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a b s t r a c t

We consider an arbitrary linear elliptic first-order differential operator A with smooth
coefficients acting between sections of complex vector bundles E, F over a compact
smooth manifold M with smooth boundary Σ . We describe the analytic and topological
properties of A in a collar neighborhood U of Σ and analyze various ways of writing
A�U in product form. We discuss the sectorial projections of the corresponding tangential
operator, construct various invertible doubles of A by suitable local boundary conditions,
obtain Poisson type operators with different mapping properties, and provide a canonical
construction of the Calderón projection. We apply our construction to generalize the
Cobordism Theorem and to determine sufficient conditions for continuous variation of the
Calderón projection and of well-posed self-adjoint Fredholm extensions under continuous
variation of the data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is about basic analytical properties of elliptic operators on compact manifolds with smooth boundary. Our
main achievements are (i) to develop the basic elliptic analysis in full generality, andnot only for the generic case of operators
of Dirac type in product metrics (i.e., we assume neither constant coefficients in normal direction nor symmetry of the
tangential operator); (ii) to establish the cobordism invariance of the index in greatest generality; and (iii) to prove the
continuity of the Calderón projection and of related families of global elliptic boundary value problems under parameter
variation. We take our point of departure in the following observations.
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1.1. Dirac operator folklore

Most analysis of geometrical and physical problems involving a Dirac operator A on a compact manifoldM with smooth
boundaryΣ acting on sections of a (complex) bundle E seems to rely on quite a few basic facts which are part of the shared
folklore of people working in this field of global analysis (e.g., see Booß–Bavnbek and Wojciechowski [1] for properties
(WiUCP), (InvDoub) and (Cob), andNicolaescu [2, Appendix] andBooß–Bavnbek, Lesch and Phillips [3] for property (Param)):

WiUCP: the weak inner unique continuation property (also called weak UCP to the boundary), i.e., there are no nontrivial
elements in the null space ker A vanishing at the boundaryΣ ofM;

InvDoub: the existence of a suitable elliptic invertible continuation Ã of A, acting on sections of a vector bundle over the
closed double or another suitable closed manifold M̃ which containsM as submanifold; this yields a Poisson type
operator K+ which maps sections over the boundary into sections over M; and a precise Calderón projection C+,
i.e., an idempotent mapping of sections over the boundary onto the Cauchy data space which consists of the traces
at the boundary of elements in the nullspace of A (possibly in a scale of Sobolev spaces);

Cob: the existence of a self-adjoint regular Fredholm extension of any total (formally self-adjoint) Dirac operator A in the
underlying L2-space with domain given by a pseudo-differential boundary condition; that implies the vanishing of
the signature of the associated quadratic form, induced by the leading symbol in normal direction at the boundary;
moreover, that actually is equivalent to the Cobordism Theorem asserting a canonical splitting of the induced
tangential operator B = B+ ⊕ B− overΣ with ind B+ = 0;

Param: the continuous dependence of a family of operators, their associated Calderón projections, and of any family of
well-posed (elliptic) boundary value problems on continuous or smooth variation of the coefficients.

1.2. In search of generalization

With the renewed interest in geometrically defined elliptic operators of first order of general type, arising, e.g., from
perturbations of Dirac operators, we ask to what extent the preceding list can be generalized to arbitrary linear elliptic
differential operators with smooth coefficients. It is hoped that the results of this paper can serve as guidelines for similar
constructions and results for hypo- and sub-elliptic operators where the symbolic calculus is not fully available.
There are immediate limits for generalization of some of the mentioned features by counter examples: UCP, even weak

inner UCP may not hold for arbitrary elliptic systems of first order, see indications in that direction in Pliś [4, Corollary 1,
p. 610] and the first-order Alinhac type counterexample to strong UCP [5, Example, p. 184]. Moreover, from just looking at
the deficiency indices, we see that the formally self-adjoint operator i ddx on the positive line does not admit a self-adjoint
extension. This example is instructive because, quite opposite to the half-infinite domain, on a bounded one-dimensional
interval any system of first-order differential equations satisfies property (Cob) by a deformation argument.
We go through the list.

Property (WiUCP)
It seems that the precise domain of validity is unknown. The local stability of weak inner UCP has been obtained by

Booß and Zhu in [6, Lemma 3.2]. In spite of the local definition of UCP, the property (WiUCP) has a threefold global geometric
meaning: (i) there are no ghost solutions, i.e., each section u ∈ Γ∞(M; E) belonging to the null space ker A over themanifold
M has a non-trivial trace u � Σ at the boundary; (ii) equivalently, the maximal extension Amax = (Atmin)

∗ is surjective in
L2(M, E) for densely defined closed minimal Amin : D(Amin) = H10 (M, E) → L2(M, E); and (iii), as noted by Booß and
Furutani in [7, Section 3.3] and in various follow-ups, it seems that assuming weak inner UCP of A and At is mandatory for
obtaining the continuity of Cauchy data spaces and the continuous change of the Calderón projection under variation of the
coefficients, i.e., property (Param).

Property (InvDoub)
Different approaches are available: one approach [1, Chapter 9] has been the gluing of A and its formal adjoint At to an

invertible elliptic operator Ã over the closed double M̃ . This construction is explicit, if the metric structures underlying the
Dirac operator’s definition are product near the boundary. In the self-adjoint case, it yields at once the Lagrangian property
of the Cauchy data space in the symplectic Hilbert space L2(Σ, EΣ ) of square integrable sections in EΣ := E�Σ . Then (Cob)
follows.
Property (InvDoub) generalizes to the non-product case for operators of Dirac type and, as amatter of fact, for any elliptic

operator satisfying weak inner UCP under the somewhat restrictive condition that the tangential operator has a self-adjoint
leading symbol. Here the trick is that this condition permits the prolongation of the given operator to a slightly larger
manifoldM ′ with boundary reaching constant coefficients in a normal direction close to the new boundary andmaintaining
UCP under the prolongation (as well as formal self-adjointness of the coefficients, if present at the old boundary). This is
explained in the Appendix.
But what can be done for general elliptic operators? A very general and elegant construction of the Calderón projection

was given by Hörmander in [8, Theorem 20.1.3] on the symbol level. Unfortunately, he obtains only an almost projection
(up to smoothing operators) which limits its applicability in our context.
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In this paper, we shall exploit another general definition of the Calderón projection which is due to Seeley [9, Theorem
1 and Appendix, Lemma]. Seeley’s construction provides a precise projection, not only an approximate one, and does not
require UCP. First he replaces A by an invertible operator A1 by adding the projection onto the finite-dimensional space of
inner solutions. Then he extends the operator D :=

