
Chapter 7
Steps Towards Quantum Gravity
and the Practice of Science: Will the Merger
of Mathematics and Physics Work?

B. Booß-Bavnbek

Abstract I recall general tendencies of the mathematization of the sciences and
derive challenges and tentative obstructions for a successful merger of mathematics
and physics on fancied steps towards quantum gravity. This is an edited version of
the opening words to an international workshop Quantum Gravity: An Assessment,
Holbæk, Denmark, 17–18 May 2008. It followed immediately after the Quantum
Gravity Summer School, see http://QuantumGravity.ruc.dk

7.1 Regarding the Need and the Chances of Unification

Reading the literature, preparing and attending the Quantum Gravity Summer
School, editing of this volume, and discussing with co-editors and contributors pro-
voked the following claims and questions: (1) The natural laboratory for quantum
gravity is the universe, of which we have no control. (2) Nevertheless, we have to
accept the challenge, and also a new feature: soon a lifetime will be insufficient
to verify a new important theory, and only our successors will be able to prove
or disprove it. By the way, it took 49 years just for the Casimir effect, let alone
Hawking radiation or string theory. (3) Do we really need to unify gravity with the
other interactions? Some physicists say “No”. However, if gravity stays in isola-
tion, physicists must be afraid that gravitational physics as a subject will die soon.
(4) Most innovative work in quantum gravity is balancing on a knife’s edge between
abstract mathematics and fresh views on physics concepts. A mathematician, how-
ever, may have many remaining unanswered questions, both regarding the claims
of physics relevance of the most innovative work and regarding the mathematical
clearness and reliability of various new concepts and calculations.

In the following, I recall common knowledge on modelling, mathematization,
and science history to put the declared “New Paths Towards Quantum Gravity” in a
common frame in spite of their scattering and heterogeneity. Some of the following
considerations were published in [12] in condensed form before the Summer School
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as a kind of platform for the assessment of our endeavour. For a comparison with
mathematization in other frontier fields I refer also to [9] and the recent [11].

7.2 The Place of Physics in John Dee’s Groundplat of Sciences
and Artes, Mathematicall of 1570

The use of mathematical arguments, first in pre-scientific investigations, then in
other sciences, foremost in medicine and astronomy and in their shared border
region astrology, has been traced way back in history by many authors from various
perspectives, Bernal [6], Høyrup [19], and Kline [21].

Globally speaking, they all agree on three mathematization tendencies:

1. The progress in the individual sciences makes work on ever more complicated
problems possible and necessary.

2. This accumulation of problems and data demands conscious, planned, and eco-
nomic procedures in the individual sciences, i.e. an increased emphasis on ques-
tions of methodology.

3. This increased emphasis on questions of methodology is as a rule associated with
the tendency of mathematization.

All of this applies generally. In detail, we find many various pictures. In his
Groundplat of Sciences and Artes, Mathematicall of 1570 [14], the English alchemist,
astrologer, and mathematician John Dee, the first man to defend the Copernican
theory in Britain and a consultant on navigation, pointed out, in best Aristotelian
tradition, that it is necessary in the evaluation of mathematization to pay strict atten-
tion to the specific characteristics of the application area in question. He postulated a
dichotomy between the Principall side, pure mathematics, and the Deriuative side,
i.e. applied mathematics and mathematization. He then classified the applications of
pure mathematics according to objects treated:

• Ascending Application in thinges Supernaturall, eternall and Diuine,
• In thinges Mathematicall: Without farther Applications,

and finally, on the lowest and most vulgar plane in the Aristotelian scheme,

• Descending Application in thinges Naturall: both Substantiall & Accidentall,
Visible & Inuisible & c..

Now that history has excluded matters divine from mathematics, we can with some
justification ask whether later generations may regard with equal amusement and
astonishment the fact that in our time there are a large number of professional math-
ematicians and physicists, who are completely satisfied with spending their entire
lives working in the second, inner mathematical level and who persistently refuse to
descend to vulgar applications.

The panorama of the individual sciences and the role that mathematics had to
play in them was perfectly clear to John Dee. In our time the matter is somewhat
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more complex. For a class on quantum gravity, I cannot point out a geodetically
perfect picture of today’s landscape of mathematization nor of precise border lines
between the mathematics and physics addressed. I must treat the matter rather sum-
marily. A summary treatment may have the advantage that in comparison among
the mathematization progress in different branches of physics, common problems
on one hand and on the other hand special features of the here advocated new paths
towards quantum gravity can be seen more clearly.

