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1 Introduction

After

– stating our main result about the continuity of the Cauchy data spaces for
varying coefficients of the underlying elliptic differential operator;

– we introduce our concepts and fix the somewhat intricate notations: mostly
following Frey’s beautiful PhD-thesis [21] for one single elliptic differential
operator on a manifold with boundary,
– we recall basic definitions and main results with emphasis on extensions

to Sobolev spaces, domains, kernels, images, trace maps, regularity in
Sobolev spaces, Cauchy data spaces,

– give our version of the Frey-construction of the Calderón projector with-
out invertible double and without unique continuation property (ucp)
assumptions, and

– illustrate our/Frey’s constructions with some classical examples where
the parameter dependence of the Calderón projector and the Cauchy
data spaces can be determined explicitly;

– we summarize some elementary, but not widely known results both about
curves of closed subspaces in Banach space, inspired by Neubauer’s clas-
sical approach [29], and about the interpolation property of spaces and
operators, closely following Tartar’s textbook [39, Lecture 21]; and

– we explain the place of our continuity result in the literature.

1.1 Our main result

Consider a family of linear elliptic differential operators of order d ∈ N with
smooth coefficients(

P (b) : C∞(M ;E) −→ C∞(M ;F )
)
b∈B ,

where each operator acts on sections of a smooth Hermitian finite-dimensional
vector bundle E → M to sections of a smooth Hermitian finite-dimensional
vector bundle F →M over a smooth compact Riemannian manifold (M, g) of
dimension n ∈ N with boundary Σ, with the parameter b running in a topo-
logical space B. For simplicity, we keep M , E and F fixed with its Riemannian
and Hermitian metrics. We denote the restrictions of the bundles E,F to the
boundary Σ by E′, F ′.

We assume that the operator family is continuously varying in the param-
eter b. By that we mean that for all s ≥ 0 the family of the extensions of P (b)
to bounded operators Ps(b), b ∈ B, all on the Sobolev space Hd+s(M ;E)(

Ps(b) : Hd+s(M ;E) −→ Hs(M ;F )
)
b∈B
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is continuously varying in b in the respective operator norms, i.e., we assume
that for all s ≥ 0 the mapping

Ps : B −→ B(Hd+s(M ;E), Hs(M ;F )), given by b 7→ Ps(b)

is continuous, where B(X,Y ) denotes the Banach space of bounded operators
from a Banach space X to a Banach space Y , equipped with the operator
norm.

As usual, we set

Hd
0 (M ;E) := C∞c (M \Σ)

‖.‖
Hd(M) (1)

and denote by Pmin(b) : Hd
0 (M ;E)→ L2(M ;F ) the extension of the operator

P (b) to the space Hd
0 (M ;E). Correspondingly, we denote the extension of the

formal adjoint operator P t(b) : C∞(M ;F )→ C∞(M ;E) of P (b) (see, e.g., [24,
Equation 4.3] in coordinates) to the space Hd

0 (M ;F ) by P tmin(b) : Hd
0 (M ;F )→

L2(M ;E).

Theorem 1 (Main result) Assume

dim kerP tmin(b) = constant and dim kerPmin(b) = constant . (2)

Then the family of the images
(
im (Cs(b))

)
b∈B of the Calderón projections

Cs(b) : Hs(Σ;E′d) −→ Hs(Σ;E′d), b ∈ B,

makes a continuous family of closed subspaces for all s ≥ −d2 .

Remark 1 Below in Section 1.3, Definition 1 and Proposition 4, we shall give
a rigorous definition of the Calderón projector suitable for investigating the
parameter dependence. Moreover, in Equation (21) we shall define the Cauchy

data space Λ0(P (b)) ⊂ H−
d
2 (Σ;E′d) as the space of the homogenized Cauchy

traces of the weak solutions u of P (b)u = 0 and introduce in Corollary 2,
Equation (40) the Cauchy data spaces

Λd+s(P (b)) ⊂ H
d
2 +s(Σ;E′d) for s ∈ [−d, 1

2 − d) ∪ (− 1
2 ,∞)

as the homogenized Cauchy traces of solutions u of Pu = 0 with u belonging
to the intersection of the Sobolev space Hd+s(M ;E) and the domain of the
maximal extensions.

According to Corollary 2, these Cauchy data spaces are precisely the images
of the corresponding Calderón projections. Hence one can read Theorem 1 as
the claim of a continuous variation of the Cauchy data spaces depending on
the parameter b for each of the specified Sobolev orders s.
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1.2 Trace maps on Sobolev spaces and natural extensions of elliptic
differential operators over smooth compact manifolds with boundary

Without restricting the general validity of our results, we assume that

– our compact Riemannian manifold (M, g) with boundary is embedded in
a compact smooth Riemannian manifold (M̃, g̃) of the same dimension n
without boundary,

– our bundles E,F are extended to smooth Hermitian vector bundles Ẽ, F̃
over M̃ , and

– for each b ∈ B, the operator P (b) is extended to an elliptic differential

operator P̃ (b) over M̃ of the same order d from sections of Ẽ to sections

of F̃ .

Sobolev spaces over M̃ and M . For our smooth manifold M ⊂ M̃ with bound-
ary ∂M =: Σ, we set M0 := M \ ∂M , and denote the space of sections with

compact support in the interior by C∞c (M0; Ẽ).
On M̃ with Riemannian metric g̃, we define the Hodge-Laplace operator

∆M̃
0 := dt d: C∞c (M̃ ;CM̃ ) −→ C∞c (M̃ ;CM̃ ),

acting on functions (i.e., sections of the trivial bundle CM̃ ), where dt denotes
the formal adjoint of the exterior derivative

d: C∞(M̃ ;CM̃ ) −→ C∞(M̃ ;Λ1(M̃)).

The operator −∆M̃
0 is equal to the Laplace-Beltrami operator on the Riemann

manifold (M̃, g̃). The Friedrichs extension ∆M̃ of the symmetric operator ∆M̃
0

is a positive self-adjoint operator on the Hilbert space L2(M̃ ;CM̃ ) with dense
domain, see the careful construction in [24, Theorem 12.24]. It gives rise to
the Sobolev spaces on M̃

Hs(M̃) := D((∆M̃ + 1)s/2), s ≥ 0, (3)

where the right side denotes the domain of the fractional power of the elliptic

operator ∆M̃ + 1, densely defined in L2(M̃ ;CM̃ ) as a closed operator and
equipping the space with the graph norm. Since over closed manifolds there
is no difference between minimal and maximal realizations, the domain is
uniquely determined. For M̃ ⊂ Rn open and s ∈ N ∪ {0} we regain the usual
Hilbert space

Hs(M̃) = {u ∈ L2(M̃) | Dαu ∈ L2(M̃) for |α| ≤ s}, (4)

where the partial differentiation Dα with multiindex α is applied in the dis-
tribution sense and the scalar product and norm defined by

(u, v)s :=
∑
|α|≤s

(Dαu,Dαv)L2(M) and ‖u‖s :=
√

(u, u)s .
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The corresponding Sobolev space on the compact submanifold M with
boundary Σ may be defined as the quotient

Hs(M) := Hs(M̃)/
{
u ∈ Hs(M̃)

∣∣ u|M = 0
}
. (5)

An important subspace is the function space

Hs
0(M ;CM ) := C∞c (M0)

‖.‖Hs(M)
.

For s > 0, we define the space H−s(M̃) of distributions to be the so-called
L2-dual of Hs(M̃), i.e.,

H−s(M̃) = {u ∈ D ′(M̃)
∣∣ 〈v, u〉 ≤ constant ‖v‖Hs(M̃)}.

The above constructions can be generalized for sections of any bundle Ẽ →
M̃ carrying an Hermitian structure p 7→ 〈., .〉|Ẽp and an Hermitian connection.

Let

∇Ẽ : C∞(M̃ ; Ẽ) −→ C∞(M̃ ;T ∗M̃ ⊗ Ẽ) and (6)

∇F̃ : C∞(M̃ ; F̃ ) −→ C∞(M̃ ;T ∗M̃ ⊗ F̃ ) (7)

be Hermitian connections, i.e., connections that are compatible with the Her-
mitian metrics on Ẽ and F̃ respectively. To define Sobolev spaces of sections
in vector bundles, one replaces the Laplacian dt d in the previous definition
(3) by the Bochner-Laplacian ∇t∇.

