Geometric analysis and spectral synthesis Case study of explorative paths in mathematical research: The Maslov index in symplectic Banach spaces Mem. Amer. Math. Soc. no. 1201 252/2 (March 2018), 1-118

Bernhelm BOOSS-BAVNBEK

Department of Science and Environment, Roskilde University, Denmark

RUC, IMFUFA seminar, 25 April, 2018 Joint work with ZHU Chaofeng, Nankai Univ., Tianjin, China

Outline

Goals and the mathematics-historical background

- Geometric analysis
- Decomposition of space/manifolds/surfaces & recomposing
- Perturbation theory
- Spectral spectacles
- Elementary examples of underlying concepts
 - The 1D set–up: first order linear Hamiltonian system
 - Linear function spaces, subspaces, and operators
- 3 Recent main results and highlights
 - Counterexamples v. working knowledge
 - General spectral flow formula
 - Maslov index: finite or ∞-dimensional?
 - Variational results
- 4 Epistemological conclusions
 - Say something typical about mathematical research

Geometric analysis Mathematical physics \leftrightarrow PDEs \leftrightarrow Form and space

Key experience 1, Index: $A : X \longrightarrow Y$ linear, X, Y finite-dimensional linear spaces.

Definition (Index)

ind $A := \dim \ker A - \operatorname{codim} \operatorname{im} A$.

Theorem (Fundamental Theorem of Linear Algebra)

dim ker A + dim im A = dim X, *i.e.*, ind A = dim X - dim Y.

Meaning: X = Y Euclidean or Hermitian, $T \in End(X)$. Then *symmetry* dim ker $A^* = \dim \ker A$, i.e., $\mu = \mu^*$ multiplicity of 0-eigenvalue (zero mode).

Symmetry breaks down in ∞ -dim. spaces. Ex: shift operator; integral equations; certain partial diff. eqs.: Fredholm operators. *Index has geometric meaning*!

Key experience 2, Principal symbol:

• ODEs $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t), t \in \mathbb{R}$, Hilbert V. Heisenberg

• PDEs
$$A(x)(p) = \sum_{\|lpha\| \leq k} a_{lpha}(p) D^{lpha}(x)|_{p}, \ p \in \mathbb{R}^{n}$$

Decomposition of space, manifolds, surfaces I

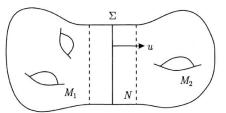
- L. EULER, H. POINCARÉ, E. NOETHER: Triangulation, simplicial homology, chain of groups
- P. HEEGAARD, F. WALDHAUSEN: Splitting; skeleton decomposition and reconstruction by gluing; suspension and desuspension
- J. MILNOR ET AL.: Cutting and pasting; connected sum X#Y; surgery ∂(D^{p+1} × S^{q-1}) ~ S^p × S^{q-1} ~ ∂(S^p × D^q)
- S. NOVIKOV: *Exact additivity* of Euler characteristic and Hirzebruch signature

B³ AND K.P. WOJCIECHOWSKI: *Error term* for addition of certain other invariants under decomposition

Decomposition of space, manifolds, surfaces II

 $M = M_1 \cup_{\Sigma} M_2$ closed partitioned Riemannian manifold, $E \to M$ Clifford bundle, $A: C^{\infty}(M; E) \to C^{\infty}(M; E)$ compatible total Dirac type

operator with chiral components $A = \begin{pmatrix} 0 & A_{-} \\ A_{+} & 0 \end{pmatrix}$.