In the following, I shall restrict myself to the study of dead nature in physics,
the field which has the highest degree of mathematization on any chosen scale, both
quantitatively and qualitatively. To put things in relief, I shall occasionally touch
upon the investigation of living matter in medicine, the field where one might expect
the greatest mathematization advances in our century, and confront our highly spec-
ulative branch of mathematical physics with the treatment of financial issues and
decision making for commerce and production in economics, a field of questionable
scientific state that, beyond well founded actuary estimations, lacks unambiguous
results and convincing clear perspectives regarding mathematization.

7.3 Delimitation Between Mathematics and Physics

The intimate connection between mathematics and physics makes it difficult to
determine the theoretical relevance of mathematics and obscures the boundary
between genuinely physical thought and observation on one side and the charac-
teristically mathematical contribution on the other side. Recall Hilbert’s perception
of probability theory as a chapter of physics in his famous 6th Problem [18]:

6. Mathematical Treatment of the Axioms of Physics. The investigations on the foundations
of geometry suggest the problem: To treat in the same manner, by means of axioms, those
physical sciences in which already today mathematics plays an important part; in the first
rank are the theory of probabilities and mechanics.

To say it mildly, as Gnedenko did in his comments to the Russian edition of 1969:
Today this viewpoint (to consider probability theory as a chapter of physics) is no
longer so common as it was around the turn of the century, since the independent
mathematical content of the theory of probabilities has sufficiently clearly showed
since then. . .. With hindsight and in view of the still challenging foundational prob-
lems of quantum mechanics, however, we may accept that parts of mathematics and
physics can be interlaced in a non-separable way.

Another famous example of that inextricable interlacement is provided by the
Peierls–Frisch memorandum of 1940 to the British Government: suggested by the
codiscoverer of fission Otto Frisch, the physicist Rudolph Peierls, like Frisch a
refugee in Britain, made the decisive feasibility calculation that not tons (as – hap-
pily – erroneously estimated by Heisenberg in the service of the Nazis) but only
about 1 kg (later corrected to 6 kg) of the pure fissile isotope U235 would be needed
to make the atomic bomb. Was it mathematics or physics? It may be worth mention-
ing that Peierls was a full professor at the University of Birmingham since 1937 and
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became joint head of mathematics there [16]. Theoretical physics in Britain is often
in mathematics. As a matter of fact, physics in our sense did not exist as a single
science before the 19th century. There were well-defined experimental physics com-
prising heat, magnetism, electricity, and colour, leaving mechanics in mathematics,
see [19, p. 493].

In spite of that intermingling, physics can provide a ready system of categories to
distinguish different use of mathematics in different modelling situations. Perhaps,
the situation can be best compared with the role of physics in general education.
After all, physics appears as the model of mathematization: there is no physics
without mathematics – and, as a matter of fact, learning of mathematics is most
easy in a physics context: calculation by letters; the various concepts of a func-
tion (table, graph, operation) and its derivatives and anti-derivatives; differential
equations; the concept of observational errors and the corresponding estimations
and tests of hypotheses; Brownian movements; all these concepts can be explained
context-free or in other contexts (where some of the concepts actually originated),
but they become clearest in the ideally simple applications of physics, which are suf-
ficiently complicated to see the superiority of the mathematization as compared to
feelings, qualitative arguments, discussions, convictions, imagination – but simple
enough to get through.

7.4 Variety of Modelling Purposes

It may be helpful to distinguish the following modelling purposes:

7.4.1 Production of Data, Model-Based Measurements

Clearly, the public associates the value of mathematical modelling foremost to its
predictive power, e.g. in numerical weather prediction, and its prescriptive power,
e.g. in the design of the internal ballistics of the hydrogen bomb; more flatter-
ing to mathematicians, the explanatory power of mathematization and its contri-
bution to theory development yield the highest reputation within the field. How-
ever, to the progress of physics, the descriptive role, i.e. supporting model-based
measurements in the laboratory, is – as hitherto – the most decisive contribution
of mathematics. Visco-elastic constants and phase-transition processes of glasses
and other soft materials cannot be measured directly. For high precision in the crit-
ical region, one measures electric currents through a “dancing” piezoelectric disc
with fixed potential and varying frequency. In this case, solving mathematical equa-
tions from the fields of electro-dynamics and thermo-elasticity becomes mandatory
for the design of the experiments and the interpretation of the data. In popular
terms, one may speak of a mathematical microscope, in technical terms of a trans-
ducer that becomes useful as soon as we understand the underlying mathematical
equations.
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7.4.2 Simulation