Natural domains of elliptic differential operators over compact manifolds with
boundary. We write shorthand E′ := Ẽ|Σ = E|Σ and F ′ := F̃ |Σ = F |Σ . We
write (·, ·)<space> for the L2 inner products in the various spaces, and dg(·, ·)
for the arc length of a minimizing geodesic which yields locally a distance
function, no matter whether M̃ and Σ are connected or not.

In a tubular neighbourhood of the boundary, say V , the function

V 3 p 7→ x1(p) :=

{
dg(p,Σ), if p ∈M ,

−dg(p,Σ), otherwise,

is smooth and defines the inward unit co-normal field ν ∈ C∞(V ;S(V )) by

ν := dx1 = gradx1 : V → S(V ), (8)

where S(V ) denotes the unit sphere bundle in the cotangent vector bundle
T ∗V , see below. By Riemannian duality, we obtain the inward unit normal
tangential field (the normalized tangent vectors of the minimizing geodesics),
which we denote by ν′ or ∂

∂ν .
We postpone the dependence of our elliptic differential operators of the

parameter b ∈ B and fix one operator P := P (b) over the compact manifold
M with boundary Σ. As emphasized before, we can assume that we are given
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its continuation P̃ as an elliptic differential operator over the closed manifold
M̃ .

Recall that P̃ can be expressed locally by a matrix of partial derivatives.
Let T ∗M̃ denote the cotangent vector bundle of M̃ , S(M̃) the unit sphere
bundle in T ∗M̃ (relative to the Riemannian metric g̃), and π : S(M̃)→ M̃ the

projection. Then associated with P̃ there is a vector bundle homomorphism

σ(P̃ ) : π∗Ẽ → π∗F̃ ,

which is called the principal symbol of P̃ . In terms of local coordinates σ(P̃ )

is obtained from P̃ by replacing ∂/∂xj by iξj in the highest order terms of P̃

(here ξj is the jth coordinate in the cotangent bundle). P̃ elliptic means that

σ(P̃ ) is an isomorphism.
We continue with a list of natural domains for P .

– P0 : C∞c (M0;E)→ C∞c (M0;F ).
– P t0 : C∞c (M0;F ) → C∞c (M0;E) where P t denotes the formally adjoint of
P . Note that P t is again elliptic.

– Pmin := P0, P tmin := P t0 .
– Pmax := (P t0)∗ = (P tmin)∗, i.e.,

D(Pmax) = {u ∈ L2(M ;E)|Pu ∈ L2(M ;E)}.

– P tmax is likewise defined.

Pmin, Pmax are called minimal and maximal extensions of P0. For a section
u ∈ D(Pmax), the “intermediate” derivatives Dαu (with |α| ≤ d) need not
exist as sections on M , even though Pu does so, see [24, p. 61 in Section 4.1].

Traces of Sobolev spaces over the boundary. Now we shall show the surjectiv-
ity of the trace map by a rather explicit construction of a continuous right
inverse. For the proof of our Main Theorem in Section 2, we will need Frey’s
construction of the Calderón projector. Since that construction depends on a
certain property that is true only for a particular choice of this right inverse,
we repeat some computations of [21, Section 1.1].

Let γj : C∞(M ;E) → C∞(Σ;E′) be the trace map γju := (∇Eν′)ju|Σ of
the jth jet in normal direction. Set

ρd :=
(
γ0, ..., γd−1

)
: C∞(M ;E) −→ C∞(Σ;E′d), (9)

yielding the array of j − jets for j = 0, . . . d − 1. Analogously, ∇F gives rise
to trace maps γj : C∞(M ;F ) → C∞(Σ;F ′). The corresponding maps for F
will also be denoted by γj , ρd, respectively.

We recall Green’s Formula, e.g., from Seeley [35, Equation 7], Trèves
[40, Equation 5.41], Grubb [24, Proposition 11.3], or Frey [21, Proposition
1.1.2], with a description of the operator J in the error term:
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Proposition 1 (Green’s Formula for elliptic operators of order d ≥ 1)
For each elliptic differential operator P of order d over M , there exists a
(uniquely determined) differential operator

J : C∞(Σ;E
′d) −→ C∞(Σ;F

′d),

such that for all u ∈ C∞(M ;E), v ∈ C∞(M ;F ) we have

(Pu, v)L2(M,F ) − (u, P tv)L2(M,E) = (Jρdu, ρdv)L2(Σ;F ′d). (10)

J is a matrix of differential operators Jkj of order d−1−k−j, 0 ≤ k, j ≤ d−1,
and Jkj = 0 if k + j > d − 1 (J is upper skew-triangular). Moreover, for
j = d− 1− k we have

Jk,d−1−k = ıd(−1)d−1−kσ(P )(ν).

Remark 2 For d = 1, 2, 3, we visualize the structure of the matrix J ,

(
J

[0]
00

)
,

(
J

[1]
00 J

[0]
01

J
[0]
10 0

)
,

J
[2]
00 J

[1]
01 J

[0]
02

J
[1]
10 J

[0]
11 0

J
[0]
20 0 0

 , etc.,

where the mixed orders of the entries were marked by a superscript [〈order〉].

With [21, Theorem 1.1.4], we obtain a slight reformulation, sharpening, and
generalization of the classical Sobolev Trace Theorem (see, e.g., [39, Lemma
16.1]):

Proposition 2 (Sobolev Trace Theorem)

1. Hd(M ;E) ⊂ D(Pmax) is dense.
2. We have continuous trace maps ρd (obtained by continuous extension):

(a) ρd : Hd+s(M ;E) −→ ⊕d−1
j=0H

d+s−j− 1
2 (Σ;E′) for s > −1

2
,

(b) ρd : D(Pmax) −→ ⊕d−1
j=0H

−j− 1
2 (Σ;E′).

Moreover, the map (a) is surjective and has a continuous right-inverse ηd.
3. Green’s formula

(Pu, v)L2(M ;F ) − (u, P tv)L2(M ;E) = (Jρdu, ρdv)L2(Σ;F ′d)

extends to D(Pmax) × Hd(M ;F ), if the right hand side is interpreted as
the L2-dual pairing

⊕d−1
j=0H

−d+j+ 1
2 (Σ;F ′)×⊕d−1

j=0H
d−j− 1

2 (Σ;F ′)→ C.

4. If u ∈ D(Pmax), then u ∈ Hd(M ;E) if and only if

ρdu ∈ Hd− 1
2 (Σ;E′)⊕ · · · ⊕H 1

2 (Σ;E′).
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5. If u ∈ D(Pmax), then u ∈ Hd
0 (M ;E) if and only if ρdu = 0.

Remark 3 Following Grubb [24, Section 9.1], we call the preceding operator
family ρd with its domains in different Sobolev spaces by one name: the Cauchy
trace operator associated with the order d.

It is well known that the trace operators do not extend to negative Sobolev
spaces, even not to the whole L2(M ;E) – naturally, however, to D(Pmax). For
the special case of half-spaces in Rn, e.g., it is shown in [24, Remark 9.4] that
the 0-trace map γ0 makes sense on Hs(Rn+) if and only if s > 1

2 . That makes
the parts 2b, 3, and 4 of the preceding proposition particularly interesting.

Part 5 admits replacing the abstract definition of Hs
0(M ;E) in (1) for s ∈ N

by a concrete check of the Cauchy boundary data of a given section. For the
Euclidean case see [24, Theorem 9.6].

1.3 The construction of the Calderón projection

From [21, Section 2.3], we recall a variant of the construction of the Calderón
projection C as a pseudodifferential projector operator of order 0, such that

C : Hd+s− 1
2 (Σ;E′)⊕· · ·⊕Hs+ 1

2 (Σ;E′)→ Hd+s− 1
2 (Σ;E′)⊕· · ·⊕Hs+ 1

2 (Σ;E′)

satisfies imC = ρd(kerP ), for suitable s (cf. Corollary 2).

