’t help with well-
intended lies or self-deception about easy access to mathematical abstractions as 
demanded by the new caste of administrators. Acquiring mathematical experience is 
nothing that falls from heaven or comes from playing on the ground. It requires work, 
concentration, exercises, and endurance: Ὁ μὴ δαρεὶς ἄνθρωπος οὐ παιδεύεται (The non-
flayed human will not be educated, Menander, c. 341/42– c. 290 BCE, disseminated by 
J.W. Goethe as motto over his autobiography Dichtung und Wahrheit), or less draconic, 
Ohne Fleiss kein Preis (Without hard working no praise, after Hesiod, thought by scholars 
to have been active between 750 and 650 BCE). 

The mathematicians I admire most are very close to Lagrange’s position in 
continuing a life-long interest in teaching math and insisting that the essence of math, 
triggering curiosity and creativity and its true place in applications is that it is hard, and 
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that it becomes dispensable and replaceable by engineering arts and econometric analyses 
etc. when it becomes easy.  
 
I.M. Singer (*1924). Rightly, he can be proud of his achievements, among others the 
Index Theorems, which brought him the Abel Prize in 2004 jointly with M.F. Atiyah. When 
afterwards he was asked what to do next, he did not hesitate: Now I want to use more 
sophisticated mathematics not yet available to physics.7 Clearly, to Singer the role of 
mathematics is to deal with extremely hard problems.  

Part of the story is that in all recent years this same man, now 90 years old, 
participates at MIT in the math teaching of beginners, and as he says with great 
intellectual satisfaction, nursing and watching the emerging math understanding of young 
students:  

A while back I decided to be a TA in the freshman calculus course. I think I was 
motivated to do so because I had been too far removed from undergraduates. 
Making contact with freshmen again was a wonderful experience… Teaching does 
integrate with my other work. I’m inclined to understand rather than solve. For me, 
doing research means understanding something nobody has understood, and then 
telling others about it. What makes me a good teacher is empathy. I can put myself 
in the position of a student and know what they don’t understand. If I know them 
well enough, I can explain what they don’t understand in terms they can 
comprehend.8  

 
V.I. Arnold (1937-2010). Some attribute to him and his former students the most 
decisive advances in the mathematical understanding of dynamical systems since the 
seminal work of H. Poincaré more than 100 years ago. When he was asked about the 
situation of math in Russia after the fall of the Soviet Union he deplored in his sarcastic 
way: Well, it’s terrible. Now the professors are cleverer and know more than the students.  

How sad. Indeed, teaching and learning math is only interesting when the 
teacher in each meeting with the students, say of one hour, gets at least one new 
mathematical idea. Otherwise it doesn’t work with our goal, namely to socialize a new 
generation of math students to the way of mathematical thinking. The hour would have 
been lost – or could have been left to an electronic instruction device - with the same 
default result.  

In an article9 tracing the history of his own research, Arnold showed how 
apparently unrelated subjects are linked by a kind of mycelium from which theorems pop 
up like mushrooms. Continuing his life-long battle against formalism and Bourbakism, he 
distinguishes the easiness of communicating formal theorems from the hardship of 
explaining the underlying ideas in the following parable:  

 
When you are collecting mushrooms, you only see the mushroom itself. But if you 
are a mycologist, you know that the real mushroom is in the earth. There's an 
enormous thing down there, and you just see the fruit, the body that you eat.  

                                                            
7 Singer, I.M. Transcript of May 12, 2010 MIT150 interview, http://mit150.mit.edu/infinite‐history/isadore‐singer, 
accessed May 21, 2015. 
8 L.c. 
9 Arnold, Vladimir I. From Hilbert's superposition problem to dynamical systems. Mathematical events of the 
twentieth century, 19‐‐47, Springer, Berlin, 2006. MR2182777. 
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In mathematics, the upper part of the mushroom corresponds to 
theorems that you see, but you don't see the things which are below, that is: 
problems, conjectures, mistakes, ideas, and so on.  