Once a model is found and verified and the system’s parameters are estimated for
one domain, one has the hope of doing computer calculations to predict what new
experiments in new domains (new materials, new temperatures, etc.) should be made
and what they might be expected to show. Rightly, one has given a special name of
honour to that type of calculations, computer simulations: as a rule, it requires to
run the process on a computer or a network of computers under quite sophisticated
conditions: typically, the problem is to bring the small distances and time intervals
of well-understood molecular dynamics up to reasonable macroscopic scales, either
by aggregation or by Monte Carlo methods – as demonstrated by Buffon’s needle
casting for the numerical approximation of π .

One should be aware that the word simulation has, for good and bad, a con-
notation derived from NASA’s space simulators and Nintendo’s war games and
jukeboxes. Animations and other advanced computer simulations can display an
impressive beauty and convincing power. That beauty, however, is often their dark
side: simulations can show a deceptive similarity with true observations, so in com-
putational fluid dynamics when the numerical solution of the Bernoulli equations,
i.e. the linearization of the Navier–Stokes equations for laminar flow, displays eddies
characteristic for the non-linear flow. The eddies do not originate from real energy
loss due to friction and viscosity but from hardly controllable hardware and software
properties, the chopping of digits, thus providing a magic realism, as coined by
Abbott and Larsen [1, 2]. In numerical simulation, like in mathematical statistics,
results which fit our expectations too nicely must awake our vigilance instead of
being taken as confirmation.

7.4.3 Prediction

As shown in the preceding section, there is no sharp boundary between descrip-
tion and prediction. However, the quality criteria for predictions are quite simple:
do things develop and show up as predicted? So, for high-precision astrology and
longitudinal determination in deep-sea shipping, the astronomical tables of plane-
tary movement, based on the outdated and falsified Ptolemaic system (the Resolved
Alfonsine Tables) and only modestly corrected in the Prutenic Tables of 1551,
were, until the middle of the 17th century, rightly considered as more reliable than
Kepler’s heliocentric Rudolphine Tables, as long as they were more precise – no
matter on what basis, see Steele [31, p. 128].

Almost unnoticed, we have had a similar revolution in weather prediction in
recent years: the (i) analogy (synoptic) methods of identifying a similarly look-
ing weather situation in the weather card archives to base the extrapolation on
it were replaced by almost pure (ii) numerical methods to derive the prediction
solely from the thermodynamic and hydrodynamic basic equations and conservation
laws, applied to initial conditions extracted from the observation grid. “Almost”
because the uncertainty of the interpolation of the grid and the high sensitivity of
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the evolution equations to initial conditions oblige to repeated runs with small per-
turbations and human inspection and selection of the most “probable” outcome like
in (i). That yields sharp estimates about the certainty of the prediction for a range of
up to 10 days. In 9 of 10 cases, the predictions are surprisingly reliable and would
have been impossible to obtain by traditional methods. However, a 10% failure rate
would be considered unacceptable in industrial quality control.

In elementary particle physics, the coincidence of predictions with measurements
is impressive, but also disturbing. I quote from Smolin [30, pp. 12-13]:

Twelve particles and four forces are all we need to explain everything in the known world.
We also understand very well the basic physics of these particles and forces. This under-
standing is expressed in terms of a theory that accounts for all these particles and all of the
forces except for gravity. It’s called the standard model of elementary-particle physics – or
the standard model for short. . . . Anything we want to compute in this theory we can, and
it results in a finite number. In the more than thirty years since it was formulated, many
predictions made by this theory have been checked experimentally. In each and every case,
the theory has been confirmed.

The standard model was formulated in the early 1970s. Except for the discovery that
neutrinos have mass, it has not required adjustment since. So why wasn’t physics over by
1975? What remained to be done?

For all its usefulness, the standard model has a big problem: It has a long list of
adjustable constants. . . .

We feel pushed back to the pre-Keplerian, pre-Galilean, and pre-Newtonian cosmol-
ogy built on ad hoc assumptions, displaying clever and deceptive mathematics-based
similarity between observations and calculations – and ready to fall at any time
because the basic assumptions are not explained.