Homogenization of Sobolev orders. For easier writing (and, hopefully, better
understanding) we replace the preceding direct sum of Sobolev spaces of dif-
ferent order by a single Sobolev space of sections in a corresponding product
bundle. Basically, we just revert the construction of the Sobolev chain out of
one space and a chain of elliptic operators, given in Equation (3) (first for
functions, and further-on generalized for sections over the closed big manifold
M̃) by identifying Sobolev spaces of different order of sections over Σ via a
scale of suitable elliptic operators over Σ.

Following Calderón [17, Section 4.1, p. 76] and using the notation of [21,
p. 26], we introduce a homogenized (adjusted) Cauchy data operator ρ̃d. We

set ∆E′

Σ :=
(
∇E′Σ

)∗
∇E′Σ , where ∇E′Σ denotes the restriction of ∇Ẽ (introduced

in Equation (6)) to Σ. Then Φ := (∆Σ + 1)1/2 is a pseudodifferential operator
of order 1 which induces an isomorphism of Banach spaces

Φ(s) : Hs(Σ;E′) −→ Hs−1(Σ;E′) for all s ∈ R

and, in fact, generates the Sobolev scale Hs(Σ;E
′
), i.e., we may assume that

the Sobolev norms inHs(Σ;E′) are introduced by Φs for s ≥ 0 and for negative
s by duality, as explained above in Subsection 1.2 for the Sobolev spaces over
the closed manifold M̃ .
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In order to achieve that all boundary data are of the same Sobolev order,
we introduce the matrix

Φd :=


Φ
d−1
2 0 · · · 0

0 Φ
d−3
2 · · · 0

...
...

. . .
...

0 0 · · · Φ−d+1
2

 . (11)

It operates for t0, . . . , td−1 ∈ R as

Φd : ⊕d−1
j=0 H

tj (Σ;E) −→

H
2t0−(d−1)

2 (Σ;E′)⊕H
2t1−(d−3)

2 (Σ;E′)⊕ · · · ⊕H
2td−1−(−d+1)

2 (Σ;E′). (12)

We apply Φd to the Cauchy trace data and set

ρ̃d := Φd ◦ ρd : Hd+s(M ;E)
ρd−→ Hd+s− 1

2 (Σ;E′)⊕ · · · ⊕Hs+ 1
2 (Σ;E′)

Φd−→ H
d
2 +s(Σ;E′)⊕ · · · ⊕H

d
2 +s(Σ;E′) = H

d
2 +s(Σ;E′d) for s > − 1

2 (13)

with operators

Φ
d−1−2j

2 : Hd+s− 1
2−j(Σ;E′) −→

Hd+s− 1
2−j−(

d−1−2j
2 )(Σ;E′) = H

d
2 +s(Σ;E′)

for j = 0, . . . d− 1 and s ∈ R. Similarly, we set η̃d := ηd ◦ Φ−1
d . So, we obtain

a condensed and adjusted Trace Theorem as a corollary to Proposition 2:

Corollary 1 (Homogenized trace map) For s > − 1
2 , we have a continu-

ous trace map

ρ̃d : Hd+s(M ;E) −→ H
d
2 +s(Σ;E′d). (14)

By continuity it extends to ρ̃d : D(Pmax) −→ H−
d
2 (Σ;E′d).

For ∀s ∈ R, we have an injective continuous operator

η̃d : H
d
2 +s(Σ;E′d) −→ Hd+s(M̃ ; Ẽ), (15)

such that ρ̃d ◦ η̃d = Id.

Remark 4 Similarly, we can replace the boundary operator J of Green’s For-
mula (Proposition 1) by its adjusted version

J̃ := (Φ
(F ′)
d )−1 ◦ J ◦ (Φ

(E′)
d )−1. (16)
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Note that the formal inverse of Φd is given by reversing the sequence of the
operators in the diagonal:

(Φd)
−1 =


Φ
d−1
2 0 · · · 0

0 Φ
d−3
2 · · · 0

...
...

. . .
...

0 0 · · · Φ−d+1
2


−1

=


Φ
−d+1

2 0 · · · 0

0 Φ
−d+3

2 · · · 0
...

...
. . .

...

0 0 · · · Φ d−1
2

 .

The order of the operators (Φ
(E′)
d )−1, J , and (Φ

(F ′)
d )−1, to be applied to a

d–array (g1, . . . , gd) ∈ H
−d
2 (Σ,E′d) of adjusted boundary values fit precisely,

such that

J̃ : H
−d
2 (Σ,E′d) −→ H

−d
2 (Σ,F ′d). (17)

For d = 1, this claim is trivial. For d = 2, the homogenizing operators (Φ
(E′)
d )−1

and (Φ
(F ′)
d )−1 are of the form

(
Φ−

1
2 0

0 Φ
1
2

)
and Green’s boundary operator J

of the form

(
J1

00 J
0
01

J0
10 0

)
, where the superscripts of the differential operators

J1
00, J

0
01, J

0
10 and the pseudodifferential operators Φ−

1
2 , Φ

1
2 give their order.

So, for g1, g2 ∈ H
−d
2 (Σ,E′) we have(

Φ−
1
2 0

0 Φ
1
2

)(
g1

g2

)
=

(
Φ−

1
2 g1

Φ
1
2 g2

)
∈ H−

d
2 +

1
2 (Σ,E′)⊕H−

d
2−

1
2 (Σ,E′),

(
J1

00 J
0
01

J0
10 0

)(
Φ−

1
2 g1

Φ
1
2 g2

)
=

(
J1

00Φ
− 1

2 g1 + J0
01Φ

1
2 g2

J0
10Φ
− 1

2 g1

)
∈ H

−d2−
1
2 (Σ,F ′)⊕

H−
d
2 +

1
2 (Σ,F ′)

,

⇒

(
Φ−

1
2 0

0 Φ
1
2

)(
J1

00Φ
− 1

2 g1 + J0
01Φ

1
2 g2

J0
10Φ
− 1

2 g1

)
∈ H

−d2 (Σ,F ′)⊕
H−

d
2 (Σ,F ′)

= H−
d
2 (Σ,F ′d).

For any d ≥ 1, we can confirm (17) by following the transformations in the
preceding way.

Ingredients for Frey’s Calderón projector definition by localization in col-
lar neighbourhood. There are various ways to construct the Calderón projec-
tor as a pseudodifferential operator H−

d
2 (Σ;E

′d) → H−
d
2 (Σ;E

′d) of order 0
that yields a projection (= a not necessarily self-adjoint idempotent) onto the
Cauchy data space in the sense of Proposition 4, see our Section 1.6. Basi-
cally, they all use very similar ingredients leading to the following three tasks,
corresponding to our intuition and with our notations:
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(i) To come from H−
d
2 (Σ;E

′d) to the distribution space H−d(M ;F ) one

uses the boundary operator J̃ of Green’s Formula, combined with the
dual (ρ̃d)∗ of the adjusted Cauchy trace operator of order d for the bundle
F . That’s a classical device, see, e.g., Hörmander [25, Equation 17.3.9,
elaborated in Chapter XX].

(ii) Then we need a pseudodifferential operator of order −d serving as a quasi
inverse of our elliptic operator P , kind of Poisson operator or fundamen-
tal solution or parametrix, to come back to D(Pmax) ⊂ H0(M ;E) =
L2(M ;E). That is the delicate point since, over the open manifold M◦,
the operators P and Pmax have infinite-dimensional kernel in dimensions
≥ 2. The standard way goes via the extension of P to an invertible op-
erator on a closed extension of M or to a natural invertible double of
the original operator with suitable boundary conditions. Here we take a
different way, namely an extension in a tiny collar, see below. That’s not
a matter of taste but required to keep the parameter dependence under
control for our proof of Theorem 1.

(iii) To end in the Cauchy data space, one needs a suitable shrinking operator
before applying the adjusted Cauchy trace operator of the bundle E.

Let’s do it. Closely following Frey’s elaboration in [21, p. 16 and Section
2.3] of Hörmander [25, pp. 234ff, Equation 20.1.7, and Theorem 20.1.3], we
simplify the calculations and keep them transparent by localizing them in a
collar neighbourhood of the boundary Σ = ∂M .

