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“We must know - we will know!” “I still need to find help”, said K. “You
look for too much help from people
you don’t know”, said the priest
disapprovingly. “Can you really not
see that’s not the help you need?”

David Hilbert, 8th of September 1930 Franz Kafka, The Trial, undated
Address to the Society of German Translation by David Wyllie
Scientists and Physicians at Königsberg





Foreword

This volume contains the extended proceedings of the Summer School: New Paths
Towards Quantum Gravity held in Holbæk, in Denmark. I happened to be the “old-
est” participant in the school, managing an invitation thanks to my role as member
of the advisory committee, since justly the school was reserved to students and
young post-docs. The volume reflects nicely the atmosphere and excellent level of
the school. I hope none of my colleagues, either mathematicians or physicists, will
feel offended if I say that we really do not know what quantum gravity is, beyond the
obvious statement that it should be a theory capable of unifying general relativity
and quantum field theory. We are at a stage in which new ideas are produced at a
rate such that often they seem to diverge to a point in which no unequivocal ways to
decide the best direction is seen. This means that we are in an exciting moment for
research in the field.

As always in physics we have two guiding principles, experimental data and
mathematical rigour. But both of these come with a novel twist. Experimental results
are difficult to get in a direct way for lack of energy, but this does not mean that a
good theory does not have immediate check, cosmological observations are a new
key tool, but also in the low energy regime there is still a lot to learn. Mathematical
rigour is as always a good guide, this volume shows that there is also the need for
the development of a new kind of mathematics which should accompany this new
physics.

The division of the book into two (overlapping) parts reflects the duality between
the physical vision and the mathematical construction. The noncommutative geome-
try vision of Gracia-Bondìa, the discretization and renormalization one of Ambjørn,
Jurkiewicz, and Loll, and the gauge fields path integrals of Reshetikhin give three
examples of promising paths towards quantum gravity. I am sure that some parts of
all three points of view will be components of the larger picture.

The second part is an overview of the mathematical results. It comprises the
write-up of Bouwknegt lectures on cohomology, plus the welcome additions of two
contributions not originally present in the school by Zessin on stochastic geometry,
and Avramidi’s on tools for the effective action in quantum gravity.

One crucial part of the school had been the discussion sections, and reading
the various contributions I have seen how this percolated in them, thus enriching
them. As a “student” of the school I have witnessed the appreciation that my fellow
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viii Foreword

students have had of the quality of the lectures, and as one of the first readers of the
proceedings I am sure that this appreciation will be replicated by the readers of the
volume.

Napoli, August 2009 Fedele Lizzi



Preface

In this volume we have collected a package of teaching materials which arouse
from a Summer School on New Paths Towards Quantum Gravity, held at the Field
Laboratory of Roskilde University at Holbæk Bay in Denmark in May 2008 for
an audience of 30 Ph.D. students and (mostly young) postdoctoral researchers and
disseminated at http://QuantumGravity.ruc.dk.

We organized the Summer School out of curiosity. It seemed to us that something
radically new was going on: was there a new perception of physics reality evolving?
Were there the most delicate advances of our own fields (spectral geometry, global
analysis, non-commutative algebras, deformation theory) gaining application and
new impulses? Was the interplay between mathematics and physics once again
changing? Moreover, we were aware of public concerns regarding asteroid and
comet collision, forced black holes, the evidence of accelerated expansion of the
universe, the rational explanation of miracles by the supposed Higgs particle. We
had read about the personal concerns of outstanding physicists and mathematicians
like Lee Smolin [Sm06] and John Baez [Ba07] who warned against a distortion of
physics by exaggerated cracked-up expectations. We shared their concern about pre-
tended physics authority borrowed from the intricacy of the involved mathematics.
We simply wanted to expand views, open perspectives, and invite curiosity.

We were so lucky to find outstanding and dedicated teachers and discussants with
J. Ambjørn, I. Avramidi, P. Bouwknegt, J. Gracia-Bondía, A. Klemm (not repre-
sented in this volume–we refer, however, to B. Haghighat and A. Klemm [HaKl08]
and the references given there), N. Reshetikhin, and an explanatory supplement by
H. Zessin.

The Organization of the Teaching Material

We have grouped the lectures into three parts. Part I is devoted to Three Physics
Visions, presented by J.M. Gracia-Bondía; J. Ambjørn, J. Jurkiewicz, and R. Loll,
and finally N. Reshetikhin. Part II is devoted to Novel Mathematical Tools by I.G.
Avramidi, P. Bouwknegt, and H. Zessin. The partition is not sharp, as the reader will
see. Part III is devoted to Afterthoughts on the Merger of Mathematics and Physics
presented by one of us (BBB).

ix



x Preface

To Part I – Three Physics Visions

J.M. Gracia-Bondía takes a global and phenomenological approach to the sub-
ject matter. Clearly he wishes preventing students against high-road ideological
approaches, all too frequent in this field. As a useful vaccine, as well on their own
right, he reviews the main experimental and observational issues relating directly
to quantum gravity and gives his personal view. This includes discussion of the
Pioneer and flyby anomalies in the Solar System, as well as astrophysical observa-
tions, and table-top experiments with cold neutron interferometry, like the Colella–
Overhauser–Werner experiment and its progeny. Here he mainly refers to the exper-
iments by Nesvizhevsky and his group, which have allowed detection of discrete
quantum gravitational states for the first time. He points out that these experiments
already seem to contradict some of the current orthodoxy in quantum gravity.

Throughout, he emphasizes that “quantum gravity” denotes more of a problem
than of a theory. According to Gracia-Bondía, there is no such theory, but several
competing schemes, mathematically sophisticated as a rule, but underdeveloped in
the face of experimental evidence and the aim of unifying gravity with other funda-
mental interactions.

In the following sections he looks at the (Einstein–Hilbert) action of general
relativity as a consequence of gauge theory for quantum tensor fields. He performs
a parallel pedagogical exercise to Feynman’s in his Pasadena lectures in the 1960s:
assuming ignorance of Einstein’s general relativity, one arrives anew at it by suc-
cessive approximation. The method, however, differs from the traditional in several
respects:

1. He considers only pure gravity. Coupling to matter is sketched only after the fact,
for completeness.

2. This is fully quantum field theoretical in that it recruits the canonical formalism
on Fock space and quantum gauge invariance. The main tool is BRS technology,
and ghost fields are introduced from the outset. In other words, he treats gravity
as any other gauge theory; at some point one puts the Planck constant equal to
zero in this quantum model.

3. He uses the causal (or Epstein–Glaser) renormalization scheme.
4. He never invokes the stress–energy tensor.

Next, he gives a general introduction to non-commutative geometry. He explains
the Doplicher–Fredenhagen–Robert Gedanken experiment to the effect that space-
time must become “fuzzy” at the Planck length scale, if not before (thus, it is not
infinitely divisible). He justifies that on these circumstances commutative and non-
commutative manifolds must be treated on the same footing, in the putative func-
tional integral for gravity. This may justify the place granted, in the same context,
to the reconstruction theorem of ordinary manifolds from spectral data by Alain
Connes. He also explains the most efficient procedure known at present for con-
structing non-commutative manifolds: isospectral deformation. Non-commutative
field theory on Moyal product algebras is also briefly discussed in that section.
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Gracia-Bondía devotes some final considerations to the cosmological constant
problem and the unimodular theories of gravity.

J. Ambjørn, J. Jurkiewicz, and R. Loll provide quite a different approach. They
ask Why do we study two-dimensional quantum gravity? They give two answers:
First, one can test quantization procedures for gravity in a simple setting. Second,
it has long been known that string theory can be viewed as two-dimensional
quantum gravity coupled to matter fields. This particular view of string theory
spawned the development of the dynamical triangulation approach to quantum
gravity. This method is particularly powerful in two dimensions, since exact non-
perturbative solutions can be obtained by loop equations, matrix models, and closely
related methods of stochastic geometry. Their lectures span over a wide range,
highlighting

1. Computer simulation of four-dimensional quantum gravity.
2. Geometric quantization of the point particles.
3. Geometric quantization of two-dimensional quantum gravity.
4. The combinatorial solution of two-dimensional quantum gravity and its relation

to matrix models.
5. Generalized Hartle–Hawking wave functions.
6. Defining geodesic distance in quantum gravity and calculating the so-called two-

point functions.
7. The relation to causal dynamical triangulations.

N. Reshetikhin gives a survey of quantization methods for gauge theories, from
quantum mechanics to Yang–Mills and Chern–Simons theories. First, the author
formalizes the usual physical concepts in a rigorous mathematical setting, and then
he describes the quantization methods, from the canonical one to Faddeev–Popov
and BRST methods (also mentioning the BV formalism). In our view, this is a
very important area in mathematical physics. Without a rigorous definition of the
functional (Feynman) integral the current mathematical status of quantum field the-
ory remains at the naive phenomenological level, which allows one to carry out
calculation in perturbative renormalizable theories (which form a set of measure
zero in the set of all possible theories) but fails miserably for non-renormalizable
theories as well as in strong-coupling regimes, even in renormalizable theories (like
in the infrared QCD). Therefore, a thorough understanding of the quantization, in
particular, in complicated modern gauge field theories plays a crucial role in the
program of developing a satisfying theory of quantum gravitational phenomena.

To Part II – Novel Mathematical Tools

I.G. Avramidi reviews the status of covariant methods in quantum field theory and
quantum gravity, in particular, some recent progress in the calculation of the effec-
tive action via the heat kernel method. He studies the heat kernel associated with an
elliptic second-order partial differential operator of Laplace type acting on smooth
sections of a vector bundle over a Riemannian manifold without boundary. He
recalls the general knowledge about that topic and develops a manifestly covariant
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method for computation of the heat kernel asymptotic expansion as well as new
algebraic methods for calculation of the heat kernel for covariantly constant back-
ground, in particular, on homogeneous bundles over symmetric spaces. That enables
one to compute the low-energy non-perturbative effective action.

P. Bouwknegt introduces various, mostly novel, mathematical concepts and
explains how they are applied in modern quantum field theory and string theory.
Each section begins by discussing a physical example, which suggests a particu-
lar mathematical framework which is then subsequently developed. The emphasis
is more on concepts than on rigorous mathematical detail and aimed to be a first
introduction to various modern mathematical techniques for beginning postgradu-
ate students. It is assumed that the students have basic understanding of differential
geometry, algebra, and quantum field theory.

The following topics are treated in detail:

1. Cohomology and differential characters. Using the electromagnetic field as an
example, the basic definitions are given of de Rham cohomology, Cech coho-
mology, and their relation through the Cech–de Rham complex. Various defini-
tions of differential cohomology theories are given, such as Deligne cohomology
and Cheeger–Simons differential characters. According to Bouwknegt, an exam-
ple of a third-order Deligne cohomology class occurs naturally in string theory,
where it is known as the Kalb–Ramond (or Neveu–Schwarz) B-field. This B-field
is the connecting theme throughout the sections.

2. T-duality. A physical introduction into T-duality is given and the Buscher rules
for the T-duality of closed strings in a curved background with S1 isometry are
derived. From here the topological properties of T-duality are derived and put in
the context of Gysin sequences for principal circle bundles. Principal torus bun-
dles are discussed in a similar way. According to Bouwknegt, T-duality in that
case naturally leads to non-commutative and possibly nonassociative structures.

3. Generalized geometry. An elementary introduction to (Hitchin’s) generalized
geometry is given, including a basic discussion of the Courant bracket, spinors,
generalized complex manifolds, generalized Kähler manifolds, etc. Applications
in the context of T-duality are discussed.

H. Zessin provides a short introduction into some recent developments in stochas-
tic geometry. It has one of its origins in simplicial gravity theory and may be consid-
ered as an elaboration of some aspects of the presentation by J. Ambjørn and collab-
orators in Part I. Zessin’s aim is to define and construct rigorously point processes on
spaces of simplices in Euclidean space in such a way that the configurations of these
simplices are simplicial complexes. The main interest then is concentrated on their
curvature properties. He illustrates certain basic ideas from a mathematical point
of view and recalls the concepts and notations used. He presents the fundamental
zero-infinity law of stochastic geometry and the construction of cluster processes
based on it. Next, he presents the main mathematical object, i.e. Poisson–Delaunay
surfaces possessing an intrinsic random metric structure. He finally discusses their
ergodic behaviour and presents the 2-dimensional Regge model of pure simplicial
quantum gravity.
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Contrary to the Ambjørn–Jurkiewicz–Loll (AJL) contribution, Zessin’s lectures
are written in a dense mathematical style and strongly formalized. They show how
certain concepts of stochastic geometry, which play a role in physics, can be defined
in a theoretically clear and rigorous way and how precise results can be derived
unambiguously. Clearly, a graduate student in mathematics will perceive Zessin’s
lectures as concrete and lucid and AJL as rather abstract and difficult to grasp, while
a graduate student of physics may have an opposite appreciation.

To Part III – Afterthoughts

As a service to the reader, we reproduce an edited version of the opening remarks
by one of us (BBB) to the International Workshop Quantum Gravity: An Assess-
ment which followed immediately after the Summer School at the same place. The
point was to recall common knowledge on modelling, mathematization, and science
history and to address the ethics of “quantum gravity” research. That may help to
put the lectures of this volume in a common frame in spite of their scattering and
heterogeneity. Some of these considerations were published in [BEL07] in con-
densed form before the Summer School as a kind of platform for the assessment
of our endeavour. For a comparison with mathematization in other frontier fields of
research we refer to the recent [Bo09].
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Three Physics Visions





Chapter 1
Notes on “Quantum Gravity”
and Noncommutative Geometry

J.M. Gracia-Bondía

Abstract I hesitated for a long time before giving shape to these notes, originally
intended for preliminary reading by the attendees to the Summer School “New
paths towards quantum gravity” (Holbaek Bay, Denmark, May 2008). At the end, I
decide against just selling my mathematical wares, and for a survey, necessarily very
selective, but taking a global phenomenological approach to its subject matter. After
all, noncommutative geometry does not purport yet to solve the riddle of quantum
gravity; it is more of an insurance policy against the probable failure of the other
approaches. The plan is as follows: the introduction invites students to the fruitful
doubts and conundrums besetting the application of even classical gravity. Next,
the first experiments detecting quantum gravitational states inoculate us a healthy
dose of scepticism on some of the current ideologies. In Sect. 1.3 we look at the
action for general relativity as a consequence of gauge theory for quantum tensor
fields. Section 1.4 briefly deals with the unimodular variants. Section 1.5 arrives at
noncommutative geometry. I am convinced that, if this is to play a role in quantum
gravity, commutative and noncommutative manifolds must be treated on the same
footing, which justifies the place granted to the reconstruction theorem. Together
with Sect. 1.3, this part constitutes the main body of the notes. Only very summarily
at the end of this section do we point to some approaches to gravity within the non-
commutative realm. The last section delivers a last dose of scepticism. My efforts
will have been rewarded if someone from the young generation learns to mistrust
current mindsets.

1.1 Introduction

“Quantum gravity” denotes a problem, not a theory. There is no theory of quantum
gravity. There exist several competing schemes, as mathematically sophisticated and
fecund, as a rule, as undeveloped in the face of experimental evidence and of the
purported aim of unifying gravity with other fundamental interactions.
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My account of the subject is unabashedly low road. The concept was coined by
Glashow in his thought-provoking book [1]. The low road

is the path from the laboratory to the blackboard, from experiment to theory, from hard-
won empirical observations to the mathematical framework in which they are described,
explained and ultimately understood. This is the traditional path that science has so suc-
cessfully followed since the Renaissance. . . . In each of these cases, scientists built their
theories upon a scaffold of experimental data. The Standard Model could not have been
invented by theorists, however brilliant, just sitting around and thinking.

Sometimes scientists have followed a different road. The high road tries to avoid the
morass of mundane experimental data.

Glashow goes on portraying the invention by Einstein of classical general rela-
tivity as the single example of successful pursuit of the high road and exemplifying
modern high-roaders with superstring theorists.

However, we ought to say, string theory in general is a very reasonable bet
compared with most “quantum gravity” schemes. What motivates them? From a
textbook [2, p. 24] we quote Bergmann:

Today’s theoretical physics is largely built on two giant conceptual structures: quantum the-
ory and general relativity. As the former governs primarily the atomic and subatomic worlds,
whereas the latter’s principal applications so far have been in astronomy and cosmology,
our failure to harmonize quanta and gravitation has not yet stifled progress in either front.
Nevertheless, the possibility that there might be some deep dissonance has caused physicists
an esthetic unease, and it has caused a number of people to explore avenues that might lead
to a quantum theory of gravitation, no matter how many decades away the observations.

Dissonance, we claim, there is not: trees electromagnetically keep growing on
the third planet from the Sun, bound by gravity since as far as we can tell. There
is theoretical ignorance about a vast region of possible experience unconstrained by
evidence. Be that as it may, “aesthetic unease” is about the worst guide for science.
Ugliness is in the eye of the beholder. Nobody claims the standard model of particle
physics to be beautiful. However, it has survived more than 35 years of determined
theoretical and – much more important – empirical assault. It possesses now the
beauty of staying power: any scheme whatsoever aiming to replace it needs to man-
age the Standard Model disguise.

History is a better guide. The clash between classical mechanics and electro-
magnetism, seemingly leading to catastrophic atomic collapse, was overcome by
more profound experiments and the quantum theories designed to explain them.
Therefore, we do little of the “dissonance” of the underpinnings of quantum theory
and classical gravity, since in all likelihood at least one of those is doomed to perish.

Glashow concludes

History is on our side (i.e., of the low-roaders). Every few years there has been a world-
shaking new discovery in fundamental physics or cosmology. . . Can anyone really believe
that nature’s bag of tricks has run out? Have we finally reached the point where there is no
longer. . . a bewildering new phenomenon to observe? Of course not.

Fortunately, even classical gravity is in deep crisis. This opens a number of oppor-
tunities. The crisis concerns almost every aspect.
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• Cosmic acceleration. In a nutshell, the expansion of the universe seems to be
accelerating when it should be braking. This is the “cosmological constant” or
“dark energy” problem. The question is obviously why now? We shall come back
to this.

• Galaxy clustering and cosmology. As it turns out, some think the previous to be
a pseudo-problem. Wiltshire and coworkers [3–6] have argued that

Cosmic acceleration can be understood as an apparent effect, and dark energy as a
misidentification of those aspects of cosmological gravitational energy that by virtue
of the strong equivalence principle cannot be localized.

Wiltshire’s proposal is of the “radically conservative” kind. The implication is
that we truly do not know how to solve the Einstein equations.

In a similar vein, current orthodoxy regarding gravitational collapse towards
black holes and the “information loss” problem has been also called into ques-
tion [7].

• The best-tested aspects of the theory are challenged by the solar system anoma-
lies. To begin with, at least since the 1980s it has been known that the trajectories
of the Pioneer 10 and Pioneer 11 past the outer planets’ orbits deviate from the
predictions, as though some extra force is tugging at them from the direction of
the Sun [8–10].
The unmodelled blue shift appearing in the Pioneer missions data amounts to
10−9 cm/s2; it may not seem much, but it adds now to many thousands of kilo-
metres behind the projected paths. A “covariant” solution to the anomaly seems
ruled out – see, for instance, [11]. In desperation, some bold proposals are being
made. For instance that, because of the influence of background gravitational
sources in the universe on the evolving quantum vacuum [12, 13], astronomical
time and time as nowadays measured by atomic clocks might not coincide.

• To this, add the even more surprising and now apparently verified fact (spoken
about in hushed ones since 1990, when first noticed in the flight of probe Galileo
by Earth) that the slingshot manoeuvre of spacecraft delivers (or takes away)
more energy than the current theory allows us to expect [14]. A simple empirical
formula describes rather accurately the deviations, which translate into a few
millimetres a second of extra velocity.
Both solar system anomalies belong in the category of “unexpected experiments”.

• The existence of (non-baryonic) dark matter is better established than that of dark
energy, since several lines of evidence point to a relatively low baryon content of
the universe.
However, models do exist that attribute the relatively high acceleration of stars
in a typical galaxy, thus the appearance of dark matter, to mysterious deviations
from standard gravity. Particularly, Milgrom’s MOND (modified Newton dynam-
ics) model – see [15] and references therein, as well as the discussion in the
popularization book [16]. MOND postulates that Newton’s law is modified in
very weak acceleration regimes. There is no “respectable” theory behind it as
yet. However, as it happens, Milgrom’s hypothesis implies predictions on the
surface densities of galaxies and more; these have been pretty much verified till
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now. The Milgrom acceleration is pretty close to the cosmic acceleration. It is not
very different in order of magnitude from the “acceleration” of the Pioneers.
On the other hand, interaction with dark matter might explain the Pioneers’ blue
shift.

• Taken together, dark matter and energy signal the transition to a new cosmologi-
cal paradigm. Whether they will emerge as modified gravity (massive graviton or
other), new energy components, or pointers to strings and other noncommutative
substructures remains to be seen.

• Among the questions of principle that periodically erupt into controversy is the
question of the speed of transmission of the gravitational interaction or, if you
wish, the lack of aberration of gravity [17].

1.2 Gravity and Experiment: Expect the Unexpected

Perhaps the most fundamental question of principle, for our purposes, concerns the
role, if any, of the principle of equivalence in the interface of gravity with the quan-
tum world. We begin by that in earnest. Now, there is little in the way of quantum
gravity that we can probe in laboratory benches at present. The universe was created
with a quarantine: gravity is so weak an interaction that it can only produce measur-
able effects in the presence of big masses, and this very fact militates against detect-
ing radiative corrections to it. To see quantum effects in pure gravity is far beyond
our power. What we can do with some confidence is to envisage quantum systems in
classical background gravitational fields, with back-reaction neglected, or approxi-
mately treated. In fact, only the interface of nonrelativistic quantum mechanics with
Newtonian gravity has been experimentally tested.

Some wisdom is gained, however, by not discarding a priori such humble begin-
nings. For this writer, the alpha of quantum gravity is the Colella–Overhauser–
Werner (COW for short, from now on) experiment [18]. It tests the equivalence prin-
ciple. The latter appears in textbooks in slightly different formulations. For some,
the “strong” principle says that accelerative and gravitational effects are locally
equivalent; the “weak” principle states that inertial masses and gravitational charges
are the same (up to a universal constant). Some others use the nomenclature the
other way around. In both cases we refer to systems placed in external fields, such
that the complicating effects of the gravitational pull by the system itself can be
neglected. From the second form it plainly follows that all classical masses fall
with the same acceleration in a gravity field. Thus, if the initial conditions for those
masses coincide, their trajectories will coincide as well: Galileo’s uniqueness of free
fall. In other words, mass is superfluous to describe particle motions in classical
gravity; it all belongs to the realm of kinematics. From this to the assertion [19,
p. 334] that

geometry and gravitation were one and the same thing.

is there but a near-vanishing step.
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Fig. 1.1 (a) In the most common interferometer three “ears” are cut from a perfect crystal, ensuring
coherence over it (about 10 cm long). The incident beam is split (by Bragg scattering) at A into
two, I and II. These are redirected at B and C and recombine in the last ear. The relative phase at D
determines the counting rate at the detectors. (b) Top view of the interferometer. The relative phase
can be changed in a known way by inserting a wedge in one beam at E , the thickness of which
can be changed by displacement. The experiment is performed at F . The figures are reprinted
with permission from [20]. Copyright 1983 by the American Physical Society. Redrawn by Heine
Larsen, Roskilde, (see http://publish.aps.org/copyrightFAQ.html)

So, what does the COW experiment mean for humanity? It and its follow-ups
lend support to the equivalence principle. It would have been earth-shaking if they
did not, but it is indispensable to reflect on which aspects of current orthodoxy are
confirmed, and which ones actually disproved by it.

The COW tool is neutron (and neutral atom) interferometry. A typical neu-
tron interferometer – Fig. 1.1, taken from [20] – is a silicon crystal of length L .
The incident beam is split with half-angle θ in the first ear of the apparatus at
one extreme, redirected halfway through it, and recombines in the third ear at
the other extreme. The neutron wavelength λN and the atom spacing in the crys-
tal need to be of the same order, about 10−8 cm. Thus the momentum is in the
ballpark of (h̄/λN) ∼ 10−20 erg. The neutron is relatively cold: with an inertial
mass mi ∼ 10−24 g, this implies a velocity v ∼ 104 cm/s; thus a nonrelativistic
calculation will do.

A gravitational phase shift is obtained simply by rotating the apparatus about the
incident beam, say an angle α, so the acceleration is g sinα, with g the standard
acceleration on Earth. The phase shift over one period is of the order of the quotient
between the (difference in) potential energy and the kinetic energy of the beam; even
with the small velocities involved, this is of the order∼10−7. Under such conditions,
it is not hard to see that the phase difference is given approximately by

∫
V dt

h̄
,

where V denotes the difference in potential between the higher and the lower unper-
turbed neutron paths and t is the time.
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Fig. 1.2 Gravitational perturbation of the beam. (a) The interferometer is rotated around the inci-
dent beam by an angle α; the beams will be at a different height (equal to 2x sin θ between equiva-
lent points along the paths), with an effective gravitational field gα = g sinα in the interferometer
plane. (b) In the free-fall system, the neutron beams are unaccelerated, but the interferometer scat-
tering planes appear to be accelerating upwards. The figures are reprinted with permission from
[20]. Copyright 1983 by the American Physical Society. Redrawn by Heine Larsen, Roskilde, (see
http://publish.aps.org/copyrightFAQ.html)

Now, let x be a rectilinear coordinate along the long diagonal of the rhomb con-
stituted by the two beam’s paths. Then the difference of height between the paths
is as indicated in Fig. 1.2. The difference in potential is 2mg sinαx sin θ . Thus we
have

∫
V dt

h̄
= 4mg sinα sin θ

h̄v cos θ

∫ L

0
x dx = mg A sinα

h̄v
, (1)

with v the mean velocity of the neutrons and A the area of the rhomb, given by half
the diagonals’ product:

A = 2L2 tan θ.

Actually the mass appearing in (1) is the gravitational charge; the inertial mass mi

is hidden in the relation between v and the de Broglie wavelength. The shift (1) is
around 100 rad, and the resulting fringe pattern easily visible and measurable. (We
have neglected the effect of the Earth’s rotation, which amounts to less of 2% of
the total shift.) It turned out that the neutrons do fall in the Earth’s gravity field as
predicted by the Schrödinger equation, with m and mi identified.

The experiment appears to confirm both versions of the equivalence principle,
since the possibility of describing the problem in the neutron beam reference system
as an upward acceleration of the interferometer holds in the Schrödinger equation.
This is discussed exhaustively in [21]. Use of the Dirac equation instead makes no
practical difference. Anyway, the experiment was repeated in “actually accelerated”
interferometers, with the expected result [22].
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However, as soon as we try to translate the “weak” principle in geometrical terms
in the quantum context, we run into trouble. The fact that “trajectories” have not
much quantum-mechanical meaning is enough to make us suspicious. Nevertheless,
let us for simplicity explore the situation in terms of circular Bohr orbits. (That these
are still pertinent concepts is plain to anybody who has done atomic physics with the
Wigner phase-space function [23, 24].) Assume a very large mass M bounds a small
one m gravitationally into a Bohr atom. For circular orbits with angular velocity ω,
Kepler’s laws give

ω2 = G M

r3
, with r restricted by mr2ω = nh̄.

Thus

En = − 1
2 mω2r2 = −G2 M2m3

2h̄2n2
.

Therefore in quantum mechanics one can tell the mass of a gravitational bound
particle. The explanation for this lies in the very quantization rule

[x, p] = i h̄,

which is formulated in phase space. If we define velocity by p/m, we obtain the
commutator

[x, v] = i h̄/m.

This means that kinematical quantities are functions of h̄/m. In general, it is enough
to look at the Schrödinger equation to see that energy eigenvalues go like m f (h̄/m),
or more accurately, m f (h̄2/mmi ) for some function f .

Now, if we admit the previous, how does the dependence of the mass disappear
in the classical limit? The only possibility is that the quantum number scales with m.
This of course makes sense in the semiclassical limit: if particle 1 is heavier than
particle 2, we expect its energy levels to be accordingly higher. But for low-lying
states geometrical equivalence inevitably breaks down. We have here the curious
case of a symmetry generated (rather than broken) by “dequantization”. The point
was made in [20].

In summary, lofty gravity is treated by quantum mechanics as lightly as lowly
electrodynamics. In the classical motion of charged particles, only the parameter
e/m appears. This is not interpreted geometrically, since e/m varies from system
to system, so nobody thinks it has fundamental significance. When the system is
quantized, h̄ comes along in both cases, and in gravity experiments, like the ones
described above with states in the continuum, we can tell the mass. Alas, for some
this destroys the beauty of the theory. So much that they never mention the fact.
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1.2.1 Noncommutative Geometry I

Before examining the consequences of the failure of the geometrical principle, let
us see if we can find a way out. To preserve weak equivalence as an exact quantum
symmetry, we must take the canonical velocity as a dynamical quantity v. Then the
Hamiltonian is rewritten as follows:

H = m(v2/2+ V (x)) = mH(x, v),

with V the gravitational potential. If now we quantize the theory in terms of x
and v, we obtain a “quantum gravity” theory respecting the geometrical equiva-
lence principle (although, of course, this flies in the face of the workings of ordinary
quantization for other interactions).

Through existence of the constant c of nature, such a quantization method
involves the introduction of a fundamental length

[x, v] = icl0.

This is not quite “noncommutative geometry” in the superficial way it is mostly
practised nowadays (the present author is not innocent of such a sin), but resembles
it more than a bit. The point we are able to make is twofold: (i) of need the geomet-
rical approach to quantum gravity will be noncommutative or will not be; (ii) it is
not at all required that l0 be of the order of Planck’s length scale. It has been argued
many times, invoking mini-black holes in relation with the incertitude principle and
such, that something must happen at that length scale – see [25], for example. But
nothing forbids that the critical length be bigger (a string length, for instance), pro-
vided it could have escaped detection so far. If and how such fundamental length
intervenes is a matter only for experiment to decide.

We return to noncommutative geometry in Sect. 1.5.

1.2.2 Whereto Diffeomorphism Invariance?

The understanding that geometry and gravitation are not to be one and the same
thing should be confirmed by some experiment checking (low-lying) states of a
quantum system bound by gravity.

Such an experiment – the first ever to observe gravitational quanta – has already
taken place [26].

Ultracold neutrons (v ∼ 10 m/s) are stored in a horizontal vacuum chamber;
a mirror is placed below and a non-specular scatterer above. Thus the neutrons
find themselves in a sort of gravitational potential well, with a “soft wall” on one
side. The Bohr – Sommerfeld formula is good enough to calculate its energy levels
associated with vertical motion:



1 Notes on “Quantum Gravity” and Noncommutative Geometry 11

En = (9mN/8)
1/3(π h̄g

[
n − 1

4

] )2/3
.

We obtain

E1 � 1.4 peV � 10−13 Ry. (2)

A first remarkable thing is the minuteness of (2). In spite of being so small, quantum
effects of gravity have been detected on a table top! However, the main question
here is that the difference between masses becomes of a yes/no nature. Suppose
that the height of the “slit” formed by the upper and lower walls of the chamber
is smaller than 10−3 cm. If instead of neutrons one were trying to send through
(say) aluminium atoms, they would be observed at the exit. However, that same slit
on Earth is opaque to neutrons. The following rule of thumb is useful: the energy
required to lift a neutron by 10−3 cm is classically 1 peV with a good approxi-
mation. Accordingly the width of the state (2) can be estimated: the height of the
chamber should be bigger than 1.4 × 10−3 cm for neutrons to be observed at the
exit. Figure 1.3 illustrates this. The phenomenon has nothing to do with diffraction,
since the wavelength of neutrons remains much smaller than the height of the slit;
visible light, with a wavelength much bigger than those neutrons, is transmitted.

Bingo! A slit has become a wall, impenetrable. Uniqueness of free fall fails.
Gravitation is not just geometry.

Fig. 1.3 Quantum states are formed in the “potential well” between the Earth’s gravity field and
the horizontal mirror on bottom. The vertical axis z is intended to give an idea about the spatial
scale for the phenomenon. The figure is reprinted with permission from V.V. Nesvizhevsky et al.,
Phys. Rev. D Vol. 67, 102002 (2003). Copyright 2003 by the American Physical Society, (see
http://publish.aps.org/copyrightFAQ.html)
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Fig. 1.4 Dependency of the particle flux on the slit size. The circles indicate the experimental
results [26] for a beam with an average value of 6.5 m/s for the horizontal velocity component. The
stars show the analogous measurement with 4.9 m/s. The solid lines correspond to the classical
expectation values for these two experiments. The horizontal lines indicate the incertitude in the
detector background. The figure is reprinted with permission from [26]

The point is even more forcefully brought home in Fig. 1.4, which describes the
actual experimental situation. Put in a different way, at least for interaction with mat-
ter, the (geometrical form of the) equivalence principle and the incertitude principle
clash. No prizes to guess which must give way.

Surprisingly, our viewpoint is found controversial by some. To put matters into
perspective, it is helpful to keep in mind that the equivalence principle is classi-
cally expressed by the statements (1) gravitational mass equals inertial mass or
(2) the motion of particles in a gravity field is indifferent to their mass. While the
COW experiment confirms (1), the second is untrue in the quantum world. Since
point particles, paths, and clocks play an apparently essential role in the founda-
tions of general relativity (see the remarks further below), and since it is hard to
see how geometry could have come to such a preponderance in dynamics with-
out (2), it would seem the latter is bound to diminish. However, one can argue for
an important residual role of geometry in quantum physics, as in the very readable
article [27].

(In the current experimental situation, there is not much more than can be done
directly to measure quantum jumps in a gravitational field. Present hopes to improve
on accuracy of measurement of the quantum states parameters rest on use of stor-
age sources of ultracold neutrons and magnetic field gradients to resonate with the
frequency defined by the energy difference of two states [28].)

Among the numerous works on “quantum gravity” that make much of the clas-
sical geometry aspects of gravitation, a good representative is the homonymous
book [29]. Its philosophical position is staked out at the outset:
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the question we have to ask is: what we have learned about the world from quantum mechan-
ics and from general relativity?. . . What we need is a conceptual scheme in which the
insights obtained with general relativity and quantum mechanics fit together.

This view is not the majority view in theoretical physics, at present. There is consensus
that quantum mechanics has been a conceptual revolution, but many do not view general
relativity in the same way. . . According to this opinion, general relativity should not be
taken too seriously as a guidance for theoretical developments.

I think that this opinion derives from a confusion: the confusion between the specific
form of the Einstein – Hilbert (EH) action and the modification of the notions of space and
time engendered by general relativity.

We are pleased to vote with the bread-and-butter majority here. The trouble is the
non-geometrical cast of quantum dynamics. Since we know not the shape of things
to come, the task is not so much to “fit general relativity with quantum mechanics
together” as to – slowly and painstakingly – extend our knowledge to quantum and
gravitational phenomena simultaneously taking place. It is somewhat saddening that
the COW experiment and its successors are not found in the reference list of [29];
nor are they mentioned in the history of quantum gravity given as an appendix in
that book – which is more in the “history of ideas” mould. In fact the sphere of ideas
around the proper interpretation of the COW experiment hails back to Wigner, who,
long ago, had explained keenly the quantum limitations of the concepts of general
relativity [30], concluding

the essentially non-microscopic nature of the general relativistic concepts seems to us
inescapable.

In otherwise mathematically subtle and full of gems [29], as in the works of
other practitioners of quantum gravity, the warning goes unmentioned, as well
as unheeded.

To summarize, a generous dose of salt is in order when dealing with “quantum
gravity” claims. Without necessarily enjoying the quarantine, we should go most
carefully about breaking it. Not only “large fragments of the physics community”
but also thoughtful mathematicians like Yuri Manin advise a useful scepticism, in
the respect of taking as physical what is just product of mathematical skill:

Well-founded applied mathematics generates prestige which is inappropriately generalized
to support quite different applications. The clarity and precision of mathematical deriva-
tions here are in sharp contrast to the uncertainty of the underlying relations assumed. In
fact, similarity of the mathematical formalism involved tends to mask the differences in the
differences in the scientific extra-mathematical status. . .mathematization cannot introduce
rationality in a system where it is absent. . .or compensate for a deficit of knowledge.

This is very timely quoted in [31].

1.3 Gravity from Gauge Invariance in Field Theory

From our standpoint, the action for gravitational interactions is more important than
speculative “background independency” in a “final unified theory”. Moreover, the
pure gravity EH action can be rigorously derived from the theory of quantum fields:
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a simple lesson, often forgotten. We proceed to that in this section. (As a historical
note, for once the Einstein – Hilbert surname is right on the mark: independently
Hilbert and Einstein gave the new equations of gravitation in the dying days of
November 1915.)

1.3.1 Preliminary Remarks

The book [32], containing lectures by Feynman on gravitation given at Caltech in
1962–1963, deals with the perturbative approach to classical gravity, to wit, with
the self-consistent theory of a massless spin-2 field (we may call it graviton). The
foreword of this book (by John Preskill and Kip S. Thorne) is recommended reading.
There the unfolding of (earlier) variants of the same idea by Kraichnan and Gupta
is narrated as well, with references to the original literature. The main aspect in
Kraichnan – Gupta – Feynman arguments is that a geometrical theory is obtained
from flat-spacetime physics by using consistency requirements. Later work by Deser
and Ogivetsky and Polubarinov in the same spirit is also remarkable.

The distinctively non-geometrical flavour is welcome here, where we regard the
geometrical approach as suspect. An excellent review with references of the clas-
sical path from the action for such field to the EH action is found in the recent
book [33, Chap. 3].

Weinberg’s viewpoint in 1964 [34] is also very instructive and deserves mention.
On the basis of properties of the S-matrix, he proves that gravitons must couple to all
forms of energy in the same way. He moreover shows that any particle with inertial
mass mi and energy E has, apart from Newton’s constant, an effective gravitational
charge

2E − m2
i /E .

For E = mi, one recovers the usual equivalence result, while for mi = 0 one obtains
2E , which gives the correct result for the deflection of light. (Also, a graviton must
respond to an external gravity field with the same charge.)

In this section we perform a parallel exercise to Feynman’s: assuming igno-
rance of Einstein’s general relativity, we arrive again at the EH action by succes-
sive approximation. Our method has little to do with the “effective Lagrangians”
approach and differs from traditional ones mentioned above in at least one of several
respects:

• We consider only pure gravity. Coupling to matter is sketched after the fact, just
for completeness.

• It is fully quantum field theoretical, in that recruits the canonical formalism on
Fock space and quantum gauge invariance. Our main tool is BRS technology,
and ghost fields are introduced from the outset. In other words, we treat gravity
as any other gauge theory in the quantum regime; we obtain a quantum theory of
the gravitational field, in which at some point we put h̄ = 0.



1 Notes on “Quantum Gravity” and Noncommutative Geometry 15

• We use the causal (or Epstein – Glaser) renormalization scheme [35], relying
on the (perturbative expansion in the coupling parameter of the) S-matrix. This
entails a slight change of interpretation, in regard to renormalization, with respect
to standard thinking; we briefly discuss the matter at the end of Sect. 1.3.6.
Epstein – Glaser renormalization is specially appropriate for gravity issues since
it does not rely on translation invariance.

• We never invoke the stress – energy tensor.

In some sense we close a circle opened as well by Feynman in the early
1960s [36], where he first realized that unitarity at (one-)loop graph calculations
demanded ghost fields, for gravity as well as for Yang – Mills theory. Through
well-known work by DeWitt, Slavnov, Taylor, Fadeev and Popov, and Lee and Zinn-
Justin, this would eventually lead to BRS symmetry by the mid-1970s.

We mainly follow [57, 38]. The remote precedent for the last paper is an out-
standing old article by Kugo and Ojima [39].

1.3.2 Exempli Gratiae

In order to make clear the strategy, we briefly recall here the similar treatment for
(massive and massless) electrodynamics. Suppose we wish to effect the quantization
of spin-1 particles by means of real vector fields. The question is how to eliminate
the unphysical degrees of freedom, since a vector field has four independent com-
ponents, while a spin-1 particle has three helicity states, or two if it is massless.

A standard procedure is to impose the constraint ∂μAμ =: (∂ · A) = 0. How-
ever, this is known to lead to the Proca Lagrangian (density), which has very bad
properties. Also, under quantization, use of Proca fields entails giving up covariant
commutators of the disarmingly simple form found for neutral scalar fields:

[Aμ(x), Aν(y)] = iημνD(x − y), (Aμ)+ = Aμ, (3)

with η the Minkowski metric and D the Jordan – Pauli propagator. We would like
to keep them instead. The Klein – Gordon equations

(�+ m2)Aμ = 0 (4)

we would like to keep as well. Now, it is certainly impossible to realize (3) and (4) on
Hilbert space if by + we understand the ordinary involution. However, it is possible
to do it through the introduction of a distinguished symmetry η (that is, an operator
both self-adjoint and unitary) called the Krein operator. Whenever such a Krein
operator is considered, the η-conjugate O+ of an operator O with adjoint O† is

O+ := ηO†η.

Let (·, ·) denote the positive definite scalar product in H . Then
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〈·, ·〉 := (·, η·)

yields an “indefinite scalar product”, and the definition of O+ is just that of the
adjoint with respect to 〈·, ·〉. Then A will be self-conjugate.

The massive vector field model is known to be a gauge theory [40] if we introduce
the auxiliary (scalar) Stückelberg field B (say with the same mass m) and gauge
transformations of the form

δAμ(x) = ημν∂νθ(x) = ∂μθ(x),
δB(x) = mθ(x).

The trick now is to use the unphysical parts ∂ · A, B plus the ghosts u and anti-
ghost ũ to construct the BRS operator

Q =
∫

x0=const
d3x (∂ · A + m B)

←→
∂0 u,

whose action should reproduce the gauge variations (where commutators [., .]− or
anticommutators [., .]+ are taken according to whether the ghost number of the
varied field is even or odd):

s Aμ(x) = [Q, Aμ(x)]± = i∂μu(x),

s B(x) = [Q, B(x)]± = imu(x),

su(x) = [Q, u(x)]± = 0,

sũ(x) = [Q, ũ(x)]± = −i
(
∂ · A(x)+ m B(x)

)
. (5)

With these relations one easily proves 2-nilpotency modulo the field equation:

2Q2 = i
∫

x0=const
d3x �u

←→
∂0 u + im2

∫

x0=const
d3x u

←→
∂0 u = 0.

Thus the right-hand side of (5) is coboundary fields. With the help of nilpotency,
the finite gauge variations for the same fields of (5) are easily computed. The super-
charge Q is conserved. The massless limit is not singular in this formalism: for
photons, we just put m = 0, and B drops out of the picture.

1.3.3 The Free Lagrangian

A rank 2 tensor field under the Lorentz group decomposes into the direct sum of
four irreducible representations, corresponding to traceless symmetric tensors, a
scalar field, and self-dual and anti-self-dual tensors. We group the first two into
a symmetric tensor field h ≡ {hμν} with arbitrary trace. Let us introduce as well
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ϕ := hρρ, H ≡ {Hμν} := {hμν − 1
4η
μνϕ
}
, thus Hρ

ρ = 0.

(We wish to keep h to denote the whole tensor, and so we do not use the standard
notation for its trace.) Again the question is how to eliminate the superfluous degrees
of freedom in the description of a spin-2 relativistic particle, which possesses only
two helicity states. A fortiori we do not want to follow for the graviton the path of
enforcing constraints that was discarded for photons.

For a free graviton one may settle on the Lagrangian

L(0) = 1
2 (∂ρhαβ)(∂ρhαβ)− (∂ρhαβ)

(
∂βhρα

)− 1
4 (∂ρϕ)(∂

ρϕ). (6)

Of course this choice is not unique. The more general Lorentz-invariant action
quadratic in the derivatives of h is of the form

∫
d4x [a(∂ρhαβ)(∂ρhαβ)+ b(∂ρhαβ)

(
∂βhρα

)+ c(∂ρϕ)(∂
σ hρσ )+ d(∂ρϕ)(∂

ρϕ)].

The frequently invoked Fierz – Pauli Lagrangian [41] is of this type, with a =
1
4 , b = − 1

2 , c = 1
2 , d = − 1

4 . The signs are conventionally chosen in both cases
so that the first term has a positive coefficient. The Euler – Lagrange equations
corresponding to (6)

∂γ
∂L(0)
∂(∂γ hαβ)

= 0

yield at once

�hαβ − ∂γ ∂βhαγ − ∂γ ∂αhβγ − 1
2η
αβ�ϕ = 0. (7)

This form is essentially equivalent to the Fierz – Pauli equation, but more convenient
here. (For a critique of the Fierz – Pauli framework, consult [42].)

1.3.4 A Canonical Setting

A crucial point is the invariance of the Lagrangian L(0) – thus of (7) – under gauge
transformations

δhαβ = λ(∂α f β + ∂β f α − ηαβ(∂ · f )) = λbαβρτ ∂ρ f τ , (8)

where

bαβρτ := ηαρδβτ + ηβρδατ − ηαβδρτ ,

for arbitrary f = ( f α). This entails
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δϕ = −2λ(∂ · f ). (9)

To verify this invariance, with an obvious notation, and up to total derivatives,

δL(0)I = −δhαβ�hαβ,

δL(0)I I = δhαβ∂ρ
(
∂αhβρ + ∂βhαρ

)
,

δL(0)I I I = 1
2δϕ�ϕ.

One finishes the argument by use of (8) and (9).
That tensor b will reappear often. Classically, one could specify here the trans-

verse gauge condition:

∂β(h
αβ + δhαβ) = 0. (10)

(In the gravity literature a so-called de Donder gauge condition is more frequently
used.) The last equation is obtained at once if f α solves

λ� f α = −∂βhαβ =: − (∂ · h)α,
then (7) reduces to �h = 0.

As advertised, we refrain from quotient by imposing gauge conditions. In our BRS-
like treatment, the elimination of the many extra degrees of freedom takes place
cohomologically, rather than by use of constraints. The fields are promoted to (by
now still free) normally ordered quantum fields. Clearly, in this approach we need
to add to L(0) the gauge-fixing and free ghost terms:

Lfree = L(0)+ 1
2 (∂ ·h) · (∂ ·h)− 1

2 (∂μũν+∂ν ũμ)(∂μuν+∂νuμ−ημν(∂ ·u)). (11)

One quantizes h in the most natural way:

[hαβ(x), hμν(y)] = ibαβμν D(x − y), (12)

and therefore the propagators for H, ϕ are given by

[Hαβ(x), Hμν(y)] = i
(
ηαμηβν + ηανηβμ − 1

2η
αβημν

)
D(x − y),

[ϕ(x), ϕ(y)] = −8i D(x − y),

[ϕ(x), Hμν(y)] = 0.

Also, for the fermionic ghosts we have the anticommutation relations

[uα(x), uβ(y)] = igαβD(x − y). (13)
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All other anticommutators vanish. The new Euler – Lagrange equations give rise
now to the simplest possible, ordinary wave equations for all fields considered.

�h = 0, �u = 0, �ũ = 0.

We can prove directly consistency of rules (12) and (13), analogous to (3) and (4),
by constructing a explicit representation in a Fock – Krein space. The reader will
see this in a later section.

Let us now introduce the BRS operator

Q =
∫

x0=const
d3x (∂ · h)α←→∂0 uα =

∫

x0=const
d3x

(
(∂ · H)α + 1

4∂
αϕ
)←→
∂0 uα; (14)

where (∂ · h)α denotes the divergence ∂βhαβ , which in view of (10) is unphysical,
and uα is the fermionic (vector) ghost field. The associated gauge variations are as
follows:

shμν = [Q, hμν] = ibμνρτ ∂ρuτ = i(∂μuν + ∂νuμ − ημν(∂ · u)),
su = [Q, u]+ = 0,

sũ = [Q, ũ]+ = −i(∂ · h)μ. (15)

Note that the action of the coboundary operator is dictated by the variation (8). Other
important coboundaries like

sϕ = i(∂ · u); s(∂ · h)μ = 0

follow from (15) on-shell. Again the supercharge Q is 2-nilpotent and conserved.

1.3.5 What to Expect

We make a temporary halt to examine whether with our choices in Sect. 1.3.3 we are
on the right track, after all. Let g := (gαβ) denote the metric tensor and R the Ricci
curvature. As hinted above, for this writer the EH action (with c=1 and without the
“cosmological constant”)

SEH = − 1

16πG

∫
d4x

√− det g R = − 1

16πG

∫
d4x gμνRμν

constitutes the alpha and omega of gravitation theory. Here G is Newton’s constant,
equal to h̄/m2

Planck. We recall
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�αβγ = 1
2 gαμ(∂γ gβμ + ∂βgγμ − ∂μgβγ ), thus

∂αgμν = −�μγαgγ ν − �νγαgγμ (vanishing covariant derivative),

Rμν = ∂α�αμν − ∂ν�αμα + �βμν�αβα − �βμα�αβν,
R = gαβRαβ. (16)

It is convenient to have a special notation for

�μ := �αμα = 1
2 gαγ ∂μgαγ = ∂μ(det g)

2 det g
= ∂μ

(
log
√− det g

)
.

We have employed that the minors of gαβ in det g are equal to det g gαβ . Finally, the
Goldberg tensor 1-density

gαβ := √− det ggαβ

is – quite canonically, according to [43, Sect. 2.1] – a hero of our story.
Let us define λ = 4

√
2πG (essentially the inverse of Planck’s mass, in natural

units). Since our approach to SEH is perturbative, we need to rewrite the correspond-
ing Lagrangian LEH as a series in the coupling constant λ. An old trick in classical
gravity – see for instance [44, Sect. 93] – is to split off a divergence from LEH
by using

gμν∂α�
α
μν = ∂α

(
gμν�αμν

)− �αμν∂α(gμν),
gμν∂ν�μ = ∂ν(gμν�μ)− �μ∂ν(gμν).

With the help of previous equations, one finds

gαβ Rαβ = H − ∂γ
(
gμγ �μ − gμν�γμν

) =: H − ∂γ Dγ , (17)

where

H = gαβ
(
�γαρ�

ρ
βγ − �ραβ�ρ

)
.

The key step in our identification comes now: to make the contact between quan-
tum field theory and general relativity, we postulate

gμν = ημν + λhμν. (18)

Remark that do not assume h to be small in any sense. In (17) we separate the part
of the vector D containing negative powers of λ:

Dγ = 1

λ

(
1
2∂γ ϕ + ∂ρhγρ

)
+ D(0)γ . (19)
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The inverse matrix gμν with gμρgρν = δμν formally becomes a series

gμν = ημν − λhμν + λ2hμγ hγν − λ3hμγ hγτ hτν + · · · . (20)

Substituting this expression in the new form of the action (2/λ2)
∫

d4x H , we obtain
a series as well:

L =
∞∑

0

λnL(n). (21)

(Actually, the Neumann series (20) is somewhat suspect, in view of convergence
problems and other technical difficulties. One could se the Cayley – Hamilton theo-
rem to obtain an exact expression for (gμν).) The lowest order, at any rate, is indeed
of order λ0 in view of the two derivatives inside H, and it is seen to coincide with
the free model of Sect. 1.3.3. For completeness and use later on, we also report the
three-graviton and four-graviton couplings:

L(1) = (− 1
4∂ρϕ∂σϕ + 1

2∂ρhαβ∂σ hαβ + ∂γ hαρ∂αhγσ
)
hρσ ,

L(2) = −hαβhρβ(∂νh
αμ)(∂μhβν)− 1

2 hρσ hρβ(∂αhρβ)(∂αϕ)

− 1
4 hνμ(∂αhνμ)hσρ(∂

αhσρ)+ 1
2 hνμ(∂αhνμ)haβ(∂βϕ)

+ hβρhβσ (∂μhρα)
(
∂μhσα

)− hαρ
(
∂μhρσ

)
(∂νh

αρ)hμν

+ 1
2 hαρhβσ (∂μhασ )(∂μhβρ). (22)

1.3.6 Causal Gauge Invariance by Brute Force

Interacting fields in Epstein – Glaser formalism are made out of free fields. The
starting point for the analysis is the functional S-matrix in the Dyson representation
under the form of a power series:

S(g) = 1+ T = 1+
∞∑

n=1

1

n!
∫

dx1 . . . dxn Tn(x1, . . . , xn)g(x1) · · · g(xn). (23)

The theory is constructed basically by using causality and Poincaré invariance of
the scattering matrix to determine the form of the time-ordered products Tn . Only
those fields that already are present in T1 should appear in Tn . The adiabatic limit
on the “coupling functions” g(x) ↑ 1 is supposedly taken afterwards.

Causal gauge invariance (CGI) is formulated by the fact that sTn = [Q, Tn]±
must be a divergence, keeping in mind that Tn and T ′n are equivalent if they differ
by coboundaries.
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In particular, first-order CGI means

sT1(x) = i(∂ · T1/1)(x).

For T1, let us try a general Ansatz containing cubic terms in the fields and leading
to a renormalizable theory. At our disposal there are three field sets: h, u, ũ. The
most general coupling with vanishing ghost number without derivatives is of the
form

aϕ3 + b ϕhνμhνμ + c hμνh
ν
γ hγμ + (u · ũ)ϕ + e hνμuν ũμ.

Correspondingly, with ghost number one since the action of the BRS operator
increases ghost number by one, we can have (with an obvious simplified notation)

Tμ1/1 = a′uμϕ2 + b′uμh · h + c′(u · h)μϕ + d ′uαhαβhβμ + e′u(u · ũ).

Forlorn hope. It must be

s(∂ · T1/1) = 0.

This condition has only the trivial solution T1/1 = 0.
Since one cannot form scalars with one derivative, we are forced to consider

cubic couplings with two derivatives. This is the root of “non-normalizability” (in
Epstein – Glaser jargon) of gravitation. There are 12 possible combinations in T1
involving only h with two derivatives, and 21 combinations in T1 involving h, u, ũ,
with two derivatives and zero total ghost number. At the end of the day, one obtains
T1 = T h

1 + T u
1 , with T h

1 uniquely proportional to L(1) (modulo physically irrelevant
divergences), and

T u
1 = a

(− uα(∂β ũρ)∂αhβρ + (∂βuα∂α ũρ − ∂αuα∂β ũρ + ∂ρuα∂β ũα)h
βρ
)
.

The calculations are excruciatingly long, and of little interest. They, as well as the
explicit expression of T1/1, can be found in [37], to which we remit. By the way,
had we tried to use

gμν = ημν + λhμν

instead of (18), then T h
1 turns out much more complicated – even after elimination

of a host of divergence couplings.
More intrinsically interesting are the calculations of CGI at second order, also

done in [37], which indeed reproduce L(2). For the higher order analysis, one needs
some (rather minimal) familiarity with the Epstein – Glaser method to inductively
renormalize (i.e. to define) the time-ordered products Tn based on splitting of distri-
butions. This requires use of antichronological products corresponding to the expan-
sion of the inverse S-matrix. If we write the inverse power series
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S
−1(g) = 1+

∞∑

1

1

n!
∫

d4x1 . . .

∫
d4xn T n(x1, . . . , xn) g(x1) . . . g(xn),

then we have T |N |(N ) = ∑n
k=1(−)k

∑
�k

j=1 I j=N T|I1|(I1), . . . , T|Ik |(Ik), where the

disjoint union is over (non-empty) blocks I j . For instance, the second-order term
T 2(x1, x2) in the expansion of S

−1(g) is given by

T 2(x1, x2) = −T2(x1, x2)+ T1(x1)T1(x2)+ T1(x2)T1(x1).

The inductive step is performed using the totally advanced and totally retarded prod-
ucts. For instance, at the lower orders:

A2(x1, x2) = T 1(x1)T1(x2)+ T2(x1, x2) = T2(x1, x2)− T1(x1)T1(x2),

R2(x1, x2) = T1(x2)T 1(x1)+ T2(x1, x2) = T2(x1, x2)− T1(x2)T1(x1),

A3(x1, x2, x3) = T 1(x1)T2(x2, x3)+ T 1(x2)T2(x1, x3)+ T 2(x1, x2)T1(x3)

+ T3(x1, x2, x3),

R3(x1, x2, x3) = T1(x3)T 2(x1, x2)+ T2(x1, x3)T 1(x2)+ T2(x2, x3)T 2(x1)

+ T3(x1, x2, x3). (24)

By the induction hypothesis Dn+1 := Rn+1 − An+1 depends only on known
quantities. Moreover Dn+1 has causal support. If we can find a way to extract
its retarded or the advanced part, that is, to split Dn+1, then we can calculate
Tn+1(x1, . . . , xn+1).

Consider then D2(x, y) = [T1(x), T1(y)], the first causal distribution to be split.
We have thus

s D2(x, y) = [sT1(x), T1(y)] + [T1(x), sT1(y)]
= i∂x

μ

[
Tμ1/1(x), T1(y)

]
+ i∂ y

μ

[
T1(x), Tμ1/1(y)

]
, (25)

so that D2 is gauge invariant, and the issue is how to preserve gauge invariance
in the renormalization or distribution splitting. That is, we must split D2 and the
commutators – without the derivatives – in the previous equation and then gauge
invariance:

s R2(x, y) = i∂x
μRμ2/1(x)+ i∂ y

μRμ2/2(y)

can only be (and is) violated for x = y, that is, by derivative terms in δ(x − y). That
is to say, if local renormalization terms N2, Nμ2/1, Nμ2/2 can be found in such a way
that
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s(R2(x, y)+ N2(x, y)) = i∂x
μ

(
Rμ2/1 + Nμ2/1

)
+ i∂ y

μ

(
Rμ2/2 + Nμ2/2

)
,

with an obvious notation, then CGI to second order holds.
When computing in practice, one is liable to find identities in distribution theory

like

∂x
μ[A(x)B(y)δ(x − y)] + ∂ y

μ[A(y)B(x)δ(x − y)]
= ∂μA(x) B(x)δ(x − y)+ A(x) ∂μB(x)δ(x − y) (26)

and A(x)B(y)∂x
μδ(x − y)+ A(y)B(x)∂ y

μδ(x − y)

= A(x) ∂μB(x)δ(x − y)− ∂μA(x) B(x)δ(x − y). (27)

We make the following observation: since

A(x)B(y)δ(x − y) = A(x)B(x)δ(x − y),

it must be

∂x
μ

(
A(x)B(y)δ(x − y)

) = ∂x
μ

(
A(x)B(x)δ(x − y)

)
,

which forces

B(y)∂x
μδ(x − y) = B(x)∂ x

μδ(x − y)+ ∂μB(x)δ(x − y). (28)

We are able to prove both (26) and (27) from (28).

∂x
μ[A(x)B(y)δ(x − y)] + ∂ y

μ[A(y)B(x)δ(x − y)]
= ∂μA(x) B(x)δ(x − y)+ A(x)B(y)∂x

μδ(x − y)

+ ∂μA(x) B(x)δ(x − y)− A(y)B(x)∂x
μδ(x − y)

= ∂μA(x) B(x)δ(x − y)+ A(x)B(y)∂x
μδ(x − y)

− A(x)B(x)∂x
μδ(x − y) = ∂μA(x) B(x)δ(x − y)+ A(x) ∂μB(x)δ(x − y),

where we have used (28) twice. Analogously,

A(x)B(y)∂x
μδ(x − y)+ A(y)B(x)∂ y

μδ(x − y) = A(x)B(x)∂x
μδ(x − y)

+ A(x)∂μB(x)δ(x − y)− A(y)B(x)∂x
μδ(x − y)

= A(x) ∂μB(x)δ(x − y)− ∂μA(x) B(x)δ(x − y),

using (28) twice again.
Again after excruciatingly long calculations, by the sketched method one recov-

ers the four-graviton couplings (22), plus terms with ghosts that we omit. Nev-
ertheless, the road seems barred in that, in order to rederive the EH Lagrangian,
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one would have to perform an infinite number of calculations. Put in another
way, we could never finish ascertaining that the EH Lagrangian fulfils CGI. (In a
(re)normalizable theory it would be enough to verify CGI till third order, but this
is not the case here.) For the latter, a better way can be contrived, though. Leaving
aside the question of uniqueness (in spite of “folk theorems”, uniqueness there is
not: see Sect. 1.4), one can jump to the conclusion that LEH does satisfy CGI. In the
next section, we describe a simple, short, and rigorous argument for this.

Before pursuing, we take stock: a classical Lagrangian is extracted from a quan-
tum theory because, for all computations, naturally starting at T2, only tree diagrams
are considered. Par ce biais-ci the limit h̄ ↓ 0 is taken. Of course, it is legitimate to
perform the CGI analysis on graphs containing loops. In that way, the appropriate
radiative corrections to SEH are obtained, although this is not for the fainthearted.
See [45] for the graviton self-energy; discrepancies between the coefficients of
those corrections are still found in the literature. Anomalies are lurking there as
well.

A last comment is in order: we have not tackled the matter of (re)normalizability
of the theory, which is in terms of the Tn is a bit involved. Suffice here to say
that the conclusion is similar to that of standard arguments (on the basis of the
dimensionality of G, for instance). It is true that in causal (re)normalization, there
are no ultraviolet divergences as such. There is a problem of correct definition of
distributions involved in the perturbative expansion of the S-matrix. The price of
a “non-normalizable” theory like Einstein’s is an infinite number of normalization
constants in the process of that definition. This is not automatically so damning (also
in regard of the discussion in the previous section), since perhaps they could be fixed
by experiments, or have unobservable consequences. At any rate, the famous one-
loop finiteness result by ’t Hooft and Veltman – consult for instance the discussion
in [46, Sect. III] – means that, at next order in pure gravity, no (new normalization
constants and thus no) new geometrical invariants are introduced: another rule of
the godly quarantine.

1.3.7 CGI at All Orders: Going for It

We rely in the following on a theorem by Dütsch [38]: BRS invariance of a
Lagrangian, depending only on the fields and their first derivatives and carrying
nonnegative powers of the couplings, implies local conservation of the BRS current.
The latter implies CGI in the Heisenberg representation for tree graphs, and this
result is kept in passing to time-ordered products. BRS invariance means precisely
that the action of the BRS operator on the Lagrangian is a divergence, without use
of the field equations. This admitted, the proof of CGI for the EH Lagrangian –
modified like in formula (17) – by means of the BRS formulation of gravity by
Kugo and Ojima [39] is simplicity itself.

In (our version of) that formulation, one keeps (18) and uses new gauge varia-
tions. The coboundary operator now is of the form
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s = s0 + λs1.

Here s0 acts exactly like s of (5) and

s1hμν = i
(
hμρδντ + hνρδμτ

)
∂ρuτ − i∂τ (h

μν)uτ ,

s1u = −i(u · ∂)u,
s1ũ = 0. (29)

Sotto voce we are introducing here the Lie derivative of (gμν) with respect to the
ghost vector field, thus diffeomorphism invariance. The new Lagrangian, complete
with gauge-fixing and ghost terms, is

Ltotal = −H + Lgf + Lghost = −H + 1
2 (∂ · h) · (∂ · h)+ i

2 (∂ν ũμ + ∂μũν)shμν.

Of course Ltotal is not diffeomorphism invariant. Compare (11). Note that

Lgf = L(0)gf = − 1
2 (sũ)2,

while Lghost has terms of order λ. From this,

s2h = 0, s2u = 0, s2ũμ = −δStotal

δũμ
,

vanishing on-shell. It is known from [39] that

sLEH = −iλ∂ · (uLEH),

and since, with

Fα := (∂ρhβρ)shαβ we have s(Lgf + Lghost) = i∂ · F,

it would seem that BRS invariance is checked, and we are done. Actually LEH does
not fulfil the conditions of Dütsch’s theorem. However, we can use (17) and (19) to
conclude. Indeed

−s H = −iλ∂ · (uLEH)− i∂ · (s D)+ i

λ
∂ · (�u − ∂(∂ · u)).

The last vector is conserved, but the point is that it cancels the term of the form

1

λ
s
( 1

2∂γ ϕ + ∂ρhγρ
)

in s D. Then
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s(Ltotal) = s(−H +Lgf +Lghost) = −i∂ ·
(
λuLEH + s D − F − �u

λ
+ ∂(∂ · u)

λ

)
;

that is

s(Ltotal) = ∂ · I with I of the form I =
∞∑

k=0

λk I (k),

and all is well. (The funny and revealing thing in all this is that the parts in 1/λ2 and
1/λ in the EH Lagrangian do not contribute to the equations of motion.)

It is instructive to compare the tensor and vector cases. In order to see the parallel,
one ought to replace (the massless version of) formulae (5) by

s Aμa (x) = i Dμabub(x),

sua(x) = − i
2 g fabcubuc,

sũa(x) = −i
(
∂ · Aa(x)

)
.

Like there, it is plain that the action of the BRS operator increases ghost number by
one. Here fabc denotes the structure constants of a Yang – Mills model, and D is
the corresponding covariant derivative.

1.3.8 Details on Quantization and Graviton Helicities

The reader might be curious to know how the physical degrees of freedom emerge
under our canonical recipe.

Let us treat ghosts first. Consider a family of absorption and emission operators
cαa (k) with a = 1, 2 and standard anticommutators

[
cαa (k), c

β
b (k

′)
]

+ = δabδαβδ(k− k′)

defining a bona fide Fock space, with the definitions

uα(x) = (2π)−3/2
∫

dμ(k)
(

e−ikx cα2 (k)− gααeikx cα1 (k)
†
)
,

ũα(x) = −(2π)−3/2
∫

dμ(k)
(

e−ikx cα1 (k)+ gααeikx cα2 (k)
†
)
, (30)

where dμ(k) is the usual Lorentz invariant volume over the lightcone. There is a
Krein operator on the ghost Fock space that allows for u being self-conjugate and ũ
being skew-conjugate. This can be achieved by

ci
1(k)

+ = ci
2(k)

†, ci
2(k)

+ = ci
1(k)

†, c0
1(k)

+ = −c0
2(k)

†, c0
2(k)

+ = −c0
1(k)

†,
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with i = 1, 2, 3. Then formulae (30) are rewritten as

uα(x) = (2π)−3/2
∫

dμ(k)
(

e−ikx cα2 (k)+ eikx cα2 (k)
+) = uα(x)+,

ũα(x) = (2π)−3/2
∫

dμ(k)
(
−e−ikx cα1 (k)+ eikx cα2 (k)

†
)
= −ũα(x)+. (31)

From (30) or (31) we obtain for u, ũ the wave equations. Covariant anticommutation
relations (13) also follow.

Note now

tαβμν := 1
2

(
ηαμηβν + ηανηβμ − 1

2η
αβημν

) = tμναβ.

That is,

(
tμναβ

) =

⎛

⎜
⎜
⎜
⎜
⎝

3/4 1/4 0 0

1/4

(
3/4 −1/4
−1/4 3/4

)

0 0

0 0 1/2 0
0 0 0 1/2

⎞

⎟
⎟
⎟
⎟
⎠

on a (0, 0), ( j, j), (0, j), ( j, l) block basis, with j, l = 1, 2, 3, j �= l; and in
particular

T ≡ (tμμαα) =

⎛

⎜
⎜
⎝

0 1/4 1/4 1/4
1/4 3/4 −1/4 −1/4
1/4 −1/4 3/4 −1/4
1/4 −1/4 −1/4 3/4

⎞

⎟
⎟
⎠

on the (0, 0), (1, 1), (2, 2), (3, 3) basis. Next we note that

T = M M†, with M =

⎛

⎜
⎜
⎝

0 1/2 1/2 1/2
0 −1/2 1/2 1/2
0 1/2 −1/2 1/2
0 1/2 1/2 −/2

⎞

⎟
⎟
⎠ .

Next we invoke operators defining a Fock space:

[bαβ(k), bμν(k′)] = 1
2 (δαμδβν + δαμδβμ)δ(k− k′),

with bαβ = bβα . Define now operators aαβ , with aαβ = aβα as well, by aαβ = bαβ
for α �= β and

aαα =
∑

β

Mαβbββ.
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The rule
[
aαβ(k), a†

μν(k
′)
]
= gααgββ tαβμνδ(k− k′)

follows.
The scalar field is now constructed in a way close to the standard one:

ϕ(x) = (2π)−3/2
∫

dμ(k) (e−ikx a(k)− eikx a†(k)), (32)

where the (not Lorentz covariant) operators a# satisfy

[a(k), a†(k)] = 4δ(k− k′).

The traceless sector is represented as

Hαβ(x) = (2π)−3/2
∫

dμ(k)
(

e−ikx aαβ(k)+ gααgββ tαβμνeikx a†
αβ(k)

)
.

Now one can verify (12) painstakingly.
The last task in this section is to identify finally the physical degrees of freedom.

For that, let us choose and fix kμ = (ω, 0, 0, ω). One can verify that the only states
not present in Q (that is, belonging to the kernel of [Q, Q†]+) are

(b11 − b22)
†|0〉 and b†

12|0〉 = b†
21|0〉.

They correspond to linear polarization states. Their complex combinations (circular
polarization states) may be represented by matrices

ε± :=

⎛

⎜
⎜
⎝

0 0 0 0
0 1 ±i 0
0 ±i −1 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

which transform like

ε′± = e±2iφε±

under a rotation of angle φ about the direction of propagation. The reader can verify
this by using the generator of rotations

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .
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The two ±2 helicity states have been thereby identified. These states satisfy

ε
μν
± kν = 0. (33)

These conditions are not Lorentz invariant. Notice the associated gauge freedom

ε
μν
± → ε

μν
± + kμ f ν + f μkν − ημν(k · f ).

We may add

ε ν±ν = 0. (34)

This five conditions (33) and (34) are also possible for a massive graviton – say
k = (m, 0, 0, 0). Thus they characterize the spin two case in general, with up to five
degrees of freedom. Now, for k lightlike as above, let e1, e2 denote two spacelike
vectors orthogonal to k and mutually orthogonal, say (0, 1, 0, 0), (0, 0, 1, 0). The
tensors

(kμkν) =

⎛

⎜
⎜
⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟
⎟
⎠,
(

kμe1
ν + e1

μkν
)
=

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 1
0 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠,
(

kμe2
ν + e2

μkν
)
=

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠

verify (33) and (34) as well. They represent the three helicity states that disappear
in the massless case.

1.3.9 Final Remarks

• The geometrical form of general relativity, due to Einstein, is supremely elegant
for some. However, the accompanying interpretation clashes with the one advo-
cated here, based in the identification of the quanta of the gravitational field and
more or less standard quantum field theory procedures, not to speak of table top
experiments. Since experiments probe gravity theory to very low orders in G, h̄,
one should keep an open mind and welcome any consistent quantum theory per-
turbatively compatible with general relativity. As string theory promises to be.

• Coupling to matter. The graviton naturally couples to another symmetric tensor
field:

T matter
1 = iλAαβμνh

αβTμν with sT = 0.

Consideration that sT matter
1 must be a divergence leads at once to

∂μTμν = 0;
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just like it leads to charge conservation in quantum electrodynamics. Of course,
the only conserved second-rank symmetric tensor in Poincaré-invariant field the-
ory is the stress – energy tensor.

• Infrared freedom: in the Epstein – Glaser dispensation, vacuum diagrams, as any
others, are ultraviolet-finite. Because of their high degree of singular order, how-
ever, we are assured that they are infrared finite. Therefore the vacuum is stable
(no colour confinement or anything of the sort): a bonus for quantum gravity.

• The CGI formalism allows one to deal with massive gravity as well [47], although
the shortcut in Sect. 1.3.7 apparently is not available. At the price of introducing
Stückelberg-like vector Bose ghosts, the massless limit of massive gravity is rel-
atively smooth. Suggestively, a cosmological constant Λ = m2/2, with m the
graviton mass, ensues; one is reminded of Mach’s principle, as well.
Note that the Fadeev – Popov approach to ghosts in quantum gravity is linked to
existence of quasi-invariant measures on diffeomorphism groups [48].

1.3.10 Other Ways

• Path-integral quantization faces the stark difficulty (rather, the impossibility) of
“counting” four-dimensional manifolds [49]. A way around it may be “dynamical
triangulation” – see [50] and in the same vein the recent [51].

• We cannot close the section without mentioning the promise of “asymptotic
safety” in quantum gravity, developed by Reuter and coworkers. Consult [52],
and references therein. There are intriguing results within this approach, pointing
out to effective 2-dimensionality of spacetime at the Planck scale – which has
been used by Connes, somewhat dubiously, to justify that the finite noncommu-
tative geometry part in his reinterpretation of the standard model Lagrangian be
of KO-dimension 6 [53]. While, at the other end of the scale, exceptionally good
infrared behaviour could mimic both “dark matter” and “dark energy” behaviour.

• In relation with the discussion at the end of Sect.1.3.6, support for the idea that
UV divergences in gravity are not so intractable has come recently from work by
Kreimer [54].

1.4 The Unimodular Theories

A recent edition of a standard text about cosmology by a well-respected author [55]
ends with a chapter on “Twenty controversies in cosmology today”. In the first one,
about general relativity, he declares

In fact it is theories without effective rivals that require the most vigilant testing.

Without contradicting this wisdom, let me point out that general relativity has
some rivals which are too close for comfort. In order to grapple with them, let us go
back to the fundamentals. We did omit the proof of that, for suitable variations of
the metric (gαβ), the Einstein field equations in vacuum
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Gαβ +Λgαβ := Rαβ − 1
2 Rgαβ +Λgαβ = 0 (35)

are equivalent to

δSEH

δgαβ
= 0.

It is worthwhile to go through that routine here. Now

SEH = − 1

16πG

∫
d4x

√− det g (R − 2Λ).

Clearly

δSEH = 1

16πG

∫
d4x

[
−(R−2Λ)

δ
√− det g

δgαβ

]
+√− det g

[
Rαβδgαβ+gαβδRαβ

]
,

where we take into account

Rαβδgαβ = −Rαβδg
αβ, since δgρσ gσε + gρσ δgσε = 0.

Now,

δ
√− det g = − 1

2
√− det g

∂(− det g)

∂gαβ
δgαβ = 1

2

√− det g gαβδgαβ.

It is easy to show that the last term in δSEH does not contribute to the variation of
the action. Therefore

δSEH

δgαβ
=
√− det g

16πG

(
Rαβ − 1

2 Rgαβ +Λgαβ
)
,

hence (35).
It is apparent that life would be much simpler if

√−g were not a dynamical
quantity. This is suggested by Weinberg in his well-known review [56], in relation
with the discussion in Sect. 1.6; the idea basically goes back to Einstein. Let us see
what happens. First of all Λ seems to vanish from the picture. Second, since now
the action has to be stationary only with respect to variations keeping det g invariant,
that is gαβδgαβ = 0, one gathers the elegant

Rαβtrace−free = Rαβ − 1
4 gαβ R = 0.

As it turns out, these are the Einstein equations again! The reason is that the con-
tracted Bianchi identities

∇β Rαβ = 1
2∇αR, that is ∇βGαβ = 0
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are still valid. They can be derived from Rμν = gσρRσμρν and the uncontracted
Bianchi identities:

∂τ Rμνρσ + ∂σ Rμντρ + ∂ρRμνστ = 0.

Therefore, by integration,

−R = Gαα = −4κ, and then Gαβ + κgαβ = 0,

which is but (35) with κ replacing Λ. However, the interpretation has changed. The
term in Λ in the action does not contribute anything (so the Minkowski space is a
solution of the field equations even in the presence of such a term), and κ arises as
an initial condition.

Remark 1 The discussion in this section is mainly pertinent in the presence of mat-
ter. If we define here the matter stress – energy tensor T ≡ (T αβ) by

δSmatter =: 1
2

∫
d4x

√− det g T αβδgαβ,

then varying Smatter + SEH while keeping the determinant fixed results in

Rαβtrace−free = 8πG T αβtrace−free.

Since the conservation law ∇ · T = 0 holds, we have now

R − 8πGT αα = 4κ,

and finally

Rαβ − 1
2 Rgαβ + κgαβ = 8πG T αβ,

exactly the usual Einstein equations in the presence of a cosmological constant term
plus matter, with the mentioned replacement ofΛ by κ , and the attending change of
interpretation.

It should be remarked that we are not implying that the classical action for gravi-
tational physics is invariant only under coordinate transformations (“transverse dif-
feomorphisms”) that preserve the volume element. This is a stronger claim. Elegant
justification for it is found in [57]. In accordance with the above, all known tests
of general relativity probe equally the (several) unimodular theories. It has been
argued that the matter graviton coupling gives rise to inconsistencies when “strong”
unimodularity holds [58], but this objection we know not in relation with weak
unimodularity. Only quantum effects would in principle allow tell it and general
relativity apart [59] – after all the “measure” of the quantum functional integral for
gravity is changed. Meanwhile, the interest of the unimodular theory is twofold: as
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indicated by Weinberg, it alleviates the cosmological constant problem (Sect. 1.6);
moreover, it is natural from the current formulation of noncommutative manifold
theory (Sect. 1.5.9.2). From the viewpoint of the preceding section, the key question
is how the unimodular theory is arrived at the h̄ ↓ 0 limit of a quantum theory of
gravitons. We must leave the matter aside.

1.5 The Noncommutative Connection

1.5.1 Prolegomena

There is no general theory of noncommutative spaces. The practitioners’ tactics has
been that of multiplying the examples, whereas trying to anchor the generalizations
on the more solid ground of ordinary (measurable/topological/differentiable/Rie-
mannian, etc.) spaces. This is what we try to do here, within the limitations imposed
by the knowledge of the speaker.

The first task is to learn to think of ordinary spaces in noncommutative terms.
Arguably, this goes back to the Gelfand – Naı̆mark theorem (1943), establishing
that the information on any locally compact Hausdorff topological space X is fully
stored in the commutative algebra C(X) of continuous function over it, vanishing
at ∞. This is a way to recognize the importance of C∗-algebras and to think of
them as locally compact Hausdorff noncommutative spaces. If we had just asked
for the functions to be measurable and bounded, we would have been led to von
Neumann algebras. Vector bundles are identified through their spaces of sections,
which algebraically are projective modules of finite type over the algebra of func-
tions associated to the base space – this is the Serre – Swan theorem (1962). In this
way, we come to think of noncommutative vector bundles.

Under the influence of quantum physics, the general idea is then to forget about
sets of points and obtain all information from classes of functions, e.g. open sets
in X are replaced by ideals. The rules of the game would then seem to be (1) find a
way to express a mathematical category through algebraic conditions, and (2) relin-
quish commutativity. This works wonders in group theory, which is replaced by
bialgebra theory, relinquishing (co)commutativity. However, that kind of general-
ization quickly runs into sands, for two reasons: (i) Some mathematical objects,
like differentiable manifolds, and de Rham cohomology, are reluctant to direct non-
commutative generalization. The same is true of Riemannian geometry; after all, all
smooth manifolds are Riemann. (ii) Genuinely new “noncommutative phenomena”
are missed.

For instance, in the second respect, in many geometrical situations the associated
set is very pathological, and a direct examination yields no useful information. The
set of orbits of a group action, such as the rotation of a circle by multiples of an
irrational angle θ, is generally of this type. In such cases, when we examine the
matter from the algebraic point of view, we are sometimes able to obtain a perfectly
good operator algebra that holds the information we need; however, this algebra is
generally not commutative.
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One can situate the beginning of noncommutative geometry (NCG) in the 1980
paper by Connes, where the “noncommutative torus” Tθ was studied [60]. Not only
is this algebra able to answer the question mentioned above, but one can decide
what are the smooth functions on this noncommutative space, what vector bundles
and connections on Tθ are, and, decisively, how to construct a Dirac operator on it.

Even now, the importance of this early example in the development of the the-
ory can hardly be underestimated. The noncommutative torus provides a simple but
nontrivial example of spectral triple (A, H, D) – see further on for the notation –
or “noncommutative spin manifold”, the algebraic apparatus with which Connes
eventually managed to push aside the obstacles to the definition of noncommutative
Riemannian manifolds. The Dirac equation naturally lives on spin manifolds, and
these constitute the crucial paradigm, too, for Connes program of research (and
unification) of mathematics.

The more advanced rules of the game would now seem to be the following: (1)
Escape the difficulties “from above” by finding the algebraic means of describing
a richer structure. If we reformulate algebraically what a spin manifold is, we can
describe its de Rham cohomology, its Riemannian distance and like geometrical
concepts, algebraically as well. Choice of a Dirac operator D means imposing a
metric. However, there is the risk that the link to the commutative world is obscured.
(2) Therefore, make sure that the link is kept. In other words, prove that a noncom-
mutative spin manifold is in fact a spin manifold in the everyday sense (!) when the
underlying algebra is commutative. In point of fact, the second desideratum only
received a definitive, satisfactory answer a few weeks ago.

1.5.2 Ironies of History

The following quotation of a popular book [61] provides a convenient rallying point:

When physicists talk about the importance of beauty and elegance in their theories, the Dirac
equation is often what they have in mind. Its combination of great simplicity and surprising
new ideas, together with its ability both to explain previously mysterious phenomena and
predict new ones [spin], make it a paradigm for any mathematically inclined theorist.

Thus the irony is in that, first and foremost [61],

Mathematicians were much slower to appreciate the Dirac equation and it had little impact
on mathematics at the time of its discovery. Unlike the case with the physicists, the equation
did not immediately answer any questions that mathematicians had been thinking about.

The situation changed only 40 years later, with the Atiyah – Singer theory of the
index.

A second and minor irony is that, now that spin manifold theory is an established
and respectable line of mathematical business, its community of practitioners seems
mostly oblivious to the fact it underpins a whole new branch/paradigm/method of
doing mathematics (although something is being done to fill up this gap).

Now come the informal rules for noncommutative geometers – rules which in
any society insiders recognize as the most binding. These seem to be the following:
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(1) Keep close to physics and in particular to quantum field theory. There is no
doubt that Connes came to his “axioms” for noncommutative manifolds by thinking
of the Standard Model of particle physics as a noncommutative space. (2) Try to
interpret and solve most problems conceivably related to noncommutative geometry
by use of spectral triple theory. This of course is not to everyone’s taste, and a
cynic could say “Whoever is good with the hammer, thinks everything is a nail”;
moreover, it is of course literally impossible, as the mathematical world teems with
virtual objects for which complete taxonomy is an impossible task. It has proved
surprisingly rewarding, however.

A caveat about (2): there is an underlying layer of index theory and K -theory,
which is a deep way of addressing quantization. But even there, when you need to
compute K -theoretic invariants, you are led back to smoother structures where you
have more tools, like (A, H, D).

1.5.2.1 A First Conceptual Star

Let us we imagine a star, with NCG in the centre, of subjects intimately related to
it. This will include

• Operator algebra theory
• K -theory and index theory
• Hochschild and cyclic homology
• Bialgebras and Hopf algebras, including quantum groups
• Foliations, groupoids
• Singular spaces
• Deformation and quantization theory
• Topics in physics: quantum field theory, including noncommutative field theory

and renormalization; gauge theories, including the Standard Model; condensed
matter; gravity; strings

1.5.3 Spectral Triples

The root of the importance of spectral triples in NCG is found in algebraic topology.
Noncommutative topology brings techniques of operator algebra to algebraic topol-
ogy – and vice versa. As indicated earlier, the method of rephrasing concepts and
results from topology using Gelfand – Naı̆mark and Serre – Swan equivalence, and
extending them to some category of noncommutative algebras, recurs for a while.
Moreover, deeper proofs of some properties of objects in the commutative world are
to be found in their noncommutative counterparts, with Bott periodicity providing
an outstanding example.

Now to extend the standard (co)homology functors (not to speak of homotopy)
is rather difficult. On the other hand, Atiyah’s K -functor generalizes very smoothly.
Given a unital algebra A, its algebraic K0-group is defined as the Grothendieck
group of the (direct sum) semigroup of isomorphism classes of finitely generated
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projective right (or left) modules over A. Then in view of the Serre – Swan theorem
K0(C(X)) = K 0(X).

Given an ordinary space X , the real K -group K O0(X) – actually, it is a ring,
with product given by pullback by the diagonal map of the tensor product – for X
is obtained as the Grothendieck group for real vector bundles. Higher order groups
are defined by suspension. If X is Hausdorff and compact, we have K Oi (X) �
K Oi+8(X); this is real Bott periodicity. Recall that we have K O0(∗) = Z, K O1(∗) =
K O2(∗) = Z2, K O3(∗) = 0, K O4(∗) = Z, K O5(∗) = K O6(∗) = K O7(∗) = 0.
There is an isomorphism of the spin cobordism classes of a manifold X onto
K O•(X) [62].

The K -homology of topological spaces can be developed as a functorial theory
whose cycles pair with vector bundles in the same way that currents pair with differ-
ential forms in the de Rham theory. Such cycles are given, interestingly enough, by
spinc structures. On the other hand, the index theorem shows that the right partners
for vector bundles are elliptic pseudodifferential operators (with the pairing given by
the index map). We can think of abstract K -cycles as of phases of Dirac operators.
In NCG we want to generalize both this and the line element (entering the realm of
Riemannian geometry). Note the result

Proposition 1 On a spin manifold the geodesic distance between two points obeys
the formula

d(p, q) = sup{ | f (x)− f (y)| : f ∈ C(X), |[D, f ]| ≤ 1 }. (36)

This is actually trivial, since |[D, f ]| is the Lipschitz norm of f .
The foregoing motivates:

Definition 1 A noncommutative geometry (spectral triple) is a triple (A, H, D),
where A is a ∗-algebra represented faithfully by bounded operators on the Hilbert
space H and D is a self-adjoint operator D : DomD → H, with DomD = H , such
that [D, a] extends to a bounded operator and a(1+ D2)−1/2 is a compact operator,
for any a ∈ A; plus a postulate set of conditions given below.