Perhaps the word deceptive is inappropriate when speaking of description, sim-
ulation, and prediction: for these tasks, similarity can rightly be considered as the
highest value obtainable, as long as one stays in a basically familiar context. From a
semiotic angle, the very similarity must have a meaning and is indicating something;
from a practical angle, questions regarding the epistemological status can often be
discarded as metaphysical exaggerations: who cares about the theoretical or ad hoc
basis of a time schedule in public transportation – as long as the train leaves on time!

7.4.4 Control

The prescriptive power of mathematization deserves a more critical examination.
In physics and engineering we may distinguish between (a) the feasibility, (b) the
efficiency, and (c) the safety of a design. A design can be an object like an airplane
or a circuit diagram for a chip, an instrument like a digital thermometer, TV set,
GPS receiver or pacemaker, or a regulated process like a feed-back regulation of the
heat in a building, the control of a power station or the precise steering of a radiation
collimator in modulated breast cancer therapy. Mathematics has its firm footing for
testing (a) in thought experiments, estimations of process parameters, simulations,
and solving equations. For testing (b), a huge inventory is available of mathematical
quality control and optimization procedures by variation of key parameters.
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It seems to me, however, that (c), i.e. safety questions, raise the greatest math-
ematical challenges. They appear differently in (i) experience-based, (ii) science-
based and (iii) science-integrated design. In (i), mathematics enters mostly in the
certification of the correctness of the design copy and the quality test of the per-
formance. In (ii), well-established models and procedures have to be modified and
re-calculated for a specific application. Experienced physicists and engineers, how-
ever, seldom trust their calculations and adaptations. Too many parameters may be
unknown and pop-up later: therefore, in traditional railroad construction, a small
bridge was easily calculated and built, but then photogrammetrically checked when
removing the support constructions. A clash of more than δcrit required re-building.
Similarly, even the most carefully calculated chemical reactors and other containers
under pressure and heat have their prescribed “Soll-Bruchstelle” (supposed line of
fracture) in case that something is going wrong.

The transition from (ii) to (iii) is the most challenging: very seldom one intro-
duces a radically new design in the physics laboratory or engineering endeavour.
But there are systems where all components and functions can be tested separately
though the system as a whole can only be tested in situ: a new design of a diesel
ship engine; a car, air plane, or space craft; a new concept in cryptography. In all
these cases, one is tempted to look and even to advocate for mathematical proofs
of the safe function according to specification. Unfortunately, in most cases these
“proofs” belong rather to the field of fiction than to rigorous mathematics. For an
interesting discussion on “proofs” in cryptography (a little remote from physics) see
the debate between Koblitz and opponents in [22] and follow-ups in the Notices of
the American Mathematical Society.

An additional disturbing aspect of science-integrated technology development
is the danger of a loss of transparency. Personally, I must admit, I am grateful
for most black-box systems. I have no reason to complain when something in my
computer is hidden for my eyes, as long as everything functions as it shall or can
easily be re-tuned. However, for the neighbourhood of a chemical plant (and the
reputation of the company) it may be better not to automatize everything but to
keep some aspects of the control non-mathematized and in the hands of the service
crew to avoid de-qualification and to keep the crew able to handle non-predictable
situations.

A last important aspect of the prescriptive power of the mathematization is its
formatting power for thought structure and social behaviour. It seems that there is
not so much to do about it besides being aware of the effects.

7.4.5 Explain Phenomena

The noblest role of mathematical concepts in physics is to explain phenomena. Ein-
stein did it when reducing the heat conduction to molecular diffusion, starting from
the formal analogy of Fick’s law with the cross section of Brownian motion. He
did it also when generalizing the Newtonian mechanics into the special relativity
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of constant light velocity and again when unifying forces and curvature in general
relativity.

Roughly speaking, mathematical models can serve physics by reducing new
phenomena to established principles; as heuristic devices for suitable generaliza-
tions and extensions; and as “a conceptual scheme in which the insights . . . fit
together” (C. Rovelli). Further below I shall return to the last aspect – the unification
hope.

Physics history has not always attributed the best credentials to explaining phe-
nomena by abstract constructions. It has discarded the concept of a ghost for perfect
explanation of midnight noise in old castles; the concept of ether for explaining the
finite light velocity; the phlogiston for burning and reduction processes, the Ptole-
maic epicycles for planetary motion. It will be interesting to see in the years to come
whether the mathematically advanced String Theory or the recent Connes–Marcolli
reformulation of the Standard Model in terms of spectral triples will undergo the
same fate.