We attach a tiny neck to the manifold M by choosing a sufficiently small
positive real number ε, such that

N := {p ∈ M̃ | p ∈M or dg̃(p,Σ) ≤ ε}

is a smooth manifold with smooth boundary which we denote by ∂N . For the
open submanifold N◦ and the bundle Ẽ|N◦ (shortly written as E), we recall
the common notation

Hs
loc(N◦;E) := {u ∈ D′(N◦;E) | χu ∈ Hs(N◦;E) for all χ ∈ C∞c (N◦;E)},

Hs
comp(N◦;E) := {u ∈ Hs(N◦;E) | suppu compact},

where D′(N◦;E) denotes the set of distributional sections.
Task (i) Consider the adjusted trace map (here for the bundle E, but in our
application for the bundle F , correspondingly)

ρ̃dN : Hd
loc(N◦;E) −→ Hd/2(Σ;E

′d),

whose dual

(ρ̃dN )∗ : H−d/2(Σ;E
′d) −→ H−dcomp(N◦;E)

is given by

〈u, (ρ̃dN )∗g〉 = 〈ρ̃dNu, g〉 for u ∈ Hd
loc(N◦;E) and g ∈ H−d/2(Σ;E

′d).
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Task (ii) For PN : C∞(N ;E)→ C∞(N ;F ), consider the Cauchy data space

Λ0(PN ) := {h ∈W (PN )| ∃u ∈ kerPNmax with ρ̃du = h},

where W (PN ) denotes the image of ρ̃d : D(PNmax) → H−
d
2 (∂N ;Ed|∂N ) of

Corollary 1, i.e., the space of boundary values of weak solutions to PN (=
sections belonging to the maximal domain of PN , not necessarily vanishing
under the operation of PN ). It can be identified with

D(PNmax)/D(PNmin),

and can be mapped into the orthogonal complement of the graph Gr(PNmin) in

L2(N ;E)⊕ L2(N ;F ),

i.e.,

W (PN ) −→ L2(N ;E)⊕ L2(N ;F ),

u+ D(PNmin) 7→ (Id−prortGr(PNmin))(u, P
N
maxu).

Here prGr(PNmin) denotes the orthogonal projection of L2(N ;E)⊕L2(N ;F ) onto

Gr(PNmin) . In the following, let us denote by ρ̃d∂N the trace map

ρ̃d∂N : D(PNmax) −→ H−d/2(∂N ;Ed|∂N ).

Let Λ0(PN )⊥ denote the orthogonal complement of the Cauchy data space in
W (PN ) ⊂ L2(N ;E)⊕ L2(N ;F ). Since

(Λ0(PN ), Λ0(PN )⊥)

is a Fredholm pair in W (PN ), it follows in the usual way ([7], [13] or [21,
Theorem 1.3.4.(iii)]) that

PN0 : {u ∈ D(PNmax)| ρ̃d∂Nu⊥Λ0(PN )} → L2(N ;F )

is a Fredholm realization of PN . The operator

P̃N0 : D(PN0 ) ∩ (kerPN0 )⊥ → imPN0

has a continuous inverse which, composed with the orthogonal projection onto
imPN0 , yields a bounded operator

QN : L2(N ;F )→ Hd(M̃ ; Ẽ). (18)

Denote by pr1, pr2 the orthogonal projections onto the finite-dimensional
spaces kerPN0 , (imPN0 )⊥, respectively. We have

QNPN0 u = (Id−pr1)u and

PNQNv = (Id−pr2)v for u ∈ D(PN0 ), v ∈ L2(N ;F ).
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If ∂N is sufficiently “close” to ∂M = Σ, we have

kerPNmin = kerPmin and kerPN,tmin = kerP tmin.

It follows that

ρ̃d ◦ pr1 = 0 and ρ̃d ◦ pr2 = 0.

From that we obtain

Proposition 3 (Frey [21], Proposition 2.3.1) The restriction

QN : C∞c (N◦;F ) −→ C∞(N◦;E) (19)

of the bounded operator of (18) is a pseudodifferential parametrix for PN .

Note that the natural extension

QN : H−dcomp(N◦;F ) −→ L2
loc(N ;E) (20)

will be denoted by QN , as well.

Task (iii) Denote by r+ : L2
loc(N ;E)→ L2(M ;E) the restriction operator to

M .

Definition of the Calderón projector on H−
d
2 (Σ;E′d) and illustration for the

Laplacian. Having provided the required ingredients, we can now define

Definition 1 The operator

C+ : H
−d
2 (Σ;E

′d)→ H
−d
2 (Σ;E

′d), C+h := −ρ̃dr+Q
N (ρ̃dN )∗J̃h

is called the Calderón projection.

Basic properties of the Calderón projector and illustration for the Cauchy-
Riemann operator over the unit disc. We summarize the two characterizing
properties of the Calderón projector in Proposition 4 and derive the relation
between Cauchy data spaces and images of the Calderón projector for the scale
of Calderón projectors in Sobolev spaces of suitable order in Corollary 2.

Proposition 4 (cf. [21, Theorem 2.3.5])
(i) C+ is a projection onto the Cauchy data space Λ0(P ) ⊂ H−d/2(Σ;E

′d),
defined by

Λ0(P ) := {ρ̃du|u ∈ D(Pmax), Pmaxu = 0}. (21)

(ii) C+ is a 0-th order pseudodifferential operator which extends to a scale
{Cσ : Hσ(Σ;E′d)→ Hσ(Σ;E′d)} for σ ∈ R.

Because the Calderón projection is a 0-th order pseudodifferential operator
and C2 = C, we have
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Corollary 2

H
d
2 +s(Σ;E

′d) ∩ im(C(P ) : H−d/2(Σ;E
′d)→ H−d/2(Σ;E

′d)) (22)

= im(C(P ) : H
d
2 +s(Σ;E

′d)→ H
d
2 +s(Σ;E

′d)), for s ≥ −d.

When s > − 1
2 or −d ≤ s < 1

2 − d

im(C(P ) : H
d
2 +s(Σ;E

′d)→ H
d
2 +s(Σ;E

′d))

= {ρ̃du|u ∈ Hd+s(M ;E) ∩D(Pmax), Pu = 0} ∩H d
2 +s(Γ ;E

′d). (23)

Proof Since C(P ) is a projection on H
d
2 +s(Σ;E

′d), i.e., C(P )2 = C(P ), and

H
d
2 +s(Σ;E

′d) ⊆ H−d/2(Σ;E
′d), for s ≥ −d, (22) follows.

When s > − 1
2 , on one hand, by the trace theorem, ρ̃du ∈ H d

2 +s(Σ;E
′d).

On the other hand, assume that

u ∈ D(Pmax), Pu = 0 and ρ̃du ∈ H d
2 +s(Σ;E

′d).

Then, using the analogue of η̃d for the complement M̃ \M , we can extend u

to some ũ such that ũ|M̃\M ∈ H
d+s
loc (M̃ \M ;E) and

ρ̃dr−ũ = ρ̃dr+ũ = ρ̃du, (24)

where we denote by r± the restriction onto M , M̃ \M , resp. Since M̃ is a
smooth manifold without boundary, using Green’s formula for M and M̃ \M ,

we have, for v ∈ C∞c (M̃ ; Ẽ)

(ũ, P t(1 +∆)−
s
2 v)L2(M̃ ;Ẽ)

= ((1 +∆)
s
2Pr+ũ, v)L2(M ;F ) + ((1 +∆)

s
2Pr−ũ, v)L2(M̃\M ;F )

= ((1 +∆)
s
2Pu, r+v)L2(M ;F ) + ((1 +∆)

s
2Pr−ũ, v)L2(M̃\M ;F ). (25)

From P : Hd+s(M̃ ; Ẽ) → Hs(M̃ ; F̃ ) and r−ũ ∈ Hd+s(M̃ \M ;E), we have
(1 + ∆)

s
2Pr−ũ ∈ L2(M̃ \M ;F ). Together with (25), we have (1 + ∆)

s
2Pũ ∈

L2(M̃ ; F̃ ), thus Pũ ∈ H
s
2 (M̃ ; F̃ ). Since P M̃ is elliptic, ũ ∈ Hs+d

loc (M̃ ;E). It
follows that u ∈ Hd+s(M ;E).