You might have several unrelated mushrooms being unable to see what 
their relation is unless you know what is behind. And that's what I am now trying to 
describe. This is difficult, because to study the visible part of the mathematical 
mushroom you use the left half of the brain, the logic, while for the other part the 
left brain has no role at all, since this part is highly illogical. It is hence difficult to 
communicate it to others.  
 

F. Hirzebruch (1927-2012). Since the 1950s he was the outstanding figure of 
mathematics in Western Germany. He was the natural candidate as director of a Max-
Planck Institute (MPI) in mathematics, and he became the director of the first MPI in 
mathematics in Bonn in the 1980s. But for decades there was no MPI for mathematics.  
Shortly after the end of World War II, many MPIs were founded and lavishly financed to 
bring the sciences in the Federal Republic of Germany rapidly back to international top 
level after the decline and demolition during Nazi time.  

Once I asked Hirzebruch why the Bonn MPI for mathematics came so late? He 
frankly told me that at least one reason was a controversy between him and the Board of 
the Max-Planck Gesellschaft (MPG).  

Contrary to the MPI tradition of teaching-free research, Hirzebruch had 
insisted that research in mathematics without teaching is meaningless, that, as a rule, new 
mathematical results are too hard to be digested at the distance; that they will falter 
rapidly when they are not forwarded instantaneously to new generations in interpersonal 
communication; that most young students need the contact and the role model of a 
successful researcher to overcome the hardships of acquiring math. Consequently, there 
should only be very few permanent positions for the directors and support staff, while the 
main human resources should consist of university teachers on leave as guest researchers 
for midterm stays. It took him several decades to reach the MPG’s acceptance for this 
deviating status of math research, that it is meaningless without the umbilical cord to 
teaching and that all members of the MPI for math had to have an association with 
teaching. 
 
Y.I. Manin (*1937). Like Hirzebruch, Manin is a magician who can create a world of deep 
interrelated concepts and results to his audience within 60 minutes, and so that most 
people in his audience have a strong feeling of having understood a lot, of being almost 
able to walk on water. Of course, when you go home and begin to work your way through 
your notes, your feeling will change and you will feel stupid and discouraged: too many 
things you can’t understand in detail, and that means in math that you don’t understand. 

Manin himself commented that in his textbook on Mathematical Logic10, 
namely that mathematical abstractions are hard to grasp; that thinking in symbols, while 
extremely effective in many contexts and indispensable in some, is deeply against the 
human nature. He explains that very carefully in his book and partially with references to 

                                                            
10 Manin, Yuri I. A course in mathematical logic for mathematicians. Second edition. Chapters I–VIII translated from 
the Russian by Neal Koblitz. With new chapters by Boris Zilber and the author. Graduate Texts in Mathematics, 53. 
Springer, New York, 2010. xviii+384 pp. ISBN: 978‐1‐4419‐0614‐4 MR2562767 
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facts based on some observations made by the psychologist A. Luria on patients with brain 
injuries. Some of the patients had preserved a sound judgement of the situation in 
hospital, e.g., of differences between various doctors and nurses in their competences and 
engagement, but lost the ability to think in relations: is an elephant bigger than a fly or a 
fly bigger than an elephant? His claim: Abstraction is in essence more difficult for the 
human nature than doing judgements on personal relationships etc.  

Note that fully, and consciously and explicitly, Manin’s insight or claim is 
directed against the traditional claims of all logicists and many adepts of mathematization 
who consider the process of abstraction and formalization as a process of simplification 
and clarification.  
 
C.S. Peirce (1839-1914). He had an anthropological message that our concepts, also our 
scientific concepts have evolved in human praxis of more than 100.000 years in 
experience with the various contexts humans have had over time.  

The good side of the message is, that in most situations common sense and 
scientific, mathematics based arguments need not contradict each other.  The bad side of 
the message is, with view to the emerging quantum mechanics at Peirce’s time, that we 
have a problem when dealing with phenomena in an artificial environment that our mind 
has not been accustomed to for thousands of years. Then we must transgress common 
sense because it will for the most part be systematically misleading. 
 