7.4.6 Theory Development

Finally, what has been the role of mathematical concepts and mathematical beauty
for the very theory development in physics? One example is Johann Bernoulli’s
purely aesthetic confirmation of Galilean fall law s = g/2t2 among a couple
of candidates as being the only one providing the same equation (shape) for his
brachistochrone and Huygens’ tautochrone [7, p. 395]:

Before I end I must voice once more the admiration that I feel for the unexpected identity
of Huygens’ tautochrone and my brachistochrone. I consider it especially remarkable that
this coincidence can take place only under the hypothesis of Galilei, so that we even obtain
from this a proof of its correctness. Nature always tends to act in the simplest way, and so
it here lets one curve serve two different functions, while under any other hypothesis we
should need two curves.

Another, more prominent example is the lasting triumph of Maxwell’s equations:
a world of radically new applications was streaming out of the beauty and simplicity
of the equations of electro-magnetic waves!

However, not every mathematical, theoretical, and empirical accumulation leads
to theory development. Immediately after discovering the high-speed rotation of
the Earth around its own axis, a spindle shape of the Earth was suggested and an
infinitesimal tapering towards the North pole confirmed in geodetic measurements
around Paris. Afterwards, careful control measurements of the gravitation at the
North Cap and at the Equator suggested the opposite, namely an ellipsoid shape
with flattened poles. Ingenious mathematical mechanics provided a rigorous reason
for that. Gauss and his collaborator Listing, however, found something different in
their control. They called the shape gleichsam wellenförmig and dropped the idea of
a theoretically satisfactory description. Since then we speak of a Geoid. For details
see Listing [25] and the receent Torge [32, p.3].
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7.5 “The Trouble with Physics”

That is the title of an interesting and well-informed polemic by Lee Smolin against
String Theory and present main stream physics at large. He notices a stagnation in
physics, so much promise, so little fulfillment [30, p. 313], a predominance of anti-
foundational spirit and contempt for visions, partly related to the mathematization
paradigm of the 1970s, according to Smolin: Shut up and calculate.

Basically, Smolin may be right. Børge Jessen, the Copenhagen mathematician
and close collaborator of Harald Bohr, once suggested to distinguish in sciences and
mathematics between periods of expansion and periods of consolidation. Clearly
physics had a consolidation period in the first half of the 20th century with relativity
and quantum mechanics. The same may be true for biology with the momentous
triumph of the DNA disclosure around 1950, while, to me, the mathematics of that
period is characterized by an almost chaotic expansion in thousands of directions.
Following that way of looking, mathematics of the second half of the 20th century
is characterized by an enormous consolidation, combining so disparate fields like
partial differential equations and topology in index theory, integral geometry and
probability in point processes, number theory, statistical mechanics and cryptog-
raphy. A true period of consolidation for mathematics, while – at least from the
outside – one can have the impression that physics and biology of the second half of
the 20th century were characterized merely by expansion, new measurements, new
effects – and almost total absence of consolidation or, at least failures and vanity of
all trials in that direction.

Indeed, there have been impressive successes in recent physics, in spite of the
absence of substantial theoretical progress in physics: perhaps the most spectac-
ular and for applications most important discovery has been the High Temper-
ature Superconducting (HTS) property of various ceramic materials by Bednorz
and Müller [4, 5] - seemingly without mathematical or theoretical efforts but only
by systematic combinatorial variation of experiments – in the tradition of the old
alchemists.

The remarkable advances in fluid dynamics, weather prediction, oceanography,
climatic modelling are mainly related to new observations and advances in computer
power while the equations have been studied long before.

Nevertheless, I noticed a turn to theory among young experimental physicists
in recent years, partly related to investigating the energy landscapes in material
sciences, partly to the re-discovery of the interpretational difficulties of quantum
mechanics in recent quantum optics.

7.6 Theory–Model–Experiment

Physics offers an extremely useful practical distinction between theory, model,
and experiments. From his deep insight in astronomy, computing, linguistics, and
psychology, Peter Naur ridicules such distinctions as “metaphysical exaggeration”
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in [28]. He may be right. We certainly should not exaggerate the distinction. In
this review, however, the distinction helps to focus on differences of the role of
mathematics in doing science.