We do not explicitly indicate the representation in the notation. A spectral triple
is even when there exists on H a symmetry Γ such that A is even and D odd with
respect to the associated grading. Otherwise, it is odd. A spectral triple is compact
when A is unital; it is then enough to require that (1+ D2)−1/2 be compact.

One should think of A as an algebra of “smooth”, not “continuous” elements. Of
course, it is important that K (A) = K (Ā), with Ā the C∗-algebra completion of A.
Sufficient conditions are known for this.

In the compact case the maximal set of postulates includes

1. Summability or Dimension: for a fixed positive integer p, we have

(1+ D2)−1/2 ∈ L p,+(H), implying Trω((1+ D2)−p/2) ≥ 0,

for all generalized limits ω, and moreover, Trω((1+ D2)−p/2) �= 0.
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If we have regularity (see directly below), then the functional on A

a �→ Trω(a(1+ D2)−p/2)

is a hypertrace.
2. Regularity: with δa := [|D|, a], one has

A ∪ [D,A] ⊆
∞⋂

m=1

Dom δm.

3. Finiteness: the dense subspace of H which is the smooth domain of D,

H∞ :=
⋂

m≥1

Dom Dm,

is a finitely generated projective (left) A-module, which carries an A-valued
Hermitian pairing (· | ·)A satisfying

〈ξ | aη〉 = Trω
(
a (ξ | η)A(1+ D2)−p/2)

when ξ, η ∈ H∞, and a ∈ A. This also implies the absolute continuity property
of the hypertrace:

Trω(a(1+ D2)−p/2) > 0, whenever a > 0 in A.

4. First-order condition: as well as the defining representation we require a com-
muting representation of the opposite algebra A◦. Now H∞ can be regarded as
a right A-module. Then we furthermore ask for [[D, a], b] = 0 for a ∈ A,
b ∈ A◦. (When A is commutative, we could still have different left and right
actions on H . If they are equal, the postulate entails that the subalgebra CDA
of B(H) generated by A and [D,A] belongs in EndA(H∞).)

5. Orientation: let p be the metric dimension of (A, H, D). We require that the
spectral triple be even if and only if p is even. For convenience, we take � = 1
when p is odd. We say the spectral triple (A, H, D) is orientable if there exists
a Hochschild p-cycle

c =
n∑

α=1

(
a0
α ⊗ bα

)
⊗ a1

α ⊗ · · · ⊗ a p
α ∈ Z p(A,A⊗A◦)

whose Hochschild class may be called the “orientation” of (A, H, D), such that

πD(c) :=
∑

α

a0
αbα

[
D, a1

α

]
. . .
[
D, a p

α

] = �. (37)
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6. Reality: there is an antiunitary operator C : H→ H such that Ca∗C−1 = a for
all a ∈ A, and moreover, C2 = ±1,C DC−1 = ±D, and also CΓC−1 = ±�
in the even case, according to the following table of signs depending only on
p mod 8:

p mod 8 0 2 4 6

C2 = ±1 + − − +
C DC−1 = ±D + + + +
CΓC−1 = ±� + − + −

p mod 8 1 3 5 7

C2 = ±1 + − − +
C DC−1 = ±D − + − +

For the origin of this sign table in K R-homology, we refer to [63]. (This postulate
is optional, but important in practice. It makes the difference between spinc and
spin manifolds.)

7. Poincaré duality: the C∗-module completion of H∞ is a Morita equivalence
bimodule between Ā and the norm completion of CDA.

With the exception of the last, they are essentially in the form given to them by
Connes.

What good are these terms? We have the following:

Proposition 2 Let M be a compact Riemannian manifold without boundary with
Riemannian volume form νg and assume there exists a spinor bundle S over it, with
conjugation C. Define the Dirac spectral triple associated with it as

(C∞(M), L2(M, S), D/ ),

where L2(M, S) is the spinor space obtained by completing the spinor module
�∞(M, S) with respect to the natural scalar product (using |νg|) and D/ :=
−i(ĉ ◦ ∇S) is the Dirac operator (for the notation: if c is the action of the Clifford
algebra bundle over M, then ĉ(α, s) = c(α)s, for α in that bundle and s a spinor).
Also � = c(γ ), where γ is the chirality element of the Clifford bundle, either
the identity operator or the standard grading operator on L2(M, S), according as
dim M is odd or even.

Then the Dirac spectral triple is a commutative noncommutative spin geometry.
(Sorry for the bad joke!)

The proof is routine. We can relax postulate 6 and obtain just a spinc geom-
etry. The most important thing is to think of the spinor bundle as an algebraic
object: this comes from Plymen’s characterization [64], suggested by Connes, of
spinc structures as Morita equivalence bimodules for the Clifford action induced
by the metric. The existence of that equivalence is tantamount to the vanishing of
the usual topological obstruction to the existence of spinc structures. A precedent
for this algebraization is Karrer’s [65]. A recent article by Trautman [66] contains
interesting historical asides.
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1.5.4 On the Reconstruction Theorem

So far, so good, but there will be a point to the precedent exercise only if we can
prove that the algebraic terms of the previous section lead in an essentially unique
way to a spin manifold. That is, assuming conditions 1–7, excluding 6 for the time
being, and furthermore that A is commutative (this of course entails some simplifi-
cation in the orientation axiom), is there a spinc manifold M – with dim M = p –
such that A � C∞(M) and similarly all of the original spectral triple is reproduced
by its Dirac geometry?

Proof of this on the assumption that A � C∞(M) for some M is found already
in [63]. An attempt to prove it without that strong assumption was announced in
October 2006 by A. Rennie and J. C. Várilly [67]. However, this work had some
flaws, recently corrected by Connes [68, 69].

Some extra technical assumptions are needed for the proof. Rennie and Várilly
assume that the spectral triple (A, H, D) is irreducible, that is, the only operators in
B(H) commuting (strongly) with D and with all a ∈ A are the scalars in C 1. (This
ensures the connectedness of the underlying topological space M .) Moreover, they
postulate the following closedness condition: for any p-tuple of elements (a1, .., ap)

in A, the operator � [D, a1] . . . [D, ap](1 + D2)−p/2 has vanishing Dixmier trace;
thus, for any ω,

Trω
(
� [D, a1] . . . [D, ap] (1+ D2)−p/2) = 0.

This is an algebraic analogue of Stokes’ theorem.
Their argument to show that the Gelfand – Naı̆mark spectrum M of A is a differ-

ential manifold may be conceptually broken into two stages. The first is to construct
a vector bundle over the spectrum which will play the role of the cotangent bundle.
For that, one identifies local trivializations and bases of this bundle in terms of the
“1-forms”

[
D, a j

α

]
given by the orientability condition. The aim is then to show that

the maps aα =
(
a1
α, . . . , a

p
α

) : M → R
p provide coordinates on suitable open sub-

sets of M ; for that, one must prove that the maps aα are open and locally one to one.
At this stage one needs to deploy, besides the technical conditions, postulates

1–5 on our spectral triple. A basic tool is a multivariate C
∞ functional calculus for

regular spectral triples that enables to construct partitions of unity and local inverses
within the algebra A.

However, the strategy of [67] failed to ensure that the maps aα are local home-
omorphisms. Instead, Connes [69] resorted to the inverse function theorem [70]
by showing that regularity and finiteness provide enough smooth derivations of A
to build nonvanishing Jacobians where needed. This requires delicate arguments
with unbounded derivations of C∗-algebras, and two other technical assumptions,
replacing those of [67]:

• Skewsymmetry of the Hochschild cycle c under permutations of a1
α, . . . , a

p
α . This

enables one to bypass the cotangent bundle construction and omit the closedness
property, but is arguably a stronger assumption.

• Strong regularity: all elements of EndA(H∞), not merely those in CDA, lie in⋂∞
m=1 Domδm.
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The local injectivity of the maps aα is established by first showing that their
multiplicity (as maps into R

p) is bounded: this needs delicate estimates in order to
invoke the measure theoretic results of Voiculescu [71, 72]. The smooth functional
calculus can then be used to construct local charts at all points of M by small shifts
of the original maps aα .

Poincaré duality in K -theory plays no role in the reconstruction of a manifold
as a compact space M with charts and smooth transition functions. However, once
that has been achieved, it is needed to show that M carries a spinc structure and to
identify the class of (A, H, D) as the fundamental class of the spinc manifold. This
is done by showing that in this case EndA(H∞) coincides with CDA – see [67, 69] –
and in particular strong regularity is moot. The Dirac operator is shown to differ
from D by at most an endomorphism of the corresponding spinor bundle. When M
is spin, the latter can be eliminated by a variational argument – as shown by Kastler
and by Kalau and Walze, the Wodzicki residue of (1 + D2)−p/2+1 gives the EH
action; see [63, Sect. 11.4].

Once one has at one’s disposal a spinc structure, axiom 6 (Reality) allows to
refine it to a spin structure. For that, we refer to [64] – or consult [63] – wherein it
is shown that the spinor module for a spin structure is just the spinor module for a
spinc structure equipped with compatible change conjugation, which is none other
than the real structure operator C (acting on H∞); the spin structure is extracted,
using C , from a representation of the real Clifford algebra of T ∗M .

It is unlikely [H. Moscovici, private communication] that the reconstruction the-
orem holds under the more stringent conditions set out originally by Connes [73].
Possible redundancy of the system of postulates has not been much investigated, but
certainly there are indications that the ones related with dimension are independent.

1.5.5 The Noncommutative Torus

This was the early paradigm for nc manifolds, where everything works smoothly.
For a fixed irrational real number θ, let Aθ be the unital C∗-algebra generated by
two elements u, v subject only to the relations uu∗ = u∗u = 1, vv∗ = v∗v = 1, and

vu = λ uv, where λ := e2π iθ. (38)

Let S(Z2) denote the double sequences a = {ars} that are rapidly decreasing in the
sense that

sup
r,s∈Z

(1+ r2 + s2)k |ars |2 <∞ for all k ∈ N.

The irrational rotation algebra or noncommutative torus algebra Tθ is defined as
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Tθ :=
{

a =
∑

r,s

ars urvs : a ∈ S(Z2)

}

.

It is a pre-C∗-algebra that is dense in Aθ . The product and involution in Tθ are
computable from (38):

ab =
∑

r,s

ar−n,m λ
mn bn,s−m urvs, a∗ =

∑

r,s

λrs ā−r,−s urvs .

The irrational rotation algebra gets its name from another representation, on L2(T):
the multiplication operator U and the rotation operator V given by (Uψ)(z) :=
zψ(z) and (Vψ)(z) := ψ(λz) satisfy (38). In the C∗-algebraic framework, U
generates the C∗-algebra C(T) and conjugation by V gives an automorphism α

of C(T). Under such circumstances, the C∗-algebra generated by C(T) and the uni-
tary operator V is called the crossed product of C(T) by the automorphism group
{αn : n ∈ Z }. In symbols

Aθ � C(T)×α Z.

The corresponding action by the rotation angle 2πθ on the circle is ergodic and
minimal (all orbits are dense); it is known that the C∗-algebra Aθ is therefore simple.

Using the abstract presentation by (38), certain isomorphisms become evident.
First of all, Tθ � Tθ+n for any n ∈ Z, since λ is the same for both. Next, Tθ � T−θ

via the isomorphism determined by u �→ v, v �→ u. There are no more isomor-
phisms among the Tθ.

The linear functional τ0 : Tθ → C given by τ0(a) := a00 is positive definite
since τ0(a∗a) = ∑r,s |ars |2 > 0 for a �= 0; it satisfies τ0(1) = 1 and is a trace,
since τ0(ab) = τ0(ba). Also, it can be shown that τ0 extends to a faithful continuous
trace on the C∗-algebra Aθ, and, in fact, this normalized trace on Aθ is unique. The
GNS representation space H0 = L2(Tθ, τ0) may be described as the completion
of the vector space Tθ in the Hilbert norm ‖a‖2 := √τ0(a∗a). Since τ0 is faithful,
the obvious map Tθ → H0 is injective; to keep the bookkeeping straight, in this
section we shall denote by a the image in H0 of a ∈ Tθ. The GNS representation of
Tθ is just b �→ ab. The vector 1 is obviously cyclic and separating, and the Tomita
involution is given by J (a) := a∗, thus J = J †. The commuting representation is
then given by

b �→ Jπ(a∗)J † b = J a∗b∗ = ba.

To build a two-dimensional geometry, we need to have a Z2-graded Hilbert space
on which there is an antilinear involution C that anticommutes with the grading and
satisfies C2 = −1. There is a simple device that solves all of these requirements:
we simply double the GNS Hilbert space by taking H := H0 ⊕ H0 and define
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C :=
(

0 −J
J 0

)

.

In order to have a spectral triple, it remains to introduce the operator D. For D to
be self-adjoint and anticommute with �, it must be of the form

D = −i

(
0 ∂†

∂ 0

)

,

for a suitable closed operator ∂ on L2(Tθ , τ0). The order-one axiom, together with
the regularity axiom and the finiteness property lead to ∂, ∂† being derivations of Tθ .
The reality condition C DC† = D is equivalent to the condition that J ∂ J = −∂†

on L2(Tθ , τ0). Consider the derivations

δ1(ars urvs) := 2π ir ars urvs, δ2(ars urvs) := 2π is ars urvs .

For concreteness, take ∂ to be a linear combination of the basic derivations δ1, δ2.
Apart from a scale factor, the most general such derivation is ∂ = ∂τ := δ1 + τδ2
with τ ∈ C. In fact, real values of τ must be excluded. Now, D−2

τ has discrete
spectrum of eigenvalues (4π2)−1|m + nτ |−2, each with multiplicity 2. The Eisen-
stein series

∑
m,n �=0,0

1
(m+nτ)2

diverges logarithmically, thereby establishing the
two-dimensionality of the geometry. The orientation cycle is given by

1

4π2(τ − τ̄ ) (v
−1u−1 ⊗ u ⊗ v − u−1v−1 ⊗ v ⊗ u).

This makes sense only if τ − τ̄ �= 0, i.e. τ /∈ R. Thus (�τ)−1 is a scale factor in the
metric determined by Dτ . (Note a difference with the commutative volume form:
since v−1u−1 = λ u−1v−1, there is also a phase factor λ = e2π iθ in the orientation
cycle.)

We conclude by indicating that the noncommutative torus can be regarded as
well as a deformation, as it corresponds to the Moyal product of periodic functions.
There are of course nc tori of all dimensions greater than 2.

1.5.6 The Noncompact Case

Real noncompact spectral triples (also called nonunital spectral triples) have implic-
itly been already defined. In practice the data are of the form

(A, Ã, H, D;C, �),
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where now A is a nonunital algebra and the new element Ã is a preferred unitization
of A, acting on the same Hilbert space.

To get an idea of the difficulties involved in the choice of A, consider the simplest
commutative case, say of the manifold R

p. Depending on the fall-off conditions
deemed suitable, the smooth nonunital algebras that can represent the manifold are
numerous as the stars in the sky. The problem is compounded in the noncommutative
case, say when A is a deformation of an algebra of functions. To be on the safe
side, one should take a relatively small algebra at the start of any investigation of
examples.

Postulates 2, 4, and 6 need no changes with respect to the compact case formu-
lation.

Now, we ponder:

• Dimension of the geometry: for p a positive integer a(1 + D2)−1/2 belongs to
the generalized Schatten class Lp,+ for each a ∈ A, and, moreover, Trω(a(1 +
|D|)−p) is finite and not identically zero.

• Finiteness: the algebra A and its preferred unitization Ã are pre-C∗-algebras.
There exists an ideal A1 of Ã, including A, which is also a pre-C∗-algebra with
the same C∗-completion as A, such that the space of smooth vectors is an A1-
pullback of a finitely generated projective Ã-module. Moreover, an A1-valued
hermitian structure is defined on H∞ with the noncommutative integral; this is
an absolute continuity condition.

• Orientation: there is a Hochschild p-cycle c on Ã, with values in Ã⊗ Ã◦. Such
a p-cycle is a finite sum of terms like (a0 ⊗ b) ⊗ a1 ⊗ · · · ⊗ a p, whose natural
representative by operators on H is given by πD(c) in formula (37); the volume
form πD(c) must solve the equation

πD(c) = � (even case) or πD(c) = 1 (odd case).

The need for some preferred unitization is plain, as finiteness requires the pres-
ence both of a nonunital and a unital algebra. Then examples show the need
for a further subtlety, to wit, the nonunital algebra for which summability works
is smaller than the nonunital algebra required for finiteness. Also, orientation is
defined directly on the preferred unitization.

The commutative examples were worked out in [74, 75]; there summability
works in view of asymptotic spectral analysis for the Dirac operator. In [76] – to
some surprise of Alain Connes – it was shown that Moyal algebras are noncompact
spectral triples.

It is worthwhile to point out that the NCG versions of the Standard Model are
noncompact spectral triples, too; while there is no end of algebraic intricacies for
the finite dimensional representation [77] required to reproduce the quirks of particle
physics, analytically the problem is to be tackled by the methods of the mentioned
papers [74–76].
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1.5.7 Nc Toric Manifolds (Compact and Noncompact)

How does one recover the metric geometry of the Riemann sphere S
2 from spectral

triple data? If A is a dense subalgebra of some C∗-algebra containing elements
x, y, z and if the matrix

p = 1
2

(
1+ z x + iy
x − iy 1− z

)

is a projector, it is easy to see from the projector relations that x, y, z commute and
that x2 + y2 + z2 = 1. Thus A = C(X) where X ⊂ S

2 is closed. The condition

πD

(
tr
( (

p− 1
2

)
⊗ p⊗ p

)) = �

can only hold if X = S
2. In the same way, Connes sought to obtain the sphere S

4

with its round metric by starting with an analogous projector in M4(A):

p =
(
(1+ z)12 q

q (1− z)12

)

,

with q the quaternion

q =
(

a b
−b∗ a

)

,

imposing conditions so that

πD

(
tr
(
(p − 1

2 )⊗ p ⊗ p ⊗ p⊗ p
)) = �.

Again A is commutative and the 4-sphere relation holds. But then Landi surprised
everyone by pointing out that one could substitute −λb∗ for the entry −b∗. With
λ = e2π iθ , this works into a spectral triple. It was called an isospectral deformation
because the Dirac operator remains untouched [78].

Again, this generalizes into a θ-deformation of any Riemannian manifold M that
admits T2 as a subgroup of its group of isometries. And again, this is essentially
a Moyal deformation: if M = G/K , with G compact of rank at least two, then
C∞(G) can be deformed in such a way that C∞(Mθ ) is a homogenous space of the
compact quantum group C∞(Gθ ) [79].

The procedure can be generalized to a large family of noncompact Riemannian
spin manifolds (with “bounded geometry”) that admit an action of Tl, for l ≥ 2,
or a free action of R

l , for l ≥ 2 [80]. The upshot is more noncommutative spin
geometries.

(Even lowly S
2 hids surprises, too, if one allows for relaxing the notion of what

a Dirac operator is [81].)
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1.5.8 Closing Points

1.5.8.1 Fabricating nc Spaces: A Second Conceptual Star and Catalogue

So far, we have played it very safe, and we have said little on how to handle wilder
examples of nc manifolds. Connes himself recommends the following steps [82]:

1. Given an algebra A (putative “of smooth functions on a nc manifold”), try first
of finding a resolution of it as an A-bimodule, with a view to compute its
Hochschild cohomology and eventually its cyclic homology and cohomology.
This is not an easy task in general; it has been performed in the commutative
case and for foliations.

2. Many nc spaces arise as “bad quotients”. Consider Y := X/ ∼. If one tries to
study

C(Y ) = { f ∈ C(X) : f (a) = f (b), ∀a ∼ b },

one often ends up with only constant functions. (It is true that, for proper actions
of Lie groups, even if M/G is not a manifold, there is, however, an interesting
functional structure [83, 84] that can be usefully studied by a mixture of “com-
mutative” and “noncommutative” methods.) It beckons to drop the commutativ-
ity requirement by considering complex functions of two variables defined on
the graph of the equivalence relation. They will act as bounded operators on the
Hilbert space of the equivalence class, and they multiply with the convolution
product:

( f g)ab =
∑

a∼c∼b

facgcb. (39)

Of course, when the quotient space is “nice”, one can do that, too; as a rule in
this case, the commutative and noncommutative algebras are Morita equivalent.
But in a case as simple as X = [0, 1] × Z2 with ∼ given by (x,+) ∼ (x,−) for
x ∈]0, 1[, we obtain for the convolution algebra the “dumbbell” algebra:

{ f ∈ C([0, 1])⊗ M2C : f (0), f (1) diagonal },

and there is no such equivalence. The idea is then to compute the K -theory, in
order to learn as much as possible on the space. Ideally, one would also like to
have “vector bundles”, Chern character (using connections and curvature), and
even moduli spaces for Yang-Mills connections – this works wonderfully for nc
tori, which after all are quotient spaces.
Incidentally, families of maps that are semigroups in the commutative word nat-
urally become C∗-bialgebras in the noncommutative context. We may refer to
the recent beautiful paper by Soltan [85], where the quantum family of maps
from C

2 to C
2 is identified to the dumbbell algebra.
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Let us add as well that Connes contends that the foundational step of Quantum
Mechanics (by Heisenberg in 1925) amounts to replacing an abelian group law
by a groupoid law like (39), in order to make sense of the combination principles
of spectral lines.

3. Then come the spectral triples. They respond for K -homology classes, smooth
structure, and metric. There is a surprisingly vast class of spaces that can be
described in this way, under conditions in general less strict than the ones
required for the reconstruction theorem.

4. The time evolution and thermodynamic aspects.

That said, we can prepare our catalogue (leaving aside subjects related to physics,
for a moment):

• Spaces of leaves of foliations. This was an early, successful application of nc
geometry. By elaborating on the construction of point 2 above, Connes was able
to apply methods of operator theory to foliation theory.

• Tilings (periodic and aperiodic). Also under point 2.
• Dynamical systems. Also point 2.
• Cantor sets and fractals. One can associate spectral triples (Dirac operators) to

them! The algebra of continuous functions on a Cantor set is AF commutative.
We omit the details on the construction of (H, D). It is then very interesting to
investigate the dimension spectrum of the spectral triple. For the classical middle-
third Cantor set:

Tr(|D|−s) = 2
∑

k

ls
k =

∑

k≥1

2k3−sk = 2 3−s

1− 2 3−s
,

given that lk = 3−k with multiplicities 2k−1. This yields as dimension spectrum

log 2

log 3
+ 2π in

log 3
,

for n ∈ Z. For compact fractal subsets of R
n . Christensen and Ivan recently have

constructed spectral triples not satisfying Weyl’s asymptotic formula – there is
no constant c so that the number of eigenvalues N (Λ) bounded by Λ fulfils

N (Λ)− cΛ ∼ lower order in Λ.

• Algebraic deformations. Of this the Moyal-like spaces are the outstanding exam-
ple. More on that below.

• Spherical manifolds which are not isospectral deformations. I refer to [86] and
subsequent papers by Connes and Dubois-Violette.

• Nc spaces related to arithmetic problems (including some that have been used by
Connes to try to prove the Riemann hypothesis). On this I claim zero expertise.
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1.5.8.2 What About Physics?

• Quantum Hall effect, related to nc tori. This is due to Bellissard.
• Nc spaces from axiomatic QFT. For instance, the local algebras in a supersym-

metric model, together with the supercharge as a Dirac operator, constitute a
spectral triple.

• Nc spaces from renormalization, via dimensional regularization. This has been
only hinted at.

• The mentioned Standard Model reconstruction from NCG.
• Nc spaces from strings. If one goes to the physics archives and asks for “non-

commutative geometry” or “noncommutative field theory”, what one finds is
something as puzzling as particular, that is, perturbative quantum field theory
over Moyal hyperplanes. This was popularized by Seiberg and Witten [87] as a
certain limit of string theory, but has acquired a life of its own. Nevertheless [76]
and subsequent papers [88, 89] tried to make a bridge between this and Connes’
paradigm.

1.5.8.3 Some Neglected Tools

• Lie algebroids, Lie – Rinehart algebras, and the like. It is a little mystery why,
while groupoids play a central role in NCG, their infinitesimal version does not
seem to play any role. All the more so because the algebraic version of Lie alge-
broids, the theory of Lie – Rinehart(– Gerstenhaber) algebras, which seems to be
the good framework for BRS theory, has very much the flavour of NCG and is
quite able to deal with many singular spaces [90].
Lie – Rinehart algebras are usually commutative, but some of the results per-
taining to them can be extended to “softly noncommutative” cases. Most impor-
tantly, the theory of Adams operations, that plays such an important role in the
Hochschild and cyclic cohomology of commutative algebras, can be extended to
the realm of noncommutative spaces [91]. This connects the local index formula
by Connes and Moscovici [92] with combinatorial aspects (the Dynkin operator
of free Lie algebra theory and noncommutative symmetric functions) that have
not been fully explored.

• Rota – Baxter operators and skewderivations. A poor man’s path to the nc world
(akin to the one taken by some quantum group theorists) is to try to generalize the
usual derivative/integral pair. This is elementary stuff with many ramifications.
A skewderivation of weight θ ∈ R is a linear map δ : A → A fulfilling the
condition

δ(ab) = aδ(b)+ δ(a)b − θδ(a)δ(b). (40)

We may call skewdifferential algebra a double (A, δ; θ) consisting of an alge-
bra A and a skewderivation δ of weight θ. A Rota – Baxter map R of weight θ ∈ R

on a not necessarily associative algebra A, commutative or not, is a linear map
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R : A → A fulfilling the condition

R(a)R(b) = R(R(a)b)+ R(a R(b))− θR(ab), a, b ∈ A. (41)

When θ = 0 we obtain the integration-by-parts rule. The triple (A, δ, R; θ) will
denote an algebra A endowed with a skewderivation δ and a corresponding Rota –
Baxter map R, both of weight θ, such that Rδa = a for any a ∈ A such that
δa �= 0, as well as δRa = a for any a ∈ A, Ra �= 0. We can check consistency
of conditions (40) and (41) imposed on δ, R:

θδR(ab) = R(a)b + a R(b)− δ(R(a)R(b))
= R(a)b + a R(b)− R(a)b − a R(b)+ θab = θab,

Rδ(ab) = R(aδ(b))+ R(δ(a)b)− θR(δ(a)δ(b)) = R(aδ(b))+ R(δ(a)b)

− R(aδ(b))− R(δ(a)b)+ ab = ab.

Rota – Baxter operators have proved their worth in probability theory and com-
binatorics, and in the Connes – Kreimer approach to renormalization, but their
range of applications is much wider.

• What is the natural noncommutative algebra structure that one should impose
on ordinary, well-behaved manifolds? The author has long contended that the
answer, at least in the equivariant case, is general Moyal theory. Given the nat-
uralness of ordinary Moyal quantization on hyperplanes, the high number of nc
spaces that turn out to be related to Moyal quantization, plus the usefulness of
Moyal quantization in proofs (for instance of Bott periodicity in the algebraic
context), it is surprising that few nc geometers seem interested in general Moyal
theory.
But how to define the latter? It would run as follows. Let X be a phase space, μ a
Liouville measure on X , and H the Hilbert space associated to (X, μ). A Moyal
or Stratonovich – Weyl quantizer for (X, μ, H) is a mapping � of X into the
space of self-adjoint operators on H , such that �(X) is weakly dense in B(H),
and verifying

Tr�(u) = 1,

Tr
[
�(u)�(v)

] = δ(u − v),

in the distributional sense. (Here δ(u − v) denotes the reproducing kernel for
the measure μ.) Moyal quantizers, if they exist, are unique, and ownership of a
Moyal quantizer solves in principle all quantization problems: quantization of a
(sufficiently regular) function or “symbol” a on X is effected by

a �→
∫

X
a(u)�(u) dμ(u) =: Q(a),
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and dequantization of an operator A ∈ B(H) is achieved by

A �→ TrA�(·) =: WA(·).

Indeed, it follows that 1H �→ 1 by dequantization, and also

TrQ(a) =
∫

X
a(u) dμ(u).

Moreover, using the weak density of �(X), it is clear that

WQ(a)(u) = Tr

[(∫

X
a(v)�(v) dμ(v)

)

�(u)

]

= a(u),

so Q and W are inverses. In particular, WQ(1) = 1 says that 1 �→ 1H by quantiza-
tion, and this amounts to the reproducing property

∫
X �(u) dμ(u) = 1H . Finally,

we also have

Tr[Q(a)Q(b)] =
∫

X
a(u)b(u) dμ(u).

This is the key property. Most interesting cases occur in an equivariant context;
that is to say, there is a (Lie) group G for which X is a symplectic homogeneous
G-space, with μ then being a G invariant measure on X , and G acts by a pro-
jective unitary irreducible representation U on the Hilbert space H . A Moyal
quantizer for the combo (X, μ, H,G,U ) is a map � taking X to self-adjoint
operators on H that satisfies the previous defining equations and the equivariance
property

U (g)�(u)U (g)−1 = �(g · u), for all g ∈ G, u ∈ X.

The question is How to find the quantizers? The fact that the solution in flat
spaces leads to (bounded) parity operators points out to the framework of sym-
metric spaces as the natural one to find Moyal quantizers by interpolation. This
heuristic parity rule was found to work for orbits of the Poincaré group [93].
Noncompact symmetric spaces should provide a wealth of noncompact spectral
triples (the compact case is somewhat pathological). Recently the author, together
with V. Gayral and J.C. Várilly, has given the Moyal quantization of the surface
of constant negative curvature [94]; a new special function plays there the main
role in framing a subtler version of the parity rule.

• Algebraic K -theory, noncommutative geometry and field theory. The role of the
two first functors of algebraic K -theory in QFT with external fields is “well
known”; Connes has dabbled on this, but he has not pursued the subject. To this
writer, also in relation with [92], it seems extremely promising.
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1.5.9 Some Interfaces with Quantum Gravity

This section is intended as a taunt. We just lift a corner of the veil.

1.5.9.1 Noncommutative Field Theory and Quantum Gravity

Direct connection between noncommutative field theory and quantum gravity has
been sought in several papers. The basic idea is due to Rivelles [95]. In noncommu-
tative gauge theories, translations are equivalent to gauge transformations. This at
once reminds one of gravitation (the case can be made that translations necessarily
involve gauge transformations in Yang – Mills theories, too [96], but this is a weaker
statement). In general, the distinction between internal and geometrical degrees of
freedom fades in noncommutative geometry [97]. Indeed in [95] it is shown, using
Seiberg – Witten maps [87], how the field action can be regarded as a coupling to a
gravitational background. The idea has been further developed in [98]. In some other
papers suggesting a noncommutative geometry formalism for pure classical gravity,
the apparatus is so heavy as to make it difficult to see the forest for the trees [99].
A different approach is to look for noncommutative corrections to particular classes
of spacetimes. This is found in [100]. The “barriers to entry” in this field being
relatively modest, we cut our remarks short.

1.5.9.2 Isospectral Deformations and Unimodularity

There seems to be no good reason to exclude noncommutative manifolds in the
sense of Connes from the approaches to quantum gravity based on “sum over
geometries”. Already, in an important paper [101], Yang has showed that the Eguchi
and Hanson gravitational instantons [102] give rise by isospectral deformation to
noncommutative noncompact manifolds in the sense of [76]. Now, isospectral defor-
mation leaves the orientation condition unchanged. The general paradigm is as
follows: any Dirac operator, describing a K -homology class, corresponding to a
commutative manifold (thus, for any Riemannian geometry over it) or noncommu-
tative one, solves equally well, and on the same footing, the “topological equation”
that defines the manifold itself. With the proviso that the volume form remains the
same. The advantages indicated in [57] should apply in this context, too.

The punch line: in its present form at least, noncommutative geometry favours
the unimodular theory.

1.6 More on the “Cosmological Constant Problem”
and the Astroparticle Interface

Notice that both terminologies “cosmological constant” and “dark energy” betray
theoretical prejudices.
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The first name that we can deal with the observations pointing to an acceleration
of the expansion rate of the universe by just including the so-called cosmologi-
cal term in the Einstein equations. In fact, we do not know the equation of state,
not to speak of the evolution laws, of whatever exotic “substance” that might be
involved [103].

The second is related to the belief that the acceleration be caused by fluctuations,
or “zero-point energies” of the quantum vacuum, somehow. Alas, this notion here
was entertained by nobody less than Weinberg, whose already mentioned [56] threw
both light and obscurity on the subject.

The whole review hangs on the thread that there must be a problem, since

the energy density of the vacuum acts just like a cosmological constant.

However, the effective cosmological constant is quite small (we would not be
here otherwise). On the face of it, zero-point energies are infinite (well, this is not
the case in Epstein – Glaser renormalization, but let us go with the argument). If we
take as a sensible cut-off the Planck scale, the amount of “fine-tuning” necessary to
cancel their contribution is mind boggling. Thus,

Perhaps surprisingly, it was a long time before particle physicists began seriously to worry
about this problem, despite the demonstration in the Casimir effect of the reality of zero-
point energies.

The trouble is, that “demonstration” is another urban legend. The negative weight
of zero-point fluctuations is unobserved in any laboratory experiment, including the
Casimir effect. The latter is measured nowadays well enough. However, the usual
derivation in terms of differences of zero-point energies, and its neat result, where
only c, h̄, and the geometry of the plates enter, inviting us to think of it as a “property
of the vacuum”, is misleading. The point has been made recently by Jaffe [104]. In
truth, the Casimir effect distinguishes itself from other quantum electrodynamics
only in that (for some geometrical configurations, not for all) it reaches a finite limit
as the fine structure constant α ↑ ∞; this limit is the usually quoted result. In that
derivation, the plates are treated as perfect conductors. However, a perfect conductor
at all frequencies is a physical impossibility. The plasma frequency

ωpl = 2e

√
πn

m

indicates the frequency above which the conductivity goes to zero; here n is the
density of conduction band electrons and m their effective mass. So the perfect
conductor approximation is good if c/d # ωpl, with d the distance between plates,
that is, for materials and plate distances such that

1

137
∼ α $ mc

4π h̄nd2
.

Still, it remains an approximation. Casimir forces can be and have been calculated
without reference to the vacuum. Whether there can be experimental evidence for
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zero-point energies, apart from gravity, is an open question, which may be answered
in the negative for all we know. The lesson is that their putative contribution to the
cosmological constant must be in doubt. As Jaffe puts it [104]

Caution is in order when an effect, for which there is no direct experimental evidence, is the
source of a huge discrepancy between theory and experiment.

Indeed.
We might add nowadays there is a “vacuum fluctuations” branch of mathe-

matics, conductors which are always perfectly so and plates of vanishing thick-
ness etsi daretur. This is to the good, and may be helpful, provided we keep the
origins in mind and do not start to draw unwarranted physical inferences! We
are reminded of Manin’s dicta. A mathematically rigorous and physically sound
account of the Casimir effect without invoking “zero-point energies”, particularly
unveiling the unphysical nature of Dirichlet boundary conditions, has been given by
Herdegen [105].

Parenthetically, one finds in the work of Vachapasti and coworkers on “black
stars” mentioned in the first section [7] a commendable retreat to consideration
of physical black holes – collapsing bodies suspended above their Schwarzschild
radius forever from a remote observer viewpoint – rather than mathematical black
holes – vacuum solutions of the general relativity equations. While the mathematical
study of black holes remains a useful and fascinating subject, the former is required
to explain astrophysical observations.

On the other hand, it is hard to dispute that the energy density of the vacuum
itself should act like a cosmological constant. Thus it is rather less clear why the
flavourdynamics scale – whereby we are talking not of phantom fluctuations, but
of the vacuum expected value of the energy itself – does not play a role. Even if
one (as this writer) does not trust the Higgs mechanism, there is reason to worry
about the contribution of chiral symmetry breaking in the quark condensate, still 12
orders of magnitude above the “observed” range for the cosmological constant. For
this reason unimodularity as discussed in Sect. 1.4 should be taken seriously.

A recommended review on the cosmological constant is [106]. Its author dis-
misses “fine-tuning” out of hand. Suggestive thinking on the dark energy problem
is found in [107].

We cannot conclude without mentioning the “LHC connection”. After all, fun-
damental scalar fields, hitherto unseen, are assumedly involved in inflation, dark
energy, and other cosmological scenarios. It is widely believed that the Higgs parti-
cle will be observed after the few first stages of the LHC’s proper operation.

Some scepticism is also warranted on that. The reason is that “minimality” of the
scalar sector of the Standard Model of particle physics is just a theoretical preju-
dice. This has been particularly emphasized by Strassler [108]. (Yes, entes non sunt
multiplicanda praeter necessitatem. But Nature does not care for Ockham’s razor:
who ordered the muon?)

There is the distinct possibility that something was overlooked at LEP and that
the Higgs sector be considerably more complicated that in standard lore. Tension has
been growing for a while between precision results and direct Higgs searches. The
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basic trouble was laid down by Chanowitz a few years ago [109]: if one eliminates
from the precision electroweak data the (outlier) value of the forward – backward
asymmetry into b-quarks, then the expected value for the Higgs mass drops to less
than 50 GeV or so, with the mentioned outlier attributable to new physics. Oth-
erwise, the overall fit is poor. This leads us to take cum grano salis the exclusion
results at LEP. For instance, mixing with “hidden world” scalars leads to reduction
to the standard Higgs couplings (consult [110] and references therein), in particular
the Z Zh coupling, and this could not be, and was not, ruled out by LEP for those
relatively low energies. Other Higgs sector scenarios shielding the Higgs particle
from detection have been discussed in [111, 112].

Recent experiment has made the situation even murkier: on Halloween night of
2008, ghostly (albeit rather abundant) multi-muon events at Fermilab were reported
by (a majority segment of) the CDF collaboration [113]. A possible explanation
for them invokes “new” light Higgs-like particles coupling relatively strongly to the
“old” ones and much less so to the SM fermions and MVB [114, 115]. There is
also the possibility that the visible Higgs boson be rather heavier than expected, the
discrepancy with the precision results being (somewhat brazenly) attributed to new
physics [116, 117]. Then the inert Higgs boson would be a prime candidate for dark
matter.
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Chapter 2
Quantum Gravity as Sum over Spacetimes

J. Ambjørn, J. Jurkiewicz and R. Loll

2.1 Introduction

A major unsolved problem in theoretical physics is to reconcile the classical theory
of general relativity with quantum mechanics. These lectures will deal with an
attempt to describe quantum gravity as a path integral over geometries. Such an
approach has to be non-perturbative since gravity is a non-renormalizable quantum
field theory when the dimension of spacetime is four. In that case the dimension of
the gravitational coupling constant G is −2 in units where h̄ = 1 and c = 1 and
the dimension of mass is 1. Thus conventional, perturbative quantum field theory is
only expected to be good for energies

E2 # 1/G. (1)

That is still perfectly good in all experimental situations we can imagine in the lab-
oratory, but an indication that something “new” has to happen at sufficiently large
energy, or equivalently, at sufficiently short distances. It is possible, or maybe even
likely, that a breakdown of perturbation theory when (1) is not satisfied indicates
that new degrees of freedom should be present in a theory valid at higher energies.
Indeed, we have a well-known example in the electroweak theory. Originally the
electroweak theory was described by a four-fermion interaction. Such a theory is
not renormalizable and perturbation theory breaks down at sufficiently high energy.
In fact it breaks down unless the energy satisfies (1) with the gravitational coupling
constant G replacing the coupling constant GF in front of the four-Fermi interaction
(since G F also has mass dimension −2). The breakdown reflects the appearance of
new degrees of freedom, the W and the Z particles, and the four-Fermi interaction
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is now just an approximation to the process where a fermion interacts via W and Z
particles with another fermion. The corresponding electroweak theory is renormal-
izable.

When it comes to gravity there seems to be no “simple” fix like the one just
described. However, string theory is an example of a theory which tries to solve
the problem by adding (infinitely many) new degrees of freedom. Loop quantum
gravity is another approach to quantum gravity which tries to circumvent the prob-
lem of non-renormalizability by introducing rules of quantization which are uncon-
ventional from a perturbative point of view. The point of view taken here in these
lectures is much more mundane. In a sum-over-histories approach we will attempt
to define a non-perturbative quantum field theory which has as its infrared limit
ordinary classical general relativity and at the same time has a nontrivial ultravio-
let limit. From this point of view it is in the spirit of the renormalization group
approach, first advocated long ago by Weinberg [1] and more recently substantiated
by several groups of researchers [2–7].

To understand the possibility of a nontrivial ultraviolet fixed point let us first
apply ordinary perturbation theory to quantum gravity in a regime where (1) is sat-
isfied. One can in a reliable way calculate the lowest-order quantum correction to
the gravitational potential of a point particle:

G

r
→ G(r)

r
, G(r) = G

(

1− ωG

r2
+ · · ·

)

, ω = 167

30π
. (2)

Thus the gravitational coupling constant becomes scale-dependent and transferring
from distance to energy we have

G(E) = G(1− ωG E2 + · · · ) ≈ G

1+ ωG E2
. (3)

It should be stressed that the scenario described in (2) and (3) is completely standard
in quantum field theory. Let us take the simplest quantum field theory relevant in
nature: quantum electrodynamics. The electron as we observe it in low-energy scat-
tering experiments is screened by vacuum polarization: virtual electron – positron
pairs, created out of the vacuum and annihilated again so fast that one has consis-
tency with the energy – time uncertainty relations, act like dipoles and the observed
charge becomes less than the “bare” charge. To lowest order (one loop) (2) and (3)
are replaced by

e2

r
→ e2(r)

r
, e(r) = e

(

1− e2

6π2
ln(m r)

)

+ · · · , m r # 1. (4)

e2(E) = e2
(

1+ e2

6π2
ln(E/m)

)

+ · · · ≈ e2

1− e2

6π2 ln(E/m)
. (5)
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The last expression in (5) is precisely the renormalization group-improved formula
for the running coupling constant in QED. In fact, it is easy to calculate the so-called
(one-loop) β-function for QED from the first equation in (5) and use this β-function
to obtain the expression on the left-hand side of (5). Contrary to (3) it breaks down
for sufficiently high energy: it has a so-called Landau pole and it reflects that we
expect the interactions of QED to be infinitely strong at short distances. We do not
believe that such quantum field theories really exist as “stand-alone” theories. They
either require an explicit cut-off, which will then enter in the observables at high
energies, or have to be embedded in a larger theory without a Landau pole.

Assume that the last expression in (3) was exact for all E (which it is not). One
can argue that one should use G(E) in (1) rather than G, in which case one obtains

G(E)E2 <
1

ω
= 30π

167
(< 1). (6)

Thus, assuming (3) it suddenly seems as if quantum gravity had become a reliable
quantum theory at all energy scales, the reason being that the effective coupling
constant G(E) becomes weaker at high energies. The behaviour (3) can be described
in terms of a β-function for quantum gravity. Introduce the dimensionless coupling
constant G̃(E):

G̃(E) = G(E)E2. (7)

From (3) it follows that G̃(E) satisfies the following equation:

E
dG̃

dE
= β(G̃), β(G̃) = 2G̃ − 2ωG̃2. (8)

The zeros of β(G̃) determine the fixed points of the running coupling constant
G̃(E). The zero at G̃ = 0 is an infrared fixed point: for E → 0 the coupling
constant G̃(E) → 0 and correspondingly the coupling constant G(E) → G. The
zero at G̃ = 1/ω is an ultraviolet fixed point: for E → ∞ the coupling constant
G̃(E)→ 1/ω (and G(E)→ 0 as 1/(ωE2)).

While there is no compelling reason to take the above arguments very seriously,
since they are based on a one-loop calculation, the claim in [2–7] is that a more
careful analysis using the so-called exact renormalization group equations or a
systematic 2 + ε expansion confirms the picture of a nontrivial UV fixed point.
A typical result of the renormalization group calculation is shown in Fig. 2.1 in the
case where the effective action has been “truncated” to just include the Einstein term
and a cosmological term. The figure has an UV fixed point from where the flow to
low energies starts and an infrared fixed point (the origin in the coupling constant
coordinate system).

Where do we meet such scenarios (IR fixed points at zero coupling and a non-
trivial UV fixed point for a suitably defined dimensionless coupling constant)?
Assume one has an asymptotically free field theory in d dimensions, i.e. g = 0 is an
UV fixed point. The strong interactions in four-dimensional flat spacetime, quantum
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Fig. 2.1 The flow of dimensionless gravitational and cosmological coupling constants G̃ and
Λ̃ from an UV fixed point. One line flows to the infrared Gaussian fixed point where G̃
and Λ̃ are zero. The figure is reprinted with permission from M. Reuter and F. Saueressig,
Phys. Rev. D Vol. 65, 065016 (2002). Copyright 2002 by the American Physical Society, (see
http://published.aps.org/copyrightFAQ.html)

chromodynamics (QCD), are such a theory. In high-energy scattering experiments
the effective, running coupling constant goes to zero. This has been beautifully ver-
ified in high-energy experiments. The non-linear sigma model in two-dimensional
spacetime is another model. It plays a very important role in string theory, but even
before that was extensively studied as a toy model of QCD since it is asymptotically
free (i.e. the running, effective coupling constant goes to zero at high energies).
The asymptotically free theories have a negative β-function. This is what makes
the running coupling constant go to zero at high energies. Change now (artificially)
the dimension of spacetime infinitesimally from d to d + ε. Then the β-function to
lowest order in ε will change as follows:

βd(g)→ βd+ε = εg + βg(g), (9)

and the situation is as shown in Fig. 2.2: g = 0 changes from an UV fixed point
to an infrared fixed point while the new UV fixed point will be displaced to finite
positive value gc(ε) of g, a value which goes to zero when ε goes to zero. In the case
of gravity we have formally a renormalizable theory when d = 2, the dimension
where the gravitational coupling constant G is dimensionless. One can show that
the two-dimensional theory can be viewed as asymptotically free (see (113) below).
To apply (9) to four-dimensional quantum gravity starting with a renormalizable
theory of gravity means that ε has to be two, which is not very small. Thus the
considerations above make little sense at a quantitative level, but the use of the
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Fig. 2.2 The change in the beta function β(g) in an asymptotically free theory when the dimension
changes from the critical dimension d, where the coupling constant g is dimensionless, to d + ε

exact renormalization group indicates, as mentioned, that the qualitative picture is
correct.

The discussion above shows that there might be a chance that quantum gravity
can be defined as an ordinary quantum field theory at a nontrivial ultraviolet fixed
point. It clearly requires non-perturbative tools to address the question of the exis-
tence of such a fixed point and to analyse the properties of the field theory defined by
approaching the fixed point. One way to proceed is by using a lattice regularization
of the quantum field theory in question. The lattice provides an UV regularization
of the quantum field theory, namely, the inverse lattice spacing 1/a. The task is then
to define a suitable “continuum” limit of this lattice theory. The procedure used is
typically as follows: let O(xn) be an observable, xn denoting a lattice point. We
write xn = a n, n measuring the position in integer lattice spacings. One can then
obtain, either by computer simulations or by analytical calculations, the correlation
length ξ(g0) in lattice units, from

− log〈O(xn)O(ym)〉 ∼ |n − m|/ξ(g0)+ o(|n − m|). (10)

A continuum limit of the lattice theory may then exist if it is possible to fine-tune the
bare coupling constant g0 of the theory to a critical value gc

0 such that the correlation
length goes to infinity, ξ(g0) → ∞. Knowing how ξ(g0) diverges for g0 → gc

0
determines how the lattice spacing a should be taken to zero as a function of the
coupling constants, namely,

ξ(g0) ∝ 1

|g0 − gc
0|ν
, a(g0) ∝ |g0 − gc

0|ν . (11)

This particular scaling of the lattice spacing ensures that one can define a physical
mass mph by

mpha(g0) = 1/ξ(g0)
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such that the correlator 〈O(xn)O(ym)〉 falls off exponentially like e−m ph |xn−ym | for
g0 → gc

0 when |xn − ym |, but not |n − m|, is kept fixed in the limit g0 → gc
0. Thus

we have created a picture where the underlying lattice spacing goes to zero while
the physical mass (or the correlation length measured in physical length units, not in
lattice spacings) is kept fixed. This is the standard Wilsonian scenario for obtaining
the continuum (Euclidean) quantum field theory associated with the critical point
gc

0 of a second-order phase transition (for second-order phase transitions there exists
a correlation length which diverges, usually associated with the order parameter
characterizing the transition).

We would like to apply a similar approach to quantum gravity, and thus obtain
a new way to investigate if quantum gravity can be defined non-perturbatively as
a quantum field theory. The predictions from such a theory could then be com-
pared with the renormalization group predictions related to the asymptotic safety
picture described above. It should be mentioned that the asymptotic safety picture
is not the only suggestion for a continuum quantum theory of gravity using only
“conventional” ideas of quantum field theory. Very recently two other scenarios
have been suggested. One is called Lifshitz gravity [8, 9] and is a theory where
the non-renormalizability of the Einstein – Hilbert theory is cural derivatives in a
way somewhat similar to what Lifshitz did many years ago in statistical models. In
fact, the set-up of the theory has some resemblance with the lattice-theory set-up
of “causal dynamical triangulations (CDT)”, to be described below, since a time
foliation is assumed and the infrared limit is that of GR. However, contrary to Lif-
shitz gravity, we do not attempt to put in higher spatial derivatives in the lattice
theory. However, when a continuum limit in the lattice theory is taken in a specific
way which is not entirely symmetric in space and time one cannot rule out that
higher spatial derivatives can play a role. The other model goes by the name of
“scale-invariant gravity” [10–12]. It modifies gravity into a renormalizable theory
by introducing a scalar degree of freedom in addition to the transverse gravitational
degrees of freedom. Also this model has interesting features not incompatible with
the results of computer simulations using the CDT lattice model.

As already mentioned, we will use a lattice approach known as causal dynamical
triangulations (CDT) as a regularization. In Sect. 2.2 we give a short description
of the formalism, providing the definitions which are needed later to describe the
measurements. CDT establishes a non-perturbative way of performing the sum over
four-geometries (for more extensive definitions, see [13, 14]). It sums over the class
of piecewise linear four-geometries which can be assembled from four-dimensional
simplicial building blocks of link length a, such that only causal spacetime histories
are included. The challenge when searching for a field theory of quantum gravity is
to find a theory which behaves as described above, i.e. as in (11). The challenge is
threefold: (i) to find a suitable non-perturbative formulation of such a theory which
satisfies a minimum of reasonable requirements, (ii) to find observables which can
be used to test relations like (10), and (iii) to show that one can adjust the coupling
constants of the theory such that (11) is satisfied. Although we will focus on (i) in
what follows, let us immediately mention that (ii) is notoriously difficult in a theory
of quantum gravity, where one is faced with a number of questions originating in
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the dynamical nature of geometry. What is the meaning of distance when integrating
over all geometries? How do we attach a meaning to local spacetime points like
xn and yn? How can we define at all local, diffeomorphism-invariant quantities in
the continuum which can then be translated to the regularized (lattice) theory? What
we want to point out here is that although (i)–(iii) are standard requirements when
relating critical phenomena and (Euclidean) quantum field theory, gravity is special
and may require a reformulation of (part of) the standard scenario sketched above.
We will return to this issue later.

Our proposed non-perturbative formulation of four-dimensional quantum gravity
has a number of nice properties.

First, it sums over a class of piecewise linear geometries. The characteristic
feature of piecewise linear geometries is that they admit a description without the
use of coordinate systems. In this way we perform the sum over geometries directly,
avoiding the cumbersome procedure of first introducing a coordinate system and
then getting rid of the ensuing gauge redundancy, as one has to do in a continuum
calculation. Our underlying assumptions are that (1) the class of piecewise linear
geometries is in a suitable sense dense in the set of all geometries relevant for the
path integral (probably a fairly mild assumption) and (2) that we are using a correct
measure on the set of geometries. This is a more questionable assumption since we
do not even know whether such a measure exists. Here one has to take a pragmatic
attitude in order to make progress. We will simply examine the outcome of our
construction and try to judge whether it is promising.

Second, our scheme is background-independent. No distinguished geometry,
accompanied by quantum fluctuations, is put in by hand. If the CDT-regularized
theory is to be taken seriously as a potential theory of quantum gravity, there has to
be a region in the space spanned by the bare coupling constants where the geom-
etry of spacetime bears some resemblance with the kind of universe we observe
around us. That is, the theory should create dynamically an effective background
geometry around which there are (small) quantum fluctuations. This is a very non-
trivial property of the theory and one we are going to investigate in some detail.
Computer simulations presented in these lectures confirm in a much more direct
way the indirect evidence for such a scenario which we have known for some time
and first reported in [15, 16]. They establish the de Sitter nature of the background
spacetime, quantify the fluctuations around it, and set a physical scale for the uni-
verses we are dealing with. The main results of these investigations, without the
numerical details, were announced in [17] and a detailed account of the results was
presented in [18].

The remainder of these lecture notes is organized as follows: in Sect. 2.2 we
describe the lattice formulation of four-dimensional quantum gravity. In Sect. 2.3
the numerical results in four dimensions are summarized. We view these results
as very important, but they also serve as a motivation for moving to two dimen-
sions. While there is no propagating graviton in two-dimensional quantum grav-
ity, it is a diffeomorphism-invariant theory and almost all of the conceptional
problems mentioned above are present there. Thus it is an important exercise to
solve two-dimensional quantum gravity. Surprisingly this can be done in the lattice
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regularization known as “dynamical triangulation”. An important corollary is that
(1) one can explicitly construct the continuum limit of the lattice theory and (2) show
that it agrees with the so-called Liouville two-dimensional quantum gravity theory.
This latter theory is a continuum conformal field theory, explicit solvable, and, when
viewed in the correct way, a diffeomorphism-invariant theory. Thus there is indeed
no problem having a lattice regularization of a diffeomorphism-invariant theory. In
Sect. 2.4 we solve what is known as two-dimensional Euclidean quantum gravity.
In Sect. 2.5 we show how one can interpolate from Euclidean two-dimensional
quantum gravity to “Lorentzian” two-dimensional quantum gravity which is a two-
dimensional version of the four-dimensional gravity theory we have discussed in
Sect. 2.3. Finally Sect. 2.7 discusses the results obtained and outlines perspectives.

2.2 CDT

The use of so-called causal dynamical triangulations (CDT) stands in the tradi-
tion of [19, 20], which advocated that in a gravitational path integral with the
correct, Lorentzian signature of spacetime one should sum over causal geometries
only. More specifically, we adopted this idea when it became clear that attempts to
formulate a Euclidean non-perturbative quantum gravity theory run into trouble in
spacetime dimension d larger than two as will be described below.

This implies that we start from Lorentzian simplicial spacetimes with d = 4
and insist that only causally well-behaved geometries appear in the (regularized)
Lorentzian path integral. A crucial property of our explicit construction is that each
of the configurations allows for a rotation to Euclidean signature. We rotate to a
Euclidean regime in order to perform the sum over geometries (and rotate back
again afterward if needed). We stress here that although the sum is performed over
geometries with Euclidean signature, it is different from what one would obtain in
a theory of quantum gravity based ab initio on Euclidean spacetimes. The reason is
that not all Euclidean geometries with a given topology are included in the “causal”
sum since in general they have no correspondence to a causal Lorentzian geometry.

We refer to [13] for a detailed description of how to construct the class of piece-
wise linear geometries used in the Lorentzian path integral. The most important
assumption is the existence of a global proper-time foliation. This is symbolically
illustrated in Fig. 2.3 where we compare the construction to the one of ordinary
quantum mechanics: the path integral of ordinary quantum mechanics is regularized
as a sum over piecewise linear paths from point xi to point x f in time t f−ti . The time
steps have length a and the continuum limit is obtained when the length a of these
“building blocks” goes to zero. Similarly, in the quantum gravity case we have a
sum over four-geometries, “stretching” between two three-geometries separated by
a proper time t and constructed from four-dimensional building blocks, as described
below. On the figure we show for illustrational simplicity only a single spacetime
history and replace the three-dimensional spatial geometries with a one-dimensional
one of S1-topology. Moving from left to right we have a time foliation where at



2 Quantum Gravity as Sum over Spacetimes 67

Fig. 2.3 Piecewise linear spacetime histories in quantum mechanics and in (1+1)-dimensional
quantum gravity. In the gravity case we show only a single spacetime history, while in the quantum
particle case we show many such histories as well as the average path (thick line)

each discrete time step space is represented by a circle. Neighbouring circles are
then connected by piecewise flat building blocks, usually triangles, as illustrated in
Fig. 2.17 in Sect. 2.5. In the “real” four-dimensional case, the spatial slices of topol-
ogy S1 will be replaced by spatial slices of topology S3, and neighbouring spatial S3

slices are then connected by four-simplices as illustrated in Fig. 2.4 and described
in detail below. There is an important difference between the quantum mechanical
sum over paths and our sum over geometries with a time foliation: the time t in

Fig. 2.4 (4, 1) and a (3, 2) simplices connecting two neighbouring spatial slices. We also have
symmetric (1, 4) and (2, 3) simplices with a vertex and a line, respectively, at time t and a tetrahe-
dron and a triangle, respectively, at time t + 1. For simplicity we denote the total number of (4, 1)
and (1, 4) simplices by N (4,1)4 and similarly the total number of (3, 2) and (2, 3) simplices by N 3,2

4
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the quantum mechanical example is an external parameter, while the time t in the
case of quantum gravity is intrinsic. Also, again for the purpose of illustration, the
two-dimensional geometry has been drawn embedded in three-dimensional space,
but in the path integral implementing the summation over geometries there is no
such embedding present. Finally, we cannot refrain from mentioning that the paths
shown for the quantum mechanical particle are in fact typical paths which appear for
the (Euclideanized) path integral of a particle placed in an external potential. They
are picked out from an actual Monte Carlo simulation of such a physical system.
Similarly, the two-dimensional surface is a surface picked out from a Monte Carlo
simulation of two-dimensional quantum gravity and thus corresponds to a typical
two-dimensional surface which appears in the path integral. This is the reason for
the somewhat poor graphic representation: there is no natural length-preserving
representation of the surface in three-dimensions such that the surface is not self-
intersecting. For better graphic illustrations (animations) of the two-dimensional
surfaces which appear in the two-dimensional quantum-gravitational path integral
we refer to the link [21].

As mentioned above, we assume that the spacetime topology is that of S3 × R,
the spatial topology being that of S3 merely for convenience. The spatial geometry
at each discrete proper time step tn is represented by a triangulation of S3, made up
of equilateral spatial tetrahedra with squared side length �2

s ≡ a2 > 0. In general,
the number N3(tn) of tetrahedra and how they are glued together to form a piecewise
flat three-dimensional manifold will vary with each time step tn . In order to obtain
a four-dimensional triangulation, the individual three-dimensional slices must still
be connected in a causal way, preserving the S3-topology at all intermediate times
t between tn and tn+1.1 This is done as illustrated in Fig. 2.4, introducing what
we call (4, 1)-simplices and (3, 2)-simplices. More precisely, a (4, 1)-simplex is
a four-simplex with four of its vertices (i.e. a boundary tetrahedron) belonging to
the triangulation of S3(tn), the time slice corresponding to time tn , and the fifth
vertex belonging to the triangulation of S3(tn+1), the time slice corresponding to
time tn+1. Similarly, a (3, 2) simplex has three vertices, i.e. a triangle, belonging to
the triangulation of S3(tn) and two vertices, i.e. a link, belonging to the triangulation
of S3(tn+1). We have also simplices of type (1, 4) and (2, 3), which are defined in
an obvious way, interchanging the role of S3(tn) and S3(tn+1). One can show that
two triangulations of S3(tn) and S3(tn+1) can be “connected” by these four building
blocks glued together in a suitable way such that we have a four-dimensional tri-
angulation of S3 × [0, 1]. Also, two given triangulations of S3(tn) and S3(tn+1)

can be connected in many ways compatible with the topology S3 × [0, 1]. In the
path integral we will be summing over all possible ways to connect a given trian-
gulation S3(tn) to a given triangulation of S3(tn+1) compatible with the topology

1 This implies the absence of branching of the spatial universe into several disconnected pieces,
so-called baby universes, which (in Lorentzian signature) would inevitably be associated with
causality violations in the form of degeneracies in the light-cone structure, as has been discussed
elsewhere (see, for example, [22–24]).
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S3 × [0, 1]. In addition we will sum over all three-dimensional triangulations of S3

at all times tn .
We allow for an asymmetry between temporal and spatial lattice length assign-

ments. Denote by �t and �s the length of the time-like links and the space-like links,
respectively. Then �2

t = −α�2
s , α > 0. The explicit rotation to Euclidean signa-

ture is done by performing the rotation α → −α in the complex lower half-plane,
|α| > 7/12, such that we have �2

t = |α|�2
s (see [13] for a discussion).

The Einstein – Hilbert action SEH has a natural geometric implementation on
piecewise linear geometries in the form of the Regge action. This is given by the sum
of the so-called deficit angles around the two-dimensional “hinges” (subsimplices in
the form of triangles), each multiplied with the volume of the corresponding hinge.
In view of the fact that we are dealing with piecewise linear, and not smooth metrics,
there is no unique “approximation” to the usual Einstein – Hilbert action, and one
could in principle work with a different form of the gravitational action. We will
stick with the Regge action, which takes on a very simple form in our case, where
the piecewise linear manifold is constructed from just two different types of building
blocks. After rotation to Euclidean signature one obtains for the action (see [14] for
details)

SEH
E = 1

16π2G

∫
d4x

√
g(−R + 2Λ) −→ (12)

SRegge
E = −(κ0 + 6Δ)N0 + κ4

(
N (4,1)4 + N (3,2)4

)
+Δ

(
2N (4,1)4 + N (3,2)4

)
,

where N0 denotes the total number of vertices in the four-dimensional triangula-
tion and N (4,1)4 and N (3,2)4 denote the total number of the four-simplices described

above, so that the total number N4 of four-simplices is N4 = N (4,1)4 + N (3,2)4 . The
dimensionless coupling constants κ0 and κ4 are related to the bare gravitational
and bare cosmological coupling constants, with appropriate powers of the lattice
spacing a already absorbed into κ0 and κ4. The asymmetry parameter � is related
to the parameter α introduced above, which describes the relative scale between the
(squared) lengths of space- and time-like links. It is both convenient and natural to
keep track of this parameter in our set-up, which from the outset is not isotropic in
time and space directions, see again [14] for a detailed discussion. Since we will
in the following work with the path integral after Wick rotation, let us redefine
α̃ := −α [14], which is positive in the Euclidean domain.2 For future reference, the
Euclidean four-volume of our universe for a given choice of α̃ is given by

V4 = C̃4(ξ) a4 N (4,1)4 = C̃4(ξ) a4 N4/(1+ ξ), (13)

where ξ is the ratio

2 The most symmetric choice is α̃ = 1, corresponding to vanishing asymmetry, � = 0.



70 J. Ambjørn et al.

ξ = N (3,2)4 /N (4,1)4 , (14)

and C̃4(ξ) a4 is a measure of the “effective four-volume” of an “average” four-
simplex. ξ will depend on the choice of coupling constants in a rather complicated
way (for a detailed discussion we refer to [13, 18]).

The path integral or partition function for the CDT version of quantum gravity is
now

Z(G,Λ) =
∫

D[g] e−SEH
E [g] → Z(κ0, κ4,Δ) =

∑

T

1

CT
e−SE (T ), (15)

where the summation is over all causal triangulations T of the kind described above,
and we have dropped the superscript “Regge” on the discretized action. The factor
1/CT is a symmetry factor, given by the order of the automorphism group of the
triangulation T . The actual set-up for the simulations is as follows. We choose a
fixed number N of spatial slices at proper times t1, t2 = t1 + at , up to tN =
t1 + (N−1)at , where �t ≡ at is the discrete lattice spacing in temporal direction
and T = Nat the total extension of the universe in proper time. For convenience we
identify tN+1 with t1, in this way imposing the topology S1× S3 rather than I × S3.
This choice does not affect physical results, as will become clear in due course.

Our next task is to evaluate the non-perturbative sum in (15), if possible, analyt-
ically. This can be done in spacetime dimension d = 2 ([25–31] (and we discuss
this in detail below) and at least partially in d = 3 [32–35], but presently an analytic
solution in four dimensions is out of reach. However, we are in the fortunate situ-
ation that Z(κ0, κ4,�) can be studied quantitatively with the help of Monte Carlo
simulations. The type of algorithm needed to update the piecewise linear geome-
tries has been around for a while, starting from the use of dynamical triangulations
in bosonic string theory (two-dimensional Euclidean triangulations) [36–39] and
later extended to their application in Euclidean four-dimensional quantum gravity
[40–42]. In [13] the algorithm was modified to accommodate the geometries of the
CDT set-up. The algorithm is such that it takes the symmetry factor CT into account
automatically.

We have performed extensive Monte Carlo simulations of the partition function
Z for a number of values of the bare coupling constants. As reported in [14], there
are regions of the coupling constant space which do not appear relevant for contin-
uum physics in that they seem to suffer from problems similar to the ones found
earlier in Euclidean quantum gravity constructed in terms of dynamical triangu-
lations, which essentially led to its abandonment in d > 2. What is observed in
Euclidean four-dimensional quantum gravity is the following: when the (inverse,
bare) gravitational coupling κ0 is sufficiently large one sees so-called branched
polymers, i.e. not really a four-dimensional universe, but a universe which branches
out like a tree with so many branches that it becomes truly fractal when the number
of four-simplices becomes infinite, and its Hausdorff dimension is 2. Such trian-
gulations represent the most extended triangulations one can construct unless one
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explicitly forbids branching. When the (inverse, bare) gravitational coupling κ0 is
sufficiently small one observes a totally crumpled universe with almost no exten-
sion. In this phase there exist vertices of very high order and the connectivity of
the triangulation is such that it is possible to move from any four-simplex to any
other crossing only a few neighbouring four-simplices. The Hausdorff dimension
of such a triangulation is infinite in the limit where the number of four-simplices
goes to infinity. These two phases, the crumpled and the branched-polymer phase,
are separated by a phase transition line along which there is a first-order transition.
It was originally hoped that one could find a point on the critical line where the
first-order transition becomes second order and which could then be used as a fixed
point where a continuum theory of quantum gravity could be defined along the lines
suggested by (10) and (11). However, such a second-order transition was not found,
and eventually the idea of a theory of four-dimensional Euclidean quantum gravity
was abandoned. A new principle for selecting the class of geometries one should
use in the path integral was needed and this led to the suggestion to include only
causal triangulations in the sum over spacetime histories.

When we include only the causal triangulations in the path integral, we still see a
remnant of the Euclidean structure just described, namely, when the (inverse, bare)
gravitational coupling κ0 is sufficiently large, the Monte Carlo simulations exhibit a
sequence in time direction of small, disconnected universes, none of them showing
any sign of the scaling one would expect from a macroscopic universe. We denote
this phase by A. We believe that this phase of the system is a Lorentzian version
of the branched-polymer phase of Euclidean quantum gravity. By contrast, when
� is sufficiently small, the simulations reveal a universe with a vanishing temporal
extension of only a few lattice spacings, ending both in past and future in a ver-
tex of very high order, connected to a large fraction of all vertices. This phase is
most likely related to the so-called crumpled phase of Euclidean quantum gravity.
We denote this phase by B. The crucial and new feature of the quantum superpo-
sition in terms of causal dynamical triangulations is the appearance of a region in
coupling constant space which is different and interesting and where continuum
physics may emerge. It is in this region that we have performed the simulations dis-
cussed here and where work up to now has already uncovered a number of intriguing
physical results [14–16, 43]. In Fig. 2.6 we have shown how different configurations
look in the three phases discussed above, and in Fig. 2.5 we have shown the tentative
phase diagram in the coupling constant space of κ0, κ4 and�. A “critical” surface is
shown in the figure. Keeping κ0 and � fixed, κ4 acts as a chemical potential for N4;
the smaller the κ4, the larger the 〈N4〉. At some critical value κ4(κ0,�), depending
on the choice of κ0 and �, 〈N4〉 → ∞. For κ4 < κ4(κ0,�) the partition function
is plainly divergent and not defined. When we talk about phase transitions we are
always at the “critical” surface

κ4 = κ4(κ0,�), (16)

simply because we cannot have a phase transition unless N4 = ∞. We put “crit-
ical” into quotation marks since it only means that we probe infinite four-volume.
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Fig. 2.5 The phases A, B and C in the coupling constant space (κ0,�, κ4). Phase C is the one
where extended four-dimensional geometries emerge

Fig. 2.6 Typical configurations in the phases A, B and C (lowest figure). Phase C is the one where
extended four-dimensional geometries emerge



2 Quantum Gravity as Sum over Spacetimes 73

No continuum limit is necessarily associated with a point on this surface. To decide
this issue requires additional investigation. A good analogy is the Ising model on
a finite lattice. To have a genuine phase transition for the Ising model we have to
take the lattice volume to infinity since there are no genuine phase transitions for
finite systems. However, just taking the lattice volume to infinity is not sufficient to
ensure critical behaviour of the Ising model. We also have to tune the coupling con-
stant to its critical value. Being on the “critical” surface, or rather “infinite-volume”
surface (16), we can discuss various phases, and these are the ones indicated in
the figure. The different phases are separated by phase transitions, which might be
first-order. However, we have not yet conducted a systematic investigation of the
order of the transitions. Looking at Fig. 2.5, we have two lines of phase transitions,
separating phase A and phase C and separating phase B and phase C respectively.
They meet in the point indicated on the figure. It is tempting to speculate that this
point might be associated with a higher-order transition, as is common for statistical
systems in such a situation. We will return to this point later.

In the Euclideanized setting the value of the cosmological constant determines
the spacetime volume V4 since the two appear in the action as conjugate variables.
We therefore have 〈V4〉 ∼ G/� in a continuum notation, where G is the gravita-
tional coupling constant and � the cosmological constant. In the computer simula-
tions it is more convenient to keep the four-volume fixed or partially fixed. We will
implement this by fixing the total number of four-simplices of type N (4,1)4 or, equiv-
alently, the total number N3 of tetrahedra making up the spatial S3 triangulations at
times ti , i = 1, . . . , N ,

N3 =
N∑

i=1

N3(ti ) = 1

2
N (4,1)4 . (17)

We know from the simulations that in the phase of interest
〈
N (4,1)4

〉
∝
〈
N (3,2)4

〉

as the total volume is varied [14]. This effectively implies that we only have two
bare coupling constants κ0,� in (15), while we compensate by hand for the cou-

pling constant κ4 by studying the partition function Z
(
κ0,�; N (4,1)4

)
for various

N (4,1)4 . To keep track of the ratio ξ(κ0,�) between the expectation value
〈
N (3,2)4

〉

and N (4,1)4 , which depends weakly on the coupling constants, we write (c.f. (14))

〈N4〉 = N (4,1)4 +
〈
N (3,2)4

〉
= N (4,1)4 (1+ ξ(κ0,�)). (18)

For all practical purposes we can regard N4 in a Monte Carlo simulation as fixed.
The relation between the partition function we use and the partition function with
variable four-volume is given by the Laplace transformation

Z(κ0, κ4,Δ) =
∫ ∞

0
dN4 e−κ4 N4 Z(κ0, N4,�), (19)
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where strictly speaking the integration over N4 should be replaced by a summation
over the discrete values N4 can take. Returning to Fig. 2.5, keeping N4 fixed rather
than fine-tuning κ4 to the critical value κc

4 implies that one is already on the “critical”
surface drawn in Fig. 2.5, assuming that N4 is sufficiently large (in principle infi-
nite). Whether N4 is sufficiently large to qualify as “infinite” can be investigated by
performing the computer simulations for different N4’s and comparing the results.
This is a technique we will use over and over again in the following.

2.3 Numerical Results

The Monte Carlo simulations referred to above will generate a sequence of space-
time histories. An individual spacetime history is not an observable, in the same way
as a path x(t) of a particle in the quantum mechanical path integral is not. However,
it is perfectly legitimate to talk about the expectation value 〈x(t)〉 as well as the
fluctuations around 〈x(t)〉. Both of these quantities are in principle calculable in
quantum mechanics. Let us make a slight digression and discuss this in some detail
since it illustrates well the picture we also hope emerges in a theory of quantum
gravity. Consider the particle example shown in Fig. 2.3. We have a particle moving
from xi at ti to x f at t f . In general there will be a classical motion of the particle
satisfying these boundary conditions (we will assume that for simplicity). If h̄ can
be considered small compared to the other parameters entering into the description
of the system, the classical path will be a good approximation to 〈x(t)〉 according
to Ehrenfest’s theorem. In Fig. 2.3 the smooth curve represents 〈x(t)〉. In the path
integral we sum over all continuous paths from (xi , ti ) to (x f , t f ) as illustrated in
Fig. 2.3. However, when all other parameters in the problem are large compared
to h̄ we expect a “typical” path to be close to 〈x(t)〉 which also will be close to
the classical path. Let us make this explicit in the simple case of the harmonic
oscillator. Let xcl(t) denote the solution to the classical equations of motion such
that xcl(ti ) = xi and xcl(t f ) = x f . For the harmonic oscillator the decomposition

x(t) = xcl(t)+ y(t), y(ti ) = y(t f ) = 0

leads to an exact factorization of the path integral thanks to the quadratic nature of
the action. The part involving xcl(t) gives precisely the classical action and the part
involving y(t) the contributions from the fluctuations, independent of the classical
part. Taking the classical path to be macroscopic gives a picture of a macroscopic
path dressed with small quantum fluctuations, small because they are independent of
the classical motion. Explicitly we have for the fluctuations (Euclidean calculation)

〈∫ t f

ti
dt y2(t)

〉

= h̄

2mω2

(
ω(t f − ti )

tanh(ω(t f − ti ))
− 1

)

.

Thus the harmonic oscillator is a simple example of what we hope for in quantum
gravity: Let the size of the system be macroscopic, i.e. xcl(t) is macroscopic (put in



2 Quantum Gravity as Sum over Spacetimes 75

by hand), then the quantum fluctuations around this path are small and of the order

〈|y|〉 ∝
√

h̄

mω2(t f − ti )
.

We hope this translates into the description of our universe: the macroscopic size
of the universe dictated by the (inverse) cosmological constant in any Euclidean
description (trivial to show in the model by simply differentiating the partition func-
tion with respect to the cosmological constant and in the simulations thus put in by
hand) and the small quantum fluctuations dictated by the other coupling constant,
namely, the gravitational coupling constant.

2.3.1 The Emergent de Sitter Background

Obviously, there are many more dynamical variables in quantum gravity than there
are in the particle case. We can still imitate the quantum mechanical situation by
picking out a particular one, for example, the spatial three-volume V3(t) at proper
time t . We can measure both its expectation value 〈V3(t)〉 and fluctuations around it.
The former gives us information about the large-scale “shape” of the universe we
have created in the computer. First we will describe the measurements of 〈V3(t)〉,
keeping a more detailed discussion of the fluctuations to Sect. 2.3.2 below.

A “measurement” of V3(t) consists of a table N3(i), where i = 1, . . . , N denotes
the number of time slices. Recall from Sect. 2.2 that the sum over slices

∑N
i=1 N3(i)

is kept constant. The time axis has a total length of N time steps, where N = 80 in
the actual simulations, and we have cyclically identified time slice N + 1 with time
slice 1.

What we observe in the simulations is that for the range of discrete volumes N4
under study the universe does not extend (i.e. has appreciable three-volume) over
the entire time axis, but rather is localized in a region much shorter than 80 time-
slices. Outside this region the spatial extension N3(i) will be minimal, consisting
of the minimal number (five) of tetrahedra needed to form a three-sphere S3, plus
occasionally a few more tetrahedra.3 This thin “stalk” therefore carries little four-
volume and in a given simulation we can for most practical purposes consider the
total four-volume of the remainder, the extended universe, as fixed.

In order to perform a meaningful average over geometries which explicitly refers
to the extended part of the universe, we have to remove the translational zero mode
which is present. We refer to [18] for a discussion of the procedure. Having defined
the centre of volume along the time direction of our spacetime configurations we
can now perform superpositions of configurations and define the average 〈N3(i)〉
as a function of the discrete time i . The results of measuring the average discrete

3 This kinematic constraint ensures that the triangulation remains a simplicial manifold in which,
for example, two d-simplices are not allowed to have more than one (d − 1)-simplex in common.
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spatial size of the universe at various discrete times i are illustrated in Fig. 2.7 and
can be succinctly summarized by the formula

N cl
3 (i) := 〈N3(i)〉 = N4

2(1+ ξ)
3

4

1

s0 N 1/4
4

cos3

(
i

s0 N 1/4
4

)

, s0 ≈ 0.59, (20)

where N3(i) denotes the number of three-simplices in the spatial slice at discretized
time i and N4 the total number of four-simplices in the entire universe. Since we are
keeping N (4,1)4 fixed in the simulations and since ξ changes with the choice of bare
coupling constants, it is sometimes convenient to rewrite (20) as

N cl
3 (i) =

1

2
N (4,1)4

3

4

1

s̃0

(
N (4,1)4

)1/4
cos3

⎛

⎜
⎝

i

s̃0

(
N (4,1)4

)1/4

⎞

⎟
⎠ , (21)

where s̃0 is defined by s̃0

(
N (4,1)4

)1/4 = s0 N 1/4
4 . Of course, formula (20) is only

valid in the extended part of the universe where the spatial three-volumes are larger
than the minimal cut-off size.

The data shown in Fig. 2.7 have been collected at the particular values
(κ0,�) = (2.2, 0.6) of the bare coupling constants and for N4 = 362, 000 (cor-
responding to N (4,1)4 = 160, 000). For this value of (κ0,�) we have verified rela-
tion (20) for N4 ranging from 45,500 to 362,000 building blocks (45,500, 91,000,
181,000 and 362,000). After rescaling the time and volume variables by suitable

Fig. 2.7 Background geometry 〈N3(i)〉: MC measurements for fixed N (4,1)4 = 160, 000
(N4 = 362, 000) and best fit (20) yield indistinguishable curves at given plot resolution. The
bars indicate the average size of quantum fluctuations
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powers of N4 according to relation (20), and plotting them in the same way as in
Fig. 2.7, one finds almost total agreement between the curves for different spacetime
volumes. This is illustrated in Fig. 2.8. Thus we have here a beautiful example of
finite-size scaling, and at least when we discuss the average three-volume V3(t) all
our discretized volumes N4 are large enough that we can treat them as infinite, in
the sense that no further change will occur for larger N4.

By contrast, the quantum fluctuations indicated in Fig. 2.7 as vertical bars are
volume-dependent and will be larger the smaller the total four-volume, see Sect.
2.3.2 for details. Equation (20) shows that spatial volumes scale according to N 3/4

4

and time intervals according to N 1/4
4 , as one would expect for a genuinely four-

dimensional spacetime and this is exactly the scaling we have used in Fig. 2.8. This
strongly suggests a translation of (20) to a continuum notation. The most natural
identification is given by

√
gtt V cl

3 (t) = V4
3

4B
cos3

(
t

B

)

, (22)

where we have made the identifications

ti
B
= i

s0 N 1/4
4

, �ti
√

gtt V3(ti ) = 2C̃4 N3(i)a
4, (23)

such that we have

∫
dt
√

gtt V3(t) = V4. (24)

Fig. 2.8 Rescaling of time and volume variables according to relation (20) for N4 = 45,500,
91,000, 181,000 and 362,000. The plot also includes the curve (20). More precisely: σ ∝ i/N 1/4

4

and P(σ ) ∝ N3(i)/N 3/4
4
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In (23),
√

gtt is the constant proportionality factor between the time t and genuine
continuum proper time τ , τ = √

gtt t . (The combination �ti
√

gtt V3 contains
C̃4, related to the four-volume of a four-simplex rather than the three-volume cor-
responding to a tetrahedron, because its time integral must equal V4). Writing
V4 = 8π2 R4/3, and

√
gtt = R/B, (22) is seen to describe a Euclidean de Sitter

universe (a four-sphere, the maximally symmetric space for positive cosmological
constant) as our searched-for, dynamically generated background geometry! In the
parametrization of (22) this is the classical solution to the action

S = 1

24πG

∫
dt
√

gtt

(
gtt V̇3

2
(t)

V3(t)
+ k2V 1/3

3 (t)− λV3(t)

)

, (25)

where k2 = 9(2π2)2/3 and λ is a Lagrange multiplier, fixed by requiring that
the total four-volume be V4,

∫
dt
√

gtt V3(t) = V4. Up to an overall sign, this is
precisely the Einstein – Hilbert action for the scale factor a(t) of a homogeneous,
isotropic universe (rewritten in terms of the spatial three-volume V3(t) = 2π2a(t)3),
although we of course never put any such simplifying symmetry assumptions into
the CDT model.

A discretized, dimensionless version of (25) is

Sdiscr = k1

∑

i

(
(N3(i + 1)− N3(i))2

N3(i)
+ k̃2 N 1/3

3 (i)

)

, (26)

where k̃2 ∝ k2. This can be seen by applying the scaling (20), namely,
N3(i) = N 3/4

4 n3(si ) and si = i/N 1/4
4 . This enables us to finally conclude that

the identifications (23) when used in the action (26) lead na’́ively to the continuum
expression (25) under the identification

G = a2

k1

√
C̃4 s̃2

0

3
√

6
. (27)

Next, let us comment on the universality of these results. First, we have checked
that they are not dependent on the particular definition of time-slicing we have been
using, in the following sense. By construction of the piecewise linear CDT geome-
tries we have at each integer time step ti = i at a spatial surface consisting of N3(i)
tetrahedra. Alternatively, one can choose as reference slices for the measurements of
the spatial volume non-integer values of time, for example, all time slices at discrete
times i − 1/2, i = 1, 2, ... . In this case the “triangulation” of the spatial three-
spheres consists of tetrahedra – from cutting a (4,1)- or a (1,4)-simplex half-way –
and “boxes”, obtained by cutting a (2,3)- or (3,2)-simplex (the geometry of this is
worked out in [44]). We again find a relation like (20) if we use the total number of
spatial building blocks in the intermediate slices (tetrahedra+boxes) instead of just
the tetrahedra.
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Second, we have repeated the measurements for other values of the bare coupling
constants. As long as we stay in the phase where an extended universe is observed,
the phase C in Fig. 2.5, a relation like (20) remains valid. In addition, the value of s0,
defined in (20), is almost unchanged until we get close to the phase transition lines
beyond which the extended universe disappears. Only for the values of κ0 around
3.6 and larger will the measured 〈N3(t)〉 differ significantly from the value at 2.2.
For values larger than 3.8 (at � = 0.6), the universe will disintegrate into a number
of small and disconnected components distributed randomly along the time axis,
and one can no longer fit the distribution 〈N3(t)〉 to the formula (20). Later we will
show that while s0 is almost unchanged, the constant k1 in (26), which governs the
quantum fluctuations around the mean value 〈N3(t)〉, is more sensitive to a change
of the bare coupling constants, in particular, in the case where we change κ0 (while
leaving � fixed).

2.3.2 Fluctuations Around de Sitter Space

In the following we will test in more detail how well the actions (25) and (26)
describe the computer data. A crucial test is how well it describes the quantum
fluctuations around the emergent de Sitter background.

The correlation function (the covariance matrix Ĉ) is defined by

CN4(i, i
′) = 〈δN3(i)δN3(i

′)〉, δN3(i) ≡ N3(i)− N̄3(i), (28)

where we have included an additional subscript N4 to emphasize that N4 is kept
constant in a given simulation.

The first observation extracted from the Monte Carlo simulations is that under a
change in the four-volume CN4(i, i

′) scales as4

CN4(i, i
′) = N4 F

(
i/N 1/4

4 , i ′/N 1/4
4

)
, (29)

where F is a universal scaling function. This is illustrated by Fig. 2.9 for the rescaled
version of the diagonal part C1/2

N4
(i, i), corresponding precisely to the quantum fluc-

tuations 〈(δN3(i))2〉1/2 of Fig. 2.7. While the height of the curve in Fig. 2.7 will
grow as N 3/4

4 , the superimposed fluctuations will only grow as N 1/2
4 . We conclude

that for fixed bare coupling constants the relative fluctuations will go to zero in the
infinite-volume limit.

Let us rewrite the minisuperspace action (25) for a fixed, finite four-volume V4 in
terms of dimensionless variables by introducing s = t/V 1/4

4 and V3(t) = V 3/4
4 v3(s):

4 We stress again that the form (29) is only valid in that part of the universe whose spatial extension
is considerably larger than the minimal S3 constructed from 5 tetrahedra. (The spatial volume of
the stalk typically fluctuates between 5 and 15 tetrahedra.)
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Fig. 2.9 Analyzing the quantum fluctuations of Fig. 2.7: diagonal entries F(t, t)1/2 of the universal
scaling function F from (29), for N (4,1)4 = 20,000, 40,000, 80,000 and 160,000

S = 1

24π

√
V4

G

∫
ds
√

gss

(
gss v̇3

2(s)

v3(s)
+ k2v

1/3
3 (s)

)

, (30)

now assuming that
∫

ds
√

gss v3(s) = 1, and with gss ≡ gtt . The same rewriting
can be done to (26) which becomes

Sdiscr = k1

√
N4

∑

i

Δs

(
1

n3(si )

(
n3(si+1)− n3(si )

Δs

)2

+ k̃2n1/3
3 (si )

)

, (31)

where N3(i) = N 3/4
4 n3(si ) and si = i/N 1/4

4 .
From the way the factor

√
N4 appears as an overall scale in (31) it is clear that to

the extent a quadratic expansion around the effective background geometry is valid
one will have a scaling

〈δN3(i)δN3(i
′)〉 = N 3/2

4 〈δn3(ti )δn3(ti ′)〉 = N4 F(ti , ti ′), (32)

where ti = i/N 1/4
4 . This implies that (29) provides additional evidence for the

validity of the quadratic approximation and the fact that our choice of action (26)
with k1 independent of N4 is indeed consistent.