C.F. Gauss (1777-1855) and L. Hörmander (1931-2012). They were masters in 
standard formulations when they reviewed the work of other mathematicians: 
Incomprehensible --- wrong --- I did it a long time ago. 

To me, such typical referee reports prove that reading math papers is always 
hard, even for the greatest math geniuses. Correspondingly, we have in mathematics two 
very different exclamations of agreement, it’s trivial and it’s clear. The first is pejorative: 
don’t waste my time with your boring stuff; the second is highest acclamation: aha, now I 
see! This is really hard stuff you are telling me! 
 
H. Cramér (1893 – 1985). In his monumental monograph Mathematical Methods of 
Statistics of 1945, Cramér proved that the chi-square test statistic, i.e., the sum of relative 
errors between observed and expected magnitudes with f degrees of freedom, is 
distributed like the corresponding chi-square distribution with f degrees of freedom. For f 
= 1, it is the classical result by Karl Pearson of 1900, the proof of it is reproduced in most 
textbooks of mathematical statistics. For applications in material sciences, biology and 
medicine, Cramér’s theorem is applied. Perhaps it is the most applied mathematical 
theorem of the 20th century. But to my best knowledge its proof has never (!) been 
reproduced. You can only find it in Cramér’s textbook11. It is lengthy and not very 
inspiring. It is laborious – and boring. The main idea is much clearer for f = 1 than in the 
general case.  

                                                            
11 Cramér, Harald. Mathematical Methods of Statistics. Princeton Mathematical Series, vol. 9. Princeton University 
Press, Princeton, N. J., 1946. xvi+575 pp. MR0016588, here chapter 29. 
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Such is mathematics that it has theorems that are easy to apply but hard to 
understand and, in practice, perhaps understood only by the author of the theorem and a 
handful readers of the original publication. 
 
P.J. Davis (*1923). In a public talk in Roskilde, Davis gave a similar example when he 
confessed that he never had completed his checks of the proof of the principal axis 
theorem on block-diagonalization of normal matrices in linear algebra in spite of the fact 
that that theorem was a central tool in many of his works on effective numerical methods.   
 

In a recent paper, Davis expanded on his view that we must live with some 
imperfections also in mathematics, that some basic tasks in numerical analysis are too 
hard to admit a rigorous approach.12 Among his examples he refers to the concept of 
numerical stability in iterations, when, contrary to the toy examples of elementary classes 
in numerical analysis, no estimates are available about the achieved precision of an 
approximate result. Nevertheless, we have to stop the iterations at some point. For solving 
systems of differential equations, a common stop rule is when the results become 
unchanged under further iteration or refinement of the underlying discretization. Then a 
result seems to become stable and reliable, while we have examples where numerical 
stability can be achieved far from the true result. To comfort our mathematical fears and 
incertitude Davis usually cites Richard Hamming (1915-1998) for having said I would 
never fly with a plane where the construction depends on the difference between Riemann 
and Lebesgue integral.13 

Davis points to another symptom of the difficulty of doing math, namely our 
almost unlimited freedom to add or to remove assumptions that is though sharply 
restrained by logical demands regarding the formulation and consistency and even more 
sharply restrained by respectful regards to the history of a topic and which examples or 
expansions might be considered meaningful and which not. 
 
Warning 1. From a technological point of view, hard and presently unsolved problems 
are wonderful and highly applicable, like the present lack of efficient algorithms to 
factorize a given product of two large prime numbers into its two components, or other 
presently unsolved problems regarding elliptic curves that keep the common public keys in 
cryptology relatively safe! 
 