7.6.1 First Principles

By definition, the very core of modelling is mathematics. Moreover, if alone by
the stochastic character of observations, but also due to the need to understand the
mathematics of all transducers involved in measurements, mathematics has its firm
stand with experiments. First principles, however, have a different status: they do
not earn their authority from the elegance of being mathematically wrapped, but
from the almost infinite repetition of similar and, as well disparate observations
connected to the same principle(s). In the first principles, mathematics and physics
meet almost on eye level: first principles are also established – like mathematics,
and are only marginally questioned. To me, the problem with the pretended eternal
authority of first principles is that new cosmological work indicates that the laws of
nature may also have undergone some development; that some evolutionary relics
might have “survived”; and that we had better be prepared to be confronted under
extreme experimental conditions, with phenomena and relations which fall out of
the range of accredited first principles. The canonical candidate for such a relic is the
Higgs particle, whether already observed or not. Participants of the Quantum Grav-
ity Assessment Workshop 2008 will recall Holger Bech Nielsen’s contributions.

7.6.2 Towards a Taxonomy of Models

Not necessarily for the credibility of mathematical models, but for the way of check-
ing the range of credibility, the following taxonomy of models may be extremely
useful.

The Closing Round Table of the International Congress of Mathematicians (Mad-
rid, August 22-29, 2006) was devoted to the topic Are pure and applied mathemat-
ics drifting apart? As a panelist, Yuri Manin ([26], see also [27]) subdivided the
mathematization, i.e. the way mathematics can tell us something about the external
world, into three modes of functioning (similarly Bohle, Booß and Jensen 1983, [8],
see also [10]):

1. An (ad hoc, empirically based) mathematical model “describes a certain range
of phenomena, qualitatively or quantitatively, but feels uneasy pretending to be
something more”. Manin gives two examples of the predictive power of such
models, Ptolemy’s model of epicycles describing planetary motions of about
150 BCE, and the standard model of around 1960 describing the interaction
of elementary particles, besides legions of ad hoc models which hide the lack
of understanding behind a more or less elaborated mathematical formalism of
organizing available data.
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2. A mathematically formulated theory is distinguished from an ad hoc model pri-
marily by its “higher aspirations. A theory, so to speak, is an aristocratic model”.
Theoretically substantiated models, such as Newton’s mechanics, are not neces-
sarily more precise than ad hoc models; the coding of experience in the form of a
theory, however, allows a more flexible use of the model, since its embedding in
a theory universe permits a theoretical check of at least some of its assumptions.
A theoretical assessment of the precision and of possible deviations of the model
can be based on the underlying theory.

3. A mathematical metaphor postulates that “some complex range of phenomena
might be compared to a mathematical construction”. As an example, Manin men-
tions artificial intelligence with its “very complex systems which are processing
information because we have constructed them, and we are trying to compare
them with the human brain, which we do not understand very well – we do not
understand almost at all. So at the moment it is a very interesting mathematical
metaphor, and what it allows us to do mostly is to sort of cut out our wrong
assumptions. If we start comparing them with some very well-known reality, it
turns out that they would not work”.

Clearly, Manin noted the deceptive formal similarity of the three ways of math-
ematization which are radically different with respect to their empirical foundation
and scientific status. He expressed concern about the lack of distinction and how
that may “influence our value systems”. In the words of [10, p. 73]:

Well founded applied mathematics generates prestige which is inappropriately generalized
to support these quite different applications. The clarity and precision of the mathemat-
ical derivations here are in sharp contrast to the uncertainty of the underlying relations
assumed. In fact, similarity of the mathematical formalism involved tends to mask the dif-
ferences in the scientific extra-mathematical status, in the credibility of the conclusions
and in appropriate ways of checking assumptions and results... Mathematization can –
and therein lays its success – make existing rationality transparent; mathematization can-
not introduce rationality to a system where it is absent... or compensate for a deficit of
knowledge.