(
0 At1
A1 0

)
to the closed double M̃ ′ of a slightly extended manifold M ′

with boundary. In general, such a prolongation may, however, destroy weak inner UCP even when UCP was established on
the original manifold. Seeley constructs on the symbol level (and by adding a suitable correction term) an elliptic extension
D̃ of D over the whole of the closed manifold M̃ ′ which is always invertible. He shows that D̃ provides the wanted Poisson
operator and a truly pseudo-differential Calderón projectionP+ along the original boundary Σ . If the tangential operator
is formally self-adjoint thenP+ has a self-adjoint leading symbol and can be replaced by the orthogonal projection which
is also pseudo-differential and has the same symbol (and may be denoted by the same letterP+). In this way, the choices
in the construction of the invertible double are removed totally, as the operation of the resultingP+ is concerned. This makes
P+ a good candidate for property (Cob).
However, Seeley’s general construction, similarly the recent Grubb [10, Section 11.1], in difference to the simple gluing in

the case of Dirac type operators of [1, Chapter 9], does not immediately lead to the Lagrangian property of imP+. Moreover
and more seriously, when working with curves of elliptic problems Seeley’s construction does not give a hint under what
conditions the Calderón projections vary continuously when varying a parameter. There are too many choices involved in
Seeley’s construction.

1.3. Our present approach

This motivates our present approach (inspired by Himpel, Kirk and Lesch [11]), namely the construction of the invertible
double as a canonically given local boundary problem for the double D exactly on the original manifold M , without any
choices, prolongations etc. This leaves us with full control of the UCP situation; leads directly to the wanted Fredholm
Lagrangian property (Cob); and, moreover and here most decisively, provides explicit formulas for treating the parameter
dependence in the property (Param).
This program is opened in Section 2 by explaining our basic choice of product structures near the boundary for the sake

of comprehensible analysis, even if the original geometric structures are non-product; moreover, for the convenience of the
reader and for fixing our notation we summarize a few basic facts about regular boundary conditions.
To begin with, we do not assume a self-adjoint leading symbol of the tangential operator B0 nor constant coefficients

Bx = B0 along an inward coordinate x. Most of our estimates depend on the single fact that B0 − λ is parameter dependent
elliptic for λ in a conic neighborhood of iR in the sense of Shubin [12, Section II.9]. More precisely, we depend on the related
concept of sectorial spectral projections introduced in 1970 by Burak [13] and recently further developed in Ponge [14,
Section 3] as part of the current upsurge of interest in spectral properties of non-self-adjoint elliptic operators. Because of
our interest in the continuous dependence of this kind of generalized positive spectral projections on the input data we
found it necessary to develop the concept of sectorial projections once again from scratch. This is done in Section 3 where
we develop an abstract Hilbert space framework for the concept of sectorial projections and apply it to tangential operators
perceived as parametric elliptic operators.
In Section 4 we provide the construction and the relevant properties of the invertible double yielded by a local elliptic

boundary value problem, induced by fixing an invertible bundle homomorphism T overΣ .
In Section 5 we establish suitable Sobolev regularity of the inverse operator which leads to the definition and basic

properties of Poisson operator and Calderón projection, both definitions made dependent of the choice of the above
mentioned homomorphism T . We shall show that the range of the Calderón projection does not depend on the choice of T
and is, in fact, equal to the Cauchy data space. That yields the relation between the canonical Calderón projection defined as
orthogonal projection onto the Cauchy data space, and our relative Calderón projections, which depend on T . However, it is
not the canonical, but only the relative definition that establishes the Lagrangian property of the Cauchy data space and its
continuous dependence of the coefficients for general elliptic differential operators of first order.
That is the subject of the two closing sections of this paper, which present the fruits of the analysis endeavour of

Sections 1–5.

Property (Cob)
In Section 6, we give a first application of our construction of the Calderón projection: we give our reading of Ralston [15]

and infer that the arguments of this 1970 paper establish the following findings for any formally self-adjoint differential
operator A over a compact manifoldM with smooth boundaryΣ:

• the existence of a self-adjoint Fredholm extension AP given by a pseudo-differential boundary condition P;
• the vanishing of the signature of iω on the space V (B0) of eigensections to purely imaginary eigenvalues of the tangential
operator B0 of A over the boundary (or on ker B0 in the case that B0 is formally self-adjoint); here iω denotes the form
induced by the Green form of A on the symplectic von Neumann space β(A) := D(Amax)/D(Amin), i.e., the leading symbol
of A over the boundaryΣ in normal direction;
• and, equivalently, but seemingly never recognized by peopleworking in global analysis, the General Cobordism Theorem,
stating that the index of any elliptic differential operator B+ over a closed manifoldΣ must vanish, if B+ can be written
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as the left lower corner of a formally self-adjoint tangential operator overΣ induced by an elliptic formally self-adjoint
A on a smooth compact manifoldM with ∂M = Σ .

Property (Param)
In Section 7, as a second application of our construction of the Calderón projection, we establish that property in

great generality. Roughly speaking, we let an operator family (Az) and the family (Atz) of formally adjoint operators vary
continuously in the operator norm from L21(M) to L

2(M) and assume that the leading symbol (J0(Az)) of (Az) over the
boundaryΣ in normal direction also varies continuously in the L21/2(Σ) operator normwith z running in a parameter space Z .
We assume for all Az and Atz property (WiUCP) or, almost equivalently, that the dimensions of the spaces of ‘‘ghost solutions’’
without trace at the boundary remain constant under the variation. Then in Theorems 7.2 and 7.9a we show that the inverse
of the ‘‘invertible double’’ and, under slightly sharpened continuity, the Poisson operator in respective operator norms vary
continuously; and so does the resolvent of a family (Az Pz ) of well-posed Fredholm extensions of now formally self-adjoint
(Az)with orthogonal pseudo-differential projections (Pz) varying in L21/2(Σ) operator norm.
Unfortunately, we can neither prove nor disprove the continuous variation of the Calderón projection in the same

generality. However, if the leading symbol of the tangential operator is self-adjoint, we can prove the continuous variation
of the sectorial projection (Proposition 7.15) and so (Corollary 7.4) of the Calderón projections by our correction formula
(5.31) and Theorem 7.2b. Our Proposition 7.13 shows that the difficulties for proving continuous variation of the sectorial
projection disappear also for a non-self-adjoint leading symbol, if the variation is of order< 1.
In the Appendix we discuss various special cases with emphasis on constant coefficients in normal direction in a collar

around the boundary.
The main results of this paper have been announced in [16].

