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Abstract Over a closed manifold, we consider the sectorial projection of an elliptic
pseudo-differential operator A of positive order with two rays of minimal growth. We
show that it depends continuously on A when the space of pseudo-differential operators
is equipped with a certain topology which we explicitly describe. Our main application
deals with a continuous curve of arbitrary first order linear elliptic differential opera-
tors over a compact manifold with boundary. Under the additional assumption of the
weak inner unique continuation property, we derive the continuity of a related curve
of Calderón projections and hence of the Cauchy data spaces of the original opera-
tor curve. In the Appendix, we describe a topological obstruction against a verbatim
use of R. Seeley’s original argument for the complex powers, which was seemingly
overlooked in previous studies of the sectorial projection.
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1 Introduction

This note describes how the continuity of a curve of operators (here of sectorial pro-
jections) can be derived within the symbolic calculus, supplemented by estimates of
some smoothing operators. As usual, the smoothing operators appear as correction
terms between pseudo-differential operators and the operators generated by their total
symbol.

The power of the symbolic calculus is well established for the investigation of spec-
tral invariants, e.g., derived from asymptotics of the heat kernel. There, perturbations
by smoothing operators have no effect. However, the symbolic calculus may appear
as having no value for establishing the precise continuity of an operator curve since,
a priori, the variation of the operator norm of emergent smoothing operators may be
hard to control. This note refutes that view.

1.1 Various definitions of sectorial projections for elliptic pseudo-differential
operators of positive order

1.1.1 The bounded and the closed self-adjoint cases

Let B(H) denote the space of bounded operators in a complex separable Hilbert space
H and let A ∈ B(H). Assume that there exists a curve �+ ⊂ C \ spec A that divides
C into two sectors�± as in Fig. 1a below. Then we can encircle all spectral points in
the positive sector �+ by a closed curve �0, as in Fig. 1b, and so get a well-defined
projection, the sectorial projection, by setting

P�+(A) : = −1

2π i

∫

�0

(A − λ)−1dλ. (1.1)

From the integral it is clear that

‖P�+(A + B)− P�+(A)‖ < CA‖B‖ for any small bounded perturbation B, (1.2)

i.e., the map P�+ : A �→ P�+(A) is continuous in the operator norm of B(H).
The general functional analytical arguments break down for (graph norm) contin-

uous curves of densely defined closed operators in H . Actually, in our [11, Example
3.13] examples of operators with unbounded sectorial projection were discussed. From
the example it becomes clear that additional assumptions will be required.
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Fig. 1 Left two rays of minimal
growth and an arc, making the
spectral cut curve �+. Right
specifying a bounded set of
eigenvalues by a separating
curve �+ made of two rays and
capturing it by a closed contour
�0.

a b

Most easy is to require that A is self-adjoint: Consider a (graph norm) continu-
ous curve in the space Csa(H) of densely defined closed self-adjoint operators in H .
The preceding perturbation argument generalizes immediately to this case under the
additional condition, that the Riesz transformation F : Csa → Bsa, A �→ F(A) :=
(I + A2)−1/2 A is continuous. It may be worth mentioning that a counter example
(a graph-norm convergent sequence of unbounded self-adjoint Fredholm operators
with divergent Riesz transforms) was given to us by B. Fuglede several years ago and
elaborated in our [10, Example 2.14]. The condition is satisfied, however, for formally
self-adjoint elliptic differential operators on closed manifolds: they have a discrete
spectrum of finite multiplicity contained in R and a complete set of eigenvectors.
So, the imaginary axis (or a parallel {c + ri | r ∈ R} with c �∈ spec A) becomes a
suitable separating curve �+ and we obtain P�+(A) = 1[c,∞)(A) = 1[F(c),∞)(F(A))
as a pseudo-differential projection [the Atiyah–Patodi–Singer (APS) projection] by
applying the integral representation of (1.1) to the bounded Riesz transform of A.
Note that F(A) has its spectrum contained in the interval (−1, 1), but has the same
eigenspaces and sectorial projection as A. We refer to our [11, Propositions 7.14-7.15]
(see also [9, Thm. 4.8] for a wider purely functional analytic setting) for a proof of the
continuity of the Riesz transformation A �→ F(A) on the space of self-adjoint ellip-
tic differential operators. That yields the well-known continuous variation of the APS
projection under continuous variation of the underlying operator as long no eigenvalue
crosses the line �+, i.e., the continuity of the map A �→ P�+(A), when we take the
operator norm L2 → L2 for P�+(A) and the operator norm Hm → L2 for A, where
m denotes the order of A.

1.1.2 Spectral integrals for elliptic pseudo-differential operators of positive order

It seems that no general functional analysis methods are available to obtain continuous
curves of sectorial projections for arbitrary continuous curves of operators with com-
pact resolvent and two rays of minimal growth, if the operators are neither bounded
nor self-adjoint.

As explained in our [11, Sect. 3.2], a semigroup {Q+(x, A)}x>0 of sectorial
operators can be defined by inserting a weight e−λx into the integral (1.1). Then
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sectorial projections can be defined asymptotically in an abstract Hilbert space frame-
work. More precisely, for a closed, not necessarily self-adjoint operator A in separable
Hilbert space with compact resolvent and minimal growth of the resolvent in a cone we
may take the closure of the densely defined limx→0+ Q+(x, A). However, such pro-
jections are unbounded operators, in general, and do not necessarily vary continuously
under perturbation of the underlying operator, see, once again, [11, Example 3.13].
Consequently, one has to exploit the symbolic calculus for the investigation of secto-
rial projections of not necessarily self-adjoint elliptic pseudo-differential operators of
positive order with two rays of minimal growth of the resolvent.

Actually, in a slightly different context (namely dealing with well-posed boundary
problems), it was already noticed in Burak [13] that sectorial projections are bounded
operators. For an elliptic pseudo-differential operator of positive order over a smooth
closed (compact and without boundary) manifold, that approach was worked out in
Wodzicki [36,37] and the more recent Ponge [31] and Gaarde and Grubb [17]. In
some of these papers, the positive sectorial projection plays a prominent role in more
refined questions related to spectral asymmetry.

Before preceding, we fix the notation:

Convention 1.1 (a) Let M be an n-dimensional closed Riemannian manifold and
π : E → M a Hermitian vector bundle. Let A : C∞(M; E) → C∞(M; E) be
an elliptic pseudo-differential operator of order m > 0.

(b) Let spec(A) denote the spectrum of A regarded as an operator in L2(M; E)with
the Sobolev space Hm(M; E) as its domain. We recall that spec(A) is either
the whole complex plane or a discrete subset of C. The reason is simply that the
resolvent, if it exists, is compact (see Shubin [35, Theorem 8.4], similarly already
in Agmon [1, Sect. 2] for well-posed elliptic boundary value problems). Clearly,
ind A �= 0 implies spec A = C.

(c) Let Lα1 = {λ ∈ C | arg λ = α1} and Lα2 = {λ ∈ C | arg λ = α2 ≡ α1 − θ

mod 2π} (0 < θ < 2π) be two rays. We assume that A has only a finite number
of eigenvalues on the rays Lα j , j = 1, 2.

(d) Let � := {reiα | r < 2ρ or |α − α j | < ε, j = 1, 2} for ρ, ε > 0 and ε suffi-
ciently small. We can choose ρ in such a way that there exists an R ∈ [0, ρ] such
that A −λ is invertible for λ ∈ � with |λ| ≥ R, and there is only a finite number
of eigenvalues in the region �R := {λ ∈ � | |λ| < R}. For an elaboration of
the meaning of such spectral cuttings, also called rays of minimal growth (of
the resolvent (A − λ)−1), see Sect. 2.4 below. If A is differential, then A − λ is
elliptic with respect to the parameter λ ∈ � for sufficiently small ρ, ε > 0 (for
that concept c.f. Seeley [34] or Shubin [35]).

(e) Now we choose the curve

�+ = {reiα1 | ∞ > r ≥ R} ∪ {Rei(α1−t) | 0 ≤ t ≤ θ} ∪ {reiα2 | R ≤ r < ∞}
(1.3)

in the resolvent set of A, see Fig. 1a.
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(f) We define an operator in the following form:

P�+(A) = − 1

2π i
A

∫

�+

λ−1(A − λ)−1dλ. (1.4)

A priori, the integral (1.4) gives rise to an unbounded operator. A common error
in the literature is a verbatim use of the arguments of [34, Theorem 3] to prove that
P�+(A) is a pseudo-differential operator of order 0, see Wojciechowski [38], uncriti-
cally reproduced in Nazaikinskii et al. [27], Ponge [31, Proof of Proposition 3.1], and
Gaarde and Grubb [17]. In the Appendix, we shall explain the topological obstructions
that make the argument defective.

Anyway, in [31, Proof of Proposition 4.1], a beautiful formula is proved, which,
according to Ponge was already observed by Wodzicki in 1985: Assume the preceding
conventions and, moreover, that A is a classical pseudo-differential operator. Then we
have

As
α2

− As
α1

= (1 − e2iπs)P�+(A)A
s
α2

for all s ∈ C. (1.5)

The formula relates the complex powers (which were well established as pseudo-
differential operators in [34]) and the sectorial projection. Multiplying by A−s

α2
from

the right yields that the sectorial projection is a pseudo-differential projection.