 Warning 2. For numerical algorithms in the analysis of dynamical systems and of 
combinatorial tasks, e.g., in graph theory, mathematicians try to give asymptotic estimates 
about the complexity (i.e., the expected time necessary for a solution) of a problem. By 

                                                            
12 Davis, Philip J. The relevance of the irrelevant beginning, ScienceOpen Research, 2014, 5 pp, DOI: 10.14293/A2199‐
1006.01.SOR‐MATH.6G464.v1. 
13 Hamming, Richard W. Mathematics on a distant planet. Amer. Math. Monthly 105 (1998), no. 7, 640‐‐650. 
MR1633089, The full quote is ”for more than 40 years I have claimed that if whether an airplane would fly or not 
depended on whether some function that arose in its design was Lebesgue but not Riemann integrable, then I would 
not fly in it. Would you? Does Nature recognize the difference? I doubt it!” [p. 644]. Certainly, Hamming’s insistence 
on robustness in applications is a relief. However, it is a fact that certain highly applicable concepts like the Hilbert 
space L2 of equivalence classes of measurable, square‐integrable functions can only be established by embracing all 
Lebesgue integrable functions to obtain the indispensable completeness. 
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definition, the problems that are hardest to solve are the so-called NP-complete problems 
like the travelling salesman problem. The for practical purposes perfect organization of 
just-in-time delivery for retail chains shows that one never should become blocked in 
search for practical solutions by asymptotic seemingly insurmountable estimates. 
 
Piet Hein (1905-1996).  Problems worthy 

of attack 
prove their worth  
by hitting back. 

6. Math is easy – Really?    
 
In the previous Section 5, I tried to explain why learning and doing math is hard, by 
necessity. But what about the many people, pupils, students, teachers, researchers, who 
love to spend many hours thinking about a mathematical problem; some early in the 
morning when one is fresh, some late in the night when one is not disturbed, some on 
their desk and some while jogging or walking their dogs? And what about the rich 
treasures of investigations, suggestions and predictions how doing math can be made 
easier and more accessible? 
 
Let me comment upon the most outspoken positions. 
 
A. Schopenhauer (1818). In his treatise Die Welt als Wille und Vorstellung (The World 
as Will and Representation), the philosopher – or rather a philosopher-poet like the many 
other German philosopher-poets Hegel, Nietzsche, Heidegger with their love for extensive 
formulations – Arthur Schopenhauer released the following torrent of words14 against the 
mathematicians’ arrogance and stupidity making math, according to Schopenhauer 
unnecessarily hard and non-intelligible, and that Euclid’s classical arguments were 
monstrous and dispensable: 

… mathematical knowledge that something is the case is the same thing as 
knowledge of why it is the case, even though the Euclidean method separates these 
two completely, letting us know only the former, not the latter. But, in Aristotle’s 
splendid words from the Posterior Analytics, I, 27: ‘A science is more exact and more 
excellent if it tells us simultaneously what something is and why it is, not what it is 
and why it is separately.’ In physics we are satisfied only when our recognition that 
something is the case is united with our recognition of why it is, so the fact that the 
mercury in a Torricelli tube is 28 inches high is a poor kind of knowledge if we do not 
add that it is held at this height to counterbalance the atmosphere. So why should 
we be satisfied in mathematics with the following occult quality of the circle: the fact 
that the segments of any two intersecting chords always contain equal rectangles? 
Euclid certainly demonstrates it in the 35th proposition of the third book, but why it is 
so remains in doubt. Similarly, Pythagoras’ theorem tells us about an occult quality of 

                                                            
14 Schopenhauer, Arthur. Die Welt als Wille und Vorstellung. Werke in 5 Bänden, hrsg. von L. Lütkehaus. Haffmans, 
Zürich 1991, vol. 1, §15, p. 119. English translation in: The world as will and representation; translated and edited by 
Judith Norman, Alistair Welchman, Christopher Janaway; with an introduction by Christopher Janaway. The Cambridge 
Edition of the Works of Schopenhauer. Cambridge University Press, Cambridge and New York, 2010, p. 98.   
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the right-angled triangle: Euclid’s stilted (stelzbeinig), indeed underhand (hinterlistig), 
proof leaves us without an explanation of why, while the following simple and well-
known figure yields more insight into the matter in one glance than that proof, and 
also gives us a strong inner conviction of the necessity of this property and of its 
dependence on the right angle:  

 
 

Figure 2. Schopenhauer’s fantasied “simplification”  
 
As often when outsiders comment on math it strikes me how little they understand of the 
crux of a mathematical achievement. So also Schopenhauer: The crux of Pythagoras’ 
Theorem is its validity for all rectangular triangles in the plane, i.e., even when the sides 
at the right angle are unequal. By the way, that’s until today the most typical application 
of the theorem in construction: To check whether the walls in a room or house are 
rectangular, a carpenter would mark a 3-meter (or yards) point upward in a corner, a 4-
meter (or yards) point along a wall on the floor, and then check whether the straight line 
between the two marks is exactly 5 = √(32 + 42) meters (or yards).   