CD *Cauchy data spaces* = traces at boundary/hypersurface of kernel of linear elliptic operator of first order

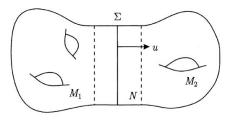
Then $A_+: C^{\infty}(M; E_+) \rightarrow C^{\infty}(M; E_-)$ Fredholm operator and $(CD(A_+|_{M_1}), CD(A_+|_{M_2}))$ Fredholm pair, and

Theorem (Bojarski Induction Conjecture)

 $ind(A_{+}) = ind(CD(A_{+}|_{M_{1}}), CD(A_{+}|_{M_{2}}))$ [BBB & WOJCIECHOWSKI 1986]

Perturbation result

 $M = M_1 \cup_{\Sigma} M_2$ closed partitioned Riemannian manifold, $E \to M$ Clifford bundle, $(A_s: C^{\infty}(M; E) \to C^{\infty}(M; E))_{s \in [0,1]}$ curve of compatible total Dirac type operators (so, self-adjoint).



Then all $(CD(A_s|_{M_1}), CD(A_s|_{M_2}))$ Fredholm pairs of *Lagrangian* subspaces, and

Theorem (A. FLOER, T. YOSHIDA, L. NICOLAESCU)

 $\mathsf{SF}(A_s)_{s\in[0,1]} = \mathsf{MAS}\big(\mathsf{CD}(A_s|_{M_1}),\mathsf{CD}(A_s|_{M_2})\big)_{s\in[0,1]} \text{[Nicolaescu 1995]}$

Challenge: Investigate the validity!

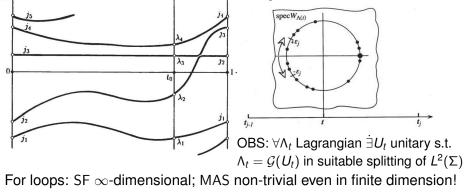
Maslov index in symplectic Banach spaces Explorative paths in mathematical research

Spectral flow and Maslov index: rough idea

Roughly speaking the spectral flow $SF{A_t}_{0 \le t \le 1}$ is the net number of eigenvalues of A_t that pass from – to + while the parameter *t* of the family is running from 0 to 1.

The Maslov index

MAS{CD($A_t|_{M_1}$), CD($A_t|_{M_2}$)}_{0 \le t \le 1} is the net number of eigenvalues of $W_t := U_t V_t^{-1}$ of the unitary generators U_t , V_t of the Lagrangians that pass through -1 from above.



Spectral synthesis: Mostly we sense/measure eigenvalues. Task: reconstruction of source!

- Linear algebra: X complex Euclidean space, dim X = n, A ∈ End(X) self-adjoint. Then spec(A) ⊂ ℝ and ∃e₁,..., e_n orthonormal basis of X of eigenvectors. So, spec(A) ↦ ~ A.
- Can you hear the shape of a drum? [M. KAC, 1966] Size yes, else not always.
- Many components of spec(A): discrete; continuous; residual
 : ⇐⇒ λId A not injective; injective, dense range, but not surjective; else.
- X complex separable Hilbert space, A ∈ End(X) closed, self-adjoint, Fredholm. Then spec(A) discrete close to 0.
- Pragmatic focus: ind and SF here, else det...

1D set-up: First order linear Hamiltonian system

Data: Time $t \in [0, T]$, variational parameter $s \in [0, 1]$, *Hamiltonian*

$$(A_s x)(t) := -j_{s,t} \frac{d}{dt} x(t) - b_{s,t} x(t) - \frac{1}{2} \left(\frac{d}{dt} j_{s,t} \right) x(t)$$

with $x \in H^1([0, T], \mathbb{C}^m) = \overline{C^1([0, T], \mathbb{C}^m)}$, $j_{s,t}, b_{s,t} \in C^0([0, 1] \times [0, T], gl(m, \mathbb{C}))$, $j_{s,t}^* = -j_{s,t}$ invertible, $b_{s,t}^* = b_{s,t}$, $j_{s,t} \in C^1$ in *t* for fixed *s*.