1.2 Perturbations of sectorial projections

Unfortunately, the authors of this note were not able to derive a true perturbation result
for the sectorial projections from Wodzicki’s formula. Clearly, other authors before
us have noticed the delicacy of the variation of complex powers of an operator with
a ray of minimal growth. For studying variations of trace formulas, Okikiolu [29,
Sect. 4], e.g., defines a symbol-smooth family of pseudo-differential operators by the
smoothness of the (total) symbol in the usual C∞ Fréchet topology. Then she is able
to prove the symbol-smoothness of the complex powers, and the symbol-smoothness
of the sectorial projections follows by (1.5). Okikiolu’s approximative approach is
related to Hörmander’s symbolic construction of an “almost” Calderón projection in
[24, Theorem 20.1.3]. Admittedly, such approximative constructions can be of great
value in some contexts. Actually, Okikiolu’s result suffices for proving her trace var-
iation results. More precisely, in [29, Sect. 4], Okikiolu defined a topology on the
space of pseudo-differential operators by the smoothness of ‘total’ symbols in any
local coordinates. This topology is sufficient for her purpose to study the variations of
trace formulas: it can not miss any smooth operator whose trace is not zero. However,
for our aim to study the perturbation of sectorial projections in the operator norms, it
seems that the topology defined by Okikiolu is not sufficient. It may miss the smooth-
ing operators with support far away from the diagonal of M × M . Such smoothing
operators have zero traces, but may have large operator norms. In this note, we define a
locally convex topology, which treats all the lower terms in bulk and does not concern
the local charts.
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Similarly, we can neglect even compact perturbations when we are interested in
index theory. For addressing uniform structures and perturbation results in that direc-
tion we refer to Eichhorn [16] who presents a systematic study of compact pertur-
bations of generalized Dirac operators. However, for deciding about the continuous
or not continuous variation of the true sectorial projections, we are not allowed to
neglect contributions from smoothing operators. We recall that exactly such operators
appear as error terms between pseudo-differential operators and their approximative
symbolic representation.

To obtain estimates for the precise sectorial projections, we shall therefore not fol-
low the elegant approach by Burak and Wodzicki et al.1 We choose an approach which
does not require any technology beyond symbolic calculus and standard estimates for
integral operators. From a technological point of view, our approach may appear less
elegant than using logarithms or complex powers, but it is elementary, transparent
and self-contained — and it works. The delicacy of Axelsson et al. [6] indicates that
there is no easy way through to be expected. They studied the Hodge–Dirac operator
Dg defined on a closed Riemannian manifold with metric g. In general, Dg is non-
self-adjoint, and its spectrum is contained in an open double sector which includes the
real line. They showed — by harmonic analysis methods — that the spectral projections
of the Hodge–Dirac operator Dg depend analytically on L∞ changes in the metric g.

Hence, a priori, the variational properties of the symbol do not suffice for estab-
lishing the continuous variation of P�+(A) in the topology of the operator norm of
a suitable Sobolev space. A smoothing operator may have a large operator norm
defined on any Sobolev space. Therefore, our approach is inspired by Seeley’s [34,
Corollary 2]. We only need slightly sharper estimates than Seeley’s original work.

1.3 Main result

1.3.1 Topology and formulation of main theorem

Let Ellm�+(M, E) denote the space of all elliptic principally classical pseudo-
differential operators A of order m > 0 on M acting on sections of the bundle E such
that the leading symbol am of A has no eigenvalues on the two rays Lα j , j = 1, 2 and A
no eigenvalues on�+. Taking for granted that the spaces CLm(M, E) and Lm−1(M, E)
are well known (we also recall them in Sect. 2.2), we use the notation principally clas-
sical pseudo-differential operators Lm

pc(M, E) := CLm(M, E) + Lm−1(M, E) for
standard pseudo-differential operators with a homogeneous principal symbol, where
the principal symbol denotes the class of the operator modulo operators of lower order
(for details see below Sect. 2.3). Hence, while we do not restrict our estimates to clas-
sical pseudo-differential operators, we must require a homogeneity of the principal
symbol.

1 Having been informed about our results, Prof. Grubb has, perhaps rightly, pointed out to us, that sharper
perturbation results might be achievable, as it often happens a posteriori in mathematics, by alternative
methods: namely, by exploiting the description of the sectorial projection by a difference of two logarithms
in [17, Prop. 4.4]. Unfortunately, no details regarding the perturbation problem were communicated by
Prof. Grubb in her subsequent comments [20] to an earlier arXiv version of this note.
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We equip the space Ellm�+(M, E) with the locally convex topology T described in
Sect. 2.3 below. It is not surprising that our topology is stronger than the usual opera-
tor topology between Sobolev spaces for pseudo-differential operators of fixed order
m on closed manifolds, see Atiyah, Singer [5]. For our applications, continuous or
smooth variation of all the symbols does not suffice. In addition, we shall require that
all the derivatives of the principal symbol vary continuously. The necessity of rather
restrictive requirements for the variation of the highest order coefficients was indicated
in our [11, Sect. 7] where we emphasized the elementary character of perturbations
of lower order and the delicacy of perturbations of highest order for the continuous
variation of the Calderón projection.

In Sect. 5.1, we give an elementary proof for each A ∈ Ellm�+(M, E), that the
operator P�+(A) is well defined by (1.4) as a bounded operator on Hs(M; E), s ∈ R.
The following theorem is our main result:

Theorem 1.2 With respect to the topology T , the map

P�+ : Ellm�+(M, E) → B(Hs(M; E)), A �→ P�+(A) (1.6)

is continuous. Here B(Hs(M; E)) denotes the set of bounded linear operators on
Hs(M; E), s ∈ R.

1.3.2 The structure of this note

In Sect. 2 we introduce principally classical symbols and principally classical pseudo-
differential operators Lm

pc on closed manifolds, define a locally convex topology on
it, and discuss the natural factorization of sectorial projections. In Sect. 3 we identify
the (semi)-norms we need on Lm

pc to ensure that P�+ is continuous. In Sect. 4 we
give a technical lemma which is crucial in the proof of our main theorem. We prove
some more estimates which possibly are of more general interest, as well. In Sect. 5
we apply our estimates to the perturbation problem for sectorial projections and draw
some consequences for index correction formulas and the variation of Cauchy data
spaces on manifolds with boundary. In the Appendix A, we give the details of the proof
of the technical lemma. In the Appendix B we explain the topological obstructions
that are seemingly overlooked in the literature on symbolic calculus.

2 Definitions and notations

To fix the notation, we summarize the basic concepts of symbolic calculus and intro-
duce a space of principally classical pseudo-differential operators on closed manifolds.
Moreover, we fix a locally convex topology on it. For elliptic principally classical
pseudo-differential operators of positive order and for a fixed contour �+ we define
the sectorial projections.
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2.1 Classes of symbols

Let U ⊂ R
n be an open subset. We denote by Sm(U × R

n),m ∈ R, the space of
(complex valued) symbols (the generalization for matrix valued symbols is straight-
forward) of Hörmander type (1, 0) (Hörmander [23], Grigis–Sjöstrand [19]). More
precisely, Sm(U ×R

n) consists of those a ∈ C∞(U ×R
n) such that for multi–indices

α, γ ∈ Z
n+ and compact subsets K ⊂ U we have an estimate

|∂αx ∂γξ a(x, ξ)| ≤ Cα,γ,K (1 + |ξ |)m−|γ |, x ∈ K . (2.1)

The best constants in (2.1) provide a set of semi-norms which endow S∞(U ×R
n) :=⋃

m∈R
Sm(U × R

n) with the structure of a Fréchet algebra.
The space CSm(U × R

n) of classical symbols consists of all a ∈ Sm(U × R
n) that

admit sequences am− j ∈ C∞(U × R
n), j ∈ Z+ with

am− j (x, rξ) = rm− j am− j (x, ξ), r ≥ 1, |ξ | ≥ 1, (2.2)

such that

a −
N−1∑
j=0

am− j ∈ Sm−N (U × R
n) for all N ∈ Z+. (2.3)

The latter property is usually abbreviated a ∼ ∑∞
j=0 am− j .

Homogeneity and smoothness at 0 contradict each other except for monomials.
Our convention is that symbols should always be smooth functions, thus the am− j are
smooth everywhere but homogeneous only in the restricted sense of Eq. (2.2).

Furthermore, we denote by S−∞(U × R
n) := ⋂

a∈R
Sa(U × R

n) the space of
smoothing symbols.