One would expect an error term; but no, Pythagoras claims and Euclid proves 
that the error term vanishes even when we deform the rectangular triangle, within the 
class of rectangular triangles. Later generations proved that Pythagoras’ theorem remains 
basically valid even for non-rectangular triangles, incorporating an error term coming from 
the cosine of the included angle, and for rectangular triangles on a sphere, incorporating a 
curvature error term coming from the sphere’s radius.  
So, for a mathematician the Pythagoras’ Theorem is an approximation theorem, that you 
can change something with controlled effects, sometimes with zero effect, sometimes with 
nonvanishing, but calculable effects. 

Of course, Schopenhauer is right: math can be much easier when we remove 
the key points and reduce it to trivialities. Actually, we can answer Schopenhauer, that 
math would become even easier, when we reduce it to the empty set.  So far 
Schopenhauer only shows his lack of understanding. 

However, rightly he points to the difference between checking a proof, line by 
line, as opposed to grasping the reason for the validity of a claim. Every mathematician 
has experienced it: that we still don’t understand a given proof after we have checked it 
step-by-step. Hence, in modern textbooks and for papers in learned journals, authors are 
praised when they explain the underlying idea of a proof before the reproduction of the 
proof in its details.  
 
C.F. Gauss (1777-1855).  His reply to Schopenhauer was: On the contrary! Mathematics 
is so difficult that we never should tell the reader how we got the idea. In most cases it 
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will be either impossible or distracting to make the idea explicit. To make results 
accessible we shall hide all complications we had to meet and overcome, and keep silent 
about the wrong tracks we went when searching and finding the proof.  What counts in 
mathematics is only a presentation of the purified final form.15 For 200 years, Gauss 
perception of simplicity through hiding the birth bangs and presenting only the sleek 
version has dominated the publication culture of mathematics. Fortunately it has been on 
the retreat along with the retreat of Bourbakism. 
 
M.F. Atiyah (*1929). While he personally has contributed to the creation of many new 
mathematical theories, concepts, and methods, he insists that math is getting easier and 
more transparent by the emergence of any new mathematical achievement. He compares 
math with a ware house. Looking for a box of nails in a small country shop and finding the 
right ones can be harder than looking around in a big specialized department store like 
Bauhaus. Clearly, it is easier to find your way around in a big, well-organized modern 
department store than an old fashioned pop store. Making math more complex opens 
many new crossroads and makes search and communication easier. Such is the 
argument.16  

Atiyah’s optimistic claim is based on his view of ever clearer emerging unity of 
mathematics. In a recent paper, that unity belief was refuted by Davis and me as a 
myth.17 
 
J.-L. Lagrange (1736-1813). This is the same Lagrange who appeared before as witness 
of the inevitable hardness of math. Now I call him as witness for the ease and simplicity of 
mathematical physics. Regarding the celestial bodies of our Solar system, he noticed that 
the planets are moving on almost circular orbits and most comets on very eccentric elliptic 
orbits. He concluded that Nature favours planetary approximations by grouping heavenly 
bodies according to very small and enormous eccentricity.18 Indeed, for each of the two 
extreme cases we have specific and very powerful expansions, which would fail in the 
middle range. Modern astrophysics teaches us, however, that this is a very special 