When −d ≤ s < 1
2 − d, consider the (modified) trace map

ρ̃dN : H−sloc (N◦;E)→ H−s−
d
2 (Γ ;E

′d),

whose dual,

(ρ̃dN )∗ : Hs+ d
2 (Γ ;E

′d)→ H−sloc (N◦;E)

is given by

〈u, (ρ̃dN )∗h〉 = 〈ρ̃dNu, h〉, u ∈ H−sloc (N◦;E), h ∈ Hs+ d
2 (Γ ;E

′d).

Then we have C+h = −ρ̃du, where u := −r+Q
N (ρ̃dN )∗J̃h ∈ Hd+s(M ;E). In

fact we have

Hs+ d
2 (Γ ;E

′d)
J̃−−−−→ Hs+ d

2 (Γ ;F
′d)

(ρ̃dN )∗−−−−→

Hs(N ;F )
QN−−−−→ Hs+d(N ;E)

r+−−−−→ Hs+d(M ;E).
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1.4 Examples and illustrations

We illustrate our/Frey’s constructions with some classical examples where
the parameter dependence of the Calderón projector and the Cauchy data
spaces can be determined explicitly.

Example 1 (1D examples) From Courant and Hilbert [19, Section V.1.3a,
p. 278f], we recall the standard form of a differential equation of second order
on the interval. So, Let M := [x0, x1], x0, x1 ∈ R and x0 < x1 with the
boundary Σ = −{x0}∪{x1} and

∫
Σ
ϕ = ϕ(x1)−ϕ(x0) for ϕ : Σ → C. We set

Warning:
in [CH]
real

Pu := (au′)′ − bu′ + (cu)′ − du for u ∈ C∞(M ;CM )

with a, b, c, d ∈ C1(M,C). Here f ′ denotes the derivative df
dx for f ∈ C1(M,C).

Then the formal adjoint P t takes the form

P tv = (av′) + (bv)′ − cv′ − dv for v ∈ C∞(M ;CM ),

where complex conjugation is marked in the usual way. The Cauchy trace
operator associated with the order d = 2 is

ρd : u 7→
(
u(x0), u(x1)

)
⊕
(
u′(x0), u′(x1)

)
,

and we obtain Green’s formula∫ x1

x0

(
Pu v − uP tv

)
dx =

〈
J0

(
u(x0)
u′(x0)

)
,

(
v(x0)
v(x0)

)〉
+
〈
J1

(
u(x1)
u′(x1)

)
,

(
v(x1)
v(x1)

)〉
with (ROUGHLY, make precise) J0 = −

(
c− b a
−a 0

)
and J1 =

(
c− b a
−a 0

)
.

THAT’S ALL A BIT COMPLICATED, BUT NOW COMES THE WORK,
NAMELY TO DETERMINE THE PARAMETRIX OF P AND, FINALLY,
THE Calderón PROJECTOR.

THEN IT WOULD BECOME CLEAR HOW C+(a, b, c, d) DEPENDS ON
THE BASE POINT (a, b, c, d) ∈ B := C1(M,C4).

. . .

. . .

Remark 5 Our preceding calculations fit nicely with Grubb’s [24, Example
11.1]

C+(α) =

(
1
2 − 1

2α
−α2

1
2

)
for the operator Pu := −u′′ + α2u on the complete manifold M := [0,∞[,
where α > 0.
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We want instead of C+ an orthogonal projection onto the Cauthy data
space. The orthogonal projection onto imC+, which we denote by Cort+ here,
is given by the well-known formula (cf. [11, Lemma 12.8])

Cort+ := C+C
∗
+(C+C

∗
+ + (Id−C∗+)(Id−C+))−1. (26)

Since C+C
∗
+ +(Id−C∗+)(Id−C+) is elliptic we infer that Cort+ is still a classical

pseudodifferential projector of order 0.

So by (26),

Cort+ (α) =
1

α2 + 1

(
1 −α
−α α2

)
.

J =

(
0 1
−1 0

)
. According to the definition and property of Fourier trans-

formation and Fubini Theorem, we have

Qf =
1

2π

∫ +∞

−∞

eixξ

ξ2 + α2
f̂(ξ)dξ

=
1

2π

∫ +∞

−∞

∫ +∞

−∞

ei(x− y)ξ

ξ2 + α2
f(y)dydξ

=
1

2π

∫ +∞

−∞

∫ +∞

−∞

ei(x− y)ξ

ξ2 + α2
dξf(y)dy

Since ρ2u =

(
u(0)
du
dx (0)

)
, and using the residues we have for x > 0

∫ +∞

−∞

eixξ

ξ2 + α2
=
π

α
e−xα,∫ +∞

−∞
ξ

eixξ

ξ2 + α2
= πie−xξ.

So

Q(ρ2)∗Jg(x) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

ei(x− y)ξ

ξ2 + α2
dξ(ρ2)∗Jḡdy

= ρ2

∫ +∞

−∞

ei(x− y)ξ

ξ2 + α2
dξ · Jg

=
1

2α
e−xαg1 −

1

2
e−xαg0,

where g =

(
g0

g1

)
.

Now we consider the case M =]0, 1[. Remember we always use the inward
normal vector field on the boundary, on the boundary {x0 = 0}, we have ρ2u =
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(u(0), u′(0)), while on the boundary {x1 = 1}, we have ρ2u = (u(1),−u′(1)),
and we obtain Green’s formula∫ x1

x0

(
Pu v − uP tv

)
dx =

〈
J0

(
u(x0)
u′(x0)

)
,

(
v(x0)
v(x0)

)〉
+
〈
J0

(
u(x1)
−u′(x1)

)
,

(
v(x1)
−v(x1)

)〉
with J0 =

(
0 1
−1 0

)
.

For the boundary value h =
(
u0, v0

)
⊕
(
u1, v1

)
, we have

Q(ρ2)∗Jh =
1

2α
e−xαv0 −

e−xα

2
u0 +

e(x−1)α

2α
v1 −

1

2
e(x−1)αu1.

So the Calderón projector is

C+(α)


u0

v0

u1

v1

 =


1
2 − 1

2α
1
2e
−α − 1

2αe
−α

−α2
1
2

α
2 e
−α − 1

2e
−α

1
2e
−α − 1

2αe
−α 1

2 − 1
2α

α
2 e
−α − 1

2e
−α −α2

1
2



u0

v0

u1

v1

 ,

and

Cort+ (α) =
1

a2 − b2


ac11 − bc13 ac12 −bc11 + ac13 −bc12

ac12 ac22 − bc24 −bc12 −bc22 + ac24

ac13 − bc11 −bc12 −bc13 + ac11 ac12

−bc12 ac24 − bc22 ac12 ac22 − bc24

 ,

(27)
where

a = (
α

2
+

1

2α
)2(1 + e−2α), b = (

1

2α2
− α2

2
)e−α,

c11 = (
1

4
+

1

4α2
)(1 + e−2α), c12 = (

α

4
+

1

4α
)(−1 + e−2α),

c13 = (
1

2
+

1

2α2
)e−α, c22 = (

α2

4
+

1

4
)(1 + e−2α),

c24 = (−α
2

2
− 1

2
)e−α.

Now when α = 0, that is, for the operator Pu := −u′′, the parametrix is

Qf(x) = −1

2

∫ +∞

−∞
|y − x|f(y)dy.

When M = [0,+∞[,

Q(ρ2)∗Jg = −1

2

∫ +∞

−∞
|y − x|(ρ2)∗Jḡdydy

= −1

2
(xv0 + u0),
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where g =

(
u0

u1

)
. So C+(0) =

(
1
2 0
0 1

2

)
, but it is not a projection.

When M =]0, 1[, x ∈M ,

Q(ρ2)∗Jh(x) = −1

2

∫ +∞

−∞
|y − x|(ρ2)∗Jh̄

= −1

2
(xv0 + u0 + (1− x)v1 + u1).

So C+(0) =


1
2 0 1

2
1
2

0 1
2 0 − 1

2
1
2

1
2

1
2 0

0 − 1
2 0 1

2

,

Cort+ (0) =


3
5 −

1
5

2
5

1
5

− 1
5

2
5

1
5 −

2
5

2
5

1
5

3
5 −

1
5

1
5 −

2
5 −

1
5

2
5

 . (28)

So for the case M =]0, 1[, by computation limα>0,α→0 C
ort
+ (α) = Cort+ (0).