2.2 (Classical) pseudo-differential operators

Let M be a smooth manifold of dimension n. For convenience and to have an L2–
structure at our disposal, we assume that M is equipped with a Riemannian metric.
We denote by L•(M) the algebra of pseudo-differential operators with symbols of
Hörmander type (1, 0) [23,35], see Sect. 2.1. The subalgebra of classical pseudo-
differential operators is denoted by CL•(M). These operator algebras are naturally
defined on the manifold M by localizing in coordinate patches in the following way:

Let U ⊂ R
n be an open subset. Recall that for a symbol a ∈ Sm(U × R

n), the
canonical pseudo-differential operator associated to a is defined by
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(Op(a) u)(x) :=
∫

Rn

ei〈x,ξ〉 a(x, ξ) û(ξ) d̄ξ (2.4)

=
∫

Rn

∫

U

ei〈x−y,ξ〉 a(x, ξ) u(y)dyd̄ξ, d̄ξ := (2π)−ndξ.

For a manifold M, elements of L•(M) [resp. CL•(M)] can locally be written as Op(σ )
with σ ∈ S•(U × R

n) [resp. CS•(U × R
n)].

Recall that there is an exact sequence

0 −→ CLm−1(M) ↪−→ CLm(M)
σm−→ C∞(S∗M) −→ 0, (2.5)

where σm(A) denotes the principal (homogeneous leading) symbol of A ∈ CLm(M).
Here, S∗M denotes the cosphere bundle, i.e., the unit sphere bundle ⊂ T ∗M . As usual,
the principal symbol is locally defined as a map σm : Sm(U ×R

n) → C∞(U × Sn−1)

by putting

σm(x, ξ) := lim
r→∞ r−ma(x, rξ). (2.6)

Note that σm(A) is a homogeneous function on the symplectic cone T ∗M \ M . We will
tacitly identify the homogeneous functions on T ∗M\M by restriction with C∞(S∗M).

Recall that the principal symbol map is multiplicative in the sense that

σa+b(A ◦ B) = σa(A)σb(B) (2.7)

for A ∈ CLa(M), B ∈ CLb(M).

2.3 Principally classical pseudo-differential operators

As mentioned in the Introduction, continuous variation of the operator A by bounded
L2 → L2 perturbation is sufficient to obtain continuous variation of the Cauchy data
space, of the Calderón projection and of the sectorial projection in various cases (see
[9, Theorem 3.8], [11, Proposition 7.13]). However, we have a hunch that continuous
variation of the operator A in the operator norm, say from Hm(M) to L2(M) will not
always yield continuous variation of the sectorial projection P�+(A) in the operator
norm from L2(M) to L2(M). These are our intuitive arguments:

We know that general functional analysis does not suffice to obtain the bounded-
ness of the sectorial projection. The more refined structure of differential or pseudo-
differential operators is required. Apparently, for variation in the highest order, the
principal symbol must be singled out. All that indicates that variation in the operator
norm hardly will suffice for continuous variation of the sectorial projection.

We use the following convention which will be in effect for the rest of this note:

Convention 2.1 We denote the norm on the space B(Hs, Ht ) of bounded operators
from the Sobolev space Hs(M; E) to Ht (M; E) by ‖ · ‖s,t .
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Let Lm−1(M, E) [resp. CLm(M, E)] denote the space of (m − 1)th order pseudo-
differential operators on E (resp. mth order classical pseudo-differential operators). Set
Lm

pc(M, E) := CLm(M, E)+Lm−1(M, E). We call it the space of principally classical

pseudo-differential operators. Since CLm(M, E) ∩ Lm−1(M, E) = CLm−1(M, E),
the principal symbol map

σm : Lm
pc(M, E) → C∞(S∗M; End(π∗E))

is well-defined. Here π : S∗M → M denotes the canonical projection map. We fix a
right inverse

Op : C∞(S∗M; End(π∗E)) → Lm
pc(M, E)

of σm, obtained by patching together the local Op-maps (2.4) via a partition of unity.
Define a map

C∞(S∗M; End(π∗E)) ⊕ Lm−1(M, E) → Lm
pc(M, E)

a ⊕ B �→ Op(a)+ B.
(2.8)

It is a bijection with the inverse

Lm
pc(M, E) → C∞(S∗M; End(π∗E)) ⊕ Lm−1(M, E)

T �→ Op(σm(T )) ⊕ T − Op(σm(T )).
(2.9)

We topologize the right hand side of (2.9) as follows:

1. On Lm−1(M, E)we take the countably many semi-norms ‖T ‖k+m−1,k for k ∈ Z.
2. The summand C∞(S∗M; End(π∗E)) is equipped with the C∞-topology. This

is known to be a Fréchet-topology, hence is generated by countably many semi-
norms (p j ) j∈Z+ .

Definition 2.2 The locally convex topology on Lm
pc(M, E) induced by the countably

many semi-norms ‖ · ‖k+m−1,k, k ∈ Z and p j , j ∈ Z+ is denoted by T .

It follows from complex interpolation that for each real s the (semi)-norm
‖ · ‖s+m−1,s is continuous with regard to T . Furthermore, it is straightforward to see
that T is independent of the choice of Op. Moreover, it is worth noting that T is not
complete. By construction, the completion of Lm

pc(M, E) is a Fréchet space which is
of the form

CZm−1(M, E)⊕ C∞(S∗M; End(π∗E)).

Here CZ•(M, E) is (a variant of) the well-known Calderón–Zygmund graded algebra
(cf. [30, Chapter 16]).

Remark 2.3 We record that a sequence (Tn)n∈N ⊂ Lm
pc(M, E) converges to T ∈

Lm
pc(M, E) if and only if

(i) σm(Tn) −→ σm(T ) in the C∞-topology of C∞(S∗M; End(π∗E)), and
(ii) Tn −Op(σm(Tn)) −→ T −Op(σm(T ))with regard to ‖ ·‖k+m−1,k for all k ∈ Z.
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2.4 The definition of P�+(A)

We shall give our definition in some detail. These details will be decisive for proving
the perturbation results.

2.4.1 Our data

Our data are as in Convention 1.1. More specifically, we shall assume A ∈ Lm
pc(M, E)

and that the principal symbol am(x, ξ) of A has no eigenvalues on the rays Lα j , j =
1, 2 for each point x ∈ M and covector ξ ∈ T ∗

x M, ξ �= 0. For simplicity, denote the
principal symbol σm

A (x, ξ) by am = am(x, ξ). Note that every ray of minimal growth
has a cone-shaped neighborhood � such that any ray contained in � is also a ray of
minimal growth for A. Then there exists R > 0 such that Conventions 1.1(c)–(d) are
satisfied and A − λ is invertible for λ ∈ �, |λ| > R. Moreover, we have

‖(A − λ)−1‖s,s+p ≤ C |λ|−1+ p
m , 0 ≤ p ≤ m, s ∈ R, (2.10)

for any such λ. For the proof of (2.10) see [34, Corollary 1]. For differential operators
see also [35, Theorem 9.3]. Equation (2.10) explains the common usage of “ray of
minimal growth of the resolvent” for such spectral cutting rays.

2.4.2 Definition of the sectorial projection and our goal

Equation (2.10) explains why we cannot expect convergence of the integral∫
�+(A − λ)−1 dλ, which is familiar in the bounded case presented above in (1.1).

The common way to get something finite is to guarantee convergence of the integral
by inserting a factor λ−1 and to compensate by multiplying the integral by A.

Definition 2.4 For the preceding data, we define

P�+(A) := −1

2π i
A�(A), �(A) :=

∫

�+

λ−1 (A − λ)−1 dλ. (2.11)

Remark 2.5 (a) In view of the estimate (2.10), the composition of A with the inte-
gral �(A) a priori gives rise to an unbounded operator on L2(M; E) with domain
∪s>0 Hs(M; E). The nice fact, however, is that P�+(A) truly is a bounded operator
(see Sect. 5.1).
(b) Our goal is to prove that with respect to the topology T

P�+ : Ellm�+(M, E) −→ B(Hs(M; E)) is continuous for all s ∈ R. (2.12)

Here we keep the rays Lα j , j = 1, 2 and the contour �+ fixed and set

Ellm�+(M, E) := {A ∈ Lm
pc(M, E) | A elliptic, spec A ∩ �+ = ∅ (2.13)

and Lα j , j = 1, 2 rays of minimal growth}.
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(c) As a side result, we shall show under what conditions P�+(A) becomes a pseudo-
differential operator. We consider that of minor importance. The proof of (b) will
anyway show that P�+(A) is of the form P�+,0(A)+ K with P�+,0(A) ∈ L0

pc(M, E)
and K a compact operator.

2.5 First reduction

The factorization of P�+(A) = −1
2π i A�(A) in Eq. (2.11) of Definition 2.4 permits a

first reduction of our problem.

Lemma 2.6 Suppose that the map

� : Ellm�+(M, E) � A �→
∫

�+

λ−1 (A − λ)−1 dλ ∈ B(Hs, Hs+m) (2.14)

is continuous and that ‖ · ‖s,s+m is a continuous (semi-)norm with respect to T . Then
our claim (2.12) holds.