2. Elliptic differential operators of first order on manifolds with boundary

2.1. Product form and metric structures near the boundary

We shall begin with a basic observation: Dirac operators emerge from a Riemannian structure on the manifold and a
Hermitian metric on the vector bundle (together with Clifford multiplication and a connection). Talking about a general
differential operator it is in our view very misleading to pretend that the operator will depend on metrics and such. All
we need is the operator and an L2-structure on the sections. The latter basically only requires a density (take dvol in the
Riemannian case) on the manifold and a metric on the bundle. In this paper, we prefer to choosemetrics and such as simple
as possible, and push all complications into the operator.
The message is this: we can always work in the product case and have to worry only about the operator. In detail:
Let M be a compact manifold with boundary and π : E → M a vector bundle. Given a Hermitian metric h on E and a

Riemannian metric g on M we can form the Hilbert space L2(M, E; g, h) which is the completion of Γ∞0 (M \ ∂M; E) with
regard to the scalar product

〈u, v〉g,h :=
∫
M
h(u(x), v(x)) dvolg(x). (2.1)

The space of smooth sections of the vector bundle E over M is denoted by Γ∞(M; E); the corresponding space of smooth
compactly supported sections is denoted by Γ∞0 (M; E). Given another Riemannian metric g1 and another Hermitian metric
h1 on E there is a smooth positive function % ∈ C∞(M) such that

dvolg1 = % dvolg , (2.2)

and there is a unique smooth section θ ∈ Γ∞(M; End E) such that for x ∈ M, ξ , η ∈ Ex we have

h1,x(ξ , η) = hx(θ(x)ξ , η), hx(θ(x)ξ , η) = hx(ξ , θ(x)η). (2.3)

With regard to h the operator θ(x) is self-adjoint and positive definite, thuswemay form
√
θ which is again a smooth self-

adjoint and positive definite section of (End E, h). It is clear that (2.3) determines θ(x) uniquely and the claimed smoothness
of x 7→ θ(x) can be checked easily in local coordinates. In sum, we find for u, v ∈ Γ∞(M; E)

〈u, v〉g1,h1 =
∫
M
h1(u(x), v(x)) dvolg1(x)

=

∫
M
h(θ(x)u(x), v(x))%(x) dvolg(x)

= 〈
√
%θu,

√
%θv〉g,h. (2.4)

Thus we arrive at
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Lemma 2.1. The map

Ψ : Γ∞(M; E) −→ Γ∞(M; E), u 7−→
√
%θ
−1
u

extends to an isometry from L2(M, E; g, h) onto L2(M, E; g1, h1).

Now assume that we are given a differential operator A in L2(M, E; g, h) of first order. It may be a Dirac operator which is
constructed from the metrics g and h. g and hmay be wildly non-product near the boundary. Suppose there are metrics g1,
h1 which we like more, e.g., product near the boundary. Then consider the differential operator Ψ AΨ−1 in L2(M, E; g1, h1).
Ψ AΨ−1 is still a differential operator and, since Ψ is unitary, all spectral properties are preserved.
Let us be even more specific and choose a neighborhood U of ∂M =: Σ and a diffeomorphism φ : U → [0, ε)×Σ with

φ�Σ = idΣ . Furthermore, we choose a metric g1 onM such that

φ∗g1 = dx2 ⊕ gΣ ,
gΣ := g�Σ,

(2.5)

is a product metric which induces the samemetric on the boundary as g . Here x denotes the normal inward coordinate near
the boundary in the metric g1.
φ is covered by a bundle isomorphismF : E�U → [0, ε)× EΣ , EΣ := E�Σ , i.e., we have the commutative diagram

E�U F //

π

��

[0, ε)× EΣ

id×π

��
U

φ // [0, ε)×Σ .

(2.6)

Likewise, we may now choose a metric h1 on E such that h1(x) := F∗h1� {x} ×Σ = h1�Σ = h�Σ =: hΣ is independent of
x ∈ [0, ε). The mappingsF and φ induce a map

Ψ1 : Γ∞(U; E) −→ C∞([0, ε),Γ∞(EΣ ))

f 7−→
(
x 7→

(
p 7→ F (f (φ−1(x, p)))

))
,

(2.7)

which extends to a unitary isomorphism L2(U, E; g1, h1) → L2([0, ε], L2(Σ, EΣ ; g �Σ, h�Σ)). On Σ and EΣ we have the
fixed metrics gΣ respectively hΣ and we will suppress the reference to them in the notation.
Together with the unitary isomorphism Ψ of Lemma 2.1 we obtain the claimed isometry

Φ := Ψ1 ◦ Ψ : L2(U, E; g, h) −→ L2([0, ε], L2(EΣ )). (2.8)

Now ΦAΦ−1 is a first order differential operator in the product Hilbert space L2([0, ε)) ⊗ L2(Σ, EΣ ; gΣ , hΣ ) and hence it
takes the form

D := ΦAΦ−1 =: J
( d
dx
+ B

)
(2.9)

with a bundle endomorphism J ∈ C∞([0, ε),Γ∞(Σ; End EΣ )) and a smooth family of first order differential operators
B ∈ C∞([0, ε),Diff1(Σ; EΣ )); Diff1(Σ; EΣ ) denoting the space of first order differential operators acting on sections of EΣ .
For the moment we consider here only the smooth case, but so far one can replace ‘‘smooth’’ by ‘‘continuous’’ or ‘‘Lipschitz’’
or whatever.
Let us repeat: now all metric structures are product near the boundary and we do not have to worry about them. If we

start, e.g., with aDirac operatorA on a Riemannianmanifoldwith non-productmetric, the ‘non-product situation’ is reflected
in the varying coefficients of D. From now on we have to worry only about those varying coefficients and nothing else.
After these somewhat pedagogical remarks, we are ready to formulate the general set-up of the paper.

2.2. The general set-up

We are going to fix some notation which will be used throughout the paper. Assume that the following data are given:

• a compact smooth Riemannian manifold (M, g)with smooth boundaryΣ := ∂M ,
• Hermitian vector bundles (E, hE), (F , hF ),
• a first order elliptic differential operator

A : Γ∞(M; E) −→ Γ∞(M; F). (2.10)

• At : Γ∞(M; F) −→ Γ∞(M; E) denotes the formal adjoint of Awith respect to the metrics g, hE, hF .