To demonstrate in detail that the full function F(t, t ′) and not only its diagonal
part is described by the effective actions (25), (26), let us for convenience adopt a
continuum language and compute its expected behaviour. Expanding (25) around
the classical solution according to V3(t) = V cl

3 (t)+ x(t), the quadratic fluctuations
are given by
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〈x(t)x(t ′)〉=
∫

Dx(s) x(t)x(t ′) e−
1
2

∫∫
dsds′x(s)M(s,s′)x(s′)

=M−1(t, t ′), (33)

where Dx(s) is the normalized measure and the quadratic form M(t, t ′) is deter-
mined by expanding the effective action S to second order in x(t),

S(V3) = S
(

V cl
3

)
+ 1

18πG

B

V4

∫
dt x(t)Ĥ x(t). (34)

In expression (34), Ĥ denotes the Hermitian operator

Ĥ = − d

dt

1

cos3(t/B)

d

dt
− 4

B2 cos5(t/B)
, (35)

which must be diagonalized under the constraint that
∫

dt
√

gtt x(t) = 0, since V4
is kept constant.

Let e(n)(t) be the eigenfunctions of the quadratic form given by (34) with the
volume constraint enforced, ordered according to increasing eigenvalues λn . As we
will discuss shortly, the lowest eigenvalue is λ1 = 0, associated with translational
invariance in time direction, and should be left out when we invert M(t, t ′), because
we precisely fix the centre of volume when making our measurements. Its dynamics
is therefore not accounted for in the correlator C(t, t ′).

If this cosmological continuum model were to give the correct description of the
computer-generated universe, the matrix

M−1(t, t ′) =
∞∑

n=2

e(n)(t)e(n)(t ′)
λn

(36)

should be proportional to the measured correlator C(t, t ′). Figure 2.10 shows the
eigenfunctions e(2)(t) and e(4)(t) (with two and four zeros respectively), calculated
from Ĥ with the constraint

∫
dt
√

gtt x(t) = 0 imposed. Simultaneously we show
the corresponding eigenfunctions calculated from the data, i.e. from the matrix
C(t, t ′), which correspond to the (normalizable) eigenfunctions with the highest and
third-highest eigenvalues. The agreement is very good, in particular, when taking
into consideration that no parameter has been adjusted in the action (we simply take
B = s0 N 1/4

4 �t in (22) and (34), which gives B = 14.47at for N4 = 362, 000).
The reader may wonder why the first eigenfunction exhibited has two zeros. As

one would expect, the ground state eigenfunction e(0)(t) of the Hamiltonian (35),
corresponding to the lowest eigenvalue, has no zeros, but it does not satisfy the vol-
ume constraint

∫
dt
√

gtt x(t) = 0. The eigenfunction e(1)(t) of Ĥ with next-lowest
eigenvalue has one zero and is given by the simple analytic function
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Fig. 2.10 Comparing the two highest even eigenvector of the covariance matrix C(t, t ′) mea-
sured directly (grey curves) with the two lowest even eigenvectors of M−1(t, t ′), calculated semi-
classically (black curves)

e(1)(t) = 4√
πB

sin
( t

B

)
cos2

( t

B

)
= c−1 dV cl

3 (t)

dt
, (37)

where c is a constant. One realizes immediately that e(1) is the translational zero
mode of the classical solution V cl

3 (t) (∝ cos3 t/B). Since the action is invariant
under time translations, we have

S
(

V cl
3 (t +�t)

)
= S

(
V cl

3 (t)
)
, (38)
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and since V cl
3 (t) is a solution to the classical equations of motion we find to second

order (using the definition (37))

S
(

V cl
3 (t +�t)

)
= S

(
V cl

3 (t)
)
+ c2(�t)2

18πG

B

V4

∫
dt e(1)(t)Ĥe(1)(t), (39)

consistent with e(1)(t) having eigenvalue zero.
It is clear from Fig. 2.10 that some of the eigenfunctions of Ĥ (with the volume

constraint imposed) agree very well with the measured eigenfunctions. All even
eigenfunctions (those symmetric with respect to reflection about the symmetry axis
located at the centre of volume) turn out to agree very well. The odd eigenfunctions
of Ĥ agree less well with the eigenfunctions calculated from the measured C(t, t ′).
The reason seems to be that we have not managed to eliminate the motion of the cen-
tre of volume completely from our measurements. There is an inherent ambiguity
in fixing the centre of volume of one lattice spacing, which turns out to be sufficient
to reintroduce the zero mode in the data. Suppose we had by mistake misplaced the
centre of volume by a small distance �t . This would introduce a modification

�V3 = dV cl
3 (t)

dt
�t (40)

proportional to the zero mode of the potential V cl
3 (t). It follows that the zero mode

can re-enter whenever we have an ambiguity in the position of the centre of volume.
In fact, we have found that the first odd eigenfunction extracted from the data can
be perfectly described by a linear combination of e(1)(t) and e(3)(t). It may be sur-
prising at first that an ambiguity of one lattice spacing can introduce a significant
mixing. However, if we translate�V3 from (40) to “discretized” dimensionless units

using V3(i) ∼ N 3/4
4 cos

(
i/N 1/4

4

)
, we find that �V3 ∼ √

N4, which because of

〈(δN3(i))2〉 ∼ N4 is of the same order of magnitude as the fluctuations themselves.
In our case, this apparently does affect the odd eigenfunctions.

One can also compare the data and the matrix M−1(t, t ′) calculated from (36)
directly. This is illustrated in Fig. 2.11, where we have restricted ourselves to data
from inside the extended part of the universe. We imitate the construction (36) for
M−1, using the data to calculate the eigenfunctions, rather than Ĥ . One could also
have used C(t, t ′) directly, but the use of the eigenfunctions makes it somewhat
easier to perform the restriction to the bulk. The agreement is again good (better than
15% at any point on the plot), although less spectacular than in Fig. 2.10 because of
the contribution of the odd eigenfunctions to the data.

2.3.3 The Size of the Universe and the Flow of G

It is natural to view the coupling constant G in front of the effective action for the
scale factor as the gravitational coupling constant G. The effective action which
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Fig. 2.11 Comparing data for the extended part of the universe: measured C(t, t ′) (above) versus
M−1(t, t ′) obtained from analytical calculation (below). The agreement is good, and would have
been even better had we included only the even modes

described our computer-generated data was given by (25) and its dimensionless lat-
tice version by (26). The computer data allows us to extract k1 ∝ a2/G, a being the
spatial lattice spacing, the precise constant of proportionality being given by (27):

G = a2

k1

√
C̃4 s̃2

0

3
√

6
. (41)

For the bare coupling constants (κ0,�) = (2.2, 0.6) we have high-statistics mea-
surements for N4 ranging from 45,500 to 362,000 four-simplices (equivalently,
N (4,1)4 ranging from 20,000 to 160,000 four-simplices). The choice of � deter-
mines the asymmetry parameter α, and the choice of (κ0,�) determines the ratio
ξ between N (3,2)4 and N (4,1)4 . This in turn determines the “effective” four-volume
C̃4 of an average four-simplex, which also appears in (41). The number s̃0 in (41) is
determined directly from the time extension Tuniv of the extended universe according
to

Tuniv = π s̃0

(
N (4,1)4

)1/4
. (42)

Finally, from our measurements we have determined k1 = 0.038. Taking every-
thing together according to (41), we obtain G ≈ 0.23a2, or �Pl ≈ 0.48a, where
�Pl =

√
G is the Planck length.

From the identification of the volume of the four-sphere, V4 = 8π2 R4/3 =
C̃4 N (4,1)4 a4, we obtain that R = 3.1a. In other words, the linear size πR of the
quantum de Sitter universes studied here lies in the range of 12–21 Planck lengths
for N4 in the range mentioned above and for the bare coupling constants chosen as
(κ0,�) = (2.2, 0.6).

Our dynamically generated universes are therefore not very big, and the quantum
fluctuations around their average shape are large as is apparent from Fig. 2.7. It is
rather surprising that the semi-classical minisuperspace formulation is applicable
for universes of such a small size, a fact that should be welcome news to anyone
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performing semi-classical calculations to describe the behaviour of the early uni-
verse. However, in a certain sense our lattices are still coarse compared to the Planck
scale �Pl because the Planck length is roughly half a lattice spacing. If we are after
a theory of quantum gravity valid on all scales, we are in particular interested in
uncovering phenomena associated with Planck-scale physics. In order to collect
data free from unphysical short-distance lattice artefacts at this scale, we would
ideally like to work with a lattice spacing much smaller than the Planck length,
while still being able to set by hand the physical volume of the universe studied on
the computer.

The way to achieve this, under the assumption that the coupling constant G of
formula (41) is indeed a true measure of the gravitational coupling constant, is as
follows. We are free to vary the discrete four-volume N4 and the bare coupling
constants (κ0,�) of the Regge action (see [14] for further details on the latter).
Assuming for the moment that the semi-classical minisuperspace action is valid, the
effective coupling constant k1 in front of it will be a function of the bare coupling
constants (κ0,�), and can in principle be determined as described above for the
case (κ0,�) = (2.2, 0.6). If we adjusted the bare coupling constants such that in
the limit as N4 →∞ both

V4 ∼ N4a4 and G ∼ a2/k1(κ0,�) (43)

remained constant (i.e. k1(κ0,�) ∼ 1/
√

N4), we would eventually reach a region
where the Planck length was significantly smaller than the lattice spacing a, in which
event the lattice could be used to approximate spacetime structures of Planckian size
and we could initiate a genuine study of the sub-Planckian regime. Since we have
no control over the effective coupling constant k1, the first obvious question which
arises is whether we can at all adjust the bare coupling constants in such a way that
at large scales we still see a four-dimensional universe, with k1 going to zero at the
same time. The answer seems to be in the affirmative, as we will go on to explain.

Figure 2.12 shows the results of extracting k1 for a range of bare coupling con-
stants for which we still observe an extended universe. In the top figure � = 0.6
is kept constant while κ0 is varied. For κ0 sufficiently large we eventually reach a
point where a phase transition takes place (the point in the square in the bottom
right-hand corner is the measurement closest to the transition we have looked at).
For even larger values of κ0, beyond this transition, the universe disintegrates into
a number of small universes, in a CDT analogue of the branched-polymer phase
of Euclidean quantum gravity. The plot shows that the effective coupling con-
stant k1 becomes smaller and possibly goes to zero as the phase transition point
is approached, although our current data do not yet allow us to conclude that k1
does indeed vanish at the transition point.

Conversely, the bottom figure of Fig. 2.12 shows the effect of varying �, while
keeping κ0 = 2.2 fixed. As � is decreased towards 0, we eventually hit another
phase transition, separating the physical phase of extended universes from the CDT
equivalent of the crumpled phase of Euclidean quantum gravity, where the entire
universe will be concentrated within a few time steps, as already mentioned above.
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Fig. 2.12 The measured effective coupling constant k1 as function of the bare κ0 (top, � = 0.6
fixed) and the asymmetry � (bottom, κ0 = 2.2 fixed). The marked point near the middle of the
data points sampled is the point (κ0,�) = (2.2, 0.6) where most measurements in the remainder
of the paper were taken. The other marked points are those closest to the two phase transitions, to
the “branched-polymer phase” (top) and the “crumpled phase” (bottom)

(The point closest to the transition where we have taken measurements is the one
in the bottom left-hand corner.) Also when approaching this phase transition the
effective coupling constant k1 goes to 0, leading to the tentative conclusion that
k1 → 0 along the entire phase boundary.

However, to extract the coupling constant G from (41) we have to take into
account not only the change in k1, but also that in s̃0 (the width of the dis-
tribution N3(i)) and in the effective four-volume C̃4 as a function of the bare
coupling constants. Combining these changes, we arrive at a slightly different pic-



2 Quantum Gravity as Sum over Spacetimes 87

ture. Approaching the boundary where spacetime collapses in time direction (by
lowering �), the gravitational coupling constant G decreases, despite the fact that
1/k1 increases. This is a consequence of s̃0 decreasing considerably. On the other
hand, when (by increasing κ0) we approach the region where the universe breaks
up into several independent components, the effective gravitational coupling con-
stant G increases, more or less like 1/k1, where the behaviour of k1 is shown in
Fig. 2.12 (top). This implies that the Planck length �Pl =

√
G increases from

approximately 0.48a to 0.83a when κ0 changes from 2.2 to 3.6. Most likely we
can make it even bigger in terms of Planck units by moving closer to the phase
boundary.

On the basis of these arguments, it seems likely that the non-perturbative CDT
formulation of quantum gravity does allow us to penetrate into the sub-Planckian
regime and probe the physics there explicitly. Work in this direction is currently
ongoing. One interesting issue under investigation is whether and to what extent
the simple minisuperspace description remains valid as we go to shorter scales. We
have already seen deviations from classicality at short scales when measuring the
spectral dimension [14, 43], and one would expect them to be related to additional
terms in the effective action (25) and/or a nontrivial scaling behaviour of k1. This
raises the interesting possibility of being able to test explicitly the scaling violations
of G predicted by renormalization group methods in the context of asymptotic safety
[2–7].

2.4 Two-Dimensional Euclidean Quantum Gravity

The results described above are of course interesting and suggest that there might
exist a field theory of quantum gravity in four dimensions (three space and one
time dimension). However, the results are based on numerical simulations. As
already mentioned it is of great conceptional interest that we have a toy model,
two-dimensional quantum gravity, where both the lattice theory and the continuum
quantum gravity theory can be solved analytically and agree. Of course we can still
be in the situation that there exists no description of quantum gravity as a field
theory in four dimensions (although we have presented some evidence in favour of
such a scenario above), but we can then not blame the underlying formalism for
being inadequate.

2.4.1 Continuum Formulation

Let Mh denote a closed, compact, connected and orientable surface of genus h and
Euler characteristic χ(h) = 2 − 2h. The partition function of two-dimensional
Euclidean quantum gravity is formally given by
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Z(Λ,G) =
∞∑

h=0

∫
D[g] e−S(g;Λ,G), (44)

where� denotes the cosmological constant, G is the gravitational coupling constant
and S is the continuum Einstein – Hilbert action defined by

S(g;�,G) = �
∫

Mh
d2ξ
√

g − 1

2πG

∫

Mh
d2ξ
√

g R. (45)

In (44), we take the sum to include all possible topologies of two-dimensional man-
ifolds (i.e. over all genera h), and in (45) R denotes the scalar curvature of the
metric g on the manifold Mh . The functional integration is over all diffeomorphism
equivalence classes [g] of metrics on Mh .

In two dimensions the curvature part of the Einstein – Hilbert action is a topo-
logical invariant according to the Gauss – Bonnet theorem, which allows us to write

Z(�,G) =
∞∑

h=0

eχ(h)/G Zh(�), (46)

where

Zh(�) =
∫

D[g] e−S(g;�) (47)

and

S(g;�) = � Vg, (48)

where Vg =
∫

d2ξ
√

g is the volume of the universe for a given diffeomorphism
class of metrics. In the remainder of this section we will, for simplicity, restrict
our attention to manifolds homeomorphic to S2 or S2 with a fixed number of holes
unless explicitly stated otherwise. In this case we disregard the topological term in
the action since it is a constant. The sphere S2 with b boundary components will be
denoted S2

b and we denote the partition function for the sphere, Z0(�) in (47), by
Z(�).

In the presence of a boundary it is natural to add to the action a boundary term

S(g;�, Z1, ..., Zb) = �Vg +
b∑

i=1

Zi Li,g, (49)

where Li,g denotes the length of the i th boundary component with respect to the
metric g. We refer to the Zi ’s as the cosmological constants of the boundary com-
ponents. The partition function is in this case given by
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W (�; Z1, ..., Zb) =
∫

D[g] e−S(g;�,Z1,...,Zb). (50)

Since the lengths of the boundary components are invariant under diffeomorphisms,
it makes sense to fix them to values L1, . . . , Lb and define the Hartle – Hawking
wave functionals by

W (�; L1, ..., Lb) =
∫

D[g] e−S(g;�)
b∏

i=1

δ(Li − Li,g), (51)

where S(g;�) is given by (48). Since (50) is the Laplace transform of (51), i.e.

W (�; Z1, ..., Zb) =
∫ ∞

0

b∏

i=1

d Li e−Zi Li W (�; L1, ..., Lb), (52)

we denote them by the same symbol. We distinguish between the two by the names
of the arguments.

2.4.2 The Lattice Regularization

At the outset we restrict the topology of surfaces to be that of S2 with a fixed number
of holes. We view abstract triangulations of S2

b as defining a grid in the space of
diffeomorphism equivalence classes of metrics on S2

b . Each triangle is a “building
block” with side lengths a. This a will be an UV cut-off which we will relate to the
bare coupling constants on the lattice. However, presently it is convenient to view a
as being 1 (length unit).

Let T denote a triangulation of S2
b . The regularized theory of gravity will be

defined by replacing the action Sg(�, Z1, . . . , Zb) in (49) by

ST (μ, λ1, . . . , λb) = μNt +
b∑

i=1

λi li , (53)

where Nt denotes the number of triangles in T and li is the number of links in
the i th boundary component. The parameter μ is the bare cosmological constant
and the λi ’s are the bare cosmological constants of the boundary components. The
integration over diffeomorphism equivalence classes of metrics in (50) becomes a
summation over non-isomorphic triangulations. We define the loop functions (dis-
cretized versions of W (�, Z1, . . . , Zb)) by summing over all triangulations of S2

b :

w(μ, λ1, . . . , λb) =
∑

l1,...,lb

∑

T∈T (l1,...,lb)
e−ST (μ,λ1,...,λb). (54)
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Analogously, we define the partition function for closed surfaces by

Z(μ) =
∑

T∈T

1

CT
e−ST (μ), (55)

where CT is the symmetry factor of T and ST (μ) = μNt . Since we consider sur-
faces of a fixed topology we have left out the curvature term in the action. It will be
introduced later, when the restriction on topology is lifted.

Next we write down the regularized version of the Hartle – Hawking wave func-
tionals W (�, L1, . . . , Lb):

w(μ, l1, . . . , lb) =
∑

T∈T (l1,...,lb)
e−ST (μ) (56)

with an abuse of notation similar to the one in the previous section. This can also be
written in the form

w(μ, l1, . . . , lb) =
∑

k

e−μkwk,l1,...,lb , (57)

where we have introduced the notation

wk,l1,...,lb

for the number of triangulations in T (l1, . . . , lb) with k triangles.
The discretized analogues of the Laplace transformations which relate

W (�, Z1, . . . , Zb) and W (�, L1, . . . , Lb) are

w(μ, λ1, . . . , λb) =
∑

l1,...,lb

e−
∑

i λi liw(μ, l1, . . . , lb) (58)

and (57). Similarly, we have for the partition functions

Z(μ) =
∑

k

e−μk Z(k), (59)

Z(k) =
∑

T∈T ,Nt=k

1

CT
. (60)

It follows from the definitions (57), (58) that w(μ, λ1, . . . , λb) is the generating
function for the numbers wk,l1,...,lb , the arguments of the generating function being
e−μ and e−λi . In this way the evaluation of the loop functions of two-dimensional
quantum gravity is reduced to the purely combinatorial problem of finding the
number of non-isomorphic triangulations of S2 or S2

b with a given number of tri-
angles and boundary components of given lengths.
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We use the notation

w(g, z1, . . . , zb) =
∑

k,l1,...,lb

wk,l1,...,lb gk z−l1−1
1 · · · z−lb−1

b (61)

for the generating function with an extra factor z−1
1 . . . z−1

b , i.e. we make the identi-
fications

g = e−μ, zi = eλi . (62)

The reason for this particular choice of variables in the generating function is moti-
vated by its analytic structure, which will be revealed below.

In the following we consider a particular class of triangulations which includes
degenerate boundaries. It may be defined as the class of complexes homeomor-
phic to the sphere with a number of holes that one obtains by successively gluing
together a collection of triangles and a collection of double links which we consider
as (infinitesimally narrow) strips, where links, as well as triangles, can be glued
onto the boundary of a complex both at vertices and along links. Gluing a double
link along a link makes no change in the complex. An example of such a complex is
shown in Fig. 2.13. The reason we use this class of triangulations is that they match
the “triangulations” we obtain from the so-called matrix models to be considered
below. We call this class of complexes “unrestricted triangulations”.

One could have chosen a more regular class of triangulations, corresponding
more closely to our intuitive notion of a surface. However, the degenerate structures
present in the unrestricted triangulations appear on a slightly larger scale in the regu-
lar triangulations in the form of narrow strips consisting of triangles. Since we want
to take the lattice side a of a triangle to zero in the continuum limit, there should
be no difference in that limit between various classes of triangulations, unless more
severe constraints are introduced. We say that “the continuum limit is universal”. But
at some point the constraint can be so strong that the continuum limit is changed.
We will meet precisely such a change below, leading from (Euclidean) dynamical
triangulations (DT) to causal dynamical triangulations (CDT).

Fig. 2.13 A typical unrestricted “triangulation”
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Let w(g, z) denote the generating function for the (unrestricted) triangulations
with one boundary component. Then we have

w(g, z) =
∞∑

k=0

∞∑

l=0

wk,l gk z−(l+1) ≡
∞∑

l=0

wl(g)

zl+1
. (63)

We have included the triangulation consisting of one point. It gives rise to the term
1/z and we have w0(g) = 1. The function w1(g) starts with the term g, which cor-
responds to an unrestricted triangulation with a boundary consisting of one (closed)
link with one vertex and containing one triangle. The coefficients wk,1 in the expan-
sion w1,1g + w3,1g3 + · · · of w1(g) are the numbers of unrestricted triangulations
with a boundary consisting of one link.

The coefficients of w(g, z) fulfil a recursion relation which has the simple graph-
ical representation shown in Fig. 2.14. The diagrams indicate two operations that
one can perform on a marked link on the boundary to produce a triangulation which
has either fewer triangles or fewer boundary links. The first term on the right-hand
side of Fig. 2.14 corresponds to the removal of a triangle. The second term corre-
sponds to the removal of a double link. Note that removing a triangle creates a new
double link if the triangle has two boundary links. In addition, note that we count
triangulations with one marked link on each boundary component and adopt the
notation introduced above for the corresponding quantities.

The equation associated with the diagrams is

[
w(g, z)

]
k,l =

[
gzw(g, z)

]
k,l +

[
1

z
w2(g, z)

]

k,l
. (64)

The subscripts k, l indicate the coefficient of gk/zl+1. Let us explain the equation in
some detail. The factor gz in (64) is present since the triangulation corresponding to
the first term on the right-hand side of Fig. 2.14 has one triangle less and one bound-
ary link more than the triangulation on the left-hand side. The function w2(g, z) in
the last term in (64) arises from the two blobs connected by the double link in Fig.
2.14 and the 1/z in front of w2(g, z) is inserted to make up for the decrease by two
in the length of the boundary when removing the double link.

= +

Fig. 2.14 Graphical representation of relation (64): The boundary contains one marked link which
is part of a triangle or a double link. Associated to each triangle is a weight g, and to each double
link a weight 1
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As the reader may have discovered, (64) is not correct for the smallest values
of l. Consider Fig. 2.14. The first term on the left-hand side of (64) (a single vertex)
has no representation on the diagram. In order for (64) to be valid for k = l = 0 we
have to add the term 1/z on the right-hand side of (64). Furthermore, it is clear from
Fig. 2.14 that the first term on the right-hand side has at least two boundary links.
Consequently, the term gzw(g, z) on the right-hand side of (64) should be replaced
by gz(w(g, z)−1/z−w1(g)/z2) such that all terms corresponding to triangulations
with boundaries of length 0 and 1 are subtracted. It follows that the correct equation
is

(z − gz2)w(g, z)− 1+ g(w1(g)+ z) = w2(g, z). (65)

We will refer to (65) as the loop equation. It is a second-order equation inw(g, z).
As will be clear in the following this algebraic feature allows us to extract asymp-
totic formulas for the number of triangulations with k triangles in the limit k →∞.

2.4.3 Counting Graphs

Let us begin by solving (65) in the limit g = 0. In this case there are no internal tri-
angles and the triangulations are in one-to-one correspondence with rooted branched
polymers.5 The double links correspond to the links of the branched polymers and
the root is the marked link, see Fig. 2.15. If g = 0 then (65) reads

w2(z)− zw(z)+ 1 = 0. (66)

The above equation has two solutions. The one that corresponds to the counting
problem has a Taylor expansion in z−1 whose first term is z−1 (recall thatw0,0 = 1).
This solution is given by

w(z) = 1

2

(
z −

√
z2 − 4

)
. (67)

Expanding in powers of 1/z yields

5 One might think that such polymers are not relevant at all for studying real surfaces made of
triangles, not to mention higher piecewise linear manifolds, but in fact the branched-polymer struc-
ture is quite generic. Surfaces or higher-dimensional manifolds can “pinch”, such that two parts
of the triangulation are only connected by a minimal “neck”. If this happens in many places one
can effectively obtain a branched-polymer structure even for higher-dimensional piecewise linear
manifolds. Such minimal necks have been used to measure critical exponents of various ensembles
of piecewise linear manifolds [45, 46] and in four-dimensional Euclidean quantum gravity one
has indeed, as mentioned above, observed a phase where the four-dimensional piecewise linear
manifolds degenerate to branched polymers [40, 41]. The same is the case for bosonic strings with
central charge c > 1 [47].
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Fig. 2.15 Rooted branched polymers created by gluing of a boundary with one marked link

w(z) =
∞∑

l=0

w2l

z2l+1
, (68)

where

w2l = (2l)!
(l + 1)! l! =

1√
π

l−3/2 4l (1+ O(1/ l)) (69)

and w2l is the number of rooted polymers with l links. Note that w2l are the Catalan
numbers, known from many combinatorial problems.

The generating functionw(z) is analytic in the complex plane C with a cut on the
real axis along the interval [−2, 2]. The endpoints of the cut determine the radius of
convergence of w(z) as a function of 1/z or, equivalently, the exponential growth
of w2l .

We can solve the second-order equation (65) and obtain

w(g, z) = 1

2

(
V ′(z)−

√
(V ′(z))2 − 4Q(z)

)
, (70)

where, anticipating generalizations, we have introduced the notation

V ′(z) = z − gz2, Q(z) = 1− gw1(g)− gz. (71)

The sign of the square root is determined as in (67) by the requirement that
w(g, z) = 1/z + O(1/z2) for large z (since w0,0 = 1). If g = 0 then V ′(z)2 −
4Q(z) = z2 − 4. For g > 0, on the other hand, V ′(z)2 − 4Q(z) is a fourth-order
polynomial of the form

V ′(z)2 − 4Q(z) = {z − (2+ 2g)+ O(g2)}
×{z + (2− 2g)+ O(g2)}{gz − (1− 2g2)+ O(g3)}2 (72)

in a neighbourhood of g = 0 since the analytic structure of w(g, z) as a function of
z cannot change discontinuously at g = 0. We can therefore write
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V ′(z)2 − 4Q(z) = (z − c+(g))(z − c−(g))(c2(g)− gz)2, (73)

and, by (70),

w(g, z) = 1

2

(
z − gz2 + (gz − c2)

√
(z − c+)(z − c−)

)
, (74)

where c−, c+ and c2 are functions of g, analytic in a neighbourhood of g = 0. We
label the roots so that c− ≤ c+. The numbers c−, c+ and c2 are uniquely determined
by the requirement that w(g, z) = 1/z+O(1/z2), again originating fromw0,0 = 1.
This requirement gives three equations for the coefficients of z, z0, z−1.

We can generalize the above counting problem to planar complexes made up
of polygons with an arbitrary number j ≤ n of sides, including “one-sided” and
“two-sided” polygons. If we attribute a weight gt j to each j-sided polygon and a
weight z to each boundary link, and adopt the notation

V ′(z) = z − g(t1 + t2z + t3z2 + · · · + tnzn−1), (75)

Q(z) = 1− g
n∑

j=2

t j

j−2∑

l=0

zlw j−2−l(g), w0(g) = 1, (76)

the analogue of (65) is

w(g, z)2 = V ′(z)w(g, z)− Q(z) (77)

or

w(g, z) = g

(

t1
1

z
+ t2 + t3z + · · · + tnzn−2

)

w(g, z)

+1

z
Q(z)+ 1

z
w2(g, z). (78)

The graphical representation of (78) is shown in Fig. 2.16. The subtraction of the
polynomial Q(z) in (77) reflects the fact that the term with a j-sided polygon in Fig.
2.16 must have a boundary of length at least j − 1 for j > 1. The constant term 1
in Q corresponds to the complex consisting of a single vertex.

The solution can be written as

w(g, z) = 1

2

(
V ′(z)− M(z)

√
(z − c+(g))(z − c−(g)

)
, (79)

where M(z) is a polynomial of a degree which is one less than that of V ′(z). Again,
the polynomial M is uniquely determined by the requirement that w(g, z) falls off
at infinity as before, i.e. w(g, z) = 1/z + O(1/z2), and the additional requirement
that w(z) has a single cut. It is sometimes convenient to write (79) as
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+

= + +

+. . .+

Fig. 2.16 Graphical representation of relation (78): the marked link of the boundary belongs either
to an i-gon (associated weight g ti ) or a double link (associated weight 1). It is also a graphical
representation of (114) if instead of weight 1 we associate a weight gs to the marked double link

w(g, z) = 1

2

(

V ′(z)−
n−1∑

k=1

Mk(g)(z − c+)k−1
√
(z − c+(g))(z − c−(g))

)

. (80)

One can show the following: for t1, . . . , tn−1 ≥ 0 and tn > 0 one has

Mk(g) < 0, k < n, (81)

while

M1(g) > 0 (82)

in a neighbourhood of g = 0. When we increase g we first reach a point gc, where
(81) is still satisfied but

M1(gc) = 0. (83)

The coupling constant point gc is thus the point where the analytical structure of
w(g, z) changes from being identical to that of the branched polymer, i.e. it behaves
like (z − c+)1/2(z − c−)1/2, to (z − c+)3/2(z − c−)1/2. The function w(g, z) is an
analytic function around the point g = 0 (w(g = 0, z) is the branched-polymer
partition function discussed above). The radius of convergence is precisely gc. If
we return to the expansion in (64) each term wl(g) has this radius of convergence.
It is the generating function for triangulations with one boundary consisting of l
links. The singularity of wl(g) for g → gc determines the asymptotic behaviour of
the number of such triangulations for a large number of triangles, i.e. the leading
behaviour of the numbers wk,l for large k (see (89) and (90) below).

Let us introduce g j = gt j as new variables. We have

w(gi , z) =
∑

l,k1,...,kn

w{k j },l z−(l+1)
n∏

j=1

g
k j
j , (84)
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where w{k j },l is the number of planar graphs with k j j-sided polygons,
j = 1, . . . , n, and a boundary of length l.

From w(gi , z) we can derive the generating function for planar graphs with two
boundary components by applying the loop insertion operator

d

dV (z)
=

∞∑

j=1

j

z j+1

d

dg j
. (85)

One should think of this operator as acting on formal power series in an arbitrary
number of variables g j . The action of d/dV (z2) on w(gi , z1) has in each term of
the power series the effect of reducing the power k j of a specific coupling constant

g j by one and adding a factor jk j/z
j+1
2 . The geometrical interpretation is that a

j-sided polygon is removed, leaving a marked boundary of length j to which the
new indeterminate z2 is associated. The factor k j is due to the possibility to make the
replacement at any of the k j j-sided polygons present in the planar graph, while j
is the number of possibilities to choose the marked link on the new boundary com-
ponent. The generating function for planar graphs with b boundary components can
therefore be expressed as

w(gi , z1, . . . , zb) = d

dV (zb)
· · · d

dV (z2)
w(gi , z1). (86)

A most remarkable result is the following: for any potential V (gi , z) the two-loop
function w(gi , z1, z2) has the form

w(gi , z1, z2) (87)

= 1

2(z1 − z2)2

(
z1z2 − 1

2 (z1 + z2)(c+ + c−)+ c+c−
√[(z1 − c+)(z1 − c−)][(z2 − c+)(z2 − c−)]

− 1

)

.

Note that there is no explicit reference to the potential V (gi , z), but of course
c+ and c− depend on the potential.

From this formula one can in principle construct the multi-loop function
w(g, z1, . . . , zb) by applying the loop insertion operator b − 2 times. One can use
this formula to find the leading singularity of w(g, z1, . . . , zb) when g → gc, the
critical value of the coupling constant g and the value where M1(g) = 0. One finds

w(g, z1, . . . , zb) ∼
(

1√
gc − g

)2b−5

, (88)

as g → gc. This implies that the generating functionw(g, l1, . . . , lb) for the number
of triangulations, wk,l1,...,lb , constructed from k triangles with b boundary compo-
nents of length l1, . . . , lb, has a singularity as g → gc that is independent of the
length of the boundary components and is given by
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wh(g, l1, . . . , lb) ∼
(

1√
gc − g

)2b−5

. (89)

Finally, we obtain from (89) the asymptotic behaviour of wk,l1,...,lb as k →∞:

wk,l1,...,lb ∼
(

1

gc

)k

k−
5
2+b−1. (90)

We note that these results can be generalized to triangulations which have h handles:

wh(g, l1, . . . , lb) ∼
(

1√
gc − g

)2b+(h−1)5

. (91)

w
(h)
k,l1,...,lb

∼
(

1

gc

)k

k(h−1) 5
2+b−1. (92)

For future applications it is important to note that the position of the leading singu-
larity gc in (91) or, alternatively, the exponential growth of the number of triangles
in (92) is independent of the number of handles or the number of boundaries.

2.4.4 The Continuum Limit

We now show how continuum physics is related to the asymptotic behaviour of
w
(h)
k,l1,...,lb

for k →∞ and l1, . . . , lb →∞ in a specific way, and we use the results
for the generating functions wh(g, z1, . . . , zb) derived in the previous sections to
study this limit.

Before discussing details it is useful to clarify how we expect the continuum wave
functionals W (�, Z1, . . . , Zb) to renormalize. Since the cosmological constants �
and Zi have dimensions 1/a2 and 1/a, respectively, a being the length of the lattice
cut-off, it is natural to expect that they are subject to an additive renormalization

�c = μc

a2
+�, Zi,c = λi,c

a
+ Zi , (93)

where �c and Zi,c are the bare cosmological coupling constants. Since our regular-
ization is represented in terms of discretized two-dimensional manifolds, the bare
cosmological constants should be related to the dimensionless coupling constants
μ, λi by

�c = μ

a2
, Zi,c = λi

a
, (94)

so that (93) can be written as

μ− μc = a2�, λi − λi,c = aZi . (95)
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In the following we assume for simplicity that all the λi,cs are equal to λc. We
identify the constants μc and λc with the critical couplings gc and c+(gc) via the
relations

1

gc
= eμc , c+(gc) = eλc . (96)

Recalling the relation (62) between μ, g and z, λ, it follows that the a → 0 limit of
the functions w(μ, λ1, . . . , λb) is determined by their singular behaviour at gc. The
renormalization (93) has the effect of cancelling the exponential entropy factor for
the triangulations, see (90). Note that since we have the same exponential factors
for all genera, we expect the renormalization of the cosmological constants to be
independent of genus.

We begin by studying the continuum limit for planar surfaces. Then we will dis-
cuss how to take higher genera into account, thereby reintroducing the gravitational
coupling constant G and also discussing its renormalization. This will lead us to the
so-called double-scaling limit.

We are interested in a limit of the discretized models where the length a of the
links goes to zero while the number k of triangles and the lengths li of the boundary
components go to infinity in such a way that

V = ka2 and Li = li a (97)

remain finite. The asymptotic behaviour ofwk,l1,...,lb is given by (90) if the l1, . . . , lb
remain bounded. In this case the leading term is of the form

eμcV/a2
(V/a2)β,

where β is a critical exponent. If the boundary lengths l1, . . . , lb diverge according
to (97), we expect a corresponding factor

eλc Li /a(Li/a)
α,

where α is another critical exponent. This form of the entropy was encountered
for branched polymers in (69). We can therefore express the expected asymptotic
behaviour of the coefficients wk,l1,...,lb as

wk,l1,...,lb ∼ e
μc
a2 V

eλc
∑

i li a−αb−2β W (V, L1, . . . , Lb), (98)

as a → 0, with V and Li defined by (97) fixed. The factor a−αb−2β may be thought
of as a wave-function renormalization.

From (98) we deduce that the scaling behaviour of the discretized wave func-
tional w(μ, λ1, . . . ., λb) is given by



100 J. Ambjørn et al.

w(μ, λ1, . . . , λb) =
∑

k,l1,...,lb

e−μk e−
∑

i λi li wk,l1,...,lb

∼ 1

aαb+2β

∑

k,l1,...,lb

e−(μ−μ0)k e−
∑

i (λi−λ0)li W (V, L1, . . . , Lb)

∼ 1

a(α+1)b+(2β+2)
W (�, Z1, . . . , Zb), (99)

where we have used the relation

W (�, Z1, . . . , Zb) =
∫ ∞

0
dV

b∏

i=1

d Li e−�V−∑i Zi Li W (V, L1, . . . , Lb). (100)

Our next goal is to show that we can take a limit as suggested by (95) and (99).
In terms of the variables g, zi we have

g = gc(1−�a2), zi = zc(1+ aZi ), (101)

where we have introduced the notation

zc = c+(gc) = eλc (102)

for the critical value c+(gc) of z corresponding to the largest allowed value of g.
Inserting (101) and (102) in the expression (87) one obtains

w(g, z1, z2) ∼ a−2W (Λ, Z1, Z2), (103)

where

W (�, Z1, Z2) = 1

2

1

(Z1 − Z2)2

⎛

⎝
1
2 (Z1 + Z2)+

√
�

√
(Z1 +

√
�)(Z2 +

√
�)

− 1

⎞

⎠ . (104)

Similarly one can show, using the loop insertion operator, that when the number of
boundaries is larger than two one has

w(g, z1, . . . , zb) ∼ 1

a7b/2−5

(

− d

d�

)b−3
[

1√
�

b∏

i=1

1

(Zi +
√
�)3/2

]

, (105)

i.e.

W (�, Z1, . . . , Zb) ∼
(

− d

d�

)b−3
[

1√
Λ

b∏

i=1

1

(Zi +
√
�)3/2

]

.
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The continuum expressions for the n-loop functions are all universal and indepen-
dent of the explicit form of the potential V (z) as long as the weights ti ≥ 0. For
the one-loop function the situation is different. As is seen by formally applying
the counting of powers a in (105) to the case b = 1 one obtains the power a3/2,
i.e. a positive power of a. The important point in (105) and (103) is that the power is
negative: in the scaling limit a → 0 these terms will dominate. This is how the for-
mulas should be understood: there are other terms too, but they will be subdominant
when a → 0, i.e. when g → gc and z → zc as dictated by (101) and (102). For the
one-loop function the term associated with a3/2 will vanish when a → 0 and we will
be left with a non-universal term explicitly dependent on the potential V . However,
the term associated with a3/2 is still the leading term which is non-analytic in the
coupling constant g, so if we differentiate a number of times with respect to g and
then take the limit a → 0 it will be dominant. No continuum physics is associated
with the analytic terms since they contain g only to some finite positive power, and
are thus associated with only a finite number of triangles (of which the lattice length
a → 0 when g → gc) if we recall the interpretation of w(g, z) as the generating
function of the number of triangulations. Inserting (101) and (102) in the expression
(80) one obtains

w(g, z) = 1

2
(V ′(z)+ a3/2W (Λ, Z)+ O(a5/2)), (106)

where

W (�, Z) =
(

Z − 1

2

√
�

)√

Z +√�. (107)

This ends the calculation of the loop – loop correlation functions for manifolds
with topology S2

b , the sphere with b boundaries. The results agree with continuum
calculations using quantum Liouville theory and it follows that one can obtain a
continuum, diffeomorphism-invariant theory starting out with a suitable lattice the-
ory, where the lattice link length acts as a diffeomorphism-invariant UV cut-off and
simply taking the lattice spacing a → 0, while renormalizing the bare couplings in
a standard way, namely, the cosmological and the boundary cosmological coupling
constants.

Let us end this description of Euclidean quantum gravity by mentioning the cor-
responding results for higher-genus surfaces. The generalization of (105) is

wh(g, z1, . . . , zb) ∼ 1

a7b/2+(5h−5)
Wh(�, Z1, . . . , Zb). (108)

In particular, taking b = 0 leads to the expression

Zh(g) ∼ τh

(a2Λ)5(h−1)/2
, (109)
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for the singular part of the partition function, where the constants τh can in principle
be (and have been) computed.

In (109) we have actually completed the task of calculating (47). We can now
reintroduce the gravitational coupling constant G and try to calculate the complete
partition function

Z(G,�) =
∞∑

h=0

τh e
2−2h

G a5(1−h)�
5(1−h)

2 . (110)

The factor a−5 present for each genus can be absorbed in a renormalization of the
gravitational coupling constant

1

Gren
= 1

G(a)
− 5

4
log

�

a2
, (111)

where Gren denotes the renormalized gravitational coupling. A continuum limit of
(110) only exists in the limit a → 0 if we allow G to be a function of the lattice
spacing a determined by (111) for fixed Gren and �. The continuum limit is then
given by

Z(G,�) =
∞∑

h=0

τh

(
e−1/G�−

5
4

)2h−2
, (112)

and depends only on the variable x = �e4/(5G). To actually calculate Z(G,�) we
have to perform the summation over the number of handles h in (112), an interesting
task which we will not address here. Rather, we will focus on (111), since we can
use this equation to calculate the β-function for G using

β(G) ≡ −a
dG(a)

da

∣
∣
∣
∣
Λ,Gren

= − 52G2. (113)

Two-dimensional Euclidean quantum gravity is asymptotically free as already men-
tioned in the introduction.

2.5 Two-Dimensional Lorentzian Quantum Gravity

As already mentioned above, Euclidean quantum gravity does not really work in
more than two dimensions (in the sense of leading to a continuum theory of higher-
dimensional geometry). By contrast, the formalism called CDT, based on causal
dynamical triangulations, seems to lead to very interesting results. It is based on the
idea that there exists a globally defined (proper-)time variable, which can be used to
describe the evolution of the universe. In addition, one assumes that the topology of
space is unchanged with respect to the foliation defined by this global time.
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These requirements are definitely not satisfied in two-dimensional Euclidean
quantum gravity. In principle one can also “superimpose” a proper time on Euclidean
quantum universes and follow their evolution as first described in the seminal work
by Kawai and collaborators. Starting out with a spatial universe of topology S1, it
will immediately split up into many disconnected spatial, one-dimensional universes
as a function of proper time. It turns out that the structure is fractal, in the sense that
an infinity of spatial universes, most of them of infinitesimal spatial extension, will
be created as a function of proper time.

Since two-dimensional Euclidean quantum gravity is explicitly solvable, even on
a lattice before the continuum limit is taken, as described above, it is of interest to
understand the transition from the Euclidean lattice gravity theory to the CDT lattice
gravity theory. Clearly one has to suppress the splitting of a spatial universe into two
or more disconnected spatial universes if one wants to move from the spacetime
configurations which characterize the Euclidean path integral to the configurations
present in the CDT path integral. It makes sense to talk about the splitting of a spatial
universe into two if the universe has Lorentzian signature, since such a splitting
(in the simplest case) is associated with an isolated point where the metric and
its associated light-cone structure are degenerate, which has a diffeomorphism-
invariant meaning. This was the motivation for imposing such a constraint in the
original CDT model. By working in Lorentzian signature initially, and only later
rotating to Euclidean signature, this constraint survives also in (the Euclidean ver-
sion of) CDT. Going back to Fig. 2.16, this suggests that one should associate a
factor gs instead of a factor 1 with the graph with the double line. Geometrically this
figure can be viewed as a process where a triangle is removed at a marked link (and
a new link is marked at the new boundary), except in the case where the marked
link does not belong to a triangle, but is part of a double link, in which case the
double link is removed and the triangulation is separated into two. If one thinks of
the recursion process in Fig. 2.16 as a “peeling away” of the triangulation as proper
time advances, the presence of a double link represents the “acausal” splitting point
beyond which the triangulation splits into two discs with two separate boundary
components
(i.e. two separate one-dimensional spatial universes). The interpretation of this pro-
cess, advocated in [48, 49], is that it represents a split of the spatial boundary with
respect to (Euclidean) proper time. Associating an explicit weight gs with this sit-
uation and letting gs → 0 suppress this process compared to processes where we
simply remove an i-gon from the triangulation. Nevertheless, we will see below that
there exists an interesting scaling of gs with a such that the process survives when
we let a → 0, but with a result different from the Euclidean quantum gravity theory.
We call this new limit generalized CDT [26–31].

Let us introduce the new coupling constant gs in (78). The equation is then
changed to

w(z) = g

(
n∑

i=1

ti z
i−2

)

w(z)+ gs

z
w2(z)+ 1

z
Q(z, g). (114)
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In the analysis it will be convenient to keep the coupling constant t1 > 0,
although we are usually not so interested in situations with one-gons. It can be moti-
vated as follows. Consider a “triangulation” consisting of T1 one-gons, T2 two-gons,
T3 triangles, T4 squares, etc. up to Tn n-gons. The total coupling-constant factor
associated with the triangulation is given by

gT1+···+Tn g−T1/2+T3/2+···+(n/2−1)Tn
s . (115)

We observe that in the limit gs → 0, a necessary condition for obtaining a finite
critical value gc(gs) is T1 > 0. We should emphasize that the analysis described
below can be carried out also if we suppress the appearance of any one-gons (by
setting t1 = 0) in our triangulations, but it is slightly more cumbersome since then
gc(gs)→∞ as gs → 0, requiring further rescalings.

For simplicity we will consider the simplest nontrivial model with potential6

V (z) = 1

gs

(

−gz + 1

2
z2 − g

3
z3
)

(116)

and analyse its behaviour in the limit gs → 0. The disk amplitude (79) now has the
form

w(z) = 1

2gs

(
−g + z − gz2 + g(z − c2)

√
(z − c+)(z − c−)

)
, (117)

and the constants c2, c+ and c− are determined by the requirement thatw(z)→ 1/z
for z → ∞. Compared with the analysis of the previous section, the algebraic
condition fixing the coefficient of 1/z to be unity will now enforce a completely
different scaling behaviour as gs → 0.

For the time being, we will think of gs as small and fixed, and perform the scaling
analysis for gc(gs). As already mentioned above, the critical point gc is determined
by the additional requirement M1 = 0 in the representation (80), i.e. that c2(gc) =
c+(gc), which presently leads to the equation

(
1− 4g2

c

)3/2 = 12
√

3 g2
c gs . (118)

Anticipating that we will be interested in the limit gs → 0, we write the critical
points as

gc(gs) = 1

2
(1−�gc(gs)), �gc(gs) = 3

2
g2/3

s + O
(

g4/3
s

)
, (119)

and

6 The rationale for calling V a “potential” will become clear below.
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zc(gs) = c+(gc, gs) = 1

2gc(gs)

⎛

⎝1+
√

1− 4gc(gs)2

3

⎞

⎠ = 1+ g1/3
s + O

(
g2/3

s

)
,

(120)
while the size of the cut in (116), c+(gc)− c−(gc), behaves as

c+(gc)− c−(gc) = 4g1/3
s + 0

(
g2/3

s

)
. (121)

Thus the cut shrinks to zero as gs → 0.
Expanding around the critical point given by (119), (120) a nontrivial limit can

be obtained if we insist that in the limit a → 0, gs scales according to

gs = Gsa3, (122)

where a is the lattice cut-off introduced earlier. With this scaling the size of the
cut scales to zero as 4 a G1/3

s . In addition
√
(z − c+)(z − c−) ∝ a if we introduce

the standard identification (101): z = c+(gc) + a Z . This scaling is different from
the conventional scaling in Euclidean quantum gravity where

√
(z − c+)(z − c−) ∝

a1/2 since in that case (z − c+) scales while (z − c−) does not scale.
We can now write

g = gc(gs)(1− a2�) = ḡ(1− a2�cdt + O(a4)), (123)

with the identifications

�cdt ≡ �+ 3

2
G2/3

s , ḡ = 1

2
, (124)

as well as

z = zc + aZ = z̄ + aZcdt + O(a2), (125)

with the identifications

Zcdt ≡ Z + G1/3
s , z̄ = 1. (126)

Using these definitions one computes in the limit a → 0 that

w(z) = 1

a

�cdt − 1
2 Z2

cdt + 1
2 (Zcdt − H)

√
(Zcdt + H)2 − 4Gs

H

2Gs
. (127)

In (127), the constant H (or rather, its rescaled version h = H/
√

2Λcdt) satisfies the
third-order equation
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h3 − h + 2Gs

(2Λcdt)3/2
= 0, (128)

which follows from the consistency equations for the constants c2, c+ and c− in the
limit a → 0. We thus define

w(z) = 1

a
Wcdt(Zcdt,�cdt,Gs) ≡ 1

a
W (Z ,�,Gs) (129)

in terms of the continuum Hartle – Hawking wave functions Wcdt(Zcdt,�cdt,Gs)

and W (Z ,�,Gs).
Notice that while the cut of

√
(z − c+)(z − c−) goes to zero as the lattice spacing

a, it nevertheless survives in the scaling limit when expressed in terms of renormal-
ized “continuum” variables, as is clear from (127). Only in the limit Gs → 0 it
disappears and we have

w(z) = 1

a
Wcdt(Zcdt,Λcdt,Gs) −→

Gs→0

1

a

1

Zcdt +√2Λcdt
, (130)

which is the original CDT disk amplitude introduced in [25].
Let us make some comments:

(1)We have dealt here directly with a “generalized” CDT model which in the
limit Gs → 0 reproduces the “original” CDT disk amplitude (130). The original
two-dimensional CDT model was defined according to the principles already out-
lined in our discussion of four-dimensional quantum gravity. Thus the interpolation
between two spatial slices separated by one lattice spacing of proper time is shown
in Fig. 2.17. This figure is the two-dimensional analogue of Fig. 2.4. The combina-
torial problem of summing over all such surfaces connecting two spatial boundaries
separated by a certain number of time steps can be solved [25], and the continuum
limit can be taken. The corresponding continuum “propagator” is found to be

G(X,Y ; T ) = 4�cdte−2
√
�cdt T

(√
�cdt + X

)+ e−2
√
�cdt T

(√
�cdt − X

) (131)

× 1
(√
�cdt + X

) (√
�cdt + Y

)− e−2
√
�cdt T

(√
�cdt − X

) (√
�cdt − Y

) ,

where X,Y are the boundary cosmological constants associated with the two bound-
aries of the cylinder and T is the proper time separating the two boundaries. The
propagator has an asymmetry between X and Y because we have marked a point (a
vertex in the discretized model). By an inverse Laplace transform one can calculate
the propagator G(X, L; T ) as a function of the length of the unmarked boundary. In
particular, we have
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Fig. 2.17 The propagation of a spatial slice from time t to time t + 1. The end of the strip should
be joined to form a band with topology S1 × [0, 1]

G(X, L = 0; T ) =
∫ i∞

−i∞
dY G(X,Y ; T ), (132)

and we define the CDT disk amplitude as

W (0)(X) =
∫ ∞

0
dT G(X, L = 0; T ), (133)

and it is given by the expression on the far right in (130).
The generalized CDT model allows branching of the spatial universes as a func-

tion of proper time T , the branching being controlled by the coupling constant Gs .
This results in the graphical equation for the generalized CDT disk amplitude shown
in Fig. 2.18. The corresponding equation is

W (X) = W (0)(X)+ Gs

∫ ∞

0
dT
∫ ∞

0
d L1d L2 (134)

(L1 + L2)G(X, L1 + L2; T )W (L1)W (L2),

where W (L) is the disk amplitude corresponding to boundary length L . It can be
solved [26–31] for W (X) and the solution is Wcdt(X,�cdt,Gs) found above.

(2)Using (128) we can expand w(z) into a power series in Gs/(2�cdt)
3/2 whose

radius of convergence is 1/3
√

3. For fixed values of �cdt, this value corresponds to
the largest value of Gs where (128) has a positive solution for h. The existence of

= +

Fig. 2.18 Graphical illustration of (134). Shaded parts represent the generalized CDT disk ampli-
tude, unshaded parts the original CDT disk amplitude and the original CDT propagator (131)
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such a bound on Gs for fixed �cdt was already observed in [26–31]. This bound
can be re-expressed more transparently in the present Euclidean context, where it
is more natural to keep the “Euclidean” cosmological constant � fixed, rather than
�cdt. We have

Gs

(2�cdt)3/2
≤ 1

3
√

3
⇒ 3G2/3

s

2�+ 3G2/3
s

≤ 1, (135)

which for fixed � > 0 is obviously satisfied for all positive Gs . In order to see that
the usual Euclidean two-dimensional quantum gravity (characterized by some finite
value for gs) can be re-derived from the disk amplitude (127), let us expand (127)
for large Gs . The square root part becomes

a−1 G−5/6
s

(
Z −√2�/3

)√
Z + 2

√
2�/3, (136)

which coincides with the generic expression a3/2W (Z ,�) in Euclidean two-
dimensional quantum gravity (c.f. (106) and (107)) if we take Gs to infinity as gs/a3

(and take into account a trivial rescaling of the cosmological constant). However, if
we reintroduce the same scaling in the V ′(z)-part of w(z), it does not scale with a
but simply goes to a constant. This term would dominate w(z) in the limit a → 0 if
one did not remove it by hand, as is usually done in the Euclidean model.

(3)Why does the potential V ′(z) (and therefore the entire disk amplitude w(z))
scale (like 1/a) in the new continuum limit with gs = Gsa3, a → 0, contrary to
the situation in ordinary Euclidean quantum gravity? This is most clearly seen by
looking again at the definitions (123) and (125). Because of the vanishing

V ′(z̄, ḡ) = 0, V ′′(z̄, ḡ) = 0 (137)

in the point (z̄, ḡ) = (1, 1/2), expanding around (z̄, ḡ) according to (123), (125)
leads automatically to a potential which is of order a2 when expressed in terms of
the renormalized constants (Zcdt,�cdt), precisely like the square-root term when
expressed in terms of (Zcdt,�cdt).

The point (z̄, ḡ) differs from the critical point (zc(gs), gc(gs)), as long as gs �=
0. In fact, both 1/z̄ and ḡ lie beyond the radii of convergence of 1/z and g, which
are precisely 1/zc(gs) and gc(gs). However, since the differences are of order a and
a2, respectively, they simply amount to shifts in the renormalized variables, as made
explicit in (124) and (126). Therefore, re-expressing W (Z ,�,Gs) in (129) in terms
of the variables Zcdt and Λcdt simply leads to the expression Wcdt(Zcdt,�cdt,Gs),
first derived in [26–31]. Similarly, any geometric quantities defined with respect to
Z and � can equally well be expressed in terms of Zcdt and �cdt. For instance,
the average continuum length of the boundary and the average continuum area of a
triangulation are given by
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〈L〉 = ∂ ln W (Z ,�,Gs)

∂Z
= ∂ ln Wcdt(Zcdt,�cdt,Gs)

∂Zcdt
, (138)

〈A〉 = ∂ ln W (Z ,�,Gs)

∂�
= ∂ ln Wcdt(Zcdt,�cdt,Gs)

∂�cdt
. (139)

In the limit of Gs → 0, the variables (Z ,�) and (Zcdt,�cdt) become identical and
the disk amplitude becomes the original CDT amplitude (Zcdt+√2�cdt)

−1 alluded
to in (130).

2.6 Matrix Model Representation

Above we have solved the two-dimensional gravity models by purely combinatorial
techniques which emphasize the geometric interpretation: the quantum theory as a
sum over geometries. The use of so-called matrix models allows one to perform the
summation over the piecewise linear geometries in a relatively simple way. Surpris-
ingly, it turns out that the scaling limit of the generalized CDT model has itself a
matrix model representation. We will here describe how matrix models can be used
instead of the combinatorial methods and how one is led to the CDT matrix model.

Let φ be a Hermitian N × N matrix with matrix elements φαβ and consider for
k = 0, 1, 2, . . . the integral

∫
dφ e−

1
2 trφ2 1

k!
(

1

3
trφ3

)k

, (140)

where

dφ =
∏

α≤β
d Reφαβ

∏

α<β

d Imφαβ. (141)

We can regard φ as a zero-dimensional matrix-valued field so the integral can be
evaluated in the standard way by doing all possible Wick contractions of (trφ3)k

and using

〈
φαβφα′β ′

〉 = C
∫

dφ e−
1
2

∑
αβ |φαβ |2φαβφα′β ′ = δαβ ′δβα′ , (142)

where C is a normalization factor. The evaluation of the expression (140) can be
interpreted graphically by associating to each factor trφ3 an oriented triangle and to
each term φαβφβγ φγα contributing to the trace a labelling of its vertices by α, β, γ
in cyclic order, such that the matrix element φαβ is associated with the oriented
link whose endpoints are labelled by α and β in accordance with the orientation.
Equation (142) can then be interpreted as a gluing of the link labelled by (αβ) to an
oppositely oriented copy of the same link, see Fig. 2.19.
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Fig. 2.19 The matrix representation of triangles which converts the gluing along links to a Wick
contraction

In this way the integral (140) can be represented as a sum over closed, possibly
disconnected, triangulations with k triangles. Triangulations with an arbitrary genus
arise in this representation. By summing over k in (140) it follows by standard
arguments that the (formal) logarithm of the corresponding integral is represented
as a sum over all closed and connected triangulations. The contribution of a given
triangulation can be determined by observing that in the process of gluing we pick
up a factor of N whenever a vertex becomes an internal vertex in the triangulation.
Thus, the weight of a triangulation T is simply

N Nv(T ).

If we make the substitution

trφ3 → g√
N

trφ3, (143)

the weight of T is replaced by

gk N Nv(T )−k/2 = gk Nχ(T ),

where χ(T ) is the Euler characteristic of T . Note also that the factor (k!)−1 in (140)
is cancelled in the sum over different triangulations because of the k! possible per-
mutations of the triangles, except for triangulations with non-trivial automorphisms,
in which case the symmetry factor C−1

T survives. With the identifications

1

G
= log N , μ = − log g (144)

we conclude that

Z(μ,G) = log
Z(g, N )

Z(0, N )
, (145)

where Z(μ, κ) is defined by (59), (60) and
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Z(g, N ) =
∫

dφ exp

(

−1

2
trφ2 + g

3
√

N
trφ3

)

. (146)

The integral (146) is of course divergent and should just be regarded as a shorthand
for the formal power series in the coupling constant g.

It is straightforward to generalize the preceding arguments to the case of general
unrestricted triangulations, where arbitrary polygons are allowed. Instead of one
coupling constant g we have a set g1, g2, g3, . . ., but we will still use the notation
g or gi . In this case (146) is replaced by

Z(gi , N ) =
∫

dφ e−N tr V (φ), (147)

where the potential V , which depends on all the coupling constants gi , is given by

V (φ) = 1

2
φ2 −

∞∑

j=1

g j

j
φ j . (148)

In (148) we have scaled φ→√
Nφ for later convenience. It is not difficult to check

that the obvious generalization of (145) holds and the weight of a triangulation T is
given by

C−1
T Nχ(T )

∏

j≥1

g
N j (T )
j ,

where N j (T ) is the number of j-gons in T . Equation (147) is of course a representa-
tion of a formal power series which is obtained by expanding the exponential of the
non-quadratic terms as a power series in the coupling constants and then performing
the Gaussian integrations term by term.

Differentiating log Z(gi , N ) with respect to the coupling constants g j , one
obtains the expectation values of products of traces of powers of φ. These expecta-
tion values have a straightforward interpretation in terms of triangulations. Denoting
the expectation with respect to the measure

Z(gi , N )−1e−N tr V (φ) dφ

by 〈·〉 we see, for example, that
〈
N−1trφn

〉
is given by the sum over all connected

triangulations of arbitrary genus whose boundary is an n-gon with one marked link.
Similarly,

1

N 2

〈
trφn trφm 〉− 1

N 2

〈
trφn 〉 〈trφm 〉 (149)

is given by the sum over all connected triangulations whose boundary consists of
two components with n and m links. More generally, the relation to the combinatorial
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problem is given by

w(gi , z1, . . . , zb) = N b−2
∑

k1,...,kb

〈
trφk1 · · · trφkb

〉
conn

zk1+1
1 · · · zkb+1

b

, (150)

where the subscript conn indicates the connected part of the expectation 〈·〉. One
can rewrite (150) as

w(gi , z1, . . . , zb) = N b−2
〈

tr
1

z1 − φ · · · tr
1

zb − φ
〉

conn
. (151)

The one-loop function w(gi , z) is related to the density ρ(λ) of eigenvalues of φ
defined by

ρ(λ) =
〈

N∑

i=1

δ(λ− λi )

〉

, (152)

where λi , i = 1, . . . , N , denote the N eigenvalues of the matrix φ. With this defini-
tion we have

1

N

〈
trφn 〉 =

∫ ∞

−∞
dλ ρ(λ)λn, n ≥ 0. (153)

Hence,

w(gi , z) =
∫ ∞

−∞
dλ

ρ(λ)

z − λ. (154)

In the limit N →∞ the support of ρ is confined to a finite interval [c−, c+] on the
real axis. In this case w(z) will be an analytic function in the complex plane, except
for a cut along the interval [c−, c+]. Note that ρ(λ) is determined from w(z) by

2π iρ(λ) = lim
ε→0

(w(λ− iε)− w(λ+ iε)) . (155)

2.6.1 The Loop Equations

A standard method in quantum field theory is to derive identities by a change of
variables in functional integrals. Here we apply this method to the matrix mod-
els and explore the invariance of the matrix integral (147) under infinitesimal field
redefinitions of the form

φ→ φ + εφn, (156)



2 Quantum Gravity as Sum over Spacetimes 113

where ε is an infinitesimal parameter. One can show that to first order in ε the
measure dφ defined by (141) transforms as

dφ→ dφ

(

1+ ε
n∑

k=0

trφk trφn−k

)

. (157)

The action transforms according to

tr V (φ)→ tr V (φ)+ εtrφn V ′(φ) (158)

to first order in ε. We can use these formulas to study the transformation of the
measure under more general field redefinitions of the form

φ→ φ + ε
∞∑

k=0

φk

zk+1
= φ + ε 1

z − φ . (159)

This field redefinition only makes sense if z is on the real axis outside the support ρ.
In the limit N → ∞ this is possible for z outside the interval [c−, c+]. Under
the field redefinitions (159) the transformations of the measure and the action are
given by

dφ→ dφ

(

1+ ε tr
1

z − φ tr
1

z − φ
)

, (160)

tr V (φ)→ tr V (φ)+ ε tr

(
1

z − φ V ′(φ)
)

. (161)

The integral (147) is of course invariant under this change of the integration vari-
ables. By use of (160) and (161) we obtain the identity

∫
dφ

{(

tr
1

z − φ
)2

− N tr

(
1

z − φ V ′(φ)
)}

e−N tr V (φ) = 0. (162)

The contribution to the integral coming from the first term in {·} in (162) is, by
definition,

N 2w2(z)+ w(z, z). (163)

The contribution from the second term inside {·} in (162) can be written as an inte-
gral over the one-loop function as follows:

1

N

〈

tr
V ′(φ)
z − φ

〉

=
∫

dλ ρ(λ)
V ′(λ)
z − λ =

∮

C

dω

2π i

V ′(ω)
z − ω w(ω), (164)
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where the second equality follows from (155). The curve C encloses the support of
ρ but not z. It is essential for the existence of C that ρ have compact support. We
can then write (162) in the form

∮

C

dω

2π i

V ′(ω)
z − ω w(ω) = w

2(z)+ 1

N 2
w(z, z), (165)

where z is outside the interval [c−, c+] on the real axis. Since both sides of (165)
can be analytically continued to C \ [c−, c+] the equation holds in this domain.

We recognize (165) as the loop equation already derived by combinatorial means,
except that we here have an additional term involving w(z, z) and with a coefficient
1/N 2. In fact, (165) is the starting point for a 1/N 2-expansion, i.e. a higher-genus
expansion. To leading order in 1/N 2 we have (as already derived)

w(z) = w0(z) = 1

2

(
V ′(z)− M(z)

√
(z − c+)(z − c−)

)
(166)

and from (155) the corresponding eigenvalue density is

ρ(λ) = 1

2π
M(λ)

√
(c+ − λ)(λ− c−). (167)

Let us now discuss how the new scaling limit is described in the matrix for-
malism. Hermitian matrix models are often analysed in terms of the dynamics of
their eigenvalues. Since the action in (147) is invariant under the transformation
φ → UφU †, with U ∈ U (N ) a unitary N × N -matrix, one can integrate out the
“angular” degrees of freedom. What is left is an integration over the eigenvalues λi

of φ only,

Z(g) ∝
∫ N∏

i=1

dλi e−N
∑

j V (λ j )
∏

k<l

|λk − λl |2, (168)

where the last factor, the Vandermonde determinant, comes from integrating over
the angular variables and where

tr V (φ) =
N∑

i=1

V (λi ). (169)

Naively one might expect that the large-N limit is dominated by a saddle-point with
V ′(λ) = 0. However, this is not the case since the Vandermonde determinant in
(168) contributes in the large-N limit. The cut which appears in w(z) is a direct
result of the presence of the Vandermonde determinant. In this way one can say that
the dynamics of the eigenvalues is “non-classical”, deviating from V ′(λ) = 0, the
size of the cut being a measure of this non-classicality. To get to the generalized CDT
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model we introduced a new coupling constant gs in the matrix model by substituting

V (φ)→ 1

gs
V (φ) (170)

and considered the limit gs → 0. As we have seen the coupling constant gs con-
trols and reduces the size of the cut and thus brings the system closer to a “classi-
cal” behaviour. Thus the quantum fluctuations are reduced in the generalized CDT
models.

Let us now consider the matrix potential (116), which formed the starting point of
our new scaling analysis. We are still free to perform a change of variables. Inspired
by relations (123),(124),(125),(126), let us transform to new “CDT” variables

φ→ z̄ Î + aΦ + O(a2), (171)

at the same time re-expressing g as

g = ḡ(1− a2�cdt + O(a4)), (172)

following (123). Substituting the variable change into the matrix potential, and dis-
carding a φ-independent constant term, one obtains

V (φ) = V̄ (Φ) ≡ �cdtΦ − 1
6Φ

3

2Gs
(173)

in the limit a → 0, from which it follows that

Z(g, gs) = aN 2
Z(�cdt,Gs), Z(�cdt,Gs) =

∫
dΦ e−N tr V̄ (Φ). (174)

The disk amplitude for the potential V̄ (Φ) is precisely W (Zcdt,Λcdt,Gs), and since
by definition

1

z − φ =
1

a

1

Zcdt −Φ , (175)

the first equal sign in (129) follows straightforwardly from the simple algebraic
equation (173). We conclude that the continuum generalized CDT theory is described
by the matrix model with potential V̄ (Φ).

The conclusion is that to leading order in N , the combinatorial method which
works with a regularized lattice theory with a geometric interpretation and an
explicit cut-off a has a matrix model representation, and even in the continuum limit
where a → 0 there exists a matrix model representation of the theory. Once this is
proved, one can actually “derive” a number of the results known for the generalized
CDT model from the matrix model by the formal manipulations of (173),(174),
where a appears merely as a parameter without any obvious geometric interpreta-
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tion as a cut-off. Also, once the matrix model equivalence is established, it is clear
that one has automatically a higher-genus expansion available. This higher-genus
expansion was first established working with the combinatorial, generalized CDT
theory, and based on purely geometric arguments of splitting and joining of space
as a function of proper time, as we (partly) described above. Such a theory could be
turned into a kind of string field theory, imitating the work of Kawai and collabora-
tors on Euclidean quantum gravity [53–59]. Like in the Euclidean case of Kawai et
al., the formulation of the CDT string field theory used entirely a continuum notation
(i.e. to cut-off a was already taken to zero). However, contrary to the situation for
the Euclidean string field theory, we now have a matrix model representation even in
the continuum, and many of the string field theory results derived in [26–31] follow
easily from the loop equations (165) for the potential (173).

2.6.2 Summation over All Genera in the CDT Matrix Model

One remarkable application of the CDT matrix model representation is that we can
find the Hartle – Hawking wave function summed over all genera.

In [26–31] the matrix model given by (173) and (174) was related to the CDT
Dyson – Schwinger equations by (i) introducing into the latter an expansion param-
eter α, which kept track of the genus of the two-dimensional spacetime, and (ii)
identifying this parameter with 1/N 2, where N is the size of the matrix in the
matrix integral. The 1/N -expansion of our matrix model therefore plays a role
similar to the 1/N -expansion originally introduced by ’t Hooft: it reorganizes an
asymptotic expansion in a coupling constant t (t = Gs/(

√
�cdt)

3/2 in our case) into
convergent sub-summations in which the kth summand appears with a coefficient
N−2k . In QCD applications, the physically relevant value is N = 3, to which the
leading-order terms in the large N -expansion can under favourable circumstances
give a reasonable approximation.

As we will see, for the purposes of solving our string field-theoretic model non-
perturbatively, an additional expansion in inverse powers of N (and thus an identi-
fication of the contributions at each particular genus) is neither essential nor does
it provide any new insights. This means that we will consider the entire sum over
topologies “in one go”, which simply amounts to setting N = 1, upon which the
matrix integral (174) reduces to the ordinary integral7

7 Starting from a matrix integral for N × N -matrices like (174), performing a formal expansion
in (matrix) powers commutes with setting N = 1, as follows from the following property of
expectation values of products of traces, which holds for any n = 1, 2, 3, . . . and any set of
non-negative integers {nk}, k = 1, . . . , 2n, such that

∑2n
k=1 nk = 2n. For any particular choice of

such numbers, consider

〈
2n∏

k=1

( 1

N
tr Mnk

)
〉

≡
∫

d M e− 1
2 tr M2 ∏2n

k=1

(
tr Mnk /N

)

∫
d M e− 1

2 tr M2
=

n∑

m=−n

ωm N m , (176)
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Z(Gs,Λcdt) =
∫

dm exp

[

− 1

2Gs

(

Λcdtm − 1

6
m3
)]

, (178)

while the disk amplitude can be written as

Wcdt(X) = 1

Z(Gs,�cdt)

∫
dm

exp
[
− 1

2Gs

(
�cdtm − 1

6 m3
)]

X − m
. (179)

These integrals should be understood as formal power series in the dimensionless
variable t = Gs/(

√
�cdt)

3/2 appearing in (128). Any choice of an integration con-
tour which makes the integral well defined and reproduces the formal power series is
a potential non-perturbative definition. However, different contours might produce
different non-perturbative contributions (i.e. which cannot be expanded in powers
of t), and there may even be non-perturbative contributions which are not captured
by any choice of integration contour. As usual in such situations, additional physics
input is needed to fix these contributions.

To illustrate the point, let us start by evaluating the partition function given in
(178). We have to decide on an integration path in the complex plane in order to
define the integral. One possibility is to take a path along the negative axis and then
along either the positive or the negative imaginary axis. The corresponding integrals
are

Z(g, λ) = √�cdt t1/3 F±(t−2/3), F±(t−2/3) = 2π e±iπ/6Ai(t−2/3e±2π i/3),(180)

where Ai denotes the Airy function. Both F± have the same asymptotic expansion
in t , with positive coefficients. Had we chosen the integration path entirely along
the imaginary axis we would have obtained (2π i times) Ai(t−2/3), but this has an
asymptotic expansion in t with coefficients of oscillating sign, which is at odds
with its explicit power expansion in t . We have (using the standard notation of Airy
functions)

where the last equation defines the numbers ωm as coefficients in the power expansion in N of the
expectation value. Now, we have that

n∑

m=−n

ωm = (2n − 1)!! (177)

independent of the choice of partition {nk}. The number (2n − 1)!! simply counts the “Wick con-
tractions” of x2n which we could have obtained directly as the expectation value 〈x2n〉, evaluated
with a one-dimensional Gaussian measure. In the model at hand, we will calculate sums of the
form

∑n
m=−n ωm directly, since we are summing over all genera without introducing an additional

coupling constant for the genus expansion. In other words, the dimensionless coupling constant t
in this case already contains the information about the splitting and joining of the surfaces, and
the coefficient of tk contains contributions from two-dimensional geometries whose genus ranges
between 0 and [k/2]. We cannot disentangle these contributions further unless we introduce N as
an extra parameter.
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F±(z) = π (Bi(z)± iAi(z)) , (181)

from which one deduces immediately that the functions F±(t−2/3) are not real.

However, since Bi(t−2/3) grows like e
2
3t for small t while Ai(t−2/3) falls off like

e− 2
3t , their imaginary parts are exponentially small in 1/t compared to the real part,

and therefore do not contribute to the asymptotic expansion in t . An obvious way to
define a partition function which is real and shares the same asymptotic expansion
is by symmetrization,

1

2
(F+ + F−) ≡ πBi. (182)

The situation parallels the one encountered in the double-scaling limit of the “old”
matrix model but is less complicated.

Presently, let us collectively denote by F(z) any of the functions F±(z) or
πBi(z), leading to the tentative identification

Z(Gs,�cdt) =
√
�cdt t1/3 F

(
t−2/3

)
, F ′′(z) = zF(z), (183)

where we have included the differential equation satisfied by the Airy functions for
later reference. Assuming X > 0, we can write

1

X − m
=
∫ ∞

0
d L exp [− (X − m) L] . (184)

We can use this identity in (179) to obtain the integral representation

Wcdt(X) =
∫ ∞

0
d L e−X L

F
(

t−2/3 − t1/3√�cdtL
)

F
(

t−2/3
) . (185)

From the explicit expression of the Laplace transform we can now read off the Har-
tle – Hawking amplitude as function of the boundary length L:

Wcdt(L) = F(t−2/3 − t1/3√�cdt L)

F(t−2/3)
. (186)

Before turning to a discussion of the non-perturbative expression for Wcdt(L) we
have just derived, let us remark that the asymptotic expansion in t of course agrees
with that obtained by recursively solving the CDT Dyson – Schwinger equations.
Using the standard asymptotic expansion of the Airy function one obtains

Wcdt(L) = e−
√
�cdt L et h(t,

√
�cdt L)

∑∞
k=0 ck tk (1− t

√
�cdt L)− 3

2 k− 1
4

∑∞
k=0 ck tk

, (187)
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where the coefficients ck are given by c0 = 1, ck = 1
k!
(

3
4

)k (
1
6

)

k

(
5
6

)

k
, k > 0. In

(187), we have rearranged the exponential factors to exhibit the exponential fall-off
in the length variable L , multiplied by a term containing the function

h
(

t,
√
�cdt L

)
= 2

3t2

[(
1− t

√
�cdt L

)3/2 − 1+ 3

2
t
√
�cdt L

]

, (188)

which has an expansion in positive powers of t .
Wcdt(L) has the interpretation of the wave function of the spatial universe accord-

ing to the hypothesis of Hartle and Hawking. L ∈ [0,∞] and the probability of
finding a spatial universe with length between L and L + dL is

P(L) = |Wcdt(L)|2
L

, (189)

since the integration measure is d L/L . Thus the probability is not normalizable in a
conventional way and peaked at L = 0 since Wcdt(L = 0) = 1. However, for each
term in the asymptotic expansion (187) we obtain a finite value 〈L〉 ∼ 1/

√
�cdt as

one would naturally expect. Since termination of the series in (187) at a finite k also
implies restricting the two-dimensional spacetime to have a finite genus we can say
that as long as we restrict spacetime to have finite genus we have 〈L〉 ∼ 1/

√
�cdt.

However, if we allow spacetimes of arbitrarily large genus to appear, i.e. if topol-
ogy fluctuations are unconstrained (that means at most suppressed by a coupling
constant, but no upper limit on the genus imposed by hand), a remarkable change
appears: 〈L〉 = ∞ because the full non-perturbative Wcdt(L) does not fall off like
e−
√
Λcdt L but only as L−1/4 (Note that Wcdt(L) is still integrable at infinity since

the integration measure is d L/L). This dramatic change in large L behaviour (W (L)
also becomes oscillatory for large L , despite the fact that each term in the asymptotic
expansion (187) is positive) is clearly to be attributed to surfaces of arbitrarily large
genus, i.e. it is a genuinely non-perturbative result.

2.7 Discussion and Perspectives

The four-dimensional CDT model of quantum gravity is extremely simple. It is the
path integral over the class of causal geometries with a global time foliation. In
order to perform the summation explicitly, we introduce a grid of piecewise linear
geometries, much in the same way as when defining the path integral in quantum
mechanics. Next, we rotate each of these geometries to Euclidean signature and use
as bare action the Einstein – Hilbert action8 in Regge form. That is all.

8 Of course, the full, effective action, including measure contributions, will contain all higher-
derivative terms.
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The resulting superposition exhibits a nontrivial scaling behaviour as function of
the four-volume, and we observe the appearance of a well-defined average geometry,
that of de Sitter space, the maximally symmetric solution to the classical Einstein
equations in the presence of a positive cosmological constant. We are definitely in
a quantum regime, since the fluctuations of the three-volume around de Sitter space
are sizable, as can be seen in Fig. 2.7. Both the average geometry and the quantum
fluctuations are well described in terms of the minisuperspace action (25). A key
feature to appreciate is that, unlike in standard (quantum-)cosmological treatments,
this description is the outcome of a non-perturbative evaluation of the full path inte-
gral, with everything but the scale factor (equivalently, V3(t)) summed over. Mea-
suring the correlations of the quantum fluctuations in the computer simulations for a
particular choice of bare coupling constants enabled us to determine the continuum
gravitational coupling constant G as G ≈ 0.42a2, thereby introducing an abso-
lute physical length scale into the dimensionless lattice setting. Within measuring
accuracy, our de Sitter universes (with volumes lying in the range of 6,000–47,000
�4

Pl ) are seen to behave perfectly semi-classically with regard to their large-scale
properties.

We have also indicated how we may be able to penetrate into the sub-Planckian
regime by suitably changing the bare coupling constants. By “sub-Planckian regime”
we mean that the lattice spacing a is (much) smaller than the Planck length. While
we have not yet analysed this region in detail, we expect to eventually observe
a breakdown of the semi-classical approximation. This will hopefully allow us to
make contact with continuum attempts to define a theory of quantum gravity based
on quantum field theory. One such attempt has been described in the introduction
and is based on the concept of asymptotic safety. It uses renormalization group
techniques in the continuum to study scaling violations in quantum gravity around
an UV fixed point [2–7]. Other recent continuum field-theoretic models of quantum
gravity which are not in disagreement with our data are the so-called Lifshitz gravity
model [8, 9] and the so-called scale-invariant gravity model [10–12]. In principle it
is only a question of computer power to decide if any of the models agree with our
CDT model of quantum gravity.

On the basis of these results two major issues suggest themselves for further
research. First, we need to establish the relation of our effective gravitational cou-
pling constant G with a more conventional gravitational coupling constant, defined
directly in terms of coupling matter to gravity. In the present work, we have defined
G as the coupling constant in front of the effective action, but it would be desirable
to verify directly that a gravitational coupling defined via the coupling to matter
agrees with our G. In principle it is easy to couple matter to our model, but it is less
straightforward to define in a simple way a set-up for extracting the semi-classical
effect of gravity on the matter sector. Attempts in this direction were already under-
taken in the “old” Euclidean approach [60, 61], and it is possible that similar ideas
can be used in CDT quantum gravity.

The second issue concerns the precise nature of the “continuum limit”. Recall our
discussion in the Introduction about this in a conventional lattice-theoretic setting.
The continuum limit is usually linked to a divergent correlation length at a critical
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point. It is unclear whether such a scenario is realized in our case. In general, it is
rather unclear how one could define at all the concept of a divergent length related
to correlators in quantum gravity, since one is integrating over all geometries, and it
is the geometries which dynamically give rise to the notion of “length”.

This has been studied in detail in two-dimensional (Euclidean) quantum grav-
ity coupled to matter with central charge c ≤ 1 [62–65]. It led to the conclusion
that one could associate the critical behaviour of the matter fields (i.e. approaching
the critical point of the Ising model) with a divergent correlation length, although
the matter correlators themselves had to be defined as non-local objects due to the
requirement of diffeomorphism invariance. On the other hand, the two-dimensional
studies do not give us a clue of how to treat the gravitational sector itself, since
they do not possess gravitational field-theoretic degrees of freedom. As we have
seen the two-dimensional lattice models can be solved analytically and the only
fine-tuning needed to approach the continuum limit is an additive renormalization
of the cosmological constant. Thus, fixing the two-dimensional spacetime volume
N2 (the number of triangles), such that the cosmological constant plays no role, there
are no further coupling constants to adjust and the continuum limit is automatically
obtained by the assignment V2 = N2a2 and taking N2 → ∞. This situation can
also occur in special circumstances in ordinary lattice field theory. A term like

∑

i

c1(φi+1 − φi )
2 + c2(φi+1 + φi−1 − 2φi )

2 (190)

(or a higher-dimensional generalization) will also go to the continuum free field
theory simply by increasing the lattice size and using the identification Vd = Ldad

(L denoting the linear size of the lattice in lattice units), the higher-derivative term
being subdominant in the limit. It is not obvious that in quantum gravity one can
obtain a continuum quantum field theory without fine-tuning in a similar way,
because the action in this case is multiplied by a dimensionful coupling constant.
Nevertheless, it is certainly remarkable that the infrared limit of our effective action
apparently reproduces – within the cosmological setting – the Einstein – Hilbert
action, which is the unique diffeomorphism-invariant generalization of the ordinary
kinetic term, containing at most second derivatives of the metric. A major question
is whether and how far our theory can be pushed towards an ultraviolet limit. We
have indicated how to obtain such a limit by varying the bare coupling constants of
the theory, but the investigation of the limit a → 0 with fixed G has only just begun
and other scenarios than a conventional UV fixed point might be possible. One sce-
nario, which has often been discussed as a possibility, but which is still missing an
explicit implementation is the following: when one approaches sub-Planckian scales
the theory effectively becomes a topological quantum field theory where the metric
plays no role. Also in our very explicit implementation of a quantum gravity model
it is unclear how such a scenario would look.
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Chapter 3
Lectures on Quantization of Gauge Systems

N. Reshetikhin

Abstract A gauge system is a classical field theory where among the fields there
are connections in a principal G-bundle over the space – time manifold and the
classical action is either invariant or transforms appropriately with respect to the
action of the gauge group. The lectures are focused on the path integral quantization
of such systems. Here two main examples of gauge systems are Yang–Mills and
Chern–Simons.

3.1 Introduction

Gauge field theories are examples of classical field theories with the degenerate
action functional. The degeneration is due to the action of the infinite-dimensional
gauge group. Among most known examples are the Einstein gravity and Yang–Mills
theory. The Faddeev–Popov (FP) method gives a recipe how to construct a quanti-
zation of a classical gauge field theory in terms of Feynman diagrams. Such quanti-
zations are known as perturbative or semiclassical quantizations. The appearance of
so-called ghost fermion fields is one of the important aspects of the FP method [20].

The ghost fermions appear in the FP approach as a certain technical tool. Their
natural algebraic meaning is clarified in the BRST approach (the letters stand for
Becchi, Rouet, Stora, and, independently, Tyutin who discovered this formalism).
In the BRST setting, fields and ghost fermions are considered together as coor-
dinates on a super-manifold. Functions on this super-manifold are interpretedas
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elements of the Chevalley complex of the Lie algebra of gauge transformations.
In this setting the FP action is a specific cocycle and the fact that the integral with
the FP action is equal to the original integral with the degenerate action is a version
of the Lefschetz fixed-point formula.

Among all gauge systems the Yang–Mills theory is most interesting for physics
because of its role in the standard model in high-energy physics [55]. At the moment
there is a mathematically acceptable semiclassical (perturbative) definition of the
Yang–Mills theory where the partition functions (amplitudes) are defined as formal
power series of Feynman integrals. The ultraviolet divergencies in Feynman dia-
grams involving FP ghost fields can be removed by the renormalization [33], and
the corresponding renormalization is asymptotically free [31]. All these properties
make the Yang–Mills theory so important for the high-energy physics.

A mathematically acceptable definition of the path integral in the four-dimensional
Yang–Mills theory which goes beyond the perturbation theory is still an open prob-
lem. One possible direction which may give such a definition is the constructive field
theory, where the path integral is treated as a limit of finite-dimensional approxima-
tions.

Nevertheless, even mathematically loosely defined, the path integral remains a
powerful tool for phenomenological mathematical and physics research in quantum
field theory. It predicted many interesting conjectures, many of which were proven
later by rigorous methods.

The main goal of these notes is a survey of the semiclassical quantization of the
Yang–Mills and of the Chern–Simons theories. These lectures can be considered as a
brief introduction to the framework of quantum field theory (along the lines outlined
by Atiyah and Segal for topological and conformal field theories). The emphases are
given to the semiclassical quantization of classical field theories.

In the Einstein gravity the metric on a space – time is a field. It is well known in
dimension four that the semiclassical (perturbative) quantization of Einstein grav-
ity fails to produce renormalizable quantum field theory. It is also known that
three-dimensional quantum gravity is related to the Chern– Simons theory for non-
compact Lie groups SL2. In this lectures we will not go as far as to discuss this
theory, but will focus on the quantum Chern–Simons field theory for compact Lie
groups.

We start with a sketch of classical field theory, with some examples such as
a non-linear sigma model, the Yang–Mills theory, and the Chern–Simons theory.
Then we outline the framework of quantum field theory following the Atiyah
and Segal description of basic structures in topological and conformal field theo-
ries. The emphasis is given to the semiclassical quantization. Then Feynman dia-
grams are introduced in the example of finite-dimensional oscillatory integrals. The
Faddeev–Popov and BRST methods are first introduced in the finite-dimensional
setting.