Proof Given A ∈ Ellm�+(M, E). Then there is a neighborhood U of A such that
‖ · ‖s+m,s is bounded on U . Hence we reach the conclusion from

‖P�+(A)− P�+(B)‖s,s

≤ ‖A − B‖s+m,s ‖�(A)‖s,s+m + ‖B‖s+m,s ‖�(A)−�(B)‖s,s+m .

��
This Lemma reduces the problem to the task of considering

∫
λ−1 (A − λ)−1 dλ,

which is more convenient.

3 Local considerations

In our Definition 2.2, we specified our topology T , see also Remark 2.5(b). Now we
shall successively identify the corresponding (semi-)norms on Lm

pc which ensure that
P�+ is continuous.

3.1 Cut-off symbols

In the Appendix B, we explain why we cannot deform and extend the symbol am(x, ξ)
in a suitable way. However, we can easily deform and extend (am(x, ξ)− λ)−1 in the
usual way as a smoothed resolvent symbol [35, Sects. 11.3–11.4] (similarly, e.g., Bilyj
et al. in the recent [7, Definition 2.5]). Recall that we denote the principal symbol of
A by am(x, ξ) and that we have assumed that

spec am(x, ξ) ∩ Lα j = ∅ for (x, ξ) ∈ T ∗M, ξ �= 0, j = 1, 2. (3.1)
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Thus, there is a constant ρ > 0 such that am(x, ξ) − λ is invertible for (x, ξ) ∈
T ∗M, |ξ | ≥ ρ and λ ∈ �+. Hence, for any cut-off function ψ ∈ C∞(Rn) with

ψ(ξ) =
{

0, for |ξ | ≤ ρ,

1, for |ξ | � 0,
(3.2)

(that is, the function 1 − ψ is compactly supported) and for each λ ∈ �+ the symbol

(x, ξ) �→ ψ(ξ)(am(x, ξ)− λ)−1 (3.3)

is a classical symbol of order −m.

3.2 Symbol estimates and semi-norms

From now on we shall switch forward and backward between arguing locally (in the
open domain U ⊂ R

n) and globally (on M). With the preceding symbol am and cut-off
function ψ, we shall write

rψ(x, ξ, λ) := ψ(ξ)(am(x, ξ)− λ)−1. (3.4)

For fixed λ we have rψ(·, ·, λ) ∈ CS−m(U × R
n, E). Considered as a λ-dependent

symbol, it does not necessarily belong to the usual parameter dependent calculus.
Actually, the cut-off ψ prevents this.

However, we have the following symbol estimates, which are uniform in λ ∈ �+:

|∂αx ∂βξ rψ(x, ξ, λ)| (3.5)

≤
{

C0,0(1 + |ξ | + |λ|1/m)−m, α = β = 0,
Cα,β(1 + |ξ |)m−|β| (1 + |ξ | + |λ|1/m)−2m, (α, β) �= (0, 0),

≤ Cα,β(1 + |ξ |)−|β| (1 + |ξ | + |λ|1/m)−m .

The proof is an exercise in induction and Leibniz rule.
What is important is that the best constants Cα,β in (3.5), as functions of am , are con-

tinuous semi-norms on the space Ck(S∗M; End(π∗E)) of sections with k := |α|+|β|.
In particular, they are continuous semi-norms on the space C∞(S∗M; End(π∗E)).

As a consequence, we have the following: for fixed k and fixed symbol am ∈
C∞(S∗M; End(π∗E)) there is an open neighborhood U of am such that Cα,β, |α| +
|β| ≤ k, are bounded on U and such that each bm ∈ U is “invertible” on �+, that is,
it satisfies the same Ell�+ -conditions as am .

Note. We have to fix k and cannot bound infinitely many semi-norms simulta-
neously: the intersection of infinitely many open Uα,β might be non-open.

3.3 A first approximation

The symbolic calculus yields the following first approximation result.
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Proposition 3.1 (a) For am and rψ as above, the operator

�0(am) :=
∫

�+

λ−1 Op
(
rψ(·, ·, λ)) dλ (3.6)

belongs to the class CL−m(U, E).
(b) �0 ◦ σm : Ellm�+(M, E) → B(Hs, Hs+m) is continuous with regard to T .

Proof For (a) we see that

ψ(ξ)

∫

�+

λ−1 (am(x, ξ)− λ)−1 dλ =
∫

�+

λ−1 rψ(x, ξ, λ) dλ

is homogeneous of degree −m outside a compact set, and smooth otherwise. Recall
that principal symbols are determined by their values in {(x, ξ) ∈ T ∗M | |ξ | ≥ C}
where C is any positive constant. That proves (a).
For (b) we have that in the topology T ,

σm : Lm
pc(M, E) → C∞(S∗M,End(π∗E))

is continuous. We denote the space of symbols analogue of the operator space Ellm�+
by C∞

�+(S
∗M,End(π∗E)). Certainly,

C∞
�+(S

∗M,End(π∗E)) −→ CS−m(T ∗M,End(π∗E))
am �−→ ∫

�+ λ
−1 ψ(ξ) (am(x, ξ)− λ)−1 dλ

and

Op : CS−m(T ∗M,End(π∗E)) −→ B(Hs, Hs+m)

are continuous. That proves (b). ��

4 A technical lemma and key estimates

4.1 A technical lemma

In this subsection, we shall give a technical lemma which is crucial in the proof
of our main theorem. It is a variant form (with a parameter) of the composition of
pseudo-differential operators. As a service to the reader, we give a detailed proof of
this lemma in the Appendix A. Our claims and arguments are local for a fixed open
coordinate patch U ⊂ R

n .

Definition 4.1 For a compact subset K ⊂ U we denote by Sm
K (U×R

n) ⊂ Sm(U×R
n)

those a ∈ Sm(U ×R
n) such that a(x, ξ) �= 0 implies x ∈ K . CSm

K (U ×R
n) is defined
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accordingly. A typical example is a(x, ξ) = θ(x)b(x, ξ) with b ∈ Sm(U × R
n) and

a cut-off function θ ∈ C∞
c (U ).

Clearly, the preceding definitions carry over to matrix valued symbols and to glob-
ally defined symbols with values in bundle endomorphisms.

Lemma 4.2 (Technical Lemma) Let m > 0, 0≤r ≤ m. Let f, g ∈C∞(U ×R
n×�+)

such that for λ ∈ �+

f (·, ·, λ) ∈ Sr
K (U × R

n), g(·, ·, λ) ∈ S−m
K (U × R

n).

Assume that

|∂αx ∂βξ f (x, ξ, λ)|

≤
{

C0,0( f )(1 + |ξ | + |λ|1/m)r , α = β = 0,
Cα,β( f )(1 + |ξ |)m−|β|(1 + |ξ | + |λ|1/m)r−m, |α| + |β| > 0, (4.1)

and

|∂αx ∂βξ g(x, ξ, λ)| ≤ C̃α,β(g)(1 + |ξ |)−|β|(1 + |ξ | + |λ|1/m)−m, (4.2)

where C·,·(·), C̃·,·(·) are constants depending on certain datas in the dots’ positions.
Set CN ( f ) = ∑

|α|,|β|≤N Cα,β( f ) and C̃N (g) = ∑
|α|,|β|≤N C̃α,β(g). Then for s ∈ R,

there is an N (s) ∈ N and C > 0 such that

‖Op(g(·, ·, λ))Op( f (·, ·, λ))− Op(g f (·, ·, λ))‖s,s+m−r

≤ CCN (s)( f )C̃N (s)(g)|λ|− min
(

1
m ,1

)
.

Remark 4.3 We should notice that CN (·) and C̃N (·) are semi-norms if we choose the
smallest constants Cα,β(·) and C̃α,β(·) in (4.1), (4.2). Moreover, CN ( f ) and C̃N (g)
are dominated by the finitely many constants Cα,β( f ) and C̃α,β(g), |α|, |β| ≤ N ,
respectively.

Now we give some additional examples.

Example 4.4 g(x, ξ, λ) := ψ(ξ)(am(x, ξ)− λ)−1 satisfies (4.2). See (3.5).

Example 4.5 f (x, ξ, λ) :=a(x, ξ)− λ satisfies (4.1) with r =m. If b∈CSm
K (U ×R

n)

is a symbol of order m, then f (x, ξ, λ) := ψ(ξ)(am(x, ξ) − λ)−1b(x, ξ) =
rψ(x, ξ)b(x, ξ) also satisfies (4.1) with r = 0. Note that in this case

∑
|α|,|β|≤N

Cα,β( f ) ≤
⎛
⎝ ∑

|α|,|β|≤N

Cα,β(r
ψ)

⎞
⎠

⎛
⎝ ∑

|α|,|β|≤N

Cα,β(b)

⎞
⎠ .

Here Cα,β(b) denotes the best constant in the symbol estimate for ∂αx ∂
β
ξ b(x, ξ) and

Cα,β(rψ) is of similar meaning.
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Remark 4.6 Note that in the examples above, Cα,β( f ) and Cα,β(g) are bounded by a
Ck-norm on am (and bm in the preceding example) for sufficiently large k.

4.2 Key estimates

Before proving the main result of this note, we give some more estimates.