For further reference we record Green’s formula for A.
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Lemma 2.2. Let ν ∈ Γ∞(Σ; TM�Σ) be the outward normal vector field. Then we have with the notation of (2.1) and (2.5) for
u ∈ Γ∞(M; E), v ∈ Γ∞(M; F)

〈Au, v〉g,h − 〈u, Atv〉g,h =
1
i

∫
Σ

hΣ
(
σ 1A (ν

b)u�Σ, v�Σ
)
dvolgΣ = −〈J(0)u�Σ, v�Σ〉gΣ ,hΣ , (2.11)

where i :=
√
−1, νb denotes the cotangent vector field corresponding to ν in the metric g, and σ 1A denotes the leading symbol of

A.

Note that φ∗ν = − d
dx . Recall also from the previous Section 2.1 that, by construction, all transformations are trivial on

the boundary, that is,

φ�Σ = id, F�EΣ = id,
(Ψ1f )�Σ = f �Σ, (Ψ f )�Σ = f �Σ,
(Φf )�Σ = f �Σ .

(2.12)

We consider A as an unbounded operator between the Sobolev (and Hilbert) spaces

L2s (M, E; g, h
E), L2s (M, F; g, h

F ), s ≥ 0.1 (2.13)

If A acts as an unbounded operator between the Hilbert spacesH1,H2, we denote by A∗ its functional analytic adjoint. For
0th order operators and for elliptic operators on closedmanifolds the distinction between formal adjoint and (true) adjoint
does not really matter; so in this case we use both notations interchangeably.
The closure of A�Γ∞0 (M \Σ; E) in L

2 is denoted by Amin and we put

D(Amax) :=
{
f ∈ L2 | Af ∈ L2

}
, (2.14)

the domain of an unbounded operator T will always be denoted by D(T ). As explained in Section 2.1 there exists a collar
U ≈ [0, ε)×Σ and linear isomorphisms

ΦG : Γ∞(U;G) −→ C∞([0, ε),Γ∞(GΣ )), G = E, F , (2.15)

which extend to isometries

L2(U,G; g, hG) −→ L2([0, ε], L2(Σ,GΣ ; gΣ , hGΣ )), G = E, F , (2.16)

where gΣ = g�Σ,GΣ := G�Σ and hGΣ = hG�GΣ .
Now we consider

D := ΦFA(ΦE)−1 : C∞([0, ε),Γ∞(EΣ )) −→ C∞([0, ε),Γ∞(FΣ )). (2.17)

Since A is a first order elliptic differential operator we find

D = Jx
( d
dx
+ Bx

)
, (2.18)

where Jx ∈ Hom(EΣ , FΣ ), 0 ≤ x ≤ ε, is a smooth family of bundle homomorphisms and (Bx)0≤x≤ε is a smooth family of first
order elliptic differential operators between sections of EΣ . Note that in view of (2.11) J0 equals iσ 1A (ν

b), where ν = − d
dx is

the outward normal vector field.
To avoid an inflation of parentheses we will most often use the notation Bx, Jx instead of B(x), J(x) etc. Only to avoid

double subscripts we will write B(x), J(x) in subscripts.
SinceΦE,ΦF are unitary (cf. (2.15) and (2.16)) we have Dt = ΦEAt(ΦF )−1 and hence

−Dt = J tx
d
dx
− BtxJ

t
x + (J

′

x)
t

= J tx
( d
dx
− (J tx)

−1BtxJ
t
x

)
+ (J ′x)

t . (2.19)

If A is formally self-adjoint, we have the relations

J t = −J, JB = J ′ − Bt J (2.20)

(′ denotes differentiation by x).
Alternatively, we may choose the following normal form in a collar of the boundary:

D = Jx
( d
dx
+ Bx

)
+
1
2
J ′x. (2.21)

1 For simplicity we content ourselves with Sobolev spaces of nonnegative order. On a manifold with boundary, Sobolev spaces of negative order are a
nuisance, although with some care they could be dealt with here, cf. [17].
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In this normalization, A = At implies the relations

J t = −J, JB = −Bt J. (2.22)

The normal form (2.21) determines J and B uniquely.
Returning to general (not necessarily formally self-adjoint) Awe remark that the ellipticity of A and hence of D imposes

various restrictions. The obvious ones are that Jx is invertible and that Bx is elliptic for all x. What’s more, ellipticity of D
means that for λ ∈ R, ξ ∈ T ∗pΣ, (λ, ξ) 6= (0, 0), the operator

iλ+ σ 1B(x)(p, ξ) (2.23)

is invertible for all (x, p) ∈ [0, ε) × Σ . Here, σ 1B(x) denotes the leading symbol of Bx. In other words, for ξ ∈ T
∗
pΣ \ {0} the

endomorphism σ 1B(x)(p, ξ) ∈ End(Ep) has no eigenvalues on the imaginary axis iR.

2.3. Regular boundary conditions

For the convenience of the reader, and to fix some notation, we briefly summarize a few basic facts about boundary
conditions for A. Standard references are [1,8,17,9]. We will adopt the point of view of the elementary functional analytic
presentation [18]. However, we try to be as self-contained as possible.
It is well-known that the trace map

% : Γ∞0 (M; E) −→ Γ∞(Σ; E), f 7−→ f � Σ (2.24)

extends by continuity to a bounded linear map between Sobolev spaces

L2s (M, E) −→ L2s−1/2(Σ, EΣ ), s > 1/2. (2.25)

For the domain of Amax this can be pushed a bit further. Namely, for s ≥ 0 the trace map extends by continuity to a bounded
linear map

D(Amax,s) −→ L2s−1/2(Σ, EΣ ), s ≥ 0, (2.26)

that is, there is a constant Cs, such that for f ∈ L2s (M, E)with Af ∈ L
2
s (M, E)

‖%f ‖s−1/2 ≤ Cs(‖f ‖s + ‖Af ‖s) (s ≥ 0). (2.27)

Here ‖f ‖s denotes the Sobolev norm of order s. Furthermore, norms of operators from L2s to L
2
s′ will be denoted by ‖ · ‖s,s′ ,

and ‖ · ‖∞ denotes the sup-norm of a function.
The proof of (2.26) and (2.27) in [1, Theorem 13.8 and Corollary 13.9] simplifies [17] for operators of Dirac type but

remains valid for any elliptic differential operator of first order, cf. also [18, Lemma 6.1].