In fact, we can use the power series of exponential function to write every term
in the matrix Cort+ (α) (27) as a ratio of two power series of α, actually, it can
be reduced to this form

a2α
2 + a3α

3 + · · ·
b2α2 + b3α3 + · · ·

,

where ai, bi ∈ R, i ∈ N, i ≥ 2, then when α → 0, the ratio a2
b2

is just the

corresponding term in Cort+ (0) (28).

Example 2 (2D examples of second order) Similarly, we can derive the Cal-
derón projection for a general elliptic differential equation of second order
over a domain M ⊂ R2. Following [19, Section V.1.3b, p. 279f], we set

Pu := (pux)x + (puy)y − qu (29)

etc. . . .

etc. . . .

etc. . . .

For p = 1 and q = 0 in (29), we obtain the Laplacian and can compare our
approach with the classical formulas of potential theory.

Example 3 (Reconsidering potential theory) Following Seeley [35], we illus-
trate Frey’s construction of the Calderón projector for the Laplacian and its
single and double layer potentials.
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IT WOULD BE NICE TO ADD A POTENTIAL, i.e., q 6= 0, AND THEN
TO INVESTIGATE THE PARAMETER DEPENDENCE FOR VARYING
q.

We denote by K+h := r+Q
N (ρ̃dN )∗J̃h, thus K+ is a multiple layer poten-

tial with d “layers”. In case P = −
∑n
i=1

∂
∂x2
i

, K+ is the familiar combination

of single and double layer potentials whereby a harmonic function is repre-
sented in terms of its Cauchy data on the boundary.

K+(g0, g1)(x) =

∫
Σ

(
∂E
∂νy′

(x− y′)Φ−
1
2

y′ g0(y′)dsy′ − E(x− y′)Φ
1
2

y′g1(y′)

)
dsy′ . (x ∈M).

For harmonic u, we have the representation (cf. [22])

u(x) =

∫
Σ

(
−∂E
∂ν

(x− y)u(y) + E(x− y)
∂u

∂νy
(y)

)
dsy. (y ∈M).

Where ds is the n− 1-dimensional area element in the boundary Σ,

E(x− y) = E(|x− y|) =

{ 1
n(2−n)ωn

|x− y|2−n, n > 2
1

2π log |x− y|, n = 2,

is the fundamental solution of Laplace’s equation. ωn := 2πn/2

nΓ (n/2) is the volume

of unit ball in Rn. The Newtonian potential of f is

−Qf(x) =

∫
N

E(x− y)f(y)dy.

We have

C+(g0, g1) = −(Φ
1
2 γ0E0K+(g0, g1), Φ−

1
2 γ1K+(g0, g1)).

According to the properties of single and double layer potentials (following
Eskin [20]), we have

Φ
1
2 E0K+(g0, g1)(x′) = −1

2
g0(x′) +

∫
Σ

Φ
1
2

x′Φ
− 1

2

y′
∂E
∂νy′

(x′ − y′)g0(y′)dsy′

−
∫
Σ

Φ
1
2

x′Φ
1
2

y′E(x′ − y′)g1(y′)dsy′ . (x′ ∈ Σ)

Φ−
1
2 E1K+(g0, g1)(x′) = −1

2
g1(x′)−

∫
Σ

Φ
− 1

2

x′ Φ
1
2

y′
∂E
∂νx′

(x′ − y′)g1(y′)dsy′

+

∫
Σ

Φ
− 1

2

x′ Φ
− 1

2

y′
∂2E

∂νx′∂νy′
(x′ − y′)g0(y′)dsy′ . (x′ ∈ Σ)

For −∆, we have Green’s formula as in (10),∫
Ω

−∆uvdx−
∫
Ω

u(−∆v)dx =

∫
Σ

(J0ρ
2u, ρ2v)ds, (30)
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where J0 =

(
0 1
−1 0

)
, ρ2u =

(
u
∂u
∂ν

)
, ν is the unit inward normal to Σ.

As in (13), Φ2 =

(
Φ

1
2 0

0 Φ−
1
2

)
, ρ̃2 = Φ2ρ

2 =

(
Φ

1
2 γ0

Φ−
1
2 γ0 ∂

∂ν

)
.

Denote by B0 = 1
2

(
Id − Id
− Id Id

)
, from [21, Chapter 4.2], the boundary

condition B0 differs from the true Calderón projector by a pseudodifferential
operator of order −1 thus by a compact operator.

Proposition 5 (cf.[20, Theorem 17.1]) Let P (ξ) be any arbitrary nonzero
polynomial of degree m. Then there exists E ∈ D ′(Rn) such that

P (−i ∂
∂x

)E = δ. (31)

So for any partial differential operator with constant coefficients, we can con-
struct a fundamental solution in D ′(Rn), i.e., E satisfies (31).

If f is a distribution with a compact support, then

u = E ∗ f

gives a particular solution to

P (−i ∂
∂x

)u = f.

From [35] we take

Example 4 (Calderón projection for Cauchy-Riemann operator on unit disk)
ONCE AGAIN, IT WOULD BE NICE TO ADD A PARAMETER, AND
THEN TO INVESTIGATE THE PARAMETER DEPENDENCE.

. . .
Consider the operator P = ∂

∂z̄ = 1
2 (∂/∂x+ i∂/∂y). Then Pu = 0 means u

is holomorphic. Let D denote the disk {x2 + y2 < 1}, and S1 = boundary of
D. Let

H+ = {u ∈ L2(D);u’s first derivatives ∈ L2(D), Pu = 0}. (32)

H− = {u ∈ L2
loc(R2 \D);u’s first derivatives ∈ L2

loc(R2 \D), Pu = 0}. (33)

H
1
2 (S1) = {f =

+∞∑
n=−∞

ane
inθ;Σn∈Z(1 + |n|)|an|2 <∞}. (34)

We define

Q : H
1
2 (S1)→ H+ (35)

+∞∑
n=−∞

ane
inθ 7→

+∞∑
n=0

anz
n. (36)
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C+ : H
1
2 (S1)→ H

1
2 (S1) (37)

+∞∑
n=−∞

ane
inθ 7→

+∞∑
n=0

ane
inθ, (38)

the C+ is just the Calderón projection for the operator P on the unit disk.
Denote by

(Hu)(z) :=
1

π
√
−1

P.V.

∫
S1

u(s)

s− z
ds, (∀z ∈ S1),

where P.V. means principal value integral, that is

P.V.

∫
S1

u(s)

s− z
ds := lim

ε0

∫
|s−z|≥ε,s∈S1

u(s)

s− z
ds.

Then the singular integral operator H ∈ L(L2(S1)). The Fourier multiplier is
m(H) = sign ξ and H is self-adjoint, i.e., H = H∗. Finally, we have C+u =
1
2 (Id +H)u, for u ∈ L2(S1). The Fourier multiplier is m(C+) = 1

2 (1 + sign ξ)
and C+ is an orthogonal projection operator on the boundary, i.e., C2

+ = C+,
C∗+ = C+.

1.5 Technical tools: continuity of curves of closed subspaces in Banach space
and the interpolation property

The proof of our main theorem depends essentially on the following quite basic
functional analytic tools.

Continuity of curves of closed subspaces in Banach space. We recall from our
[12, Appendix A3], based on Neubauer’s elementary, but deeply original [29]:

Proposition 6 Let X be a Banach space and let (M(b))b∈B , (N(b))b∈B be
two continuous families of closed subspaces of X, where B is a parameter
space. Assume that M(b)+N(b) is closed for all b ∈ B. (a) Then M(b)∩N(b)
is continuous if and only if M(b) +N(b) is continuous.
(b) Assume that dim(M(b) ∩ N(b)) ≡ constant or dim (X/(M(b) +N(b)) ≡
constant, then the families (M(b) ∩N(b))b∈B and (M(b) +N(b))b∈B are con-
tinuous.

Interpolation of the Calderón projector between Sobolev spaces. Interpolation
theory can be applied easily for intermediate Sobolev spaces between two given
Sobolev spaces to establish estimates for the operator norm of an intermedi-
ate operator, see Calderón’s classic announcement [15, Theorem 2] of great
generality, worked out in [16] and in [27, Theorem 5.1] by J.–L. Lions and
Magenes. See also the more recent lecture notes [39, Definition 21.5 and
Lemma 21.6] by Tartar.