Lemma 4.7 Given A ∈ Ellm�+(M, E). Then for s ∈ R, 0 ≤ p ≤ m, and all λ ∈ �+
we have

‖Op(ψ(am − λ)−1)‖s,s+p ≤ Cs(A)|λ|−1+ p
m . (4.3)

Furthermore, to s there is Ns ∈ N such that Cs(A) is bounded by the C Ns -norm of am

on S∗M.

In other words, to A there is an open neighborhood U of am (in the C Ns -topology)
such that the map B �→ Cs(B) is bounded on the open set σ−1

m (U ).

Proof Use the standard method of estimating norms of pseudo-differential operators
as in Seeley [34, Lemma 2]. Of course it also follows from the method presented in
the preceding section. ��
Lemma 4.8 Given A ∈ Ellm�+(M, E). Then for s ∈ R and all λ ∈ �+

‖Op(ψ(am − λ)−1)− (A − λ)−1‖s,s+m ≤ Cs(A)|λ|− min
(

1
m ,1

)
. (4.4)

Cs(A) has the same property as in Lemma 4.7.

Proof Put A = Op(a) for the complete symbol a. Write a = am + am−1. Then we
have

(A − λ)(Op(ψ(am − λ)−1 − (A − λ)−1)) = Op(am − λ)Op(ψ(am − λ)−1)

−Op(ψ)− Op(1 − ψ)+ Op(am−1)Op(ψ(am − λ)−1).

Note that (A − λ)(A − λ)−1 = I = Op(1) and Op(1 − ψ) is a smoothing operator
(because 1 − ψ is compactly supported). Hence

‖Op(ψ(am − λ)−1)− (A − λ)−1‖s,s+m

≤ ‖(A − λ)−1‖s,s+m‖Op(am − λ)Op(ψ(am − λ)−1)− Op(ψ)‖s,s

+‖(A − λ)−1‖s+m,s+m‖Op(1 − ψ)‖s,s+m

+‖(A − λ)−1‖s,s+m‖Op(am−1)‖s+m−1,s‖Op(ψ(am − λ)−1)‖s,s+m−1

≤ Cs(A)|λ|− min( 1
m ,1)

by the Technical Lemma 4.2, applied to f = am−λ, g = ψ(am−λ)−1 and Lemma 4.7.
The local boundedness claim on Cs(A) also follows from this lemma. ��
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5 Applications

As an application of the technical lemma and the preceding estimates, we prove that
the sectorial projections depend continuously on the underlying operators in the topol-
ogy T to be fixed below. We shall explain in detail how that perturbation result yields
the continuous variation of the Calderón projection (and hence of the Cauchy data
spaces) of arbitrary linear elliptic differential operators of first order on smooth com-
pact manifolds with boundary under the assumption of the inner unique continuation
property.

5.1 The operator type of the sectorial projection

As explained in the Introduction, Wodzicki’s Eq. (1.5) yields at once that the sectorial
projection is a pseudo-differential operator of order 0, at least for classical pseudo-
differential operators.

Our estimates are designed for the perturbation problem and do not give such a
sharp result. All we can derive immediately is that the operator P�+(A) is bounded
Hs(M; E) → Hs(M; E) for all s ∈ R. Note that we do not require that A is classical.
We only assume that A is principally classical.

As usually, we argue locally. By Proposition 3.1a, �0(am) ∈ CL−m(U, E). Fur-
thermore, by Lemma 4.8

‖Op(ψ(am − λ)−1)− (A − λ)−1‖s,s+m ≤ Cs(A)|λ|− min
(

1
m ,1

)

for λ ∈ �+, thus by Definition 2.4 and (3.6)

‖P�+(A)− A�0(am)‖s,s ≤ Cs(A)
∫

�+

|λ|−1−min
(

1
m ,1

)
|dλ|,

and the claim follows.

5.2 Proof of Theorem 1.2

From now on we equip Ellm�+(M, E) with the topology T . Let A ∈ Ellm�+(M, E) and

�A be in a neighborhood of 0. Since�(A) = ∫
�+ λ

−1(A −λ)−1dλ and A → �0(A)
is continuous, it is sufficient to prove an estimate, uniformly on �+, of the form

‖(A+�A−λ)−1−(A − λ)−1 − Op(ψ((am +�am − λ)−1 − (am − λ)−1))‖s,s+m

≤ Cs(A,�A)|λ|− min( 1
m ,1), (5.1)

such that the following holds: given ε > 0, there is a neighborhood U of 0 (in the
locally convex topology T ) such that for all �A ∈ U,Cs(A,�A) < ε.
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To prove (5.1), we make an elementary algebraic re-ordering of the left side of (5.1)
into five summands and invoke the triangle inequality successively:

(5.1), left side = ‖(A − λ)−1(−�A)(A +�A − λ)−1

− Op(ψ(am − λ)−1 (−�am)(am +�am − λ)−1)‖s,s+m

≤ ‖(A − λ)−1 − Op(χ(am − λ)−1)‖s,s+m

·‖�A(A +�A − λ)−1‖s,s

+‖ Op(χ(am − λ)−1)‖s,s+m

·‖�A − Op(χ1�am)‖s+m−1,s ‖(A +�A − λ)−1‖s,s+m−1

+‖ Op(χ(am − λ)−1)Op(χ1�am)‖s+m,s+m

·‖A +�A − λ)−1 − Op(χ2(am +�am − λ)−1)‖s,s+m

+‖{Op
(
χ(am − λ)−1)Op(χ1�am)− Op(χ(am − λ)−1�am)}

· Op(χ2(am +�am − λ)−1)‖s,s+m

+‖ Op(χ(am − λ)−1�am)Op(χ2(am +�am − λ)−1)

− Op(ψ(am − λ)−1�am (am +�am − λ)−1)‖s,s+m .

Here we choose χ, χ1, χ2 with the same properties like ψ such that χ = χχ1 and
χχ2 = ψ .

Now apply the Technical Lemma 4.2 to the last two summands and the Lemmata
4.7 and 4.8 to the first three summands, and we are done.

Remark 5.1 We note in passing that in the first three lines of the proof of Propo-
sition 3.1 it is decisively used that the integrand is homogeneous in λ. This is an
obstruction against an immediate generalization of our perturbation result to general
holomomorphic functions of A in an H∞-calculus style (cf., e.g., [7]). To explain this
a bit more, let f be a function, which is holomorphic and bounded in a neighborhood
of the closure of the sector encircled by �+. This is not quite the situation of the H∞
calculus, since there are also eigenvalues on the left of the contour. Nevertheless, one
might hope that similarly to loc. cit. one can prove that f (A) is a bounded operator.
Still there is no immediate analogue of Proposition 3.1 in this case and we leave it
as an intriguing open problem whether the Perturbation Theorem 1.2 carries over to
f (A) instead of P�+(A).

5.3 Index correction formulas

The sectorial projections are significant in the celebrated Atiyah–Patodi–Singer Index
Theorem. A common set-up is the following: Let X be a compact smooth Riemannian
manifold with boundary M, and E and F be two Hermitian vector bundles over X .
Let D : H1(X; E) → L2(X; F) be a first order elliptic differential operator and let
A : H1(M; E |M ) → L2(M; E |M ) denote the tangential operator of D on M relative
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to the fixed metric structures. In the classical works [2–4], Atiyah et al. Singer assumed
that D is of Dirac type; all metric structures near M are product; hence, the coeffi-
cients of D in normal direction close to M are constant and the tangential operator
A is self-adjoint. Imposing a spectral projection condition P+(A)u|∂X = 0 on the
boundary, they proved that the resulting (densely defined) operator DP+(A) over X
is Fredholm. Furthermore, they gave an index formula, comprising topological, spec-
tral and differential terms. The arguments of [4, p. 95] (worked out in [32, Theorem
1.4] and, differently and in detail, in [26, Theorem 7.6]) lead to the index correction
formula

ind(D0)P+(A0) − ind(D1)P+(A1) = sf{At }t∈[0,1], (5.2)

where {Dt , t ∈ [0, 1]} is a smooth homotopy, and {At } denotes its corresponding
family of tangential operators. It is also called the Spectral Flow Theorem. The con-
tinuous dependence of P+(At ) on At [in the sense that P+(At ) has the same jumps
as 1(−ε,ε)(At ), if ±ε �∈ spec At ] is important in this theorem. When At is self-adjoint,
it can be proved by standard techniques of functional analysis (cf. [12, Chapter 17] or
above Sect. 1.1.1 of this note).

It is natural to consider a more general case. In [33], Savin et al. gave a similar
formula for the case that the tangential family At is non-self-adjoint. It seems very
satisfactory that we now have a proof of the continuous dependence of P+(At ) on At

when At has no spectral points on the imaginary axis for all t ∈ [0, 1].

5.4 Continuous dependence of the Calderón projection on the data

In [11, Sect. 7] we discussed the problem of continuous dependence on the input data
of the Calderón projection associated to a first order elliptic differential operator on
a compact manifold with boundary. On the one hand this can be viewed as the rather
classical problem of showing that the space of solutions of a PDE (here the equation
Du = 0 in the interior) depends continuously on the data. The question arises natu-
rally in connection with the Spectral Flow Theorem of symplectic geometry and has
been proved in various special cases (see e.g. [9,14,15,22,25,28]).