Definition 2.3. (a) Let CL0(Σ; EΣ ,G)denote the space of classical pseudo-differential operators of order 0, acting fromsections
of EΣ to sections of another smooth Hermitian vector bundle G overΣ .
(b) Let P ∈ CL0(Σ; EΣ ,G). We denote by AP the operator A acting on the domain

D(AP) :=
{
f ∈ L21(M, E) | P(%f ) = 0

}
, (2.28)

and by Amax,P the operator A acting on the domain

D(Amax,P) :=
{
f ∈ L2(M, E) | Af ∈ L2(M, F), P(%f ) = 0

}
. (2.29)

(c) The boundary condition P for A is called regular if Amax,P = AP , i.e., if f , Af ∈ L2, P(%f ) = 0 already implies that
f ∈ L21(M, E).
(d) The boundary condition P is called strongly regular if f ∈ L2, Af ∈ L2k , P(%f ) = 0 already implies f ∈ L

2
k+1(M, E), k ≥ 0.

(2.27) shows that D(AP) is in any case a closed subspace of L21(M, E).

Proposition 2.4. Let P be regular for A. Then AP is a closed semi-Fredholm operator with finite-dimensional kernel.
Proof. Let (fn) ⊂ D(AP) be a sequence with fn → f and Afn → g ∈ L2(M, F). Then Af = g weakly, hence f ∈ D(Amax) =
D(Amax,0) and in view of (2.26) and (2.27) we have P(%f ) = 0 and the regularity of P implies f ∈ L21(M, E), thus f ∈ D(AP).
Hence AP is closed and thus D(AP) is complete in the graph norm. In view of the Closed Graph Theorem the previous

argument shows that the inclusion ι : D(AP) ↪→ L21(M, E) is bounded. ι is thus an injective bounded linear map from the
Hilbert spaceD(AP) (equippedwith the graphnorm) onto a closed subspace of L21(M, E); the closedness is also a consequence
of the argument at the beginning of this proof. Consequently, on D(AP) the graph norm and the L21-norm are equivalent, i.e.,
for f ∈ D(AP)we have

1
C
‖f ‖1 ≤ ‖f ‖0 + ‖Af ‖0 ≤ C‖f ‖1. (2.30)
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Since the inclusion L21(M, E) ↪→ L2(M, E) is compact, the inclusion D(AP) ↪→ L2(M, E) is compact too. Consequently, AP is
a semi-Fredholm operator with finite-dimensional kernel. �

Remark 2.5. (1) P = Id is strongly regular and its domain D(AP) = L21,0(M, E) equals the closure of Γ
∞

0 (M \ Σ; E) in
L21(M, E). This is seen by induction. Namely, if f ∈ L

2, Af = g ∈ L2 and %f = 0 we may extend2 f by 0 to obtain f̃ , Ã̃f ∈ L2loc
and hence f ∈ L21.
For the induction we first note that similarly as in [18, Cor. 2.14] one shows that to the map

%(k+1) : L2k+1(M, E) −→
k⊕
j=0

L2k−j+1/2(Σ, EΣ ), f 7−→ (%Ajf )kj=0 (2.31)

there exists a continuous linear right-inverse

e(k+1) :
k⊕
j=0

L2k−j+1/2(Σ, EΣ ) −→ L2k+1(M, E). (2.32)

To complete the induction consider f ∈ L2, Af ∈ L2k, %f = 0. By induction we may assume f ∈ L
2
k . Put

f1 := f − e(k+1)(0, %Af , . . . , %Akf ). (2.33)

Then f − f1 ∈ L2k+1, f1 ∈ L
2
k and %A

jf1 = 0, j = 0, . . . , k. Hence we may extend f by 0 to obtain f̃ ∈ L2 with Ãj̃f ∈ L2,
j = 0, . . . , k+ 1. From local elliptic regularity we infer f̃ ∈ L2k+1,loc and thus f ∈ L

2
k+1.

(im AId)⊥ =
{
f ∈ L2(M, F) | At f = 0

}
which is known to be (or see Proposition 5.12 and Theorem 6.1) infinite-

dimensional if dimM > 1. Hence we cannot expect regularity to imply that AP is Fredholm. However, if P and the dual
boundary condition for At are regular then AP is Fredholm.
(2) Regular boundary conditions are closely related to the well-posed boundary conditions of Seeley [9,1]. One of the

main results in [18] states that for symmetric Dirac operators and symmetric boundary conditions (given by operators P
with closed range), regularity and well-posedness are equivalent.
(3) It is well-known that if P has closed range then P may be replaced by an orthogonal projection with the same kernel.

In this setting the dual boundary condition can easily be computed:

Proposition 2.6. Let P ∈ CL0(Σ; EΣ ), P = P2 = P∗. Then

(AP)∗ = Atmax,(Id−P)Jt0
. (2.34)

Proof. This follows easily from Green’s formula Lemma 2.2. �

We recall from [8, Definition 20.1.1] (see also [1, Remark 18.2d]):

Definition 2.7. Let P ∈ CL0(Σ; EΣ ,G). We say that P defines a local elliptic boundary condition for our operator A (or,
equivalently, we say P satisfies the Šapiro–Lopatinskiǐ condition for A), if and only if the leading symbol σ 0P of P maps
the space M+y,ζ isomorphically onto the fiber Gy for each point y ∈ Σ and each cotangent vector ζ ∈ T ∗y (Σ), ζ 6= 0.
Here M+y,ζ denotes the space of boundary values of bounded solutions u on the positive real line of the linear system
d
dt u+ σ

1
B(0)(y, ζ )u = 0 of ordinary differential equations.

Remark 2.8. Note that a solution of the ordinary differential equation d
dt u + σ

1
B(0)(y, ζ )u = 0 is bounded if and only if the

initial value u0 belongs to the range of the positive spectral projection P+(σ 1B(0)(y, ζ )) (cf. Section 3) of thematrix σ
1
B(0)(y, ζ ).

HenceM+y,ζ = im P+(σ
1
B(0)(y, ζ )) and local ellipticity means that σ

0
P maps im P+(σ

1
B(0)(y, ζ )) isomorphically onto Gy.

We obtain from [8, Theorem 20.1.2, Theorem 20.1.8] (differently also along the lines of [1, Theorem 19.6]):

Proposition 2.9. Any P satisfying the Šapiro–Lopatinskiǐ condition for A is strongly regular and the corresponding AP is a
Fredholm operator.