                                                            
15 A typical example is provided by Gauss’ first proof of the Fundamental Theorem of Algebra of 1799, Gauss, Carl 
Friedrich. Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in 
factores reales primi vel secundi gradus resolvi posse. Helmstedt: C. G. Fleckeisen. 1799 (tr. New proof of the theorem 
that every integral rational algebraic function of one variable can be resolved into real factors of the first or second 
degree). German translation in: Netto, Eugen (ed.): Die vier Gauss’schen Beweise für die Zerlegung ganzer 
algebraischer Funktionen in reelle Factoren ersten oder zweiten Grades (1799–1849), Ostwald’s Klassiker der Exakten 
Wissenschaften Nr. 14, Wilhelm Engelmann, Leipzig 1890 , pp. 3‐36, 83 (figures). Accessible at University of Toronto, 
https://archive.org/details/dieviergausssche00gausuoft. Contrary to d’Alembert’s predecessor proof of 1746, Gauss 
keeps this proof deliberately in purely real terms. However, one can easily trace the underlying complex constructions 
in the real presentation.  
16 Atiyah, Michael F. Trends in pure mathematics. In: Proc. of the 3rd Internat. Congress on Mathematical Education 
(Karlsruhe 1976). 1979, pp. 61‐74. Reprinted in Collected works vol. 1, pp. 261—276. MR0951896. 
17 Booß‐Bavnbek, Bernhelm; Davis, Philip J. Unity and Disunity in Mathematics. Newsletter ofthe European Mathe‐
matical Sociey No. 87 (March 2013), 28‐31.  
18 Here is the full quote of Lagrange given in his above cited obituary by the anonymous G., offering a Lagrange type 
witticism: ”It seems that nature had disposed these orbits [of the heavenly bodies] specially so that one may calculate 
them. Thus the [sic] eccentricity of the planets is very small, and that of the comets is enormous. Without this 
disparity [,] so favourable to approximations, and if these constants [of the orbits] were of an average magnitude, 
goodbye geometers; one could do nothing.” 
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property of our solar system due to the dominance of the two gas planets Jupiter and 
Saturn which, at the whole, make our system so surprisingly stabile. Other solar systems 
in the Milky Way seem to provide for more challenging mathematical problems.  

We may expand Lagrange’s argument for nature provided simplicity to large 
parts of mathematical physics where we, e.g., not have to deal with very general 
differential equations with arbitrarily varying coefficients but with geometrically defined 
operators with strong inherent symmetries like the Laplace or the Dirac operator that are, 
moreover, often controlled by potentials and other background fields. Therefore large 
parts of mathematical physics that are based on first principles and geometry are 
mathematically easier and more accessible than some parts of biology that are less 
mathematized, based on ad-hoc assumptions and so tangled up in non-controllable 
generalizations. 
 
More, and more trustworthy arguments. Until now, in this Section, I discarded 
common, partly ingenious suggestions and beliefs why and how doing math can become 
easier. I shall now turn to considerations that are also controversial, but definitely not to 
be discarded by me. It seems to me that they have the potential to explain why and how 
learning and doing math can appear personally satisfactory, natural and, from time to time 
even easy for some people in lucky moments and periods of their life. 
 
I have written about the following quite different approaches separately and extensively19 
and shall be brief in this paper. 
 
N. Chomsky (*1928). His message, or at least the message disseminated by his student 
Pinker20, is that Math is easy. Every child has solved the greatest math exercise of her or 
his life at the age of two, when it forms the generative grammar of the child’s mother 
tongue and assembles the patterns and basic structures out of single words. I’d better add 
that some of Chomsky’s claims are controversial, in particular his biologistic assumption of 
special genetic grammar traits of the human race that are not confirmed by molecular 
geneticists.  
 