Since our main motivation for writing the current note comes from this problem
(see the recent [8]), let us briefly describe the set-up and the main result of [11, Sect. 7]
as well as the improvement provided by Theorem 1.2.

Let X be a compact connected manifold with boundary M and E, F vector bundles
over X . We fix a Riemannian metric and Hermitian metrics on the vector bundles to
have Hilbert space structures on the sections of E, F . We choose the metrics in such
a way that all structures are product in a collar neighborhood U = [0, ε)× M of the
boundary. We emphasize that this is not a loss of generality since we will consider
variable coefficient differential operators, see the detailed discussion in [11, Sect. 2.1].

For a first order elliptic differential operator D ∈ Diff1(X; E, F)we write (cf. [11,
(2.18), (2.19), (5.11)–(5.16)]) in the collar U :
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D = Jx

(
d

dx
+ Bx

)

=: J0

(
d

dx
+ B0

)
+ C1x − J ′

0

Dt =
(

− d

dx
+ Bt

0

)
J t

0 + C̃1x . (5.3)

where Jx ∈ Hom(EM , FM ), 0 ≤ x ≤ ε, is a smooth family of bundle homomor-
phisms and (Bx )0≤x≤ε is a smooth family of first order elliptic differential operators
between sections of EM . C1, C̃1 are first order differential operators and, by slight
abuse of notation, x will also denote the operator of multiplication by the function
x �→ x . We note that x is intentionally on the right of C1, C̃1. Dt denotes the formal
adjoint of D with respect to the L2-structure. We consider Jx , Bx ,C1, C̃1 as functions
of D.

Next we denote by E(X; E, F) the set of pairs (D, T ) ∈ Diff1(X; E, F) ×
Diff0(M; EM , FM ) such that

(1) D is elliptic
(2) J t

0 T is positive definite (in particular self-adjoint) and the commutator [J t
0 T, B0]

is a differential operator of order 0.

Recall from [11, Sect. 4] the invertible double construction associated to a pair
(D, T ) ∈ E(X; E, F): Put

D̃ := D ⊕ (−Dt ), (5.4)

acting on sections of E ⊕ F, and impose the boundary condition

(
f+
f−

)
∈ dom(D̃T ) :⇔ f−|∂X = T f+|∂X ⇔ ( f+|∂X , f−|∂X ) ∈ ker(−T Id ).

(5.5)

Our [11, Theorem 4.7] states that D̃T is a realization of a local elliptic bound-
ary value problem (in the classical Šapiro–Lopatinskiǐ sense) and that the kernel and
cokernel of D̃T are isomorphic to the direct sum of the spaces of ghost solutions
Z0(D) = {u ∈ L2(X, E) | Du = 0, u|∂X = 0} and Z0(Dt ) for D and Dt . In partic-
ular if D and Dt satisfy the weak inner UCP (i.e. Z0(D) = 0 = Z0(Dt )) then D̃T is
indeed invertible. This canonical invertible double construction is the natural gener-
alization of the geometric invertible double construction for Dirac type operators in
the product situation (cf. e.g. [12]) to general first order elliptic differential operators.

Furthermore, in [11, Sect. 5] we showed that from D̃T one obtains a projection (the
Calderón projection) onto the Cauchy data space N 0(D) := {

u|∂X ∈ L2(∂X; E |∂X )
∣∣

Du = 0
}

of D by the formula [11, (5.31)]

C+(D, T ) = (P+ − �+G̃S(D, T ))(P+ + P∗−)−1. (5.6)



Perturbation of sectorial projections 69

Note that the range of C+(D, T ) equals N 0(D) and is independent of T . However,
C+(D, T ) is in general not an orthogonal projection and may depend on T . C+(D, J t

0)

is indeed the orthogonal projection onto N 0(D).
Now denote by EUCP(X; E, F) the set of (D, T ) ∈ E(X; E, F) such that D and

Dt satisfy weak inner UCP.
Let V(X; E, F) be the linear subspace of Diff1(X; E, F) × Diff0(M; EM , FM )

consisting of those (D, T ) such that [Bt
0, J t

0 T ] is of order 0; and introduce the follow-
ing two norms on V(X; E, F):

N0(D, T ) := ‖D‖1,0 + ‖Dt‖1,0 + ‖T ‖1/2,1/2, (5.7)

and

N1(D, T ) := ‖B0‖1,0 + ‖Bt
0‖1,0 + ‖[Bt

0, J t
0 T ]‖0 + ‖T ‖0 (5.8)

+‖J0‖0 + ‖C1‖1,0 + ‖C̃1‖1,0.

Compared to [11, (7.1), (7.2)] we have omitted a few redundant terms. We obtain a
metric on V(X; E, F) and hence on its subsets by putting

dstr((D, T ), (D′, T ′)) := N0(D − D′, T − T ′)+ N1(D − D′, T − T ′). (5.9)

Finally, let � be a contour as in (1.3) and let EUCP,�(X; E, F) be the set of those
(D, T ) ∈ EUCP(X; E, F) such that the leading symbol of B0 has no eigenvalues on
the two rays Lα j of � and B0 no eigenvalues on �.

[11, Theorem 7.2 (b)] can now be phrased as follows:

Theorem 5.2 Let s ∈ [−1/2, 1/2] and let T� be the coarsest topology on
EUCP,�(X; E, F) such that

(1) dstr is continuous on EUCP,�(X; E, F)× EUCP,�(X; E, F),
(2) (D, T ) �→ P�(B0) ∈ B(Hs(M; EM )) is continuous.

Then the map EUCP,�(X; E, F) � (D, T ) �→ C+(D, T ) ∈ B(Hs(M; EM )) is con-
tinuous.

As pointed out in [11, Remark 7.3] the obvious weakness of this result is that the
continuous dependence of P�(B0) has to be assumed.

Combining Theorem 5.2 with Theorem 1.2 we obtain a much more satisfactory for-
mulation of the continuous dependence of C+(D, T ) without reference to a positive
sectorial projection:

Theorem 5.3 Let s ∈ [−1/2, 1/2] and let T be the coarsest topology on
EUCP(X; E, F) such that

(1) dstr is continuous on EUCP(X; E, F)× EUCP(X; E, F),
(2) The leading symbol map for the tangential operator σ : EUCP(X; E, F) �→

�∞(S∗M, π∗(EndEM )), (D, T ) �→ σ1(B0) (π : S∗M → M the projection
map) is continuous when �∞(S∗M, π∗(End(EM )) is equipped with the C∞–
topology.
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Then C+ : (EUCP(X; E, F), T ) −→ B(Hs(M, EM )) is continuous.

Remark 5.4 1. The restrictions s ∈ [−1/2, 1/2] in Theorems 5.2 and 5.3 are not seri-
ous. For other values of s the metric dstr has to be modified in a fairly straightforward
way.
2. Let T ∞ be the coarsest topology on EUCP(X; E, F) such that in each chart the
coefficient functions of a coordinate representation of D ∈ EUCP(X; E, F) vary con-
tinuously in the C∞-topology (cf. e.g. [22, Theorem 3.16]).

Then it is a routine matter to check that T ∞ is finer than the topology T of Theo-
rem 5.3. In fact it is fine enough to guarantee the continuity C+ : (EUCP(X; E, F), T ∞)
−→ B(Hs(M, EM )) for all real s (cf. item 1. of this Remark).

This version of the continuous dependence of C+, although strictly speaking some-
what weaker than Theorem 5.3, is probably the most satisfactory way of summarizing
its content.
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wish to thank the referee for his or her criticism and suggestions that helped to condensate our arguments
and, hopefully, lead to an easier readable note.

Appendix A

In this appendix, we provide the details of the proof of our Technical Lemma 4.2. We
first translate the wanted estimates into statements about integral operators.

A.1. L2-estimates for integral operators and other estimates

We recall the well-known and very useful Schur’s Test for integral operators (see, e.g.,
Halmos and Sunder [21, Theorem 5.2]):

Lemma A.1 (Schur’s Test) Let K be an integral operator with measurable kernel
k : R

n × R
n → C. Assume that

sup
x∈Rn

∫

Rn

|k(x, y)|dy ≤ C1 < +∞ and sup
y∈Rn

∫

Rn

|k(x, y)|dx ≤ C2 < +∞.

Then K is bounded L2(Rn) → L2(Rn) and ‖K‖L2→L2 ≤ √
C1C2.

In particular, if for some p > n

|k(x, y)| ≤ C3(1 + |x − y|)−p,

then the criterion is fulfilled with

C1 = C2 = C3

∫

Rn

(1 + |ξ |)−pdξ.
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Now fix U ⊂ R
n open, K ⊂ U compact and a ∈ Sm

K (U × R
n). Then Schur’s test

yields an effective estimate for ‖ Op(a)‖s,s−m .
To explain that, we introduce some notations. For the Fourier transform, we shall

follow Hörmander’s convention

(F f )(ξ) :=
∫

Rn

e−i〈x,ξ〉 f (x)dx, (F−1u)(x) := (2π)−n
∫

Rn

ei〈x,ξ〉u(ξ)dξ

d̄ξ := (2π)−ndξ.