The last two sections contain the definition of the semiclassical quantization of
the Yang–Mills and of the Chern–Simons theories. The partition functions in such
theories are given by formal power series, where the coefficients are determined by
Feynman diagrams.
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3.2 Local Lagrangian Classical Field Theory

3.2.1 Space – Time Categories

Here we will focus on Lagrangian quantization of Lagrangian classical field theories.
In most general terms objects of a d-dimensional space – time category are

(d − 1)-dimensional manifolds (space manifolds). In specific examples of space –
time categories space manifolds are equipped with a structure (orientation, symplec-
tic structure, metric, etc.).

A morphism between two space manifolds Σ1 and Σ2 is a d-dimensional
manifold M , possibly with a structure (orientation, symplectic, Riemannian, etc.),
together with the identification of Σ1 )Σ2 with the boundary of M . Here Σ is the
manifold Σ with reversed orientation.

Composition of morphisms is the gluing along the common boundary. Here are
examples of space – time categories.

The d-dimensional topological category. Objects are smooth, compact, oriented
(d − 1)-dimensional manifolds. A morphism betweenΣ1 andΣ2 is the homeomor-
phism class of d-dimensional compact-oriented manifolds with ∂M = Σ1)Σ2 with
respect to homeomorphisms constant at the boundary. The orientation on M should
agree with the orientations of Σi in a natural way.

The composition consists of gluing two morphisms along the common boundary
and then taking the homeomorphism class of the result with respect to homeomor-
phisms constant at the remaining boundary.

The d-dimensional Riemannian category. Objects are (d − 1) Riemannian
manifolds. Morphisms between two oriented (d−1)-dimensional Riemannian man-
ifolds N1 and N2 are oriented d-dimensional Riemannian manifolds M , such that
∂M = N1 ) N2. The orientation on all three manifolds should naturally agree, and
the metric on M agrees with the metric on N1 and N2 on a collar of the bound-
ary. The composition is the gluing of such Riemannian cobordisms. For details
see [49].

This category is important for many reasons. One of them is that it is the under-
lying structure for statistical quantum field theories [34].

The d-dimensional metrized cell complexes. Objects are (d−1)-dimensional ori-
ented metrized cell complexes (edges have length, 2-cells have area, etc.).
A morphism between two such complexes C1 and C2 is a metrized complex C
together with two embeddings of metrized cell complexes i : C1 ↪→ C , j : C2 ↪→ C
where i is orientation reversing and j is orientation preserving. The composition is
the gluing of such triples along the common (d − 1)-dimensional subcomplex.

This category has a natural subcategory which consists of metrized cell approxi-
mations of Riemannian manifolds.

It is the underlying category for all lattice models in statistical mechanics.
The pseudo-Riemannian category. The difference between this category and the

Riemannian category is that morphisms are pseudo-Riemannian with the signature
d− 1, 1. This is the most interesting category for physics. When d = 4 it represents
the space – time structure of our universe.
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3.2.2 Local Lagrangian Classical Field Theory

The basic ingredients of a d-dimensional local Lagrangian classical field theory are
the following:

• For each space – time we assign the space of fields. Fields can be sections of a
fiber bundle on a space – time, connections on a fiber bundle over a space – time,
etc.

• The dynamics of the theory is determined by a local Lagrangian. It assigns to
a field a volume form on M which depends locally on the field. Without giving
a general definition we will give illustrating examples of local actions. Assume
that fields are functions φ : M → F , and that F is a Riemannian manifold. An
example of an (ultra)local Lagrangian for a field theory in a Riemannian category
with such fields is

L(φ(x), dφ(x)) =
(

1

2
(dφ(x), dφ(x))F − V (φ(x))

)

dx, (1)

where (., .)F is the metric on F, the scalar product on forms is induced by the
metric on M , and dx denotes the Riemannian volume form on M.
The action functional is the integral

SM [φ] =
∫

M
L(φ, dφ).

Solutions to the Euler–Lagrange equations for SM form a (typically infinite-
dimensional) manifold XM .

• A boundary condition is a constraint on boundary values of fields which in “good
cases” intersects with XM over a discrete set. In other words, there is a discrete
set of solutions to the Euler-Lagrange equations with given boundary conditions.

A d-dimensional classical field theory can be regarded as a functor from the
space – time category to the category of sets. It assigns to a (d − 1)-dimensional
space the set of possible boundary values of fields, and to a space – time the set of
possible solutions to the Euler-Lagrange equations with these boundary values.

Some examples of local classical field theories are outlined in the next sections.

3.2.3 Classical Mechanics

In classical mechanics the space – time is a Riemannian one-dimensional mani-
fold with flat metric, that is, an interval. Fields in classical Lagrangian mechanics
are smooth mappings of an interval of the real line to a smooth finite-dimensional
manifold N , called the configuration space (parametrized paths).

The action in classical mechanics is determined by a choice of the Lagrangian
function L : TN → R and is
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S[t2,t1][γ ] =
∫ t

0
L(γ̇ (τ ), γ (τ ))dτ,

where γ = {γ (t)}t2t1 is a parametrized path in N.
The Euler–Lagrange equations in terms of local coordinates q = (q1, . . . , qn) ∈

N and ξ = (ξ1, . . . , ξn) ∈ Tq N are

−
n∑

i=1

d

dt

∂L
∂ξ i
(γ̇ (t), γ (t))+ ∂L

∂qi
(γ̇ (t), γ (t)) = 0,

where L(ξ, q) is the value of the Lagrangian at the point (ξ, q) ∈ TN .
The Euler–Lagrange equations are a non-degenerate system of second-order dif-

ferential equations, if ∂2L
∂ξ i ∂ξ j (ξ, q) is non-degenerate for all (ξ, q). In realistic sys-

tems it is assumed to be positive.
Even when the Euler–Lagrange equations are satisfied, the variation of the action

is still not necessarily vanishing. It is given by boundary terms:

δS[t2,t1][γ ] =
∂L
∂ξ i
(γ̇ (t), γ (t))δγ (t)i

∣
∣
∣t2t1 . (2)

Imposing Dirichlet boundary conditions means fixing boundary points of the
path: γ (t1) = q1 ∈ N , and γ (t2) = q2 ∈ N . With these conditions the variation of
γ at the boundary of the interval is zero and the boundary terms in the variation of
the action vanish.

A concrete example of classical Lagrangian mechanics is the motion of a point
particle on a Riemannian manifold in the potential force field. In this case

L(ξ, q) = m

2
(ξ, ξ)+ V (q), (3)

where (., .) is the metric on N and V (q) is the potential.

3.2.4 First-Order Classical Mechanics

The non-degeneracy condition of ∂2L
∂ξ i ∂ξ j (ξ, q) is violated in an important class of

first-order Lagrangians.
Let α be a 1-form on N and b be a function on N . Define the action

S[t2,t1][γ ] =
∫ t2

t1
(〈α(γ (t)), γ̇ (t)〉 + b(γ (t)))dt,

where γ is a parametrized path.
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The Euler–Lagrange equations for this action are

ω(γ̇ (t))+ db(γ (t)) = 0,

whereω = dα. Naturally, the first-order Lagrangian system is called non-degenerate,
if the formω is non-degenerate. It is clear that a non-degenerate first-order Lagrangian
system defines a symplectic structure on a manifold N . The Euler–Lagrange equations
for such system are equations for flow lines of the Hamiltonian on the symplectic
manifold (N , ω) generated by the Hamiltonian H = −b. It is also clear that the
action of a non-degenerate first-order system is exactly the Hamilton–Jacobi action
for this Hamiltonian system.

Assuming that γ satisfies the Euler–Lagrange equations the variation of the
action does not yet vanish. It is given by the boundary terms (2):

δS[t2,t1][γ ] = 〈α(γ (t)), δγ (t)〉
∣
∣
∣t2t1 .

If γ (t1) and γ (t2) are constrained to Lagrangian submanifolds in L1,2 ⊂ N with
T T1,2 ⊂ ker(α), these terms vanish.

Thus, constraining boundary points of γ to such a Lagrangian submanifold is a
natural boundary condition for non-degenerate first-order Lagrangian systems. As
we will see, this is a part of the more general concept where Lagrangian submani-
folds define natural boundary conditions for Hamiltonian systems.

3.2.5 Scalar Fields

The space – time in such theory is a Riemannian category. Fields are smooth map-
pings from a space – time to R (sections of the trivial fiber bundle M × R). The
action functional is

SM [φ] =
∫

M

(
1

2
(dφ(x), dφ(x))− V (φ(x))

)

dx,

where the first term is determined by the metric on M and dx is the Riemannian
volume form. The Euler – Lagrange equations are

Δφ + V ′(φ) = 0. (4)

The Dirichlet boundary conditions fix the value of the field at the boundary
φ|∂M = η for some η : ∂M → R. The normal derivative of the field at the boundary
varies for these boundary conditions.
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3.2.6 Pure Euclidean d-Dimensional Yang–Mills

3.2.6.1 Fields, the Classical Action, and the Gauge Invariance

The space – time is a Riemannian d-dimensional manifold. Fields are connections
on a principle G-bundle P over M , where G is a compact Lie group (see, for exam-
ple, [24] for basic definitions). Usually it is a simple (or Abelian) Lie group.

The action functional is given by the integral

SM [A] =
∫

M

1

2
tr 〈F(A), F(A)〉 dx,

where 〈., .〉 is the scalar product of two-forms on M induced by the metric, tr(AB)
is the Killing form on the Lie algebra g = Lie(G), F(A) is the curvature of A, and
dx is the volume form.

The Euler–Lagrange equations for the Yang–Mills action are

d∗A F(A) = 0.

The Yang–Mills action is invariant with respect to gauge transformations. Recall
that gauge transformations are bundle automorphisms (see, for example, [24]).
Locally, a gauge transformation acts on a connection as

A �→ Ag = g−1 Ag + g−1dg.

Here we assume that G is a matrix group and g−1dg is the Maurer–Cartan form
on G. Now let us describe the Dirichlet boundary conditions for the Yang–Mills
theory. Fix a connection Ab on P|∂M . The Dirichlet boundary conditions on the
connection A for the Yang–Mills theory require that Ab is the pullback of A to the
boundary induced by the embedding i : ∂M → M , i.e., i∗(A) = Ab. Gauge classes
of Dirichlet boundary conditions define gauge classes of solutions to the Yang–Mills
equations. See [26] for more details about classical Yang–Mills theory.

3.2.7 Yang–Mills Field Theory with Matter

Let V be a finite-dimensional representation of the Lie group G, and VP = P×G V
be the vector bundle over M associated to a principal G-bundle P . Assume that V
has an invariant scalar product (., .).

The classical Yang–Mills theory with matter fields, which are sections of VP , has
the action functional

S[", A] =
∫

M

(
1

2
tr 〈F(A), F(A)〉 + 1

2
(〈dA", dA"〉)+U (")

)

dx,
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where U is a G-invariant function on V and 〈., .〉 is the scalar product on forms
defined by the metric on M . The function U describes the self-interaction of the
scalar field ".

The Euler–Lagrange equations in this theory are

∗dA F(A)+ jA = 0, d∗AdA"−U ′(") = 0,

where jA ∈ �1(M, g) is the one-form defined as tr 〈ω, jA〉 = 〈ω", dA"〉.
Dirichlet boundary conditions in this theory are determined by the gauge class of

the boundary values of the connection A and for the scalar field ".

3.2.8 Three-Dimensional Chern–Simons Theory

In this case the space – time category is the category of three-dimensional topological
cobordisms. Fix a smooth three-dimensional manifold M . The space of fields of the
Chern–Simons theory is the space of connections on a trivial principal G-bundle
P over M (just as in the Yang–Mills theory). The choice of a simple compact Lie
group G is part of the data.

The Chern–Simons form is the 3-form on P:

α(A) = tr

(

A ∧ d A − 2

3
A ∧ [A ∧ A]

)

.

Because the bundle is trivial, α(A) defines a 3-form on M which we will also denote
by α(A). The Chern–Simons action is

C SM (A, p) =
∫

M
p∗α(A).

This action is of the first order (in derivatives of A). It is very different from the
Yang–Mills theory where the action is of the second order.

The variation of the Chern–Simons action is

δC SM (A, p) =
∫

M
tr (F(A) ∧ δA)+

∫

∂M
tr (Aτ ∧ δAτ ) ,

where Aτ , δAτ are pullbacks to the boundary of A and δA.
The Euler–Lagrange equations for this Lagrangian are

F(A) = 0.

They guarantee that the first term (the bulk) in the variation vanishes. Solutions to
the Euler–Lagrange equations are flat connections in P over M. On the space of
solutions to the Euler–Lagrange equations we have
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δC SM (A, p) = (#, δAτ ),

where # is the one form on the space C∂M of connections on P|∂M → ∂M . Let
D be the differential acting on forms on the space C∂M . The form ω = D# is
non-degenerate and defines a symplectic structure on C∂M :

ω(δA, δB) =
∫

∂M
tr δA ∧ δB. (5)

The Chern–Simons action is gauge invariant (for details see [24]). The action
of the gauge group is Hamiltonian on (C∂M , ω). The result of the Hamiltonian
reduction of this symplectic space with respect to the action of the gauge group
is the finite-dimensional moduli space F(∂M) of gauge flat connections together
with reduced symplectic structure.

Gauge orbits through flat connections from C∂M which continue to flat connec-
tions on P over M form a Lagrangian submanifold L M ⊂ F(∂M). The correspond-
ing first-order Hamiltonian system describes the reduced Chern–Simons theory as
a classical Hamiltonian field theory. For more details see, for example, [24, 7], and
references therein.

3.3 Hamiltonian Local Classical Field Theory

3.3.1 The Framework

An n-dimensional Hamiltonian field theory in a category of space – time is an
assignment of the following data to manifolds which are the objects and morphisms
of this category:

• A symplectic manifold S(Mn−1) to an (n − 1)-dimensional manifold Mn−1.
• A Lagrangian submanifold L(Mn) ⊂ S(∂Mn) to each n-dimensional manifold Mn .

These data shall satisfy the following axioms:

1. S(Ø) = {0}.
2. S(M1 ) M2) = S(M1)× S(M2).
3. L(M1 ) M2) = L(M1)× L(M2) with L(Mi ) ⊂ S(∂Mi ).
4. (S(M), ω) = (S(M),−ω).
5. An orientation preserving diffeomorphism f : M1 → M2 of (n−1)-dimensional

manifolds lifts to a symplectomorphism s( f ) : S(M1)→ S(M2).
6. Assume that ∂M = (∂M)1 ) (∂M)2 ) (∂M)′ and that there is an orientation

reversing diffeomorphism f : (∂M)1 → (∂M)2. Denote by M f the result of
gluing M along (∂M)1 � (∂M)2 via f :

M f = M/
〈
(∂M)1 � (∂M)2

〉
.



134 N. Reshetikhin

The Lagrangian submanifold corresponding to the result of the gluing should be

L(M f ) = {x ∈ S((∂M)′)| such that there exists y ∈ S(∂M)1
with(y, s( f )(y), x) ∈ L(M)}. (6)

Notice that ∂M f = (∂M)′ by definition. This axiom is known as the gluing
axiom. In classical mechanics the gluing axiom is the composition of the evolu-
tion at consecutive intervals of time.1

A boundary condition in the Hamiltonian formulation is a Lagrangian subman-
ifold Lb(∂M) in the symplectic manifold S(∂M), assigned to the boundary ∂M of
the manifold M , Lb(∂M) ⊂ S(∂M). It factorizes into the product of Lagrangian
submanifolds corresponding to connected components of the boundary:

Lb((∂M)1 ) (∂M)2) = Lb((∂M)1)× Lb((∂M)2).

Classical solutions with given boundary conditions are intersection points Lb(∂M)∩
L(M).

In order to glue classical solutions along the common boundary (composi-
tion of classical trajectories in classical mechanics) let us assume that boundary
Lagrangian submanifolds are fibers of Lagrangian fiber bundles. That is, we assume
that for each connected component (∂M)i of the boundary a symplectic manifold
S((∂M)i ) is given together with a Lagrangian fiber bundle πi : S((∂M)i ) →
B((∂M)i ) over some base space B((∂M)i ) with fibers defining the boundary
conditions.

3.3.2 Hamiltonian Formulation of Local Lagrangian Field Theory

Here again, instead of giving general definitions we will give a few illustrating
examples.

3.3.2.1 Classical Hamiltonian Mechanics

1. Let H ∈ C∞(M) be the Hamiltonian function generating Hamiltonian dynamics
on a symplectic manifold M .2 Here is how such a system can be reformulated in
the framework of a Hamiltonian field theory.

1 I am grateful to V. Fock for many illuminating discussions of Hamiltonian aspects of field theory,
see also [23].
2 Recall that Hamiltonian mechanics is a dynamical system on a symplectic manifold (M, ω)
with trajectories being flow lines of the Hamiltonian vector field vH generated by a function H ∈
C∞(M), vH = ω−1(d H). Here ω−1 : T ∗M → TM is the isomorphism induced by the symplectic
structure on M .
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Objects of the corresponding space – time category are points; morphisms are
intervals I = [t1, t2] ⊂ R with the flat metric. The symplectic manifold assigned to
the boundary of the space – time is

S(t1, t2) = M × M,

where M is the phase space of the Hamiltonian system and M is the phase space
with the opposite sign of the symplectic form.

The Lagrangian subspace L(I ) in S(t1, t2) is the set of pairs of points (x, y)
where x is the initial point of a classical trajectory generated by H and y is the
target point of this trajectory.

A pair of Lagrangian fiber bundles π1 : M → B1 and π2 : M → B2 with
suitable base spaces B1, B2 defines a “complete” family of boundary conditions
corresponding to the two components of the boundary of I .

Classical trajectories with such boundary conditions are intersection points in(
π−1(b1)× π−1(b2)

) ∩ L(I ), where b1 ∈ B1, b2 ∈ B2.

2. The Lagrangian mechanics on N (see Sect. 3.2.3) is equivalent (for non-
degenerate Lagrangians) to the Hamiltonian mechanics on M = T ∗N with the
canonical symplectic form. The Hamiltonian functions are given by the Legendre
transform of the Lagrangian:

H(p, q) = max
ξ∈Tq N

(p(ξ)− L(ξ, q)).

The boundary conditions q(t1) = q1, q(t2) = q2 correspond to Lagrangian fiber
bundles T ∗N → N for each component of the boundary of the interval.

The Hamiltonian of a point particle on a Riemannian manifold is

H(p, q) = m

2
(p, p)+ V (q),

where (p, p) is uniquely determined by the metric on N .

3. A non-degenerate first-order Lagrangian defines a symplectic structure on the
configuration space M given by ω = dα. Solutions to the Euler–Lagrange equa-
tions in such system are flow lines of the Hamiltonian vector field generated
by the function b(q), see Sect. 3.2.4. So, first-order non-degenerate Lagrangian
systems are simply Hamiltonian systems on exact symplectic manifolds (i.e., on
symplectic manifolds where the form ω is exact).

3.3.2.2 Bose Field Theory

In this case the symplectic manifold S(N ) assigned to a (d − 1)-dimensional mani-
fold N is an infinite-dimensional linear symplectic manifold which is the cotangent
bundle to the space of real-valued smooth functions on N .
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Since C∞(N ) is a linear space its tangent space at any point (can be thought as
the space of infinitesimal variations of functions on N ) can be naturally identified
with the C∞(N ) itself.

ω((δη1, δ f1), (δη2, δ f2)) =
∫

N
(δη1δ f2 − δη2δ f1)dx,

where ηi ∈ T fi C
∞(N ) and (δηi , δ fi ) are tangent vectors from T(ηi , fi )(T

∗C∞(N )).
In this formula we identified the tangent space to T ∗C∞(N )with C∞(N )⊕C∞(N ).

The Lagrangian fibration corresponding to the Dirichlet boundary conditions is
the standard projection π : T ∗C∞(N )→ C∞(N ).

The Lagrangian submanifold L(M) ⊂ S(∂M) is the space of solutions to the
Euler–Lagrange equations. Solutions to the Euler–Lagrange equations with given
Dirichlet boundary condition φ|∂M = η are intersection points of L(M) with the
Lagrangian fiber π−1(η).

3.3.2.3 Yang–Mills Theory

Here we will discuss only the Yang–Mills theory where fields are connections in a
trivial principal G-bundle. The symplectic manifold S(N ) assigned to the (d − 1)-
dimensional manifold N in such field theory is the cotangent bundle to the space
of connections in a trivial principal G-bundle over N with the natural symplectic
structure.

As in the case of a scalar Bose field the symplectic manifold is the cotangent
bundle to the space of all possible Dirichlet boundary conditions. Since the space
A(N ) of all smooth connections on N is linear, its tangent bundle can naturally be
identified with A(N )⊕A(N ). The symplectic form is

ω((δη1, δA1), (δη2, δA2)) =
∫

N
(tr 〈δη1, δA2〉 − tr 〈δη2, δA1〉)dx .

Here tangent vectors (δηi , δAi ) ∈ T(ηi ,Ai )(T
∗A(N ) are g-valued 1-forms on N . The

scalar product 〈., .〉 is the scalar product on 1-forms induced by the metric on N .
In the Hamiltonian formulation of the Yang–Mills theory, the symplectic mani-

fold S(∂M) is the Hamiltonian reduction of T ∗A(∂M) with respect to the action of
the gauge group. The Lagrangian submanifold L(M) ⊂ S(∂M) is the subspace of
gauge orbits through boundary values of solutions to the Yang–Mills equation with
their normal derivatives.

3.3.2.4 Chern–Simons

The main difference between the Yang–Mills theory and the Chern–Simons field
theory is that the YM theory is a second-order theory while the CS is a first-order
theory. Solutions to the Euler–Lagrange equations are flat connections on M , and
their pullbacks to the boundary are flat connections on the boundary ∂M .
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In the Hamiltonian formulation of the Chern–Simons theory, the symplectic man-
ifold assigned to the boundary is the moduli space of flat connections on P∂M and
the Lagrangian submanifold L(M) is the space of gauge classes of flat connections
on P∂M which continue to flat connections on P .

3.4 Quantum Field Theory Framework

3.4.1 General Framework of Quantum Field Theory

We will follow the framework of local quantum field theory which was outlined by
Atiyah and Segal for topological and conformal field theories. In a nutshell it is a
functor from a category of cobordisms to the category of vector spaces (or, more
generally to some “known” category).

All known local quantum field theories can be formulated in this way at some
very basic level. It does not mean that this is a final destination of our understanding
of quantum dynamics at the microscopical scale. But at the moment this general set-
ting includes the standard model, which agrees with most of the experimental data in
high-energy physics. In this sense this is the accepted framework at the moment, just
as at different points of history classical mechanics, classical electro-magnetism,
and quantum mechanics were playing such a role.3

A quantum field theory in a given space – time category can be defined as a
functor from this category to the category of vector spaces (or to another “standard,”
“known” category). It assigns a vector space to the boundary and a vector in this
vector space to the manifold:

N �→ H(N ), M �→ Z M ∈ H(∂M).

The vector space assigned to the boundary is the space of pure states of the system
on M . It may depend on the extra structure at the boundary (it can be a vector bundle
over the moduli space of such structures). The vector Z(M) is called the partition
function or the amplitude.

These data should satisfy natural axioms, such as

H(Ø) = C , H(N1 ) N2) = H(N1)⊗ H(N2), and (7)

Z M1)M2 = Z M1 ⊗ Z M2 ∈ H(∂M1)⊗ H(∂M2). (8)

An isomorphism f : N1 → N2 lifts to a linear isomorphism

3 The string theory goes beyond such framework and beyond scales of present experiments. It is
a necessary step further, and it already produced a number of outstanding mathematical ideas and
results. One of the differences between the string theory and the quantum field theory is that the
concept of non-perturbative string theory is still developing.
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σ( f ) : H(N1)→ H(N2).

The pairing

〈., .〉N : H(N )⊗ H(N )→ C

is defined for each N . This pairing should agree with partition functions in the fol-
lowing sense. Let ∂M = N ) N ) N ′, then

(〈., .〉 ⊗ id)Z M = Z MN ∈ H(N ′), (9)

where MN is the result of gluing of M along N . The operation is known as the
gluing axiom. We outlined its structure. The precise definition involves more details
(see [5, 47]). The gluing axiom in particular implies the functoriality of Z :

Z M1◦M2 = Z M1 ∗ Z M2 .

Originally this framework was formulated by Atiyah and Segal for topological
and conformal field theories, but it is natural to extend it to more general and more
realistic quantum field theories, including the standard model.

This framework is very natural in models of statistical mechanics on cell com-
plexes with open boundary conditions, also known as lattice models.

The main physical concept behind this framework is the locality of the interac-
tion. Indeed, we can cut our space – time manifold in small pieces and the result-
ing partition function Z M in such framework is expected to be the composition of
partition functions of small pieces. Thus, the theory is determined by its structure
on “small” space – time manifolds or at “short distances.” This is the concept of
locality.

3.4.2 Constructions of Quantum Field Theory

3.4.2.1 Quantum Mechanics

Quantum mechanics fits into the framework of quantum field theory as a one-
dimensional example. One-dimensional space – time category is the same as in
classical Lagrangian mechanics.

In quantum mechanics of a point particle on a Riemannian manifold N the vector
space assigned to a point is L2(N ) with the usual scalar product. The quantized
Hamiltonian is the second-order differential operator acting in L2(N )

Ĥ = −mh2

2
�+ V (q),
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where � is the Laplace operator on N , V (q) is the potential, and h is the Planck
constant.

The operator

Ut2−t1 = exp

(
i

h
Ĥ(t2 − t1)

)

(10)

is known as the propagator or evolution operator in quantum mechanics. It is a
unitary operator in L2(N ) (assume N is compact and V (q) is sufficiently good). It
can be written as an integral operator:

Ut2−t1( f )(q) =
∫

N
Ut2−t1(q, q

′) f (q ′)dq ′, (11)

where dq ′ is the volume measure on N induced by the metric.
The kernel Ut (q, q ′) is a solution to the Schrödinger equation

(

ih
∂

∂t
− h2

2m
�+ V (q)

)

Ut (q, q
′) = 0 (12)

for t > 0 with the initial condition

lim
t→+0

Ut (q, q
′) = δ(q, q ′).

Quantum mechanics of a point particle on a Riemannian manifold N viewed as
a one-dimensional quantum field theory assigns the vector space L2(N ) to a point
and the vector Z(I )(q1, q2) = Ut2−t1(q2, q1) ∈ H(∂ I ) = L2(N )⊗ L2(N ) to the
interval [t2, t1]. Here L2(N )⊗ L2(N ) is a certain completion of the tensor product
which can be identified with a space of operators in L2(N ), for details see any
mathematically minded textbook on quantum mechanics, for example [50]. For a
variety of reasons it is better to think about the space attached to a point not as
L2(N ) but as the space of 1/2-densities on N . Given two 1/2-densities a and b, their
scalar product is

(a, b) =
∫

N
āb,

where āb is now a density and can be integrated over N (for details see for example
[10]). In terms of 1/2-densities the kernel of the evolution operator is a 1/2-density
on N × N and

Ut (a)(q) =
∫

N
Ut (q, q

′)a(q ′),

where Ut (q, q ′)a(q ′) is a density in q ′ and can be integrated over N .
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3.4.2.2 Statistical Mechanics

Lattice models in statistical mechanics also fit naturally in the framework of quan-
tum field theory. The space – time category corresponding to these models is a
combinatorial space category of cell complexes.

A simple combinatorial example of combinatorial quantum field theory with the
dimer partition function can be found in [18].

The combinatorial construction of the TQFT (topological quantum field theory)
based on representation theory of quantized universal enveloping algebras at roots
of unity is given in [44] or, more generally, on any modular category.

Another combinatorial construction of TQFT based on triangulations is given in
[52]. This TQFT is the double of the construction from [44], for details see, for
example, [53].

3.4.2.3 Path Integral and the Semiclassical Quantization

If we were able to integrate over the space of fields in a Lagrangian classical field
theory (as in lattice models in statistical mechanics) we could construct a quantiza-
tion of a d-dimensional classical Lagrangian system as follows:

• To a (d − 1)-dimensional manifold we assign the space of functionals on bound-
ary values of fields. Here we assume that a choice of boundary conditions was
made.

• To a d-dimensional manifold we assign the functional on boundary fields given
by the integral

Z M (b) =
∫

φ|∂M=b
exp

(
i S[φ]

h

)

Dφ.

If one treats the integral as a formal symbol which satisfies Fubini’s theorem
(the iterated integral is equal to the double integral), such assignment satisfies all
properties of QFT. The problem is that the integral is usually not defined, unless
the space of fields is finite or finite dimensional (as in statistical mechanics of
cell complexes). Thus, one should either make sense of the integral and check
whether the definition satisfies Fubini’s theorem or define the QFT by some other
means.

There are two approaches on how to make sense of path integrals. The approach
of constructive field theory is based on approximating the path integral by a finite-
dimensional integral and then proving that the finite QFT has a limit, when the mesh
of the approximation goes to zero. For details of this approach see, for example,
in [30].

Another approach is known as perturbation theory, or semiclassical limit. The
main idea is to define the path integral in the way its asymptotic expansion as
h → 0 would look like, if the integral were defined. The coefficients of this asymp-
totic expansion are given by Feynman diagrams. Under the right assumptions the
first few coefficients would approximate the desired quantity sufficiently well. The
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numbers derived from this approach are the base for the comparison of quantum
field theoretical models of particles with the experiment.

In the next sections we will outline this approach on several examples.
When M is a cylinder M = [t1, t2]×N , the partition function Z M is an element of

H(N ) × H(N )∗4 and therefore can be regarded as an operator in H(N ). Classical
observables become operators acting in H(N ). Thus, a quantization of classical
field theories for space – time cylinders can be regarded as passing from classical
commutative observables to quantum non-commutative observables. The partition
function for the torus has a natural interpretation as a trace of the partition function
for the cylinder (see, for example, [30] for more details).

3.5 Feynman Diagrams

3.5.1 Formal Asymptotic of Oscillatory Integrals

Let M be a compact smooth manifold with a volume form on it. In this section we
will recall the diagrammatic formula for the asymptotic expansion of the integral

Ih( f ) =
∫

M
exp

(

i
f (x)

h

)

dx, (13)

where f is a smooth function on M with finitely many isolated critical points.

Lemma 1 We have the following identity:

lim
ε→0

∫

RN
exp(i(x, Bx)/2− ε(x, x))xi1 · · · xin d N x

= (2π) N
2 i

n
2

1√| det(B)| exp

(
iπ

4
sign(B)

)∑

m

B−1
im1 im2

B−1
im1 im2

. . . B−1
imn−1imn

. (14)

Here the sum is taken over perfect matchings m on the set {1, 2, . . . , n}, sign(B)
denotes the signature of the real symmetric matrix B (the number of positive eigen-
values minus the number of negative eigenvalues).

Moreover, if n is odd, this integral is zero.

Proof First notice that

lim
ε→0

∫
e

i
2 (x,Bx)−ε(x,x)xi1 · · · xin d N x = ∂

∂yi1

· · · ∂
∂yin

∫
e

i
2 (x,Bx)+ (y,x)d N x

∣
∣
∣
y=0
.

4 In this rather general discussion of the basic structures of a local quantum field theory we are
deliberately somewhat vague about such details as the completion of the tensor product and similar
topological questions. Such questions are better answered on a case-by-case basis.
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After change of variables z = x − i B−1 y in the Gaussian integral

∫

RN
exp

(
i

2
(x, Bx)

)

d N x = (2π) N
2

1√| det(B)| exp

(
iπ

4
sign(B)

)

,

we have

∫

RN
exp

(
i

2
(x, Bx)+ (y, x)

)

d N x = (2π) N
2

1√|det(B)| exp

(
iπ

4
sign(B)

)

× exp

(
i

2
(B−1 y, y)

)

.

Expanding the right side in powers of y we obtain the contribution of monomials of
degree 2k:

i k

2k !
∑

(i)( j)

(B−1)i1 j1 . . . (B
−1)i2k j2k yi1 . . . yik y j1 . . . y jk =

i k

2k !

×
∑

i1≤···≤i2k

yi1 . . . yi2k

m1(i)! . . .m2k(i)!
×
∑

σ∈S2k

(B−1)σ(i1)σ (i2)(B
−1)σ(i3)σ (i4) . . . (B

−1)σ(i2k−1)σ (i2k ) .

Here m1(i) is the number of the smallest entries in the sequence i1, . . . , i2k , m2(i)
is the number of the smallest entries after the elimination of i1, etc.

Taking derivatives with respect to y and taking into account that

1

2k !
∑

σ∈S2k

(B−1)σ(i1)σ (i2)(B
−1)σ(i3)σ (i4) . . . (B

−1)σ(i2k−1)σ (i2k ) =

×
∑

m

(B−1)im1 im2
(B−1)im1 im2

. . . (B−1)im2k−1im2k
,

where the sum is taken over perfect matchings on the set {1, 2, , . . . , 2k}, we obtain
the desired formula.

For example when n = 4, then this integral is equal to

(B−1)12(B
−1)34 + (B−1)13(B

−1)24 + (B−1)14(B
−1)23.

These three terms correspond to the perfect matching shown in Fig. 3.1.
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1 42 3 4 1 2 3 4 1 2 3

++

Fig. 3.1 Perfect matching for n = 4

Theorem 1 We have the following identity of power series

∫

RN
exp

⎛

⎝i(x, Bx)/2−
∑

n≥3

i

n!V
(n)(x)hn/2−1

⎞

⎠ d N x =

(2π)
N
2

1√| det(B)| exp

(
iπ

4
sign(B)

)∑

�

(ih)−χ(�)F(�)
|Aut(�)| ,

where sum is taken over graphs with vertices of valency ≥ 3, F(�) is the state
sum corresponding to � described below, |Aut(�)| is the number of elements in the
automorphism group of �, χ(�) is the Euler characteristic of the graph χ(�) =
|V | − |E |, where |E | is the number of edges of �, and |V | is the number of vertices
of �.

Proof Expanding the integral in formal power series in h we have

∫

RN
e

i
2 (x,Bx)+∑n≥3

i
n! V (n)(x)hn/2−1

dx =
∑

n3≥0,n4≥0···

h(3n3+4n4+··· )/2−n3−n4−···in3+n4+...

n3!(3!)n3n4!(4!)n4 · · ·
∫

RN
ei(x,Bx)/2(V (3)(x))n3(V (4)(x))n4 · · · d N x . (15)

Here

V (n)(x) =
∑

i1,...,in

V (n)i1,...,in
xi1 . . . xin .

For a graph � define the state sum F(�) as follows:

• Enumerate vertices, for each vertex enumerate edges adjacent to it. This defines
a total ordering on endpoints of edges (the ordering from left to right in Fig. 3.2).

• The graph � defines a perfect matching between edges adjacent to vertices as
it is shown in Fig. 3.2. Denote by �m the graph corresponding to the perfect
matching m.

• Assign indices i1, i2, . . . to endpoints of edges, iα = 1, 2, . . . , N .
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...

m

n3 n4

...

Fig. 3.2 Perfect matchings and Feynman diagrams

i1

... V
(h)
i1...in

i2 in

i
j

(B−1)ij

Fig. 3.3 Weights of vertices and edges in Feynman diagrams

• Define F(�) as

F(�) =
∑

{i}

∏

e∈E(�m)

(B−1)el ,er V (n1)
i1,...,in1

V (n1)
in1+1,...,in1+n2

V (n1+n2+1)
i1,...,in1+n2+n3

. . .

where el is the index corresponding to the left end of the edge e, er corresponds
to the right side. The state sum F(�) is the sum over {i} of the product of weights
assigned to vertices and edges according to the rules from Figs. 3.3 and 3.4.5

Lemma 1 gives the following expression for (15):

(2π)
N
2

1√| det(B)|e
iπ
4 sign(B) i |V |

∑

n3≥0,n4≥0···

(ih)|E |−|V |

n3!(3!)n3n4!(4!)n4 · · ·
∑

m

F(�m).

(16)

5 Equivalently F(�) can be defined as follows. Assign elements 1, . . . , N to endpoints of edges of
�. This defines an assignment of indices to endpoints of stars of vertices. The state sum is defined
as

F(�) =
∑

{i}

∏

e∈E(�)

(B−1)ie, je

∏

v∈V (�)

(weight of v)i .

Here weights of vertices are defined as in Fig. 3.3, the indices ie, je correspond to two different
endpoints of e (since B is symmetric, it does not matter that this pair is defined up to a permutation).
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i1 i10i2 i3 i4 i5 i6 i7 i8 i9

Fig. 3.4 An example of a perfect matching with a state {i}

Here the sum is taken over perfect matchings, and �m is the graph corresponding to
the matching m, see Fig. 3.2, |E | is the number of edges and |V | is the number of
vertices of the graph �m .

Some perfect matchings produce the same graphs. Denote by N (�) the number
of perfect matchings corresponding to �. In the formula (16) the contribution from
the diagram � will have the combinatorial factor

N (�)

n3!(3!)n3n4!(4!)n4 · · · =
1

|Aut(�)| .

This finishes the proof.
There is a simple rule how to check powers of i = √−1. These factors disappear,

if we replace B �→ i B and V (n) �→ iV (n).

A Feynman diagram has order n if it appears as a coefficient in hn , i.e., when
n = |E | − |V | (or n = −χ(�)) in the expansion above. As an example, order one
Feynman diagrams are given in Figs. 3.5 and 3.6.

Now let us focus on the asymptotic expansion of the integral (13). The standard
asymptotic analysis applied to this integral shows that the leading contributions
to the asymptotics of the integral as h → 0 come from the infinitesimal (of the
diameter of order h−1/2) neighborhoods of critical points of f (x). The contribution

1

23 F + 1
3!2

F + 1

22 F

Fig. 3.5 Contributions from Feynman diagrams of order one

Fig. 3.6 Weights of Feynman diagrams of order one
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in

∂ng
∂xi1 ...∂xin

i2
i1

...

Fig. 3.7 Extra vertices in Feynman diagrams for the integral (18)

to the integral (13) from the critical point a “localizes” to the integral (15) with

(Ba)ij = ∂2 f
∂xi ∂x j (a) and (V (n)a )i1,...,in = − ∂n f

∂xi1 ...xin
(a).

Choose local coordinates such that dx = dx1 . . . dxN . Denote by Fa(�) the state
sum on the graph � with such matrices B and V (n). The asymptotic expansion of
the integral (13) has the following form:

∫

M
exp

(

i
f (x)

h

)

+1
dx �

∑

a

(2πh)
N
2

1√| det(Ba)|e
if (a)

h + iπ
4 sign(Ba)

×
∑

�

(ih)−χ(�)Fa(�)

|Aut(�)| (17)

Here � is the asymptotical equivalence when h → 0. A similar argument applied
to the integral

∫

M
exp

(

i
f (x)

h

)

g(x)dx (18)

gives the asymptotic expansion as h → 0. It looks exactly as (17) with the only
difference that in each Feynman diagram there will be exactly one of the vertices
given in Fig. 3.7. The order of the diagram is still |E | − |V |, where V is the number
of vertices given by derivatives of f , i.e., −χ(�)+ 1.

3.5.2 Integrals Over Grassmann Algebras

The Grassmann algebra Gn is the exterior algebra of C
n , Gn = ∧·Cn with the

multiplication (a, b) → a ∧ b. As an algebra defined in terms of generators and
relations Gn is generated by c1, . . . , cn with defining relations ci c j +c j ci = 0. The
Grassmann algebra Gn can also be regarded as the space of polynomial functions
on the super-vector space C

0|n .
Left derivatives with respect to ci are defined as

∂ci ci1 · · · cin =
{

0 i �∈ {i1, . . . , in}
(−1)kci1 · · · ĉik · · · cin i = ik .

The right derivatives are defined similarly with the sign (−1)n−k instead.
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Recall that an orientation of C
n is defined by a basis in

∧n
C

n . Choose c1 ∧
· · ·∧ cn as such orientation. Any element P ∈ Gn can be written as ptopc1∧· · ·∧cn+
lower terms. The integral of P over the super-vector space C

0|n with the orientation
c1 ∧ · · · ∧ cn is

∫

C0|n
P dc := ptop.

Lemma 2 Let (c,Bc) = ∑n
ij=1 ci Bijc j , where B is skew-symmetric Bij = −Bji. If

n is even, then

∫

C0|n
exp
(1

2
(c, Bc)

)
dc = Pf(B), (19)

where Pf is the Pfaffian of the matrix B. If n is odd, the integral is zero.

Proof Recall that

Pf(B) =
∑

m

(−1)m Bi1 j1 Bi2 j2 . . . Bin/2 jn/2

where the sum is taken over perfect matchings m. A perfect matching m is the
equivalence class of a collection of pairs ((i1, j1), . . . , (in/2, jn/2)) obtained by a
permutation σ of (1, 2, . . . , n) with respect to permutations of pairs ((ia, ja) with
(ib, jb)) and permutations in a pair ((ia, ja) to ( ja, ia)). The sign (−1)m is the sign
of the permutation σ , which is constant on the equivalence class m.

Now let us prove the formula (19). It is clear that only monomials of degree n in
c will give a non-zero contribution to the integral and that they all come from the
term

(c,Bc)n/2 =
n∑

i1,...,in/2, j1,..., jn/2=1

Bi1 j1 · · · Bin/2 jn/2 ci1
c j1 · · · cin/2 c jn/2 .

Reordering factors we get

ci1 c j1 · · · cin/2 c jn/2 = (−1)σ(i | j)c1 · · · cn ,

where σ(i | j) is the permutation which brings i1, j1, . . . , in/2, jn/2 to 1, 2, . . . , n.
Thus for the Gaussian Grassmann integral we have

∫

C0|n
exp
(1

2
(c,Bc)

)
dc = (1/2)

n/2

(n/2)!
∑

σ(i | j)
Bi1 j1 · · · Bin/2 jn/2(−1)σ(i | j) .

Note that the sign does not change when ia is switched with ja because the signs
come in pairs. Also, the sign does not change when pair (ia, ja) and (ib, jb) are
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permuted. But such equivalence classes of permutations are exactly perfect match-
ings and therefore the formula becomes

∑

σ(i | j)
ia< ja

ia1<···<ian

(−1)σ(i | j)Bi1 j1 · · · Bin/2 jn/2 = Pf(B),

which is the Pfaffian of B.

This lemma is equivalent to the identity

(∑

i< j

x i ∧ x j Bij

)∧ n
2 = Pf(B)x1 ∧ · · · ∧ xn

in the exterior algebra
∧·

C
n .

Two important identities for Pfaffians:

det B = Pf(B)2, Pf
( 0 A
−At 0

) = det A.

The following formula is a Grassmann analog of the formula from Lemma 1 for
integrating monomials with respect to the Gaussian measure:

∫

C0|n
exp
(1

2
(c,Bc)

)
ci1 . . . cik dc = Pf(B)(−1)

k
2
∑

m

(−1)m(B−1)im1 im2 . . .

× (B−1)
imk−1 ,iimk . (20)

Here the sum is taken over perfect matchings m of 1, . . . , k, and B is assumed to
be non-degenerate. The proof of this formula is parallel to the one for Gaussian
oscillating integrals. The only difference is the factor (−1)m which appears when
left derivatives are applied to the exponent.

Let P(c) be an even element of Gn with monomials of degree at least 4, P(c) =
∑

k≥4
1
k! P

(k)(c) where P(k)(c) =∑n
i1,...,ik=1 P(k)i1,...,ik

ci1 . . . cik .

Theorem 2 The following identity holds:

∫

C0|n
exp
(
−1

2
(c,Bc)+ P(c)

)
dc = Pf(−B)

∑

�

(−1)c(D(�))
F(D(�))

|Aut(�)| , (21)

where the summation is taken over finite graphs, D(�) is a mapping of � to R
2,

with the only singular points being crossings of edges (D(�) is a diagram of the
graph �), and c(D(�)) is the number of crossings of edges in the diagram D(�).
The number F(D(�)) is computed by the same rules as in the previous section. The
product (−1)c(D(�))F(D(�)) does not depend on the choice of the diagram.
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Proof Expand the integral in P(c):

∫

C0|n
exp
(1

2
(c,Bc)+ P(c)

)
dc =

∑

n4,n6,···≥0

1

n4!(4!)n4n6!(6!)n6 . . .

∑

i1,i2,i3,...

P(4)i1,i2,i3,i4
. . . P(6)i4n4+1,i4n4+2,i4n4+3,i4n4+4,i4n4+5,i4n4+6

. . .

∫

C0|n
exp
(1

2
(c,Bc)

)
ci1 ci2 ci3 . . . dc. (22)

Using the identity (20) we arrive at the formula

Pf(B)
∑

n4,n6,···≥0

1

n4!(4!)n4n6!(6!)n6 . . .

∑

i1,i2,i3,...

P(4)i1,i2,i3,i4
. . . P(6)i4n4+1,i4n4+2,i4n4+3,i4n4+4,i4n4+5,i4n4+6

. . .

∑

m

(−1)m(B−1)im1 im2
(B−1)im3 ,iim4

. . . , (23)

where m is a perfect matching on 1, 2, . . . , k, k = ∑i≥3 ini . The summation over
{i} gives the number F(Dm), where Dm is the diagram from Fig. 3.2. Some of the
diagrams Dm represent projections of the same graph. It is easy to show that the
combination (−1)m F(Dm) depends only on the graph, but not on its diagram and is
equal to (−1)c(D(�))F(D(�)) for any diagram D(�) of �. Thus, if we will change
the summation from ni and m to the summation over graphs, the factorials together
with the number of perfect matchings corresponding to the same graph produce the
combinatorial factor 1/|Aut(�)|.

Having in mind applications to oscillatory integrals, it is convenient to have the
formula (21) in the form

∫

C0|n
exp
( i

2h
(c, Bc)− i

h
P(c)

)
dc=h−

n
2 Pf(iB)

∑

�

(ih)−χ(�)(−1)c(D(�))
F(D(�))

|Aut(�)| .
(24)

3.5.3 Formal Asymptotics of Oscillatory Integrals Over
Super-manifolds

There are a number of equivalent definitions of super-manifolds. For our goals a
super-manifold M(n|m) is a trivial vector bundle over a smooth n-dimensional man-
ifold M (even part) with the fiber which is the exterior algebra of an m-dimensional
vector space V (odd part). The algebra of functions on such a super-manifold is
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the algebra of sections of this vector bundle with the point-wise exterior multiplica-
tion on fibers, i.e., if f, g : M → M × ∧V are two sections x �→ (x, f (x)) and
x �→ (x, g(x)), their product is the section

x �→ (x, f (x) ∧ g(x)).

In other words, it is the tensor product of the Grassmann algebra of the fibers with
the algebra of smooth functions on M, i.e.,

C∞(M(n|m)) = C∞(M)⊗R

〈
c1, . . . , cm |cαcβ = −cβcα

〉
.

Elements of the algebra are polynomials in anti-commuting variables c1, · · · , cm

with coefficients in smooth functions on M :

f (x, c) = f0(x)+
m∑

k=1

∑

α1<···<αk

fα1,...,αk (x)c
α1 . . . cαk . (25)

Let dx be a volume form for the manifold M . Choose the orientation c1 . . . cm

on the fibers. By definition, the integral of the function f (x, c) with respect to the
volume form dx and the orientation c1 . . . cm is

∫

M(n|m)
f dxdc =

∫

M
f1,...,m(x)dx.

An even function on such a super-manifold has only terms of even degree in (25).
Critical points of an even function f on M(n|m) are, by definition, critical points of
f0 on M .

Let f be an even function on M(n|m). Consider the following integral

∫

M(n|m)
exp

(
i f (x, c)

h

)

g(x, c)dxdc. (26)

Here we assume that M is compact and that all functions are smooth.
Combining asymptotic analysis and the asymptotic expansion for oscillating inte-

grals with the formulae for Grassmann integrals obtained in the previous section we
arrive at the following asymptotic expansion for the integral (26):
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∫

M(n|m)
exp

(
if (x, c)

h

)

g(x, c)dxdc � h
n−m

2 (2π)
n
2

∑

a

1√| det(B(a))|Pf(iL(a)) exp

(
i

h
f (a)+ iπ

4
sign(B(a))

)

⎛

⎝1+
∑

� �=Ø

(ih)−χ(�)(−1)c(D(�))Fa(D(�))

|Aut(�)|

⎞

⎠ . (27)

Here B(a)ij = ∂2 f
∂xi ∂x j (a) and L(a)αβ = fαβ(a), the summation is over finite

graphs with two types of edges: fermionic edges (dashed), and bosonic edges (solid),
c(D(�)) is the number of crossings of fermionic edges in the diagram. Weights of
edges (propagators) and of vertices are given in Fig. 3.8. An example is given in
Fig. 3.9.

1 1

2 2

1 n
m

m

nm

Fig. 3.8 Weights for Feynman diagrams in (27)

Fig. 3.9 An example of the Feynman diagram for super-integrals
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3.5.4 Charged Fermions

Assume that m = 2k. Denote ci = ci , c̄i = ck+i for i = 1, . . . , k. Assume that the
function f in (26) has the form

f (x, c, c̄) = f0(x)+
k∑

α,β=1

fαβ̄(x)c
α c̄β̄ + · · · ,

where . . . denote terms of higher order in c, c̄.
In this case the asymptotic expansion of the integral (26) is given by Feynman

diagrams with oriented fermionic edges:

α β̄ (L(a)−1)α β̄

β̄m

β̄ 1

αm

α 1
∂n fα1... αm,β̄1... β̄m

∂xi1... ∂xin
(a)

in

i2

i1

Fig. 3.10 Weights for Feynman diagrams in (28)

Fig. 3.11 Pairing with oriented edges, producing a Feynman diagram
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∫

M(n|2k)

exp

(
i f (x, c)

h

)

g(x, c)dxdc = h
n−2k

2 (2π)
n
2

∑

a

1√| det(B(a))| det(L(a)) exp

(
i

h
f (a)+ iπ

4
sign(B(a))

)

⎛

⎝1+
∑

� �=Ø

(ih)−χ(�)(−1)c(D(�))Fa(D(�))

|Aut(�)|

⎞

⎠ , (28)

where all ingredients are the same as in (27) except that the summation is taken
over the graphs with oriented fermionic edges and with weights from Fig. 3.10. An
example is given in Fig. 3.11.

3.6 Finite-Dimensional Faddeev–Popov Quantization
and the BRST Differential

In this section we will study the integral (13) when a Lie group G acts on X faith-
fully (with no stabilizers) and the function f is invariant with respect to this action.

3.6.1 Faddeev–Popov Trick

Let X be a manifold with the action of a Lie group G. We assume here that the
action is free, i.e., that the stabilizer of every point in X is trivial. Assume also that
X/G is a manifold. (Note that what is really important is the assumption that X/G
is smooth near orbits where f is critical.) In this case

dim(X/G) = dim(X)− dim(G).

Assume that the manifold X has a G-invariant volume form and that X is compact.
It is clear that such restrictions are too strong, but we will see in the next section
how they can be relaxed to reasonable assumptions.

Let f (x) be a G-invariant real analytic function. The goal of this section is to
prepare the setup for the description of the asymptotic expansion of the integral

Ih =
∫

X
exp

(

i
f (x)

h

)

dx (29)

as the sum of Feynman diagrams, just as it was done in section for functions on X
with simple critical points.

Since the function f is G-invariant, its critical points are not simple, except when
a critical point is a fixed point of the G-action, but since we assume faithfulness,
there are no such points.
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Instead of assuming the simplicity of critical points of f we assume that critical
variety C f = {x ∈ X |df (x) = 0} of f is the disjoint union of finitely many G-
orbits.

We want to change the integration over X to the integration over the orbits of the
G-action. In practice, it is convenient to describe the space of orbits in terms of a
cross section.

Let us assume that the surface

Sφ = {x ∈ X |φa(x) = 0, a = 1, . . . , n},

where φa(x), a = 1, . . . , n, with n = dim(G) are independent functions, is a cross-
section, i.e., intersects every G-orbit exactly once.

Let xi, i = 1, . . . , d, be local coordinates on U⊂ X , ea, a = 1, . . . , n be a linear
basis in the Lie algebra g = Lie(G). Denote by Di

a(x) the matrix describing the
action of ea as a vector field on X in terms of local coordinates xi:

(ea f )(x) =
d∑

i=1

Di
a′(x)

∂ f

∂xi
(x)

and by Lb
c(x) the matrix:

Lb
a(x) =

d∑

i=1

Di
a(x)

∂φb

∂xi
(x) = eaφ

b(x).

Since we assume that Sφ is a cross section, det(L) �= 0 on this surface. Later we will
relax this condition requiring only that the determinant is not vanishing in a vicińity
of critical points of f.

A coordinate free way to formulate this non-degeneracy condition can be phrased
as follows. For x ∈ Sφ ⊂ X let Lx ⊂ Tx X be the subspace of the tangent space
spanned by vector field describing the action of the Lie algebra g on X, and Tx Sφ ⊂
Tx X be the tangent space to Sφ at this point. The non-degeneracy of L is equivalent
to linear independence of Lx and Tx Sφ in Tx X .

Theorem 3 (Faddeev–Popov)6 The integral in question is given by

∫

X
exp

(

i
f (x)

h

)

dx = hn|G|
∫

L
exp

(

i
fFP(x, c, c̄, λ)

h

)

dx dc̄ dc dλ, (30)

where the super-manifold L is X × godd × godd × g∗, |G| is the volume of G with
respect to a left invariant measure dg, and

6 Faddeev and Popov derived the formula (30) in the setting of the Yang–Mills theory, where the
symmetry group is infinite-dimensional and only the integration over gauge classes may have a
meaning, see [20].
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fFP(x, c, c̄, λ) = f (x)− ih
n∑

a,b=1

ca Lb
a(x)c̄b +

n∑

a=1

λaφ
b(x). (31)

Proof From the G-invariance of f

∫

X
exp

(

i
f (x)

h

)

dx =
∫

X×G
exp

(

i
f (x)

h

)

�(x)δ(φ(x))dxdg, (32)

where �(x) is determined by the identity

�(x)
∫

G
δ(φ(gx))dg = 1. (33)

Here dg is a right-invariant measure on G, i.e. d(gh) = dg. Because of this�(hx) =
�(x). The G-orbit through x intersects the cross section Sφ only once (since it is a
cross section). Denote this point g0x (such g0 depends on x , it exists because Sφ is
a cross section and, in particular, intersects all orbits). Then, we have

φa(g0x) = 0.

In a vicinity of this point

φa

(

exp

(
∑

b

tbeb

)

g0x

)

=
∑

b,i

tb Di
b(g0x)

∂φa(g0x)

∂xi
+O(t2)=

∑

b

tb La
b(g0x)+O(t2).

Thus, the identity (33) is equivalent to

�(x)
∫

Rn
δ(L(g0x)t)dt = 1,

i.e.

�(x) = det(L(g0x)).

Here we identified Tg0 G � R
n . Taking this into account we arrive at the formula

∫

X
exp

(

i
f (x)

h

)

dx = |G|
∫

X
exp

(

i
f (x)

h

)

det(L(g0x))δ(φ(g0x))dx.

Taking into account that g0 = 1 when φ(x) = 0, we obtain

∫

X
exp

(

i
f (x)

h

)

dx = |G|
∫

X
exp

(

i
f (x)

h

)

det(L(x))δ(φ(x))dx.
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Expressing det(L(x)) as a fermionic integral and taking into account

δ(φ) =
∫

Rn
exp(i(φ, λ))dλ,

we arrive at the formula (30).

3.6.2 Feynman Diagrams with Ghost Fermions

Now let us use the formula (30) to derive the Feynman diagram expansion of the
integral (29).

Critical points of the function fF P on the super-manifold L are, by definition,
critical points of

f̃ (x, λ) = f (x)+
∑

a

λaφ
a(x).

This is simply the Lagrange multiplier method and by the assumption which we
made above critical points of this function on X × g∗ are simple. In particular
the matrix of second derivatives is non-degenerate near each critical point of this
function.

Thus, we can describe the asymptotic expansion of the integral (29) by Feynman
diagrams. Applying the formula (28) to the integral (30) we obtain the following
asymptotic expansion:

∫

L
exp

(
if FP(x, c, c, λ)

h

)

g(x, c, c̄)dxdcdcdλ � |G|h d−n
2 (2π)

d+n
2

∑

a

1√| det(B(a))| det(−iL(a)) exp

(
i

h
f (a)+ iπ

4
sign(B(a))

)

⎛

⎝1+
∑

� �=Ø

(ih)−χ(�)(−1)c(D(�))Fa(D(�))

|Aut(�)|

⎞

⎠ , (34)

Here the first summation is over the set of critical points of f̃ . Feynman diagrams
in this formula have bosonic edges and fermionic-oriented edges, c(D(�)) is the
number of crossings of fermionic edges. The structure of Feynman diagrams is the



3 Lectures on Quantization of Gauge Systems 157

same as in (28). The propagators corresponding to Bose and Fermi edges are shown
in Fig. 3.12. The weights of vertices are shown in Fig. 3.13.7

The asymptotic expansion (34) depends only on how the cross section Sφ inter-
sects G-orbits in the infinitesimal neighborhood of critical points of f . In other
words, the expansion is defined as long as the linear operators B(a) and L(a) are
invertible at all critical points of the function f̃ (x, λ). This is equivalent to the con-
dition Ta Sφ ∩ ga = {0} where Ta Sφ ⊂ Ta X is the tangent space to Sφ at a, and ga

is the subspace in Ta X spanned by vector fields describing the infinitesimal action
of the Lie algebra of G.

The main moral of this observation is that in order to have the asymptotic expan-
sion of the integral in terms of Feynman diagrams we just have to choose a con-
straint which is a cross section through the orbits in an infinitesimal neighborhood
of critical orbits.

α β

⎛
⎜⎝

∂ 2 f (a )
∂ x i ∂ x j

∂ ϕ b (a )
∂ x i

∂ ϕ c (a )
∂ x j 0

⎞
⎟⎠

− 1

i,
,
j= 1...

...
d

b c= 1 n

b c

(− iL − 1 (a )) b
c

Fig. 3.12 Weights of edges for Feynman diagrams in (34)

a

...
i1 in−1

i1

...
in

b1

− ∂ n−1ϕa(a)

∂ xi1 ∂ xin− j...

− ∂ n f (a)
∂ xi1 ∂ xin...

i
∂ nL

b1
b2

(a)

∂ xi1...∂ xin

..
i1 inb2

Fig. 3.13 Weights of vertices for Feynman diagrams in (34)

7 Each fermionic propagator contributes to the weight of the diagram an extra factor h−1. Each
vertex with two adjacent fermionic (dashed) edges contributes the factor of h. Because fermionic
lines form loops, these factors cancel each other.
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3.6.3 Gauge Independence

The asymptotic expansion of the integral (29) does not depend on the choice of the
constraint φ (as long as it is a cross section through the G-orbits of tangent spaces
at critical points).

However, it is not obvious from the Feynman diagram formula for the asymptotic
expansion. Let us check that the semiclassical term of the expansion does not depend
on φ. Till the end of this section we work in a vicinity of a critical point of fFP. The
semiclassical term is

det(B)−
1
2 det(L),

where

B =
⎛

⎝
∂2 f
∂xi ∂x j

∂φb

∂xi

∂φa

∂x j 0

⎞

⎠ (35)

and

Lb
c =

∑

i

li
c
∂φb

∂xi
. (36)

Let us make an infinitesimal variation of the constraint φa(x) �→ φa(x) + εa(x).
The product of the determinants will change as

det(B)−
1
2 det(L) �→ det(B)−

1
2 det(L)

(

1− 1

2
tr(B−1δB)+ tr(L−1δL)+ · · ·

)

,

where . . . are higher order terms. We have to prove that the first-order terms vanish.
The matrix B has the block form, so is the matrix B−1. Both of these matrices are
symmetric, therefore

−1

2
tr(B−1δB) = − tr((B−1)12δB21) = −

∑

i,c

bi
c
∂εc

∂xi
,

where bi
a are matrix elements of the block (B−1)12. They satisfy the identity

∑
i
∂φb

∂xi bi
c = δb

c .

The second term can be written as
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tr(L−1δL) =
∑

b,c,i

(L−1)cbli
c
∂εb

∂xi
.

Using the identity
∑

i (L
−1l)ib

∂φc

∂xi = δc
b and the corresponding identity for b we

conclude that

−1

2
tr(B−1δB)+ tr(L−1δL) = 0,

which proves that the semiclassical factor does not depend on the choice of the
gauge condition.

We will leave the exercise of verifying this fact in all orders ≥ 1 to the reader.

3.6.4 Feynman Diagrams for Linear Constraints

Because the asymptotic expansion depends only on the formal neighborhood of
critical points of f (x) on the surface of the constrains and does not depend on
the particular choice of the constraint (as long as it is a local cross section in the
neighborhood of each critical point), we can choose them at our convenience at
each neighborhood.

In particular, if X is linear, we can deform φ to a linear cross section in a formal
neighborhood of each critical point. Now let us find the asymptotic expansion of the
integral

∫

Xa

exp

(

i
f (x)

h

)

det(L(x))δ(φ(x))dx, (37)

where Xa is an infinitesimal neighborhood of a ∈ X .
For the integral (37) we obtain

∫

Xa

exp

(

i
f (x)

h

)

det(L(x))δ(φ(x))dx=
∫

ker(φ)
exp

(

i
f (s)

h

)

det(L(s)) det(L(a))−1ds,

Since the constraint is linear, Lb
a(s) =

∑

i
li
a(s)ϕ

a
i . Here lc

a(s) is the matrix describ-

ing the action of g on g(a) ⊂ Ta X .
Change coordinates to xi = ai +∑

a
li
a(a)X

a +∑
α

ψ i
αsα where ψα is a basis in

ker(φ). We assume a ε ker(φ)
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i j ( (a )−1) ij

a b (− i (a )−1)ab

i1 i2 i3 in ∂ n f

∂ xi1... ∂ xin
(a )...

a1 a2 i1 in
...

i ∂ n
ab

∂ xi1 ∂ xin

i2
...

Fig. 3.14 Weights of Feynman diagrams in (38)

Its contribution to the asymptotic expansion is given by the formal power series
where coefficients are determined by Feynman diagrams with rules described in
Fig. 3.14. This power series does not depend on the choice of Xφ . Indeed different
choices of φ are related by linear transformations in Xφ . The contribution from each
Feynman diagram is invariant with respect to linear transformations of s-coordinates
and therefore does not depend on the choice of φ.

Finally, we can write the asymptotic expansion of (30) as

∫

X
exp

(

i
f (x)

h

)

dx � |G|h d−n
2 (2π)

d+n
2

∑

a

1√| det(D(a))| det(−il(a)) exp

(
i

h
f (a)+ iπ

4
sign(D(a))

)

⎛

⎝1+
∑

� �=Ø

(ih)−χ(�)(−1)c(D(�))Fa(D(�))

|Aut(�)|

⎞

⎠ . (38)

Here D(a)i j = ∂2 f
∂si ∂s j where si are coordinates on Xφ . The coefficients are given by

Feynman diagrams with weights of edges and vertices described in Fig. 3.14, and
all other ingredients are as before.

The factor exp
( iπ

4 sign(B)
)

can also be written as i N exp(− iπ
2 n−(B)) where

n−(B) is the number of negative eigenvalues of B. This is more or less how the
Morse index appears in the semiclassical asymptotic of the propagator in quantum
mechanics.
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3.6.5 The BRST Differential

The appearance of fermionic variables (Faddeev – Popov ghost fields) in the asymp-
totic expansion of (30) looks as a bit of a mystery and as a technical trick. In the
BRST approach these non-commutative variables attain a natural meaning.

The key observation of Becchi et al. [12] and of Tuytin [54]8 is that the odd
operator Q

Q =
n,d∑

a,i=1

ca Li
a
∂

∂xi
− 1

2

∑

a,b,c

f a
bccbcc ∂

∂ca
+
∑

a

λa
∂

c̄a

acting on the space C∞(L) = Fun(X×g∗)⊗C[ca, c̄a] = C∞(X×g∗)⊗∧(g⊕g∗)
of functions on the super-manifold L = X × godd × godd × g∗ has the properties

Q2 = 0,

Q fFP = 0.

The first property means that the pair (C∞(L), Q) is a co-chain complex.
Because we assumed that the action of G on X is faithful, its zero cohomology
can be naturally identified with C∞(X/G), and the other cohomologies vanish.
Note that Q = QCh + QK , where the first term is the differential in the Chevalley
complex for g with the coefficients in C∞(X). The second term QK =∑a λa

∂
c̄a

is
the Koszul differential for functions on g∗.

The second property means that the Faddeev – Popov action is a cocycle in the
BRST complex. The function fF P is not a co-boundary and therefore defines a
non-trivial zero cohomology class in H0(L) � C∞(X/G). This class is simply the
initial function f considered as a function on G-orbits. Indeed, the function fF P

can be written as fF P = f + Q
(∑

a φ
ac̄a
)
.

To see how the integral over the super-space L appears in this setting, consider
first a simple fact in linear algebra.

Let C be a super-vector space and d : C → C be an odd linear operator with
d2 = 0. Assume D is another super-vector space with an odd differential d∗ :
D → D, d∗2 = 0 and a non-degenerate pairing 〈., .〉 : D ⊗ C → C such that
〈d∗l, a〉 = (−1)l̄ 〈l, da〉.

We will think of (D, d∗) and (C, d) as co-chain complexes and say that l ∈ D
and a ∈ C are cocycles, if d∗l = 0 and da = 0. Denote by [l] ∈ H(D) =
Ker(d∗)/Im(d∗) and [a] ∈ H(C) = Ker(d)/Im(d) the cohomology classes of the
cocycles l and a.

Lemma 3 If l and a are cocycles, then

〈l, a〉 = 〈[l], [a]〉 ,

8 The original formulation uses the supersymmetry concept and has a slightly different appearance.
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where 〈[l], a]〉 is the induced pairing on the cohomology spaces.

Indeed, the cocycle properties imply that

〈
l + d∗m, a + dc

〉 = 〈l, a〉 ,

which defines the pairing on the cohomology spaces and proves the lemma.
Now we should identify ingredients of this lemma in the FP-BRST setting. The

G-invariance of the measure of integration dxdc̄dcdλ in the FP integral which we
will denote by dl implies9

∫

L
Qgdl = 0

Considering the integral as a linear functional on C = C∞(L) with the differential
we can think of it as an element of D which is annihilated by d∗.

Applying the lemma to a cocycle g ∈ C∞(L), i.e., to a function, such that Qg =
0 we arrive at the identity

∫

L
gdl =

∫

Y
[g]dy. (39)

Here Y is the super-manifold such that H0(C∞(L)) = C∞(Y ), i.e., the appropri-
ate topological version of X/G. If we would be in algebro-geometric setting, the
variety Y would be the spectrum of the commutative algebra H0. We also made an
assumption that all cohomologies except H0 are vanishing, which is in our setting
equivalent to the faithfulness of the G-action on X .

Equation (39) implies, in particular, that if Qg = 0 (i.e., if g is G-invariant) and
if the measure is G-invariant, then

∫

L
exp

(
if FP

h

)

gdl =
∫

Y
exp

(
if

h

)

[g]dy.

This puts the Faddeev–Popov method into a natural algebraic setting and “explains”
the algebraic meaning of fermionic ghost fields. It also shows that the method
can be extended to any complex which has C∞(X/G) as its cohomology space.
Because of the formula (39) it does not matter with which complex (C∞(L), Q) we
started, as long as the cohomology space is C∞(X/G). This observation leads to

9 The operator Q can be regarded as an super-vector field on L . The invariance of the measure dl
is equivalent to the zero-divergence condition of the vector-field (with respect to the measure dl).
Recall that for any vector field Q we have

∫

L
Qgdl =

∫

L
g divdl(Q)dl

where divdl(Q) is the divergence of the vector field Q with respect to the volume measure dl.
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an important notion of cohomological field theories [57] and to a natural notion of
quasi-isomorphic field theories.

Perhaps one of the most important developments along these lines is the exten-
sion of the BRST observations to a more general class of degenerate Lagrangians
(i.e., degenerate critical points of f ). This generalization known as Batalin–
Vilkovisky quantization (BV) works even in the case when the Lagrangian is invari-
ant with respect to the action of vector fields, which do not necessarily form a Lie
algebra. One of the most striking applications of this technique was the quanti-
zation of the Poisson sigma model and the construction of the *-product for an
arbitrary Poisson manifold. But this subject goes beyond the goal of the present
lectures.

3.7 Semiclassical Quantization of a Scalar Bose Field

The classical theory of a scalar Bose field is described in Sect. 3.2.5. Let us define
the amplitude Z(M) as a semiclassical expansion of a (non-existing) path integral
given by Feynman diagrams similar to how the asymptotic expansion looks for
finite-dimensional integrals.

This definition can be motivated by finite-dimensional approximations to the path
integral, which provide an acceptable definition of infinite-dimensional integrals
such as Wiener integral and path integrals in low-dimensional Euclidean quantum
field theories [30].

In semiclassical quantum field theory, path integrals are defined as formal power
series which have the same structure as if they were asymptotical expansions of
existing integrals. The coefficients in these expansions are given by Feynman inte-
grals. We will show how it works in quantum mechanics, and how it compares with
the semiclassical analysis of the Schrödinger equation for d = 1. We will have a
brief discussion of the d > 1 case, as well.

3.7.1 Formal Semiclassical Quantum Mechanics

3.7.1.1 Semiclassical Asymptotics from the Schrödinger Equation

To be specific, we will consider here quantum mechanics of a point particle on a
Riemannian manifold N in a potential V (q) (see Sect. 3.2.3).

Let {γc(t)}t2t1 be a solution to the Euler – Lagrange equations for a classical
Lagrangian L(ξ, q) with Dirichlet boundary conditions γ (t1) = q1, γ (t2) = q2.
Denote by S(c)t2−t1(q2, q1) the value of the classical action functional on γc:

S(c)t2−t1(q2, q1) =
∫ t2

t1
L(γ̇c(t), γc(t))dt.
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Let Ut (q2, q1) be the kernel of the integral operator representing the evolution
operator (11). Solving Schrödinger equation (12) in the limit h → 0 we obtain the
following asymptotics of the evolution kernel as h → 0

Ut (q2, q1) ∼
∑

γc

(2π i)−
n
2 exp

(
i

h
S(c)t (q2, q1)+ iπμ(γc)

2

)

∣
∣
∣
∣
∣
∧n

(
∂2S(c)t (q2, q1)

∂q2∂q1
dq2 ∧ dq1

)∣∣
∣
∣
∣

1
2
⎛

⎝1+
∑

n≥1

hnU (n)
c (q2, q1)

⎞

⎠ . (40)

Here

∧n
(
∂2S(a, b)

∂a∂b
da ∧ db

)

= ∧ndadb S(a, b) = det

(
∂2S(a, b)

∂ai∂b j

)

da1 ∧ . . . dan ∧ db1 ∧ . . . dbn . (41)

μ(γc) is the Morse index of γc (i.e., the number of focal points of the trajectory
in T ∗Rn induced by γc relative to fibers of the cotangent bundle). The coefficients

a(c)k = (2π i)− n
2

(
det
(
∂2 S(a,b)
∂ai ∂b j

)) 1
2

U (n)
c satisfy the transport equation

∂a(c)k

∂t
+ 1

2m
�S(c)a(c)k + 1

m

n∑

j=1

∂S

∂q j

∂a(c)k

∂q j
+ i

2m
�a(c)k−1 = 0.

However, the initial condition limt→+0 Ut (q, q ′) = δ(q, q ′) can no longer be
imposed since we consider the asymptotical expansion when h<< t . Instead, to
determine the coefficients a(c)k , one should use the semigroup property of the prop-
agator:

UtUs = Us+t .

The kernel of the integral operators representing the evolution operator satisfies the
identity

∫

N
Ut (q3, q2)Us(q2, q1) = Us+t (q3, q1). (42)

Here the first factor is a half-density in q3, q2, the second is a half-density in q2, q1.
The product is a density in q2 and it is integrated over N .

As h → 0 the semigroup property implies that the asymptotical expansion should
satisfy the identity
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∑

k,l≥0

∫

N
exp

(
i(S(c

′)
t (q3, q2)+ S(c

′′)
s (q2, q1))

h

)

a(c
′)

k a(c
′′)

l

=
∑

k

exp

(
i S(c)t (q3, q1)

h

)

a(c)k .

Here by the integral of the product of two half-densities on N we mean the formal
asymptotic expansion (17), and γc′, γc′′ are parts of the path {γc}t+s

t=0 when 0 < τ < s
and s < τ < s + t , respectively.

It is not difficult to derive the first coefficients of the asymptotical expansion (40)
from this equation. Moreover, this equation alone defines all higher order terms in
the semiclassical expansion.

For more details on the semiclassical analysis see, for example, [50].

3.7.1.2 Semiclassical Expansion from the Path Integral

Looking at the expression (40), it is natural to imagine that it may be interpreted as
a semiclassical asymptotics of an oscillating integral over the space of paths con-
necting the points q1 and q2. Critical points in this integral are classical trajectories.

This point of view was put forward in quantum mechanics by R. Feynman and
it can be supported by many very convincing arguments [22]. Eventually, a math-
ematically meaningful definition of a path integral for the Euclidian version (when
the integral is rapidly decaying instead of oscillating) emerged and was developed
further in the framework of constructive field theory. The Wiener integral, which
was introduced in probability theory, even earlier, is an example of such an object.

Here we will not try to make the definition of the integral rigorous. Instead of this
we will define its semiclassical expansion in such a way that it has an appearance of a
semiclassical expansion of an infinite-dimensional integral. After this we will check
that it satisfies the semigroup property. This is an illustration of a semiclassical
quantum field theory, where the partition function Z M depends on the boundary con-
dition, and integrating over possible boundary conditions has the replicating gluing
property (9). The difference is that in quantum mechanics we have the Schrödinger
equation as a reference point to compare any definition of the path integral. In the
more complicated models of quantum field theory, the gluing axioms seem to be the
only major structural requirement (beyond unitarity and causality, which we do not
discuss here).

So, we are looking for a formal power series which would look like the asymp-
totic expansion of the integral

Zt (q2, q1) =
∫

γ (0)=q1,γ (t)=q2

exp

(
i

h
S[γ ]

)

Dγ.

We will focus in this section on the point particle of mass m in R
n in the potential

V (q) (3). By analogy with the finite-dimensional case, we define the asymptotic
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expansion as

Zt (q2, q1) = C
∑

γc

exp

(
i

h
S(c)t (q2, q1)− iπ

2
n−(K (c))

)

|det′(K (c))|− 1
2 |dq1|

1
2 |dq2|

1
2

⎛

⎝1+
∑

� �=∅
(ih)−χ(�) Fc(�)

|Aut(�)|

⎞

⎠ . (43)

Here

(K (c))i j = −mh2 d2

dτ 2
δij + ∂2V

∂xi∂x j
(γc(τ ))

is the matrix differential operator which acts on the space of functions on [0, t] with
values in R

n (trivialized tangent bundle to N restricted to γ (c) in local coordinates)

with the Dirichlet boundary conditions f (0) = f (t) = 0. The half-density |dq| 1
2

is the “square root” of the Riemannian volume density on N . The sum is taken
over classical trajectories connecting q1 and q2, and n−(K (c)) denotes the number
of negative eigenvalues of the operator K (c), C is some constant. The weights for
Feynman diagrams in (43) are given in Fig. 3.15, where Gij(x, y) is the kernel of
the integral operator which is the inverse to K (c).

The expansion is not the result of computation. It is a definition, which is based
on the idea that the path integral exists in some sense and its asymptotical expansion
as h → 0 is given by a formula similar to the finite-dimensional case. It turns out
that despite very different appearance the semiclassical expansion of Ut coincides
with this series.

One can show easily (see, for example, [50]) that

|det′(K (c))| =
∣
∣
∣
∣det

(
∂2S(a, b)

∂ai∂b j

)∣∣
∣
∣

−1

,

τ , i τ , j G
(c)

(τ ,τ )
ij

τ , i1 τ , i2 τ , in

... ...
...

∂ n
V

∂q
i1 ∂qin

(γ
(c)(τ1))δ (τ1− τ2)δ (τ2− τ3) δ (τn− 1 − τn)

n21

Fig. 3.15 Weights of Feynman diagrams in (43)
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as well as that μ(γ (c)) can be identified with n−(K (c)). This shows that the leading
terms of (43) and (40) are the same. Now the question is whether the two power
series are the same.

We will state without proof the following theorem.

Theorem 4 The expansion Zt (q2, q1) is equal to the asymptotic expansion of the
kernel of the propagator and it satisfies the gluing property.

The details will appear in a paper by T. Johnson-Freyd [38] when N = R
d with

flat metric.
As an immediate corollary to this theorem we have

Corollary 1 The functions

U (n)
c (q2, q1)) =

∑

−χ(�)=n

Fc(�)

|Aut(�)|

are coefficients of the asymptotical expansion of the propagator and, after being
properly normalized, satisfy the transport equation. Here χ(�) = |V | − |E | is the
Euler characteristic.

Let us write the semiclassical propagator as

Zt (q2, q1) =
∑

c

exp

(
i

h
S(c)t (q2, q1)

)

J (c)t (q2, q1).

The semigroup property of the propagator implies that this power series satisfies
the following gluing/cutting identity:

exp

(
i

h
S(c)t (q3, q1)

)

J (c)t (q3, q1) =
∫

q2∈N
exp

(
i

h

(
S(c)s (q3, q2)+ S(c)t−s(q2, q1)

))

J (c)s (q3, q2)J
(c)
t−s(q2, q1). (44)

Here the integral is taken in a sense of the semiclassical expansion as the sum of cor-
responding Feynman diagrams. It is easy to check that the identity (44) determines
uniquely not only the higher order coefficients but also the leading order factor.

3.7.2 d > 1 and Ultraviolet Divergencies

In the semiclassical theory of scalar Bose field on a compact Riemannian manifold
the partition function for the theory is given by the formal power series
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Z M (b) =C
∑

φc

exp

(
i SM (φc)

h
− iπ

2
n−(Kφc )

)

|det′(Kφc )|−
1
2

⎛

⎝1+
∑

� �=∅
(ih)−χ(�)

Fφc (�)

|Aut(�)|

⎞

⎠ . (45)

Here we assume that there are finitely many solutions φc to the Euler–Lagrange
equation (4) with the Dirichlet boundary conditions φc|∂M=b. The number n−(Kφc )

denotes the number of negative eigenvalues of the differential operator

Kφc = �+ V ′′(φc(x))

acting on the space of functions on M with the boundary condition f (x) = 0, x ∈
∂M , and det′(Kφc ) is its regularized determinant (−π2 n−(Kφc ) is the phase of the
square root of the determinant). The ζ -function regularization is one of the standard
ways to define det′ (see for example [6]). The weights of Feynman diagrams are
given in Fig. 3.16, where G(c)(x, y) is the kernel of the integral operator which is
inverse to Kφc .

An example of an order one Feynman diagram is given in Fig. 3.17.

x x G (c)(x, x )

x1 x2 xn
V (n)(φc(x1))δ (x1 − x2) ... δ (xn− 1 − xn )...

Fig. 3.16 Weights of Feynman diagrams in (45)

MV
(3)(φc(x1))V (3)(φc(x2))G(c)(x1,x2)3dx1dx2

Fig. 3.17 An example of the Feynman diagram of order one

The kernel G(x, y) behaves at the diagonal as

G(x, y) ∼ |x − y|2−d ,

which means that the Feynman integrals converge for d = 1 (quantum mechanics),
diverge logarithmically for d = 2, and diverge as a power of the distance for d > 2.

This is a well-known problem of ultraviolet divergencies in the perturbation the-
ory. The usual way to deal with divergencies is a two-step procedure.

Step 1. The theory is replaced by a family of theories where the Feynman inte-
grals converge (regularized theories). There are several standard ways to do this:
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• Higher derivative regularization replaces the theory with one where the quadratic
part of the action has terms with higher derivatives. In the regularized theory the
propagator G(x, y) is not singular at the diagonal. For more details see [35].

• Lattice regularization replaces the theory on a smooth Riemannian manifold
M by a metrized cell approximation of M . The path integral becomes finite-
dimensional and Feynman diagrams describing the semiclassical expansion
become finite sums.

• Dimensional regularization is more exotic. It replaces Feynman d-dimensional
integrals, where d is an integer, by formal expressions, where d is not an integer.
It is very convenient computationally for certain tasks (see, for example, [19] and
references therein).

Step 2. After the theory is replaced by a family of theories where Feynman
integrals converge, one should compute them and pass to the limit corresponding
to the original theory. Of course the limit will not exist since some terms will have
singularities. In some cases it is possible to make the parameters in the regularized
theory (for example, coefficients in V (φ)) depend on the parameters of the regular-
ization in such a way that the sum of Feynman diagrams of order up to n remains
finite when the regularization is removed. Such theories are called renormalizable
in orders up to n.

The compatibility of the gluing/cutting axiom, i.e., an analog of the identity (44),
and the renormalization is, basically, an open problem for d > 1, which requires
further investigation. Notice that for d = 2 the integration over the boundary fields
does not introduce Feynman diagrams with ultraviolet divergencies, but these dia-
grams will diverge for d > 2. This problem was addressed in the case of Minkowski
flat space – time by K. Symanzik in [48].

3.8 The Yang–Mills Theory

The classical Yang–Mills theory with Dirichlet boundary conditions was described
in Sect. 3.2.6.

In this section we will define Feynman diagrams for the Yang–Mills theory fol-
lowing the analogy with the finite-dimensional case. In these notes we will do it
“half-way,” leaving the most important part concerned with the ultraviolet divergen-
cies aside.

Naively, the path integral quantization of the classical d-dimensional Yang–Mills
theory can be constructed as follows. Let G be a compact Lie group.

• To a closed oriented (d − 1)-dimensional Riemannian manifold with a princi-
pal G-bundle P we assign the space of functionals on the space of connections
on P .

• To a d-dimensional Riemannian manifold M with a principal G-bundle on it, we
define the functional Z on the space of connections on P|∂M as
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Z M (b) =
∫

i∗(A)=b
exp

(
i

h
SYM(A)

)

DA.

where i : ∂M ↪→ M is the tautological inclusion of the boundary and i∗(A) is
the pullback of the connection A to the boundary.

Now we can use the Faddeev–Popov Feynman diagrams to define the semiclas-
sical expansion of this integral. In the finite-dimensional case, Feynman diagrams
were derived as an asymptotic expansion of the existing integral. To define such
expansion, we should do the gauge fixing and then define the Feynman rules. The
Feynman diagrams for the Yang–Mills are divergent because the propagator is sin-
gular at the diagonal (ultraviolet divergence). Nevertheless, the theory is renormal-
izable, as in the previous example, even better, it is asymptotically free [31]. We
will not go into the details of the discussion of renormalization but will make a
few remarks at the end of this section. For more details about quantum Yang–Mills
theory and Feynman diagrams see [21].

3.8.1 The Gauge Fixing

As we have seen in the finite-dimensional case, the constraint (gauge fixing) needed
to construct the asymptotic expansion of the integral (30) has to be a cross section
through the orbits only in the vicinity of critical points (critical orbits) of the action
functional. To define Feynman diagrams for the Yang–Mills theory, we can follow
the same logic. In particular, we can choose a linear Lorentz gauge condition for
connections in the vicinity of a classical solution A.

For a connection A+α, where α is a 1-form (quantum fluctuation around A), the
Lorentz gauge condition is

dA ∗ α = 0, (46)

where ∗ is the Hodge operation. This condition defines a subspace in the linear
space of g-valued 1-forms, so we can use the formula (38) which uses no Lagrange
multipliers. The contribution to the path integral from a vicinity of A is then an
“integral” over the space of 1-forms α from K er(d∗A). In other words, to define the
semiclassical asymptotic of the partition function for the Yang–Mills theory, we can
try the Faddeev–Popov expansion with the Lorentz gauge condition.

3.8.2 The Faddeev–Popov Action and Feynman Diagrams

Following the analogy with the finite-dimensional case define the Faddeev–Popov
action for pure Yang–Mills theory as the following action with fields α(x), c̄(x), c(x):
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SA(α) =SYM(A)+
∫

M

1

2
tr 〈FA(α), FA(α)〉 dx

×− ih

2

∫

M
∗dAc̄ ∧ dAc − ih

2

∫

M
∗dAc̄ ∧ [α, c]. (47)

Here A is a background connection which is the solution to the classical Yang–Mills
equations and α is a g-valued 1-form on M . The bosonic part of this action is simply
SYM(A + α).