C.S. Peirce (1839-1914)21, A. Gramsci (1891-1937)22, P. Freire (1921-1997)23, P. Naur 
(*1928)24. To me, these four names stand both for 

 deep insight into the complexity of human thinking and communication, and for 
 demystification of feeling, learning, and doing by relating it to human habits and 

forms of life.  
Their teaching for the topic of this talk can be roughly summarized in the following short 
formula: 
                                                            
19 Booß‐Bavnbek, Bernhelm. On the difficulties of acquiring mathematical experience, EM TEIA – Revista de Educação 
Matemática e Tecnológica Iberoamericana  5 ‐ número 1 (2014), 1‐24. Also: http://milne.ruc.dk/~Booss/Math_Easy‐
and‐hard_Presentation/2014_BBB_EMTEIA.pdf 
20 Pinker, Steven. The language instinct. New York: William Morrow, 1994. 
21 l.c. 
22 Gramsci, Antonio. Selections from the Prison Notebooks. New York: International, 1971. 
23 Freire, Paolo. Pedagogy of the oppressed. New York: Herder and Herder, 1972. 
24 Naur, Peter. Computing: a human activity. New York: ACM/Addison‐Wesley, 1992. 
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1. Trace the habits of nature;  
2. relate our feeling, thinking, and doing to our form(s) of life, take the risks and 

jumps of adolescence and accept the related clash of cultures;  
3. for mathematics, exploit the translational power (and handle the 2 contradictions 

below) by coding math experiences and make them transferrable for adaption in 
new contexts. 

 
Two contradictions. All math learning and teaching has to live with and to handle the 
two following contradictions: 

A. Result v. process. We need to teach results, not only processes, not only ways of 
thinking; one needs results in sciences and mathematics. 

B. Context v. abstraction. Students learn best in context, when they can see meaning 
and embedding in context; however, the power of mathematics is that it can be 
separated from the context; that is the true power of abstractions that we can 
transport experiences from one context to another one. 

We cannot discard or bridge these two contradictions firmly. We must tell the math 
education administrators, that doing, learning, teaching math is difficult and requires time 
for the body and peace for the mind. We cannot deliver what they want, an easier, faster 
and more accessible teaching in the sense they want. Our only hope is: 
 
S. Kierkegaard (1813 -1855). In Enten-eller, he explained the two most difficult 
situations in life for him, the love for another human and the love for God25. I don’t agree 
fully with Kierkegaard, neither with the first situation where I have some personal 
experience, nor with the second, where I’m blank.  Anyway, Kierkegaard emphasizes that 
both of these two situations require deep feelings: Let yourself be seduced and develop 
the passion!  
 
Afterword. This is what math doing, learning, and teaching is good for when it is 
successful. On some occasions you’d better lie and follow the love advice of Elias Canetti 
(1905- 1994): Don’t tell me who you are. I want to adore you.  So, you need not tell the 
students the full truth26 every day, e.g., about the  

 destructive sides of math supported technology; about  
 math induced inhuman formatting of social organisation; and  
 the deformations of the mind by naïve belief in logic and modelling.  

                                                            
25 Kierkegaard, Søren. Either/Or. Volume I. Princeton: Princeton University, 1959. See The Immediate Stages of the 
Erotic or the Musical Erotic, pp. 43‐134, in particular pp. 62, 93, 114. 
26 In Hardy, G. H. A mathematician's apology. With a foreword by C. P. Snow. Reprint of the 1967 edition. Canto. 
Cambridge University Press, Cambridge, 1992. 153 pp. ISBN: 0‐521‐42706‐1 MR1148590, p. 33, n .16, Hardy ponders 
about his 1915 quote: ”a science is said to be useful if its development tends to accentuate the existing inequalities in 
the distribution of wealth, or more directly promotes the destruction of human life.” See also Arnold, Vladimir I. 
Polymathematics, l.c., p. 403, paraphrasing Hardy: ”All mathematics is divided into three parts: cryptography (paid by 
CIA, KGB and the like), hydrodynamics (supported by manufacturers of atomic submarines), and celestial mechanics 
(financed by military and other institutions dealing with missiles, such as NASA).” and the anthology Mathematics and 
war. Papers from the International Meeting held in Karlskrona, August 29–31, 2002. Edited by Bernhelm Booß‐
Bavnbek and Jens Høyrup. Birkhäuser Verlag, Basel, 2003. viii+416 S. ISBN: 3‐7643‐1634‐9 MR2033623, free download 
at http://www.springer.com/gp/book/9783764316341#otherversion=9783034880930.  