Boundary conditions: W_s continuous curve of subspaces of $\mathbb{C}^m \oplus \mathbb{C}^m$. **Symplectic structure**: For all $(x_1, x_2), (y_1, y_2) \in \mathbb{C}^{2m}$ set $\omega : \mathbb{C}^{2m} \times \mathbb{C}^{2m} \to \mathbb{C}$: $\omega(\cdots) := -\langle j_{s,0}x_1, y_1 \rangle + \langle j_{s,T}x_2, y_2 \rangle$. OBS: ω is *sesquilinear*, *bounded*, *skew-symmetric*, and *non-degenerate*. Then

- The graphs $\{\mathcal{G}(\Gamma_s(T))\}$ of the *fundamental solutions* $\{\Gamma_s(T)\}$ form a curve of Lagrangian subspaces of \mathbb{C}^{2m} .
- Let {*W_s*} be a curve of Lagrangian subspaces. Then the boundary value problems {*A_{s,W_s}*} form a curve of *closed self-adjoint Fredholm operators* in *L*²([0, *T*], C^m), and

3 We have
$$SF{A_{s,W_s}} = MAS{\mathcal{G}(\Gamma_s(T)), W_s}$$
.

Linear function spaces, subspaces, and operators

Some distinctions and clarifications:

- Linear spaces, Normed spaces, Banach spaces, separable Hilbert spaces, Euclidean spaces.
- L²-spaces, Sobolev spaces, Quotient spaces: $\mathcal{D}_{max}/\mathcal{D}_{min}$
- Closed subspaces, Fredholm pairs of closed subspaces
- Linear operators, Bounded operators, Closed operators, Fredholm operators, Symmetric operators, Self-adjoint operators
- Differential and integral operators: $A := \frac{d}{dt}$ not continuous in $L^2([-\pi,\pi])$: $||A(f_n)|| = n||f_n|| = n$ for $f_n(t) := \frac{1}{2\pi}e^{int}$ with $||f_n|| = 1$ for all f_n , $n = 1, 2, \cdots$.
- Strong and weak symplectic spaces:

Weak: $\omega(x, y) = (Jx, y), J : X \to X'$ linear injective. Strong: $\iff J$ invertible (if X Hilbert space, then strong $\iff J^2 = - \operatorname{Id}$)

Counterexamples v. working knowledge

Data: $A(s): C_0^{\infty}(M; E) \to C_0^{\infty}(M; E), s \in [0, 1]$ curve of symmetric elliptic first order differential operators, *M* compact manifold, $\partial M = \Sigma$. What fixed? $H^1(M; E)$ and $H^{1/2}(\Sigma; E|_{\Sigma}) \cong H^1(M; E)/H_0^1(M; E)$.

On $L^2(\Sigma; E|_{\Sigma})$ strong $\omega(s)_{\text{Green}}(x, y) := -\langle J(s)x, y \rangle_{L^2}$. On $H^{1/2}(\Sigma; E|_{\Sigma})$ induced weak $\omega(s)(x, y) := \omega(s)_{\text{Green}}(x, y)$ $= -\langle J'(s)x, y \rangle_{H^{1/2}}$ with compact $J'(s) = (\text{Id} + |B|)^{-1/2}J(s)$, *B* formally self-adjoint elliptic of first order on Σ .

Obstructions:

•
$$J'(s)^2 \neq -\operatorname{Id}$$
, so $H^{1/2} \neq \ker(J'(s) - i\operatorname{Id}) \oplus \ker(J'(s) + i\operatorname{Id})$.

- In general, $\lambda^{\omega(s)\omega(s)} \supset \neq \lambda$ for closed linear subspace λ .
- I.g., $ind(\lambda, \mu) \neq 0$ for $(\lambda, \mu) \in \mathcal{FL}$.
- I.g., L not contractible and π₁(FL₀(X, λ)) = Z for λ ∈ L; valid for strong symplectic Hilbert space.

A naturally looking General spectral flow formula

Theorem (BBB, C. ZHU, Memoirs Am. Math. Soc. 2018)

 $\mathsf{SF}\{A(s)_{\mathcal{D}(s)}\}_{0 \le s \le 1} = \mathsf{MAS}\{\mathsf{CD}(A(s)), \gamma(\mathcal{D}(s))\}_{0 \le s \le 1}$, admitting

- smooth variation of operator A(s) and
- continuous variation of Fredholm domain $\mathcal{D}(s)$, and
- demanding constant «ghosts'» dimensions (or weak inner UCP).