We give a slimmed-down version of interpolation theory for intermediate
spaces, not striving for greatest generality.
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Definition 2 (Interpolation property) Let E0 and E1 be normed spaces
with E1 ↪→ E0 continuously embedded and dense.
(a) An intermediate space between E0 and E1 is any normed space E such that
E1 ⊂ E ⊂ E0 (with continuous embeddings).
(b) An interpolation space between E0 and E1 is any intermediate space E
such that every linear mapping from E0 into itself which is continuous from
E0 into itself and from E1 into itself is automatically continuous from E into
itself. It is said to be of exponent θ (with 0 < θ < 1), if there exists a constant
c1 such that one has

‖A‖B(E,E) ≤ c1 ‖A‖1−θB(E0,E0) ‖A‖
θ
B(E1,E1) for all A ∈ B(E0,E0). (39)

Here we denote the normed algebra of bounded endomorphisms of a normed
space X by B(X,X).

For the chain of Sobolev spaces over our closed manifold Y and s0 < s1 we
set E0 := Hs0(Y ;E′d) and E1 := Hs1(Y ;E′d). In our application at the
end of the proof of our main theorem later below, we shall choose s0 := −d2
and s1 = d

2 . We exploit that the Sobolev spaces are Hilbert (or Hilbertable)
spaces and admit a self–adjoint positive isometry Λ : E1 → E0 which is a closed
densely defined operator in E0 with domain D(Λ).

Proposition 7 (Interpolation between Sobolev spaces) For each t ∈
]s0, s1[ the Sobolev space Ht(Y ;E′d) is an interpolation space between E0 :=
Hs0(Y ;E′d) and E1 := Hs1(Y ;E′d) of exponent

θ(t) =
t− s0

s1 − s0
.

More precisely, we have for all θ ∈]0, 1[ and corresponding t ∈]s0, s1[:

1. Identifying interpolation spaces between Sobolev spaces, [27, Definition 2.1
and Theorem 7.1]: Ht(Y ;E′d) = [E1,E0]1−θ := D(Λθ) with

‖u‖[E1,E0]1−θ := graph norm (Λθu) =
(
‖u‖2E0

+ ‖Λθu‖2E0

)1/2
.

2. Interpolation property of Sobolev norms, [27, Proposition 2.3]: There exists
a constant c such that ‖u‖[E1,E0]1−θ ≤ c ‖u‖θE0

‖u‖1−θE1
for all u ∈ E1.

3. Interpolation theorem, [27, Theorem 5.1]: See Equation (39).
4. Continuous parameter dependence: See Equation (41).

Remark 6 Statements (1), (2) are immediate from the definition of Sobolev
spaces; for (2) see also [24, Theorem 7.22] with Grubb’s four–lines proof in
the Euclidean case based on the Hölder Inequality. Statement (3) is deeper
and its proof uses analytic functions with values in Banach spaces. Statement
(4) can be derived from (3).

1.6 Predecessors and cross references

We sketch the origins and the establishment of the Calderón projector, its wide
application fields, and the previous approaches and partial results regarding
its dependence of a parameter.
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Origins and making of the Calderón projector. In the early 1960s, Singer’s
and Atiyah’s stooping success with the Index Theorem for elliptic operators
(see, e.g. [2], [4], [23], and [32]) directed the attention of many analysts and
geometers to integro-differential or Calderón–Zygmund operators, now well-
established as pseudodifferential operators. The main interest was in the al-
gebraic properties, providing a sufficiently large class of operators admitting
parametrices (inverse operators modulo lower order or compact operators),
continuous deformations and homotopy invariances, all mandatory for index
calculations and Fredholm operator theory.

A second interest aroused from Calderón’s surprising observation (see
[14] and the beautiful exposition in [17, Section 4.1]) that for an elliptic dif-
ferential operator over a smooth compact manifold with boundary, one can
construct a pseudodifferential projection on the space of sections over the
boundary such that the space of all traces at the boundary of the original
operator’s null space (its kernel) is the range of the projection. Later it was
called the Calderón projector and its range the Cauchy data space of the given
elliptic operator.

The first comprehensive proof of Calderón’s observation was given by
Seeley in [33, Theorem 2], [35], and [36]. It is based on the construction of an
invertible double over the closed double of the original compact manifold with
boundary with an inserted collar and with a careful analysis of the solution
spaces close to the boundary. Seeley’s approach was reproduced in many
places, see, e.g., Grubb’s textbook [24, Section 11.1]. Our [11, Chapters 8-9
and 11-13] with Wojciechowski give all details for Dirac type operators,
where the construction becomes rather simple due to symmetry properties
which, in particular, yield the unique continuation property of solutions of the
homogenous equation Pu = 0.

Due to the many choices, Seeley’s approach is not suitable for families
of elliptic differential operators. In [8], jointly with Lesch, we worked out
an alternative construction for elliptic operators of first order, based also on
the concept of an invertible double, but without choices and therefore appli-
cable to families. From that construction, however, we could not derive the
continuous parameter dependence of the Calderón projector directly, but only
via a demanding analysis of sectorial projections, see below our Paragraph on
“Previous results on the continuity of families of Calderón projectors”.

A third ingenious construction was given by Birman and Solomyak in [3],
based on the concept of elliptic towers and slightly simplified for first order
operators in [10, Section 5]. In its spirit, their way is rather axiomatic and
highly promising. It is less explicit, though, and does not invite to estimates
of norms for families of Calderón projectors.

In this paper we follow a fourth way, found by Frey in [21, Section 2.3]. It is
inspired by a radically different approach due to Hörmander in [25, Theorem
20.1.3]. In its original version, it yielded only an approximative projection
onto the Cauchy data spaces (i.e., modulo lower order operators, but with the
correct principal symbol), while Frey’s modification yields a precise Calderón
projector, actually for linear elliptic differential operators of any order d ≥ 1.
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Application fields. The wide application of Calderón projectors and Cauchy
data spaces is due to its role in the reduction of well-posed elliptic boundary
value problems to an integro–differential problem over the boundary. Topo-
logically, that is a kind of desuspension from a problem over a manifold with
boundary to a corresponding problem over the boundary, i.e., a reduction of
the dimension of a problem by one, at the cost of the higher complexity of the
induced pseudodifferential operator over the boundary.

In that way, the Calderón projectors and their images, the Cauchy data
spaces, play a role

1. for proving the delicate Hirzebruch-Thom Cobordism Theorem (decisive for
the first proof of the Atiyah-Singer Index Theorem) in an elementary way,
see [33, Theorem 3], [11, Chapter 21], and [8, Section 6] in chronological
order;

2. for formulating and proving the Bojarski Conjecture for the index of elliptic
differential operators over partitioned manifolds, [11, Chapter 24];

3. as projections onto Lagrangian subspaces in naturally symplectic section
spaces over the boundary for elliptic and symmetric differential operators
over manifolds with boundary. That interesting property of Cauchy data
spaces was proved in our [10, Proposition 3.2], [11, Corollary 12.6] and
further elaborated by McDuff and Salamon in [28, Exercise 2.17 = Ex-
ercise 2.1.16 in 3. ed.], in our [7, Proposition 3.5], and by Brüning and
Lesch in [13];

4. as “reference points” in Agranovič–Dynin type correction formulae for the
index, see [1], [11, Chapter 21], [38, Theorem 2] and Morchio’s and
Strocchi’s view upon quantum field theory and chiral anomaly in our
[9];

5. in yielding a Fredholm determinant as correction term in the Scott–Wojcie-
chowski Formula of the ζ-regularized determinant of Dirac type operators
over compact manifolds with boundary (see Scott’s and Wojciechow-
ski’s [34] or our lecture notes [5]);

6. in the Yoshida-Nicolaescu (Morse=Maslov) Formulas expressing the spec-
tral flow of a curve of self–adjoint elliptic boundary value problems by the
Maslov index of a corresponding curve of Fredholm pairs of correspond-
ing images of the Calderón projections and the projections defining the
boundary conditions (for a review see our [12, Section 4.1]);

7. in inverse problems, e.g., in Electrical Impedance Tomography which con-
sists in determining the electrical properties of a medium by making voltage
and current measurements at the boundary of the medium. In the math-
ematical literature this is also known as Calderón’s problem from Cal-
derón’s pioneer contribution [18], where he linked the study of the Cauchy
data spaces to inverse problems, see Uhlmann [41] for a survey, also ex-
plaining the role of the Calderón projection and Cauchy data spaces for
rigorous approaches to cloaking and invisibility.