3. Sectorial projections of an elliptic operator

3.1. Parameter dependent ellipticity

Regarding properties of the tangential operator B0 on Σ , it is natural to distinguish three situations of increasing
generality:
(i) B0 is formally self-adjoint,

2 We think ofM as being a subset of an open manifold M̃ to which A can be extended as an elliptic operator.
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(ii) B0 − Bt0 is an operator of order zero, and
(iii) B0 is the tangential operator of an elliptic operator over the whole manifoldM .

Whereas (i) implies that the spectrum spec(B0) of B0 is contained in the real axis and (ii) that for all p ∈ Σ and ξ ∈ T ∗pΣ
the leading symbol σ 1B(0)(p, ξ) ∈ End(Ep) is self-adjoint, the general case (iii) a priori only implies that σ

1
B(0)(p, ξ) has no

eigenvalues on the imaginary axis iR for all p ∈ Σ and ξ ∈ T ∗pΣ \ {0}, as explained above after (2.23).
One may ask, what consequences can be drawn from the general property (iii) for the spectrum of B0? A first answer is

Proposition 3.3. In fact, (iii) contains more information than just that the leading symbol σ 1B(0)(p, ξ) has no eigenvalues on
iR.
For the convenience of the reader let us briefly recall the notion of a (pseudo)-differential operator with parameter, cf.

Shubin [12, Section II.9].
LetΛ ⊂ C be an open conic subset, i.e., z ∈ Λ, r > 0⇒ rz ∈ Λ. For an open subset U ⊂ Rn let Sm(U,Rn × Λ) denote

the space of smooth functions

a : U × Rn ×Λ −→ C, (x, ξ , λ) 7−→ a(x, ξ , λ),

such that for multi-indices α, β ∈ Zn
+
, γ ∈ Z2

+
and each compact subset K ⊂ U we have∣∣∣∂αx ∂βξ ∂γλ a(x, ξ , λ)∣∣∣ ≤ CK (1+ |ξ | + |λ|)m−|β|−|γ |.

We emphasize that ∂γλ denotes real partial derivatives — we do not require holomorphicity in λ.
In other words, Sm(U,Rn ×Λ) are the symbols of Hörmander type (1,0).
We shall call a symbol a ∈ Sm(U,Rn ×Λ) classical if it has an asymptotic expansion

a ∼
∞∑
j=0

am−j, (3.1)

where am−j ∈ Sm−j(U,Rn ×Λ)with homogeneity

am−j(rξ, rλ) = rm−jam−j(ξ , λ) for r ≥ 1, |ξ |2 + |λ|2 ≥ 1.

We denote the classical symbols by CSm(U,Rn ×Λ) ⊂ Sm(U,Rn ×Λ).

Definition 3.1. Let EΣ be a complex vector bundle of finite fiber dimension N over a smooth closed manifold Σ and let
Λ ⊂ C be open and conic. A classical pseudodifferential operator of order m with parameter λ ∈ Λ is a family B(λ) ∈
CLm(Σ; EΣ ), λ ∈ Λ, such that locally B(λ) is given by

B(λ)u(x) = (2π)−n
∫

Rn

∫
U
ei〈x−y,ξ〉b(x, ξ , λ)u(y)dydξ

with b an N × N matrix of functions belonging to CSm(U,Rn ×Λ).

Remark 3.2. (1) A pseudo-differential operator with parameter is more than just a map from Λ to the space of pseudo-
differential operators.
(2) Our definition of a pseudo-differential operator with parameter is slightly different from that of Shubin [12, Section

II.9]; however, the main results of [12] do also hold for this class of operators.

The leading symbol of a classical pseudo-differential operator B of order m with parameter is now a smooth function
σmB (x, ξ , λ) on T

∗Σ ×Λ \ {(x, 0, 0) | x ∈ Σ}which is homogeneous in the following sense

σmB (x, rξ, rλ) = r
mσmB (x, ξ , λ) for (ξ , λ) 6= (0, 0), r > 0.

Parameter dependent ellipticity is defined as invertibility of this homogeneous leading symbol. The basic example of a
pseudo-differential operator with a parameter is the resolvent of an elliptic differential operator.

Proposition 3.3. Let Σ be a closed manifold and let B ∈ Diff1(Σ; EΣ ) be a first order differential operator. Let Λ ⊂ C be an
open conic subset such that B − λ, λ ∈ Λ, is parameter dependent elliptic, i.e., for each (p, ξ) ∈ T ∗Σ, ξ 6= 0, and each λ ∈ Λ
the homomorphism

σ 1B (p, ξ)− λ : Ep −→ Ep

is invertible. Then there exists R > 0 such that B− λ is invertible for λ ∈ Λ, |λ| ≥ R, and we have

‖(B− λ)−1‖s,s+α ≤ Cα|λ|−1+α (3.2)

for such λ and 0 ≤ α ≤ 1.
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Fig. 1. Construction of a closed coneΛ such that B0 − λ is elliptic with parameter λ ∈ Λ.

For the proof see [12, Theorem 9.3]. In our situation Proposition 3.3 has the following consequences:

Proposition 3.4. Let Σ be a closed manifold and let

D = Jx
( d
dx
+ Bx

)
be a first order elliptic differential operator on the collar [0, ε)×Σ . Then

(a) B0 − λ is parameter dependent elliptic in an open conic neighborhoodΛ of the imaginary axis iR.
(b) B0 is an operator with compact resolvent, spec B0 consists of a discrete set of eigenvalues of finite multiplicity. At most finitely
many eigenvalues lie on the imaginary axis iR.

For an eigenvalue λ even the generalized eigenspace
⋃
N ker(B0 − λ)

N is finite-dimensional; note that B0 is not necessarily
self-adjoint.

Proof. From the ellipticity of Dwe infer that σ 1B(0)(p, ξ)− it is invertible for (p, ξ , t) ∈ T
∗Σ × R, (ξ , t) 6= (0, 0). Since⋃

(p,ξ)∈T∗Σ, |ξ |=1

spec σ 1B(0)(p, ξ)

is bounded in C and in view of the homogeneity we find an angle ϑ > 0 such that

spec σ 1B(0)(p, ξ) ∩Λ = ∅.