The quadratic part in α and the quadratic part in c̄, c of the action (47) are given
by the differential operator d∗AdA which is invertible on the space K er(d∗A) with
Dirichlet boundary conditions. Other terms define the weights of Feynman dia-
grams. The weights are shown in Fig. 3.18. The functions G A

1 and G A
0 are Green’s

functions of the Laplace–Beltrami operator � = d∗d + dd∗ on 1- and 0-forms,
respectively.

i,a,x j,b,x GA
1 (x,x )ab

ij

a,x b,x GA
0 (x,x )ab

i,a,x j,b,x k,c,x
fabc ( i)c

c δ(x− x )δ(x − x )
sym

i1a1x1 i2a2x2 i3a3x3 i4a4x4
fa1a2c fa3a4c(δi1i3δi2i4 − δi1i4δi2i3)δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

i,a,x bx cx
fabc ( i)

c
c δ(x − x)δ(x − x)

sym

Fig. 3.18 Weights of Feynman diagrams in the semiclassical expansion for the Yang–Mills theory

3.8.3 The Renormalization

The propagator in the Yang–Mills theory is singular at the diagonal for d > 1, and
just as in the scalar Bose field contributions from Feynman diagrams to the partition
function diverge. However, just as in the scalar Bose field, when d ≤ 4, after the
renormalization procedure Feynman diagrams become finite and there is a well-
defined semiclassical formal power series for the Yang–Mills given by renormalized
diagrams. This fact was discovered by t’Hooft [33] who invented the dimensional
regularization of Feynman diagrams and showed that taking into account Faddeev–
Popov ghost fields makes Yang–Mills into a renormalizable theory.
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Moreover, the renormalization in the Yang–Mills theory is remarkable because
it gives an asymptotically free theory. This was discovered in [31] and it means
that particles in such theory have to behave as non-interacting, free particles at high
energies. This prediction perfectly agrees with experimental data and this is why
the Yang–Mills theory is part of the Standard Model, unifying the theory of strong,
weak, and electromagnetic interactions.

The super-symmetric N = 4 Yang–Mills theory is expected to have a particularly
remarkable renormalization. It turns out that the divergent contributions from Feyn-
man diagrams cancel each other in each order of the expansion in h. This was proven
in the light-cone gauge and is believed to be true for other gauges. This Yang–Mills
theory is particularly important for Topological Quantum Field Theories [39, 27]
and in particular to the quantum field theoretical interpretation of the geometric
Langlands program.

Finally, few words on correlation functions. Since the Yang–Mills theory is
gauge invariant, natural observables should also be gauge invariant. Such observ-
ables are known as Wilson loops or, more generally, as Wilson graphs.

Recall the definition of Wilson loops. Let V be a finite-dimensional represen-
tation of a Lie group G. The Yang–Mills potential A (the field in the Yang–Mills
theory) is a connection in a principal G-bundle P . It induces a connection in the
vector bundle VP = P ×G V . Let

h A(Cx ) = P exp

(∫

Cx

A

)

(48)

be the parallel transport in VP along a path Cx which starts and ends at x ∈ M
defined by the connection A. Here P stands for the iterated path-ordered integral.

The Wilson loop observable is

W V
A (C) = TrVx (h A(Cx )). (49)

Here the trace is taken over the fiber Vx of VP over x ∈ M . The definition of more
general gauge invariant observables, Wilson graphs, will be given later, when we
will discuss observables in the Chern–Simons theory.

An important conjecture about the Yang–Mills theory, and another fundamen-
tal fact expected from this theory, is the dynamical mass generation. In terms of
expectation values of Wilson loops, this conjecture means that

〈WA(C)〉 ∝ exp(−ml(C)), (50)

as l(C) → ∞. Here on the left side we have the expectation value of the Wilson
loop and on the right side l(C) is the length of C in the Riemannian metric on M .
This conjecture is based on the conjecture that the Yang–Mills theory can be defined
non-perturbatively.

The parameter m in (50) is characterizing the radius of correlation. In a massless
theory, such as Yang–Mills theory, there are no reasons to expect that m �= 0. The
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appearance of such a parameter with the scaling dimension of the mass is known as
dynamical mass generation. For more details about this conjecture see [36].

3.9 The Chern–Simons Theory

In this section M is a compact-oriented manifold. The classical Chern–Simons the-
ory with a compact simple Lie group G was described in Sect. 3.2.8. As in the
pure Yang–Mills theory, fields in the Chern–Simons theory are connections in a
principal G-bundle over the space–time M . In contrast with the Yang–Mills theory,
the Chern–Simons action is the first-order action. One of the implications of this
is the difference in Hamiltonian formulations. The other is that the path integral
quantization for the Chern–Simons theory for manifolds with boundary is more
involved. Some of the aspects of this theory on manifolds with boundaries can be
found in references [24, 7].

From now on we assume that the space–time M is a compact, oriented, and
closed 3-manifold. The Chern–Simons action is topological, i.e., its definition does
not require a choice of metric on M . This is why it is natural to expect that the result
of quantization, the partition function Z(M), also depends only on the homeomor-
phism class of M . This gives a powerful criterium for consistency of the definition
of Feynman diagrams: the sum of Feynman diagrams for any given order should
depend only on the topology of the manifold.

The path integral formulation of the Chern–Simons theory on manifolds with a
boundary is a bit more involved then the one for the Yang–Mills. This is because the
Chern–Simons is a first-order theory. The space of states assigned to the boundary is
the space of holomorphic sections of the geometric quantization line bundle over the
moduli space of flat connections in a trivial principal G-bundle over the boundary
(provided we made a choice of complex structure). This space is a quantum coun-
terpart to the boundary conditions for the Chern–Simons theory when the pullback
to the boundary is required to be holomorphic. For more details on the quantization
of the Chern–Simons theory on manifolds with boundary see for example [7].

So, the goal of this section is to make sense of the expression

Z M =
∫

exp(ikCS(A))DA, (51)

or, more generally, of

Z M,� =
∫

exp(ikCS(A))W�(A)DA, (52)

where W�(A) is a gauge invariant functional (Wilson graph or any other gauge
invariant functional) which will be defined later, and k is an integer which guarantees
that the exponent is gauge invariant. The integral is supposed to be taken over the
space of all connections on a principal G-bundle on M .



174 N. Reshetikhin

The integrals (51, 52) are not defined as mathematical objects. However, one
can try (as in the previous examples of the scalar Bose field and of the Yang–Mills
theory) to define a combination of formal power series in k−1 resembling the expan-
sion of finite-dimensional integrals studied in the previous section. In the case of the
Chern–Simons theory, there is a natural requirement for such expansion: every term
should be an invariant of 3-manifolds. Remarkably, such a power series exists and
is more or less unique. This program was originated by Witten in [56] who outlined
the basic structure of the expansion. It was developed in a number of subsequent
works, in particular, in [42, 8, 9, 13, 14, 16] for the partition function for closed
3-manifolds and in [11, 32, 3] for (52), and others, when � is a link.

3.9.1 The Gauge Fixing

Let us use the same gauge fixing as in the Yang–Mills theory. For this we need to
choose a metric on M .

Since classical solutions in the Chern–Simons theory are flat connections, the
covariant derivative dA = d + A is a differential, i.e., d2

A = 0 (twisted de Rham
differential) acting on g-valued forms on M .10 Denote the cohomology spaces by
Hi

A. Because of the Poincaré duality we have natural isomorphisms H0
A � H3

A and
H1

A � H2
A.

In a neighborhood of a classical solution A, connections can be written as A+ α
where α is a g-valued 1-form on M . As in the Yang–Mills theory, the Lorentz gauge
condition for such connections is

d∗Aα = 0.

We will use this gauge condition in the rest of the chapter.

3.9.2 The Faddeev–Popov Action in the Chern–Simons Theory

According to our finite-dimensional example we should add fermionic ghost fields
c(x) and c̄(x) and the Lagrange multipliers λ(x) to the action, if we want to define
Feynman diagrams in this gauge theory. However, as we argued in Sect. 3.6.4, the
gauge condition can be chosen linearly near each critical point of the action, and
therefore we can use the version without Lagrange multipliers. In this case we just
have to add fermionic ghost fields to the action.

According to the rules of Sect. 3.6.4, the Faddeev–Popov action for the Chern–
Simons theory is the sum of the classical Chern–Simons action and the ghost terms
which are identical to those for the Yang–Mills theory:

10 Because a principal G-bundle over any compact oriented 3d-manifold is trivializable, we choose
a trivialization and identify �(M, ad(E)) with �(M,g).
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CSA(α) =CS(A)+
∫

M

1

2
tr

(

α ∧ dAα − 2

3
α ∧ α ∧ α

)

×− ih

2

∫

M
∗dAc̄ ∧ dAc − ih

2

∫

M
∗dAc̄ ∧ [α, c], (53)

where h stands for 1
k . We will focus in the discussion below mostly on the special

case of isolated flat connections, when H1
A = {0}. Quite remarkably [8], the field

α and the ghost fields in the Chern–Simons theory can be combined into one odd
“super-field”:

& = c + α + ih ∗ dAc̄.

Here c, α, and ∗dAc̄ are 0, 1, and 2 forms, respectively. The action (53) can be
written entirely in terms of &11:

CSA(α) = CS(A)+ 1

2

∫

M
tr

(

& ∧ dA& − 2

3
& ∧& ∧&

)

.

The quadratic part of the action is the de Rham differential twisted by the flat con-
nection A.

If H2
A(M, g) = {0} (equivalently, H1

A = {0}) the gauge condition d∗Aα = 0
together with the special form of the last term in & is equivalent to d∗A& = 0. The
inverse is also true: d∗A& = 0 implies d∗Aα = 0 together with &(2) being the Hodge
dual to an exact form.

The quadratic part of this action is (&, ∗dA&) where

(",&) =
∫

M
tr(" ∧ ∗&).

The surface of the constraint dA& = 0 is the super-space�0(M, g)⊕Ker
((

d∗A
)∗

0

)⊕
�((∗dA)0) ⊂ �(M, g)[1] where the first and the third summands are odd and the
second is even. The operator DA = ∗dA + dA∗ restricted to this subspace describes
the quadratic part of the action. Indeed, we have

∫

M
tr(& ∧ dA&) = 1

2
(&, (∗dA + dA∗)&) .

The operator DA maps even forms to even and odd form to odd, DA : �i →
�2−i ⊕�4−i . It plays a prominent place in index theory [6]. It can be considered as
a Dirac operator in a sense that

11 This form of the Faddeev–Popov action for the Chern–Simons theory has a simple explanation
in the framework of the Batalin–Vilkovisky formalism, see, for example, [17]. However, we will
not discuss it in these notes.
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D2
A = �A = d∗AdA + dAd∗A,

where �A is Hodge Laplace operator. The operator DA effectively appears in the
quadratic part being restricted to odd forms. This operator will be denoted by

D−A :
{
�1 → �1 ⊕�3

�3 → �1 .

Now the question is whether the operator D−A is invertible on the surface of
the constraint. In other words, whether the Lorentz gauge is really a cross section
through gauge orbits.

3.9.2.1 The Propagator

First, assume that the complex (�i (M, g), dA) is acyclic, i.e., Hi (M, g) = {0} for
all i = 0, 1, 2, 3 (by Poincaré duality Hi � H3−i , so it is enough to assume the
vanishing of H0 and H1). In this case, the representation of π1(M) in G defined by
holonomies of a flat connection A is irreducible (implied by H0 = {0}) and isolated
(implied by H1 = {0}).

Since the spaces Hi can be naturally identified with harmonic forms and there-
fore with zero eigenspaces of Laplace operators, in this case all Laplace operators
are invertible and so is DA. Denote by G A the inverse to �A, i.e., the Green’s func-
tion, then

PA =
(
D−A
)−1 = D−A G A = G A D−A .

Thus, in this case the quadratic part is non-degenerate and we can write contri-
butions from Feynman diagrams as multiple integrals of the kernel of the integral

operator
(
D−A
)−1

. The analysis of the contributions of Feynman diagrams to the
partition function was studied in this case by Axelrod and Singer in [8, 9], and by
Kontsevich [42].

Another important special case arises when the flat connection is reducible but
still isolated. For example, a trivial connection for rational homology spheres [13,
14, 16] has such property. In this case, we still have H1 = H2 = {0} and the Lorentz
gauge for α together with the exactness of ∗&(2) is still equivalent to the Lorentz
gauge for &, i.e., d∗& = 0. However, now there are harmonic forms in �0(M) and
�3(M) corresponding to the fundamental class of M and because of this, D−A is not
invertible on the space of all forms.

Nevertheless, in this case (and in a more general case when H1 �= {0}) one
can construct an operator which is “almost inverse” to D−A . Such an operator is
determined by the chain homotopy K : �i → �i−1 and the Hodge decomposition
of�. For details about such operator P see [8, 9, 13, 14, 16] and Sect. 3.3.2 of [17].

An important example of a rational homology sphere is S3 itself. In this case, the
inverse to D− for trivial a connection can be constructed explicitly by puncturing of
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S3 at one point (the infinity). The punctured S3 is homeomorphic to R
3 where the

fundamental class is vanishing and D− is invertible. The restriction of (D−)−1 to
1-forms is the integral operator with the kernel

ω(x, y) = 1

8π

3∑

ijk=1

εijk (x − y)i dxi ∧ dyk

|x − y|3 I, (54)

where εijk is the totally antisymmetric tensor with ε123 = 1, and I is the identity in
End(V ). It acts on the form

∑
i αi (x)dxi as

ω ◦ α(x) = 1

8π

3∑

ijk=1

εijk
∫

R3

(x − y)i

|x − y|3 α j (x)d
3ydxk . (55)

In all cases, the propagator PA is defined as the restriction of the restriction of
the “inverse” to D−A (a chain homotopy, when D− is not invertible) to 1-forms. It is
an integral operator with the kernel being an element of the skew-symmetric part of
�2(M × M, g× g). If ea is an orthonormal basis in g and xi are local coordinates,
we have

PA(x, y) = Pab
A (x, y)i j ea ⊗ ebdxi ∧ dy j , Pab

A (x, y)i j = Pba
A (y, x) j i .

3.9.3 Vacuum Feynman Diagrams and Invariants of 3-Manifolds

3.9.3.1 Feynman Diagrams

As in other examples of quantum field theories such as the scalar Bose field and
the Yang–Mills field we want to define the semiclassical expansion of the partition
function and of correlation functions imitating the semiclassical expansion of finite-
dimensional integrals.

Following this strategy and the computations of the Faddeev–Popov action for
the Chern–Simons theory in Lorentz gauge presented above, it is natural to define
the partition function Z(M) (the “integral” (51)) for the Chern–Simons theory as
the following combination of formal power series

∑

[A]
exp

(

i
C SM (A)

h
+ iπ

4
η(A)

) ∣
∣det′

(
D−A
)∣∣−1/2

det′
(
�0

A

)

⎛

⎝1+
∑

n≥1

(ih)n I (n)A (M, g)

⎞

⎠ , (56)

where h stands for k−1, det′ are regularized determinants of corresponding differen-
tial operators,�0

A is the Laplace–Beltrami operator acting on C∞(M, g), D−A is the
operator DA acting on odd forms, and η(A) is the index of the operator D−A . The
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sum is taken over gauge classes of flat connections on M (we assume that there is a
finite number of such isolated flat connections). The nth order contribution is given
by the sum of Feynman diagrams

I (n)A (M, g) =
∑

�,−χ(�)=n

IA(D(�),M, g)(−1)c(D(�))

|Aut(�)| . (57)

In the Chern–Simons case, these are graphs with 2n vertices (each of them being
3-valent). The contribution IA(D(�),M, g) is an appropriate trace of the integral
over Mm of the product of propagators. In other words this is the contribution from
the Feynman diagram D(�) with weights from Fig. 3.19.12

Because in this case we have only 3-valent vertices, only two first-order diagrams
in Fig. 3.5 will survive. Among these two, only the “theta graph” will give a non-
zero contribution due to the skew-symmetry of the propagator. The contribution
from the theta graph is

∫

M

∫

M

∑

{a},{b}
fa1a2a3 fb1b2b3 Pa1b1(x, y)Pa2b2(x, y)Pa3b3(x, y)dxdy. (58)

According to what we expect from the heuristic formula (51), the expression (56)
should depend only on the homeomorphism class of M and should not depend on
the choice of the metric (gauge condition). But first of all, we should make sure that
every term in this series is defined. The problem is that individual integrals in the
definition of I (n) diverge.

a,x b,x PA(x,x )ab

a1x1 a2x2 a3x3
fa1a2a3δ(x1− x2)δ(x2− x3)

Fig. 3.19 Weights in Feynman diagrams for the Chern–Simons theory, i.e. propagators and vertices
for the &-field

12 The weights in Feynman diagrams for the Chern–Simons theory are the same as we would
have without the ghost fields (without the Faddeev–Popov determinant). For the Chern–Simons
theory the ghost fields change the bosonic Feynman diagrams (which we would have in the naive
perturbation theory) to the fermionic one (with the sign (−1)c(D(�))). It happens because & is an
odd field and therefore the Feynman diagrams have fermionic nature. The orientation of graphs
used in [42] is another way to encode the fermionic nature of Feynman diagrams for the Chern–
Simons theory.

With the fermionic sign the sum of Feynman diagrams is finite in each order [8]. Without this
sign the sum would diverge because of the singularity of the propagator at the diagonal. It is similar
to the effect of ghost fields in the Yang–Mills theory. Without ghost fields the Yang–Mills theory
is not renormalizable. With ghost fields, as it was shown by t’Hooft it becomes renormalizable.
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As noticed in Footnote 12, a remarkable property of Feynman diagrams in the
Chern–Simons case is that the sum of Feynman diagrams of any given order is
finite. It is relatively easy to see that (58) is finite because of the skew-symmetry of
the propagator and because it is asymptotically equivalent to (55) near the diagonal
(i.e., when x → y). The finiteness of the sum of Feynman diagrams in each order
was proven in all orders by Axelrod and Singer [8, 9] for acyclic connections, and by
Kontsevich [42] for trivial connections in rational homology spheres. This illustrates
that the Chern–Simons theory is very different from the Yang–Mills theory where
the renormalization procedure is necessary.

3.9.3.2 Metric Independence

Now let us focus on the metric dependence of (56). Because we expect the quantum
field theory to be topological, the leading terms and each coefficient in the expansion
in the powers of h should not depend on the metric. First, assume that A is an
isolated irreducible flat connection.

The most singular term in the exponent is C SM (A) which is clearly metric inde-
pendent. Taking into account that � = D2 and the natural isomorphism �3 � �0,
the absolute value of the determinant of D−A can be written as

∣
∣det′

(
D−A
)∣
∣ = ′

det
(
�1

A

) 1
2 ′

det
(
�3

A

) 1
2 = ′

det
(
�1

A

) 1
2 ′

det
(
�0

A

) 1
2
,

where�i
A is the action of the Laplacian twisted by A on i-forms. Using this identity

we can rearrange the determinants as

∣
∣
∣
∣
′

det (DA)

∣
∣
∣
∣

−1/2 ′
det
(
�0

A

)
= det′

(
�0

A

) 3
4

det′
(
�1

A

) 1
4

.

This expression is exactly the square root of the Ray–Singer analytical torsion [43],
which is also the Reidemeister torsion, and is known to be independent of the
metric.13

13 When A is an isolated irreducible flat connection, the Ray–Singer torsion is defined as the
positive number τ(M, A) such that

τ(M, A) =
∏

i≥1

′
det
(
�i

A

)i(−1)i+1/2
.

Here and in the main text det′(�) is the zeta function regularization of the determinant: det′(�) =
exp
(−ζ ′�(0)

)
, where

ζ(s) = Tr(�−s) = 1

�(s)

∫ ∞

0
t s−1 Tr(et�)dt,

Taking into account that for Riemannian manifolds we have natural isomorphisms �0 � �3 and
�1 � �2 we obtain

τ(M, A) = det′
(
�0

A

) 3
2

det′
(
�1

A

)− 1
2
.

When the Hi are not all zeroes, τ(M, A)
1
2 can be regarded as a volume element on “zero” modes,

i.e., on the space H0 ⊕ H1.
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The exponent iπ
4 η(A), which involves the index of D−A , can be written as

2πη(A)

8
= d

2πη(g,M)

4
+ c2(G)C S(A)− 2π

4
IA − dπ(1+ b1(M))

4

+ 2π(dim(H0)+ dim(H1))

8
(mod 2). (59)

Here η(g,M) is the index of the operator D = ∗d + d∗ acting on odd forms on
M , d = dim(G), c2(G) is the value of the Casimir element for g = Lie(G) on the
adjoint representation (also known as the dual Coxeter number h∨ for the appropri-
ate normalization of the Killing form on g), and b1(M) is the first Betti number for
M . The quantity IA ∈ Z/8Z is the spectral flow of the operator

(∗dAt −dAt∗
dAt∗ 0

)

acting on �1(M, g) ⊕ �3(M, g). Here At , t ∈ [0, 1], is a path in the space of
connections joining A with the trivial connection. The spectral flow IA depends
neither on the metric on M nor on the choice of the path.

The index η(g,M) depends on the metric g on M . Recall that a framing of M is
the homotopy class of a trivialization of the tangent bundle T M . Given a framing
f : M → TM of M we can define the gravitational Chern–Simons action

IM (g, f ) = 1

4π

∫

M
f ∗T r

(

ω ∧ dω − 2

3
ω ∧ ω ∧ ω

)

, (60)

where g is the metric on M , ω is the Levi–Civita connection on M , and the integrand
is the pullback via f ∗ of the Chern–Simons form on T M .

According to the Atiyah–Patodi–Singer theorem the expression

1

4
η(g,M)+ 1

12

IM (g, f )

2π

depends only on the homeomorphism class of the manifold M with the framing f ,
but not on the metric, and this is true for any framing f .

These arguments suggest [56, 25] that for manifolds with only irreducible and
isolated flat connections, the leading term in the expression (56) should be propor-
tional to

exp

(

d
iπ

4
η(g,M)+ i

d

24
IM (g, f )− diπ

4

)

∑

[A]
exp

(

−2π i IA

4
+ i

(
1

h
+ c2(G)

)

C SM (A)

)

τ(M, A)1/2(1+ O(1/k)), (61)

where τ(M, A) is the Ray–Singer torsion. This expression differs from the original
guess (56) by the extra factor exp

(
i d

24 IM (g, f )
)
.
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Let us emphasize that this formula is not a computation of the path integral, as
there is nothing to compute. It is a rearrangement and adjustment of the natural guess
for the leading terms of the semiclassical expansion of the quantity to be defined.
The adjustment was made on the base of the concept that the expression should
not depend on the metric. Remarkably, at the end it does not depend on the metric,
though it still depends on the framing.

Now let us look into higher order terms.
In the finite-dimensional case, when Feynman diagrams represent an asymptotic

expansion of an existing (convergent) integral, the sum of Feynman diagrams in
each order does not depend on the choice of the gauge condition simply by the
nature of these coefficients.

In the infinite-dimensional case we are defining the integral as a sum of Feynman
diagrams. Therefore, the independence of the sum of Feynman diagrams on the
choice of the gauge condition (a metric on M in the case of the Lorentz gauge
condition for the Chern–Simons theory) should be checked independently in each
order. This was done by Axelrod and Singer in [8, 9] for acyclic connections and by
Bott and Cattaneo [13, 14] for trivial connections and rational homology spheres.
One of the important tools for the proof of such fact is the graph complex by
Konstevich [42].

More preciselym the following has been proven. First write the sum of higher
order contributions as

1+
∑

n≥1

(ih)n I (n)A (M, g) = exp

⎛

⎝
∑

n≥1

(ih)n J (n)A (M, g)

⎞

⎠ ,

where

J (n)A (M, g) =
(c)∑

−χ(�)=n

IA(D(�),M, g)(−1)c(D(�))

|Aut(�)| .

Here the sum is taken over connected graphs only. As it follows from [8, 9, 13, 14]
this expression can be written as

J (n)A (M, g) = F (n)A (M, f )+ βn IM (g, f ),

for some F (n)A (M, f ) and constants βn . Here I (g, f ) is the gravitational Chern–
Simons action (60).

Thus, the sum of contributions of connected Feynman diagrams of fixed order,
after the substraction of the gravitational Chern–Simons action with an appropriate
numerical coefficient, does not depend on the metric, and, therefore, is an invariant
of framed rational homology spheres (in the works of Bott and Cattaneo) or of a
3-manifold with an acyclic flat connection in a trivial principal G-bundle over it (in
the works of Axelrod and Singer, and Kontsevich).
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Finally, all these results can be summarized as the following proposal for the par-
tition function of the semiclassical Chern–Simons theory. It depends on the framing
and is proportional to

exp

(

c(h)

(
iπ

4
η(g,M)+ i

1

24
IM (g, f )

))

e−
idπ(1+b1(M))

4
∑

[A]
e

i
(

1
h+c2(G)

)
C SM (A)

exp

(

−2π i IA

4

)

τ(M, A)1/2 exp

⎛

⎝
∑

n≥1

(ih)n F (n)A (M, f )

⎞

⎠ , (62)

where c(h) = d + O(h). Witten suggested [56] the exact form of c(h):

c(h) = d

1+ hc2(G)
= kd

k + h∨
,

where k = 1
h . This is the central charge of the corresponding Wess–Zumino–Witten

theory.
In order to define the full TQFT from this proposition one should define the par-

tition function in the case when flat connections are not necessarily irreducible and
when they are not isolated. For most the recent progress in this direction see [17].
Also, in order to have a TQFT we should define partition functions for manifolds
with boundaries. In the semiclassical framework this is an open problem.

3.9.4 Wilson Loops and Invariants of Knots

Arguing “phenomenologically” one should anticipate that expectation values of
topological14 gauge invariant observables in Chern–Simons theory, which do not
require metric in their definition, should depend only on topological data, and, there-
fore, give some topological invariants.

3.9.4.1 Wilson Graphs

An example of topological observables are Wilson loops (49) or, more generally,
Wilson graphs. Let us clarify the notion of the Wilson loop observable in the per-
turbative Chern–Simons theory. Wilson loops are defined for a collection of circles
embedded into M otherwise known as a link. Our goal is to define the power series
which would be similar to the perturbative expansion (34), as (62) is similar to the
perturbative expansion (38). Most importantly, such power series should not depend
on the choice of a metric on M (the choice of the gauge condition). As we have

14 Topological observables do not require a metric in their definition.



3 Lectures on Quantization of Gauge Systems 183

seen above, this is possible but one should choose a framing f : M → TM of the
3-manifold.

A framed Wilson graph observable (or simply a Wilson graph) is a gauge
invariant functional on connections defined as follows. Let � be a framed graph15

embedded in M . Here by the framing we mean a section of the co-normal bundle
x ∈ �→ T M/Tx� for a generic point x ∈ � which agrees on vertices.

Framing together with the orientation of M defines a cyclic ordering of edges
adjacent to each vertex. It is illustrated in Fig. 3.20.

To define a Wilson graph we should make the following choices:

1. Choose a total ordering of edges adjacent to each vertex which agrees with the
cyclic ordering defined by the framing.

2. Choose an orientation of each edge.
3. Choose a total ordering of vertices of �.
4. Choose a finite-dimensional representation V for each edge of �.
5. Choose a G-invariant linear mapping ν : C → V ε1

1 ⊗ · · · ⊗ V εk
k for each vertex.

Here numbers 1, . . . , k enumerate edges adjacent to the vertex, εi = + if the
edge i is incoming to the vertex, εi = − if the edge i is outgoing from the
vertex, V+i = Vi , V−i = V ∗i , Vi is the representation assigned to the edge i , and
V ∗i is its dual.

As in the case of Feynman diagrams, the ordering of vertices, and on the edges
adjacent to each vertex, defines a perfect matching on endpoints of edges. Choose
such total ordering.

Use the coloring of edges by finite-dimensional G-modules and the orientation
of edges to define the space V α1

a1 ⊗ V α2
a2 ⊗ V α3

a3 ⊗ V β1
b1
⊗ V β2

b1
⊗ · · · . Here indices

1, 2, . . . enumerate vertices, letters ai , bi , ci , . . . enumerate edges adjacent to the
vertex i , and α, β, . . . = ± indicate the orientations of edges a, b, c, . . . (+ if the

Fig. 3.20 Parallel framing at a trivalent vertex

15 The embedding C ⊂ M induces the embedding T C ⊂ T M . Therefore a framing on M induces
a framing on C , i.e., the mapping C → (TC M/T C)perp. A metric on M defines the splitting
TC M = NC ⊕ T C where NC is a normal bundle to C . A framing f : M → T M defines the
framing fC : C → NC of C by attaching a normal vector fC (x) ∈ Nx C for every x ∈ C .
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edge is incoming, and− if the edge is outgoing). The number of factors in the tensor
product is equal to the number of endpoints of edges.

The coloring of vertices defines the vector

ν1 ⊗ ν2 ⊗ · · · ∈ V α1
a1
⊗ V α2

a2
⊗ V α3

a3
⊗ V β1

b1
⊗ V β2

b1
⊗ · · · .

The holonomy he(A) along the edge e is an element of End(Ve), and therefore,
it is a vector in Ve ⊗ V ∗e , where Ve is the finite-dimensional G-module assigned to
the edge. The tensor product of holonomies defines a vector ⊗ehe(A) in the space
dual to V α1

a1 ⊗ V α2
a2 ⊗ V α3

a3 ⊗ V β1
b1
⊗ V β2

b1
⊗ · · · .

The Wilson graph observable is the functional on the space of connections
defined as

W�(A) = 〈⊗ehe(A), ν1 ⊗ ν2 ⊗ · · · 〉 .

Here is an example of the Wilson graph observable for the “theta graph”:

∑

i1,i2,i3

(
he1(A)

)i1
j1
(he1(A))

i1
j1
(he1(A))

i1
j1
νi1,i2,i3ν j1, j2, j3 .

The indices ik, jk enumerate a basis in the representation vk assigned to the edge
k = 1, 2, 3 and ν, μ are G-invariant vectors in the corresponding tensor products.
Here we used an orthonormal basis in g which explains upper and lower indices.

3.9.4.2 Feynman Diagrams for Wilson Graphs

As in the case of the partition function, define the expectation value (52) of the
Wilson graph � as a combination of formal power series, similar to the formula (34)
for the asymptotic expansion of corresponding finite-dimensional integrals.

Taking into account all we know for the partition functions of the Chern – Simons
theory we arrive to the following proposal. The semiclassical ansatz for the expec-
tation value of the Wilson graph W� is

∑

[A]
exp

(

i
C S(A)

h
+ idπ

4
η(A)

)
∣
∣det′(DA)

∣
∣−1/2

× det′((�A)0)

⎛

⎝W�(A)+
∑

n≥1

(ih)n I (n)A (M, �)

⎞

⎠ . (63)

Here we assume that all flat connections are irreducible and isolated. All quantities
are the same as in (56) except

I (n)A (M, �) =
∑

�′ , χ(�)−χ(�′)=n

IA(�
′, �)

|Aut(�)| .
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The Feynman diagram rules in the presence of Wilson graphs are essentially the
same as for the partition function with weights given in Fig. 3.19. The difference is
that now there are two types of edges, and two types of propagators (linear operators
assigned to edges). As for the partition function we have dashed edges with 3-valent
vertices. But now we also have solid edges, see an example in Fig. 3.21, vertices
where only solid edges meet, and vertices where two solid edges (with opposite
orientations) meet a dashed edge. The subgraph formed by solid edges is always �.
The weights of vertices where only solid edges meet is given by the coloring of this
edge in �. The weights of vertices where two solid edges meet a dashed edges and
weights of solid edges are described in Fig. 3.22.

One can show [11, 32, 3, 15, 51, 13, 14] that the sum of integrals corresponding to
Feynman diagrams of order n is finite for each n. Similarly to the vacuum partition
function from the previous section, the semiclassical ansatz for the expectation value
of the Wilson graph depends on the framing, but remarkably not on the metric. When
flat connections are irreducible and isolated we arrive at the following expression:

exp

(

c(h)

(
iπ

4
η(g,M)+ i

24
IM (g, f )

)

− idπ(1+ b1(M))

4

)

∑

[A]
exp

(

i

(
1

h
+ c2(G)

)

C SM (A)− 2π i IA

4

)

τ(M, A)1/2

⎛

⎝W�(A)+
∑

n≥1

(ih)n J (n)A (M, �, f )

⎞

⎠ . (64)

Fig. 3.21 An example of an order one graph

i j

πij (ea)

a

Fig. 3.22 Weights of trivalent vertices where two solid edges meet one dashed edge
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Here the coefficients J (n)A (M, �, f ) do not depend on the metric but depend on
the framing f of M . This formula defines the path integral semiclassically. Let us
emphasize again that it is not a result of computation of an integral. It is a definition,
modeled after the semiclassical expansion of integrals in terms of Feynman graphs.
A remarkable mathematical fact is that every term is defined (the integrals do not
diverge) and that it does not depend on the metric.

More careful analysis includes powers of h. A conjecture for counting powers
of h when H0

A, H1
A �= {0} was proposed in [25, 37, 45]. It agrees with the finite-

dimensional analysis from previous sections and states that, in general, we should
expect that the partition function is proportional to

exp

(

d
iπ

4
η(g,M)+ i

c(h)

24
IM (g, f )− dπ i(1+ b1(M))

4

)

∑

A

(2π(k + h∨)
dim
(

H0
A

)
−dim(H1

A)
2

1

V ol(G A)

exp

(

i(k + h∨)C SM (A)− 2π i IA

4
− iπ

dim
(
H0

A

)+ dim
(
H1

A

)

2

)

∫

MA

τ 1/2

⎛

⎝W�(A)+
∑

n≥1

(ih)n J (n)A (M, �, f )

⎞

⎠ . (65)

Here the sum is taken over representatives A of connected components MA of
the moduli space of flat connections in a principal G-bundle over M . The torsion τ

is an element of ⊗i det
(
Hi

A

)⊗(−1)i �
(

det
(
H0

A

)⊗ det
(
H1

A

)∗)⊗2
. The Lie algebra

g has an invariant scalar product and therefore H0
A ⊂ g has an induced volume form.

Pairing this volume form with the square root of the torsion gives a volume form on
H1

A. Assuming the connected component is smooth we can integrate functions with
respect to this volume form. The factor Vol(GA) is the volume of the stabilizer of
the flat connection.

3.9.5 Comparison with Combinatorial Invariants

Invariants of 3-manifolds with framed graphs also can be constructed combinatori-
ally (as a combinatorial topological quantum field theory). In [44] such invariants
were constructed using modular categories and the representation of 3-manifolds
as a surgery on S3 or on a handlebody along a framed link. Another combinatorial
construction, based on the triangulation, was developed in [52]. This construction
uses a certain class of monoidal categories which are not necessarily braided.

These two constructions are related:

Z RT
M (C)Z RT

M
(C) = Z T V

M (C) = Z RT
M (D(C)).
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Here Z RT
M (C) is the invariant obtained by the surgery [44], Z T V

M (C) is the invariant
obtained by the triangulation, and the category D(C) is the center (the double) of
the category C, see, for example, [40], and M is the manifold M with the reversed
orientation.

Most interesting known examples of modular categories are quotient categories
of finite-dimensional modules over quantized universal enveloping algebras at roots
of unity, see [44, 2, 29]. Such categories are parametrized by pairs (ε, g), where

ε = exp
(

2π im
r

)
with mutually prime m and r and g is a simple Lie algebra. Denote

the truncated category of modules over Uε(g) by Cε(g) (see [44, 2, 29] for details).
When m = 1 and r = k + c2(g) this category is naturally equivalent to the braiding
fusion category of the WZW conformal field theory at level k, i.e., to the category
of integrable modules over the affine Lie algebra ĝ at level k with the fusion tensor
product [41]. This conformal field theory is directly related to the Chern–Simons
theory at level k. The arguments in favor of this are not perturbative [7]. They are
based on ideas of geometric quantization.

For other values of m, the category Cε(g) is also equivalent to the braiding fusion
category of a conformal field theory, but this conformal field theory is not directly
related to the Chern–Simons theory.

The main conjecture relating the combinatorial and geometric approaches is that
the following power series are identical:

• The asymptotic expansion of the combinatorial TQFT based on the category

Cε(g) when ε = exp
(

2π i
k+c2(g)

)
and k →∞.

• The semiclassical expansion for the Chern–Simons path integral in terms of
Feynman diagrams.

Of course this is an outline of a number of conjectures rather than a conjecture.
The main reason is that the semiclassical partition functions for the Chern–Simons
theory in terms of Feynman integrals are not worked out yet.

The precise statement about the correspondence between these formal power
series was first outlined in [57, 25] followed by [37, 28, 45, 46, 1].

To compare these invariants one should first choose a canonical 2-framing on
M [4]. The 2-framing on M is a section of TM×TM . The Levi–Civita connection
on TM defined by the Riemannian structure on M induces a connection on TM×
TM . The canonical 2-framing defines the branch of the gravitational Chern–Simons
action with the property

d
π

4
η(g,M)+ c(h)

24
IM (g, f ) = 0.

One should expect that the choice of such 2-framing presumably fixes the framing
in higher order corrections, though this part is still conjectural.

When the moduli space of flat connections on a principal G-bundle over M is a
collection of isolated points, each corresponding to an irreducible flat connection,
one should expect the following:
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Z RT
M ∼ 1

|Z(G)| exp

(

−dπ i

4

)∑

[A]
exp

(−2iπ IA

4

)

exp((k + h∨)C SM (A))(1+ O(1/k)),

where |Z(G)| is the number of elements in the center of G, and Z RT is the combina-
torial invariant corresponding to the category Cε(g). When connected components of
the moduli space have non-zero dimension and are smooth, the expected asymptotic
behavior is

Z RT
M ∼ exp

(

−dπ i(1+ b1(M))

4

)∑

[A]
(2π(k + h∨))

dim
(

H0
A

)
−dim(H1

A)
2

1

V ol(G A)

exp

(

i(k + h∨)C SM (A)− 2π i IA

4
− iπ

dim
(
H0

A

)+ dim
(
H1

A

)

2

)

∫

MA

τ 1/2W�(A) (1+ O(1/k)) . (66)

Many examples confirming this prediction were analyzed in [25, 37, 28, 45, 1].
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Chapter 4
Mathematical Tools for Calculation
of the Effective Action in Quantum Gravity

I.G. Avramidi

Abstract We review the status of covariant methods in quantum field theory and
quantum gravity, in particular, some recent progress in the calculation of the effec-
tive action via the heat kernel method. We study the heat kernel associated with an
elliptic second-order partial differential operator of Laplace type acting on smooth
sections of a vector bundle over a Riemannian manifold without boundary. We
develop a manifestly covariant method for computation of the heat kernel asymp-
totic expansion as well as new algebraic methods for calculation of the heat kernel
for covariantly constant background, in particular, on homogeneous bundles over
symmetric spaces, which enables one to compute the low-energy non-perturbative
effective action.

4.1 Introduction

One of the most important problems of modern fundamental physics is the problem
of reconciling classical general relativity, the theory of macroscopic gravitational
phenomena, with quantum theory, so-called quantum gravity problem. This is a
really difficult task since one has to answer the very basic questions concerning
the local and the global structure of the spacetime itself as well as deep questions
about the nature of quantum mechanics.

Although, over the last several decades many competing approaches (Euclidean
path integrals, string theory, loop gravity, noncommutative geometry, asymptotic
safety, various lattice approaches and others) has been put forward and despite some
real progress in some of these approaches in the last two decades, we still do not
have a complete consistent theory of quantum gravitational phenomena. It looks
like we are missing an important piece of the puzzle which prevents us to find the
solution.

I.G. Avramidi (B)
New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA, iavramid@nmt.edu

Avramidi, I.G.: Mathematical Tools for Calculation of the Effective Action in Quantum Gravity.
Lect. Notes Phys. 807, 193–259 (2010)
DOI 10.1007/978-3-642-11897-5_4 c© Springer-Verlag Berlin Heidelberg 2010



194 I.G. Avramidi

In this situation it seems to be wise to go back and to recall some pioneering
works in quantum gravity. This review will concentrate on so-called covariant meth-
ods in quantum gravity. Some other approaches are reviewed by other lecturers of
this school. The basis of the covariant methods in quantum gravity is the background
field method. This method was developed mainly by De Witt in his classical papers
[20, 21] and reviews [22, 23] (for the latest update see the book [24]). It is a gener-
alization of the method of generating functionals in quantum field theory developed
and successfully used by Schwinger [30, 31]. For a detailed review see, for example,
[18, 16, 26].

The basic object in the background field method is the effective action. The effec-
tive action is a functional of the background fields that encodes, in principle, all the
information of quantum field theory. It determines the full one-point propagator and
the full vertex functions and, hence, the whole S-matrix. Moreover, the variation of
the effective action gives the effective equations for the background fields, which
makes it possible to study the back-reaction of quantum processes on the classi-
cal background. In particular, the low-energy effective action (called the effective
potential) is the most appropriate tool for investigating the structure of the physical
vacuum in quantum field theory.

The only practical method for the calculation of the effective action is the
semi-classical perturbative expansion of the path integral in the number of loops. All
fields are split in background classical parts and quantum perturbations propagating
on this background and the classical action is expanded in quantum fields. Then the
quadratic part determines the propagators of the quantum fields and the higher order
terms reproduce the vertex functions of the perturbation theory.

In the perturbation theory the effective action is expressed in terms of the prop-
agators and the vertex functions. One of the most powerful methods to study the
propagators is the proper time method (also called the heat kernel method, in par-
ticular, by mathematicians), which was originally proposed by Fock [25] and later
generalized by Schwinger [30, 31] who also applied it to the calculation of the one-
loop effective action in quantum electrodynamics. It was De Witt [20, 22, 23] who
perfected the proper time method; he reformulated it in the geometrical language
and applied it to the case of gravitational field.

At one-loop level, the contribution of the gravitational loop is of the same order as
the contributions of matter fields. At low energies (lower than the Planckian energy,
h̄c5/G) the contribution of higher gravitational loops should be highly suppressed.
Therefore, a semi-classical concept applies when the quantum matter fields together
with the linearized perturbations of the gravitational field interact with the back-
ground gravitational field (and, probably, with the background matter fields). This
is what is usually called the one-loop quantum gravity. The main difficulty of quan-
tum gravity is the fact that there is no consistent way to eliminate the ultraviolet
divergences arising in perturbation theory, even at one-loop level.

The present review is devoted to the development of the covariant methods for
calculation of the effective action in quantum field theory and quantum gravity. The
outline of the chapter is as follows. In Sect. 4.2 we review the formal structure
of quantum gauge field theory and quantum gravity and the construction of the
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effective action following [10, 11]. In Sect. 4.3 we describe the heat kernel method
and develop the asymptotic expansion of the heat kernel following [2, 3, 9–11]. In
Sect. 4.4 we describe the local structure of the Green function following [8]. In
Sect. 4.5 we develop a method for the calculation of the heat kernel coefficients and
describe their general structure following [3, 9–11]. In Sect. 4.6 we compute the
heat trace in the high-energy approximation following [1, 3, 10]. In Sect. 4.7 we
describe our results for the calculation of the low-energy heat trace following our
recent work [4–7, 12, 13]. In Sect. 4.8 we apply the obtained results to compute the
low-energy one-loop effective action in quantum gravity.

Although it might seem to become classical and a bit old-fashioned, this field of
research is pretty active even today. There are more than 100 papers on arXiv with
the “heat kernel” in the title, among them 53 just since 1999. Moreover, there are
about 600 papers on arXiv with the word “effective action” in the title, among which
almost 400 since 1999. So, this field is far from being dead. We would like to stress
that no attempts have been made to give a fully comprehensive list of references; this
is beyond the intent and the scope of this chapter. We apologize in advance for not
citing the work of many authors who contributed to the subject. This chapter should
not be thought of as a comprehensive survey but rather an introduction aimed at
non-specialists and based primarily on our own work. Once “seduced” into the field,
an interested reader will easily find more recent works. Besides our own work we
only cite some classical papers that laid the foundation of the field and some books
and reviews that summarized the development of the subject at different stages. We
did not want to expand the bibliography just for the sake of it.

4.2 Effective Action in Quantum Field Theory
and Quantum Gravity

In this section we briefly describe the standard formal construction of the generating
functional and the effective action in gauge theories. The basic object of any physical
theory is the spacetime M , which we will assume to be a n-dimensional manifold
with the topological structure of a cylinder

M = I ×', (1)

where I is an open interval of the real line (or the whole real line) and ' is some
(n − 1)-dimensional manifold. The spacetime manifold is here assumed to be glob-
ally hyperbolic and equipped with a (pseudo)-Riemannian metric g of signature
(− + · · ·+); thus, a foliation of spacetime exists into spacelike sections identical
to '. Usually one also assumes the existence of a spin structure on M . A point
x = (xμ) in the spacetime is described locally by the time x0 and the space coordi-
nates (x1, . . . , xn−1). We label the spacetime coordinates by Greek indices, which
run from 0 to (n − 1), and sum over-repeated indices.



196 I.G. Avramidi

Let us consider a vector bundle V over the spacetime M each fiber of which is
isomorphic to a vector space, V, on which the spin group Spin(1, n−1), i.e., the cov-
ering group of Lorentz group, acts. The vector bundle V can also have an additional
structure on which a gauge group acts. The sections of the vector bundle V are called
fields. The tensor fields describe the particles with integer spin (bosons), while the
spin-tensor fields describe particles with half-integer spin (fermions). Although the
whole scheme can be developed for superfields (a combination of boson and fermion
fields), we restrict ourselves in the present lecture to boson fields (which, without
loss of generality, can be considered real). A field ϕ is represented locally by a
set of real-valued functions ϕ = (ϕA(x)), where A = 1, . . . , dim V. Capital Latin
indices will be used to label the local components of the fields. To construct invariant
functionals we need to introduce an invariant fiber inner product and an L2 inner
product

(ψ, ϕ) =
∫

M

dvol (x) ψ A(x)E AB(x)ϕ
B(x), (2)

where dvol (x) = dxg1/2, g = | det gμν |, is the natural Riemannian volume ele-
ment defined by some background metric g, and E AB is a nondegenerate symmetric
matrix (a fiber metric). As usual, we assume that a summation over repeated indices
is performed. This metric (and its inverse E−1 AB) can be used to naturally identify
the bundle V with its dual V∗ (that is to raise and lower the field indices). The
sections of the dual bundle are called currents and are represented locally by a set
of functions, e.g.,

JA = E ABϕ
B. (3)

We will also use the condensed DeWitt notation, where the discrete index A and the
spacetime point x are combined in one lower case Latin index i ≡ (A, x). Then the
components of a field ϕ are (ϕi ) ≡ (ϕA(x)). There is a natural pairing between the
bundles V and V∗ defined by

〈J, ϕ〉 ≡ Jiϕ
i ≡

∫

M

dvol (x) JA(x)ϕ
A(x). (4)

It is assumed that a summation over repeated lower case Latin indices, i.e., a com-
bined summation – integration, is performed.

The set of all sections of the vector bundle V is called the configuration space,
which one assumes to be an infinite-dimensional manifold M. The fields ϕi are the
coordinates on this manifold, the variational derivative δ/δϕ is a tangent vector, a
small disturbance δϕ is a one-form and so on. If S(ϕ) is a scalar field on the config-
uration space, then its variational derivative δS/δϕ is a one-form on M defined by
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d

dε
S(ϕ + εh)

∣
∣
∣
ε=0

=
〈
δS

δϕ
, h

〉

= δS

δϕi
hi. (5)

By using the functional differentiation one can define formally the concept of
tangent space, the tangent vectors, Lie derivative, one-forms, metric, connection,
geodesics, and so on (for more details, see [24]).

4.2.1 Non-gauge Field Theories

The dynamics of quantum field theory is determined by an action functional S(ϕ),
which is a differentiable real-valued scalar field on the configuration space. The
dynamical field configurations are defined as the field configurations satisfying the
stationary action principle, i.e., they must satisfy the dynamical equations of motion

δS

δϕ
= 0 (6)

with given boundary (and initial) conditions. The set of all dynamical field configu-
rations, i.e., those that satisfy the dynamical equations of motion, M0, is a subspace
of the configuration space called the dynamical subspace (or the mass shell in the
high-energy physics jargon).

Quantum field theory is basically a theory of small disturbances on the dynamical
subspace. Most of the problems of standard quantum field theory deal with scat-
tering processes, which are described by the transition amplitudes between some
well-defined initial and final states in the remote past and the remote future. The
collection of all these amplitudes is called the scattering matrix, or shortly S-matrix.

Let us single out in the spacetime two causally connected in- and out- regions,
that lie in the past and in the future, respectively, relative to the region�, which is of
interest from the dynamical standpoint. Let |in〉 and |out〉 be some initial and final
states of the quantum field system in these regions. Let us consider the transition
amplitude 〈out|in〉 and ask the question: how does this amplitude change under a
variation of the interaction with a compact support in the region �. The answer to
this question gives the Schwinger variational principle which states that

δ 〈out|in〉 = i

h̄
〈out| δS |in〉, (7)

where δS is the corresponding change of the action. This principle gives a very
powerful tool to study the transition amplitudes. The Schwinger variational principle
can be called the quantization postulate, because all the information about quantum
fields can be derived from it.

Let us change the external conditions by adding a linear interaction with some
external classical sources J in the dynamical region �, i.e.,
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δS = 〈J, ϕ〉. (8)

The amplitude 〈out|in〉 becomes a functional of the sources that we denote by Z(J ).
The primary objects of interest in quantum field theory are the chronological mean
values

& in ...i1
n ≡

〈
out|T (ϕin · · ·ϕi1)|in〉

〈out|in〉 , (9)

where T denotes the operator of chronological ordering that orders the (non-
commuting) operators in order of their time variables from right to left. Of course,
in the presence of the sources they become functionals of J . By using the Schwinger
variational principle one can obtain the chronological mean values in terms of the
functional derivatives of the functional Z(J ), that is,

Z(J + η) = Z(J )

{

1+
(

i

h̄

)

〈η,&1(J )〉 + 1

2

(
i

h̄

)2

〈η,&2(J )η〉

+
∞∑

n=3

1

n!
(

i

h̄

)n

& in ...i1
n (J )ηi1 · · · ηin

}

. (10)

In other words, the functional Z(J ) is the generating functional for the chronologi-
cal amplitudes &n .

Let us now define another functional W (J ) by

Z = exp

(
i

h̄
W

)

. (11)

Its functional derivatives define so-called full connected Green functions, Gii ...in
n , (or

the correlation functions) by

W(J + η) = W (J )+〈η,G1(J )〉+ 1

2
〈η,G2(J )η〉+

∞∑

n=3

1

n!G
ii ...in
n (J )ηi1 · · · ηin . (12)

The functional φ = G1 is called the background (or the mean) field, and the operator
G = G2 is called the full propagator. Then, it is easy to see that all chronological
mean amplitudes can be expressed in terms of connected Green functions. In partic-
ular, we have

&1 = φ, (13)

&
jk

2 = φ jφk + h̄

i
G jk . (14)
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Thus, while Z(J ) is the generating functional for chronological amplitudes, the
functional W (J ) is the generating functional for the connected Green functions.
The Green functions satisfy the boundary conditions which are determined by the
states |in〉 and |out〉.

The mean field itself is a functional of the sources, φ = φ(J ). It is easy to see
that the functional derivative of the mean field is equal to the full propagator, that is,

d

dε
φ(J + εη)

∣
∣
∣
ε=0

= Gη. (15)

In the non-gauge theories the full propagator G, which plays the role of the (infinite-
dimensional) Jacobian, is nondegenerate. Therefore, one can change variables and
consider φ as independent variable and J = J (φ) (as well as all other functionals)
as a functional of φ.

There are many different ways to show that there is a functional �(φ) such that

〈
δS(ϕ)

δϕ

〉

= δ�(φ)
δφ

. (16)

This functional is defined by

〈out|in〉 = exp

{
i

h̄
[� + 〈J, φ〉]

}

, (17)

or by the functional Legendre transform

�(φ) = W (J (φ))− 〈J (φ), φ〉. (18)

This is the most important object in quantum field theory. It contains all the
information about quantized fields. The functional expansion of this functional reads

�(φ+h) = �(φ)−〈J (φ), h〉−1

2
〈h,G(J (φ))h〉+

∞∑

n=3

1

n!�,i1...in (φ)h
in · · · hi1 . (19)

Therefore, the first variation of � gives the effective equations for the background
fields

δ�

δφ
= −J. (20)

These equations replace the classical equations of motion and describe the effective
dynamics of the background field with regard to all quantum corrections. That is
why � is called the effective action.
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Furthermore, the second derivative of �(φ) determines the full propagator

G =
(

−δ
2�

δφ2

)−1

.

The higher derivatives, �,i1···ik , determine the so-called full vertex functions (also
called strongly connected, or one-particle irreducible, functions). In other words,
�(φ) is the generating functional for the full vertex functions. The full vertex func-
tions together with the full propagator determine the full-connected Green functions
and, therefore, all chronological amplitudes and, hence, the S-matrix. Thus, the
entire quantum field theory is summed up in the functional structure of the effective
action.

One can obtain a very useful formal representation for the effective action in
terms of functional integrals (also called path integrals or Feynman integrals). A
functional integral is an integral over the (infinite-dimensional) configuration space
M. Although a rigorous mathematical definition of functional integrals is absent,
they can be used in perturbation theory of quantum field theory as an effective
tool, especially in gauge theories, for manipulating the whole series of perturbation
theory. The point is that in perturbation theory one encounters only functional inte-
grals of Gaussian type, which can be well defined effectively in terms of classical
propagators and vertex functions. The Gaussian integrals do not depend much on
the dimension and, therefore (after a proper normalization), all formulas from the
finite-dimensional case, like Fourier transform, integration by parts, delta-function,
change of variables etc., are valid in the infinite-dimensional case as well. One has
to note that functional integrals are formally divergent—if one tries to evaluate the
integrals, one encounters meaningless divergent expressions. This difficulty can be
overcome in the framework of the renormalization theory (in so-called renormaliz-
able field theories). In non-renormalizable theories (like quantum general relativity)
this issue becomes the main difficulty of the theory.

Integrating the Schwinger variational principle one can obtain the following
functional integral:

〈out|in〉 =
∫

M

Dϕ exp

{
i

h̄
[S(ϕ)+ 〈J, ϕ〉]

}

. (21)

Here Dϕ represents the functional measure; however, it should not be taken too
seriously—it will just provide a formal device for manipulations of Gaussian inte-
grals. Correspondigly, for the effective action one obtains the functional equation

exp

{
i

h̄
�(φ)

}

=
∫

M

Dϕ exp

{
i

h̄

[

S(ϕ)−
〈
δ�(φ)

δφ
, (ϕ − φ)

〉]}

. (22)
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The only way to get numbers from this formal expression is to take advantage of
the semi-classical approximation within a formal (asymptotic) expansion in powers
of the Planck constant h̄:

� ∼ S +
∞∑

k=1

h̄k�(k).

Next, we substitute this expansion in the functional equation for the effective action,
shift the integration variable in the functional integral

ϕ = φ +√h̄ h, (23)

and expand the action S(ϕ) in functional Taylor series in quantum fields h

S(φ +√h̄ h) = S(φ)+ h̄1/2
〈
δS(φ)

δφ
, h

〉

− h̄
1

2
〈h, L(φ)h〉

+
∞∑

n=3

1

n! h̄
n/2S,i1...in (φ)h

in · · · hi1, (24)

where L is a (usually, partial differential) operator defined by the second variation
of the action

L = −δ
2S

δϕ2
. (25)

Notice that the operator L maps sections of the vector bundle V to sections of the
dual bundle V∗, that is,

L : C∞(V)→ C∞(V∗). (26)

In order to have a well-defined operator, which is self-adjoint with respect to the L2

inner product on the bundle V , we define another operator

L̂ : C∞(V)→ C∞(V), (27)

such that

(ϕ, L̂h) =
∫

M

dvol ϕA E AB L̂ B
C hC =

∫

M

dvol ϕA L AC hC = 〈ϕ, Lh〉 , (28)

that is,

E AB L̂ B
C = L AC hC. (29)
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Now, by expanding both sides of the functional equation for the effective action
in powers on h̄ and equating the coefficients of equal powers of h̄, we get the
recurrence relations that uniquely define all coefficients �(k). The measure formally
transforms as Dϕ = Dh. All functional integrals appearing in this expansion are
Gaussian and can be calculated in terms of the functional determinant, Det L̂ , of
the operator L̂ and the bare propagator G = L−1, i.e., the Green function of the
operator L with Feynman boundary conditions. More precisely, with the proper
normalization of the measure one can define

∫

M

Dh exp

(

− i

2

(
h, L̂h

))

= (Det L̂)−1/2, (30)

∫

M

Dh exp

(

− i

2

(
h, L̂h

))

hi1 · · · hi2m+1 = 0, (31)

∫

M

Dh exp

(

− i

2

(
h, L̂h

))

hi1 · · · hi2m = (2m)!
2mm!im

(Det L̂)−1/2G(i1i2 · · ·Gi2m−1i2m ),

(32)

where parenthesis denote the complete symmetrization over all indices included. Of
course, the Green functions of the operators L and L̂ are related by

Ĝ A
B(x, y) = G AC (x, y)EC B(y). (33)

In particular, the one-loop effective action is determined by the functional deter-
minant of the operator L

�(1) = − 1

2i
log Det L̂, (34)

and the two-loop effective action is given by

�(2) = −1

8
S,i jkl G

i j Gkl − 1

12
S,i jk Gil G jm Gkn S,lmn . (35)

Strictly speaking, the Gaussian integrals are well defined for elliptic partial dif-
ferential operators in terms of the functional determinants and their Green func-
tions. Although the Gaussian integrals of quantum field theory are determined by
hyperbolic partial differential operators with Feynman boundary conditions they
can be well defined by means of the analytic continuation from the Euclidean sector
of the theory where the operators become elliptic. This is done by so-called Wick
rotation – one replaces the real-time coordinate by a purely imaginary one x0 → iτ
and singles out the imaginary factor also from the action S → i S and the effective
action � → i�. Then the metric of the spacetime manifold becomes positive def-
inite and the classical action in all ‘nice’ field theories becomes a positive-definite
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functional. Then the fast oscillating Gaussian functional integrals become exponen-
tially decreasing and can be given a rigorous mathematical meaning.

4.2.2 Gauge Field Theories

Let us try to apply the formalism described above to a gauge field theory. A charac-
teristic feature of a gauge field theory is the fact that the dynamical equations

δS

δϕ
= 0 (36)

are not independent—there are certain identities, called Nöther identities, between
them. This means that there are some nowhere vanishing vector fields

Rα = Ri
α

δ

δϕi
(37)

on the configuration space M that annihilate the action,

RαS = 0, (38)

and, hence, define invariance flows on M. The transformations of the fields

δξϕ
i = Ri

αξ
α (39)

are called the invariance transformations and Rα are called the generators of invari-
ance transformations. The infinitesimal parameters of these transformations ξ are
sections of another vector bundle (usually the tangent bundle T G of a compact
Lie group G) that are respresented locally by a set of functions (ξα) = (ξa(x)) ,
a = 1, . . . , dim G, over spacetime with compact support. To distinguish between
the components of the gauge fields and the components of the gauge parameters we
introduce lower case Latin indices from the beginning of the alphabet; the Greek
indices from the beginning of the alphabet are used as condensed labels α = (a, x)
that include the spacetime point.

We assume that the vector fields Rα are linearly independent and complete,
which means that they form a complete basis in the tangent space of the invariant
subspace of configuration space. The vector fields Rα form the gauge algebra. We
restrict ourselves to the simplest case when the gauge algebra is the Lie algebra
of an infinite-dimensional gauge Lie group G. This is the case in Yang – Mills
theory and gravity. Then the flow vectors Rα decompose the configuration space
into the invariant subspaces of M (called the orbits) consisting of the points con-
nected by the gauge transformations. The space of orbits is then M/G. The linear
independence of the vectors Rα at each point implies that each orbit is a copy of the
group manifold. One can show that the vector fields Rα are tangent to the dynamical
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subspace M0, which means that the orbits do not intersect M0 and the invariance
flow maps the dynamical subspace M0 into itself. Since all field configurations
connected by a gauge transformation, i.e., the points on an orbit, are physically
equivalent, the physical dynamical variables are the classes of gauge equivalent field
configurations, i.e., the orbits. The physical configuration space is, hence, the space
of orbits M/G. In other words the physical observables must be the invariants of
the gauge group.

To quantize a gauge theory by means of the functional integral, we consider the
in- and out- regions, define some |in〉 and |out〉 states in these regions and study
the amplitude 〈out|in〉. Since all field configurations along an orbit are physically
equivalent we have to integrate over the orbit space M/G. To deal with such sit-
uations one has to choose a representative field in each orbit. This can be done by
choosing special coordinates (I A(ϕ), χα(ϕ)) on the configuration space M, where
I A label the orbits and χα the points in the orbit. Computing the Jacobian of the field
transformation and introducing a delta functional δ(χ−ζ )we can fix the coordinates
on the orbits and obtain the measure on the orbit space M/G

DI = Dϕ Det F(ϕ)δ(χ(ϕ)− ζ ), (40)

where

Fβα = Rαχ
β (41)

is a nondegenerate operator. Thus we obtain a functional integral for the transition
amplitude

〈out|in〉 =
∫

M

Dϕ Det F(ϕ)δ(χ(ϕ)− ζ ) exp

{
i

h̄
S(ϕ)

}

. (42)

Now one can go further and integrate this equation over parameters ζ with a
Gaussian measure determined by a symmetric nondegenerate matrix γ = (γαβ),
which most naturally can be chosen as the metric on the orbit (gauge group metric).
As a result we get

〈out|in〉 =
∫

M

Dϕ (Det γ )1/2 Det F(ϕ) exp

{
i

h̄

[

S(ϕ)+ 1

2
〈χ(ϕ), γ χ(ϕ)〉

]}

. (43)

The functional equation for the effective action takes the form

exp

{
i

h̄
�(φ)

}

=
∫

M

Dϕ (Det γ (φ))1/2 Det F(ϕ) (44)

× exp

{
i

h̄

[

S(ϕ)+ 1

2
〈χ(ϕ), γ (φ)χ(ϕ)〉 −

〈
δ�(φ)

δφ
, (ϕ − φ)

〉]}

.
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The determinants of the operators F and γ are usually represented as a result of the
integration over some auxiliary Grassmannian variables, so-called ghost fields.

This equation can be used to construct the semi-classical perturbation theory in
powers of the Planck constant (loop expansion), which gives the effective action in
terms of the bare propagators and the vertex functions. In particular, one finds the
one-loop effective action

�(1) = − 1

2i
log Det L̂ + 1

i
log Det F + 1

2i
log Det γ, (45)

where L̂ is an operator defined by

d2

dε2

{

S(ϕ + εh)+ 1

2
〈χ(ϕ + εh), γ χ(ϕ + εh)〉

} ∣
∣
∣
ε=0

= −(h, L̂h). (46)

In DeWitt notation it reads

L̂k
j = E−1ki Li j , (47)

where

Li j = − δ2S

δϕiδϕ j
− δχ

α

δϕi
γαβ
δχβ

δϕ j
. (48)

4.2.3 Quantum General Relativity

Einstein’s theory of general relativity is an example of a gauge theory with the gauge
group G being the group of all diffeomorphisms of the spacetime manifold M and
the configuration space M being the space of all pseudo-Riemannian metrics on M .
The physical configuration space M/G of all orbits of the gauge group is then the
space of all geometries on the spacetime.

The gravitational field can be parametrized by the metric tensor of the spacetime

ϕi = gμν(x), i ≡ (μν, x). (49)

An invariant fiber metric is defined by

Eμναβ = gμ(αgβ)ν − *gμνgαβ, (50)

where * �= 1/n is a real parameter. The inverse metric is then

E−1
μναβ = gμ(αgβ)ν − *

n* − 1
gμνgαβ. (51)
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The parameters of gauge transformations are the components of the vector of the
infinitesimal diffeomorphism

ξμ = ξμ(x), μ ≡ (μ, x). (52)

An invariant metric in the gauge group can be chosen to be just a background metric
gμν .

The local generators of the gauge transformations in this parametrization are
defined by their action as follows:

Ri
αξ
α = 2∇(μξν), i ≡ (μν, x), (53)

Ji Ri
α = −2∇μ Jμα, α ≡ (α, x). (54)

The Hilbert – Einstein action of general relativity has the form

S = 1

k2

∫

M

dx g1/2 (R − 2Λ), (55)

where R is the scalar curvature, k2 = 16πG is the Einstein coupling constant, G is
the Newtonian gravitational constant, and Λ is the cosmological constant. Here we
neglect the boundary term for simplicity; it will not affect our calculations.

The first variation of the action gives the classical equations of motion

g−1/2 δS

δgμν
= − 1

k2

(

Rμν − 1

2
gμνR +Λgμν

)

, (56)

which satisfy, of course, the Nöther identities

∇μ
(

Rμν − 1

2
gμνR +Λgμν

)

= 0. (57)

Here Rμν is the Ricci tensor defined in terms of the Riemann tensor by Rμν =
Rαμαν .

The second variation of the action defines a second-order partial differential oper-
ator by

g−1/2 δ2S

δgμνδgαβ
hαβ = Pμναβhαβ, (58)

where
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Pμν,αβ = − 1

2k2

{

−
(

gα(μgν)β − gαβgμν
)
�

−gμν∇(α∇β) − gαβ∇(μ∇ν) + 2∇(μgν)(α∇β)

−2R(μ|α|ν)β − gα(μRν)β − gβ(μRν)α + Rμνgαβ + Rαβgμν

+
(

gμ(αgβ)ν − 1

2
gμνgαβ

)

(R − 2Λ)

}

. (59)

Here, of course, � = gμν∇μ∇ν denotes the Laplacian.
Next, we choose the DeWitt gauge condition

χα = −Eαβμν∇βhμν = −
(

gα(ν∇μ) − *gμν∇α
)

hμν. (60)

The ghost operator in this gauge is a second-order differential operator defined by

Fμν = −2Eμαβν∇α∇β = −δμν �+ (2* − 1)∇μ∇ν − Rμν . (61)

For this operator to be non-singular, the gauge parameter should satisfy the condi-
tion * �= 1.

For the graviton operator L to be nondegenerate it is necessary to choose the
operator γ as a zero-order differential operator defined by

γμν = α

k2
gμν, (62)

where α �= 0 is a real parameter. Thus we obtain a two-parameter class of gauges
involving two arbitrary parameters, * and α.

The graviton operator L now reads

Lμν,αβ = 1

2k2

{

−
(

gα(μgν)β − (1+ 2α*2)gαβgμν
)
�

−(1+ 2α*)gμν∇(α∇β) − (1+ 2α*)gαβ∇(μ∇ν) + 2(1+ α)∇(μgν)(α∇β)

−2R(μ|α|ν)β − gα(μRν)β − gβ(μRν)α) + Rμνgαβ + gμνRαβ

+
(

gμ(αgβ)ν − 1

2
gμνgαβ

)

(R − 2Λ)

}

(63)

The most convenient choice is the so-called minimal gauge

* = 1

2
, α = −1. (64)
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In this gauge the non-diagonal derivatives in both the graviton operator and the ghost
operator vanish

Lμν,αβ = 1

2k2

{(

gα(μgν)β − 1

2
gαβgμν

)

(−�+ R − 2Λ)

−2R(μ|α|ν)β − gα(μRν)β − gβ(μRν)α) + Rμνgαβ + gμνRαβ
}

, (65)

Fμν = −δμν�− Rμν. (66)

Finally, we define the graviton operator in the canonical Laplace-type form, L̂ ,
by factoring out the configuration space metric (in the minimal gauge * = 1/2)

L̂μν
αβ = 2k2 E−1

μνρσ Lρσαβ . (67)

We obtain

L̂μν
αβ = −δα(μδβν)�+ Qμν

αβ , (68)

where

Qμν
αβ = −2Rμ

(α
ν
β) − 2δ(α(μRβ)ν) + Rμνgαβ + 2

n − 2
gμνRαβ

+
(

δα(μδ
β

ν) −
1

(n − 2)
gμνgαβ

)

R − 2Λδα(μδ
β

ν) . (69)

One can show that the contribution of the determinant of the operator γ can be
neglected (more precisely, it can be absorbed in the measure of the path integral)
since it is of zero order. Thus, with this choice of gauge parameters the one-loop
effective action of quantum general relativity is given by

�(1) = − 1

2i
log Det L̂ + 1

i
log Det F . (70)

Therefore, in order to compute the effective action we need to compute the determi-
nants of Laplace-type partial differential operators acting on symmetric two tensors
and vectors.

4.3 Heat Kernel Method

As we described in the previous section the effective action in quantum field theory
can be computed within the semi-classical perturbation theory. It is determined by
the functional determinants of second-order hyperbolic partial differential operators
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with Feynman boundary conditions and the higher-loop approximations are deter-
mined in terms of the Feynman propagators and the classical vertex functions. As
we noted above these expressions are purely formal and need to be regularized and
renormalized, which can be done in a consistent way in renormalizable field theo-
ries. One should stress, of course, that many physically interesting theories (includ-
ing Einstein’s general relativity) are perturbatively non-renormalizable. Since we
only need Feynman propagators we can do the Wick rotation and consider instead
of hyperbolic operators the elliptic ones. The Green functions of elliptic operators
and their functional determinants can be expressed in terms of the heat kernel. That
is why we concentrate below on the calculation of the heat kernel.

The heat kernel is one of the most powerful tools in mathematical physics
and geometric analysis (see, for example, the books [27, 15, 10, 28] and reviews
[19, 9, 11, 34, 14]). The short-time asymptotic expansion of the trace of the heat
kernel determines the spectral asymptotics of the differential operator. The coeffi-
cients of this asymptotic expansion, called the heat invariants, are extensively used
in geometric analysis, in particular, in spectral geometry and index theorems proofs
[27, 15].

The gauge invariance (or covariance) in quantum gauge field theory and quantum
gravity is of fundamental importance. That is why, manifestly covariant methods
present inestimable advantage. A manifestly covariant calculus is such that every
step is expressed in terms of geometric objects; it does not have some intermediate
non-covariant steps that lead to an invariant result. Below we describe a manifestly
covariant method for calculation of the heat kernel following mainly our papers
[2, 3, 9–11].

4.3.1 Laplace-Type Operators

Let (M, g) be a smooth compact Riemannian manifold of dimension n without
boundary, equipped with a positive-definite Riemannian metric g. We assume that it
is complete, simply connected, orientable, and spin. We denote the local coordinates
on M by xμ, with Greek indices running over 1, . . . , n. Let ea

μ be a local orthonor-
mal frame defining a basis for the tangent space Tx M . We denote the frame indices
by lower case Latin indices from the beginning of the alphabet, which also run over
1, . . . , n. The frame indices are raised and lowered by the metric δab. Let ea

μ be
the matrix inverse to ea

μ, defining the dual basis in the cotangent space T ∗x M . As
usual, the orthonormal frame, ea

μ and ea
μ, will be used to transform the coordinate

(Greek) indices to the orthonormal (Latin) indices. The Riemannian volume element
is defined as usual by dvol = dxg1/2 , where g = det gμν = (det ea

μ)2. The spin
connection ωab

μ is defined in terms of the covariant derivatives of the orthonormal
frame with the Levi-Civita connection. The curvature of the spin connection defines
the Riemann tensor Ra

bμν , the Ricci tensor Rμν = Rαμαν , and the scalar curvature
R = Rμμ, as usual.

Let T be a spin-tensor bundle realizing a representation ' of the spin group
spin(n), the double covering of the group SO(n), with the fiber Λ. Let 'ab be
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the generators of the orthogonal algebra SO(n), the Lie algebra of the orthogonal
group SO(n). The spin connection induces a connection on the bundle T defining
the covariant derivative of smooth sections ϕ of the bundle T by

∇spin
μ ϕ =

(

∂μ + 1

2
ωab

μ'ab

)

ϕ . (71)

The commutator of covariant derivatives defines the curvature of this connection via

[∇spin
μ ,∇spin

ν ]ϕ = 1

2
Rab

μν'abϕ . (72)

The covariant derivative along the frame vectors is defined by ∇a = ea
μ∇μ. For

example, with our notation, ∇a∇bTcd = ea
μeb

νec
αed

β∇μ∇νTαβ . The metric δab

induces a positive-definite fiber metric on tensor bundles.
Let GY M be a compact Lie group (called a gauge group). It naturally defines the

principal fiber bundle over the manifold M with the structure group GY M . We con-
sider a representation of the structure group GY M and the associated vector bundle
through this representation with the same structure group GY M whose typical fiber
is a k-dimensional vector space W . Then for any spin-tensor bundle T , we define
the twisted spin-tensor bundle V via the twisted product of the bundles W and T .
The fiber of the bundle V is V = Λ ⊗ W so that the sections of the bundle V are
represented locally by k-tuples of spin-tensors.

Let AY M be a connection one-form on the bundle W (called Yang – Mills or
gauge connection) taking values in the Lie algebra GY M of the gauge group GY M .
Then the total connection on the bundle V is defined by

∇μϕ =
(
∂μ +Aμ

)
ϕ , (73)

where

Aμ = 1

2
ωab

μ'ab ⊗ IW + IΛ ⊗AY M
μ , (74)

and the total curvature R of the bundle V is defined by

[∇μ,∇ν]ϕ = Rμνϕ , (75)

where

Rμν = 1

2
Rab

μν'ab +RY M
μν (76)

and

RY M
μν = ∂μAY M

ν − ∂νAY M
μ + [AY M

μ ,AY M
μ ] (77)

is the curvature of the Yang – Mills connection.



4 Mathematical Tools for Calculation of the Effective Action 211

We also consider the bundle End (V) of endomorphisms of the bundle V . The
covariant derivative of sections of this bundle is defined by

∇μQ = ∂μQ + [Aμ, Q] (78)

and the commutator of covariant derivatives is equal to

[∇μ,∇ν]Q = [Rμν, Q] . (79)

We assume that the vector bundle V is equipped with a Hermitian metric. This
naturally identifies the dual vector bundle V∗ with V . We assume that the connection
∇ is compatible with the Hermitian metric on the vector bundle V . The connection is
given its unique natural extension to bundles in the tensor algebra over V and V∗. In
fact, using the Levi-Civita connection of the metric g together with the connection
on the bundle V , we naturally obtain connections on all bundles in the tensor algebra
over V, V∗, T M , and T ∗M ; the resulting connection will usually be denoted just
by ∇. It is usually clear which bundle’s connection is being referred to, from the
nature of the section being acted upon.

We denote by C∞(V) the space of smooth sections of the bundle V . The fiber
inner product on the bundle V defines a natural L2 inner product and the L2-trace
Tr using the invariant Riemannian measure on the manifold M . The completion of
C∞(V) in this norm defines the Hilbert space L2(V) of square integrable sections.
Let ∇∗ be the formal adjoint to ∇ defined using the Riemannian metric and the Her-
mitian structure on V and let Q be a smooth Hermitian section of the endomorphism
bundle End (V).

A Laplace-type operator L : C∞(V )→ C∞(V ) is a partial differential operator
of the form

L = ∇∗∇ + Q = −�+ Q . (80)

In local coordinates the Laplacian is defined by

� = gμν∇μ∇ν = g−1/2(∂μ +Aμ)g1/2gμν(∂ν +Aν). (81)

and, therefore,

L = −g−1/2(∂μ +Aμ)g1/2gμν(∂ν +Aν)+ Q

= −gμν∂μ∂ν − 2aμ∂μ + q, (82)

where

aμ = gμνAν + 1

2
g−1/2∂ν(g

1/2gνμ), (83)

q = Q − gμνAμAν − g−1/2∂μ(g
1/2gμνAν). (84)
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Thus, a Laplace-type operator is constructed from the following three pieces of
geometric data: (i) a Riemannian metric g on M , which determines the second-
order part, (ii) a connection one-form A on the vector bundle V , which determines
the first-order part, and (iii) an endomorphism Q of the vector bundle V , which
determines the zeroth-order part. It is worth noting that every second-order differ-
ential operator with a scalar leading symbol given by the metric tensor is of Laplace
type and can be put in this form by choosing the appropriate connection and the
endomorphism Q.

It is easy to show that the Laplacian, �, and, therefore, the operator L is an
elliptic symmetric partial differential operator satisfying

(Lϕ,ψ) = (ϕ, Lψ), (85)

with a positive principal symbol. Moreover, the operator L is essentially self-adjoint,
i.e., it has a unique self-adjoint extension. We will not be very careful about dis-
tinguishing between the operator L and its closure, and will simply say that the
operator L is elliptic and self-adjoint.

It is well known [27] that

(i) the operator L has a discrete real spectrum, {λn}∞n=1, bounded from below:

λ0 < λ1 < λ2 < · · · < λn < · · · (86)

with some real constant λ0,
(ii) the eigenvalues grow as k →∞ as λk ∼ Ck2/n , where n = dim M ,

(iii) all eigenspaces of the operator L are finite dimensional, and
(iv) the eigenvectors, {ϕn}∞n=1, of the operator L are smooth sections of the vector

bundle V that form a complete orthonormal basis in L2(V).

4.3.2 Spectral Functions

The spectrum of the operator L can be described by cerain spectral invariants called
spectral functions. First of all, we define the heat trace

#(t) =
∞∑

n=1

e−tλn , (87)

where each eigenvalue is counted with multiplicities. The heat trace is well defined
for real positive t . Note that it can be analytically continued to an analytic function
of t in the right half-plane (for Re t > 0).

The heat trace determines other spectral functions by integral transforms: the
distribution function (also called counting function), defined as the number of eigen-
values below the level λ,
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N (λ) =
∞∑

n=1

θ(λ− λn) = 1

2π i

ε+i∞∫

ε−i∞

dt

t
etλ #(t), (88)

where ε is a positive constant, the density function

ρ(λ) =
∞∑

n=1

δ(λ− λn) = 1

2π i

ε+i∞∫

ε−i∞
dt etλ #(t) (89)

and the zeta-function

ζ(s, λ) =
∞∑

n=1

1

(λn − λ)s =
1

�(s)

∞∫

0

dt ts−1 etλ#(t), (90)

where λ is a large negative constant such that Re λ < λ0 and s is a complex param-
eter with Re s > n/2.

In principle, if known exactly, they determine the spectrum. Of course, this is
not valid for asymptotic expansions of the spectral functions. There are examples of
operators that have the same asymptotic series of the spectral functions but different
spectrum.

One can show (see, for example, [32, 27]) that the zeta-function admits an ana-
lytic continuation to a meromorphic function of s with isolated simple poles at the
points s = [n/2]+1/2−k (k = 0, 1, 2, . . . ) and s = 1, 2, . . . , [n/2]. We will derive
this property below in Sect. 4.3.5. In particular, the zeta-function is analytic at the
origin. This enables one to define, in particular, the zeta-regularized determinant of
the operator (L − λ),

ζ ′(0, λ) ≡ ∂

∂s
ζ(s, λ)

∣
∣
∣
s=0

= − log Det (L − λ), (91)

which determines the one-loop effective action in quantum field theory.

4.3.3 Heat Kernel

For t > 0 the operators

U (t) = exp(−t L) (92)

form a semigroup of bounded operators on L2(V), the so-called heat semigroup.
The kernel of this operator is defined by



214 I.G. Avramidi

U (t |x, x ′) =
∞∑

n=1

e−tλnϕn(x)⊗ ϕ∗n (x ′), (93)

where each eigenvalue is counted with multiplicities. It is a section of the external
tensor product of vector bundles V � V∗ over M × M , which can also be regarded
as an endomorphism from the fiber of V over x ′ to the fiber of V over x . This kernel
satisfies the heat equation

(∂t + L)U (t) = 0 (94)

with the initial condition

U (0+|x, x ′) = δ(x, x ′) (95)

and is called the heat kernel.
Moreover, the heat semigroup U (t) is a trace-class operator with a well-defined

L2-trace,

Tr exp(−t L) =
∫

M

dvol tr V U diag(t) . (96)

Hereafter tr V denotes the fiber trace and the label ‘diag’ means the diagonal value
of a two-point quantity, e.g.,

U diag(t |x) = U (t |x, x ′)
∣
∣
∣
x=x ′

. (97)

It is easy to see that

∫

M

dvol tr V U diag(t) =
∞∑

n=1

e−tλn , (98)

which is a remarkable fact that equates the global and the local quantities. This
means that the trace of the heat semigroup is equal to the heat trace defined above,
that is,

Tr exp(−t L) = #(t) . (99)

4.3.4 Asymptotic Expansion of the Heat Kernel

In the following we are going to study the heat kernel only locally, i.e., in the neigh-
borhood of the diagonal of M×M , when the points x and x ′ are close to each other.
The exposition will follow mainly our papers [3, 10, 9, 11]. We will keep a point x ′
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of the manifold fixed and consider a small geodesic ball, i.e., a small neighborhood
of the point x ′: Bε(x ′) = {x ∈ M |r(x, x ′) < ε}, r(x, x ′) being the geodesic distance
between the points x and x ′. We will take the radius of the ball sufficiently small,
so that each point x of the ball of this neighborhood can be connected by a unique
geodesic with the point x ′. This can be always done if the size of the ball is smaller
than the injectivity radius of the manifold, ε < rinj.

Let σ(x, x ′) be the geodetic interval, also called world function, defined as one
half the square of the length of the geodesic connecting the points x and x ′

σ(x, x ′) = 1

2
r2(x, x ′). (100)

The first derivatives of this function with respect to x and x ′ define tangent vec-
tor fields to the geodesic at the points x and x ′, respectively, pointing in opposite
directions

uμ = gμν∇νσ, (101)

uμ
′ = gμ

′ν′∇′ν′σ, (102)

and the determinant of the mixed second derivatives defines a so-called Van Vleck –
Morette determinant

�(x, x ′) = g−1/2(x) det
[−∇μ∇′ν′σ(x, x ′)

]
g−1/2(x ′). (103)

This object should not be confused with the Laplacian, which is also denoted by �.
Let, finally, P(x, x ′) denote the parallel transport operator of sections of the vec-

tor bundle V along the geodesic from the point x ′ to the point x . It is a section of
the external tensor product of the vector bundle V � V∗ over M × M , or, in other
words, it is an endomorphism from the fiber of V over x ′ to the fiber of V over x .
Here and everywhere below the coordinate indices of the tangent space at the point
x ′ are denoted by primed Greek letters. They are raised and lowered by the metric
tensor gμ′ν′(x ′) at the point x ′. The derivatives with respect to x ′ will be denoted by
primed Greek indices as well.

We extend the local orthonormal frame ea
μ′(x ′) at the point x ′ to a local orthonor-

mal frame ea
μ(x) at the point x by parallel transport. The parameters of the geodesic

connecting the points x and x ′, namely the unit tangent vector at the point x ′ and
the length of the geodesic (or, equivalently, the tangent vector at the point x ′ with
the norm equal to the length of the geodesic), provide a normal coordinate system
for Bε(x ′). Now, let us define the following geometric parameters:

ya = ea
μuμ = −ea

μ′u
μ′, (104)

so that

uμ = ea
μya and uμ

′ = −ea
μ′ ya. (105)
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Note that ya = 0 at x = x ′. The geometric parameters ya are nothing but the normal
coordinates.

Near the diagonal of M × M all these two-point functions are smooth single-
valued functions of the coordinates of the points x and x ′. Let us note from the
beginning that we will construct the heat kernel in form of covariant Taylor series in
coordinates. In the smooth case these series do not necessarily converge. However,
if one assumes additionally that the two-point functions are analytic, then the Taylor
series converge in a sufficiently small neighborhood of the diagonal.

Further, one can easily prove that the function

U0(t |x, x ′) = (4π t)−n/2�1/2(x, x ′) exp

(

− 1

2t
σ(x, x ′)

)

P(x, x ′) (106)

satisfies the initial condition

U0(0
+|x, x ′) = δ(x, x ′). (107)

Moreover, locally it also satisfies the heat equation in the free case, when the Rie-
mannian curvature of the manifold Riem, the curvature of the bundle connection R,
and the endomorphism Q vanish:

Riem = R = Q = 0 . (108)

Therefore, U0(t |x, x ′) is the exact heat kernel for a pure Laplacian in flat Euclidean
space with a flat trivial bundle connection and without the endomorphism Q.

4.3.4.1 Transport Function

This function gives a good framework for the approximate solution in the general
case. Namely, by factorizing out this free factor we get an ansatz

U (t |x, x ′) = (4π t)−n/2�1/2(x, x ′) exp

(

− 1

2t
σ(x, x ′)

)

P(x, x ′)�(t |x, x ′).
(109)

The function �(t |x, x ′), called the transport function, is a section of the endomor-
phism vector bundle End (V ) over the point x ′. Using the definition of the functions
σ(x, x ′), �(x, x ′), and P(x, x ′) it is not difficult to find that the transport function
satisfies a transport equation

(

∂t + 1

t
D + L̃

)

�(t) = 0, (110)

where D is the radial vector field, i.e., operator of differentiation along the geodesic
defined by
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D = uμ∇μ, (111)

and L̃ is a second-order differential operator defined by

L̃ = P−1�−1/2L�1/2P. (112)

The initial condition for the transport function is obviously

�(t |x, x ′) = IV , (113)

where IV is the identity endomorphism of the vector bundle V over x ′.
It is obvious that if we replace the operator L by (L−λ), with Re λ < λ0, then the

heat kernel and the transport function are simply multiplied by etλ, i.e., the transport
function for the operator (L−λ) is etλ�(t). Further, for λ < λ0 the operator (L−λ)
becomes a positive operator. Therefore, the function etλ�(t) satisfies the following
asymptotic conditions:

lim
t→∞,0 tα∂N

t

[
etλ�(t)

] = 0 for λ < λ1, α > 0, N ≥ 0. (114)

In other words, as t → ∞ the function etλ�(t) and all its derivatives decreases
faster than any power of t , actually it decreases exponentially, and as t → 0 the
product of etλ�(t) with any positive power of t vanishes.