Then we have

(F Op(a)u) (η) :=
∫

Rn

e−i〈x,η〉(Op(a)u
)
(x)dx

=
∫

Rn

⎡
⎣

∫

U

ei〈x,ξ−η〉a(x, ξ)d̄x

⎤
⎦ û(ξ)dξ.

We set qa(ξ − η, ξ) := [· · · ] in the preceding formula and define

Definition A.2 For a ∈ Sm
K (U × R

n), we set

qa(ζ, ξ) := (F−1
x→ζa(x, ξ))(ζ ) =

∫

K

ei〈ζ,x〉a(x, ξ)d̄x .

Since a(x, ξ) is nonzero at most if x ∈ K the integral certainly exists. The method
we are going to employ is adapted from [18, Lemma 1.2.1]. Lemma 1.2.1 (b) of
loc. cit. shows that qa(ζ, ξ) decays to arbitrarily high powers (reproved below) in ζ
(as ζ → ∞) and is polynomially bounded in ξ . Hence all integrals below converge
in the usual sense.

Consequently, the kernel of the integral operator F Op(a)F−1 is given by
ka(τ, ξ) := qa(ξ − τ, ξ). To estimate the operator norm ‖ · ‖s,s−m of Op(a) it suf-
fices therefore to estimate the norm of the operator F Op(a)F−1 as a map from the
weighted L2-space L2(Rn, (1 +‖ξ‖2)s) into L2(Rn, (1 +‖ξ‖2)s−m). By Schur’s test
an estimate of the form

|(1 + |τ |)s−mka(τ, ξ)(1 + |ξ |)−s | ≤ C(a)C(p)(1 + |τ − ξ |)−p for some p > n

(A.1)

implies

‖ Op(a)‖s,s−m ≤ C(a)C̃(p) with C̃(p) := C(p)
∫

Rn

(1 + |x |)−pdx .
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Proof of the Main Technical Lemma. Let f (·, ·, λ) ∈ Sr
K (U ×R

n), g(·, ·, λ) ∈ Sm
K (U ×

R
n) satisfying (4.1), (4.2) be given. In the sequel we will suppress the argument λ from

the notation for simplicity. We should be aware that all expressions will depend on λ
unless otherwise stated. The kernel of the operator F Op( f )Op(g)F−1 is given by

k f ·g(τ, ξ) =
∫

Rn

k f (τ, η)kg(η, ξ)dη =
∫

Rn

q f (η − τ, η)qg(ξ − η, ξ)dη.

On the other hand

q f ·g(ζ, ξ) =
∫

Rn

ei〈ζ,x〉 f (x, ξ)g(x, ξ)d̄x

= F−1( f (·, ξ)g(·, ξ))(ζ )
=

∫

Rn

q f (ζ − η, ξ)qg(η, ξ)dη,

respectively,

k f ·g(τ, ξ) = q f ·g(ξ − τ, ξ)

=
∫

Rn

q f (ξ − τ − η, ξ)qg(η, ξ)dη; ξ − η � η

=
∫

Rn

q f (η − τ, ξ)qg(ξ − η, ξ)dη.

Thus the kernel of F{Op( f )Op(g)− Op( f · g)}F−1 is given by

k(τ, ξ, λ) :=
∫

Rn

{q f (η − τ, η)− q f (η − τ, ξ)}qg(ξ − η, ξ)dη. (A.2)

We are now going to estimate this kernel. The estimate of qg is standard: for any
multiindex α, ζ ∈ R

n we have (for Dα
x := −i∂α1+···αn/∂xα1

1 · · · ∂xαn
n , as usual):

|ζ αqg(ζ, ξ, λ)| =
∣∣∣∣∣∣
∫

K

ei〈ζ,x〉 Dα
x g(x, ξ, λ)d̄x

∣∣∣∣∣∣ ≤ vol(K )Cα(g)(1 + |ξ | + |λ|1/m)−m .

Since α is arbitrary, we see that for any N ∈ N

|qg(ζ, ξ, λ)| ≤ C̃N (g)(1 + |ζ |)−N (1 + |ξ | + |λ|1/m)−m . (A.3)



Perturbation of sectorial projections 73

Next we discuss the difference q f (ζ, η, λ)−q f (ζ, ξ, λ). Again for a multiindex α we
have

|ζ α(q f (ζ, η, λ)−q f (ζ, ξ, λ))| =
∣∣∣∣∣∣
∫

K

ei〈ζ,x〉{Dα
x ( f (x, η, λ)− f (x, ξ, λ))}d̄x

∣∣∣∣∣∣
≤

∫

K

sup
t∈[0,1], |β|=1

|Dα
x ∂

β
ξ f (x, ξ+t (η−ξ), λ)|d̄x |ξ−η|

≤ C sup
t∈[0,1]

(1 + |ξ + t (η − ξ)|)m−1

×(1 + |ξ + t (η − ξ)| + |λ| 1
m )r−m |ξ − η|

with C := vol(K )CN ( f ) and N := max(|α|, 1), that is,

|q f (ζ, η, λ)− q f (ζ, ξ, λ)| ≤ vol(K )CN ( f )(1 + |ζ |)−N |ξ − η| ·
sup

t∈[0,1]
(1 + |ξ + t (η − ξ)|)m−1(1 + |ξ + t (η − ξ)| + |λ| 1

m )r−m . (A.4)

To estimate the norm of Op( f )Op(g)−Op( f · g) as an operator from Hs to Hs+m−r

we need to estimate the norm of the integral operator in L2(Rn)whose kernel is given
by [see (A.1)]

k̃(τ, ξ, λ) = (1 + |τ |)s+m−r k(τ, ξ, λ)(1 + |ξ |)−s,

where k(τ, ξ, λ) is defined in (A.2). From (A.2), (A.3) and (A.4) we infer

|̃k(τ, ξ, λ)| ≤ CN ( f )C̃N (g)
∫
(1 + |η − τ |)−N |ξ − η| (1 + |ξ − η|)−N

×(1 + |ξ | + |λ| 1
m )−m(1 + |τ |)s+m−r

×(1 + |ξ |)−s sup
t∈[0,1]

(1 + |ξ + t (η − ξ)|)m−1

×(1 + |ξ + t (η − ξ)| + |λ| 1
m )r−md̄η. (A.5)

Note that we may choose N as large as we please. We now distinguish two cases.
Case I: |η − ξ | ≤ 1

2 |ξ |. Then for 0 ≤ t ≤ 1, 1
2 |ξ | ≤ |ξ + t (η − ξ)| ≤ 3

2 |ξ |, and
thus the integrand of the right hand side of (A.5) can be estimated (absorbing another
constant into CN ( f )C̃N (g)) by

≤ CN ( f )C̃N (g)(1 + |η − τ |)−N (1 + |ξ − η|)1−N (1 + |τ |)s+m−r

×(1 + |ξ |)−s+m−1(1 + |ξ | + |λ| 1
m )r−2m . (A.6)

Using Peetre’s Inequality (we suppress the constant), we have

(1 + |τ |)s+m−r (1 + |ξ |)−s+m−1 ≤ (1 + |τ − ξ |)|s+m−r |(1 + |ξ |)2m−r−1.
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Then (A.6)

≤ CN ( f )C̃N (g)(1 + |η − τ |)−N (1 + |ξ − η|)1−N (1 + |τ − ξ |)|s+m−r |

×(1 + |ξ |)2m−r−1(1 + |ξ | + |λ| 1
m )r−2m . (A.7)

For 0 ≤ r ≤ m,

(1 + |ξ |)2m−r−1(1 + |ξ | + |λ| 1
m )r−2m ≤

⎧⎨
⎩

(
1 + |λ| 1

m

)−1
, 2m − r − 1 ≤ 0,(

1 + |λ| 1
m

)−m
, 2m − r − 1 > 0.

Thus (A.7)

≤ CN ( f )C̃N (g)(1 + |η − τ |)−N (1 + |ξ − η|)1−N (1 + |τ − ξ |)|s+m−r |

×(1 + |λ|)− min
(

1
m ,1

)
. (A.8)

Again Peetre’s Inequality (once again suppressing the constant) gives that for
N > n + 1,

∫

Rn

(1 + |η − τ |)−N (1 + |ξ − η|)1−N d̄η

≤
∫

Rn

(1 + |η|)−N (1 + |ξ − η − τ |)1−N+nd̄η

≤
∫

Rn

(1 + |η|)−n−1(1 + |ξ − τ |)1−N+nd̄η.