HereΛ is as in Fig. 1.
(a) now follows from the previous proposition. Since B0 is elliptic, its spectrum is either discrete or equalsC. The previous

lemma implies that B0 − λ is invertible for λ ∈ Λ large enough. Hence we conclude that spec B0 is discrete and that (b)
holds. �

3.2. Sectorial operators: Abstract Hilbert space framework

We shall now discuss the positive respectively negative sectorial spectral projections of an elliptic differential operator B
of first order on a closed manifoldΣ . We start with a purely functional analytic discussion.

3.2.1. Idempotents in a Hilbert space
Let us briefly summarize some facts about (not necessarily bounded) idempotents in a Hilbert space. A densely defined

operator P in the Hilbert space H is an idempotent if P ◦ P = P; as an identity between unbounded operators P ◦ P = P
means im P ⊂ D(P) and P(Px) = Px for x ∈ D(P).
Given subspaces U, V ⊂ H with

U ∩ V = {0}, (3.3)
U + V dense in H, (3.4)

the projection PU,V along U onto V is an (not necessarily bounded) idempotent and every idempotent P in H is of this form
with D(PU,V ) = U + V ,U = ker P and V = im P .
It is easy to see that P∗U,V = PV⊥,U⊥ is also an (not necessarily densely defined) idempotent. Thus PU,V is closable iff

U⊥+V⊥ is dense or, equivalently U ∩V = {0}. In that case, the closure of PU,V is PU,V = PU,V . Consequently, PU,V is a closed
operator if and only if U, V are closed subspaces of H .
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Fig. 2. The contours Γ± in the plane defining the semigroups Q± .

Lemma 3.5. (a) Let PU,V be an idempotent in the Hilbert space H, where U, V are closed subspaces satisfying (3.3) and (3.4).
Then PU,V is bounded if and only if U + V = H.
(b) Let P = PU,V be a bounded idempotent in the Hilbert space H. Then P + Id−P∗ is an invertible operator.
Denote by Port the orthogonalization of P, i.e., Port = PV⊥,V is the orthogonal projection onto im P. Then we have

Port = P(P + Id−P∗)−1, (3.5)

(P∗)ort = (P + Id−P∗)−1P. (3.6)

Proof. (a) is a consequence of the Closed Graph Theorem.
(b) By (a) U, V are closed subspaces of H satisfying U ∩ V = {0},U ⊕ V = H . Then Id−P∗ = PU⊥,V⊥ . Since bounded
idempotents are bounded below P�U⊥mapsU⊥ = ker P⊥ bijectively onto V and Id−P∗mapsU = ker(Id−P∗)⊥ bijectively
onto V⊥. Hence P+ Id−P∗ is invertible. Moreover, this description gives (P+ Id−P∗)−1 explicitly: given v ∈ V = im P then
(P + Id−P∗)−1v is the unique element ξ ∈ U⊥ with Pξ = v and thus P(P + Id−P∗)−1v = v. Furthermore, if v ∈ V⊥ then
(P + Id−P∗)−1v is the unique element η ∈ U = ker P with (Id−P∗)η = v. This proves P(P + Id−P∗)−1 = PV⊥,V = Port.
The equality (3.6) is proved similarly.
Alternatively, one may apply (3.5) to P∗ to find (P∗)ort = P∗(P∗ + Id−P)−1. Then (3.6) follows from (P + Id−P∗)P∗ =

PP∗ = P(P∗ + Id−P). �

Our construction of Port is a slight modification of the construction given by M. Birman and A. Solomyak and disseminated
in [1, Lemma 12.8].
Lemma 3.5(a) shows that unbounded idempotents in a Hilbert space are abundant. See also Example 3.13.

3.2.2. The semigroups Q±(x) of a sectorial operator
In this subsection let H be a separable Hilbert space and B a closed operator in H .

Definition 3.6. We call B a weakly sectorial operator if

(1) B has compact resolvent.
(2) There exists a closed conic neighborhoodΛ of iR such that spec B ∩Λ is finite and

‖(B− λ)−1‖ = O(|λ|−α), |λ| → ∞, λ ∈ Λ, (3.7)

for some 0 < α ≤ 1.

If α = 1 then we call B a sectorial operator.

We fix a weakly sectorial operator B in the sense of Definition 3.6.

Convention 3.7. (a) c > 0 is chosen large enough such that

spec B ∩ {z ∈ C | |z| = c} = ∅, (3.8)

and such that {z ∈ C | |z| = c} contains all eigenvalues on the imaginary axis.
(b) We specify two complementary contours Γ± in the plane as sketched in Fig. 2 with Γ+ encircling, up to finitely many
exceptions, the eigenvalues of B with real part ≥ 0 and Γ− encircling the remaining eigenvalues. Of course, for this to
be possible c has to be large enough.
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Definition 3.8.

Q+(x) :=
1
2π i

∫
Γ+

e−λx(λ− B)−1 dλ, x > 0, (3.9)

= Id+
1
2π i

∫
Γ+

e−λxλ−1B(λ− B)−1 dλ, (3.10)

Q−(x) :=
1
2π i

∫
Γ−

e−λx(λ− B)−1 dλ, x < 0, (3.11)

=
1
2π i

∫
Γ−

e−λxλ−1B(λ− B)−1 dλ. (3.12)

When the dependence on Bmatters we will write Q±(x, B).

Formulas (3.10) and (3.12) are obtained by adding and subtracting λ−1 inside the integral and taking into account that 0 lies
inside Γ+ but outside Γ−.
Q±(x) are certainly bounded operators for x > 0 (x < 0). Heuristically, Q±(0) should be the positive/negative sectorial

spectral projection of B, obtained fromholomorphic functional calculus. However,Q±(0) is not defined everywhere. To avoid
ambiguities, we shall keep to the following two rigorous definitions instead of dealing directly with Q±(0).

Definition 3.9. We put D(P+,0) := {ξ ∈ H | limx→0+ Q+(x)ξ exists} and P+,0ξ := limx→0+ Q+(x)ξ for ξ ∈ D(P+,0). P−,0 is
defined analogously using Q−(x).

(3.10), (3.12) and the estimate (3.7) imply that D(B) ⊂ D(P+,0) and for ξ ∈ D(B)we have

P+,0ξ = ξ +
1
2π i

∫
Γ+

λ−1(λ− B)−1 dλ (Bξ) (3.13)

P−,0ξ =
1
2π i

∫
Γ−

λ−1(λ− B)−1 dλ (Bξ), (3.14)

thus P±,0 is densely defined (D(B) is indeed a core for P±,0). Note that Q±(x, B)∗ = Q±(x, B∗) (cf. Proposition 3.11), hence
the densely defined operator P±,0(B∗) is contained in P±,0(B)∗. Thus P±,0 is closable:

Definition 3.10. The closure of P±,0 will be called the positive/negative sectorial spectral projection P± of B.