Asked whether the last 30 years of mathematics’ consolidation raise the chance of
consolidation also in phenomenologically and metaphorically expanding sciences,
Manin hesitated to use such simplistic terms. He recalled the notion of Kolmogorov
complexity of a piece of information, which is, roughly speaking,

the length of the shortest programme, which can be then used to generate this piece of
information... Classical laws of physics – such phantastic laws as Newton’s law of gravity
and Einstein’s equations – are extremely short programmes to generate a lot of descriptions
of real physical world situations. I am not at all sure that Kolmogorov’s complexity of
data that were uncovered by, say, genetics in the human genome project, or even mod-
ern cosmology data ... is sufficiently small that they can be really grasped by the human
mind.
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7.6.3 The Scientific Status of Quantum Gravity as Compared
to Medicine and Economics

From the rich ancient literature preserved, see Diepgen [15], Kudlien [23], and, in
particular, Jürss [20, 312–315], we can see that the mind-set in Greek medicine
already from the fifth century BCE was ours: instead of the partition (familiar from
earlier and shaman medicine and similar to the mind set preserved, as seen above, in
physics until recent times) into an empirical – rational branch (healing wounds) and
a religious – magic branch (cure inner diseases), a physiological concept emerged
which focused on the patient as an individual organism within a population, with
organs, liquids, and tissue, subjected to environmental and dietetic influences and,
in principle, open for unconfined investigation of functions, causal relations and the
progressive course of diseases. In Hippocratic medicine, we meet for the first time
the visible endeavour after a rational surmounting of all problems related to body
events.

With a shake of the head, we may read of Greek emphasis and speculations about
the body’s four liquids or other strange things, like when we recall today the verdict
of the medical profession 60 years ago against drinking water after doing sports and
under diarrhoea, or their blind trust in antibiotics, not considering resistance aspects
at all. Admittedly, we have no continuity of results in medicine, but, contrary to
physics, we have an outspoken continuity in mind set: no ghosts, no metaphysi-
cal spirits, no fancied particles or relations are permitted to enter our explanations,
diagnoses, prevention, cure, and palliation.

Physicists of our time like to date the physics’ beginning back to Galileo Galilei
and his translation of measurable times and distances on a skew plane into an
abstract fall law. Before Galilei – and long time after him, the methodological sci-
entific status of what we would call mechanical physics was quite low as compared
with medicine. Physics was a purely empirical subject. It was about precise series
of observations and quantitative extrapolations. It was the way to predict planetary
positions, in particular eclipse times, the content of silver in compounds, or the man-
power required to lift a given weight with given weight arm. It was accompanied and
mixed up with all kinds of speculations about the spirits and ghosts at work. We can
easily see the continuity of results, of observations and calculations from Kepler and
Newton to our time. However, we can hardly recognize anything in their thinking
about physics, in the way they connected physics with cosmic music or alchemy
or formulated assumptions. We may wonder what later generations will think about
our fancied new paths towards quantum gravity.

While a rational point of departure for economics, in particular under the present
crisis, can only be a systems view, a holistic unifying view in physics like our efforts
in quantum gravity have a smell of vanity, “stagnant and stuck” in the words of
Baez [3]. One may argue that the time has hardly come for that endeavour – com-
parable to the felt necessity but still continuing futility of or at least doubts about a
holistic all-embracing systems biology programme in medicine.
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7.7 General Trends of Mathematization and Modelling

7.7.1 Deep Divide

Regarding the power and the value of mathematization, there is a deep moral divide
both within the mathematics community and the public.

On the one side, we have the outspoken science and math optimism of out-
standing thinkers: Henri Poincaré’s Nature not only suggests to us problems, she
suggests their solution; David Hilbert’s Wir müssen wissen; wir werden wissen -
We must know; we will know of his Speech in Königsberg in 1930, now on his
tomb in Göttingen; or Bertolt Brecht’s vision of mathematical accountability in Die
Tage der Kommune [13] of 1945: “Das ist die Kommune, das ist die Wissenschaft,
das neue Jahrtausend... - That is the Commune, that is the science, the new mil-
lennium...”). We have astonishing evidence that many mathematization concepts
either appear to us as natural and a-priori, or they use to emerge as clear over
time. We have the power and validity of extremely simple concepts, as in dimension
analysis, consistency requirements, and gauge invariance of mathematical physics.
Progressive movements emphasize science and education in liberation movements
and developing countries. Humanitarian organizations (like WHO and UNICEF)
preach science and technology optimism in confronting mass poverty and epi-
demics.

On the other side, deep limitation layers of science and mathematical thinking
have been dogged up by Kurt Gödel’s Incompleteness Theorem for sufficiently rich
arithmetic systems, Andrei N. Kolmogorov’s Complexity Theory, and Niels Bohr’s
notion of Complementarity. Incomprehensibility and lack of regularity continue to
hamper trustworthy mathematization. Peter Lax [24, p. 142] writes about the pro-
found mystery of fluids, though recognizing that different approaches lead to remark-
ably coinciding results, supporting reliability.