Taking this into account and integrating the right side of (A.8) over η yields

∫

|η−ξ |≤ 1
2 |ξ |

· · · d̄η ≤ CN ( f )C̃N (g)
∫
(1 + |η|)−n−1d̄η

×(1 + |ξ − τ |)1+n+|s+m−r |−N (1 + |λ|)− min
(

1
m ,1

)
. (A.9)

Here we choose N large enough such that N > n + 1 + |s + m − r |.
Case II: |η−ξ | > 1

2 |ξ |. Then the integrand of the right hand side of (A.5) is estimated
by

≤ CN ( f )C̃N (g)(1 + |η − τ |)−N (1 + |ξ − η|)m−N (1 + |τ |)s+m−r

×(1 + |ξ |)−s+m−1(1 + |λ| 1
m )r−2m .
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Since 1
2 |ξ | < |η − ξ |, we estimate

(1 + |ξ |)−s+m−1 ≤
{

1, −s + m − 1 ≤ 0,
Cs,m(1 + |ξ − η|)−s+m−1, −s + m − 1 > 0.

Now we proceed as in Case I.
In sum we have proved that for N large enough,

|̃k(τ, ξ, λ)| ≤ CN ( f )C̃N (g)(1 + |ξ − τ |)−n−1(1 + |λ|)− min
(

1
m ,1

)
.

The lemma follows from Schur’s test finally. ��

Appendix B

We shall explain a topological obstruction which excludes repeating Seeley’s con-
struction literally and which was overlooked by various authors (see, for example,
[27,31,38]).

Given the two rays of minimal growth Lα j , j = 1, 2 with spec am(x, ξ)∩ Lα j = ∅
for x ∈ M, ξ ∈ T ∗

x M, ξ �= 0, j = 1, 2, we are guaranteed a symbol “ingredient”
(am(x, ξ)− λ)−1 of order −m for each λ ∈ Lα1 ∪ Lα2 and for ξ �= 0. Moreover, we
can find a small arc of radius R connecting the two rays such that the resulting curve
�+ belongs to the resolvent set of A, as explained above.

B.1. The problem

It might be tempting to look for a smooth deformation and extension ã of a(x, ξ) to
ξ = 0 in such a way that for all (x, ξ) ∈ T ∗M one has

spec ã(x, ξ) ∩ �+ = ∅.

Actually, we may choose R > 0 such that spec a(x, ξ) ∩ �+ = ∅ for, say, |ξ | = 1.
Then the problem arises whether such map

a(x, ·) : Sn−1 → M(N , �+), (B.1)

M(N , V ) := {a ∈ M(N ) | spec a ∩ V = ∅}, V ⊂ C (B.2)

can be extended over the whole n-dimensional ball to a map ã : Bn → M(N , �+) in
a continuous way. In the preceding, x ∈ M is fixed, dim M = n, the fibre dimension
of the Hermitian bundle is dim Ex = N ,M(N ) denotes the space of N × N matrices
with complex entries, and the matrix spaces inherit the topology of C

N 2
. We assume

that we are given a trivialization of the cotangent bundle T ∗
x M = R

n and of the fibre
Ex = C

N .
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B.2. A one-dimensional counter example

The most simple one-dimensional example A := −i d
dθ on M = S1, N = 1 refutes

that naive hope. A is the tangential operator for the Cauchy–Riemann operator on the
2-ball {|z| ≤ 1}. We have a(θ, ξ) = ξ with spec a(θ, ξ) = {ξ}, spec A = Z, and the
imaginary line iR = Lπ/2 ∪ L3π/2 as spectral cut for a(θ, ξ), ξ �= 0. Clearly, we
cannot get anything useful, if we multiply a just by a cut-off function leading to

ã(θ, ξ) =
{
ξ for |ξ | ≥ 1,
0 for |ξ | ≤ ε.

By the Intermediate Value Theorem, for each R ∈ (0, 1) there will always be a
ξ̂ ∈ (ε, 1) such that ã(θ, ξ̂ ) = R. However, if we exempt only one ray, say Lπ/2 instead
of the whole imaginary line, we can deform the given a(·, ·) : S1 × (R \ (−1, 1)) →
M(1, Lπ/2) into

ã(·, ·) : S1 × R −→ M(1, Lπ/2),

(θ, ξ) �→
{
ξ, for |ξ | ≥ 1,
e−i(1−ξ) π2 , for 0 ≤ |ξ | < 1.

(B.3)

Here the point is that we only require that ã(θ, ξ) has no purely non-negative eigen-
values. What we did was a spectral deformation of the original matrices (here complex
numbers) into the point {−i}. Clearly, that deformation breaks down, if we have two
rays of minimal growth forming a separating curve in C: There is no continuous
path connecting {1} and {−1} that is not crossing the imaginary line. The topological
obstruction for n = 1 is simply that the space M(1, iR) has two connected compo-
nents, (−∞, 0), (0,∞) and that a(θ, 1), a(θ,−1) belong to different components.

B.3. The essence of the topological obstruction

Let us muse upon the cases n, N > 1. Shortly, the essence of the topological diffi-
culties overlooked by our predecessors is the following: Without loss of generality,
let �+ be the imaginary line iR. Fix a non-trivial smooth complex vector bundle G
on the sphere Sn−1 (or on the sphere cotangent bundle S∗M over the n-dimensional
manifold M–for simplicity, however, we shall ignore the spatial variables). Next, we
embed G into a trivial bundle Sn−1 ×C

k for k sufficiently large. Let {Pξ }ξ∈Sn−1 denote
the smooth family of self-adjoint projections of C

k onto the fibers Gξ , ξ ∈ Sn−1.
Set a(ξ) := 2Pξ − I : C

k → C
k and extend it, say by homogeneity 1 to R

n and
smooth it out in 0. Then this is an elliptic symbol with the two imaginary half-axes being
rays of minimal growth. More precisely, we have spec a(ξ) = {−1, 1}, ξ ∈ Sn−1, and
E1,ξ = Gξ and E−1,ξ = G⊥

ξ , where Eλ,ξ denotes the linear span of the eigenvectors
of a(ξ) for λ ∈ spec a(ξ).

Then it is impossible to find a k × k matrix valued function ã on the whole R
n

which coincides with a outside a large ball such that spec ã(ξ) ∩ �+ = ∅ for all
ξ ∈ R

n : Let us assume we could. Let Ẽ�+,ξ = im P̃+(ξ) denote the linear span of all
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root vectors of ã(ξ) for eigenvalues in the positive half plane �+ ⊂ C. The family
of vector subspaces of C

k is continuous and forms a vector bundle over the unit ball
Bn . It is trivial because the base space is contractible, but its restriction on the n − 1
sphere is G which is by assumption non-trivial. That is a contradiction. So, we have
a necessary condition for the construction to work.

Since Seeley only dealt with one ray of minimal growth, this problem did not occur
there.

Therefore, we cannot expect to be able to make the wanted extension, respectively
deformation in general. Instead of the direct (and futile) search for a suitable modifi-
cation of the principal symbol to get a well-defined resolvent for A along the spectral
cut �+ we shall apply the symbolic calculus solely to obtain a parametrix for A − λ.

B.4. The topology of the underlying space of hyperbolic matrices

As a service to the reader we determine the precise homotopy type of the matrix space
M(N , �+). By deformation, we may assume that the imaginary line is the given spec-
tral cut for all matrices a(x, ξ) for ξ �= 0. In C\�+, we denote the two complementary
sectors by�±. Then the space M(N , iR) of N ×N matrices with no purely imaginary
(generalized) eigenvalues decomposes into N + 1 connected components

Mk(N , iR) := {a ∈ M(N , iR) | dim im P+(a) = k}, k = 0, 1, . . . N , (B.4)

where

P+ : M(N , iR) =: E −→ P(N )
a �−→ − 1

2π i

∫

�+

(a − λI )−1 dλ. (B.5)

Here P(N ) = ∪N
k=0Pk(N ) denotes the space of projections (idempotent N × N

matrices, fibred according to the dimension of their ranges) and P+(a) denotes the
projection onto the generalized eigenspaces of a for generalized eigenvalues in the
positive sector �+.

For k = 0 and k = N , the spaces Mk(N , iR) are homeomorphic to the full space
M(N ) of all square matrices and hence contractible. That explains why Seeley’s
deformation is always possible for one ray of minimal growth, dividing C into one
sector without spectrum and one sector with all the eigenvalues, see once again Fig. 1b.

To investigate the homotopy type of Mk(N , iR) for k = 1, . . . N − 1, we restrict
the map (B.5) to a single component Mk(N , iR). We obtain a fibration of the total
space Mk(N , iR) as a fibre bundle over the base P with contractible fibre

(P+)−1{P0} = {a ∈ M(im P0) | spec a ⊂ �+} × {a ∈ M(ker P0) | spec a ⊂ �−}

for any P0 ∈ Pk(N ). Hence, the topological spaces, the base Pk(N ) and the total space
Mk(N , iR) have the same homotopy type. By orthogonalization, it suffices to con-
sider a projection space made of orthogonal projections which easily can be identified
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with the subspaces of C
N of dimension k. So we arrive at the complex Grassmannian

GrC(N , k), which is known for non-trivial homotopy, if 0 < k < N .
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