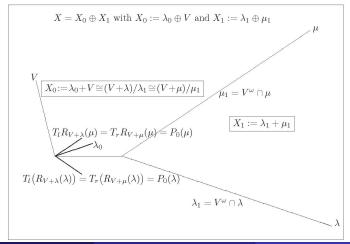
Here $\gamma : \mathcal{D}_{\max} \longrightarrow \mathcal{D}_{\max}/\mathcal{D}_{\min}$ natural projection and $\gamma(D) := (D \cap \mathcal{D}_{\max} + \mathcal{D}_{\min})/\mathcal{D}_{\min}$ for any linear subspace $D \subset L^2(M; E)$.

NOTE 1: Similarly, general validity of Nicolaescu splitting theorem for weak inner UCP.

NOTE 2: Result purely *foundational*: fulfilling clear concrete vision of 1993. Proof (via several surprising key lemmata) typically *explorative*: tools unexpected!

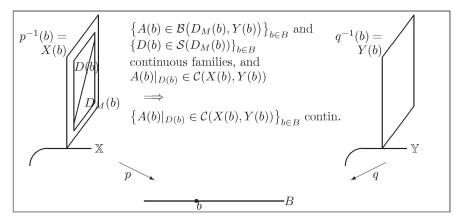
Symplectic reduction to finite dimension

 (X, ω) symplectic vector space, $(\lambda, \mu) \in \mathcal{FL}_0(X, \omega) \Longrightarrow$ Natural decomposition $X = X_0 \oplus X_1$, $X_0 := V + \lambda_0$, dim $X_0 < \infty$, $W := V + \lambda$ closed co-isotropic; admits symplectic reduction $R_W(\lambda) := (\lambda + W^{\omega}) \cap W) / W^{\omega} \in \mathcal{L}(W/W^{\omega})$:



Variational results, finally confirming expectation

- X Banach; B top. space; $M, N: B \to \mathcal{S}(X) \in C^0$. Then $M + N \in C^0 \iff M \cap N \in C^0$.
- Continuous variation of basic op. & cont. var. of domain
 ⇒ cont. var. of *boundary value problem*:



Something typical about mathematical research I

- 1 Mathematical research is *a riddle wrapped in a mystery inside an enigma*, paraphrasing W. CHURCHILL, 1 Oct. 1939, on Russia
 - Similar M. PROUST on the search of a happy life
 - Rational choices and conscious forming of a path more volatile than obeying of and adapting to hard laws of reality
- 2 Views upon the dark
 - F. DYSON: {Math \Rightarrow concentration \Rightarrow being absorbed} \implies {*Theorizing* of math. research meaningless}.
 - J. TITS: We are tapping at the walls in a *dark room* and then we break through.
 - R. KADISON: Watching a *pub brawl*, we get into the fight, hit and support, get some blows, but seek to stay with the winners.
 - K.P. WOJCIECHOWSKI: We are not scavengers; we rather are *tigers*, mostly sleepy or striving around and exploring our territory; and then we jump and hit.
 - R. SEELEY: There are only a few *designers*; all we others are like *plumbers*.

Something typical about mathematical research II

Perhaps there is a key - Crossroads, distinctions, and interaction

- 3 H. WEYL: In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics.
 - Structure, arithmetic, algebra v. geometry
 - H. RADEMACHER and O. TOEPLITZ: Von Zahlen und Figuren
 - Y. MANIN: Von Zahlen und Figuren, 2002
- 4 Semiotic:
 - Syntax v. semantic
 - D. HOFSTADTER: Gödel, Escher, Bach: An Eternal Golden Braid
- 5 M. OTTE: Foundational v. explorative
 - Clarification of concepts v. focus on counter-intuitive
 - Reflecting: some *metaphysical reality* (unity and order) v. *possibilities* of human activity
 - Antiquity v. modernity (renaissance)