Hereafter we fix λ < λ0, so that (L − λ) is a positive operator. Now, let us
consider a slightly modified version of the Mellin transform of the function etλ�(t)
introduced in [3]

bq(λ) = 1

�(−q)

∞∫

0

dt t−q−1etλ�(t). (115)

Note that for fixed λ this is a Mellin transform of etλ�(t) and for a fixed q this
is a Laplace transform of the function t−q−1�(t). The integral (115) converges for
Req<0. By integrating by parts N times and using the asymptotic conditions (114)
we also get

bq(λ) = 1

�(−q + N )

∞∫

0

dt t−q−1+N (−∂t )
N [etλ�(t)

]
. (116)

This integral converges for Re q < N − 1. Using this representation one can prove
that [3] the function bq(λ) is an entire function of q (analytic everywhere) satisfying
the asymptotic condition:

lim|q|→∞, Re q<N
�(−q + N )bq(λ) = 0, for any N > 0. (117)
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Moreover, the values of the function bq(λ) at the integer positive points q = k are
given by

bk(λ) = (−∂t )
k [etλ�(t)

] ∣∣
∣
t=0

=
k∑

n=0

(
k

n

)

an, (118)

where

ak = (−∂t )
k�(t)

∣
∣
∣
t=0
. (119)

By inverting the Mellin transform we obtain a new ansatz for the transport func-
tion and, hence, for the heat kernel

�(t) = 1

2π i

c+i∞∫

c−i∞
dq e−tλtq �(−q)bq(λ), (120)

where c < 0 and Re λ < λ0. Clearly, since the left-hand side of this equation does
not depend on λ, neither does the right-hand side. Thus, λ serves as an auxiliary
parameter that regularizes the behavior at t → ∞. If we invert instead the Laplace
transform, we obtain another representation

�(t) = 1

2π i

γ+i∞∫

γ−i∞
dλ e−tλtq+1�(−q)bq(λ), (121)

where γ < λ0 and Re q < 0.
Substituting this ansatz into the transport equation we get a functional equation

for the function bq

(

1+ 1

q
D

)

bq(λ) = (L̃ − λ) bq−1(λ). (122)

The initial condition for the transport function is translated into

b0(λ) = IV . (123)

Thus, we have reduced the problem of solving the heat equation to the following
problem: one has to find an entire function of q, bq(λ|x, x ′) that satisfies the func-
tional equation (122) with the initial condition (123) and the asymptotic condition
(117).

Although the variables q and λ seem to be independent they are very closely
related to each other. In particular, by differentiating with respect to λ we obtain an
important result
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∂

∂λ
bq(λ) = −qbq−1(λ). (124)

Also, by differentiating (122) with respect to q one obtains another recursion

(

1+ 1

q
D

)

b′q(λ) = L̃ b′q−1(λ)+
1

q2
Dbq(λ), (125)

where

b′q(λ) =
∂

∂q
bq(λ), (126)

which enables one to compute the derivatives of the function bq(λ) at positive inte-
ger points, if one fixes its value b′0(λ). This turns out to be useful when computing
the determinant of the operator (L − λ).

Moreover, one can actually manifest the dependence of bq(λ) on λ. It is not
difficult to prove that [3] the integral

bq(λ) = 1

2π i

c1+i∞∫

c1−i∞
dp
�(−p)�(p − q)

�(−q)
(−λ)q−pap, (127)

with Re q < c1 < 0, satisfies (122) if ap satisfies this equation for λ = 0, i.e.,

(

1+ 1

q
D

)

aq = L̃ aq−1 (128)

with the initial condition

a0 = IV . (129)

For integer q = k = 1, 2, . . . the functional equation (128) becomes a recursion
system that, together with the initial condition (129), determines all coefficients ak .

Now, from (127) we also obtain the asymptotic expansion of bq(λ) as λ→−∞
bq(λ) ∼

∞∑

n=0

�(q + 1)

n!�(q − n + 1)
(−λ)q−nan . (130)

For integer q this coincides with (118).
The function bq(λ) turns out to be extremely useful in computing the heat kernel,

the resolvent kernel, the zeta-function, and the determinant of the operator L . It
contains the same information about the operator L as the heat kernel. In some
cases the function bq(λ) can be constructed just by analytical continuation from the
integer positive values bk [3].
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4.3.4.2 Asymptotic Expansion of the Transport Function

Now we are going to do the usual trick, namely, to move the contour of integration
over q to the right. Due to the presence of the gamma-function �(−q) the integrand
has simple poles at the non-negative integer points q = 0, 1, 2 . . . , which contribute
to the integral while moving the contour. So, we get

�(t) = e−tλ

{
N−1∑

k=0

(−t)k

k! bk(λ)+ RN (t)

}

, (131)

where

RN (t) = 1

2π i

cN+i∞∫

cN−i∞
dq tq �(−q)bq(λ) (132)

with cN a constant satisfying the condition N − 1 < cN < N . As t → 0 the rest
term RN (t) behaves like O(t N ), so we obtain an asymptotic expansion as t → 0

�(t) ∼ e−tλ
∞∑

k=0

(−t)k

k! bk(λ) =
∞∑

k=0

(−t)k

k! ak . (133)

Using our ansatz (109) we find immediately the heat trace

#(t) = (4π t)−n/2e−tλ 1

2π i

c+i∞∫

c−i∞
dq tq �(−q)Bq(λ), (134)

where

Bq(λ) =
∫

M

dvol tr V bdiag
q (λ). (135)

The heat trace has an analogous asymptotic expansion as t → 0

#(t) ∼ (4π t)−n/2e−tλ
∞∑

k=0

(−t)k

k! Bk(λ) =
∞∑

k=0

(−t)k

k! Ak , (136)

where

Ak =
∫

M

dvol tr V adiag
k . (137)
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This is the famous Minakshisundaram – Pleijel asymptotic expansion [29]. The
physicists call it the Schwinger – De Witt expansion [14]. Its coefficients Ak are
also called sometimes Hadamard – Minakshisundaram – De Witt – Seeley (HMDS)
coefficients. This expansion is of great importance in differential geometry, spectral
geometry, quantum field theory, and other areas of mathematical physics, such as
theory of Huygens’ principle, heat kernel proofs of the index theorems, Korteveg –
De Vries hierarchy, Brownian motion.

One should stress, however, that this series does not converge, in general. In
that sense our ansatz (120) or (131) in form of a Mellin transform of an entire
function is much better since it is exact and gives an explicit formula for the rest
term. Of course, this pushes the problem of evaluating the heat trace into the prob-
lem of finding the function Bq(λ) [or the local function bq(λ)]. The beauty of the
function Bq is that for positive integer values q = k it is equal to the standard
locally computable heat kernel coefficients Bk(λ), and, in some cases, Bq(λ) can
be evaluated by just analytically continuing the heat kernel coefficients Bk(λ) to the
whole complex plane of q (see, for example, [1, 3]). This will be illustrated briefly
in Sect. 4.6 below.

4.3.5 Zeta-Function and Determinant

Let us apply our ansatz for computation of the complex power of the operator (L−λ)
(with λ < λ0 so that the operator (L − λ) is positive) defined by

Gs(λ) = (L − λ)−s = 1

�(s)

∞∫

0

dt ts−1 etλU (t). (138)

Using our ansatz for the heat kernel one can obtain [3]

Gs(λ)=(4π)−n/2�1/2P 1

2π i

c+i∞∫

c−i∞
dq
�(−q)�(−q − s + n/2)

�(s)

(σ

2

)q+s−n/2
bq(λ),

(139)

where c < −Re p + n/2.
Outside the diagonal, i.e., for σ �= 0, this integral converges for any s and defines

an entire function of s. The integrand in this formula is a meromorphic function
of q with some simple and maybe some double poles. If we move the contour of
integration to the right, we get contributions from the simple poles in form of powers
of σ and a logarithmic part due to the double poles (if any). This gives the complete
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structure of diagonal singularities of Gs(x, x ′). Thus the function bq(λ) turns out to
be very useful to study the diagonal singularities.

Now, let us consider the diagonal limit of Gs . By taking the limit σ → 0 we
obtain a very simple formula in terms of the function bq

Gdiag
s (λ) = (4π)−n/2�(s − n/2)

�(s)
bdiag

n/2−s(λ). (140)

This gives automatically the zeta-function

ζ(s, λ) = (4π)−n/2�(s − n/2)

�(s)
Bn/2−s(λ). (141)

This formula expresses the zeta-function in terms of the function Bq(λ). The main
advantage of this formula is that the function Bq(λ) is an entire function of q.
Because the analytical properties of the gamma-function are well known (it is
a meromorphic function with simple isolated poles at non-positive integers), this
enables one to immediately see the analytical structure of the zeta-function. We see
that both Gdiag

s (λ) and ζ(s, λ) are meromorphic functions of s with simple poles
at the points s = [n/2] + 1/2 − k, (k = 0, 1, 2, . . . ) and s = 1, 2, . . . , [n/2].
In particular, the zeta-function is analytic at the origin. Its value at the origin is
given by

ζ(0, λ) =
⎧
⎨

⎩

0 for odd n ,

(4π)−n/2 (−1)n/2

�(n/2+ 1)
Bn/2(λ) for even n .

(142)

This gives the regularized number of all modes of the operator L .
Moreover, the derivative of the zeta-function at the origin is also well defined.

As we already mentioned above it determines the regularized determinant of the
operator (L − λ)

log Det (L − λ) = −(4π)−n/2π(−1)(n+1)/2

�(n/2+ 1)
Bn/2(λ) (143)

for odd n, and

log Det (L − λ) = (4π)−n/2 (−1)n/2

�(n/2+ 1)

{
B ′n/2(λ)− [&(n/2+ 1)+ C]Bn/2(λ)

}

(144)
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for even n. Here &(z) = (d/dz) log�(z) is the psi-function, C = −&(1) =
0.577 . . . is the Euler constant, and

B ′n/2(λ) =
∂

∂q
Bq(λ)

∣
∣
∣
∣
q=n/2

. (145)

4.4 Green Function

In this section we closely follow our paper [8]. Let λ be a sufficiently large negative
parameter, such that λ < λ0 and, therefore, (L − λ) be a positive operator. The
Green function of the operator (L − λ) reads

G(λ|x, x ′) =
∞∑

n=1

1

λn − λϕn(x)⊗ ϕ∗n (x ′) . (146)

It is not difficult to see that the Green function can be represented as the Laplace
transform of the heat kernel

G(λ) =
∞∫

0

dt etλU (t) . (147)

Using our ansatz for the heat kernel we obtain

G(λ) = (4π)−n/2�1/2P 1

2π i

c+i∞∫

c−i∞
dq �(−q)�(−q−1+n/2)

(σ

2

)q+1−n/2
bq(λ),

(148)
where c < n/2− 1.

This ansatz is especially useful for studying the singularities of the Green func-
tion, or, more generally, for constructing the Green function as a power series in σ .
The integrand in (148) is a meromorphic function with poles at the points q = k
and q = k− 1+ n/2, where (k = 0, 1, 2, . . . ). Here one has to distinguish between
odd and even dimensions. In odd dimensions, the poles are at the points q = k and
q = k + [n/2] − 1/2 and are simple, whereas in even dimension there are simple
poles at q = 0, 1, 2, . . . , n/2− 2 and double poles at the points q = k + n/2− 1.

Moving the contour of integration in (148) to the right one can obtain an expan-
sion of the Green function in powers of σ (Hadamard series). Generally, we obtain

G(λ) = Gsing(λ)+ Gnon-anal(λ)+ Greg(λ) . (149)

Here Gsing(λ) is the singular part which is polynomial in the inverse powers of
√
σ
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Gsing(λ) = (4π)−n/2�1/2P
[(n+1)/2]−2∑

k=0

(−1)k

k! �(n/2− k − 1)

(
2

σ

)n/2−k−1

bk(λ).

(150)

Let us fix an integer N such that N > (n − 1)/2.
For the rest we get in odd dimensions

Gnon-anal(λ)+ Greg(λ)

=(−1)(n−1)/2(4π)−n/2�1/2P
N−(n+1)/2∑

k=0

π

�
(

k + n+1
2

)
�
(

k + 3
2

)
(σ

2

)k+1/2
bk+ n−1

2
(λ)

+(−1)(n+1)/2(4π)−n/2�1/2P
N−(n+1)/2∑

k=0

π

k!�(k + n/2)

(σ

2

)k
bk−1+n/2(λ)

+(4π)−n/2�1/2P 1

2π i

cN+i∞∫

cN−i∞
dq
(σ

2

)q+1−n/2
�(−q)�(−q − 1+ n/2)bq(λ),

(151)

where N−1 < cN < N−1/2. Thus, by putting N →∞ we recover the Hadamard
power series in σ for odd dimension n

Gnon-anal(λ) ∼ (−1)(n−1)/2(4π)−n/2�1/2P

∞∑

k=0

π

�
(

k + n+1
2

)
�
(

k + 3
2

)
(σ

2

)k+1/2
bk+ n−1

2
(λ) (152)

Greg(λ) ∼ (−1)(n+1)/2(4π)−n/2�1/2P

∞∑

k=0

π

k!�(k + n/2)

(σ

2

)k
bk−1+n/2(λ). (153)

In even dimensions, the point is more subtle due to the presence of double poles.
Moving the contour in (148) to the right and calculating the contribution of the
residues at the simple and double poles we obtain
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Gnon-anal(λ)+ Greg(λ)

= (−1)n/2−1(4π)−n/2�1/2P log

(
μ2σ

2

) N−1∑

k=0

1

k!�(k + n/2)

(σ

2

)k
bk−1+n/2(λ)

+(−1)n/2−1(4π)−n/2�1/2P
N−1∑

k=0

1

k!�(k + n/2)

(σ

2

)k

×
{

b′k−1+n/2(λ)−
[
logμ2 +&(k + 1)+&(k + n/2)

]
bk−1+ n

2
(λ)

}

+(4π)−n/2�1/2P 1

2π i

cN+i∞∫

cN−i∞
dq
(σ

2

)q+1−n/2
�(−q)�(−q − 1+ n/2)bq(λ),

(154)

where μ is an arbitrary mass parameter introduced to preserve dimensions, N −1 <
cN < N and &(z) = (d/dz) log �(z). If we let N → ∞ we obtain the Hadamard
expansion of the Green function for even dimension n ≥ 2

Gnon-anal(λ) ∼ (−1)n/2−1(4π)−n/2�1/2P log

(
μ2σ

2

)

∞∑

k=0

1

k!�(k + n/2)

(σ

2

)k
bk−1+n/2(λ) (155)

Greg(λ) ∼ (−1)n/2−1(4π)−n/2�1/2P
∞∑

k=0

1

k!�(k + n/2)

(σ

2

)k

×
{

b′k−1+n/2(λ)−
[
logμ2 +&(k + 1)+&(k + n/2)

]
bk−1+n/2(λ)

}

(156)

Note that the singular part (which is a polynomial in inverse powers of
√
σ ) and

the non-analytical parts (proportional to
√
σ and log σ ) are expressed in terms of

the values of the function bq(λ) at the integer points q, which are uniquely locally
computable from the recursion relation, whereas the regular analytical part contains
the values of the function bq(λ) at half-integer positive points q and the derivatives
of the function bq(λ) with respect to q at integer positive points q, which are not
expressible in terms of the local information. These objects are global and cannot be
expressed further in terms of the local heat kernel coefficients. However, they can be
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computed from (122) and (125) in terms of the value of the function b(q) at some
fixed point q0 (see [3]).

The regular part of the Green function has a well-defined diagonal value and the
functional trace. It reads in odd dimensions n as follows:

Tr Greg(λ) = (−1)(n+1)/2(4π)−n/2 π

�(n/2)
Bn/2−1(λ)

λ→−∞∼ (−1)(n+1)/2(4π)−n/2π

∞∑

k=0

(−λ)n/2−1−k

k!�(n/2− k)
Ak (157)

and in even dimensions n

Tr Greg(λ) = (−1)n/2−1 (4π)
−n/2

�(n/2)
{

B ′n/2−1(λ)−
[
log μ2 +&(n/2)− C

]
Bn/2−1(λ)

}
λ→−∞∼ (−1)n/2−1(4π)−n/2

{n/2−1∑

k=0

(−λ)n/2−1−k

k!�(n/2− k)

[

C−&(n/2− k)+ log

(−λ
μ2

)]

Ak

+
∞∑

k=n/2

(−1)k−n/2

k! (−λ)n/2−1−k�(k + 1− n/2)Ak

}

. (158)

This trace determines the regularized vacuum expectation values like
〈
ϕ2
〉

in quan-
tum field theory.

Thus, we see that

(i) all the singularities of the Green function and the non-analytical parts thereof
(proportional to

√
σ in odd dimensions and to log σ in even dimensions) are

determined by the values of the function bq(λ) at integer points q, which are
determined, in turn, by the heat kernel coefficients ak ;

(ii) there are no power singularities, i.e., Gsing(λ) = 0, in lower dimensions
n = 1, 2;

(iii) there is no logarithmic singularity (more generally, no logarithmic part at all)
in odd dimensions;

(iv) the regular part depends on the values of the function bq(λ) at half-integer
points q and its derivative b′q(λ) at integer points q and is a global object
that cannot be reduced to purely local information like the heat kernel coef-
ficients ak .

The logarithmic part of the Green function is very important. On the one hand it
determines, as usual, the renormalization properties of the regular part of the Green
function, i.e., the derivative μ(∂/∂μ)Greg(λ). In particular,
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μ
∂

∂μ
Tr Greg(λ) =

⎧
⎨

⎩

0 for odd n
(4π)−n/2

�(n/2)
Bn/2−1(λ) for even n.

(159)

On the other hand, it is of crucial importance in studying the Huygens principle.
Namely, the absence of the logarithmic part of the Green function is a necessary
and sufficient condition for the validity of the Huygens principle for hyperbolic
operators. The heat kernel coefficients and, therefore, the logarithmic part of the
Green function are defined for the hyperbolic operators just by analytic continuation
from the elliptic case. Thus, the condition of the validity of Huygens’ principle reads

∞∑

k=0

�(n/2)

k!�(k + n/2)

(σ

2

)k
bk−1+n/2(λ) = 0, (160)

or, by using (118),

∞∑

k=0

k−1+n/2∑

j=0

�(n/2)

k! j !�(k − j + n/2)

(σ

2

)k
(−λ)k− j a j = 0 . (161)

By expanding this equation in covariant Taylor series using the methods of [3] one
can obtain an infinite set of local conditions for validity of the Huygens principle,
see [8]. In particular,

[bn/2−1(λ)]diag = 0, (162)

[∇μbn/2−1(λ)]diag = 0, (163)

[∇(μ∇ν)bn/2−1(λ)]diag + 1

2n
gμν[bn/2(λ)]diag = 0. (164)

4.5 Heat Kernel Coefficients

As we have shown above the calculation of the effective action and the Green
function reduces to the calculation of the heat kernel. An important part of that
calculation is the calculation of the coefficients of the asymptotic expansion of the
heat kernel. They are determined by a recursion system which is obtained simply by
restricting the complex variable q in (128) to positive integer values q = 1, 2, . . . .

4.5.1 Non-recursive Solution of the Recursion Relations

This problem was solved in [2, 3, 10] where a systematic technique for calculation
of ak was developed. The formal solution of this recursion system is
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ak =
(

1+ 1

k
D

)−1

L̃

(

1+ 1

k − 1
D

)−1

L̃ · · ·
(

1+ 1

1
D

)−1

L̃ · I. (165)

Now, the problem is to give a precise practical meaning to this formal operator
solution. To do this one has, first of all, to define the inverse operator (1+ D/k)−1.
This can be done by constructing the complete set of eigenvectors of the operator
D. However, first we introduce some auxiliary notions from the theory of symmetric
tensors.

Let Sn
m be the bundle of symmetric tensors of type (m, n). First of all, we define

the exterior symmetric tensor product

∨ : Sn
m × Si

j → Sn+i
m+ j (166)

of symmetric tensors by

(A ∨ B)β1...βn+i
α1...αm+ j = A(β1...βn

(α1...αm
Bβn+1...βn+i )

αm+1...αm+ j )
. (167)

Next, we define the inner product

+ : Sn
m × Si

n → Si
m (168)

by

(A + B)β1...βi
α1...αm

= Aγ1...γn
α1...αm

Bβ1...βi
γ1...γn

. (169)

Finally, let I(n) be the identity endomorphism on the space of symmetric tensors of
type (n, 0); it is a section of the bundle Sn

n , that is,

I(n)
μ1...μn
ν1...νn

= δ(μ1
(ν1
· · · δμn)

νn)
. (170)

We also define the exterior symmetric covariant derivative

∇S : Sm
n → Sm

n+1 (171)

by

(∇S A)β1...βm
α1...αn+1

= ∇(
α1 A

β1 ...βm
α2 ...αn+1

) . (172)

These definitions are naturally extended to End (V)-valued symmetric tensors,
i.e., to the sections of the bundle Sm

n ⊗ End (V).
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4.5.2 Covariant Taylor Basis

Let us consider the space of smooth two-point functions in a small neighborhood of
the diagonal x = x ′; we will denote such functions by | f 〉. Let us define a special
set of such functions { |n〉}∞n=0, labeled by a non-negative integer n, by

|0〉 = 1, (173)

|n〉 = 1

n! y
a1 · · · yan , (174)

where ya are the geometric parameters (normal coordinates) defined by (104). These
functions are scalars at the point x and symmetric tensors of type (0, n) at the point
x ′. Recall the definition (111) of the operator D introduced in Sect. 4.3.4.1. It is easy
to show that these functions satisfy the equation

D|n〉 = n|n〉 , (175)

and, hence, are the eigenfunctions of the operator D with positive integer eigenval-
ues.

Let 〈n| denote the dual linear functionals defined by

〈n| f 〉 = (∇S)n f
∣
∣
∣
x=x ′

, (176)

so that

〈n|m〉 = δmnI(n). (177)

Using this notation the covariant Taylor series for an analytic function | f 〉 can be
written in the form

| f 〉 =
∞∑

n=0

|n〉 + 〈n| f 〉 , (178)

For smooth functions the Taylor series is only an asymptotic series, which does
not necessarily converge. For analytic functions, however, the Taylor series con-
verges in a sufficiently small neighborhood of the fixed point x ′. Therefore, the
functions |n〉 form a complete orthonormal basis in the subspace of analytic func-
tions. This is a reflection of the fact that an analytic function that is orthogonal to all
functions |n〉, that is, whose all symmetrized derivatives vanish at the point x ′, is, in
fact, identically equal to zero in this neighborhood. Note, however, that the space of
functions we are talking about is not a Hilbert space since there are many analytic
functions | f 〉 such that the norm 〈 f | f 〉 defined above diverges. If we restrict our-
selves to polynomials of some order, then this problem does not appear, and, hence,
the space of polynomials is a Hilbert space with the inner product defined above.
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4.5.3 Matrix Algorithm

The complete set of eigenfunctions |n〉 can be employed to present the action of the
operator L̃ on a function | f 〉 in the form

L̃| f 〉 =
∑

m,n≥0

|m〉 + 〈m|L̃|n〉 + 〈n| f 〉, (179)

where 〈m|L̃|n〉 are the “matrix elements” of the operator L̃ that are just End (V)-
valued symmetric tensors, i.e., sections of the vector bundle Sn

m ⊗ End (V). When
acting on an analytic function this series is nothing but the Taylor series of the
result and converges in a sufficiently small neighborhood of the point x ′; for smooth
functions it gives an asymptotic expansion.

Now it should be clear that the inverse of the operator
(

1+ 1
k D
)−1

can be

defined by

(

1+ 1

k
D

)−1

| f 〉 =
∞∑

n=0

k

k + n
|n〉 + 〈n| f 〉. (180)

Using such representations for the operators
(

1+ 1
k D
)−1

and L̃ we obtain a covari-

ant Taylor series for the coefficients ak

ak =
∞∑

n=0

|n〉 + 〈n|ak〉, (181)

where

〈n|ak〉 =
∑

n1,...,nk−1≥0

k

k + n
· k − 1

k − 1+ nk−1
· · · 2

2+ n2
· 1

1+ n1

×〈n|L̃|nk−1〉 + 〈nk−1|L̃|nk−2〉 + · · · + 〈n1|L̃|0〉 , (182)

where the summation is over all non-negative integers n1, . . . , nk−1. It is not dif-
ficult to show that for a differential operator of second order the matrix elements
〈m|L̃|n〉 do not vanish only for n ≤ m + 2. Therefore, the summation over ni here
is limited from above by

0 ≤ n1 , ni ≤ ni+1 + 2 , (i = 1, 2, . . . , k − 1) , (183)

where nk ≡ n. Thus, the sum (182) contains only a finite number of terms.
Thus, we have reduced the problem of computation of the heat kernel coeffi-

cients ak to the evaluation of the matrix elements 〈m|L̃|n〉 of the operator L̃ . For a
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differential operator L̃ of second order, the matrix elements 〈m|L̃|n〉 vanish for
n > m + 2. Therefore, the summation over ni in (182) is limited from above:
n1 ≥ 0, and ni ≤ ni+1 + 2, for i = 1, 2, . . . , k − 1, and, hence, the sum (182)
always contains only a finite number of terms.

The matrix elements
〈
n|L̃|m

〉
of a Laplace-type operator have been computed in

our papers [3, 1]. They have the following general form:

〈m|L|m + 2〉 = −g∗ ∨ I(m), (184)

〈m|L|m + 1〉 = 0, (185)

〈m|L|n〉 =
(

m

n

)

I(n) ∨ Z(m−n) +
(

m

n − 1

)

I(n−1) ∨ Y(m−n+1)

+
(

m

n − 2

)

I(n−2) ∨ X(m−n+2), (186)

where g∗ is the metric on the cotangent bundle, Z(n) is a section of the vector bundle
Sn⊗End (V), Y(n) is a section of the vector bundle S1

n⊗End (V), and X(n) is a section
of the vector bundle S2

n (a symmetric tensor of type (2, n)). Here it is also meant that
the binomial coefficient

(n
k

)
is equal to zero if k < 0 or n < k.

We will not present here explicit formulas (they have been computed explicitly
for arbitrary m, n in [3, 10]) but note that all these quantities are expressed polyno-
mially in terms of three sorts of geometric data as follows:

(i) symmetric tensors of type (2, n), i.e., sections of the bundle S2
n obtained by

symmetric derivatives

K(n) = (∇S)n−2Riem (187)

of the symmetrized Riemann tensor Riem taken as a section of the bundle S2
2 ,

(ii) sections

R(n) = (∇S)n−1R (188)

of the vector bundle S1
n ⊗ End (V) obtained by symmetrized derivatives of the

curvature R of the connection∇V taken as a section of the bundle S1
1⊗End (V),

(iii) End (V)-valued symmetric forms, i.e., sections of the vector bundle S0
n ⊗

End (V), constructed from the symmetrized covariant derivatives

Q(n) = (∇S)n Q (189)

of the endomorphism Q.



232 I.G. Avramidi

From dimensional arguments it is obvious that the matrix elements 〈n|L|n〉 are
expressed in terms of the Riemann curvature tensor Riem, the bundle curvature R,
and the endomorphism Q; the matrix elements 〈n + 1|L|n〉 in terms of the quantities
∇Riem, ∇R, and ∇Q; the elements 〈n + 2|L|n〉 in terms of the quantities of the
form ∇∇Riem, Riem · Riem, etc.

4.5.4 Diagramatic Technique

In the computation of the heat kernel coefficients by means of the matrix algorithm
a “diagrammatic” technique, i.e., a graphic method for enumerating the different
terms of the sum (182), turns out to be very convenient and pictorial [3, 10].

The matrix elements 〈m|L|n〉 are presented by some blocks with m lines coming
in from the left and n lines going out to the right (Fig. 4.1),
and the product of the matrix elements 〈m|L|k〉+ 〈k|L|n〉 – by two blocks connected
by k intermediate lines (Fig. 4.2)
that represents the contractions of the corresponding tensor indices (the inner
product).

To obtain the coefficient 〈n|ak〉 one should draw, first, all possible diagrams
which have n lines incoming from the left and which are constructed from k blocks
connected in all possible ways by any number of intermediate lines. When doing
this, one should keep in mind that the number of the lines going out of any block
cannot be greater than the number of the lines coming in by more than two and by
exactly one. Then one should sum up all diagrams with the weight determined for
each diagram by the number of intermediate lines from the analytical formula (182).
Drawing of such diagrams is of no difficulties. This helps to keep under control the
whole variety of different terms. Therefore, the main problem is reduced to the
computation of some standard blocks, which can be computed once and for all.

For example, the diagrams for the diagonal values of the HMDS coefficients
adiag

k = 〈0|ak〉 have the form

m n

Fig. 4.1 Matrix elements

m

.

.

. k

.

.

.
.
.
. n

Fig. 4.2 Product of matrix elements



4 Mathematical Tools for Calculation of the Effective Action 233

adiag
1 = � (190)

adiag
2 = � � + 1

3
� � (191)

adiag
3 = � � � + 1

3
� � � + 2

4
� � � (192)

+2

4
· 1

2
� � � + 2

4
· 1

3
� � � + 2

4
· 1

5
� � � .

As an illustration let us compute the coefficients adiag
1 and adiag

2 . We have [3]

�= 〈0|L|0〉 = Z(0) (193)

� = 〈0|L|2〉 = −gab (194)

� = 〈2|L|0〉 = Z(2)ab (195)

� � = 〈0|L|2〉 + 〈2|L|0〉 = −gab Z(2)ab, (196)

where

Z(0) = Q − 1

6
R IV , (197)

Z(2)ab = ∇(a∇b)Q − 1

2
Rc(aRc

b) + 1

2
∇(a∇|c|Rc

b) (198)

+IV

(

− 3

20
∇a∇b R− 1

20
�Rab+ 1

15
Rac Rc

b− 1

30
Racde Rb

cde− 1

30
Rcd Rc

a
d

b

)

.

Here, as usual, the parenthesis denote the complete symmetrization over all indices
included and the vertical lines indicate the indices excluded from the symmetriza-
tion. Hence, we immediately get
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adiag
1 = Q − 1

6
R IV , (199)

and, by taking the trace of Z(2) and using the identity ∇a∇bRab = 0, we obtain the
well-known result [3]

adiag
2 =

(

Q − 1

6
RIV

)2

−1

3
�Q+1

6
RabRab+IV

(
1

15
�R− 1

90
Rab Rab+ 1

90
Rabcd Rabcd

)

.

(200)

The technique described above is manifestly covariant and is applicable for any
Riemannian (or pseudo-Riemannian) manifold M and for any vector bundle V . It is
also valid for local analysis on noncompact manifolds and manifolds with bound-
ary (at finite distance from the boundary). This method gives not only the diagonal
values of the heat kernel coefficients but also the diagonal values of all their deriva-
tives, that is, it gives also the off-diagonal coefficients in form of a covariant Taylor
series. Due to the use of symmetric forms and symmetric covariant derivatives the
famous “combinatorial explosion” in the complexity of the heat kernel coefficients
is avoided. This technique is very algorithmic and well suited to automated com-
putation. The developed method is very powerful; it enabled us to compute for the
first time the diagonal value of the fourth HMDS coefficient adiag

4 [2, 3]. It was used

in [35, 33] to compute the coefficient adiag
5 . Lastly, this technique enables one not

only to carry out explicit computations but also to analyze the general structure of
the heat kernel coefficients for all orders k.

4.5.5 General Structure of Heat Kernel Coefficients

Now we are going to investigate the general structure of the heat kernel coefficients.
We will follow mainly our papers [10, 9, 11].

Our analysis will be again purely local. Since locally one can always expand
the metric, the connection and the endomorphism Q in the covariant Taylor series,
they are completely characterized by their Taylor coefficients, i.e., the covariant
derivatives of the curvatures, more precisely by the objects K(n), R(n), and Q(n)
introduced above. We introduce the following notation for all of them:

/(n) = {K(n+2),R(n+1), Q(n)}, (n = 0, 1, 2, . . . ) (201)

and call these objects covariant jets; n will be called the order of a jet /(n). It is
worth noting that the jets are defined by symmetrized covariant derivatives. This
makes them well defined as the order of the derivatives becomes not important. It is
only the number of derivatives that plays a role.

The low-order coefficients A0 and A1 have been described above. As far as the
higher order coefficients Ak , (k ≥ 2), are concerned, they are integrals of local
invariants which are polynomial in the jets. One can classify all the terms in them
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according to the number of the jets and their order. The terms linear in the jets
in higher order coefficients Ak , (k ≥ 2), are given by integrals of total deriva-
tives, symbolically

∫
M dvol tr V �

k−1/. They are calculated explicitly in [3, 10, 1].
Since the total derivatives do not contribute to an integral over a complete compact
manifold, it is clear that the linear terms vanish. Thus Ak , (k = 2, 3, . . . ), begin
with the terms quadratic in the jets. These terms contain the jets of highest order
(or the leading derivatives of the curvatures) and can be shown to be of the form∫

M dvol tr V /�k−2/. Then it follows a class of terms cubic in the jets, etc. The
last class of terms does not contain any covariant derivatives at all but only the
powers of the curvatures. In other words, the higher order HMDS coefficients have
a general structure, which can be presented symbolically in the following form. For
k ≥ 2 one can classify the terms in A2k according to the number of the jets and their
order

Ak =
k∑

j=2

Ak,( j) , (202)

where Ak,( j) is the contribution of order j in the jets; they can be presented symbol-
ically in the form

Ak,(2) =
∫

M

dvol trV

∑
/(0)/(2k−4), (203)

Ak,(3) =
∫

M

dvol trV

2k−6∑

i=0

∑
/(0)/(i)/(2k−6−i), (204)

· · ·
Ak,(k−1) =

∫

M

dvol trV

[∑
/(2)

(/(0)
)k−2 +

∑(/(1)
)2 (/(0)

)k−3
]
, (205)

Ak,(k) =
∫

M

dvol trV

∑(/(0)
)k
. (206)

More precisely, the functionals Ak,( j) transform under the rescaling of the jets

/(k) �→ εαk/(k) (207)

as follows

Ak,( j) �→ ε jα2(k− j)Ak,( j) . (208)
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4.6 High-Energy Approximation

One can show that all quadratic terms can be reduced to five independent invariants,
viz. [1, 3, 10]

Ak,(2) = k!(k − 2)!
2(2k − 3)!

∫

M

dvol trV

{

f (1)k Q�k−2 Q + 2 f (2)k Rbc∇b�
k−3∇aRa

c

+ f (3)k Q�k−2 R + f (4)k Rab�
k−2 Rab + f (5)k R�k−2 R

}

, (209)

where f (i)k are some numerical coefficients. These numerical coefficients can be
computed by the technique developed in the previous section. From the formula
(182) we have for the diagonal coefficients adiag

k up to cubic terms in the jets

adiag
k = 〈0|ak〉 = (−1)k−1

(2k−1
k

) 〈0; k − 1|L|0〉

+(−1)k
k−1∑

i=1

2(k−i−1)∑

ni=0

(2k−1
i

)

(2k−1
k

)(2i+ni−1
i

) 〈0; k − i − 1|L|ni 〉 + 〈ni ; i − 1|L|0〉

+O(/3), (210)

where

〈n; k|L|m〉 = (∨k g∗) + 〈n|L|m〉 (211)

and O(/3) denote terms of third order in the jets.
By computing the matrix elements in the second order in the jets and integrating

over M one obtains [1, 3]

f (1)k = 1 , (212)

f (2)k = 1

2(2k − 1)
, (213)

f (3)k = k − 1

2(2k − 1)
, (214)

f (4)k = 1

2(4k2 − 1)
, (215)

f (5)k = k2 − k − 1

4(4k2 − 1)
. (216)
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One should note that the same results were obtained by a completely different
method in [17].

It is now easy to see that the expression for Ak can be analytically continued to
an entire function Aq of q, which ultimately gives the function Bq(λ) introduced
in Sect. 4.3.4. This gives an example of how the function Bq(λ) can be computed
without solving the differential equation (for more details, see [1, 3]).

Let us consider the situation when the curvatures are small but rapidly varying
(high-energy approximation in quantum field theory), i.e., the derivatives of the
curvatures are more important than the powers of them. This corresponds to an
asymptotic expansion in the deformation parameter ε as ε → 0. Then the lead-
ing derivative terms in the heat kernel are the largest ones. Thus the heat trace has
the form

#(t) ∼ (4π t)−n/2
{

A0 − t A1 + t2

2
H2(t)

}

+ O(/3), (217)

where H2(t) is some complicated nonlocal functional that has the following asymp-
totic expansion as t → 0

H2(t) ∼ 2
∞∑

k=2

(−t)k−2

k! Ak,(2). (218)

Using the results for Ak,(2) one can easily construct such a functional H2 just by a
formal summation of the leading derivatives

H2(t) =
∫

M

dvol tr V

{

Qγ (1)(−t�)Q + 2Ra
c∇a

1

�
γ (2)(−t�)∇bRbc

−2Qγ (3)(−t�)R + Rabγ
(4)(−t�)Rab + Rγ (5)(−t�)R

}

, (219)

where γ (i)(z) are entire functions defined by [1, 3]

γ (i)(z) =
∞∑

k=0

k!
(2k + 1)! f (i)k zk =

1∫

0

dξ f (i)(ξ) exp

(

−1− ξ2

4
z

)

, (220)

where
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f (1)(ξ) = 1 , (221)

f (2)(ξ) = 1

2
ξ2 , (222)

f (3)(ξ) = 1

4
(1− ξ2) , (223)

f (4)(ξ) = 1

6
ξ4 , (224)

f (5)(ξ) = 1

48
(3− 6ξ2 − ξ4). (225)

Therefore, H2(t) can be regarded as generating functional for quadratic terms Ak,(2)
(leading derivative terms) in all coefficients Ak . It also plays a very important role
in investigating the nonlocal structure of the effective action in quantum field theory
in high-energy approximation [1, 3].

4.7 Low-Energy Approximation

Let us consider now the opposite case, when the curvatures are strong but slowly
varying (low-energy approximation in quantum field theory), i.e., the powers of
the curvatures are more important than their derivatives. This corresponds to the
asynptotic expansion in the deformation parameter α as α → 0. The main terms in
this approximation are the terms without any covariant derivatives of the curvatures,
i.e., the lowest order jets. We will consider mostly the zeroth order of this approxi-
mation, which corresponds simply to covariantly constant background curvatures

∇Riem = 0, ∇R = 0, ∇Q = 0. (226)

The asymptotic expansion of the heat trace

#(t) ∼ (4π t)−n/2
∞∑

k=0

(−t)k

k! Ak,(k) (227)

determines then all the terms without covariant derivatives (highest order terms in
the jets), Ak,(k), in all heat kernel coefficients Ak . These terms do not contain any
covariant derivatives and are just polynomials in the curvatures and the endomor-
phism Q. Thus the heat trace is a generating functional for all heat kernel coeffi-
cients for a covariantly constant background, in particular, for all symmetric spaces.
Thus the problem is to calculate the heat trace for covariantly constant background.
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4.7.1 Algebraic Approach

There exists a very elegant indirect way to construct the heat kernel without solv-
ing the heat equation but using only the commutation relations of some covariant
first-order differential operators. Below we will follow our papers [4–7, 12, 13].
The main idea is to employ a generalization of the usual Fourier transform to the
case of operators; it consists in the following. We are going to use the following
representation of the heat trace:

#(t) =
∫

M

dvol tr V
[
exp(−t L)δ(x, x ′)

]diag
. (228)

Let us consider for a moment a trivial case, where the curvatures vanish but the
potential term does not

Riem = 0, R = 0, ∇Q = 0. (229)

In this case the operators of covariant derivatives obviously commute and form,
together with the potential term, an Abelian Lie algebra

[∇μ,∇ν] = 0, [∇μ, Q] = 0. (230)

It is easy to show that the heat semigroup can be presented in the form

exp(−t L) = (4π t)−n/2 exp(−t Q)
∫

Rn

dk g1/2 exp

(

− 1

4t
〈k, gk〉 + k · ∇

)

, (231)

where 〈k, gk〉 = kμgμνkν and k · ∇ = kμ∇μ. Here, of course, it is assumed that the
covariant derivatives also commute with the metric

[∇, g] = 0. (232)

Acting with this operator on the Dirac distribution and using the obvious relation

[
exp(k · ∇)δ(x, x ′)

]diag = δ(k), (233)

one can integrate easily over k to obtain the heat trace

#(t) = (4π t)−n/2
∫

M

dvol tr V exp(−t Q). (234)

Of course, on curved manifolds the covariant differential operators ∇ do not
commute – their commutators are determined by the curvatures/. The commutators
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of covariant derivatives ∇ with the curvatures / give the first derivatives of the
curvatures, i.e., the jets /(1), the commutators of covariant derivatives with /(1)
give the second jets /(2), etc. Thus the operators ∇ together with the whole set of
the jets J form an infinite-dimensional Lie algebra G = {∇,/(i); (i = 1, 2, . . . )}.

Now, let us remember that the heat trace is a functional of the jets, with the jets
being defined by symmetrized covariant derivatives. This makes the order of a jet
well defined. For example, the structures involving commutators of covariant deriva-
tives (like [∇a,∇b]Re

c
f

d , which involve two-jets of the Riemann tensor on the left
but, after using the Ricci identity, only zero-jets on the right) are not allowed. After
symmetrizing over abcd this jet vanishes. So, if we express the final answer for the
heat kernel diagonal or for the heat kernel coefficients in terms of the symmetrized
jets, then there is a natural filtration with respect to the order of the jets involved.
In other words, one can always say, what is the maximal order of symmetrized
covariant derivative of the curvature involved in the result. This is especially true
for the heat kernel coefficients Ak since they are polynomial in the jets.

If we identify a small deformation parameter α with each derivative then a jet of
order n is, actually, of order αn . Thus, we get a perturbation theory in this small
parameter. Since the derivatives are naturally identified with the momentum (or
energy), the physicists call a situation when the derivatives are small the low-energy
approximation. To evaluate the heat kernel in the low-energy approximation one can
take into account only a finite number of low-order jets, i.e., the low-order covariant
derivatives of the background fields, {/(i); (i ≤ N )}with some fixed N , and neglect
all higher order jets, i.e., the covariant derivatives of higher orders, i.e., put /(i) = 0
for i > N . Then one can show that there exist a set of covariant differential opera-
tors that, together with the low-order jets, generate a finite-dimensional Lie algebra
GN = {∇,/(i); (i = 1, 2, . . . , N )}. One should stress here what problem one can
solve this way. We try to answer the following concrete question: How do the heat
kernel coefficients look if we throw away all the (symmetrized) jets of order higher
than N?

Thus one can try to generalize the above idea in such a way that (231) would
be the zeroth approximation in the commutators of the covariant derivatives, i.e., in
the curvatures. Roughly speaking, we would like to find a representation of the heat
semigroup in the form

exp(−t L) = (4π t)−D/2
∫

RD

dk"(t, k) exp

(

− 1

4t
〈k, &(t)k〉 + T (k)

)

, (235)

where 〈k, &(t)k〉 = k A&AB(t)k B , T (k) = k ATA (A = 1, 2, . . . , D) TA are some
first-order differential operators and the functions &(t) and "(t, k) are expressed
in terms of commutators of these operators, i.e., in terms of the curvatures; that is,
these functions are analytic functions of t . In general, the operators TA do not form
a closed finite-dimensional algebra because at each step, by taking more commuta-
tors, there appear more and more derivatives of the curvatures. It is the low-energy
reduction G �→ GN , i.e., the restriction to the low-order jets, that actually closes
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the algebra G of the operators TA and the background jets, i.e., makes it finite-
dimensional.

Using this representation one can, as above, act with exp [T (k)] on the Dirac
distribution to get the heat kernel. The main point of this idea is that it is much
easier to calculate the action of the exponential of the first-order operator T (k) on
the Dirac distribution than that of the exponential of the second-order operator L .

4.7.2 Covariantly Constant Background in Flat Space

Let us consider now the more complicated case of nontrivial covariantly constant
curvature of the connection on the vector bundle V in flat space as follows:

Riem = 0, ∇R = 0, ∇Q = 0. (236)

Using the condition of covariant constancy of the curvatures one can show that
in this case the covariant derivatives form a nilpotent Lie algebra [4]

[∇μ,∇ν] = Rμν, (237)

[∇μ,Rαβ ] = [∇μ, Q] = 0, (238)

[Rμν,Rαβ ] = [Rμν, Q] = 0. (239)

For this algebra one can prove a theorem expressing the heat semigroup operator
in terms of an average over the corresponding Lie group [4]

exp(−t L) = (4π t)−n/2 exp(−t Q)

[

det T M

(
tR

sinh(tR)

)]1/2

(240)

×
∫

Rn

dk g1/2 exp

(

− 1

4t
〈k, gtR coth(tR)k〉 + k · ∇

)

, (241)

where k ·∇ = kμ∇μ. Here functions of the curvatures R are understood as functions
of sections of the bundle End (T M)⊗ End (V), and the determinant detT M is taken
with respect to the tangent space indices; the fiber indices of the bundle V being
intact.

It is not difficult to show that in this case we also have

[
exp (k · ∇) δ(x, x ′)

]diag = δ(k) . (242)

Subsequently, the integral over k becomes trivial and we obtain immediately the
trace of the heat kernel [4]

#(t) = (4π t)−n/2
∫

M

dvol tr V exp(−t Q)

[

det T M

(
tR

sinh(tR)

)]1/2

. (243)
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Expanding it in a power series in t one can find all covariantly constant terms in all
heat kernel coefficients Ak .

As we have seen the contribution of the curvature Rμν is not as trivial as that of
the potential term. However, the algebraic approach does work in this case too. It is
a good example of how one can get the heat kernel without solving any differential
equations but using only the algebraic properties of the covariant derivatives.

4.7.2.1 Quadratic Potential in Flat Space

In fact, in flat space it is possible to do a bit more, i.e., to calculate the contribution of
the first and the second derivatives of the potential term Q [6]. That is, we consider
the case when the derivatives of the endomorphism Q vanish only starting from the
third order, i.e.,

Riem = 0, ∇R = 0, ∇∇∇Q = 0. (244)

Besides we assume the background to be Abelian, i.e., all the nonvanishing back-
ground quantities, Rαβ , Q, Q;μ ≡ ∇μQ and Q;νμ ≡ ∇μ∇νQ, commute with each
other. Thus we have again a nilpotent Lie algebra

[∇μ,∇ν] = Rμν , (245)

[∇μ, Q] = Q;μ , (246)

[∇μ, Q;ν] = Q;νμ , (247)

all other commutators being zero.
Now, let us represent the endomorphism Q in the form

Q = Q0 − αik Ni Nk, (248)

where (i = 1, . . . , q; q ≤ n), αik is some constant symmetric nondegenerate q × q
matrix, Q0 is a covariantly constant endomorphism, and Ni are some endomor-
phisms with vanishing second covariant derivative as follows:

∇Q0 = 0, ∇∇Ni = 0. (249)

Next, let us introduce the operators X A = (∇μ, Ni ) (A = 1, . . . , n + q) and the
matrix

(FAB) =
(

Rμν Ni;μ
−Nk;ν 0

)

, (250)

with Ni;μ ≡ ∇μNi .
The operator L can now be written in the form

L = −G AB X A X B + Q0 , (251)
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where

(G AB) =
(

gμν 0
0 αik

)

. (252)

and the commutation relations (247) take a more compact form

[X A, X B] = FAB, (253)

all other commutators being zero.
This algebra is again a nilpotent Lie algebra. Thus one can apply the previous

results in this case too to get [6]

exp(−t L) = (4π t)−(n+q)/2 exp(−t Q0)

[

det

(
tF

sinh(tF)

)]1/2

×
∫

Rn+q

dk G1/2 exp

(

− 1

4t
〈k,GtF coth(tF)k〉 + X (k)

)

, (254)

where G = det G AB and X (k) = k A X A.
Thus we have expressed the heat semigroup operator in terms of the opera-

tor exp [X (k)]. The integration over k is Gaussian except for the noncommutative
part. Splitting the integration variables (k A) = (qμ, ωi ) and using the Campbell–
Hausdorff formula we obtain [6]

[
exp [X (k)] δ(x, x ′)

]diag = exp [N (ω)] δ(q), (255)

where N (ω) = ωi Ni . Further, after taking off the trivial integration over q and a
Gaussian integral over ω, we obtain the heat trace [6].

To describe the result let us introduce a matrix determined by second derivatives
of the potential term as follows

P = (Pμν
)
, Pμν = 1

2
∇μ∇νQ, (256)

and the matrices C(t) = (Cμν(t)), K (t) = (Kμν(t)) S(t) = (Sμν(t)), and E(t) =
(Eμν(t)) by
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C(t) =
∮

C

dz

2π i
F(z) t coth

(
t

z

)

, (257)

K (t) =
∮

C

dz

2π i
F(z)

t

z2
sinh

(
t

z

)

, (258)

S(t) =
∮

C

dz

2π i
F(z)

t

z
sinh

(
t

z

)

, (259)

E(t) =
∮

C

dz

2π i
F(z) t sinh

(
t

z

)

, (260)

where

F(z) = (1− zR− z2 P)−1 (261)

and the integral is taken along a sufficiently small closed contour C that encircles
the origin counter-clockwise, so that F(z) is analytic inside this contour.

Then the heat trace has the form

#(t) = (4π t)−n/2
∫

M

dvol tr V ["(t)]−1/2 exp

[

−t Q + 1

4
t3 〈∇Q, &(t)∇Q〉

]

,

(262)
where 〈∇Q, &(t)∇Q〉 = ∇μQ&μν(t)∇νQ,

"(t) = det T M K (t) det T M

[
1+ t2C(t)P

]
,

× det T M

{
1+ t2[E(t)− S(t)K−1(t)S(t)]P

}
, (263)

&(t) = (&μν(t)
) =

[
1+ t2C(t)P

]−1
C(t) . (264)

The formula (262) exhibits the general structure of the heat trace. One sees imme-
diately how the endomorphism Q and its first derivatives ∇Q enter the result. The
nontrivial information is contained only in a scalar"(t), and a tensor&μν(t). These
objects are constructed purely from the curvature Rμν and the second derivatives of
the endomorphism Q, ∇∇Q. Thus, the heat kernel coefficients Ak are constructed
from three different types of scalar (connected) blocks Q, "(n)(R,∇∇Q), and
∇μQ&μν(n)(R,∇∇Q)∇νQ. They are listed explicitly up to A8 in [6].
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4.7.3 Homogeneous Bundles over Symmetric Spaces

The exposition in this section closely follows our papers [5, 7, 12, 13]. Our goal is
to compute the heat kernel of the Laplace-type operator L = −� + Q in the zero
order of the low-energy approximation. The difference with the previous sections is
that now we are going to do it on the most general covariantly constant background,
that is, bundles with parallel curvature (that are called homogeneous bundles) on
Riemannian manifolds with parallel curvature (that are called symmetric spaces).

It is well known that heat invariants are determined essentially by local geom-
etry. They are polynomial invariants in the curvature with universal constants that
do not depend on the global properties of the manifold [27]. It is in this universal
structure that we are interested in this chapter. Our goal is to compute the heat kernel
asymptotics of the Laplacian acting on homogeneous vector bundles over symmetric
spaces.

In this section we will further assume that M is a locally symmetric space with a
Riemannian metric with the parallel curvature

∇μRαβγ δ = 0, (265)

which means, in particular, that the curvature satisfies the integrability constraints

R f g
ea Re

bcd − R f g
eb Re

acd + R f g
ec Re

dab − R f g
ed Re

cab = 0. (266)

In the following we will also consider homogeneous vector bundles with parallel
bundle curvature

∇μRαβ = 0, (267)

which means that the curvature satisfies the integrability constraints

[Rcd ,Rab] − R f
acdR f b − R f

bcdRa f = 0. (268)

Finally, we consider a parallel section Q of the endomorphism bundle End (V),
that is,

∇μQ = 0, (269)

which means that

[Rcd , Q] = 0. (270)

We will use normal coordinates defined above. Note that for symmetric spaces
normal coordinates cover the whole manifold except for a set of measure zero where
they become singular [19]. This set is precisely the set of points conjugate to the
fixed point x ′ [where �−1(x, x ′) = 0] and of points that can be connected to the



246 I.G. Avramidi

point x ′ by multiple geodesics. In any case, this set is a set of measure zero and, as
we will show below, it can be dealt with by some regularization technique. Thus,
we will use the normal coordinates defined above for the whole manifold.

4.7.3.1 Curvature Group of a Symmetric Space

We assumed that the manifold M is locally symmetric. Since we also assume that it
is simply connected and complete, it is a globally symmetric space (or simply sym-
metric space). A symmetric space is said to be compact, noncompact, or Euclidean
if all sectional curvatures are positive, negative, or zero. A generic symmetric space
has the structure M = M0 × Ms , where M0 = R

n0 and Ms is a semi-simple sym-
metric space; it is a product of a compact symmetric space M+ and a noncompact
symmetric space M−, Ms = M+×M− . Of course, the dimensions must satisfy the
relation n0 + ns = n, where ns = dim Ms .

Let Λ2 be the vector space of two-forms on M at a fixed point x ′. It has the
dimension dimΛ2 = n(n − 1)/2, and the inner product in Λ2 is defined by

〈X,Y 〉 = 1

2
XabY ab. (271)

The Riemann curvature tensor naturally defines the curvature operator

Riem : Λ2 → Λ2 (272)

by

(Riem X)ab = 1

2
Rab

cd Xcd . (273)

This operator is symmetric and has real eigenvalues which determine the principal
sectional curvatures. Now, let Ker (Riem) and Im (Riem) be the kernel and the range
of this operator, and

p = dim Im(Riem) = n(n − 1)

2
− dim Ker (Riem). (274)

Further, let λi (i = 1, . . . , p) be the non-zero eigenvalues, and Ei
ab be the cor-

responding orthonormal eigen-two-forms. Then the components of the curvature
tensor can be presented in the form [7]

Rabcd = βik Ei
ab Ek

cd , (275)

where βik is a symmetric, in fact, diagonal, nondegenerate p× p matrix. Of course,
the zero eigenvalues of the curvature operator correspond to the flat subspace M0,
the positive ones correspond to the compact submanifold M+ and the negative ones
to the noncompact submanifold M−. Therefore, Im (Riem) = Tx Ms .
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In the following the Latin indices from the middle of the alphabet will be used
to denote tensors in Im(Riem); they should not be confused with the Latin indices
from the beginning of the alphabet which denote tensors in M . They will be raised
and lowered with the matrix βik and its inverse β ik .

Next, we define the traceless n × n matrices Di = (Da
ib), where

Da
ib = −βik Ek

cbδ
ca . (276)

The matrices Di are known to be the generators of the holonomy algebra, H, i.e., the
Lie algebra of the restricted holonomy group, H ,

[Di , Dk] = F j
ik D j , (277)

where F j
ik are the structure constants of the holonomy group. The structure con-

stants of the holonomy group define the p× p matrices Fi , by (Fi )
j
k = F j

ik , which
generate the adjoint representation of the holonomy algebra

[Fi , Fk] = F j
ik Fj . (278)

For symmetric spaces the introduced quantities satisfy additional algebraic con-
straints. The most important consequence of (266) is the equation [7]

Ei
ac Dc

kb − Ei
bc Dc

ka = Fi
kj E

j
ab. (279)

Now, we introduce a new type of indices, the capital Latin indices, A, B,C, . . . ,
which split according to A = (a, i) and run from 1 to N = p + n. We define new
quantities C A

BC by

Ci
ab = Ei

ab, Ca
ib = −Ca

bi = Da
ib, Ci

kl = Fi
kl, (280)

all other components being zero. Let us also introduce rectangular p × n matrices
Ta by (Ta)

j
c = E j

ac and the n × p matrices T̄a by (T̄a)
b

i = −Db
ia. Then we can

define N × N matrices CA = (Ca,Ci )

Ca =
(

0 T̄a

Ta 0

)

, Ci =
(

Di 0
0 Fi

)

, (281)

so that (CA)
B

C = C B
AC.

Then one can prove the following [7]:

Theorem 1 The matrices CA generate the adjoint representation of a Lie algebra G
with the structure constants C A

BC, that is,

[CA,CB] = CC
ABCC , (282)
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For the lack of a better name we call the algebra G the curvature algebra. As it
will be clear from the next section it is a subalgebra of the total isometry algebra of
the symmetric space. It should be clear that the holonomy algebra H is the subalge-
bra of the curvature algebra G. The curvature algebra G is compact; it is a direct sum
of two ideals, G = G0⊕Gs, an Abelian center G0 of dimension n0 and a semi-simple
algebra Gs of dimension p + ns .

Next, we define a symmetric nondegenerate N × N matrix

(γAB) =
(
δab 0
0 βik

)

. (283)

This matrix and its inverse γ AB will be used to lower and to raise the capital Latin
indices.

4.7.3.2 Killing Vectors Fields

We will use extensively the isometries of the symmetric space M . We follow the
approach developed in [7, 3, 10, 13]. The generators of isometries are the Killing
vector fields ξ . The set of all Killing vector fields forms a representation of the
isometry algebra, the Lie algebra of the isometry group of the manifold M . We
define two subspaces of the isometry algebra. One subspace is formed by Killing
vectors (called translations) satisfying the initial conditions ∇μξν

∣
∣
x=x ′ = 0 and

another subspace is formed by Killing vectors (called rotations) satisfying the initial
conditions ξν

∣
∣
x=x ′ = 0 .

One can easily show that a basis of translations can be chosen as

Pa =
(√

K cot
√

K
)b

a
∂

∂yb
, (284)

where K = (K a
b) is a matrix defined by

K a
b = Ra

cbd yc yd . (285)

We can also show that the vector fields

Li = −Db
ia ya ∂

∂yb
, (286)

define p linearly independent rotations. By adding the trivial Killing vectors for flat
subspaces we find that the number of independent rotations is p + n0ns + n0(n0 −
1)/2 .We introduce the following notation (ξA) = (Pa, Li ).

By using the explicit form of the Killing vector fields obtained above [7] one can
prove the following theorem.

Theorem 2 The Killing vector fields ξA form a representation of the curvature
algebra G
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[ξA, ξB] = CC
ABξC . (287)

Note that they do not generate the complete isometry algebra of the symmetric space
M . The curvature algebra G introduced in the previous section is a subalgebra of the
total isometry algebra. It is clear that the Killing vector fields Li form a represen-
tation of the holonomy algebra H, which is the isotropy algebra of the semi-simple
submanifold Ms , and a subalgebra of the total isotropy algebra of the symmetric
space M .

4.7.3.3 Homogeneous Vector Bundles

Let ha
b be the projection to the subspace Tx Ms of the tangent space and

qa
b = δa

b − ha
b (288)

be the projection tensor to the flat subspace R
n0 . Since the curvature exists only in

the semi-simple submanifold Ms , the components of the curvature tensor Rabcd, as
well as the tensors Ei

ab, are non-zero only in the semi-simple subspace Tx Ms . Then

Rabcdqa
e = Rabqa

e = Ei
abqa

e = Da
ibqb

e = Da
ibqa

e = 0. (289)

Equation (268) imposes strong constraints on the curvature of the homogeneous
bundle W . We define

Bab = RYM
cd qc

aqd
b , Eab = RYM

cd hc
bhd

b, (290)

so that

RYM
ab = Eab + Bab. (291)

Then, from (268) we obtain

[Bab,Bcd] = [Bab, Ecd] = 0 (292)

and

[Ecd, Eab] − R f
acdEfb − R f

bcdEaf = 0. (293)

This means that Bab takes values in an Abelian ideal of the gauge algebra GY M and
Eab takes values in the holonomy algebra. More precisely, (293) is only possible
if the holonomy algebra H is an ideal of the gauge algebra GY M . Thus, the gauge
group GY M must have a subgroup Z × H , where Z is an Abelian group and H is
the holonomy group.

Let Xab be the generators of the orthogonal algebra SO(n) in some representa-
tion X . Then the matrices Ti = − 1

2 Da
ib Xb

a are the generators of the gauge algebra
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GY M realizing a representation T of the holonomy algebra H. Next, we can show
that the curvature of the homogeneous bundle W is given by

RYM
ab = −Ei

abTi + Bab = 1

2
Rcd

ab Xcd + Bab. (294)

Now, we consider the representation' of the orthogonal algebra SO(n) defining
the spin-tensor bundle T and define the matrices

Gab = 'ab ⊗ IX + I' ⊗ Xab. (295)

Obviously, these matrices are the generators of the orthogonal algebra SO(n) in
the product representation ' ⊗ X . Next, the matrices Yi = − 1

2 Da
ib'

b
a form a

representation Y of the holonomy algebra H and the matrices

Ri = −1

2
Da

ibGb
a (296)

are the generators of the holonomy algebra in the product representation R = Y⊗T .
Then the total curvature, that is, the commutator of covariant derivatives (76) of

a twisted spin-tensor bundle V is

Rab = −Ei
abRi + Bab = 1

2
Rcd

abGcd + Bab. (297)

4.7.3.4 Twisted Lie Derivatives

Let ϕ be a section of a twisted homogeneous spin-tensor bundle T . Let ξA be the
basis of Killing vector fields. Then the covariant (or generalized, or twisted) Lie
derivative of ϕ along ξA is defined by

LAϕ =
(

ξA
μ∇μ + 1

2
ξA

a ;bGb
a

)

ϕ . (298)

One can prove the theorem [12, 13].

Theorem 3 The operators LA satisfy the commutation relations

[LA,LB] = CC
ABLC + BAB, (299)

where

BAB =
(
Bab 0
0 0

)

, (300)

The details of the proof of this theorem (too long and technical to be presented in
this chapter) are explained in the papers [12, 13] cited above. It uses extensively the
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properties of the Killing vector fields on symmetric spaces (in particular, Theorem 2)
and the properties of the parallel curvature of the homogeneous vector bundle (some
of them described above in Sect. 4.7.3.3).

The operators LA form an algebra that is a direct sum of a nilpotent ideal and
a semi-simple algebra. For the lack of a better name we call this algebra gauged
curvature algebra and denote it by Ggauge.

Now, let us define the operator

L2 = γ ABLALB (301)

and the Casimir operator of the holonomy group

R2 = 1

4
RabcdGabGcd . (302)

Then one can prove that [13]

Theorem 4 The Laplacian � acting on sections of a twisted spin-tensor bundle V
over a symmetric space has the form

� = L2 −R2. (303)

This theorem is not new. It is a very well-known property of the Laplacian on
homogeneous vector bundles. For more details and references see the paper [13]
cited above.

4.7.3.5 Geometry of the Curvature Group

Let Ggauge be the gauged curvature group and H be its holonomy subgroup. Both
these groups have compact algebras. However, while the holonomy group is always
compact, the curvature group is, in general, a product of a nilpotent group G0 and a
semi-simple group Gs , Ggauge = G0 ×Gs . The semi-simple group Gs is a product
Gs = G+ × G− of a compact G+ and a noncompact G− subgroups.

Let ξA be the basis Killing vectors, k A be the canonical coordinates on the cur-
vature group G and ξ(k) = k AξA. The canonical coordinates are exactly the normal
coordinates on the group defined above. Let CA be the generators of the curvature
group in adjoint representation and C(k) = k ACA.

Let X = (X A
M ) be the matrix defined by

X = C(k)

1− exp[−C(k)] , (304)

and X A be the vector fields on the group G defined by

X A = X A
M ∂

∂k M
. (305)
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Then one can show that [13] the vector fields X A form a representation of the cur-
vature algebra G

[X A, X B] = CC
AB XC . (306)

The vector fields X A are nothing but the right-invariant vector fields.
Since we will actually be working with the gauged curvature group, we introduce

now the operators (covariant right-invariant vector fields) JA by

JA = X A − 1

2
BABk B, (307)

Then we show [13] that the operators JA form the following algebra

[JA, JB] = CC
AB JC + BAB . (308)

Thus, the operators JA form a representation of the gauged curvature algebra Ggauge.
Now, let LA be the Lie derivatives and L(k) = k ALA. Then we find [13]

JA exp[L(k)] = exp[L(k)]LA . (309)

Note that JA are first-order differential operators with respect to k A, whereas LA are
first-order partial differential operators with respect to the coordinates x acting on
sections of the bundle V .

4.7.3.6 Heat Kernel on the Curvature Group

Now, let us define the operator

J 2 = γ AB JA JB (310)

and the invariant (scalar curvature of the curvature group)

RG = −1

4
γ ABCC

ADC D
BC. (311)

Then by using the properties of the right-invariant vector fields JA one can find
the heat kernel of the operator J 2 on the curvature group G [13].

Theorem 5 Let "(t; k) be a function on the curvature group defined in canonical
coordinates k A by

"(t; k) = (4π t)−N/2
[

det T M

(
sinh [tB]

tB

)]−1/2
[

det G

(
sinh

[
C(k)/2

]

C(k)/2

)]−1/2

× exp

(

− 1

4t
〈k, γ tB coth(tB)k〉 + 1

6
RGt

)

, (312)
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where 〈u, γ v〉 = γABu AvB is the inner product on the algebra G. Then "(t; k)
satisfies the heat equation

∂t" = J 2", (313)

and the initial condition

"(0; k) = γ−1/2δ(k), (314)

where γ = det γAB.

In the following we will complexify the gauged curvature group in the follow-
ing sense. We extend the canonical coordinates (k A) = (pa, ωi ) to the whole
complex Euclidean space C

N . Then all group-theoretic functions introduced above
become analytic functions of k A possibly with some poles on the real section R

N

for compact groups. In fact, we replace the actual real slice R
N of C

N with an N -
dimensional subspace R

N
reg in C

N obtained by rotating the real section R
N counter-

clockwise in C
N by π/4. That is, we replace each coordinate k A by eiπ/4k A. In

the complex domain the group becomes noncompact. We call this procedure the
decompactification. If the group is compact, or has a compact subgroup, then this
plane will cover the original group infinitely many times.

Since the metric (γAB) = diag (δab, βij) is not necessarily positive definite (actu-
ally, only the metric of the holonomy group βij is non-definite), we analytically
continue the function"(t; k) in the complex plane of t with a cut along the negative
imaginary axis so that−π/2 < arg t < 3π/2. Thus, the function"(t; k) defines an
analytic function of t and k A. For the purpose of the following exposition we shall
consider t to be real negative, t < 0. This is needed in order to make all integrals
convergent and well defined and to be able to do the analytical continuation.

As we will show below, the singularities occur only in the holonomy group. This
means that there is no need to complexify the coordinates pa . Thus, in the following
we assume the coordinates pa to be real and the coordinates ωi to be complex,
more precisely, to take values in the p-dimensional subspace R

p
reg of C

p obtained
by rotating R

p counter-clockwise by π/4 in C
p. That is, we have R

N
reg = R

n×R
p
reg.

This procedure (that we call a regularization) with the nonstandard contour of
integration is necessary for the convergence of the integrals below since we are
treating both the compact and the noncompact symmetric spaces simultaneously.
Remember, that, in general, the nondegenerate diagonal matrix βij is not positive-
definite. The space R

p
reg is chosen in such a way to make the Gaussian exponent

purely imaginary. Then the indefiniteness of the matrix β does not cause any prob-
lems. Moreover, the integrand does not have any singularities on these contours. The
convergence of the integral is guaranteed by the exponential growth of the sine for
imaginary argument. These integrals can be computed then in the following way.
The coordinates ω j corresponding to the compact directions are rotated further by
another π/4 to imaginary axis and the coordinates ω j corresponding to the non-
compact directions are rotated back to the real axis. Then, for t < 0 all the integrals
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below are well defined and convergent and define an analytic function of t in a
complex plane with a cut along the negative imaginary axis.

4.7.3.7 Heat Trace

Now, by using the heat kernel (312) of the operator J 2 on the curvature group
obtained above, the relation (303) of the Laplacian and the operator L2, and the
property (309) one can find the following integral representation of the heat semi-
group of the Laplace-type operator [13].

Theorem 6 Let L = −� + Q be the Laplace-type operator acting on sections of
a homogeneous twisted spin-tensor vector bundle over a symmetric space. Then the
heat semigroup exp(−t L) can be represented in form of an integral

exp(−tL) = (4π t)−N/2
[

det TM

(
sinh(tB)

tB

)]−1/2

exp

(

−tQ− tR2 + 1

6
RGt

)

×
∫

RN
reg

dk γ 1/2
[

det G

(
sinh[C(k)/2]

C(k)/2

)]1/2

× exp

{

− 1

4t
〈k, γ tB coth(tB)k〉

}

exp[L(k)]. (315)

The heat trace can be obtained by acting by the heat semigroup exp(−t L) on the
delta-function. To be able to use this integral representation we need to compute the
action of the isometries exp[L(k)] on the delta-function.

Let ωi be the canonical coordinates on the holonomy group H and (k A) =
(pa, ωi ) be the natural splitting of the canonical coordinates on the curvature group
G. Then we can prove that [13]

[
exp[L(k)]δ(x, x ′)

]diag =
[

det TM

(
sinh[D(ω)/2]

D(ω)/2

)]−1

exp[R(ω)]δ(p) , (316)

where D(ω) = ωi Di and R(ω) = ωiRi .
We implicitly assumed that there are no closed geodesics and that the equation

of closed orbits of isometries has a unique solution. This is indeed the case on
noncompact symmetric spaces (with negative curvature). On compact symmetric
spaces this is not true, there are infinitely many closed geodesics and infinitely many
closed orbits of isometries. The results for compact symmetric spaces (with positive
curvature) can be obtained by an analytic continuation from the dual noncompact
case [19]. That is why we proposed above to complexify our holonomy group. If the
coordinates ωi are complex, taking values in the subspace R

p
reg defined above, then

the equation of closed orbits should have a unique trivial solution and the Jacobian
is an analytic function. It is worth stressing once again that the regularized canonical
coordinates cover the whole group except for a set of measure zero.
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Now by using the above lemmas and the theorem we can compute the heat trace.
We define the invariant (scalar curvature of the holonomy group)

RH = −1

4
β ij Fk

il F
l
jk. (317)

Theorem 7 The heat trace of the operator L has the form

#(t) = (4π t)−n/2
∫

M

dvol tr V

[

det TM

(
sinh(tB)

tB

)]−1/2

exp

{(
1

8
R + 1

6
RH −R2 − Q

)

t

}

×
∫

Rn
reg

dω

(4π t)p/2
β1/2 exp

{

− 1

4t
〈ω, βω〉

}

cosh [R(ω)]

×
[

det H

(
sinh

[
F(ω)/2

]

F(ω)/2

)]1/2 [

det T M

(
sinh

[
D(ω)/2

]

D(ω)/2

)]−1/2

,(318)

where β = detβij, 〈ω, βω〉 = βijω
iω j , and F(ω) = ωi Fi .

One should also stress that these global solutions do not affect the asymptotics
of the heat kernel. So, if all we want is the heat kernel asymptotics then one can use
our results for any symmetric space even without regularization.

This equation can be used now to generate all heat kernel coefficients Ak for any
locally symmetric space simply by expanding it in a power series in t . By using the
standard Gaussian averages one can obtain now all heat kernel coefficients in terms
of traces of various contractions of the matrices Da

ib and F j
ik with the matrix β ik .

All these quantities are curvature invariants and can be expressed directly in terms
of the Riemann tensor.

4.8 Low-Energy Effective Action in Quantum General Relativity

We can apply now the obtained results for the heat trace to compute the low-
energy one-loop effective action in quantum general relativity given by (70). In the
Euclidean formulation we have

�(1) = 1

2

(
log Det L̂ − 2 log Det F

)
, (319)

which, in the zeta-regularization, takes the form

�(1) = −1

2

(
ζ ′

L̂
(0)− 2ζ ′F (0)

)
, (320)
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where ζL̂(s) and ζF (s) are the zeta-functions of the graviton operator L̂ and the
ghost operator F . Now, let us define the total zeta-function by

ζGR(s) = ζL̂(s)− 2ζF (s). (321)

Then the effective action is

�(1) = −1

2
ζ ′GR(0). (322)

Next, by using the definition of the zeta-function we obtain

ζG R(s) = μ2s

�(s)

∞∫

0

dt ts−1etλ#G R(t), (323)

where

#G R(t) = #L̂(t)− 2#F (t), (324)

μ is a renormalization parameter introduced to preserve dimensions and #L̂(t) and

#F (t) are the heat traces of the operators L̂ and F . Here λ is a sufficiently large
negative infrared cutoff parameter introduced to regularize any infrared divergences,
which are present if the operators L̂ and F have negative modes. The parameter λ
should be set to zero at the end of the calculations.

Now, notice that both operators L̂ and F are of Laplace type, that is, −� + Q,
acting on pure tensor bundles; so, there is no Yang – Mills group here, R̃ab = Eab =
Bab = 0. The operator L̂ acts on the bundle T(2) = T ∗M ⊗ T ∗M of symmetric
two-tensors and the operator F acts on sections of the tangent bundle T(1) = TM.
The potentials, Q, for both operators are obviously read off from their definition

(
Q(1)

)a
b = −Ra

b , (325)
(
Q(2)

)
cd

ab = −2R(ac
b)

d − 2δ(a (c Rb)
d) + Rcdgab + 2

n − 2
gcd Rab

− 1

(n − 2)
gcdgab R + δa

(cδ
b

d)(R − 2Λ). (326)

The generators of the orthogonal group SO(n) in the vector representation are

(
'(1)ab

)c
d = 2δc[agb]d . (327)

The generators of the orthogonal group SO(n) in the symmetric two-tensor repre-
sentation are

(
'(2)ab

)
cd

ef = −4δ(e[agb](dδ f )
c). (328)
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The generators of the holonomy group are

R(1)i = Di , (329)

and

R(2)i = −2Di ∨ I(1), (330)

which, in component language, reads

(
R(1)i

)a
b = Da

ib (331)

and

(
R(2)i

)
cd

ab = −2D(ai(dδ
b)

c). (332)

The Casimir operators are

(
R2
(1)

)a
b = −Ra

b , (333)

and
(
R2
(2)

)

cd

ab = 2R(ad
b)

c − 2δ(a (c Rb)
d). (334)

By using the results for the heat traces described above we obtain the total heat
trace

#GR(t) = (4π t)−n/2
∫

M

dvol exp

{(
1

8
R + 1

6
RH

)

t

}

(335)

×
∫

Rn
reg

dω

(4π t)p/2
β1/2 exp

{

− 1

4t
〈ω, βω〉

}

&(t;ω)

×
[

detH

(
sinh

[
F(ω)/2

]

F(ω)/2

)]1/2 [

detTM

(
sinh

[
D(ω)/2

]

D(ω)/2

)]−1/2

,(336)

where

&(t;ω) = exp [−t (R − 2Λ)] tr T(2) exp
(
tV(2)

)
cosh

[
2D(ω) ∨ I(1)

]

−2tr T M exp
(
tV(1)

)
cosh [ D(ω)] , (337)

and the matrices V(1) and V(2) are defined by
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(
V(1)
)a

b = 2Ra
b, (338)

(
V(2)
)

cd
ab = 4δ(a (c Rb)

d) − Rcdgab − 2

n − 2
gcd Rab + 1

(n − 2)
gcdgab R. (339)

One can go further and compute the function &(t;ω) by finding the eigenvalues
of the endomorphisms V(1) and V(2). However, we will not do it here and leave
the answer in the form (337). By using the obtained heat trace one can compute
now the zeta-function and then the effective action. We would like to stress two
points here. First of all, quantum general relativity is a non-renormalizable theory.
Therefeore, even if one gets a final result via the zeta-regularization one should
not take it too seriously. Second, our results for the heat kernel and, hence, for the
effective action are essentially non-perturbative. They contain an infinite series of
Feynmann diagrams and cannot be obtained in any perturbation theory. One could
try now to use this result for the analysis of the ground state in quantum gravity. But
this is a rather ambitious program for the future.
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Chapter 5
Lectures on Cohomology, T-Duality,
and Generalized Geometry

P. Bouwknegt

Abstract These are notes for lectures, originally entitled “Selected Mathematical
Aspects of Modern Quantum Field Theory”, presented at the Summer School “New
Paths Towards Quantum Gravity”, Holbæk, Denmark, 10–16 May 2008. My aim for
these lectures was to introduce a mixture of physics and mathematics postgraduate
students into a selection of exciting new developments on the interface of mathe-
matics and quantum field theory. This write-up covers three topics: (1) cohomology
and differential characters, (2) T-duality, and (3) generalized geometry. The three
chapters can be read, more or less, independent of each other, but there is a com-
mon central theme, namely the occurrence of a (local) 2-form gauge field in certain
quantum fields theories, the so-called B-field, which plays a role analogous to the
electromagnetic gauge field.

The notes are suitable for beginning postgraduate students in mathematical
physics with some background in differential geometry and algebraic topology, but
some sections may need a slightly more sophisticated background. I hope these
notes fill a gap between undergraduate coursework and current research at the cut-
ting edge of the field. The notes certainly do not offer an exhaustive discussion of the
topics mentioned above, but rather serve as an introduction after which the reader
should feel comfortable to study research papers in these areas.

5.1 Cohomology and Differential Characters

In this section we will give a basic introduction to several cohomology theories and
differential characters. We will be guided by the example of electromagnetism. A
basic reference for the first part of this chapter is the textbook by Bott and Tu [4].
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5.1.1 A Brief Review of de Rham and Čech Cohomology

5.1.1.1 Open Covers

The proper language for Čech cohomology is that of sheaves. For our purposes it
suffices to work with good open covers (i.e. a cover such that each set and multiple
intersections are contractible), as one can show that the definition of Čech cohomol-
ogy does not depend on the choice of good open cover.

Let U = {Uα}α∈I be a good open cover of X (we take X to be paracompact, so
that it admits a partition of unity). Denote Uα0...αq = Uα0 ∩ · · · ∩Uαq .

Now, let Y = YU = ∐
α∈I Uα be the nerve of the open cover U . Then we

have a submersion π : Y → X . Much of what follows remains true for general
submersions π : Y → X (which is useful in the theory of bundle gerbes).

Multiple intersections can be written as fibred products, i.e.

Y = {(x, α) ∈ X × I | x ∈ Uα},
Y [2] = Y ×X Y = {(x, y, α, β) | π(x) = π(y)}

= {(x, α, β) | x ∈ Uαβ} =
∐

α,β

Uαβ,

Y [q+1] = Y ×X Y ×X . . .×X Y︸ ︷︷ ︸
q+1

=
∐

α0,...,αq

Uα0...αq .

5.1.1.2 De Rham Cohomology

We denote by �p(X) = �(∧pT ∗X) the set of (smooth) differential forms on X of
degree p, by �p

cl(X) the set of closed forms, and by �p(X)Z the set of forms with
integral periods. Similarly, by �(p,q) = �p(Y [q+1]), p, q ≥ 0, we denote p-forms
on Y [q+1], i.e. an ω ∈ �p(Y [q+1]) is a collection of p-forms ωα0...αq ∈ �p(Uα0...αq ).
For convenience we let �(p,−1) = �p(Y [0]) = �p(X).

The cohomology of the exterior derivative d : �(p,q) → �(p+1,q) is denoted
by H p

dR(Y
[q+1]) and known as the de Rham cohomology of Y [q+1]. In particular

H p
dR(M) denotes the cohomology of d : �p(X) → �p+1(X), the de Rham coho-

mology of X . Since each Uα0...αq is contractible we have by the Poincaré lemma

Theorem 1 The following complex is exact for all q ≥ 0,

0 �� �(−1,q) �� �(0,q)
d �� �(1,q)

d �� �(2,q)
d �� . . .

where

�(−1,q) ≡ Ker(d : �(0,q)→ �(1,q)) = C(Y [q+1],R).
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5.1.1.3 Čech Cohomology

For G an abelian group (R, R, �q , etc.1) we define Čech cochains by Čq(X,G) =
C(Y [q+1],G), i.e. collections of smooth maps ωα0...αq : Uα0...αq → G, where we
assume the maps ωα0...αq to be antisymmetric in their indices. The Čech differential

δ : Čq(X,G)→ Čq+1(X,G) is defined by

(δω)α0...αq+1 =
∑

i

(−1)iωα0...̂αi ...αq+1
∣
∣Uα0 ...αq+1

, (1)

where a hat over an index means omission of the index. It satisfies δ2 = 0. The
cohomology of δ is denoted by Ȟq(X,G) and known as the Čech cohomology of X
with coefficients in G. Specializing to G = �p, i.e. Čq(X,G) = �p(Y [q+1]), we
have

Theorem 2 The following complex is exact for all p ≥ 0,

0 �� �(p,−1) �� �(p,0)
δ �� �(p,1)

δ �� �(p,2)
δ �� . . .

where

�(p,−1) ≡ Ker(δ : �(p,0)→ �(p,1)) = �p(X).

There are two important exact sequences arising from a change in coefficients.
The first one arises from

0 �� Z
ı �� R

e2π i ·
�� R/Z �� 0

and is given by

. . . �� Ȟ p(X,Z) �� Ȟ p(X,R) �� Ȟ p(X,R/Z) �� Ȟ p+1(X,Z) �� . . . .

(2)
The second one arises from

0 �� Z
ı �� R e2π i ·

�� R/Z �� 0

and is given by

. . . �� Ȟ p(X,Z) �� Ȟ p(X,R) �� Ȟ p(X,R/Z) �� Ȟ p+1(X,Z) �� . . .

(3)

1 Here R denotes the sheaf of germs of R-valued functions on a manifold X .
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which, by using Ȟ p(M,R) = 0, for p > 0, (see Theorem 1 for p = 0), leads to

H p(X,R/Z) ∼= H p+1(X,Z) , p > 0 .

5.1.2 Electromagnetism

5.1.2.1 Curvature and Connection

We now identify some of the previously discussed de Rham and Čech cocycles in
Maxwell’s theory of electromagnetism in D = 4 dimensions. Electromagnetic fields
are encoded in a field strength (‘curvature’) F ∈ �2(X), satisfying the Maxwell and
Bianchi equations

d(+F) = +J (Maxwell),

d F = + J̃ (Bianchi), (4)

where J and J̃ are the so-called electric and magnetic current 1-forms. The electric
and magnetic charges are given by

e =
∫

B3
(+J ) =

∫

S2
+F,

g =
∫

B3
(+ J̃ ) =

∫

S2
F, (5)

where B3 is a 3-ball containing the charge (could be of infinite extension) and
S2 = ∂B3.2

Now, consider a good open cover U = {Uα} of X . Locally, on Uα , we have

F = d Aα , Aα ∈ �1(Uα). (6)

On overlaps Uαβ the gauge potentials (‘connections’) Aα are related by gauge trans-
formations

(δA)αβ ≡ Aβ − Aα = −dΛαβ , Λαβ ∈ �0(Uαβ). (7)

There is a subtlety here. Both the curvature F and the connection Aα take values
in the Lie algebra g = R. However, R is both the Lie algebra corresponding to the
noncompact group G = R or the compact group G = U(1) ∼= R/Z. In the first case
we require

(δΛ)αβγ = Λβγ −Λαγ +Λαβ = 0, (8)

2 It should be remarked that we have not yet observed configurations with magnetic charge g �= 0
(magnetic monopoles) in nature.



5 Lectures on Cohomology, T-Duality, and Generalized Geometry 265

while in the second case it would be more natural to write the gauge transformations
in a multiplicative form, defining gαβ = exp(2π iΛαβ) ∈ U(1),

(δA)αβ = Aβ − Aα = − 1

2π i
g−1
αβ

dgαβ = −
1

2π i
d log gαβ ,

(δg)αβγ = gβγ g−1
αγ gαβ = 1, (9)

or, in terms of Λαβ ,

(δA)αβ = Aβ − Aα = −dΛαβ,

(δΛ)αβγ = Λβγ −Λαγ +Λαβ = nαβγ , (10)

(δn)αβγ δ = nβγ δ − nαγ δ + nαβδ − nαβγ = 0,

where nαβγ ∈ Z.
Geometrically, the {gαβ} define the transitions functions of a principal U(1) bun-

dle P over X , while {Aα} defines a connection on P .

5.1.2.2 Gauge Transformations

Under a gauge transformation hα ∈ �0(Uα), we have

A′α = Aα + 1

2π i
d log hα = Aα + d̃hα ,

g′αβ = hαgαβh−1
β , (11)

or, in terms of hα = exp(2π ibα),

A′α = Aα + dbα ,

Λ′αβ = Λαβ + bα − bβ + mαβ , (12)

n′αβγ = nαβγ + mβγ − mαγ + mαβ ,

for some set of integers mαβ ∈ Z.
Thus, in particular, we see that {gαβ} ∈ Ȟ1(X,R/Z) and {nαβγ } ∈ Ȟ2(X,Z) is

the image of {gαβ} under the isomorphism H1(X,R/Z)→ Ȟ2(X,Z). Also [F] ∈
H2

dR(X) is the image of {nαβγ } ∈ Ȟ2(X,Z) into Ȟ2(X,R) ∼= H2
dR(X).

Equations (9), (10), (11), (12) can be pictorially represented in the following dia-
gram in which the de Rham differential runs horizontally and the Čech differential
vertically.
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nαβγ �� +

mαβ ��

��

Λαβ ��

��

+

bα ��

��

Aα ��

��

+

F

��

(13)

5.1.2.3 Dirac Quantization

For G = U(1) the curvature has integral periods, i.e. F ∈ �2
cl(X)Z. This is known

as Dirac quantization. The physical argument goes as follows.
We consider a sphere S2 surrounding all magnetic charges. Let S2 = S2+ ∪ S2−,

and let A± be the gauge fields on S2±. Then

∫

S2
F =

∫

S2+
F +

∫

S2−
F =

∫

S1
A+ −

∫

S1
A−

= − 1

2π i

∫

S1
d log g+− ∈ Z .