Previous results on the continuity of families of Calderón projectors. Pertur-
bations of the Calderón projector were investigated in the literature in two
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directions. In a series of papers, Wojciechowski with collaborators deter-
mined the homotopy type of the Grassmannian of all pseudodifferential op-
erators with the principal symbol of the Calderón projector in the symmetric
and in the not necessarily symmetric case, explained in detail in [11, Chapter
15], see also Pressley’s and Segal’s considerations in [37].

In this paper, we are addressing a different type of perturbation, to prove
that the Calderón projectors and the Cauchy data spaces depend continuously
on the underlying elliptic differential operator.1

– For operators of Dirac type, Liviu Nicolaescu solved that problem in
[30,31].

– For perturbations by operators of lower order, the problem was solved in
our [7], jointly with Kenro Furutani, and

– in a similar way for curves of elliptic differential operators with symmetric
principal symbol with Matthias Lesch in our beforementioned paper [8].

– From that paper, jointly with Guoyuan Chen, we could derive the con-
tinuous variation of the Calderón projector for arbitrary continuous curves
of elliptic differential operators of first order in [6]. Alas, the proof was very
lengthy.

The present proof is not only a generalization of our previous result to higher
order operators, but first of all, we hope, a readable, comprehensible and useful
presentation.

2 Proof of our main theorem

To prove Theorem 1, we shall establish the following partial results:

1. For all b ∈ B and s > 1
2 , we obtain kerPs,m(b) = kerPmin(b) by elliptic

regularity in M◦, where Ps,m(b) := Ps(b)|Hd+so (M ;E).

2. The curve
(
kerPmin(b)

)
b∈B is continuous in Hd+s(M ;E).

3. The curve
(
ρ̃d(kerPs(b))

)
b∈B is continuous in Hd/2+s(Σ;E′d) for all s ≥ 0.

4. For s = −d, we obtain that the curve
(
ρ̃d(kerP−d(b))

)
b∈B is continuous in

H−3d/2(Σ;E′d).
5. For the two cases (3) and (4) we have imCs(b) = ρ̃d(kerPs(b)).
6. Then, by interpolation, (3) and (4) imply that the curve

(
imCs(b)

)
b∈B is

continuous in all intermediate Sobolev spaces.

Let us go to the technicalities.

Proof Given a continuous family of elliptic differential operators P (b) of order
d, that is,

P (b) : Hd+s(M,E)→ Hs(M,F ),

1 Apparently, for inverse problems like no. 7 in the preceding list, the continuity of the
Calderón projector is less critical than the quite different problem of the stability of the
reconstruction procedure.
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such that the closed set

GrP (b) ⊂ Hd+s(M,E)×Hs(M,F )

is continuous with respect to b ∈ B, when s ≥ 0.
Hd(M ;E) ⊂ D(Pmax(b)) ⊂ L2(M ;E).
Case 1 When s ≥ 0, by Corollary 2, we have

imC(b) = ρ̃d(kerP (b)). (40)

Hd+s(M ;E) ⊂ Hd(M ;E) ⊂ D(Pmax(b)) ⊂ L2(M ;E),

and we consider linear bounded operators

P (b) : Hd+s(M ;E)→ L2(M ;F ),

kerP = {u|Pu = 0} ∼= kerP × {0} = GrP ∩ (Hd+s(M ;E)× {0}).

Gr(P (b)) +Hd+s(M ;E)× {0} = Hd+s(M ;E)× imP (b),

Hd+s(M ;E)× L2(M ;F )/Hd+s(M ;E)× imP (b) ∼= L2(M ;F )/ imP (b)
∼= imP (b)⊥

= kerP ∗(b) = kerP tmin(b).

So by Proposition 6b, when dim kerP tmin(b) = constant, kerP (b) is continuous
about b ∈ I.

Since

ker(ρ̃d : kerP (b)→ ρ̃d(kerP (b))) = kerPmin(b),

so when dim kerPmin(b) = constant, by [12, Corollary A.3.15] and the con-
tinuity property of kerP (b), we have ρ̃d(kerP (b)) is continuous. By (40), we
have the continuity property of imC(b) about b ∈ I.

Case 2 When −d ≤ s ≤ 0, we use interpolation theory.

P (b) : Hd+s(M ;E) ∩D(Pmax(b))→ L2(M ;F ).

When s = −d, we claim that,

P (b) : D(Pmax(b))→ L2(M ;F )

is a continuous family of closed operators, i.e., the family of closed subspaces

Gr(Pmax(b)) ⊆ L2(M ;E)× L2(M ;F ),

is continuous with respect to b ∈ B.
In fact, Pmin(b) : Hd

0 (M ;E)→ L2(M ;F ) is a bounded linear operator and
continuous with respect to b ∈ B. As an unbounded closed operator,

Pmin(b) : L2(M ;E) ⊇ Hd
0 (M ;E)→ L2(M ;F ),
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the graph norm of Pmin(b) is continuous with respect to b ∈ B, that is

{(u, P (b)u)|u ∈ Hd
0 (M ;E)} ⊆ L2(M ;E)× L2(M ;F )

is continuous with respect to b ∈ B. Since Pmax = (P tmin)∗, GrPmax =

(J GrP tmin)⊥, where J =

(
0 −Id
Id 0

)
is a strong symplectic structure, we may

claim

kerPmax = {u ∈ D(Pmax) ∈ |Pu = 0}
∼= kerPmax × {0} = GrPmax ∩ (L2(M ;E)× {0}).

Gr(Pmax) + L2(M ;E)× {0} = L2(M ;E)× imPmax,

L2(M ;E)×L2(M ;F )/L2(M ;E)× imPmax
∼= imP⊥max = kerP ∗max = kerP tmin.

By the assumption dim kerP tmin = constant and Proposition 6b, we have that
kerP (b) is continuous with respect to b, then imC(b) = ρ̃d(kerP (b)) is con-
tinuous with respect to b.

Since
ker(ρ̃d : kerP (b)→ ρ̃d(kerP (b))) = kerPmin(b),

when dim kerPmin(b) = constant, by [12, Corollary A.3.15] and the continuity
of kerP (b), we have ρ̃d(kerP (b)) is continuous. Then when s = −d, imC(b) =
ρ̃d(kerP (b)) is continuous with respect to b.

For the Calderón projection C, we have the gap

δ̂(im(C(b1)), im(C(b2))) = ‖C(b1)− C(b2)‖,

where C(b1), C(b2) are the orthogonal projections on im(C(b1)), im(C(b2)),

respectively. (See [26, §IV.2.1] for the definition of δ̂ and the above relation.)
So im(C(b)) is continuous if and only if C(b) is continuous with respect to b.

Fix parameter b ∈ B, C(b) : Ht(Σ,E
′d)→ Ht(Σ,E

′d) is a bounded linear
operator, we denote Ct = C|Ht(Σ,E′d).

We have proved that

C(b) : H
d
2 (Σ,E

′d)→ H
d
2 (Σ,E

′d)

and
C(b) : H−

d
2 (Σ,E

′d)→ H−
d
2 (Σ,E

′d)

are continuous with respect to b ∈ B. By interpolation theory, summarized
above in the second paragraph of Subsection 1.5,

[H−
d
2 (Σ,E

′d), H
d
2 (Σ,E

′d)]θ = H−
d
2 +θd(Σ,E

′d),

for 0 < θ < 1, and we obtain

‖Ct(b1)−Ct(b2)‖ ≤ c2‖Cs0(b1)−Cs0(b2)‖
s1−t
s1−s0 ‖Cs1(b1)−Cs1(b2)‖

t−s0
s1−s0 , (41)

where s0 ≤ t ≤ s1. We use the situation s0 = −d2 , s1 = d
2 .
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