The abstruseness of the mathematical triumphs of the hydrogen bomb is com-
monplace. The widespread trust in superiority and invincibility, based on mathe-
matical war technology like high precision bombing, has proved to be even more
vicious for warriors and victims than the immediate physical impact of the very
math-based weaponry, recently also in Iraq and Afghanistan.

In between the two extremes, Hilbert’s optimistic prediction of clearness and the
sceptical Kafkaesque expectation of increasing bewilderment when digging deeper
mathematically, we have the optimistic scepticism of Eugene Wigner’s unreason-
able effectiveness of mathematics, but also Jacob Schwartz’s verdict against the
pernicious influence of mathematics on science and Albert Einstein’s demand for
finding the central questions against the dominance of the beautiful and the difficult.

7.7.2 Charles Sanders Peirce’s Semiotic View

From the times of Niels Bohr, many physicists, mathematicians, and biologists have
been attentive to philosophical aspects of our doing. Most of us are convinced that
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the frontier situation of our research can point to aspects of some philosophical
relevance – if only the professional philosophers would take the necessary time to
become familiar with our thinking. Seldom, however, we read something of the
philosophers which can inspire us.

The US-American philosopher Charles Sanders Peirce (1839–1914) is an
admirable exception. In his semiotics and pragmaticist (he avoids the word “prag-
matic”) thinking, he provides a wealth of ideas, spread over an immense life work.
It seems to me that many of his ideas, comments, and concepts can shed light on the
why and how of mathematization. Here I shall only refer some thoughts of Peirce’s
The Fixation of Belief from 1877, see [29].

My fascination of Peirce’s text is, in particular, based on the following observa-
tions which may appear trivial (or known from Friedrich Engels), but are necessary
to repeat many times for the new-modeller:

1. For good and bad, we are all equipped with innate (or spontaneous) orienta-
tion, sometimes to exploit, sometimes to subdue. Our innate orientation is sim-
ilar to the habits of animals in our familiar neighbourhood. We are all “logical
machines”.

2. However, inborn logic is not sufficient in foreign (new) situations. For such sit-
uations, we need methods how to fixate our beliefs. Peirce distinguishes four
different methods. All four have mathematical aspects and are common in math-
ematical modelling.

Tenacity is our strength not to become confused, not to be blown away by
unfounded arguments, superficial objections, misleading examples, though
sometimes keeping our ears locked for too long.

Authority of well-established theories and results is what we tend to believe in
and have to stick to. We will seldom drop a mastered approach in favour
of something new and unproved.

Discussion can hardly help to overcome a belief built on tenacity or authority.
Consequences have to be investigated in all modelling. At the end of the day,

they decide whether we become convinced of the validity of our approach
(Peirce’s Pragmaticist Maxim).

3. The main tool of modelling (i.e. the fixation of belief by mathematical argu-
ments) is the transformation of symbols (signals, observations, segments of real-
ity) into a new set of symbols (mathematical equations, models, and descrip-
tions). The advantage for the modeller, for the person to interpret the signs, is
that signs which are hard or humid and difficult to collect in one hand can be
replaced by signs which we can write and manipulate.

4. The common mapping cycle reality → model → validation is misleading.
The quality of a mathematical model is not how similar it is to the segment
of reality under consideration, but whether it provides a flexible and goal-
oriented approach, opening for doubts and indicating ways for the removal of
doubts (later trivialized by Popper’s falsification claim). More precisely, Peirce
claims
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• Be aware of differences between different approaches!
• Try to distinguish different goals (different priorities) of modelling as precisely

as possible!
• Investigate whether different goals are mutually compatible, i.e. can be reached

simultaneously!
• Behave realistically! Do not ask How well does the model reflect a given

segment of the world? But ask Does this model of a given segment of the
world support the wanted and possibly wider activities/goals better than other
models?

I may add: We have to strike a balance between abstraction and construction,
top-down and bottom-up, and unification and specificity. We better keep aware of
the variety of Modelling purposes and the multifaceted relations between theory –
model – experiment. Our admiration for the power of mathematization, the unrea-
sonable effectiveness of mathematics (Wigner) should not blind us for the staying
and deepening limitations of mathematization opposite new tasks.
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