Thus, to summarize, electromagnetism is characterized by ‘transition functions’
{gαβ} ∈ Ȟ1(X,R/Z) (or equivalently {nαβγ } ∈ Ȟ2(X,Z)) and by a field strength

F ∈ �2
cl(X)Z, a closed 2-form with integral periods, whose cohomology class [F] ∈

H2
dR(X) is related to {nαβγ } ∈ Ȟ2(X,Z) by the ‘tic-tac-toe’ equations depicted

in (13).
That is, electromagnetism schematically contains the following information:

F

��{nαβγ } �� [F]

or, in other words, in physics we can measure more than just the electromagnetic
field strength F . There are other gauge invariant objects. A prime example is the
holonomy of A

holγ (A) = exp

(

2π i
∮

γ

A

)

,
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which, depending on the context, is known as the Bohm–Aharanov phase, Berry
phase, a Wilson loop, etc.

The goal is to encapture all this gauge-invariant information in a cohomology
theory, i.e. we are aiming to construct a cohomology theory that completes the
square (the discussion above pertains to p = 2)

? ��

��

�
p
cl(X)Z

��
Ȟ p(X,Z) �� H p(X,R)

This will lead us to the so-called differential cohomologies.

5.1.3 The Čech – de Rham Complex

Before we get to the subject of differential cohomologies let us consider the the
tic-tac-toe procedure relating Čech and de Rham cohomologies, as discussed in the
previous section in the example of electromagnetism, in greater generality.

Theorem 3 We have an isomorphism

Ȟ p(X,R) ∼= H p
dR(X). (14)

Proof The proof is given by ‘tic-tac-toe’ing through the double complex, known as
the Čech – de Rham complex, which is depicted below.

0 �� C2(X,R) ��

��

�0(Y [3])
−d ��

��

�1(Y [3])
−d ��

��

�2(Y [3])
−d ��

δ

��

. . .

0 �� C1(X,R)

δ

��

�� �0(Y [2]) d ��

δ

��

�1(Y [2]) d ��

δ

��

�2(Y [2]) d ��

δ

��

. . .

0 �� C0(X,R)

δ

��

�� �0(Y )
−d ��

δ

��

�1(Y )
−d ��

δ

��

�2(Y )
−d ��

δ

��

. . .

�0(X)
d ��

��

�1(X)
d ��

��

�2(X)
d ��

��

. . .

0

��

0

��

0

��
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The rows and colums in this double complex starting from a zero are exact due
to Theorems 1 and 2, while the bottom row computes HdR(X), and the leftmost
column computes Ȟ(X,R). Now, let ωp ≡ ω(p,−1) ∈ �p

cl(X) be a representative
of [ω] ∈ H p

dR(X). Define ω(p,0) ∈ �p(Y ) by

ω(p,0)α = (δωp)α = ωp∣
∣Uα
. (15)

Next we observe

dω(p,0)α = dδωp = δdωp = 0, (16)

hence by exactness of the de Rham complex (Theorem 1 for q = 0), we have

ω(p,0)α = dω(p−1,0)
α , (17)

for some ω(p−1,0) ∈ �p−1(Y ). Now define ω(p−1,1) = δω(p−1,0) ∈ �p−1(Y [2]).
Continuing the process we construct ω(p−k,k) ∈ �p−k(Y [k+1]) such that

dω(p,−1) = 0

δω(p,−1)− dω(p−1,0) = 0
... = ...

δω(p−k,k) + (−1)k dω(p−k−1,k+1) = 0,
... = ...

δω(−1,p) = 0

and conclude that we have constructed a Čech cocycle ω̌p = ω(−1,p), δω̌p = 0. To
conclude the latter equation, observe

dδω(−1,p) = δdω(−1,p) = (−1)pδd(dω(0,p−1)) = 0 ,

but since Ker d is zero at this step, we have δω(−1,p) = 0. The various cocycles are
depicted below.
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0 �� 0

ω̌p ��

��

ω(0,p) ��

��

0

ω(0,p−1) ��

��

ω(1,p−1) ��

��

0

. . .

�� ω(p−1,1) �� 0

ω(p−1,0) ��

��

ω(p,0) ��

��

0

ωp ��

��

0

��

The procedure clearly generalizes the discussion in the case of electromagnetism.
Examining the ambiguities in the various choices, one can easily verify that we have
constructed a map H p

dR(X)→ Ȟ p(X,R). Arguing the other way around we get the
inverse of this map, so this establishes the isomorphism. 1)

By carefully studying the proof above, it is clear that an intermediate step in the
proof is the construction of a p + 1-tuple:

ω = (ω(−1,p), ω(0,p−1), . . . , ω(p,−1)), (18)

such that Dω = 0, where

D = δ + (−1)q+1d (19)

on ω(p,q). Note

D2 = δ2 + (−1)q(dδ − δd)+ d2 = 0, (20)

so D defines a cohomology H p
D(X), where deg(ω(p,q)) = p+ q + 1. It is clear that

H p
D(X)

∼= Ȟ p(X,R) ∼= H p
dR(X).

One can ask what happens for Ȟ p(X,Z), the Čech cohomology with integer
coefficients. In this case we still have a double complex
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C2(X,Z) ��

��

�0(Y [3])
−d ��

��

�1(Y [3])
−d ��

��

�2(Y [3])
−d ��

δ

��

. . .

C1(X,Z)

δ

��

�� �0(Y [2]) d ��

δ

��

�1(Y [2]) d ��

δ

��

�2(Y [2]) d ��

δ

��

. . .

C0(X,Z)

δ

��

�� �0(Y )
−d ��

δ

��

�1(Y )
−d ��

δ

��

�2(Y )
−d ��

δ

��

. . .

�0(X)
d ��

��

�1(X)
d ��

��

�2(X)
d ��

��

. . .

0

��

0

��

0

��

but the rows are no longer exact at the first term. Hence, in the proof above, we
can in general no longer find a Čech cocycle ω̌p = ±ω(−1,p) such that dω(−1,p) =
δω(0,p−1). The tic-tac-toe procedure the other way around still works, so we still
have a map Ȟ p(X,Z)→ H p

dR(X)
∼= Ȟ p(X,R). This map is, in general, no longer

surjective nor injective (cf. (2)).

5.1.4 Differential Cohomologies

As discussed in the case of electromagnetism, the purpose of differential cohomol-
ogy is to find a ‘differential model’ that completes the square

? −−−−→ �
p
cl(X)Z⏐

⏐
C

⏐
⏐
C

Ȟ p(X,Z) −−−−→ H p(X,R)

(21)

There are (at least) three such models, whose cohomology will generically be
denoted by H

p(X). These are

H
p(X) =

⎧
⎨

⎩

H p(X,Dp) Deligne cohomology
Ĥ p(X,R/Z) Cheeger–Simons differential characters.
Ȟ(p)p(X) Cheeger–Simons cohomology/sparks

(22)

In fact, for all models we have short exact sequences

0 �� H p−1(X,R/Z) �� Hp(X) �� �p
cl(X)Z

�� 0 (23)
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and

0 �� �p−1(X)/�p−1
cl (X)Z �� Hp(X) �� H p(X,Z) �� 0 (24)

which, in fact, fit into the extended commutative diagram [36, 37]

0

��

0

��

0

��
0 �� H p−1(X,R)/H p−1

free (X,Z)
��

��

�p−1(X)/�p−1
cl (X)Z ��

��

d�p−1(X) ��

��

0

0 �� Ȟ p−1(X,R/Z) ��

��

H
p(X) ��

��

�
p
cl(X)Z

��

��

0

0 �� Ȟ p
tors(X,Z)

��

��

Ȟ p(X,Z) ��

��

Ȟ p
free(X,Z)

��

��

0

0 0 0
(25)

where we have denoted

Ȟ p
free(X,Z) = Coker(Ȟ p(X,Z)→ Ȟ p(X,R)) (26)

and
Ȟ p

tors(X,Z) = Ker(Ȟ p(X,Z)→ Ȟ p(X,R)). (27)

5.1.4.1 Deligne Cohomology

The idea of Deligne cohomology is transparent from our electromagnetism example.
In order to recover all of the physics in electromagnetism we need to modify the
Čech – de Rham complex in two ways. First of all we need to work with Čech
cochains which take values in the integers. Second, we need to cut off the Čech –
de Rham complex on the right so as to retain the curvature F ∈ �2

cl(X) itself, rather
than just its cohomology class; i.e. instead of the tic-tac-toe

nαβγ �� +

mαβ ��

��

Λαβ ��

��

+

bα ��

��

Aα

��

�� +

F

��
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we only want to consider the part

nαβγ �� +

mαβ ��

��

Λαβ ��

��

+

bα ��

��

Aα

��

In general, we cut off the double complex by restricting to forms of degree less than
p (we call this subcomplex D

p). So, a Deligne cochain ω of degree q in D
p is a

tuple

ω =
{
(ω(−1,q), ω(0,q−1), . . . , ω(p−1,q−p)) for q ≥ p
(ω(−1,q), ω(0,q−1), . . . , ω(q−1,0)) for q < p,

(28)

where ω(−1,q) ∈ Čq(X,Z) and ω(k,l) ∈ �(k,l) = �k(Y [l+1]), for k, l ≥ 0. The
differential D = δ + (−1)q+1d is the same as in the Čech-de Rham complex,3 but
then restricted to the subcomplex D

p. The corresponding cohomology, known as
Deligne or Deligne–Beilinson cohomology, is denoted by Hq(X,Dp).

The following diagram shows the tic-tac-toes for the cases q < p, q > p.

C p(X,Z) +

+

+ + (q > p)

+ +

+

(q < p) + �p−1(Y )

3 Where, as before, d is replaced by (2π i)−1d log on 0-forms.
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It is clear that in these cases the cohomology is easily expressed in terms of known
cohomologies. The interesting case is q = p. The following theorem summarizes
the results.

Theorem 4 We have

Hq(X,Dp) =
{

Ȟq−1(X,R/Z) for q < p
Ȟq(X,Z) for q > p,

(29)

while for q = p, H
p(X,Dp) fits in the exact sequences discussed in the previous

section. In particular, the maps completing the square (21) are given by

[(ω(−1,p),

��

. . . , ω(p−1,0))]
ωp=dω(p−1,0)

��
Ȟ p(X,Z)

������������
�

p
cl(X)Z

�������������

H p(X,R)

5.1.4.2 Cheeger–Simons Differential Characters

In this section we discuss the basics of Cheeger–Simons differential characters.
This section requires some knowledge of singular (co-)homology theory (see,
e.g., [46]). In particular, we denote singular p-chains by C p(X), the differential
on C p(X) by ∂ , and the closed p-chains by Z p(X). The dual objects in singular
cohomology are denoted by C p(X), ∂∗, and Z p(X), respectively.

The idea behind Cheeger–Simons differential characters is, as we have discussed
in the case of electromagnetism, to consider in addition to F other gauge-invariant
quantities such as the holonomies along paths γ ∈ Z1(X):

holγ (A) = exp

(

2π i
∮

γ

A

)

. (30)

Let

c(γ ) = 1

2π i
log holγ (A) =

∮

γ

A ∈ R/Z, (31)

then, for γ ∈ C2(X), we have

c(∂γ ) =
∮

∂γ

A =
∫

γ

F, (32)
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establishing the relation between the holonomies and the curvature F . Generalizing
this to higher degrees leads to

Definition 1 [24, 16] A (Cheeger–Simons) differential character of degree p is a
pair (χ, ω), where χ is a homomorphism χ : Z p−1(X) → R/Z and ω ∈ �p(X)
such that

χ(∂γ ) =
∫

γ

ω mod Z , ∀γ ∈ C p(X). (33)

The group of all differential characters of degree p is denoted by Ĥ p(X,R/Z).

Lemma 1 If (χ, ω) ∈ Ĥ p(X,R/Z), then ω ∈ �p
cl(X)Z.

Proof If ∂γ = 0, then

0 = χ(∂γ ) =
∫

γ

ω mod Z, (34)

hence ω has integral periods. Furthermore, for all γ ∈ C p+1(X) we have

0 = χ(∂2γ ) =
∫

∂γ

ω mod Z =
∫

γ

dω mod Z, (35)

hence dω = 0. 1)
We also have a map Ĥ p(X,R/Z) → Ȟ p(X,Z) constructed as follows. Lift χ

to c′ : Z p−1(X)→ R and interpret ω ∈ C p(X). Then

σ = ω − ∂∗c′ (36)

is a map C p(X) → Z, satisfying ∂∗σ = 0, i.e. σ ∈ Č p(X,Z) is closed. One can
verify explicitly that the maps constructed above complete the square (21), and in
fact that Ĥ p(X,R/Z) fits into the commutative diagram (25) as claimed.

Given a Deligne class ω = (ω(0,p−1), . . . , ω(p,−1)) and a p-chain γ ∈ Z p(X),
there is a formula for the holonomy, generalizing (30)

holγ (ω) =
p∏

k=0

exp

⎛

⎝2π i
∑

{σ k }

∫

σ k
ω(k,p−1−k)

⎞

⎠ , (37)

where the set {σ k} denotes the k-cycles in a simplicial decomposition of γ . We refer
to [21] for details.

5.1.4.3 Cheeger–Simons Differential Cohomology

The observation that underlies Cheeger–Simons differential cohomology [29, 36,
37, 39] is that in the tuple determining the Deligne cohomology only the first and
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the last term are important, since the intermediate terms can be obtained by tic-tac-
toe’ing. This can be rephrased as saying that we define the complex Č(p)•(X) by
the homotopy Cartesian square

Č(p)•(X) −−−−→ �•≥p(X)
⏐
⏐
C

⏐
⏐
C

Č•(X,Z) −−−−→ Č•(X,R)

(38)

that is,

Č(p)q(X) =
{

Čq(X,Z)× Čq−1(X,R)×�q(X) , q ≥ p,
Čq(X,Z)× Čq−1(X,R) , q < p.

(39)

An element in Č(p)q(X)will be denoted as a triple (c, h, ω), with the understanding
that ω = 0 for q < p.

The differential is given by

d(c, h, ω) = (δc, ω − c − δh, dω) (40)

and the cohomology, called Cheeger–Simons cohomology in [39], by Ȟ(p)q(M).

Theorem 5 [39] We have Ȟ(p)q(X) ∼= Hq(X,Dp) and Ȟ(p)p(X) ∼= Ĥ p(X,R/Z).

We will not prove this theorem here, but rather illustrate the various maps in one
particular case. Namely, an element in Ȟ(p)p(X) is a triple (c, h, ω) ∈ Č p(X,Z)×
Č p−1(X,R)×�p(X) such that

δc = 0, dω = 0, δh = ω − c, (41)

upto elements of the form (δc̃,−c̃−δh̃, 0). We can now construct a map Ȟ(p)p(X)
→ Ĥ p(X,R/Z), as follows: we let [(c, h, ω)] �→ (χ, ω) where χ : Z p−1(X) →
R/Z is defined as

χ(γ ) = h(γ ) mod Z (42)

for γ ∈ Z p−1(X). Note that χ is only uniquely defined on Z p−1(X), but not on
C p−1(X) as δh̃(γ ) = h̃(∂γ ) = 0 for γ ∈ Z p−1(X).

This concludes our discussion of differential cohomologies. We have seen three
models for H

p(X) and have argued that H
2(X) is relevant to electromagnetism or,

more precisely, classifies equivalence classes of principal U(1)-bundles with con-
nection. Similarly it turns out that H

3(X) classifies equivalence classes of (U(1)-)
gerbes with connection. A discussion of (bundle) gerbes is beyond the scope of these
lectures, but see [52] (and references therein) for an excellent introduction.
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5.2 T-Duality

5.2.1 Introduction to T-Duality

Target space duality, also known as T-duality is a particular symmetry of string
theory or, more generally, a duality between different string theories (see [30] for a
comprehensive review). It turns out that T-duality is related to various constructions
in mathematics, such as Takai duality, mirror symmetry, Fourier–Mukai transform.

To introduce T-duality, let us consider the basic occurrence of T-duality in string
theory. Consider thereto a closed string moving in a D-dimensional spacetime (tar-
get space) of the form M × S1, i.e. D = dim(M × S1).4 The degrees of freedom
of the string are encoded in a map X : Σ → M × S1, describing the embedding
of the two-dimensional string worldsheet Σ into the target spacetime. In terms of
local coordinates (σ, τ ), τ ∈ R, 0 ≤ σ ≤ π , on the string worldsheet and local
coordinates X N , N = 1, . . . , D on the target manifold, the dynamics of the string
is described by some two-dimensional field theory consisting of D scalar fields
X N (σ, τ ).

Suppose the circle S1 has radius R and lies in the Dth direction. Upon quanti-
zation of the string, and for that matter any quantum field theory of particles, the
momentum pD in the direction of the circle becomes quantized in units of 1/R
(Bohr quantization rule), i.e. pD = n/R, 5 with n ∈ Z, ensuring, for example, the
single-valuedness of the exponential exp(i p · X). The string, however, distinguishes
itself from a theory of particles in the sense that strings can wind around compact
directions. While in flat space the condition that a string is closed translates into
the boundary condition X N (0, τ ) = X N (π, τ ), for all τ , in the presence of the
circle the string can wind around the circle m times, i.e. satisfies boundary condi-
tions X D(0, τ ) = X D(π, τ ) + m R, for all τ . The energy spectrum of a string with
momentum number n and m is schematically given by winding number

E =
( n

R

)2 + (m R)2 + · · ·, (43)

where the dots stand for terms independent of R and depend on the details of
the manifold M . We conclude that the spectrum of the string is invariant under
the simultaneous interchange of R and 1/R (the circle with its ‘dual’ circle) and
momentum and winding numbers. In fact, this duality not only holds for the energy
spectrum but all physical observables (such as scattering amplitudes) that can be
computed in this theory. The string theory on M × S1

R is completely equivalent to

4 Throughout this chapter we use various notation for the circle interchangeably, namely R/Z, S1,
U(1), or T. In general we use the first two if we only consider the circle as a manifold, while the
latter two notations are used when viewing the circle as a Lie group (with group multiplication
written multiplicatively).
5 Here and in the discussion that follows, we omit constants such as 2π which are irrelevant for
the argument.
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the same string theory on M×S1
1/R . In other words, this string theory cannot be used

to determine whether we are living in a universe in which spacetime has a compact
direction S1

R as opposed to S1
1/R . This phenomenon is known as T-duality.

If one includes supersymmetry, i.e. considers superstrings, the situation gets
slightly more complicated and T-duality becomes, in general, a duality between
different superstring theories (such as between type IIA and type IIB). We will not
focus on superstrings in this review, but instead consider a different generalization,
namely to strings on manifolds which have locally defined circles (e.g. circle bun-
dles, circle fibrations) and move in the presence of a background flux. In particular
we will focus on the topological properties of the spacetime and flux and their duals.
The discussion can be generalized to manifolds with a (higher rank) torus action.

5.2.2 The Buscher Rules

To generalize the discussion in the previous section, consider a closed string moving
in a target space(time) M , described by a map X : Σ → M (or X M (σ, τ ) in local
coordinates). The low-energy effective field theory for the string is given by cou-
pling the string modes to the massless fields in its spectrum, which always include
the metric gM N (X) of the target manifold M , a so-called B-field BM N (X) (a locally
defined 2-form gauge field) and a dilaton "(X). The action is given by a so-called
nonlinear sigma model action

S[X ] =
∫

dσdτ
(√

hhαβgM N (X)∂αX M∂βX N + ε αβBM N (X)∂αX M∂βX N

+α′√h R(h)"(X)
)
, (44)

where hαβ denotes some (auxiliary) metric on the string worldsheet, with curvature
R(h). Conformal invariance of the above sigma model allows us to (locally) choose
a flat metric hαβ = ηαβ . For simplicity, we will also ignore the dilaton in the dis-
cussion that follows. Hence, upon introducing complex coordinates (z, z̄), instead
of (σ, τ ), the action (44) takes the form

S[X ] =
∫

d2z QMN (X)∂X M ∂̄X N , (45)

where QMN = gM N + BM N .
Now suppose the action (45) has a U (1)N isometry, then we may choose local

coordinates X M = (Xμ, Xm), (m = 1, . . . , N , μ = N + 1, . . . , D), such that the
isometry acts by Xm → Xm+εm , i.e. the Killing vectors are given by κm = ∂/∂Xm

and Lκm QMN = 0. That is, QMN (Xμ, Xm) = QMN (Xμ) is independent of the
coordinates Xm along the isometry.
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Upon decomposing

QMN =
(

Qμν Qμn

Qmν Qmn

)

, (46)

the action can be written as

S[X ] =
∫

d2z
(

Qμν(X)∂Xμ∂̄Xν + Qμn(X)∂Xμ∂̄Xn + Qmν(X)∂Xm ∂̄Xν

+Qmn(X)∂Xm ∂̄Xn
)
. (47)

Now, as mentioned before, this action has a (translation) symmetry Xm(z, z̄) →
Xm(z, z̄) + ε m for constants ε m . In order to explore the consequences of this
symmetry we explore a common trick in quantum field theory known as ‘gaug-
ing the symmetry’. In order to write down an action which is invariant under the
local symmetry Xm(z, z̄)→ Xm(z, z̄)+ ε m(z, z̄) we introduce U(1)N gauge fields
(Am(z, z̄), Am(z, z̄)) and couple them minimally to the fields Xm(z, z̄), i.e. we
replace the derivates ∂, ∂̄ by covariant derivatives

∂Xm → DXm = ∂Xm + Am ,

∂̄Xm → D̄Xm = ∂̄Xm + Ām . (48)

In addition we introduce auxiliary fields X̂m to the action, whose equations of
motion imply that the U(1)N curvature Fm = ∂ Ām − ∂̄Am is vanishing; i.e. we
consider

S[X ] =
∫

d2z
(

Qμν(X)∂Xμ∂̄Xν + Qμn(X)∂Xμ D̄Xn + Qmν(X)DXm ∂̄Xν

+Qmn(X)DXm D̄Xn + X̂m
(
∂ Ām − ∂̄Am)

)
. (49)

It can now easily be checked that the action (49) has a local U(1)N gauge symmetry
given by

Xm(z, z̄)→ Xm(z, z̄)+ ε m(z, z̄) ,

Am(z, z̄)→ Am(z, z̄)− ∂ε m(z, z̄) , (50)

Ām(z, z̄)→ Ām(z, z̄)− ∂̄ε m(z, z̄) .

We can think of the sigma model (49) as having a target space, locally described
by coordinates Xμ, Xm, X̂m). This turns out to be the correspondence space to be
discussed in later sections.

It turns out that, despite having introduced both additional degrees of freedom
and additional symmetries, we have done so precisely such that they cancel out. That
is, we claim that the action (49) is equivalent, at least at a semi-classical level, to the
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action (47); namely, starting with (49) and integrating out the auxiliary coordinate
X̂m forces Fm = ∂ Ām − ∂̄Am = 0. 6 This implies Am = ∂ X̃m , Ām = ∂̄ X̃m .
Choosing the gauge in which X̃m = 0 then leads back to (47). On the other hand,
one easily verifies that by first integrating out the gauge fields (Am, Ām) and then
gauge fixing, one reproduces the action (47) in terms of dual coordinates (Xμ, X̂m)

coupled to

Q̂MN =
(

Q̂μν Q̂μn

Q̂mν Q̂mn

)

=
(

Qμν − Qμn(Q−1)mn Qnν Qμm(Q−1)mn

−(Q−1)mn Qnν (Q−1)mn

)

. (51)

The local transformation rules between (gMN , BMN ) and (ĝMN , B̂MN ), as encoded
by (51), are known as the Buscher rules [19, 20]. Sigma models (47), related by the
Buscher rules (51), are completely equivalent (at least at the semi-classical level)
and correspondingly describe equivalent (or dual) string theories.

In the case of a U(1) isometry (i.e. N = 1) we can easily unravel the original
symmetric and antisymmetric components (ĝMN , B̂MN ) of Q̂MN in (51), and we
obtain

ĝ•• = 1

g••
,

ĝμ• = Bμ•
g••
,

ĝμν = gμν − 1

g••
(
gμ•gν• − Bμ•Bν•

)
,

B̂μ• = gμ•
g••
,

B̂μν = Bμν − 1

g••
(
gμ•Bν• − gν•Bμ•

)
, (52)

where, for notational simplicity, we have indicated the circle direction by a •. We
easily see that (52) is a generalization of the example in Sect. 5.2.1.

Our discussion of the Buscher rules has been purely local. Nevertheless it is
possible to extract the global, or topological, information contained in the Buscher
rules (52). To this end, suppose now our spacetime is of the form N × Y , where Y
is a principal circle bundle π : Y → X over X .7 Let A be a connection on the circle
bundle Y . Locally

6 Integrating out an auxiliary coordinate means to solve for the equations of motion of this coordi-
nate and substitute the solution back into the action.
7 We will ignore N in the remainder as it plays no role in our discussion. It should be remem-
bered, however, that in order for our spacetime theory to define a consistent string theory the total
spacetime N × Y needs to satisfy certain constraints.
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A = AM dx M = dx• + Aμdxμ. (53)

We can decompose both the canonical metric on Y and the B-field, with respect to
the base, in terms of the connection

g = gμνdxμdxν + (dx• + Aμdxμ)2

B = 1
2 Bμνdxμ ∧ dxν + Bμdxμ ∧ (dx• + Aνdxν), (54)

where 1
2 Bμνdxμ∧dxν and Bμdxμ are a 2-form and a 1-form on the base X , respec-

tively. Then, by inserting (54) into the Buscher rules (52), we see that the Buscher
rules essentially correspond to the interchange Aμ ↔ Bμ. To be precise, starting
with

gMN =
(

gμν + AμAν Aμ
Aν 1

)

, BMN =
(

Bμν + (BμAν − AμBν) Bμ
−Bν 0

)

,

(55)
the Buscher rules give

ĝMN =
(

gμν + BμBν Bμ
Bν 1

)

, B̂MN =
(

Bμν Aμ
−Aν 0

)

. (56)

Denoting the coordinate of the dual circle by x̂•, we can interpret Â = dx̂• +
Bμdxμ, locally, as a connection on a dual circle bundle π̂ : Ŷ → X . We deduce
from (56) that on the correspondence space Y ×X Ŷ = {(y, ŷ) ∈ Y × Ŷ | π(y) =
π̂(ŷ)}, with local coordinates (xμ, x•, x̂•),

B̂ = B + A ∧ Â − dx• ∧ dx̂•, (57)

so that

Ĥ − H = d(A ∧ Â) = F ∧ Â − A ∧ F̂ x, (58)

where F = d A and F̂ = d Â are the curvatures of A and Â, respectively, and
are (globally) defined forms on M . Equation (58) actually makes sense globally on
Y ×X Ŷ . Rewriting this equation as

H − F̂ ∧ A = Ĥ − F ∧ Â, (59)

we see that the left-hand side is a form on Y , while the right-hand side is a form on
Ŷ . Thus, in order to have equality, we conclude that both have to equal a form H3
defined on X , i.e.

H = H3 + F̂ ∧ Ax,

Ĥ = H3 + F ∧ Âx . (60)
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We note that these equations imply that

F = π̂∗ Ĥ , F̂ = π∗H, (61)

where π∗ and π̂∗ are the integrations over the S1 fibres of Y and Ŷ , respectively (i.e.
the push-forward maps in cohomology). In other words, the H-flux and first Chern
class of the circle bundle are exchanged under T-duality. It is believed this duality
extends to Čech classes as well.

We can now summarize the topological content of T-duality for principal circle
bundles as follows:

Theorem 6 [6, 7] Given a pair (Y, [H ]) of an (isomorphism class of) circle bundle
π : Y → X corresponding to a class [F] ∈ H2(X,Z), with H-flux [H ] ∈ H3(Y,Z),
the T-dual is a pair (Ŷ , [Ĥ ]), with π̂ : Ŷ → X a dual circle bundle corresponding
to a class [F̂] ∈ H2(X,Z), and [Ĥ ] ∈ H3(Ŷ ,Z)

T �� Y

π

��
X

T �� Ŷ

π̂

��
X

(62)

They are related by

[F] = π̂∗[Ĥ ], [F̂] = π∗[H ], (63)

such that on the correspondence space

Y

π

���
��

��
��

��
��

Y ×X Ŷ

p̂
���

��
��

��
��

�

p

����
��

��
��

��

X

Ŷ

π̂

����
��

��
��

��
�

(64)

we have

p∗[H ] = p̂∗[Ĥ ]. (65)
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5.2.3 Gysin Sequences and Dimensional Reduction

Let us first review how the global content of the Buscher rules, i.e. Theorem 6, is
encoded in the Gysin sequence for the principal circle bundle π : Y → X (cf. [6, 7,
10]). Principal circle bundles are classified, up to isomorphism, by the Euler class
χ(Y ) ∈ H2(X,Z) or equivalently by the first Chern class c1(LY ) ∈ H2(X,Z) of the
associated line bundle LY = Y ×T C. Given a principal circle bundle π : Y → X ,
we have the pullback map π∗ : Hk(X,Z)→ Hk(Y,Z) and the push-forward map
(‘integration over the S1-fibre’ in the case of forms) π∗ : Hk(Y,Z)→ Hk−1(X,Z).
These maps nicely fit into a long exact sequence in cohomology, the so-called Gysin
sequence

�� Hk(X,Z)
π∗ �� Hk(Y,Z)

π∗ �� Hk−1(X,Z)
δ �� Hk+1(X,Z) ��

(66)
where the map δ :Hk−1(X,Z)→ Hk+1(X,Z) is given, on a classω ∈ Hk−1(X,Z),
by δω = [F] ∪ ω. Here, [F] ∈ H2(X,Z) is the Euler class of Y (i.e. the curvature
of a connection on Y ).

Considering the k = 3 segment of the Gysin sequence (66), we see that any class
[H ] ∈ H3(Y,Z), i.e. any H-flux on Y , gives rise to a class π∗[H ] ∈ H2(X,Z),
which can be interpreted as [F̂], the Euler class of a T-dual circle bundle π̂ : Ŷ →
X . Furthermore, we have [F]∪[F̂] = 0 in H4(X,Z). Conversely, by considering the
Gysin sequence corresponding to the T-dual circle bundle π̂ : Ŷ → X , we conclude
from [F]∪[F̂] = [F̂]∪[F] = 0 that [F] = π̂∗[Ĥ ] for some class [Ĥ ] ∈ H3(Ŷ ,Z).
This is precisely the content of (63).

From the Gysin sequence we can of course only determine the element [Ĥ ] ∈
H3(Ŷ ,Z) up to an element in π∗(H3(X,Z)). To fix this ambiguity, we need some
extra input. The extra input, of course, is that T-duality should not affect that part of
the H-flux that ‘lives’ on the base manifold X . This is equivalent to demanding that
p∗[H ] − p̂∗[Ĥ ] = 0 in H3(Y ×X Ŷ ,Z) as in (65)

The above considerations are summarized in the following diagram:

[H ] � ��

∈

[F̂] � ��

∈

0

�� H3(X,Z)
π∗ �� H3(Y,Z)

π∗ �� H2(X,Z)

��

[F]∪ �� H4(X,Z) ��

�� H3(X,Z)
π̂∗ �� H3(Ŷ ,Z)

π̂∗ ��

∈

H2(X,Z)
[F̂]∪ ��

∈

H4(X,Z) ��

[Ĥ ] � �� [F] � �� 0
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To illuminate the T-duality rules even further we can recast the Gysin sequence
in a dimensionally reduced form following [10]. We will do this only at the level of
forms, i.e. de Rham cohomology.

Let κ denote the (globally defined) Killing vector field corresponding to the
U(1)-isometry, and let �k(Y )S1 denote the space of k-forms invariant under the
isometry, i.e. Lκ� = 0. Let us also choose a connection A on Y . Then we have a
map

f A : �k(X)⊕�k−1(X)→ �k(Y )S1 , (�(k), �(k−1)) �→ π∗�(k)+ A∧π∗�(k−1),

(67)
with inverse

f −1
A : �k(Y )S1 → �k(X)⊕�k−1(X) , � �→ (�− A ∧ π∗�,π∗�). (68)

A simple computation shows

(d ◦ f A)(�(k), �(k−1)) = (d�(k) + F ∧�(k−1))− A ∧ d�(k−1). (69)

Thus, upon defining a modified differential D : �k(X)⊕�k−1(X)→ �k+1(X)⊕
�k(X) by

D(�(k), �(k−1)) = (d�k + F ∧�(k−1),−d�(k−1)), (70)

we have d ◦ f A = f A ◦ D. It is straightforward to check that D2 = 0, and hence
that D defines a cohomology Hk

D(X) ≡ Hk(�•(X)⊕ �•−1(X), D). Furthermore,
because of the commutativity of the diagram

�k(X)⊕�k−1(X)
∼=−−−−→
f A

�k(Y )S1

D

⏐
⏐
C

⏐
⏐
Cd

�k+1(X)⊕�k(X)
∼=−−−−→
f A

�k+1(Y )S1

(71)

we have the result

Hk(Y ) ∼= Hk
D(X). (72)

While the explicit isomorphism (67) depends on the choice of connection A, it is
easily verified that the isomorphism (72) is independent of the choice of A.

Now that we have a globally defined dimensional reduction of forms (68) and
an identification of cohomology (72), it is straightforward to dimensionally reduce
the Gysin sequence (66) (at the level of de Rham cohomology). The result is the
following exact sequence
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. . . �� Hk(X)
π∗ �� Hk

D(X)
π∗ �� Hk−1(X)

δ �� Hk+1(X) �� . . .

(73)
where the various maps, on representatives of the cohomology, are given by

π∗ : Hk(X)→ Hk
D(X) , π∗(�(k)) = (�(k), 0) ,

π∗ : Hk
D(X)→ Hk−1(X) , π∗(�(k), �(k−1)) = �(k−1), (74)

δ : Hk−1(X)→ Hk+1(X) , δ(�(k−1)) = F ∧�(k−1).

In fact, using these maps it is easy to prove that the Gysin sequence is exact (see
[10] for details).

Let us use this dimensionally reduced formalism to show that T-duality leads to
an isomorphism of twisted cohomologies. First, let us denote the space of even and
odd forms on Y by �0̄(Y ) and �1̄(Y ), respectively, i.e.

�ı̄ (Y ) =
⊕

i=ı̄ mod 2

�i (Y ) . (75)

Then, given a representative H for a class [H ] ∈ H3(Y ), we can construct a ‘twisted
differential’ dH : �ı̄ → �ı+1 by

dH� = d�+ H ∧� . (76)

Clearly, (dH )
2 = 0 (since d H = 0). The cohomology of the Z2-graded complex

(�•(Y ), dH ) is known as the twisted cohomology Hı̄ (Y, [H ]) of Y , with respect
to the 3-form H . It is easy to see that while explicit representatives for twisted
cohomology classes depend on the choice of H , the twisted cohomology itself only
depends on the class [H ]. Let us now examine what a twisted cohomology class
looks like under the dimensional reduction.

Decomposing H = H(3) + A ∧ H(2) and � = �′ + A ∧�′′ as in (67), we have

dH� = (d�′ + H(3) ∧�′ + F ∧�′′)+ A ∧ (−d�′′ − H(3) ∧�′′ + H(2) ∧�′) .

Thus, the condition for � to be a twisted cohomology class, i.e. dH� = 0, decom-
poses into two equations

d�′ + H(3) ∧�′ + F ∧�′′ = 0 ,

d�′′ + H(3) ∧�′′ − H(2) ∧�′ = 0 . (77)

Note that both equations do not depend on the choice of A and are described com-
pletely in terms of forms on X .

Now, consider the pair ((H(3), H(2)), F) ∈ H3
D(X)⊕H2(X). It follows from (74)

and the discussion before, that the T-duality transformation in this dimensionally
reduced formalism is given by
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((Ĥ(3), Ĥ(2)), F̂) = ((H(3), F), H(2)) . (78)

Therefore, T-duality provides an isomorphism on twisted cohomology T∗ : H•
(Y, [H ])→ H•+1(Ŷ , [Ĥ ]), which is explicitly given by

(�̂′, �̂′′) = (�′′,−�′) . (79)

That is, dH� = 0 iff dĤ �̂ = 0. Of course, (79) agrees with the ‘Hori formula’
[40, 6]

T∗� = �̂ =
∫

S1
eA∧ Â � . (80)

The discussion above can be lifted to K-theory and, in this more general setting,
T-duality gives an isomorphism of the twisted K-theories of Y and Ŷ , descending to
an isomorphism between the twisted cohomologies of Y and Ŷ , as expressed in the
following commutative diagram [6]

K •(Y, [H ]) T!−−−−→ K •+1(Ŷ , [Ĥ ])
ch H

⏐
⏐
C

⏐
⏐
Cch Ĥ

H•(Y, [H ]) T∗−−−−→ H•+1(Ŷ , [Ĥ ])

, (81)

where chH denotes the twisted Chern character (see, e.g. [5]). A thorough dis-
cussion of twisted K-theory is beyond the scope of these lectures (see, however,
Sect. 5.2.4). Let us just conclude by remarking that twisted K-theory is believed to
be classifying D-brane charges in the background of H-flux [13, 50, 51, 60], and
that the isomorphism (81) is consistent with the statement that the string theories on
(Y, [H ]) and (Ŷ , [Ĥ ]) are T-dual.

The dimensionally reduced formalism discussed in this section can be applied
in the case of higher rank principal torus bundles as well and leads to a concrete
description of the transformation of the characteristic classes when T-duality is
applied to principal torus bundles with background H-flux. We refer to [11] for
details.

5.2.4 T-Duality = Takai Duality

Using the fact that PU(H), the projective unitary group on a separable Hilbert space
H has a central extension

1 �� U(1) �� U(H) �� PU(H) �� 1 (82)
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together with the fact that U(H) is contractible (Kuiper’s theorem), we have from
the long exact sequence in homotopy that πk(PU(H)) ∼= πk−1(U(1)). Hence
πk(PU(H)) ∼= Z for k = 2 and vanishing for k �= 2. We conclude that PU(H)
is a model for the classifying space K (Z, 2). Hence BPU(H) = K (Z, 3) and thus
isomorphism classes of principal PU(H)-bundles over Y are classified by H3(Y,Z).

Thus we can geometrize our data (Y, [H ]) in terms of a principal PU(H)-bundle
P over the principal circle bundle Y . Equivalently, noting that PU(H) = Aut(K)
where K denotes the algebra of compact operators on H, we can replace P by the
associated algebra bundle E = P ×PU(H) K. The space of continuous sections
A = C(Y, E) is a stable, continuous-trace, C∗-algebra with spectrum Y , and the
T-action on Y lifts uniquely to an R-action on A = C(Y, E). Continuous-trace alge-
bras like A are determined, upto Morita equivalence, by their so-called Dixmier –
Douady class DD(A) ∈ H3(Y,Z)which, in the above construction, is given by [H ].
Moreover, the twisted K-theory K •(Y, [H ]) can be defined as the K-theory K•(A)
of A.

For any C∗-algebra A, with an action of a group G, i.e. a homomorphism

α : G → Aut(A) , (83)

we can construct the crossed product C∗-algebra A×α G as follows. First, we con-
sider the set of compactly supported continuous functions f : G → A denoted by
Cc(G,A). On Cc(G,A) we define a product and ∗-operator by

( f ∗ g)(x) =
∫

G
f (y)αy(g(y

−1x)) dy ,

f ∗(x) = αx ( f (x−1))∗ . (84)

Then, by embedding Cc(G,A) ↪→ B(L2(G,A)) through f �→ T f , where T f g =
f ∗ g, we can define A ×α G as the completion of Cc(G,A) with respect to the
operator norm on B(L2(G,A)).

The statements of T-duality, cf. Theorem 6, can now be formulated in this context
as follows:

Theorem 7 [54] Let A be a continuous C∗-algebra with spectrum Y and Dixmier –
Douady invariant [H ], then A�α R is again a continuous-trace algebra with spec-
trum Ŷ and Dixmier – Douady invariant [Ĥ ] as given by Theorem 6. Moreover

• The C∗-algebra A �α R admits an action α̂ of the dual group R̂ and we have

(A �α R)�α̂ R̂ ∼= A⊗K(L2(R)) , (85)

hence the C∗-algebra obtained by taking the crossed product twice is Morita
equivalent to the original algebra (this is known as Takai duality).

• We have an isomorphism (known as the Connes – Thom isomorphism)

K•(A � R) ∼= K•+1(A) . (86)
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The methods of this section can be generalized to higher rank principal torus
bundles [9, 11, 12, 47, 48], but several complications arise. First of all the T =
T

n-action on the principal torus bundle Y need not always lift to an R
n-action on

A = C(Y, E). Even if it does, this lift need not be unique. Second, the crossed
product A�R

n need not be continuous trace, but rather, might correspond to a field
of noncommutative tori. A discussion of these results is beyond the scope of these
lectures.

5.2.5 T-Duality as a Duality of Loop Group Bundles

In this section we will discuss a geometric reformulation of T-duality as a duality of
loop group bundles and make contact with the classifying space approach of [17].
The discussion closely follows [14], which is based on earlier ideas in [6, 7, 28].

Our starting point is to geometrize the H-flux, as in the previous section, in terms
of an (isomorphism class of) principal PU(H)-bundle π̃ : P → Y over the circle
bundle π : Y → X . We will shortly see that these geometrical data are equivalent to
a principal LPU(H)�T-bundle over X . Let us first recall the definition of the semi-
direct product LG � T. First of all, T acts on LG by T× LG → LG , (t, γ ) �→
t · γ , where (t · γ )(s) = γ (ts). The semi-direct product LG � T is then defined by
the multiplication law (γ1, t1) ◦ (γ2, t2) = ((t2 · γ1)γ2, t1t2). Equivalently, we can
think of the semi-direct product LG � T as the split short exact sequence

1 �� LG
ı �� LG � T

ρ �� T ��

s

		 1 (87)

where for (γ, t) ∈ LG � T, we have ρ(γ, t) = t and ı(γ ) = (γ, 1). We will refer
to ρ as the ‘momentum homomorphism.’

We have

Theorem 8 [3, 14, 53] Let G be a simply connected Lie group. We have a 1–1
correspondence between isomorphism classes of principal G-bundles π̃ : P → Y
over principal T-bundles π : Y → X and isomorphism classes of principal LG�T-
bundles Π : Q → X, i.e.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G −−−−→ P
⏐
⏐
Cπ̃

T −−−−→ Y
⏐
⏐
Cπ

X

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∼=

⎛

⎜
⎜
⎝

LG � T −−−−→ Q
⏐
⏐
CΠ

X

⎞

⎟
⎟
⎠ (88)
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Proof We will first discuss the correspondence (88) explicitly, using transition func-
tions. Let U = {Uα} be a good cover of X for which we have trivializations

φα : π−1(Uα)
�→ Uα × T. We write φα(y) = (π(y), sα(y)), where the ‘section’

sα : π−1(Uα) → T satisfies sα(yt) = sα(y)t , for t ∈ T (group action written
multiplicatively). The transition functions gαβ : Uαβ → T are defined by

(
φα ◦ φ−1

β

)
(x, t) = (x, gαβ(x)t) , i.e. gαβ(x) = sα(y)sβ(y)

−1 , (89)

where y ∈ π−1(x) ⊂ Y . This definition does not depend on the choice of
y ∈ π−1(x). The transition functions satisfy the cocycle identity, gαβ(x)gβγ (x) =
gαγ (x), x ∈ Uαβγ . We also recall that the T-bundle can be reconstructed from
the transition functions by setting E = ∐

α(Uα × T)/ ∼, where we identify
(x, t) ∼ (x, t ′) on Uαβ × T iff t = gαβ(x)t ′.

Let Vα = π−1(Uα). Since Vα is homotopic to T and since π1(G) = 0 by assump-
tion, the G-bundle π̃ : P → Y trivializes over Vα . Denote the local trivialization by

φ̃α : π̃−1(Vα)
�→ Vα ×G, the corresponding section by s̃α : π̃−1(Vα)→ G, and

the transition functions by g̃αβ : Vαβ → G.
We will now show how to use these data to define a principal LG � T-bundle

Q over M . We define it by declaring that the transition functions Gαβ : Uαβ →
LG× T are given by

Gαβ(x) =
(

g̃αβ
(
φ−1
β (x, ·)

)
, gαβ(x)

)
, x ∈ Uαβ . (90)

Then, for x ∈ Uαβγ , one has

Gαβ(x)Gβγ (x) =
(

g̃αβ
(
φ−1
β (x, ·)

)
, gαβ(x)

)
◦
(

g̃βγ
(
φ−1
γ (x, ·)

)
, gβγ (x)

)

=
(

gβγ (x) · g̃αβ
(
φ−1
β (x, ·)

)
g̃βγ

(
φ−1
γ (x, ·)

)
, gαβ(x)gβγ (x)

)

=
(

g̃αβ
(
φ−1
γ (x, ·)

)
g̃βγ

(
φ−1
γ (x, ·)

)
, gαβ(x)gβγ (x)

)

=
(

g̃αγ
(
φ−1
γ (x, ·)

)
, gαγ (x)

)
= Gαγ (x) , (91)

where we have used the cocycle properties of the transition functions gαβ and g̃αβ .
Conversely, given a principal LG � T-bundle Q over X with transition functions
Gαβ : Uαβ → LG � T, we can reconstruct the transition functions of a T-bundle
Y over X and the G-bundle P over Y as follows. First, we let gαβ = ρ(Gαβ) (cf.
(87)) be the transition function of the principal T-bundle π : Y → X and g̃αβ(y) =
j (Gαβ(π(y)))(sβ(y)) the transition function of the G-bundle, where j (γ, t) = γ
is a left splitting of (87). This construction clearly is the inverse of the construction
described above. 1)

Now consider G= PU(H). In that case one easily checks that since π2(PU(H))=
Z (as opposed to simply connected, compact Lie groups for which π2(G) = 0), we
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have π1(LG � T) = Z ⊕ Z. Hence, loosely speaking, we have two circles sitting
inside LG � T. The first circle is recovered from the momentum homomorphism in
(87), while the second circle can be recovered as follows. The group G = PU(H)
has a canonical central extension U(H)

1 �� T �� U(H) �� PU(H) �� 1 (92)

The central extension (92) has a connection compatible with the group structure.
The holonomy of this connection is a homomorphism hol : LG → T. We let
N = Ker(hol : LG → T), a normal subgroup of LG. We thus have an exact
sequence

1 �� N � T
ı �� LG � T

ω �� T �� 1 (93)

where ω, the winding homomorphism, is defined by ω(γ, t) = hol(γ ). If this were
again a split exact sequence, like (93), we could apply the reconstruction theorem
and obtain a dual PU(H)-bundle over a dual T-bundle. However, the sequence (93)
is not split and hence N � T is not isomorphic to LG. From the exact sequence
in homotopy it follows easily, however, that N � T and LG are homotopy equiva-
lent. After performing this homotopy, we can perform the reconstruction. The result
being our T-dual circle bundle with T-dual H-flux described in the introduction. A
proof of this statement follows from the work of Bunke and Schick [17]. In order
to relate this discussion to [17], we need to reformulate the equivalence of Theorem
8 in terms of classifying spaces. It turns out that the classifying space of principal
LG � T-bundles B(LG � T) is equal to R = ET ×T BLG, which arose in [17]
as the classifying space of (equivalence classes of pairs (Y, [H ]). This equivalence
arises by chasing the following diagram (see [14] for details):

T

��

T

��
BG BLG

π̂




��

Y
��

ψ




φ̂

��

��

ET

��
B(LG � T)

π̂

��X
φ

 φ̃ �� BT

While R has the natural structure of a principal BLG ∼= (K (Z, 3)�K (Z, 2))-bundle
over BT = K (Z, 2), there is another way of interpreting R, namely as a K (Z, 3)
homotopy fibration over K (Z, 2)× K (Z, 2) [17, 47, 48]. Moreover, there is a map
T : R → R such that T ∗ : H2(R,Z)→ H2(R,Z) exchanges the two generators,
and T ◦T is homotopic to the identity on R. It turns out that T : R → R implements
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T-duality for principal circle bundles with background flux (see [17]): A principal
LG � T-bundle Q over X has two natural characteristic classes of degree 2 on X .
One of these is the first Chern class of the associated circle bundle over X , c1(Y ),
and the other is given by integration over the fibre of Y of the Dixmier – Douady
invariant of P (i.e. the H-flux [H ] ∈ H3(Y,Z)). We denote these by c(Q) and d(Q),
respectively, and they are the pullback under the classifying map φ : X → R of the
generators of H2(R,Z).

Hence, in terms of classifying maps, the T-dual principal LG � T-bundle Q̂ over
X is defined by considering the continuous map T ◦ f : X → B(LG � T) and by
associating to it Q̂ = (T ◦ f )∗(E(LG � T)). It follows that T-duality exchanges
the entries of the pair (c(Q), d(Q)), and that T-duality applied twice gives a bundle
that is isomorphic to Q, since T ◦ T ∼ IR . We summarize this as follows:

Theorem 9 Let G = PU(H). Given a principal LG � T-bundle,

LG � T −−−−→ Q
⏐
⏐
C1

X

with classifying map φ : X → B(LG � T), then there exists a T-dual principal
LG � T-bundle,

LG � T −−−−→ Q̂
⏐
⏐
CΠ̂

X

with classifying map T ◦φ : X → B(LG�T), which has the following properties:

1. ̂̂Q is isomorphic to Q;
2. c(Q̂) = d(Q) and d(Q̂) = c(Q).

To summarize, geometrically speaking, T-duality can be viewed as the exchange
of the momentum and winding homomorphisms of (87) and (93).

5.3 Generalized Geometry

Aspects of generalized geometry occur in many papers in both the physics and
mathematics literature since the 1980s, but the subject itself was only recently
formalized by Hitchin [38] and further workedout by his students [23, 34, 35]. In
this section, I will highlight several aspects of generalized geometry, mostly from
an algebraic point of view, hopefully complementing the current literature on the
subject.
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5.3.1 Cartan Relations

Let M be a smooth (i.e. C∞), d-dimensional, manifold, 8 T M its tangent bundle,
T ∗M its cotangent bundle, and let �(T M) and �(T ∗M) denote the vectorspace
of smooth sections of T M and T ∗M , respectively (vectorfields and 1-forms).
Alternatively, we can think of �(T M) as the set of derivations of C∞(M) as for
X ∈ �(T M), f, g ∈ C∞(M), we have the Leibnitz rule

X ( f g) = X ( f )g + f X (g) . (94)

We also have a Lie bracket [ , ] : �(T M)× �(T M)→ �(T M), satisfying

(L1) [X, Y ] = −[Y, X ],
(L2) [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = 0,
(L3) [X, f Y ] = f [X,Y ] + X ( f )Y ,

for X,Y, Z ∈ �(T M), f ∈ C∞(M).
We have the following operations on forms �k(M) = �(∧k T ∗M).

(a) A differential d : �k(M)→ �k+1(M) (a.k.a. the exterior differential), defined
by

(dω)(X0, . . . , Xk) =
k∑

i=0

(−1)i Xiω(X0, . . . , X̂i , . . . , Xk)

+
∑

0≤i< j≤k

(−1)i+ jω([Xi , X j ], X0, . . . , X̂i , . . . , X̂ j , . . . , Xk). (95)

(b) A contraction ıX : �k(M)→ �k−1(M) for X ∈ �(T M) defined by

(ıXω)(X1, . . . , Xk−1) = ω(X, X1, . . . , Xk−1) . (96)

(c) A Lie derivative LX : �k(M)→ �k(M) defined by

LX = dıX + ıX d ≡ {d, ıX } . (97)

The various operations satisfy the following system of equations (Cartan formulas):

{ıX , ıY } = 0 ,

{d, ıX } = LX ,

[LX , ıY ] = ı[X,Y ] , (98)

[LX ,LY ] = L[X,Y ] ,
[d,LX ] = 0 .

8 We change the notation for a manifold from X to M , as compared to the previous sections, to
avoid confusion with the notation for a vectorfield.
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In fact, these equations express the fact that the Lie bracket [ , ] is the derived
bracket of the exterior differential [43]. All properties of the Lie bracket follow
from the graded Jacobi identities for the operators d, ıX , and LX of degrees 1,−1,
and 0, respectively. Recall that a graded Lie algebra is defined by the identities

[A, B] = −(−1)|A||B|[B, A] ,
[A, [B,C]] = [[A, B],C] + (−1)|A||B|[B, [A,C]] . (99)

Thus, for instance, we have

0 = [d, {ıX , ıY }] = [{d, ıX }, ıY ] − [ıX , {d, ıY }]
= [LX , ıY ] − [ıX ,LY ] = ı[X,Y ] + ı[Y,X ] , (100)

from which it follows, using the fact that ıXω = 0 for all ω ∈ �(M) iff X = 0, that
[X,Y ] = −[Y, X ].

5.3.2 Lie Algebroids

In this section we briefly introduce the concept of a Lie algebroid. We refer to [49]
for a complete treatment and historical account of the subject.

Definition 2 A Lie algebroid (A, [ , ], ρ) over M is a vector bundle A → M ,
together with a Lie bracket [ , ] on �A and a bundle map (‘anchor’) ρ : A → T M ,
such that

(A1) ρ[X,Y ] = [ρ(X), ρ(Y )], for all X,Y ∈ �A,
(A2) [X, f Y ] = f [X,Y ] + (ρ(X) f ) Y , for all X,Y ∈ �A, f ∈ C∞(M).

Remark 1 Note, in fact, that requirement (A1) is superfluous as it follows from (A2)
by evaluating [X, [Y, f Z ]] in two different ways, using the Jacobi identity and (A2),
i.e. on the one hand

[X, [Y, f Z ]] = [X, f [Y, Z ]] + [X, (ρ(Y ) f )Z ]
= f [X, [Y, Z ]] +(ρ(X) f )[Y, Z ] +(ρ(Y ) f )[X, Z ] +ρ(X)(ρ(Y ) f )Z ,

while on the other hand

[X, [Y, f Z ]] = [[X,Y ], f Z ] + [Y, [X, f Z ]]
= f [[X,Y ], Z ] + (ρ([X,Y ]) f )Z + f [Y, [X, Z ]] + (ρ(Y ) f )[X, Z ]
+(ρ(X) f )[Y, Z ]
+ρ(Y )(ρ(X) f )Z

= f [X, [Y, Z ]] + (ρ([X,Y ]) f )Z +(ρ(Y ) f )[X, Z ] + (ρ(X) f )[Y, Z ]
+(ρ(Y )(ρ(X) f ))Z .
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Equating the two expressions gives (A1).

Given a Lie algebroid L = (A, [ , ], ρ) over M , there exists a standard differen-
tial dA : �k(A) → �k+1(A) on �•(A) = �(∧•A∗) given by an analogue of the
Cartan formula (cf. (95))

(dAω)(X0, . . . ,Xk) =
k∑

i=0

(−1)iρ(Xi )ω(X0, . . . , X̂i , . . . , Xk)

+
∑

0≤i< j≤k

(−1)i+ jω([Xi,Xj],X0, . . . ,X̂i , . . . ,̂Xj ,. . . ,Xk),(101)

as well as a contraction ıX : �k+1(A)→ �k(A), for X ∈ �A, given by

(ıXω)(X0, . . . , Xk−1) = ω(X, X0, . . . , Xk−1). (102)

Together they satisfy a system of Cartan formulas (98), where LX = {dA, ıX }.

5.3.3 Generalized Geometry

5.3.3.1 Courant Bracket

We will now generalize familiar constructions on T M to the so-called generalized
tangent bundle T M = T M ⊕ T ∗M . This is known as generalized geometry.

The first observation is that there is a natural field of nondegenerate symmetric
bilinear forms on sections of T M , namely for X + ξ,Y + η ∈ �(T M ⊕ T ∗M) we
put

〈X + ξ,Y + η〉 = 1
2 (ıXη + ıY ξ). (103)

The symmetry group of this form is the orthogonal group

O(T M ⊕ T ∗M) = {A ∈ GL(T M ⊕ T ∗M) | 〈A·,A·〉 = 〈·, ·〉} .

Since the bilinear form has signature (d, d), we have O(T M ⊕ T ∗M) ∼= O(d, d).
The Lie algebra

o(T M ⊕ T ∗M) = {Q ∈ M(T M ⊕ T ∗M) | 〈Q·, ·〉 + 〈·,Q·〉 = 0}

consists of matrices of the form

Q =
(

A β

b −AT

)

, (104)

where
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A : �(T M)→ �(T M) , AT : �(T ∗M)→ �(T ∗M) ,

β : �(T ∗M)→ �(T M) , b : �(T M)→ �(T ∗M) , (105)

satisfy βT = −β and bT = −b. Hence we can think of b as a 2-form b ∈
�(∧2T ∗M) = �2(M) by ıX b = b(X), and similarly β as a bivector β ∈
�(∧2T M). We thus see that generalized geometry, in particular, naturally incor-
porates 2-forms, i.e. B-fields. The finite transformations corresponding to b and β
are given by

eb ≡
(

1 0
b 1

)

, eb(X + ξ) = X + ξ + ıX b ,

eβ ≡
(

1 β
0 1

)

, eβ(X + ξ) = X + ıξ β + ξ .
(106)

We refer to eb as a B-field transform.
The Courant bracket on �(T M⊕T ∗M), which plays a similar role in generalized

geometry as the Lie bracket on Γ (T M), is defined as [25]

[[X + ξ,Y + η]] = [X,Y ] + LXη − LY ξ − 1
2 d(ıXη − ıY ξ). (107)

The Courant bracket does not, in general, behave nicely under O(T M ⊕ T ∗M)
transformations. However,

[[eb(X + ξ), eb(Y + η)]] = eb[[X + ξ,Y + η]] − ıX ıY db ,

hence B-field transforms give rise to an automorphism of the Courant bracket iff
db = 0, i.e. b ∈ �2

cl(M). The above computation suggests, however, to define a
twisted Courant bracket, for H ∈ �3

cl(M), by

[[X + ξ, Y + η]]H = [[X + ξ,Y + η]] + ıX ıY H . (108)

The (twisted) Courant bracket is obviously skew symmetric, but does not satisfy
the other properties of a Lie bracket. Specifically

Theorem 10 Let A, B,C ∈ �(T M⊕T ∗M) and f ∈ C∞(M). The Courant bracket
satisfies the following properties:

(i) [[A, B]]H = −[[B, A]]H
(ii) Jac(A, B,C) = [[[[A, B]]H ,C]]H + [[[[B,C]]H , A]]H + [[[[C, A]]H , B]]H =

d Nij(A, B,C) where
Nij(A, B,C) = 1

3 (〈[[A, B]]H ,C〉 + 〈[[B,C]]H , A〉 + 〈[[C, A]]H , B〉) is the
Nijenhuis operator
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(iii) [[A, f B]]H = f [[A, B]]H + (ρ(A) f )B−〈A, B〉d f , where ρ : T M⊕T ∗M →
T M, a morphism of vector bundles, is the projection onto the first factor

(iv) eb [[A, B]]H = [[eb A, eb B]]H+db

We recall that a subbundle E ⊂ T M ⊕ T ∗M is called isotropic if 〈A, B〉 = 0,
for all A, B ∈ �E , and involutive if [[A, B]]H ∈ �E , for all A, B ∈ �E . E is called
a Dirac structure if E is a maximal isotropic, involutive subbundle.

Properties (i)–(iii) now clearly imply the following:

Theorem 11 If E is an isotropic, involutive subbundle of T M ⊕ T ∗M, then E is a
Lie algebroid.

5.3.3.2 Clifford Algebra on T M ⊕ T∗ M

In generalized geometry, the role of the contraction in the Cartan relations is taken
by a certain representation of the Clifford algebra Cliff(T M ⊕ T ∗M). We recall

Definition 3 The Clifford algebra Cliff(T M ⊕ T ∗M) is the algebra with generators
γA, A ∈ �(T M ⊕ T ∗M) and relations

{γA, γB} = 2〈A, B〉 . (109)

The following statement is verified by straightforward calculation

Lemma 2 We have a representation of the Clifford algebra Cliff(T M ⊕ T ∗M) on
�•(M) = �(∧•T ∗M) given by

γX+ξ · ϕ = ıXϕ + ξ ∧ ϕ , X + ξ ∈ �(T M ⊕ T ∗M), ϕ ∈ �•(M) . (110)

Thus we can identify spinors for T M ⊕ T ∗M with forms �•(M).
Now, for a given ϕ ∈ �•(M), such that ϕ �= 0 pointwise, we denote by

Eϕ = {X + ξ ∈ �(T M ⊕ T ∗M) | γX+ξ · ϕ = 0} (111)

the annihilator bundle of ϕ ∈ �•(M). It is clear that Eϕ is an isotropic subbundle of
T M ⊕ T ∗M . Moreover,

Definition 4 The element ϕ ∈ �•(M) is called a pure spinor if Eϕ is a maximally
isotropic subbundle of T M ⊕ T ∗M .

We end by remarking that Eϕ is involutive if dHϕ = 0, where as before dH =
d + H∧. This follows easily from the generalized Cartan relations to be discussed
in the next section.

5.3.3.3 Courant Bracket as a Derived Bracket

In order to write the (twisted) Courant bracket as a derived bracket it is useful
to introduce a closely related bracket on �(T M ⊕ T ∗M), the so-called (twisted)
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Dorfmann bracket or Loday bracket. For X + ξ,Y + η ∈ �(T M ⊕ T ∗M), and
H ∈ �3

cl(M), it is defined by

(X + ξ) ◦H (Y + η) = [X,Y ] + LXη − ıY dξ + ıX ıY H . (112)

It is related to the (twisted) Courant bracket by

A ◦H B = [[A, B]]H + d〈A, B〉 , A, B ∈ �(T M ⊕ T ∗M) , (113)

or, conversely,

[[A, B]]H = 1
2 (A ◦H B − B ◦H A) , (114)

i.e. the Courant bracket is the skew symmetrization of the Dorfmann bracket. The
Dorfmann bracket is not skew symmetric, but behaves better than the Courant
bracket in the sense that it satisfies the properties (cf. Theorem 10)

(i) A ◦H (B ◦H C)) = (A ◦H B) ◦H C + B ◦H (A ◦H C)
(ii) A ◦H ( f B) = f (A ◦H B)+ (ρ(A) f )B

for A, B,C ∈ �(T M ⊕ T ∗M) and f ∈ C∞(M).
We can now formulate the relations analogous to (98), which establish the

Courant algebra as a derived algebra [43, 44, 1, 40].

Theorem 12 Let A, B ∈ �(T M ⊕ T ∗M). Then, on �•(M) we have the following
relations

{γA, γB} = 2〈A, B〉 ,
{dH , γA} = LA ,

[LA, γB] = γA◦H B , (115)

[LA,LB] = LA◦H B = L[[A,B]]H ,
[dH ,LA] = 0 ,

where LX+ξ ϕ = LXϕ + (dξ + ıX H) ∧ ϕ.

Properties of the Dorfmann and Courant bracket (as summarized in, e.g. Theorem
10) follow straightforwardly from the Jacobi identities of the graded Lie algebra
(115), as in Sect. 5.3.1.

Furthermore, anti-symmetrizing the third relation in (115) gives

γAγB · dHϕ = dH (γBγA · ϕ)+ γB · dH (γA · ϕ)− γA · dH (γB · ϕ)
+γ[[A,B]]H · ϕ , (116)

which in particular implies that the annihilator bundle Eϕ of (111) is involutive if
dHϕ = 0. More precisely, if we introduce a filtration of �•(M)
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F0 ⊂ F1 ⊂ . . . ⊂ Fd ≡ �•(M) (117)

by

Fk = {ψ ∈ �•(M) | γA1 . . . γAk+1 · ψ = 0 , ∀A1, . . . , Ak+1 ∈ �(T M ⊕ T ∗M)} ,
(118)

then Eϕ is involutive iff dHϕ ∈ F1. [Note that, in general, dH (Fi ) ⊂ Fi+3 and
dH (Fi ) ⊂ Fi+1 if Eϕ is involutive.]

5.3.4 Courant Algebroids

The notion of a Courant algebroid was introduced in [45]. The following definition
is taken from [44].

Definition 5 A Courant algebroid (E, ◦, 〈 , 〉, ρ) over M is a vector bundle E →
M , with a Loday bracket ◦ on �E , a morphism of vector bundles (‘anchor’) ρ :
E → T M , and a field of nondegenerate symmetric bilinear forms 〈 , 〉 on the fibres
of E satisfying9

(C1) X ◦ (Y ◦ Z) = (X ◦ Y ) ◦ Z + Y ◦ (X ◦ Z),
(C2) ρ(X)〈Y, Z〉 = 〈X, Y ◦ Z + Z ◦ Y 〉,
(C3) ρ(X)〈Y, Z〉 = 〈X ◦ Y, Z〉 + 〈Y, X ◦ Z〉,
for all X,Y, Z ∈ �E .

The Loday bracket in a Courant algebroid C is, in general, not skew symmetric. The
skew symmetrization of the Loday bracket of C is known as the Courant bracket

[[X,Y ]] = 1
2 (X ◦ Y − Y ◦ X) . (119)

We have the following [44, 59]:

Theorem 13 In any Courant algebroid (E, ◦, 〈 , 〉, ρ) over M the following rela-
tions hold for the Loday bracket:

(C4) ρ(X ◦ Y ) = [ρ(X), ρ(Y )],
(C5) X ◦ f Y = f (X ◦ Y )+ (ρ(X) f )Y ,
(C6) X ◦ Y + Y ◦ X = 2 D〈X, Y 〉.
Here we have defined D = 1

2ρ
∗d : C∞(M)→ �E, where ρ∗ : �(T ∗M)→ �E

is the adjoint of ρ, and we have identified E ∼= E∗ under the isomorphism given by
〈 , 〉. Equivalently,

〈D f, X〉 = 1

2
ρ(X) f . (120)

9 We use the same notation for the map ρ : �E → �(T M) induced by ρ : E → T M .
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These translate into the following relations for the Courant bracket (119)

(C1′) ρ([[X,Y ]]) = [ρ(X), ρ(Y )],
(C2′) [[X, f Y ]] = f [[X, Y ]] + (ρ(X) f )Y − 〈X,Y 〉D f ,
(C3′) ρ D = 0, or equivalently 〈D f, Dg〉 = 0,
(C4′) [[X, [[Y, Z ]]]] + [[Y, [[Z , X ]]]] + [[Z , [[X,Y ]]]] = D Nij(X,Y, Z), where

Nij(X,Y, Z) = 1
3 (〈[[X,Y ]], Z〉 + 〈[[Y, Z ]], X〉 + 〈[[Z , X ]],Y 〉) is the Nijen-

huis operator.10

Proof

(C5) We prove (C5) by evaluating ρ(X)〈 f Y, Z〉 in two different ways. First,

ρ(X)〈 f Y, Z〉 = ρ(X)( f 〈Y, Z〉) = (ρ(X) f )〈Y, Z〉 + f (ρ(X)〈Y, Z〉)
= (ρ(X) f )〈Y, Z〉 + f 〈X ◦ Y, Z〉 + f 〈Y, X ◦ Z〉 ,

by using the derivation property of ρ(X) on functions, and then (C3). On the
other hand, using (C3), we have

ρ(X)〈 f Y, Z〉 = 〈X ◦ f Y, Z〉 + f 〈Y, X ◦ Z〉 . (121)

Equation (C5) then follows by virtue of the nondegenerateness of the bilinear
form.

(C4) Equation (C4) follows by evaluating (X ◦ (Y ◦ f Z)) in two different ways (cf.
Sect. 5.3.2), namely

(X ◦ (Y ◦ f Z)) = X ◦ f (Y ◦ Z)+ X ◦ (ρ(Y ) f Z)

= f (X ◦ (Y ◦ Z))+ (ρ(X) f )(Y ◦ Z)+ (ρ(Y ) f )(X ◦ Z)

+ρ(X)(ρ(Y ) f )Z ,

while on the other hand, using the Leibnitz property (C1)

(X ◦ (Y ◦ f Z)) = ((X ◦ Y ) ◦ f Z)+ Y ◦ (X ◦ f Z)

= f ((X ◦ Y ) ◦ Z)+ ρ(X ◦ Y ) f Z + f (Y ◦ (X ◦ Z))

+(ρ(Y ) f )(X ◦ Z)+ (ρ(X) f )(Y ◦ Z)+ ρ(Y )(ρ(X) f )Z .

Equating the two results immediately gives (C4).
(C6) We have

〈D〈Y,Y 〉, X〉 = 1

2
ρ(X)〈Y,Y 〉 = 〈X,Y ◦ Y 〉 ,

and thus D〈Y,Y 〉 = Y ◦ Y , which by polarization proves (C6).

10 Note that Nij is not a tensor, e.g. Nij( f X, Y, Z) �= Nij(X, Y, Z).
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It follows that

[[X,Y ]] = X ◦ Y − D〈X,Y 〉 . (122)

The properties of the Courant bracket follow trivially from this relation, except for
(C3′) which is obtained by applying ρ to (C6) and using (C4). Note that (C3′) in
turn implies ρ ρ∗ = 0, i.e. we have a complex T ∗M → E → T M . 1)

The various maps fit into the following commutative diagram, in which the hori-
zontal and vertical lines are complexes

�(T ∗M)

ρ∗
��

0 �� Ker D �� C∞(M) D ��

d
����������
�E ��

ρ

��

Coker D �� 0

�(T M)

The horizontal complex has the structure of an L∞-algebra (or, more precisely, L2-
algebra) [55, 56], where the maps lk : ∧k V → V , k ≥ 2, are explicitly given by
(here Xi ∈ �E , f ∈ C∞(M)).

l2(X1 ∧ X2) = [[X1, X2]], in degree 0 ,

l2(X1 ∧ f ) = 〈X, D f 〉, in degree 1 ,

l3(X1 ∧ X2 ∧ X3) = −Nij(X1, X2, X3), in degree 0 ,

with all other lk vanishing.
The proof is by straightforward calculation. The only nontrivial identity needed is

Lemma 3 For X ∈ �E and f ∈ C∞(M), we have

D〈X, D f 〉 = [[X, D f ]] .

Proof We have

〈X ◦ D f,Y 〉 = ρ(X)〈D f,Y 〉 − 〈D f, X ◦ Y 〉
= 1

2ρ(X)ρ(Y ) f − 1
2ρ(X ◦ Y ) f

= 1
2ρ(Y )ρ(X) f = 2〈D〈D f, X〉,Y 〉 ,

thus

X ◦ D f = 2D〈X, D f 〉 .

Now, using (C6)
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D f ◦ X + X ◦ D f = 2D〈X, D f 〉,

hence D f ◦ X = 0. Putting things together, we have

[[X, D f ]] = 1
2 (X ◦ D f − D f ◦ X) = D〈X, D f 〉 ,

as claimed. 1)

5.3.4.1 Exact Courant Algebroids

Definition 6 An exact Courant algebroid is a Courant algebroid (E, ◦, 〈 , 〉, ρ) over
M , which fits into a short exact sequence

0 �� T ∗M
ρ∗ �� E

ρ �� T M �� 0

Every exact Courant algebroid admits an isotropic splitting s, i.e. a bundle map
s : T M → E such that ρs = 1 and 〈s X, sY 〉 = 0 for all X,Y ∈ �(T M). We
say that two exact Courant algebroids are equivalent if they differ by a choice of
isotropic splitting. Also note that the dual map s∗ : E → T ∗M provides a splitting
on the left, i.e. s∗ρ∗ = 1. An exact Courant algebroid is sometimes also called a
generalized tangent bundle and denoted by T M .

Lemma 4 Let (E, ◦, 〈 , 〉, ρ) be a Courant algebroid over M. Then

1. ρ∗(T ∗M) is an isotropic subspace of E.
2. [[ , ]]∣∣ρ∗(T ∗M)

= 0.

Proof

1. We have 〈ρ∗ξ, ρ∗η〉 = ξ(ρρ∗η) = 0 since ρρ∗ = 0.
2. For ξ, η ∈ �(T ∗M), and Z ∈ �E , we have

〈ρ∗ξ ◦ ρ∗η, Z〉 = ρ(ρ∗ξ)〈ρ∗η, Z〉 − 〈ρ∗η, ρ∗ξ ◦ Z〉
= −η(ρ(ρ∗ξ ◦ Z)) = −η([ρρ∗ξ, ρ(Z)]) = 0 ,

and hence ρ∗ξ ◦ ρ∗η = 0, and thus [[ρ∗ξ, ρ∗η]] = 0, for all ξ, η ∈ �(T ∗M),
which proves the lemma.

1)
Theorem 14 [15, 18, 57, 58] We have

1. Equivalence classes of exact Courant algebroids are classified by H 3(M,R).
2. Under the identification E ∼= s(T M)⊕ρ∗(T ∗M), the bilinear form and Courant

bracket on E reduce to the standard bilinear form and Courant bracket on T M⊕
T ∗M, twisted by H ∈ �3

cl(M).
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Proof Let E be an exact Courant algebroid with isotropic splitting s, i.e.

0 �� T ∗M
ρ∗ �� E

ρ ��

s∗
�� T M ��

s

�� 0

We have

〈s X + ρ∗ξ, sY + ρ∗η〉 = 〈s X, sY 〉 + 〈ρ∗ξ, sY 〉 + 〈s X, ρ∗η〉 + 〈ρ∗ξ, ρ∗η〉
= ξ(ρsY )+ η(ρs X) = ξ(Y )+ η(X) = ıXη + ıY ξ ,

where we have used Lemma 4. Next we have

(s X + ρ∗ξ) ◦ (sY + ρ∗η) = s X ◦ sY + s X ◦ ρ∗η + ρ∗ξ ◦ sY + ρ∗ξ ◦ ρ∗η .

We evaluate the terms one by one. First of all

ρ∗ξ ◦ ρ∗η = 0 ,

because of Lemma 4. The second term satisfies

ρ(s X ◦ ρ∗η) = ρs X ◦ ρρ∗η = 0 ,

hence s X ◦ ρ∗η ∈ ρ∗(�(T ∗M)). Now, for Z ∈ �(T M) we have

s∗(s X ◦ ρ∗η)(Z) = 2〈s X ◦ ρ∗η, s Z〉
= 2(ρs X)〈ρ∗η, s Z〉 − 2〈ρ∗η, s X ◦ s Z〉
= X (η(Z))− η([X, Z ]) = LX ıZη − ı[X,Z ]η
= ıZLXη = (LXη)(Z) ,

hence s X ◦ ρ∗η = ρ∗(LXη). Similarly, for the third term, ρ(ρ∗ξ ◦ sY ) = 0 and

s∗(ρ∗ξ ◦ sY )(Z) = 2〈ρ∗ξ ◦ sY, s Z〉
= −2〈sY ◦ ρ∗ξ, s Z〉 + 4〈D〈sY, ρ∗ξ 〉, s Z〉
= −LY ξ(Z)+ ıZ dıY ξ = −(ıY dξ)(Z) ,

hence ρ∗ξ ◦ sY = −ρ∗(ıY dξ). It remains to compute the first term. We have

ρ(s X ◦ sY ) = [ρs X, ρsY ] = [X,Y ] ,

but in general s X ◦ sY �= s([X,Y ]) or, equivalently, s∗(s X ◦ sY ) �= 0. Define
H(X,Y ) ∈ �(T ∗M) by

H(X,Y ) = s∗(s X ◦ sY ) .
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We claim that H is C∞(M)-linear and that H(X,Y )(Z) is totally antisymmetric.
First of all, to prove linearity,

H(X, f Y ) = f s∗(s X ◦ sY )+ s∗(X ( f )sY ) = f s∗(s X ◦ sY ) = f H(X,Y ) ,

where we have used s∗s = 0. To prove antisymmetry

H(X,Y )+ H(Y, X) = s∗(s X ◦ sY + sY ◦ s X) = s∗D〈s X, sY 〉 = 0

H(X,Y )(Z) = 2〈s X ◦ sY, s Z〉 = 2ρ(s X)〈sY, s Z〉
−2〈sY, s X ◦ s Z〉 = −H(X, Z)(Y ) .

We conclude that

s X ◦ sY = s([X,Y ])− ρ∗(ıX ıY H)

for some H ∈ �3. One can check that for A, B,C ∈ s(�(T M))⊕ ρ∗(�(T ∗M)),

(A ◦ (B ◦ C)) = ((A ◦ B) ◦ C)+ (B ◦ (A ◦ C))+ ıρ(A)ıρ(B)ıρ(C)d H,

it follows that d H = 0. Now suppose we choose a different splitting. Say we have
si : T M → E , i = 1, 2, such that ρ(s1 − s2) = 0. Then the exactness implies
that there exists a unique B(X) ∈ �(T ∗M) such that s1(X) − s2(X) = ρ∗(B(X)).
We conclude that B(X) = −s∗1 s2(X) = s∗2 s1(X), which implies that B(X)(Y ) is
antisymmetric. Clearly, by its definition, B is C∞(M)-linear, so that B ∈ �2(M).

Now, we show that

d B = H1 − H2 ,

where Hi is the closed 3-form corresponding to the splitting si , i = 1, 2. Indeed,
from ρ∗Hi (X,Y ) = si X ◦ si Y − si [X, Y ], it follows

ρ∗(H1(X,Y )− H2(X,Y )) = s1 X ◦ s1Y − s2 X ◦ s2Y − ρ∗B([X,Y ])
= s2 X ◦ ρ∗B(Y )+ ρ∗B(X) ◦ s2Y − ρ∗B([X, Y ]) ,

where we have used s1(X)− s2(X) = ρ∗(B(X)). Therefore

H1(X,Y, Z) − H2(X,Y, Z) = s∗2ρ∗(H1(X,Y )− H2(X,Y ))(Z)

= s∗2 (s2 X ◦ ρ∗B(Y ))(Z)+ s∗2 (ρ∗B(X) ◦ s2Y )(Z)

− s∗2 (ρ∗B([X, Y ]))(Z)
= 2〈s2 X ◦ ρ∗B(Y ), s2 Z〉 + 2〈ρ∗B(X) ◦ s2Y, s2 Z〉 − B([X,Y ], Z) .

We evaluate the first two terms on the right-hand side separately
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〈s2 X ◦ ρ∗B(Y ), s2 Z〉 = X (B(Y, Z))− 2〈ρ∗B(Y ), s2 X ◦ s2 Z〉
= X (B(Y, Z))− B(Y, [X, Z ]),

2〈ρ∗B(X) ◦ s2Y, s2 Z〉 = −2〈s2Y ◦ ρ∗B(X), s2 Z〉 + 4〈D〈ρ∗B(X), s2Y 〉, s2 Z〉
= −Y (B(X, Z))+ B(X, [Y, Z ])+ 2〈d(B(X,Y )), Z〉
= −Y (B(X, Z))+ B(X, [Y, Z ])+ Z(B(X,Y )) .

Combining all terms proves the claim, i.e.

H1(X,Y, Z)− H2(X,Y, Z) = X (B(Y, Z))− Y (B(X, Z))+ Z(B(X,Y ))

−B([X,Y ], Z)+ B([X, Z ],Y )− B([Y, Z ], X)

= d B(X, Y, Z) .

Finally, let us now, given a representative of a class [H ] ∈ H3(M,R), explic-
itly construct the Courant algebroid. We choose an open cover and a representative
of [H ] in H3

D(M,R)
∼= H3

dR(M,R), i.e. a four-tuple (Λαβγ , Aαβ, Bα, H) in the
Čech – de Rham complex (over R). We then construct E by means of the clutching
construction

E =
∐

α

(T M ⊕ T ∗M)|Uα / ∼,

where we identify X + ξ ∈ �(T M ⊕ T ∗M)|Uα with Y +η ∈ �(T M ⊕ T ∗M)|Uβ on
overlaps Uαβ iff Y = X and η = ξ + ıX d Aαβ . Consistency on triple overlaps Uαβγ
follows from d Aβγ − d Aαγ + d Aαβ = (dδA)αβγ = (d2Λ)αβγ = 0. On T M|Uα the
splitting is given by

s|Uα : X �→ X + ıX Bα (123)

and consistency on overlaps follows from Bβ − Bα = d Aαβ . Moreover, since (123)
is just a B-transform (cf. (106)) we see that the Courant bracket on E is simply the
H -twisted Courant bracket (108). 1)

5.3.5 Generalized Complex Geometry

We briefly introduce some of the concepts of generalized complex geometry with
the aim of showing that T-duality acts naturally on all these structures.

5.3.5.1 Generalized Complex Structures

We recall that an almost complex structure on a manifold M is an endomorphism
J : T M → T M , such that J 2 = −1. Given an almost complex structure we can
decompose the complexified manifold T MC = T M ⊗ C as
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T MC = T (1,0)M ⊕ T (0,1)M, (124)

where T (1,0)M = Ker(J − i) and T (0,1)M = Ker(J + i) are the ±i eigenspaces
of J . We refer to elements of �(T (1,0)M) and �(T (0,1)M) as holomorphic and anti-
holomorphic vectorfields, respectively. Similarly, we can decompose

�k(M) =
⊕

p+q=k

�p,q(M) , �p,q(M) = �(∧pT (1,0)∗M ⊕∧q T (0,1)∗M).

(125)

Definition 7 A complex structure is an almost complex structure J which is inte-
grable with respect to the Lie bracket on �(T M), i.e. which is such that [X,Y ] ∈
�(T (1,0)M), for all X,Y ∈ �(T (1,0)M), and [X,Y ] ∈ �(T (0,1)M), for all X,Y ∈
�(T (0,1)M).

If we denote by 1± = 1
2 (1 ∓ i J ) the projection operators on the J = ±i

eigenspaces, integrability of the almost complex structure is equivalent to the state-
ment that, for all X, Y ∈ �(T M), we have

1∓[1±X,1±Y ] = 0, (126)

or, equivalently,

N(X,Y ) = [X,Y ] − [J X, JY ] + J [X, JY ] + J [J X,Y ] = 0. (127)

The tensor N ∈ �(∧2T ∗M ⊗ T M) is called the Nijenhuis tensor in complex geom-
etry.

The generalization of these considerations to generalized geometry is straight-
forward. First

Definition 8 A generalized almost complex structure is a J ∈ O(T M ⊕ T ∗M) sat-
isfying J

2 = −1.

Given a generalized almost complex structure we can decompose

(T M ⊕ T ∗M)⊗ C = E+ ⊕ E−, (128)

where E± = Ker(1 ± iJ) are the ±i eigenspaces of J. Both E+ and E− are maxi-
mally isotropic eigenspaces of (T M ⊕ T ∗M)⊗ C since J ∈ O(T M ⊕ T ∗M).

There are two main examples of generalized almost complex structures

(i) If J is an almost complex structure, then

JJ =
(−J 0

0 J T

)

(129)
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is a generalized almost complex structure and E+ = T (0,1)M ⊕ T (1,0)∗M .
(ii) If ω is a nondegenerate 2-form, then

Jω =
(

0 −ω−1

ω 0

)

(130)

is a generalized almost complex structure.

Definition 9 A (twisted) generalized complex structure is a generalized almost com-
plex structure J which is integrable with respect to the (twisted) Courant bracket on
�(T M ⊕ T ∗M).

We have an equation identical to (126) for J to be a generalized complex structure,
where now Π± are the projection operators on E±.

Examples of generalized complex structures are

(i) JJ in (129) is a generalized complex structure if J is a complex structure.
(ii) Jω in (130) is a generalized complex structure if dω = 0, i.e. if M has a sym-

plectic structure with symplectic form ω.

5.3.5.2 Generalized Kähler Structures

The last structure we want to briefly discuss is that of a generalized Kähler structure.
We recall

Definition 10 A Hermitian structure on a manifold M is

(a) an almost complex structure J ,
(b) a Hermitian metric g : T M × T M → R, i.e. a metric such that g(J X, JY ) =

g(X,Y ), for all X,Y ∈ �(T M).

Given a Hermitian structure on M we can define a nondegenerate 2-form ω on M by

ω(X,Y ) = g(J X,Y ) .

The compatibility of the various structures is expressed in terms of commutativity
of the following diagram

T M
g �� T ∗M

T M
J

���������� ω

��									

(131)

Finally,
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Definition 11 A Kähler structure on M is a triple (g, J, ω) of a Hermitian metric g,
a complex structure J , and a symplectic form ω, compatible in the sense of (131).

In order to define a generalized Kähler structure we first need the concept of a
generalized metric.

Definition 12 A generalized metric on T M = T M ⊕ T ∗M is a self-adjoint G ∈
O(T M ⊕ T ∗M), such that 〈GA, A〉 > 0 for all A ∈ �(T M ⊕ T ∗M), A �= 0.

A generalized metric satisfies G
2 = GG

T = 1. If we let C± = Ker(G∓1), then we
have bundle isomorphisms π± : C± → T M (since T M is maximally isotropic). We
can then define g(X,Y ) = 〈π−1+ (X), π−1+ (Y )〉. In fact, one can find a b ∈ �2(M)
such that

C+ = graphg+b = {X + (g + b)(X) | X ∈ �(T M)}. (132)

This corresponds to a generalized metric

G
b =

( −g−1b g−1

g − bg−1b bg−1

)

, (133)

which is B-transform of

G =
(

0 g−1

g 0

)

, (134)

i.e. G
b = eb

Ge−b.
Finally, we have

Definition 13 A generalized Kähler structure is a triple (G, J1, J2) of orthogonal
maps T M → T M such that J1 and J2 define a pair of commuting generalized
complex structures and G = −J1J2 is a generalized metric on T M .

We summarize this definition by the following diagram:

T M
G �� T M

T M
J1

���������� J2

��









An example of a generalized Kähler structure is, of course, an ordinary Kähler
structure, where we take J1 = JJ and J2 = Jω. In that case

G = −JJ Jω =
(−J 0

0 J T

)(
0 −ω−1

ω 0

)

=
(

0 g−1

g 0

)

,

which is manifestly positive definite with respect to 〈 , 〉, as 〈G(X + ξ), X + ξ 〉 =
g(X, X)+ g−1(ξ, ξ).
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5.3.6 T-Duality in Generalized Geometry

In the final section we show that generalized geometry provides a natural framework
to discuss T-duality (see, for example, [2, 26, 27, 31–33] for related considerations).
We start with the dimensionally reduced framework of Sect. 5.2.3. If we choose a
connection A on the principal circle bundle π : E → M and ‘dimensionally reduce’
� ∈ �k(E)S1 and (X, Ξ) ∈ �(T E ⊕ T ∗E)S1 as in

� = �(k) + A ∧�(k−1) , X = x + f ∂A , Ξ = ξ + g A, (135)

where �(k), �(k−1) ∈ �•(M), x ∈ �(T M), ξ ∈ �1(M), f, g ∈ C∞(M), and
similarly for Ê , then we have isomorphisms τ : �•(E)S1 → �•(Ê)S1 and φ :
�(T E ⊕ T ∗E)S1 → �(T Ê ⊕ T ∗ Ê)S1 given by

τ(�(k) + A ∧�(k−1)) = −�(k−1) + Â ∧�(k) ,
φ(x, f ; ξ, g) = (x, g; ξ, f ) . (136)

Theorem 15 [22, 23, 34, 35] We have

(a)The map τ induces a chain map on the differential complexes (�•(E)S1 , dH )→
(�•(Ê)S1 , dĤ ), i.e. τ ◦ dH = −dĤ ◦ τ and, hence, an isomorphism on twisted
cohomology.

(b)The map φ is orthogonal with respect to the pairing on T E⊕T ∗E, hence induces
an isomorphism of Clifford algebras.

(c)For B ∈ �(T E ⊕ T ∗E)S1 we have τ(γB · �) = γφ(B) · τ(�), hence τ induces
an isomorphism of Clifford modules τ : �•(E)S1 → �•(Ê)S1 .

(d)φ preserves the twisted Courant bracket.

Proof The proof of (a)–(c) is by straightforward verification (see Sect. 5.2.3 for the
proof of (a)). Part (d) follows from the defining relations of the Courant bracket as
a derived bracket (cf. Theorem 12), but can also easily be observed by writing out
the Courant bracket in the dimensionally reduced formalism, i.e.

[[(x1, f1; ξ1, g1), (x2, f2; ξ2, g2)]]F,H = ([x1, x2], x1( f2)− x2( f1)+ ıx1 ıx2 F;
(Lx1ξ2 − Lx2ξ1)+ (g2ıx1 F − g1ıx2 F)− 1

2 d(ıx1ξ2 − ıx2ξ1)

+ 1
2 (d f1g2 + f2dg1 − f1dg2 − d f2g1)+ ıx1 ıx2 H(3) + ( f2ıx1 H2 − f1ıx2 H2)),

x1(g2)− x2(g1)+ ıx1 ıx2 H(2)),

where F = d A and H = H(3) + A ∧ H(2). 1)
Since T-duality preserves both the bilinear form and the Courant bracket, it

preserves properties such as subbundles being isotropic and involutive. Thus the
theorem implies that T-duality preserves all the important structures present in
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generalized geometry (such as generalized complex structures, generalized Kähler
structures) and that therefore generalized geometry is a convenient framework for
T-duality.

Finally, we show that the Buscher rules have a natural interpretation in the context
of generalized geometry as well. Consider thereto the generalized metric G

b in (133)
or equivalently the graph of Q = g + b in (133). Decomposing Q as in (46), the
graph is given in local coordinates by

⎛

⎜
⎜
⎝

Xμ

Xm

QμN X N

Qm N X N

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Xμ

Xm

QμνXν + Qμn Xn

QmνXν + Qmn Xn

⎞

⎟
⎟
⎠ .

Upon performing a T-duality transformation analogous to φ in (136), the graph
transforms to

⎛

⎜
⎜
⎝

Xμ

QmνXν + Qmn Xn

QμνXν + Qμn Xn

Xm

⎞

⎟
⎟
⎠ =

(
N · X
M · X

)

, (137)

where

M =
(

Qμν Qμn

0 1

)

, N =
(

1 0
Qmν Qmn

)

.

Now observe that the right-hand side of (137) is the graph of

M N−1 =
(

Qμν − Qμn(Q−1)mn Qnν Qμm(Q−1)mn

−(Q−1)mn Qnν (Q−1)mn

)

= Q̂, (138)

which are precisely the Buscher rules of (51). This shows that under T-duality the
generalized metric transforms according to the Buscher rules!

A generalization of the results in this section to higher rank principal torus bun-
dles will appear in [8] (see also [42]).
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6.1 An Axiomatic Introduction into Regge’s Model

For a better understanding of the following mathematical reasoning I first present an
informal axiomatic approach to Regge’s [13] model of pure quantum gravity. (We
shall use already some notions which will be made precise later.)

Consider a space X of geometric objects (cells, simplices) x in E = R
d , d = 4,

where x denotes a finite, affinely independent subset of E . On the next level we
consider configurations μ of such cells in E , which are locally finite in the sense
that

ζB(μ) = cd{x ∈ μ|b(x) ∈ B} < +∞, B ∈ B0(E). (1)

This means that for any bounded Borel subset B of E , the number of cells in the
configuration μ with barycentre hitting B is finite. Note that ζB depends only on the
configuration of barycentres of μ.

We now restrict the class of cell configurations to spacetimes: One is only inter-
ested in those μ which are simplicial complexes; we then write μ ∈ �. Thus with a
cell x in the configuration μ, also all subsets y ⊆ x are elements of μ; moreover, if
the convex hulls of two cells meet then they meet in a common face.

The first three axioms can now be formulated as follows:

A1 The spacetime (or cosmos) μ is a four-dimensional simplicial complex. This
means that any maximal simplex x ∈ μ has cardinality 5.

A2 The spacetime μ is a random simplicial complex in E , i.e. μ is realized in the
collection � according to some law (probability) P on �, its σ -field B� being
generated by the random variables ζB, where B runs through all bounded
Borel sets of E . Furthermore P is of first order, i.e. each counting variable
ζB is integrable with respect to P . Moreover, P is not the empty spacetime,
i.e. the event {ζE > 0} is certain, i.e. has probability 1.

A3 The random spacetime is stationary, i.e. the underlying law P is invariant
with respect to all translations, induced by the translations of the Euclidean
space E .

To summarize: A model for a stationary random simplicial complex in E is thus
given by a probability space (�,B�, P), on which the mean number of cells hitting
any bounded region with their barycentres is finite and the vacuum is not realized.
Intuitively, P represents a random mechanism, which realizes four-dimensional
simplicial complexes of cells.

In the sequel we consider only the two-dimensional example of a Poisson–
Delaunay surface in E . This random surface is obtained by first realizing a sta-
tionary Poisson point process in R

2, each point being marked independently by a
(random) strictly positive number. We interpret its realizations as a curved surface
consisting of triangles as follows: In a first step a Poissonian realization of positions
in R

2 gives rise to a Delaunay tesselation of the plane into triangles; and in a second
step the marks of their vertices are used to redefine the lengths of the triangle sides.



6 Stochastic Geometry and Quantum Gravity: Some Rigorous Results 315

(The Euclidian distances are discarded!) In this way two-dimensional curved space-
times appear. Finally, all triangles are augmented by their sides and vertices, each
of them appearing only once. In this way one obtains two-dimensional stationary
random simplicial complexes. The assumption of stationarity for P allows the intro-
duction of the notion of a Palm measure P0 of P with respect to the barycentres.
This is a finite measure on �, because P is of first order. Its normalization P0 is
the conditional law given that 0 is the barycentre of the realized simplicial complex.
This will be a fundamental notion in the sequel.

Another fundamental concept is curvature. This is needed to formulate the fourth
axiom. Regge proposed in his article the following discrete version of the Einstein–
Hilbert action. In the present two-dimensional situation it is concentrated in the
vertices a of μ and 0 otherwise. Thus if a is a vertex on μ for some μ ∈ � the
Regge action is defined by

gR(a, μ) = −(gc − gv)(a, μ), (2)

where gv(a, μ) is the sum of areas of all triangles t in μ having a as vertex; and
gc(a, μ) denotes the curvature of μ in its vertex a, given by the deficit angle of μ
in a.

It is important here to note that the notions of area or angle of a triangle t depend
on the (random) metric chosen on the sides of t . Recall from above that this metric
is induced by the marks in the vertices.

We are now in the position to state the last axiom:

A4 P is curved with respect to the Regge action, i.e. gR is integrable with respect
to the Palm measure P0 of P .

Observe here, since gR is given in advance, the last axiom is an assumption on the
random spacetime P (point of view of classical statistical mechanics).

To summarize: The Regge model of pure quantum gravity is given by a quadruple
(�,B�, P, gR) which satisfies the axioms A1, . . . ,A4.

This model only makes assumptions on the local behaviour of the random
spacetime. Therefore the global properties of this model are of interest. Apart from
the construction of such random spacetimes the aim of these lectures is the analysis
of their global properties.

The stationarity assumption A3 is the starting point for this. It implies by means
of the zero-infinity law that a typical realization μ of the spacetime consists of an
infinity of simplices. Since spacetimes are locally finite, they thus are infinitely
extended. Moreover the question of the ergodic behaviour of the Regge action in
a bounded region � of E is meaningful. To be more precise, we consider the total
normalized Regge action in �

1

|�| ·
∑

a∈bμ∩�
gR(a, μ)
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and ask for its asymptotic behaviour if�↗ +∞ (bμ denotes the set of barycentres
of the simplices of μ).

One of the main results will be that the limit r, the so-called specific Regge action,
exists in a precise sense, is translation invariant and satisfies P(r) = −P0(gR). This
last equation says that the expected specific Regge action is, up to the factor−1, the
expectation of the Regge action with respect to the Palm distribution of P . This last
quantity can be evaluated in principle.

6.2 The Zero-Infinity Law of Stochastic Geometry
and the Cluster Process

6.2.1 Basic Concepts

We present as a general frame the scheme of Ripley [15], who proposed a purely
measure theoretical approach to point process theory on countably separated, σ -
bounded spaces in which random simplicial complexes are constructed.

The starting point is a measurable space (X,B) in which configurations of points
will be realized, which are locally finite in the sense that only a finite number of
points hit each member of a class B0 of ‘bounded’ sets. Following Ripley we assume
that B contains all singleton subsets and that B0 is a non-empty subset of B which
is hereditary, i.e.

(B ∈ B0,C ∈ B ∩ B⇒ C ∈ B0),

closed under finite unions and σ -bounded. The latter means that there exists an
increasing sequence X1, X2, . . . in B0 covering X . Such spaces will be called here
as bounded, measurable spaces.

We assume also that (X,B,B0) is countably separated, i.e. there exists a count-
able π -system B̃0 in B0 separating the points of X ; given any finite subset of X , there
are disjoint members of B̃0 such that each member of the finite set is contained in
precisely one of these disjoint sets.

As Ripley has shown one can develop a general theory of point processes in
such spaces (X,B,B0), which we call phase spaces for short. Examples of phase
spaces are all separable metric spaces (X, d)where B is the Borel σ -field and B0 the
collection of metrically bounded Borel sets. For B̃0 take the collection of all balls
with centres from a dense countable subset and rational radii. In particular, all polish
spaces and all locally compact, second countable Hausdorff topological spaces are
phase spaces.

Given a phase space (X,B,B0), we then consider random locally finite measures
μ on X , which are defined as follows: M =M(X) denotes the set of all measures
μ on (X,B) which are locally finite, i.e. μ is finite on B0. Note that such measures
are σ -finite because X is σ -bounded.



6 Stochastic Geometry and Quantum Gravity: Some Rigorous Results 317

M is endowed with the σ -field F generated by all variables ζB : μ �→ μ(B)
(B ∈ B0). Important measurable subsets are

M.. = {μ ∈M
∣
∣ μ(B) ∈ N0 ∀ B ∈ B0} (point measures),

M. = {μ ∈M..
∣
∣ μ{x} ≤ 1 ∀ x ∈ X} (simple point measures),

M.
k+1 =M. ∩ {ζX = k + 1}, k ≥ 0.

Here N0 = {0, 1, 2, . . . }. The traces of F in these spaces are denoted by F .., F .,
F .k+1. Elements μ ∈ M. are often identified with locally finite subsets of X . The
elements of M.

k+1 thus are the subsets of X of cardinality k + 1.
A random measure in X is a probability measure P on (M,F); we then write

P ∈ PM for short. Thus P is a law which realizes a locally finite measure μ in X .
Probabilities P on (M..,F ..) resp. (M.,F .) are called point processes resp. simple
point processes in X , and write P ∈ PM.. resp. P ∈ PM., etc.

Then ζB , B ∈ B, are random variables on (M,F , P) representing the random
measure of B. The first moment measure of P is defined by ν1

P (B) = P(ζB), B ∈ B,
where P(ζB) denotes the expectation of ζB with respect to P . ν1

P is also called the
intensity of P . Intuitively, ν1

P (B) is the expected random measure of B.
If in X there is defined a group of measurable transformations

Tx : X → X, y �→ y − x,

written symbolically as translations, they induce a group of measurable transforma-
tions

Tx :M→M, μ �→ μ− x := image of μ under Tx .

These in turn induce a group of translations (Tx )x on PM : Tx : P �→ Tx P :=
image of P under Tx .

A random measure P on X then is called stationary if P = Tx P for all x ∈ X ;
we then write P ∈ P0M. (All this remains valid if M is replaced by M.. resp. M.,
etc.)

6.2.2 Cluster Properties and the Zero-Infinity Law
of Stochastic Geometry

We now take R
d (d ≥ 1), the d-dimensional Euclidean space, as the basic phase

space together with its group of translations (Ta)a∈Rd . Given k ≥ 0 a k-cluster
property in M. is any measurable subset D ⊆ M.

k+1 × M.. We shall use the
following terminology: If (x, η) ∈ D then x is called a cluster for η of type D; if
in addition x ⊆ η then x is a cluster of type D in η. A cluster property D is called
stationary if
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((x, η) ∈ D, a ∈ R
d ⇒ (x − a, η − a) ∈ D).

Example 1 Given some r > 0 we define a 0-cluster property Dr by means of

((a, η) ∈ Dr if f η(
.

Br (a)) = 0).

Here Br (a) is the open d-ball centred in a with radius r and
.

Br (a) = Br (a) � {a}
its perforation. It is easy to show that this is a stationary cluster property in M..

Thus a point a ∈ R
d is a cluster for the configuration η ∈M. iff η has no points

in
.

Br (a), the perforated r -ball centred in a.

We associate to a given stationary cluster property D in M. the variable

cdD :M.→ N0 ∪ {+∞}, η �→
∑

x⊆η
1D(x, η).

cdD counts the clusters of type D in η. It is measurable and invariant under transla-
tions Ta , a ∈ R

d .
The following fundamental result, the so-called zero-infinity law, is the basis of

all later constructions. The proof given here is due to Krickeberg [6].

Theorem 1 (Zero-infinity law of stochastic geometry)
If D is a stationary k-cluster property in M. and P ∈ P0M., then

P{0 < cdD < +∞} = 0.

Proof Suppose P{0 < cdD < +∞} > 0. Then P̃ := P(· ∣∣ 0 < cdD < +∞) is a
well-defined simple, stationary point process in R

d , i.e. P̃ ∈ P0M.. Now transform
P̃ into a translation-invariant probability on R

d by means of

χ :M.→ R
d , η �→ 1

cdD(η)
·
∑

x⊆η
1D(x, η) · b(x).

Here b(x) is the barycentre of x . Note that χ is P̃-a.e. well defined and measur-
able. Thus we obtain a contradiction. Translation-invariant probabilities do not exist
on R

d . qed

This theorem immediately implies the

Corollary 1 If D is a stationary k-cluster property in M. and P ∈ P0M. such that

P{cdD ≥ 1} > 0, (3)

then the law PD := P(· ∣∣ cdD ≥ 1) is concentrated on M.
D = {cdD = +∞}.

As a consequence PD = 1
Z D
· 1M.

D
· P , where Z D := P(M.

D) > 0. PD is a

simple stationary point process in R
d realizing configurations of particles possessing

an infinity of D-clusters.
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6.2.3 Cluster Properties and the Zero-Infinity Law for Marked
Configurations

The phase space now will be R
d × I , where I ⊆]0,+∞[ is an interval. Its elements

z = (a, r) represent balls centred in a with radius r . q : R
d × I → R

d , z �→ a,
denotes the projection onto the centre and r : z → r to its radius.

We consider the following collection of configurations of such balls in R
d :

M.
I =

{

ν =
∑

a∈η
δ(a,ra)

∣
∣ η ∈M., ra ∈ I

}

and are interested in cluster properties in this set. It is obvious that a k-cluster prop-
erty D in M. = M.(Rd) induces a k-cluster property in M.

I by means of the
measurable projection

1 :M.
I,k+1 ×M.

I →M.
k+1 ×M., (z, ν) �→ (qz, qν)

as follows: D := 1−1(D).
The natural group (Ta)a∈Rd of translations in R

d × I is defined by Ta : (b, r) �→
(b − a, r). They induce translations Ta in M.

I by

Ta : ν → ν − a :=
∑

b∈η
δ(b−a,rb).

Let P0M.
I denote the stationary laws on M.

I .
If D is a stationary k-cluster property in M.(Rd), then D is a stationary k-cluster

property in M.
I . Now it is straightforward that the following 0−∞-law and its

corollary hold true.

Theorem 2 (Zero-infinity law (for marked configurations))
If D is a stationary k-cluster property in M.(Rd) and P ∈ P0M.

I , then

P{0 < cdD < +∞} = 0.

Corollary 2 If in the situation of the 0−∞-law we know that the image P∗ = qP of P
under q : ν → qν satisfies

P∗{cdD ≥ 1} > 0, (4)

then P{cdD ≥ 1} > 0; and PD := P(· ∣∣ cdD ≥ 1) ∈ P0M.
I with

PD{cdD = +∞} = 1.

Notation: M.
I,D = {cdD = +∞}.
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6.2.4 The Cluster Process

We shall now construct basic objects of these lectures, namely point processes in the
phase space of clusters. In order to do this we have to impose another condition on
a cluster property. A k-cluster property D in M. =M.(Rd) is called locally finite
iff for any η ∈M.

D the point measure

μ :=
∑

x⊆η
1D(x, η) · δx

is locally finite on the space X :=M.
k+1 in the following sense:

μ(GΛ) < +∞ for any Λ ∈ B0(R
d), (5)

where

GΛ = {x ∈ X
∣
∣ x ∩Λ �= ∅}.

We remark that X is a nice phase space if endowed with the σ -fields B(X) generated
by all GΛ, Λ ∈ B0(R

d), and with the collection of bounded sets

B0(X) = {B ∈ B(X)
∣
∣ B ⊆ GΛ for some Λ ∈ B0(R

d)}.

Instead of X we are mainly interested in the space X I := M.
I,k+1 of marked clus-

ters. If D is locally finite in M.(Rd) then so is D in the following obvious sense.
For any ν ∈M.

I,D the point measure

κ :=
∑

z⊆ν
1D(z, ν) · δz

is locally finite on the space X I , in the sense that

κ(GI,Δ) < +∞ for any Δ ∈ B0(R
d × I ), (6)

where

B0(R
d × I ) = {Δ ∈ B(Rd × I )

∣
∣ Δ ⊆ Λ× I for some Λ ∈ B0(R

d)}

and

GI,Δ = {z ∈ X I
∣
∣ z ∩Δ �= ∅}.

Again X I is a nice phase space if B(X I ) is generated by the GI,Δ and if

B0(X I ) = {B ∈ B(X I )
∣
∣ B ⊆ GI,Δ for some Δ ∈ B0(R

d × I )}.
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Now we are able to study point processes on X I : Given a locally finite, stationary
k-cluster property D in M.(Rd), define the measurable transformation

γD :M.
I,D →M.(X I ), ν �→ κ =

∑

z⊆ν
1D(z, ν) · δz .

If P ∈ P0M.
I is a given stationary (marked) point process in R

d× I concentrated
on configurations from M.

I and satisfying condition (4), then PD ∈ P0M.
I and thus

the following process in X I is well defined

Q D := γD PD.

Here the right-hand side denotes again the image of PD under γD . We call Q D the
cluster process of P of type D. More explicitly one has

Q D(ϕ) = 1

P(M.
I,D)

·
∫

M.
I,D

ϕ ◦ γD d P, ϕ ≥ 0 measurable. (7)

It is obvious that Q D is stationary with respect to the group of translations induced
by (Ta)a∈Rd in X I and denoted in the same way.

To summarize, we have the following.

Theorem 3 Let D be a locally finite, stationary k-cluster property in M.(Rd) and
P ∈ P0M.

I such that

q P{cdD ≥ 1} > 0. (8)

Then Q D ∈ P0M.(X I ), and Q D is concentrated on configurations consisting only
of an infinity of D-clusters.

For later use we modify the cluster process slightly. We transform it by means of
the following augmentation transformation:

α :M.(X I )→M.(X̂ I ), κ �→ supp
∑

z∈κ

∑

0 �=y⊆z

δy =: μ.

Here X̂ I = ⋃k+1
l=1 M.

I,l , and supp denotes the support of a point measure. Again as

above X̂ I can be made into a nice phase space, carrying the group (Ta)a of transla-
tions induced by R

d . α(κ) = μ adds to κ , which consists of marked simplices, all
their faces of lower dimension, each of them being added only once.

Denote by Q̂ D the image of Q D under α, i.e. Q̂ D = αQ D . This is a stationary
point process in X̂ I whose configurationsμ are built on simplices with all their faces
and have the characteristic property of a simplicial complex, i.e.

(x ∈ μ, y ⊆ x ⇒ y ∈ μ).
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Denote this subset of M.(X I ) of simplicial complexes by � and by F .� its canonical
σ -field. Q̂ D is called the random simplicial complex of P of type D.

Until now we saw already one example of a cluster property, which is stationary
and obviously locally finite. But we have no example of a point process P satisfying
the assumptions of the theorem. Such an example is given by

6.2.5 The Poisson Process Pρ

Let (X,B,B0) be a phase space and ρ ∈M(X).
We first assume that 0 < ρ(X) < +∞. The Poisson process Pρ is constructed

as follows: Select first an integer n at random according to the Poisson law with
parameter ρ(X) and then distribute n independent random points in X , each one
according to the law ρ/ρ(X). The corresponding point process Pρ is given by

Pρ(ϕ) = exp(−ρ(X)) ·
∞∑

n=0

1

n! ·
∫

Xn

ϕ(δx1 + · · · + δxn )ρ(dx1) . . . ρ(dxn)

(ϕ ≥ 0 and measurable). It is easy to see that the reduced Campbell measure of Pρ ,
defined by

C !Pρ (h) :=
∫

M..

∫

X

h(x, μ− δx )μ(dx)Pρ(dμ), h ≥ 0 measurable,

is the product measure ρ ⊗ Pρ on X ×M..; and this property characterizes Pρ . To
say this in another way: Given ρ as above, a point process P ∈ PM..(X) is equal
to Pρ iff

C !P = ρ ⊗ P. (9)

This basic equation obviously makes sense for any P ∈ PM.. if ρ is infinite; and
in fact a famous theorem of Mecke [10] states that given any ρ ∈ M(X), ρ �= 0,
then (9) has a unique solution Pρ in PM.. called the Poisson process in X with
intensity ρ. This name is well adapted to its properties: For any B ∈ B0(X) ζB

has a Poisson distribution with parameter ρ(B), and ζB1 , . . . , ζBk are independent
whenever B1, . . . , Bk ∈ B0(X) are disjoint.

One can show that Pρ ∈ PM. iff ρ is diffuse, i.e. ρ{x} = 0 for any x ∈ X . It
follows directly from (9) that ν1

Pρ
= ρ, i.e. the expected random point configuration

of Pρ is given by ρ.
We now consider the phase space E = R

d× I endowed with the diffuse measure
ρ = z · λ⊗ τ , where z > 0, λ is a Lebesgue measure on R

d such that the unit cube
has measure 1, and τ is a finite measure on I , �= 0.
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It is easy to see that Pρ is a stationary point process in E , i.e. Pρ ∈ P0M..(E),
using Mecke’s characterization of a Poisson process. In the same way one obtains

q Pρ = Pqρ with qρ = z · τ(I ) · λ.

This implies the

Lemma 1 Pρ ∈ P0M.
I .

Proof Since qρ is diffuse, one knows that q Pρ is concentrated on M. = M.(Rd),
i.e. Pρ{q ∈M.} = 1. On the other hand {q ∈M.} =M.

I . qed

To summarize: If we want to use theorem 3 for some given cluster property D
and the Poisson process Pρ , we have to verify only the condition

Pqρ{cdD ≥ 1} > 0. (10)

Example 2 For the cluster property Dr condition (10) is true. For a proof let b ∈ R
d ,

ε, r > 0, and consider the event Ab = {ζBε(b) = 1, ζBε+r (b)�Bε(b) = 0} that the ball
Bε(b) contains exactly one point of the configuration and Bε+r (b)� Bε(b) is void.

It is evident that Ab ⊆ {cdDr ≥ 1}. On the other hand, Pqρ(Ab) = z · τ(I ) ·
λ(Bε(A)) · exp(−z · τ(I ) · λ(Bε+r (b))) > 0. Thus the pair (Dr , Pρ) satisfies the
conditions of the theorem.

As a consequence the associated Dr -cluster process, denoted by Qρ,Dr , is well
defined. It is called Poisson exclusion process by Mürmann [11] and realizes an
infinity of hard r

2 -balls in R
d , with centres marked by positive numbers.

6.3 Poisson–Delaunay Surfaces with Intrinsic Random Metric

The above example Dr of a cluster property already yields an interesting cluster
process which realizes geometric objects, namely hard balls. We now present our
main example.

6.3.1 The Delaunay Cluster Property

First some notations: We consider the set A.d of all x ∈ M.
d+1 (= M.

d+1(R
d))

which are affinely independent. (This means that any subset of k + 1 points, 1 <
k ≤ d + 1, is not contained in a linear subspace of dimension < k.) Elements of A.d
represent simplices in R

d .
Given x ∈ A.d , any (d − 1)-face y of x (i.e. y ⊆ x such that dim y := cd y −

1 = d − 1) generates a hyperplane Hy together with closed half-spaces H+
y (x)

and H−
y (x), where H+

y (x) is the one containing x . Furthermore, K (x) denotes the
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circumball of x , i.e. the smallest closed ball containing x . x is a subset of S(x), the
(d − 1)-sphere of K (x). Denote

.

K (x) := K (x)� x .
We need also the following subset C. of configurations η spanning the whole

space R
n in the following sense:

η ∈ C.iff 〈η〉 :=
⋃

y⊆η finite

〈y〉 = R
n .

Here 〈y〉 denotes the convex hull of y. By a theorem of Carathéodory the condition
η ∈ C. is equivalent to saying that not all points of η are contained in some half
space. Then we define the following d-cluster property Del:

(x, η) ∈ Del iff x ∈ A.d , η ∈ C., η(
.

K (x)) = 0. (11)

Thus we are interested in clusters x for configurations η ∈ C., which represent
simplices and possess the Delaunay property η(

.

K (x)) = 0, which goes back to
Delaunay [4]. This property means that the point configuration η has no points in
.

K (x).
The stationarity of Del is obvious, whereas its measurability is not. (For all

measurability questions see [5].) As a consequence of the 0−∞-law, taking Pρ ,
ρ = z · λ ⊗ τ , as the underlying law, the counting variable cdDel assumes Pρ –
almost surely only the values 0 and∞.

Lemma 2 Pqρ{cdDel ≥ 1} > 0.

Proof (Write D resp. D instead of Del resp. Del.) Recall that qρ = z · τ(I ) · λ.
First we show that Pqρ(C.) = 1. This follows from the Borel–Cantelli lemma, the
argument being given for d = 2 for simplicity. Choose an equilateral triangle t in
R

2 with barycentre 0 and place small balls Bε(a), ε > 0, in each corner a ∈ t . Take
ε > 0 so small that the whole collection

Bε(n · a), n ≥ 1,

of balls is disjoint. Given n, consider the event ‘each ball Bε(a) contains exactly one
element of the configuration’, i.e.

An(t) := {ζBε(n·a) = 1 for any a ∈ t}.

By construction these events are independent with respect to Pqρ . Moreover, by
translation invariance of qρ

Pqρ(An(t)) =
∏

a∈t

qρ(Bε(a)) · exp(−qρ(Bε(a))), n ≥ 1;

these probabilities are strictly positive and do not depend on n. Consequently
Σn≥1 Pqρ(An(t)) = +∞. And by the Borel–Cantelli lemma it follows that
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Pqρ

(
lim

n→∞ sup An(t)
)
= 1.

Since lim
n→∞ sup An(t) ⊆ C., the assertion follows.

It remains to show that Pqρ{cdD′ ≥ 1} > 0, where D′ is defined by

(x, η) ∈ D′ iff x ∈ A.d , η(
.

K (x)) = 0.

This follows by a similar argument: Choose t as above and ε > 0 small enough such
that

En(t) = {x ∈M.
3

∣
∣ x(Bε(a)) = 1 for any a ∈ t} ⊆ A.2.

Then choose a ball B containing all Bε(a), a ∈ t , and let B ′ := B � ∪a∈t Bε(a).
Then the event {ζB′ = 0, ξBε(a) = 1 for any a ∈ t} is contained in {cdD′ ≥ 1} and
has positive probability with respect to Pqρ . qed

As a consequence of Theorem 3 the associated cluster process Qρ,Del of Pρ
of type Del is well defined. We call this process the Poisson–Delaunay process,
PD-process for short.

The following result is well known. A proof can be found in Chap. 6 of the
German edition of Schneider/Weil [16].

Lemma 3 For Pρ – almost any ν ∈M.
I,D the random cluster measure κ = γD(ν),

having Qρ, Del as its distribution, has the following support properties:

(1) If z, z′ ∈ κ are distinct with 〈x〉 ∩ 〈x ′〉 �= ∅ (where x = qz, x ′ = qz′), then
x ∩ x ′ �= ∅, x � x ′ and x ′ � x are nonempty and situated on opposite sides of
some hyperplane containing x ∩ x ′.

(2) Every (d − 1) face of an element z ∈ κ is shared by another element z′ ∈ κ .
(3) κ is a tesselation of R

d; in particular one has

⋃

x∈qν:(x,qν)∈D

〈x〉 = R
d .

Thus a PD-process typically realizes tesselations built on Delaunay triangles
whose vertices are marked by strictly positive radii.

We remark as an aside: If we add more restrictions to the definition of Del,
then κ = γDel(ν) may show a qualitatively different geometrical and topological
behaviour. To be more precise: Given two parameter 0 < r < R < +∞, consider
the following cluster property in M.:

(x, η) ∈ Del(r, R) iff (x, η) ∈ Del, η ∈M.
(r), diam x < R.

Here η ∈ M.
(r) iff η ∈ M. s.th. (a, b ∈ η, a �= b ⇒ ‖a − b‖ ≥ r) and diam x

denotes the diameter of x being defined as the diameter of K (x). Note that r = 0
and R = +∞ corresponds to the former case.
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Now (x, η) is an admissible pair iff η ∈ C. is built on hard r
2 -balls and x is a

Delaunay cluster for η of diameter< R. It is evident that Del(r, R) is stationary and
locally finite. As above one shows easily that condition (4) resp. (8) is satisfied.

It is intuitively clear that now the cluster measures κ , realized by Qρ,Del(r,R),
may have holes (and thus boundaries) if the parameters r, R are chosen in a right
way. In this case and if d = 3 or d = 4 it would be interesting to consider the
corresponding surface process. Here we shall not follow this line of thinking, which
has been developed by Matzutt in [9].

6.3.2 Poisson–Delaunay Surfaces

We assume from now on d = 2 for simplicity. As above the underlying point process
in R

2 × I is Pρ with ρ = z · λ ⊗ τ . And the cluster property given by D = Del.
Pρ is concentrated on configurations ν ∈ M.

I possessing an infinity of Delaunay
triangles, here denoted by t . Consider then the random simplicial complex Q̂ρ,D of
Pρ of type D.

We now consider its realizations μ under a new geometric point of view: If

t =
∑

a∈x

δ(a,ra), x ∈ A.2,

is a marked triangle of μ we now interpret the marks ra in such a way that they
define a metric on the edges e of α(t), the augmented t . We give two examples for
such an interpretation:

Example 3 (See Thurston [17].) For a given marked triangle t the length of an edge
e = δ(a,ra) + δ(b,rb) is given by ra + rb. A Euclidean realization of t is given by a
configuration of the centres of three balls of radii ra , a ∈ x , where each two of them
touch one another. Such a configuration of balls exists and is unique up to isometry.
We speak of the Thurston metric on the edges.

Example 4 (See Reshetnyak [14].) Here the length of an edge e = δ(a,ra)+ δ(b,rb) is
ra + rb if d(a, b) ≥ π , (d = Euclidean distance). If d(a, b) < π then

length(e) =
(

r2
a + r2

b − 2 · ra · rb · cos d(a, b)
)1/2

.

This is the length of side BC of a planar triangle ABC , for which length(A, B) =
ra , length(A,C) = rb and angle(B, A,C) = d(a, b). Again any marked triangle t
has a Euclidean realization, unique up to isometry.

In this way one can endow the configurations μ of Q̂ρ,D with an intrinsic random
metric, which itself depends on chance and which is no longer flat. It is an interesting
open question when such random surfaces have an Euclidean realization altogether.
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We call Q̂ρ,D the Poisson–Delaunay surface with intensity ρ. We know already
that Q̂ρ,D ∈ P0�. Moreover, Q̂ρ,D is of first order with respect to the barycentre
since Pρ has this property.

Finally one has

Lemma 4 Q̂ρ,D is mixing, i.e.

lim|a|→+∞ Q̂ρ,D(A ∩ Ta B) = Q̂ρ,D(A) · Q̂ρ,D(B), A,B ∈ F .�.

This implies immediately the ergodicity of Q̂ρ,D , i.e. Q̂ρ,D(A) ∈ {0, 1} for any
translation-invariant event A ∈ F .� .

Proofs of these assertions are contained in [16] (Theorem 6.4.2 of the German
edition) resp. [5].

6.3.3 Scholion: The Voronoi Cluster Property

Here we present shortly the alternative construction of Delaunay tesselations by
means of Voronoi tesselations as one can find them in the book of Schneider/Weil
[16]. Given a ∈ R

d and η ∈ C. the associated Voronoi polytope is defined by

V (a, η) = {b ∈ R
d
∣
∣ d(b, a) ≤ d(b, η)}.

Let E V (a, η) denote the set of its extreme points. The Voronoi cell belonging to
(a, η) is given by y + δa , the set y augmented by a, where y = E V (a, η). The
Voronoi cluster property is then defined by the following measurable subset Dv of
R

d ×M.
f ×M.:

((a, x, η) ∈ Dv iff η ∈ C., a ∈ x, x − δa = E V (a, η)).

We call then x−δa , the set x without its element a, the Voronoi cluster for η centred
in a. The Voronoi configuration belonging to η is η∗ = supp

∑
a ∈ η b ∈ E

∑

V (a, η)δb.
Dv is stationary and locally finite. Moreover, one can show that the counting

variable

cdDv : η→
∑

a∈η

∑

a∈x⊆η∗+δa
1Dv (a, x, η)

satisfies Pz·λ{cdDv ≥ 1} > 0. Thus given ρ = z·λ⊗τ , the associated Voronoi cluster
process Q = Qρ,Dv is well defined as the image of Pρ,Dv under the measurable
transformation

γDv : ν �→ κ =
∑

(a,t)∈ν

∑

(a,t)∈z⊆ν∗+δ(a,t)
1Dv ((a, t), z, ν) · δ(q(z−δ(a,t)),t).
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Thus Q realizes configurations κ of marked Voronoi cells. One can show that Q-
a.e. κ is a marked tesselation of R

d .
We are now in the position to recover in this context again the Delaunay cluster

process. To be able to do this augment the realizations κ of Q by all vertices of the
cells, i.e. let Q̃ denote the image of Q under α : κ → κ + κ(0) =: μ.

The Delaunay cluster property is then defined by the following measurable sub-
set Del of (Rd × I )×M.

f (X)× �̃:

⎛

⎝((a, t), ν, μ) ∈ Del iff κ(0) ∈ C., (a, t) ∈ κ(0), ν =
∑

(a,t)∈y∈κ
δy

⎞

⎠ .

Here X denotes the collection of pairs (x, t), x representing the extreme points of a
polytope and t > 0; �̃ denotes the collection of all μ. One can show that Q̃-a.a. μ
tesselates R

d , and that each Delaunay cluster consists of d + 1 polytopes. (See [16]
for a proof.)

6.4 Ergodic Behaviour of PD-Surfaces

Until now we gave a construction of stationary random surfaces. Next we study its
curvature and other metrical properties. For this we need the notions of

6.4.1 Palm Measures and Palm Distributions

We recall Mecke’s celebrated approach to Palm measures (see Mecke [10]). Remem-
ber that d = 2.

Let P ∈ P0�. (Recall also that � is the set of configurations of simplicial com-
plexes, built on marked triangles in R

2, augmented by all their edges and vertices.)
Consider the barycentre defined by

b : A.→ R
2, b(z) = barycentre of qz,

where A. denotes the collection of all affinely independent marked subsets of R
2.

b is a measurable transformation. The intensity measure of P with respect to the
barycentre is defined by

ν1
bP (B) :=

∫

Γ

bμ(B)P(dμ), B ∈ B(R2).

We assume that ν1
bP ∈M � {0}, i.e. ν1

bP is not the trivial measure and

ν1
bP (Λ) < +∞ for any Λ ∈ B0(R

2). (12)
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This implies that bP is a simple point process in R
2. Moreover bP is stationary.

Thus ν1
bP is translation invariant, so that it is the multiple of the Lebesgue measure:

ν1
bP = z′ · λ, z′ > 0.

In this situation one can define the Palm measure of P with respect to the
barycentre for measurable ϕ ≥ 0 by

P0(ϕ) :=
∫

Γ

∫

F0

ϕ(μ− a)bμ(da)P(dμ).

Here F0 denotes the cube in R
2, centred in 0 with λ(F0) = 1.

Observe that P0(�) = ν1
bP (F0) < +∞. Therefore P0 is a finite measure on

�. Moreover, P0 is concentrated on �0 = {μ ∈ � ∣∣ 0 ∈ bμ}, the collection of
all simplicial complexes possessing 0 as a barycentre. We denote in the sequel by
z0(μ) the unique cell in μ ∈ �0 possessing 0 as a barycentre and call it the typical
cell of μ.

The Palm distribution is given by

P0 = 1

ν1
bP (F0)

· P0.

Note that P0 ∈ P�0, i.e. P0 is a random simplicial complex. Let �(k) = {μ ∈ �
∣
∣

0 ∈ bμ(k)}, k = 0, 1, 2. Here μ(k) is the subconfiguration of μ consisting of all
k-dimensional cells of μ. Note that �0 = �(0) ∪ �(1) ∪ �(2).

We call a point process P ∈ P0� satisfying condition (12) a stationary random
surface. We remark that the Poisson – Delaunay surface Q̂ρ,Del belongs to this class.

6.4.2 An Ergodic Theorem for Intrinsic Metric Quantities
of Stationary Random Surfaces

Let P be a stationary random surface. Assume that we are given some

g ∈ L1(P0), (13)

i.e. g is integrable with respect to P0.
Interpretation: Given μ ∈ �0, let z0(μ) be the typical cell of μ, i.e. the unique

cell of μ with barycentre 0. g(μ) then should be imagined as a metrical aspect of
the typical cell.

We are interested in the variables

ϕ�(μ) =
∫

Λ

g(μ− a)bμ(da),� ∈ K, μ ∈ �,

where K denotes the collection of convex, compact subsets of R
2, including ∅.
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Lemma 5 (ϕ�)�∈K is a family contained in L1(P) having the following properties
of a so-called spatial process:

(1) ϕ∅ ≡ 0,
(2) (additivity) for �1,�2 ∈ K disjoint

ϕΛ1∪Λ2 = ϕΛ1 + ϕΛ2 ,

(3) (invariance) for any � ∈ K, b ∈ R
2

ϕΛ−b ◦ Tb = ϕΛ.

(The proof is an easy exercise.)
We finally observe that the integrability condition (13) implies that for any � ∈

F0 ∩ B(R2) and μ ∈ �

|ϕΛ|(μ) ≤
∑

a∈bμ∩F0

|g|(μ− a) =: Y,

where Y ∈ L1(P). In this situation we have the following ergodic theorem
(Nguyen/Zessin [12]):

Theorem 4 If P is a stationary random surface satisfying condition (13), then

lim
n→∞

1

ν1
bP (Fn)

·
∫

Fn

g(μ− a)bμ(da) = 1

ν1
bP (F0)

· EP (ϕF0

∣
∣ J ) (14)

P-a.e. and in L1(P). Here J denotes the sub-σ -field of F .� consisting of all events,
which are translation invariant. And Fn denotes the cube in R

2, centred in 0, with
edge length 2n+ 1. In particular the limit on the right-hand side of (14) is invariant
under translations and

EP

(
1

νbP (F0)
· EP (ϕF0

∣
∣ J )

)

= P0(g).

Important for us will be the

Corollary 3 If under the conditions above P is also ergodic, i.e. J contains only
events of probability 0 or 1, then

lim
n→∞

1

ν1
bP (Fn)

·
∫

Fn

g(μ− a)bμ(da) = P0(g)

P-a.e. and in L1(P).
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6.4.3 Curvature Properties of the Poisson–Delaunay Surface

The underlying stationary random surface is now given by P = Q̂ρ,D , where D is
the Delaunay cluster property Del. We now give examples of functionals g satisfy-
ing the assumptions of the theorem, which are of central importance for quantum
gravity.

Example 5 (Curvature) By means of

gc(μ) =
{

2π −∑z0(μ)∈t∈μ(2) β(z0(μ), t), if μ ∈ �(0)
0, else

(15)

one defines the deficit angle of μ at its typical cell z0(μ), if this is a vertex. Here
β(a, t) denotes the angle of the triangle t in its vertex a. (Recall that μ(2) is the
subconfiguration of μ consisting of all triangles.) Independently of the choice of the
intrinsic metric gc satisfies the estimate

(2− d(μ)) · π < gc(μ) < 2π,μ ∈ �(0), (16)

where d(μ) denotes the number of edges of the typical vertex of μ. The associated
variable

C�(μ) =
∑

a∈bμ∩�
gc(μ− a),� ∈ K,

the total sum of deficit angles for the vertices of μ in �, is called the curvature of μ
in �. The integrability condition (13) is satisfied by the following:

Lemma 6 P0(|gc|) ≤ 6 · π · ν1
bP (F0).

Proof Using the estimate (16) one obtains

P0(|gc|) ≤ π ·
∫

Γ

∫

F0

d(μ− a)bμ(da)P(dμ) = π · P0(d) · ν1
bP (F0).

Now it is well known that P0(d) = 6. (See [16], Theorem 6.2.12 of the German
edition.) qed

Recall that the Poisson – Delaunay surface is mixing and thus ergodic. As a
consequence of the corollary of the ergodic theorem we see that

lim
n→∞

1

ν1
bP (Fn)

CFn (μ) = P0(gc)

P-a.s. and in L1(P).
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Within this example consider the special case of an equilateral PD-surface. This
is obtained if the underlying measure τ is a Dirac measure, say δr0 , and if we choose
the Thurston metric of example 3 on the edges of the realizations. This choice pro-
duces surfaces composed of equilateral triangles of edge lengths 2 · r0. The only
source of randomness is then the number of neighbours of a given vertex. All angles
β(z0(μ), t) are equal to π

3 . Nevertheless there is curvature given by

gc(μ) = 2π − π
3
· d(μ), μ ∈ �(0).

Thus gc(μ) = 0 iff d(μ) = 6, negative iff d(μ) < 6 and positive if d(μ) > 6. It
is obvious that d is not constant because the origin of randomness is the Poisson
process Pz·λ⊗δr0

. We can even compute P0(gc):

P0(gc) = 2π − π
3
· P0(d) = 0.

As a consequence the equilateral PD-surface is an example of a random sur-
face which is asymptotically flat in the sense that its specific curvature c(μ) :=
lim

n→∞
1

ν1
bP (F0)

C�(μ) is 0 P-a.e. (end of the example 5).

Example 6 The surface measure is defined by

gs(μ) =
{

m(z0(μ)), μ ∈ �(2)
0, else

.

Here m(z0(μ)) is the intrinsic measure induced by the intrinsic metric of the typical
cell of μ if it is a triangle. The associated random variable

M�(μ) =
∑

a∈bμ∩Λ
gs(μ− a), μ ∈ �,

is then the surface measure of μ in �.

Lemma 7 If τ is supported by a bounded interval I , then

P0(|gs|) ≤ C · ν1,2
bP (F0)

for some positive constant C. Here

ν
1,2
bP (F0) = P0(�(2)).

In the equilateral situation

P0(gs) = m(r0) · ν
1,2
bP (F0)

ν1
bP(F0)

,
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where m(r0) is the intrinsic measure of an equilateral triangle of edge length 2 · r0.
As a consequence, if τ is supported by a bounded interval, then

lim
n→∞

1

ν1
bP(Fn)

· MFn = P0(gs)

P-a.s. and in L1(P) (end of the example 6).

6.5 The Two-Dimensional Regge Model of Pure Quantum
Gravity

Let P ∈ P0� satisfy condition (12). Thus P is a stationary random surface whose
vertices are marked by positive numbers.

In a seminal paper from 1961 Regge proposed in [13] to consider the following
functional which is a discrete version of the so-called Einstein–Hilbert action of the
theory of gravitation:

gR := −[gc − gs].

We assume that

gR ∈ L1(P0). (17)

Observe that this is now an assumption on P , because gR is given in advance. We
saw that a PD-surface is an example if τ is supported by some bounded interval.
Let

RΛ(μ) =
∑

a∈bμ∩Λ
gR(μ− a), μ ∈ �.

The two-dimensional Regge model of pure quantum gravity is given by

(�,F .Γ , P, gR),

where P ∈ P0(�, gR), i.e. P is a stationary random surface satisfying (17). In the
context of the theory of gravitation realizations μ ∈ � are called spacetimes.

We are in the situation of the ergodic theorem. Thus

lim
n→∞

1

νbP(Fn)
·RFn = r P−a.e. and in L1(P),

that is, the specific Regge action r exists, is stationary and satisfies

P(r) = −[P0(gc)− P0(gs)].
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6.6 Comments and Final Dreams

One of the central open problems then is to characterize the ground states. These
states minimize the functional

χ : P0(�, gR)→ R, P �→ P(r) = P0(gR).

It is believed that such states P have the property that in P0 almost all μ satisfy the
equations of gravitation.

This program should be realized in the physically relevant spacetime dimension
d = 3+ 1 (see [2]).

I add some comments on the relations of the ideas presented here and the work
of Ambjørn et al. [3]. In a certain sense we make here a first step in realizing
one part of the program formulated in [3]. The authors assume that they are using
‘a correct measure on the set of geometries’. This assumption is realized above:
We construct a random spacetime whose realizations are ‘piecewise linear geome-
tries’ to use again their formulation. To be more precise: In the two-dimensional
case we construct a probability measure which allows ‘to sum over geometries’
called Poisson–Delaunay surface. Whether this random spacetime has the desired
properties, postulated in [3], has to be investigated.

We terminate these lectures with these basic questions.
Comments on some existing rigorous results from stochastic geometry related

to quantum gravity: A complete presentation of the above results, including all
proofs and technical details like measurability questions and constructions of the
main objects, can be found in the more general framework of Thurston processes in
the Diplom thesis of Kaiser [5]. (See also [19] on which [5] is based.)

One starting point of activities within the mathematical community of stochastic
geometry seems to be the Les Houches lectures of Ambjørn [1] and the book of
Ambjørn et al. [3]. There the authors presented for the first time a general and sys-
tematic exposition of the mathematical programme behind the numerous activities
in this field which took place during the 1990s and formulated the main open math-
ematical problems. This initiated for instance the work of Vadim Malyshev and his
collaborators [7, 8] as well as my own activities [18–20] which are connected with
[5, 9].

Within the community of stochastic geometry this programme has not yet found
the resonance which it deserves. Until now random curved spacetimes are not in
the centre of attention there. Mainly random geometric objects like flat Delaunay or
Voronoi tesselations are considered. Curvature does not play any role.

Acknowledgements I am grateful to Otto Kaiser and Kai Matzutt for several illuminating dis-
cussions. I also thank the referee for his remarks which led to a substantial improvement of this
chapter.



6 Stochastic Geometry and Quantum Gravity: Some Rigorous Results 335

References

1. J. Ambjørn, “Quantization of Geometry”, in: J. Dalibard, J.M. Raimond, J. Zinn-Justin,
(eds.), Les Houches, Session LIII, 1990. Systemes Fondamentaux en Optique Quan-
tique/Fundamental Systems in Quantum Optics. Elsevier Science Publishers B.V. (1995).

2. J. Ambjørn, B. Durhuus, T. Jonsson, Quantum Geometry, Cambridge University Press,
Cambridge (1997).

3. J. Ambjørn, J. Jurkiewicz, R. Loll, “Quantum gravity as sum over spacetimes”, Lect. Notes
Phys. 807. Springer, Heidelberg (2010).

4. B. Delaunay, Sur la sphère vide, Bull. Acad. Sci. URSS VI, Class. Sci. Math. Nat., 793–800
(1934).

5. O. Kaiser, Das ergodische Verhalten der Lipschitz-Killing-Krümmung stationärer Thurston-
Prozesse, Diplomarbeit, Universität Bielefeld (2008).

6. K. Krickeberg, Processus ponctuels en statistique, École d’été de St. Flour X-1980, Lect.
Notes Math 929, (1982) 206–313.

7. V.A. Malyshev. Probability related to quantum gravity. Planar gravity, Russ. Math. Survey 54
(4), (1999) 685–728.

8. V.A. Malyshev. A.A. Yambartsev, A.A. Zamyatin, Two-dimensional Lorentzian models,
Moscow Math. Journ. 1 (3), (2001) 439–456.

9. K.M. Matzutt, Konstruktion zufälliger, lokal endlicher Mosaike, insbesondere Laguerrescher,
Diplomarbeit, Universität Bielefeld (2006).

10. J. Mecke, Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen, Z. Wahrschein-
lichkeitstheorie verw. Gebiete 9, (1967) 36–58.

11. M.G. Mürmann, Poisson point processes with exclusions, Z. Wahrscheinlichkeitstheorie
verw. Gebiete 43, (1978) 23–37.

12. X.X. Nguyen, H. Zessin, Punktprozesse mit Wechselwirkung, Z. Wahrscheinlichkeitstheorie
verw. Gebiete 37, (1976) 91–126.

13. T. Regge, General relativity without coordinates, Nuovo Cimento 19, (1961) 558–571.

14. Yu.G. Reshetnyak, Two-dimensional manifolds of bounded curvature, in: Reshetnyak,
Yu.G. (ed.), Geometry IV, Encyclopaedia of Mathematical Sciences, vol. 70, Springer, Berlin
(1993).

15. B.D. Ripley, Locally finite random sets: Foundations for point process theory, Annals of Prob-
ability 4, (1976) 983–994.

16. R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer, Berlin (2008). German
edition: Stochastische Geometrie, Teubner, Stuttgart (2000).

17. W.P. Thurston, The geometry and topology of three manifolds, Electronic version 1.1,
http://www.msri.org/publications/books/gt3m/ (2002).

18. H. Zessin, Specific index and curvature of random simplicial complexes, Izv. Nats. Akad. Nauk
Armenii Mat. 37(1), (2002) 70–88.

19. H. Zessin, The Thurston Process, Preprint Nr. 171, FSPM, University of Bielefeld, Germany
(2005).

20. H. Zessin, The Gauß-Bonnet theorem for stationary simplicial complexes, Izv. Nats. Akad.
Nauk Armenii Mat. 38 (3), (2003) 75–82.





Part III
Afterthoughts





Chapter 7
Steps Towards Quantum Gravity
and the Practice of Science: Will the Merger
of Mathematics and Physics Work?

B. Booß-Bavnbek

Abstract I recall general tendencies of the mathematization of the sciences and
derive challenges and tentative obstructions for a successful merger of mathematics
and physics on fancied steps towards quantum gravity. This is an edited version of
the opening words to an international workshop Quantum Gravity: An Assessment,
Holbæk, Denmark, 17–18 May 2008. It followed immediately after the Quantum
Gravity Summer School, see http://QuantumGravity.ruc.dk

7.1 Regarding the Need and the Chances of Unification

Reading the literature, preparing and attending the Quantum Gravity Summer
School, editing of this volume, and discussing with co-editors and contributors pro-
voked the following claims and questions: (1) The natural laboratory for quantum
gravity is the universe, of which we have no control. (2) Nevertheless, we have to
accept the challenge, and also a new feature: soon a lifetime will be insufficient
to verify a new important theory, and only our successors will be able to prove
or disprove it. By the way, it took 49 years just for the Casimir effect, let alone
Hawking radiation or string theory. (3) Do we really need to unify gravity with the
other interactions? Some physicists say “No”. However, if gravity stays in isola-
tion, physicists must be afraid that gravitational physics as a subject will die soon.
(4) Most innovative work in quantum gravity is balancing on a knife’s edge between
abstract mathematics and fresh views on physics concepts. A mathematician, how-
ever, may have many remaining unanswered questions, both regarding the claims
of physics relevance of the most innovative work and regarding the mathematical
clearness and reliability of various new concepts and calculations.

In the following, I recall common knowledge on modelling, mathematization,
and science history to put the declared “New Paths Towards Quantum Gravity” in a
common frame in spite of their scattering and heterogeneity. Some of the following
considerations were published in [12] in condensed form before the Summer School
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as a kind of platform for the assessment of our endeavour. For a comparison with
mathematization in other frontier fields I refer also to [9] and the recent [11].

7.2 The Place of Physics in John Dee’s Groundplat of Sciences
and Artes, Mathematicall of 1570

The use of mathematical arguments, first in pre-scientific investigations, then in
other sciences, foremost in medicine and astronomy and in their shared border
region astrology, has been traced way back in history by many authors from various
perspectives, Bernal [6], Høyrup [19], and Kline [21].

Globally speaking, they all agree on three mathematization tendencies:

1. The progress in the individual sciences makes work on ever more complicated
problems possible and necessary.

2. This accumulation of problems and data demands conscious, planned, and eco-
nomic procedures in the individual sciences, i.e. an increased emphasis on ques-
tions of methodology.

3. This increased emphasis on questions of methodology is as a rule associated with
the tendency of mathematization.

All of this applies generally. In detail, we find many various pictures. In his
Groundplat of Sciences and Artes, Mathematicall of 1570 [14], the English alchemist,
astrologer, and mathematician John Dee, the first man to defend the Copernican
theory in Britain and a consultant on navigation, pointed out, in best Aristotelian
tradition, that it is necessary in the evaluation of mathematization to pay strict atten-
tion to the specific characteristics of the application area in question. He postulated a
dichotomy between the Principall side, pure mathematics, and the Deriuative side,
i.e. applied mathematics and mathematization. He then classified the applications of
pure mathematics according to objects treated:

• Ascending Application in thinges Supernaturall, eternall and Diuine,
• In thinges Mathematicall: Without farther Applications,

and finally, on the lowest and most vulgar plane in the Aristotelian scheme,

• Descending Application in thinges Naturall: both Substantiall & Accidentall,
Visible & Inuisible & c..

Now that history has excluded matters divine from mathematics, we can with some
justification ask whether later generations may regard with equal amusement and
astonishment the fact that in our time there are a large number of professional math-
ematicians and physicists, who are completely satisfied with spending their entire
lives working in the second, inner mathematical level and who persistently refuse to
descend to vulgar applications.

The panorama of the individual sciences and the role that mathematics had to
play in them was perfectly clear to John Dee. In our time the matter is somewhat
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more complex. For a class on quantum gravity, I cannot point out a geodetically
perfect picture of today’s landscape of mathematization nor of precise border lines
between the mathematics and physics addressed. I must treat the matter rather sum-
marily. A summary treatment may have the advantage that in comparison among
the mathematization progress in different branches of physics, common problems
on one hand and on the other hand special features of the here advocated new paths
towards quantum gravity can be seen more clearly.

In the following, I shall restrict myself to the study of dead nature in physics,
the field which has the highest degree of mathematization on any chosen scale, both
quantitatively and qualitatively. To put things in relief, I shall occasionally touch
upon the investigation of living matter in medicine, the field where one might expect
the greatest mathematization advances in our century, and confront our highly spec-
ulative branch of mathematical physics with the treatment of financial issues and
decision making for commerce and production in economics, a field of questionable
scientific state that, beyond well founded actuary estimations, lacks unambiguous
results and convincing clear perspectives regarding mathematization.

7.3 Delimitation Between Mathematics and Physics

The intimate connection between mathematics and physics makes it difficult to
determine the theoretical relevance of mathematics and obscures the boundary
between genuinely physical thought and observation on one side and the charac-
teristically mathematical contribution on the other side. Recall Hilbert’s perception
of probability theory as a chapter of physics in his famous 6th Problem [18]:

6. Mathematical Treatment of the Axioms of Physics. The investigations on the foundations
of geometry suggest the problem: To treat in the same manner, by means of axioms, those
physical sciences in which already today mathematics plays an important part; in the first
rank are the theory of probabilities and mechanics.

To say it mildly, as Gnedenko did in his comments to the Russian edition of 1969:
Today this viewpoint (to consider probability theory as a chapter of physics) is no
longer so common as it was around the turn of the century, since the independent
mathematical content of the theory of probabilities has sufficiently clearly showed
since then. . .. With hindsight and in view of the still challenging foundational prob-
lems of quantum mechanics, however, we may accept that parts of mathematics and
physics can be interlaced in a non-separable way.

Another famous example of that inextricable interlacement is provided by the
Peierls–Frisch memorandum of 1940 to the British Government: suggested by the
codiscoverer of fission Otto Frisch, the physicist Rudolph Peierls, like Frisch a
refugee in Britain, made the decisive feasibility calculation that not tons (as – hap-
pily – erroneously estimated by Heisenberg in the service of the Nazis) but only
about 1 kg (later corrected to 6 kg) of the pure fissile isotope U235 would be needed
to make the atomic bomb. Was it mathematics or physics? It may be worth mention-
ing that Peierls was a full professor at the University of Birmingham since 1937 and
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became joint head of mathematics there [16]. Theoretical physics in Britain is often
in mathematics. As a matter of fact, physics in our sense did not exist as a single
science before the 19th century. There were well-defined experimental physics com-
prising heat, magnetism, electricity, and colour, leaving mechanics in mathematics,
see [19, p. 493].

In spite of that intermingling, physics can provide a ready system of categories to
distinguish different use of mathematics in different modelling situations. Perhaps,
the situation can be best compared with the role of physics in general education.
After all, physics appears as the model of mathematization: there is no physics
without mathematics – and, as a matter of fact, learning of mathematics is most
easy in a physics context: calculation by letters; the various concepts of a func-
tion (table, graph, operation) and its derivatives and anti-derivatives; differential
equations; the concept of observational errors and the corresponding estimations
and tests of hypotheses; Brownian movements; all these concepts can be explained
context-free or in other contexts (where some of the concepts actually originated),
but they become clearest in the ideally simple applications of physics, which are suf-
ficiently complicated to see the superiority of the mathematization as compared to
feelings, qualitative arguments, discussions, convictions, imagination – but simple
enough to get through.

7.4 Variety of Modelling Purposes

It may be helpful to distinguish the following modelling purposes:

7.4.1 Production of Data, Model-Based Measurements

Clearly, the public associates the value of mathematical modelling foremost to its
predictive power, e.g. in numerical weather prediction, and its prescriptive power,
e.g. in the design of the internal ballistics of the hydrogen bomb; more flatter-
ing to mathematicians, the explanatory power of mathematization and its contri-
bution to theory development yield the highest reputation within the field. How-
ever, to the progress of physics, the descriptive role, i.e. supporting model-based
measurements in the laboratory, is – as hitherto – the most decisive contribution
of mathematics. Visco-elastic constants and phase-transition processes of glasses
and other soft materials cannot be measured directly. For high precision in the crit-
ical region, one measures electric currents through a “dancing” piezoelectric disc
with fixed potential and varying frequency. In this case, solving mathematical equa-
tions from the fields of electro-dynamics and thermo-elasticity becomes mandatory
for the design of the experiments and the interpretation of the data. In popular
terms, one may speak of a mathematical microscope, in technical terms of a trans-
ducer that becomes useful as soon as we understand the underlying mathematical
equations.
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7.4.2 Simulation

Once a model is found and verified and the system’s parameters are estimated for
one domain, one has the hope of doing computer calculations to predict what new
experiments in new domains (new materials, new temperatures, etc.) should be made
and what they might be expected to show. Rightly, one has given a special name of
honour to that type of calculations, computer simulations: as a rule, it requires to
run the process on a computer or a network of computers under quite sophisticated
conditions: typically, the problem is to bring the small distances and time intervals
of well-understood molecular dynamics up to reasonable macroscopic scales, either
by aggregation or by Monte Carlo methods – as demonstrated by Buffon’s needle
casting for the numerical approximation of π .

One should be aware that the word simulation has, for good and bad, a con-
notation derived from NASA’s space simulators and Nintendo’s war games and
jukeboxes. Animations and other advanced computer simulations can display an
impressive beauty and convincing power. That beauty, however, is often their dark
side: simulations can show a deceptive similarity with true observations, so in com-
putational fluid dynamics when the numerical solution of the Bernoulli equations,
i.e. the linearization of the Navier–Stokes equations for laminar flow, displays eddies
characteristic for the non-linear flow. The eddies do not originate from real energy
loss due to friction and viscosity but from hardly controllable hardware and software
properties, the chopping of digits, thus providing a magic realism, as coined by
Abbott and Larsen [1, 2]. In numerical simulation, like in mathematical statistics,
results which fit our expectations too nicely must awake our vigilance instead of
being taken as confirmation.

7.4.3 Prediction

As shown in the preceding section, there is no sharp boundary between descrip-
tion and prediction. However, the quality criteria for predictions are quite simple:
do things develop and show up as predicted? So, for high-precision astrology and
longitudinal determination in deep-sea shipping, the astronomical tables of plane-
tary movement, based on the outdated and falsified Ptolemaic system (the Resolved
Alfonsine Tables) and only modestly corrected in the Prutenic Tables of 1551,
were, until the middle of the 17th century, rightly considered as more reliable than
Kepler’s heliocentric Rudolphine Tables, as long as they were more precise – no
matter on what basis, see Steele [31, p. 128].

Almost unnoticed, we have had a similar revolution in weather prediction in
recent years: the (i) analogy (synoptic) methods of identifying a similarly look-
ing weather situation in the weather card archives to base the extrapolation on
it were replaced by almost pure (ii) numerical methods to derive the prediction
solely from the thermodynamic and hydrodynamic basic equations and conservation
laws, applied to initial conditions extracted from the observation grid. “Almost”
because the uncertainty of the interpolation of the grid and the high sensitivity of
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the evolution equations to initial conditions oblige to repeated runs with small per-
turbations and human inspection and selection of the most “probable” outcome like
in (i). That yields sharp estimates about the certainty of the prediction for a range of
up to 10 days. In 9 of 10 cases, the predictions are surprisingly reliable and would
have been impossible to obtain by traditional methods. However, a 10% failure rate
would be considered unacceptable in industrial quality control.

In elementary particle physics, the coincidence of predictions with measurements
is impressive, but also disturbing. I quote from Smolin [30, pp. 12-13]:

Twelve particles and four forces are all we need to explain everything in the known world.
We also understand very well the basic physics of these particles and forces. This under-
standing is expressed in terms of a theory that accounts for all these particles and all of the
forces except for gravity. It’s called the standard model of elementary-particle physics – or
the standard model for short. . . . Anything we want to compute in this theory we can, and
it results in a finite number. In the more than thirty years since it was formulated, many
predictions made by this theory have been checked experimentally. In each and every case,
the theory has been confirmed.

The standard model was formulated in the early 1970s. Except for the discovery that
neutrinos have mass, it has not required adjustment since. So why wasn’t physics over by
1975? What remained to be done?

For all its usefulness, the standard model has a big problem: It has a long list of
adjustable constants. . . .

We feel pushed back to the pre-Keplerian, pre-Galilean, and pre-Newtonian cosmol-
ogy built on ad hoc assumptions, displaying clever and deceptive mathematics-based
similarity between observations and calculations – and ready to fall at any time
because the basic assumptions are not explained.

Perhaps the word deceptive is inappropriate when speaking of description, sim-
ulation, and prediction: for these tasks, similarity can rightly be considered as the
highest value obtainable, as long as one stays in a basically familiar context. From a
semiotic angle, the very similarity must have a meaning and is indicating something;
from a practical angle, questions regarding the epistemological status can often be
discarded as metaphysical exaggerations: who cares about the theoretical or ad hoc
basis of a time schedule in public transportation – as long as the train leaves on time!

7.4.4 Control

The prescriptive power of mathematization deserves a more critical examination.
In physics and engineering we may distinguish between (a) the feasibility, (b) the
efficiency, and (c) the safety of a design. A design can be an object like an airplane
or a circuit diagram for a chip, an instrument like a digital thermometer, TV set,
GPS receiver or pacemaker, or a regulated process like a feed-back regulation of the
heat in a building, the control of a power station or the precise steering of a radiation
collimator in modulated breast cancer therapy. Mathematics has its firm footing for
testing (a) in thought experiments, estimations of process parameters, simulations,
and solving equations. For testing (b), a huge inventory is available of mathematical
quality control and optimization procedures by variation of key parameters.
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It seems to me, however, that (c), i.e. safety questions, raise the greatest math-
ematical challenges. They appear differently in (i) experience-based, (ii) science-
based and (iii) science-integrated design. In (i), mathematics enters mostly in the
certification of the correctness of the design copy and the quality test of the per-
formance. In (ii), well-established models and procedures have to be modified and
re-calculated for a specific application. Experienced physicists and engineers, how-
ever, seldom trust their calculations and adaptations. Too many parameters may be
unknown and pop-up later: therefore, in traditional railroad construction, a small
bridge was easily calculated and built, but then photogrammetrically checked when
removing the support constructions. A clash of more than δcrit required re-building.
Similarly, even the most carefully calculated chemical reactors and other containers
under pressure and heat have their prescribed “Soll-Bruchstelle” (supposed line of
fracture) in case that something is going wrong.

The transition from (ii) to (iii) is the most challenging: very seldom one intro-
duces a radically new design in the physics laboratory or engineering endeavour.
But there are systems where all components and functions can be tested separately
though the system as a whole can only be tested in situ: a new design of a diesel
ship engine; a car, air plane, or space craft; a new concept in cryptography. In all
these cases, one is tempted to look and even to advocate for mathematical proofs
of the safe function according to specification. Unfortunately, in most cases these
“proofs” belong rather to the field of fiction than to rigorous mathematics. For an
interesting discussion on “proofs” in cryptography (a little remote from physics) see
the debate between Koblitz and opponents in [22] and follow-ups in the Notices of
the American Mathematical Society.

An additional disturbing aspect of science-integrated technology development
is the danger of a loss of transparency. Personally, I must admit, I am grateful
for most black-box systems. I have no reason to complain when something in my
computer is hidden for my eyes, as long as everything functions as it shall or can
easily be re-tuned. However, for the neighbourhood of a chemical plant (and the
reputation of the company) it may be better not to automatize everything but to
keep some aspects of the control non-mathematized and in the hands of the service
crew to avoid de-qualification and to keep the crew able to handle non-predictable
situations.

A last important aspect of the prescriptive power of the mathematization is its
formatting power for thought structure and social behaviour. It seems that there is
not so much to do about it besides being aware of the effects.

7.4.5 Explain Phenomena

The noblest role of mathematical concepts in physics is to explain phenomena. Ein-
stein did it when reducing the heat conduction to molecular diffusion, starting from
the formal analogy of Fick’s law with the cross section of Brownian motion. He
did it also when generalizing the Newtonian mechanics into the special relativity
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of constant light velocity and again when unifying forces and curvature in general
relativity.

Roughly speaking, mathematical models can serve physics by reducing new
phenomena to established principles; as heuristic devices for suitable generaliza-
tions and extensions; and as “a conceptual scheme in which the insights . . . fit
together” (C. Rovelli). Further below I shall return to the last aspect – the unification
hope.

Physics history has not always attributed the best credentials to explaining phe-
nomena by abstract constructions. It has discarded the concept of a ghost for perfect
explanation of midnight noise in old castles; the concept of ether for explaining the
finite light velocity; the phlogiston for burning and reduction processes, the Ptole-
maic epicycles for planetary motion. It will be interesting to see in the years to come
whether the mathematically advanced String Theory or the recent Connes–Marcolli
reformulation of the Standard Model in terms of spectral triples will undergo the
same fate.

7.4.6 Theory Development

Finally, what has been the role of mathematical concepts and mathematical beauty
for the very theory development in physics? One example is Johann Bernoulli’s
purely aesthetic confirmation of Galilean fall law s = g/2t2 among a couple
of candidates as being the only one providing the same equation (shape) for his
brachistochrone and Huygens’ tautochrone [7, p. 395]:

Before I end I must voice once more the admiration that I feel for the unexpected identity
of Huygens’ tautochrone and my brachistochrone. I consider it especially remarkable that
this coincidence can take place only under the hypothesis of Galilei, so that we even obtain
from this a proof of its correctness. Nature always tends to act in the simplest way, and so
it here lets one curve serve two different functions, while under any other hypothesis we
should need two curves.

Another, more prominent example is the lasting triumph of Maxwell’s equations:
a world of radically new applications was streaming out of the beauty and simplicity
of the equations of electro-magnetic waves!

However, not every mathematical, theoretical, and empirical accumulation leads
to theory development. Immediately after discovering the high-speed rotation of
the Earth around its own axis, a spindle shape of the Earth was suggested and an
infinitesimal tapering towards the North pole confirmed in geodetic measurements
around Paris. Afterwards, careful control measurements of the gravitation at the
North Cap and at the Equator suggested the opposite, namely an ellipsoid shape
with flattened poles. Ingenious mathematical mechanics provided a rigorous reason
for that. Gauss and his collaborator Listing, however, found something different in
their control. They called the shape gleichsam wellenförmig and dropped the idea of
a theoretically satisfactory description. Since then we speak of a Geoid. For details
see Listing [25] and the receent Torge [32, p.3].
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7.5 “The Trouble with Physics”

That is the title of an interesting and well-informed polemic by Lee Smolin against
String Theory and present main stream physics at large. He notices a stagnation in
physics, so much promise, so little fulfillment [30, p. 313], a predominance of anti-
foundational spirit and contempt for visions, partly related to the mathematization
paradigm of the 1970s, according to Smolin: Shut up and calculate.

Basically, Smolin may be right. Børge Jessen, the Copenhagen mathematician
and close collaborator of Harald Bohr, once suggested to distinguish in sciences and
mathematics between periods of expansion and periods of consolidation. Clearly
physics had a consolidation period in the first half of the 20th century with relativity
and quantum mechanics. The same may be true for biology with the momentous
triumph of the DNA disclosure around 1950, while, to me, the mathematics of that
period is characterized by an almost chaotic expansion in thousands of directions.
Following that way of looking, mathematics of the second half of the 20th century
is characterized by an enormous consolidation, combining so disparate fields like
partial differential equations and topology in index theory, integral geometry and
probability in point processes, number theory, statistical mechanics and cryptog-
raphy. A true period of consolidation for mathematics, while – at least from the
outside – one can have the impression that physics and biology of the second half of
the 20th century were characterized merely by expansion, new measurements, new
effects – and almost total absence of consolidation or, at least failures and vanity of
all trials in that direction.

Indeed, there have been impressive successes in recent physics, in spite of the
absence of substantial theoretical progress in physics: perhaps the most spectac-
ular and for applications most important discovery has been the High Temper-
ature Superconducting (HTS) property of various ceramic materials by Bednorz
and Müller [4, 5] - seemingly without mathematical or theoretical efforts but only
by systematic combinatorial variation of experiments – in the tradition of the old
alchemists.

The remarkable advances in fluid dynamics, weather prediction, oceanography,
climatic modelling are mainly related to new observations and advances in computer
power while the equations have been studied long before.

Nevertheless, I noticed a turn to theory among young experimental physicists
in recent years, partly related to investigating the energy landscapes in material
sciences, partly to the re-discovery of the interpretational difficulties of quantum
mechanics in recent quantum optics.

7.6 Theory–Model–Experiment

Physics offers an extremely useful practical distinction between theory, model,
and experiments. From his deep insight in astronomy, computing, linguistics, and
psychology, Peter Naur ridicules such distinctions as “metaphysical exaggeration”
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in [28]. He may be right. We certainly should not exaggerate the distinction. In
this review, however, the distinction helps to focus on differences of the role of
mathematics in doing science.

7.6.1 First Principles

By definition, the very core of modelling is mathematics. Moreover, if alone by
the stochastic character of observations, but also due to the need to understand the
mathematics of all transducers involved in measurements, mathematics has its firm
stand with experiments. First principles, however, have a different status: they do
not earn their authority from the elegance of being mathematically wrapped, but
from the almost infinite repetition of similar and, as well disparate observations
connected to the same principle(s). In the first principles, mathematics and physics
meet almost on eye level: first principles are also established – like mathematics,
and are only marginally questioned. To me, the problem with the pretended eternal
authority of first principles is that new cosmological work indicates that the laws of
nature may also have undergone some development; that some evolutionary relics
might have “survived”; and that we had better be prepared to be confronted under
extreme experimental conditions, with phenomena and relations which fall out of
the range of accredited first principles. The canonical candidate for such a relic is the
Higgs particle, whether already observed or not. Participants of the Quantum Grav-
ity Assessment Workshop 2008 will recall Holger Bech Nielsen’s contributions.

7.6.2 Towards a Taxonomy of Models

Not necessarily for the credibility of mathematical models, but for the way of check-
ing the range of credibility, the following taxonomy of models may be extremely
useful.

The Closing Round Table of the International Congress of Mathematicians (Mad-
rid, August 22-29, 2006) was devoted to the topic Are pure and applied mathemat-
ics drifting apart? As a panelist, Yuri Manin ([26], see also [27]) subdivided the
mathematization, i.e. the way mathematics can tell us something about the external
world, into three modes of functioning (similarly Bohle, Booß and Jensen 1983, [8],
see also [10]):

1. An (ad hoc, empirically based) mathematical model “describes a certain range
of phenomena, qualitatively or quantitatively, but feels uneasy pretending to be
something more”. Manin gives two examples of the predictive power of such
models, Ptolemy’s model of epicycles describing planetary motions of about
150 BCE, and the standard model of around 1960 describing the interaction
of elementary particles, besides legions of ad hoc models which hide the lack
of understanding behind a more or less elaborated mathematical formalism of
organizing available data.
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2. A mathematically formulated theory is distinguished from an ad hoc model pri-
marily by its “higher aspirations. A theory, so to speak, is an aristocratic model”.
Theoretically substantiated models, such as Newton’s mechanics, are not neces-
sarily more precise than ad hoc models; the coding of experience in the form of a
theory, however, allows a more flexible use of the model, since its embedding in
a theory universe permits a theoretical check of at least some of its assumptions.
A theoretical assessment of the precision and of possible deviations of the model
can be based on the underlying theory.

3. A mathematical metaphor postulates that “some complex range of phenomena
might be compared to a mathematical construction”. As an example, Manin men-
tions artificial intelligence with its “very complex systems which are processing
information because we have constructed them, and we are trying to compare
them with the human brain, which we do not understand very well – we do not
understand almost at all. So at the moment it is a very interesting mathematical
metaphor, and what it allows us to do mostly is to sort of cut out our wrong
assumptions. If we start comparing them with some very well-known reality, it
turns out that they would not work”.

Clearly, Manin noted the deceptive formal similarity of the three ways of math-
ematization which are radically different with respect to their empirical foundation
and scientific status. He expressed concern about the lack of distinction and how
that may “influence our value systems”. In the words of [10, p. 73]:

Well founded applied mathematics generates prestige which is inappropriately generalized
to support these quite different applications. The clarity and precision of the mathemat-
ical derivations here are in sharp contrast to the uncertainty of the underlying relations
assumed. In fact, similarity of the mathematical formalism involved tends to mask the dif-
ferences in the scientific extra-mathematical status, in the credibility of the conclusions
and in appropriate ways of checking assumptions and results... Mathematization can –
and therein lays its success – make existing rationality transparent; mathematization can-
not introduce rationality to a system where it is absent... or compensate for a deficit of
knowledge.

Asked whether the last 30 years of mathematics’ consolidation raise the chance of
consolidation also in phenomenologically and metaphorically expanding sciences,
Manin hesitated to use such simplistic terms. He recalled the notion of Kolmogorov
complexity of a piece of information, which is, roughly speaking,

the length of the shortest programme, which can be then used to generate this piece of
information... Classical laws of physics – such phantastic laws as Newton’s law of gravity
and Einstein’s equations – are extremely short programmes to generate a lot of descriptions
of real physical world situations. I am not at all sure that Kolmogorov’s complexity of
data that were uncovered by, say, genetics in the human genome project, or even mod-
ern cosmology data ... is sufficiently small that they can be really grasped by the human
mind.
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7.6.3 The Scientific Status of Quantum Gravity as Compared
to Medicine and Economics

From the rich ancient literature preserved, see Diepgen [15], Kudlien [23], and, in
particular, Jürss [20, 312–315], we can see that the mind-set in Greek medicine
already from the fifth century BCE was ours: instead of the partition (familiar from
earlier and shaman medicine and similar to the mind set preserved, as seen above, in
physics until recent times) into an empirical – rational branch (healing wounds) and
a religious – magic branch (cure inner diseases), a physiological concept emerged
which focused on the patient as an individual organism within a population, with
organs, liquids, and tissue, subjected to environmental and dietetic influences and,
in principle, open for unconfined investigation of functions, causal relations and the
progressive course of diseases. In Hippocratic medicine, we meet for the first time
the visible endeavour after a rational surmounting of all problems related to body
events.

With a shake of the head, we may read of Greek emphasis and speculations about
the body’s four liquids or other strange things, like when we recall today the verdict
of the medical profession 60 years ago against drinking water after doing sports and
under diarrhoea, or their blind trust in antibiotics, not considering resistance aspects
at all. Admittedly, we have no continuity of results in medicine, but, contrary to
physics, we have an outspoken continuity in mind set: no ghosts, no metaphysi-
cal spirits, no fancied particles or relations are permitted to enter our explanations,
diagnoses, prevention, cure, and palliation.

Physicists of our time like to date the physics’ beginning back to Galileo Galilei
and his translation of measurable times and ‘distances on a skew plane into an
abstract fall law. Before Galilei – and long time after him, the methodological sci-
entific status of what we would call mechanical physics was quite low as compared
with medicine. Physics was a purely empirical subject. It was about precise series
of observations and quantitative extrapolations. It was the way to predict planetary
positions, in particular eclipse times, the content of silver in compounds, or the man-
power required to lift a given weight with given weight arm. It was accompanied and
mixed up with all kinds of speculations about the spirits and ghosts at work. We can
easily see the continuity of results, of observations and calculations from Kepler and
Newton to our time. However, we can hardly recognize anything in their thinking
about physics, in the way they connected physics with cosmic music or alchemy
or formulated assumptions. We may wonder what later generations will think about
our fancied new paths towards quantum gravity.

While a rational point of departure for economics, in particular under the present
crisis, can only be a systems view, a holistic unifying view in physics like our efforts
in quantum gravity have a smell of vanity, “stagnant and stuck” in the words of
Baez [3]. One may argue that the time has hardly come for that endeavour – com-
parable to the felt necessity but still continuing futility of or at least doubts about a
holistic all-embracing systems biology programme in medicine.
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7.7 General Trends of Mathematization and Modelling

7.7.1 Deep Divide

Regarding the power and the value of mathematization, there is a deep moral divide
both within the mathematics community and the public.

On the one side, we have the outspoken science and math optimism of out-
standing thinkers: Henri Poincaré’s Nature not only suggests to us problems, she
suggests their solution; David Hilbert’s Wir müssen wissen; wir werden wissen -
We must know; we will know of his Speech in Königsberg in 1930, now on his
tomb in Göttingen; or Bertolt Brecht’s vision of mathematical accountability in Die
Tage der Kommune [13] of 1945: “Das ist die Kommune, das ist die Wissenschaft,
das neue Jahrtausend... - That is the Commune, that is the science, the new mil-
lennium...”). We have astonishing evidence that many mathematization concepts
either appear to us as natural and a-priori, or they use to emerge as clear over
time. We have the power and validity of extremely simple concepts, as in dimension
analysis, consistency requirements, and gauge invariance of mathematical physics.
Progressive movements emphasize science and education in liberation movements
and developing countries. Humanitarian organizations (like WHO and UNICEF)
preach science and technology optimism in confronting mass poverty and epi-
demics.

On the other side, deep limitation layers of science and mathematical thinking
have been dogged up by Kurt Gödel’s Incompleteness Theorem for sufficiently rich
arithmetic systems, Andrei N. Kolmogorov’s Complexity Theory, and Niels Bohr’s
notion of Complementarity. Incomprehensibility and lack of regularity continue to
hamper trustworthy mathematization. Peter Lax [24, p. 142] writes about the pro-
found mystery of fluids, though recognizing that different approaches lead to remark-
ably coinciding results, supporting reliability.

The abstruseness of the mathematical triumphs of the hydrogen bomb is com-
monplace. The widespread trust in superiority and invincibility, based on mathe-
matical war technology like high precision bombing, has proved to be even more
vicious for warriors and victims than the immediate physical impact of the very
math-based weaponry, recently also in Iraq and Afghanistan.

In between the two extremes, Hilbert’s optimistic prediction of clearness and the
sceptical Kafkaesque expectation of increasing bewilderment when digging deeper
mathematically, we have the optimistic scepticism of Eugene Wigner’s unreason-
able effectiveness of mathematics, but also Jacob Schwartz’s verdict against the
pernicious influence of mathematics on science and Albert Einstein’s demand for
finding the central questions against the dominance of the beautiful and the difficult.

7.7.2 Charles Sanders Peirce’s Semiotic View

From the times of Niels Bohr, many physicists, mathematicians, and biologists have
been attentive to philosophical aspects of our doing. Most of us are convinced that
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the frontier situation of our research can point to aspects of some philosophical
relevance – if only the professional philosophers would take the necessary time to
become familiar with our thinking. Seldom, however, we read something of the
philosophers which can inspire us.

The US-American philosopher Charles Sanders Peirce (1839–1914) is an
admirable exception. In his semiotics and pragmaticist (he avoids the word “prag-
matic”) thinking, he provides a wealth of ideas, spread over an immense life work.
It seems to me that many of his ideas, comments, and concepts can shed light on the
why and how of mathematization. Here I shall only refer some thoughts of Peirce’s
The Fixation of Belief from 1877, see [29].

My fascination of Peirce’s text is, in particular, based on the following observa-
tions which may appear trivial (or known from Friedrich Engels), but are necessary
to repeat many times for the new-modeller:

1. For good and bad, we are all equipped with innate (or spontaneous) orienta-
tion, sometimes to exploit, sometimes to subdue. Our innate orientation is sim-
ilar to the habits of animals in our familiar neighbourhood. We are all “logical
machines”.

2. However, inborn logic is not sufficient in foreign (new) situations. For such sit-
uations, we need methods how to fixate our beliefs. Peirce distinguishes four
different methods. All four have mathematical aspects and are common in math-
ematical modelling.

Tenacity is our strength not to become confused, not to be blown away by
unfounded arguments, superficial objections, misleading examples, though
sometimes keeping our ears locked for too long.

Authority of well-established theories and results is what we tend to believe in
and have to stick to. We will seldom drop a mastered approach in favour
of something new and unproved.

Discussion can hardly help to overcome a belief built on tenacity or authority.
Consequences have to be investigated in all modelling. At the end of the day,

they decide whether we become convinced of the validity of our approach
(Peirce’s Pragmaticist Maxim).

3. The main tool of modelling (i.e. the fixation of belief by mathematical argu-
ments) is the transformation of symbols (signals, observations, segments of real-
ity) into a new set of symbols (mathematical equations, models, and descrip-
tions). The advantage for the modeller, for the person to interpret the signs, is
that signs which are hard or humid and difficult to collect in one hand can be
replaced by signs which we can write and manipulate.

4. The common mapping cycle reality → model → validation is misleading.
The quality of a mathematical model is not how similar it is to the segment
of reality under consideration, but whether it provides a flexible and goal-
oriented approach, opening for doubts and indicating ways for the removal of
doubts (later trivialized by Popper’s falsification claim). More precisely, Peirce
claims
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• Be aware of differences between different approaches!
• Try to distinguish different goals (different priorities) of modelling as precisely

as possible!
• Investigate whether different goals are mutually compatible, i.e. can be reached

simultaneously!
• Behave realistically! Do not ask How well does the model reflect a given

segment of the world? But ask Does this model of a given segment of the
world support the wanted and possibly wider activities/goals better than other
models?

I may add: We have to strike a balance between abstraction and construction,
top-down and bottom-up, and unification and specificity. We better keep aware of
the variety of Modelling purposes and the multifaceted relations between theory –
model – experiment. Our admiration for the power of mathematization, the unrea-
sonable effectiveness of mathematics (Wigner) should not blind us for the staying
and deepening limitations of mathematization opposite new tasks.
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