Proposition 3.11. For x, y > 0 we have

(a) Q+(x, B)∗ = Q+(x, B∗), Q−(−x, B)∗ = Q−(−x, B∗).
(b) Q+(x)Q+(y) = Q+(x+ y).
(c) Q+ is differentiable and

dQ+
dx (x) = −BQ+(x).

(d) Q+(x)Q−(−y) = Q−(−y)Q+(x) = 0.
(e) P+Q+(x) ⊂ Q+(x)P+, P+Q−(−x) = 0.

Proof. The proof is straightforward and analogous to the proof in [14] of the fact that P+ is an idempotent. �

Corollary 3.12. P± are complementary, i.e., P+ = Id−P−, (possibly unbounded) idempotents in H.

Proof. Since D(B) is a core for P± it suffices to check that for ξ ∈ D(B)we have P2
±
ξ = P±ξ and (P+ + P−)ξ = ξ .

If ξ ∈ D(B) then using Proposition 3.11 we find

Q+(x)P+ξ = lim
y→0+

Q+(x)Q+(y)ξ = lim
y→0+

Q+(x+ y)ξ = Q+(x)ξ , (3.15)

hence P+ξ ∈ D(P+,0) ⊂ D(P+) and P2+ξ = P+ξ .
Secondly, we take a ξ ∈ D(B) and find

(P+ + P−)ξ = ξ +
1
2π i

∫
Γ

λ−1(λ− B)−1 dλ (Bξ),

where Γ is chosen as in Fig. 3. Pushing the radius of the circle arches to∞ shows (P+ + P−)ξ = ξ . �

The fact that the sectorial projections are a priori unbounded operators may seem strange. The following example shows
that the phenomenon really occurs:
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Fig. 3. A two-component contour Γ , separating an inner sector around the real axis where all eigenvalues of B0 show up, from two outer sectors which
totally belong to the resolvent set of B0 .

Example 3.13. Let D be a discrete self-adjoint positive definite operator in H , i.e., there is an orthonormal basis (en)n∈N of H
such that Den = λnen, where 0 < λ1 ≤ λ2 ≤ · · · → ∞.
Pick a parameter 0 ≤ α ≤ 1 and define the operator B in H ⊕ H as follows:

D(B) :=
{
(u, v) ∈ H ⊕ H | v ∈ D(D),Du− D2−αv ∈ H

}
,

B(u, v) := (Du− D2−αv,−Dv).
(3.16)

One immediately checks that for λ 6∈ specD ∪ − specD the resolvent of B is given by

(B− λ)−1(ξ , η) = ((D− λ)−1ξ − 2(D− λ)−1D2−α(D+ λ)−1η,−(D+ λ)−1η). (3.17)

Because of 0 ≤ α ≤ 1 the resolvent is indeed bounded. Furthermore, (3.17) shows that outside a conic neighborhood of the
real axis, equivalently in a conic neighborhood of the iR, we have an estimate

‖(B− λ)−1‖ = O(|λ|−α), |λ| → ∞. (3.18)

Hence, if 0 < α ≤ 1 then B is a weakly sectorial operator in the sense of Definition 3.6, spec B = specD ∪ − specD and the
positive/negative spectral subspaces of B are given by

im P+(B) = H ⊕ 0,

ker P+(B) =
{
(u,Dα−1u) | u ∈ H

}
= Graph(Dα−1).

(3.19)

Consequently, if 0 < α < 1 then im P+(B)⊕ ker P+(B) is not closed and hence the positive sectorial projection P+(B) is not
bounded.

We leave it as an intriguing problem to find an example of a sectorial operator with decay rate α = 1 in (3.7) such that P+
is unbounded.

3.3. Sectorial operators: Parametric elliptic differential operators

3.3.1. The geometric situation
We return to our geometric situation and consider the tangential operator B (previously denoted by B(0) or B0, for

convenience we omit (0) as long as we do not need B(x)) of an elliptic differential operator A on a compact manifold with
boundary, cf. Section 2, in particular (2.18).
Then it is known that the positive sectorial projection is bounded:

Theorem 3.14. Let B be a first order elliptic differential operator on the closed manifold Σ . Furthermore, assume that B − λ is
parametric elliptic in an open conic neighborhood Λ of iR. Then the positive/negative sectorial projections P± of B are pseudo-
differential operators of order 0. In particular P± acts as a bounded operator in each Sobolev space L2s (Σ, EΣ ).

The proof is an adaption of the classical complex power construction of Seeley [19]. See Burak [13], Wojciechowski [20],
and recently Ponge [14].
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We also note that it follows from Proposition 3.3 that B is a sectorial operator in the sense of Definition 3.6. Also, recall
from (3.2) the resolvent estimate:
For all s ∈ R, 0 ≤ α ≤ 1, we have

sup
λ∈Γ±

|λ|1−α ‖(λ− B)−1‖s,s+α ≤ C(s, α), (3.20)

where ‖ · ‖s,s+α denotes the operator norm between the Sobolev spaces L2s (Σ, EΣ ) and L
2
s+α(Σ, EΣ ), see also the following

remark.
Here and in the following we shall denote the closed interval [0,∞) by R+ . Similarly Z+ := {0, 1, 2, 3, . . .}.

Remark 3.15. (1) We recall that (cf. e.g. [18, Cor. 2.20])

L2s (R+ ×Σ, EΣ ) = L
2
s (R+, L

2(Σ, EΣ )) ∩ L2(R+, L2s (Σ, EΣ )), s ≥ 0. (3.21)

In particular, if s ∈ Z+ then a Sobolev norm for L2s (R+ ×Σ, EΣ ) is given by

‖f ‖2
L2s (R+×Σ,EΣ )

=

∫
∞

0
‖∂ sx f (x)‖

2
L2(Σ,EΣ )

+ ‖(Id+|B|)sf (x)‖2L2(Σ,EΣ )dx. (3.22)

Since the spaces L2s (. . .) have the interpolation property [21, Sec. 4.2], [18, Sec. 2] for s ≥ 0, it will be sufficient in most cases
to deal with integer s ∈ Z+.
(2) Note that since B is elliptic, the Sobolev norms on sections of EΣ can be defined using B, i.e.,

‖ξ‖2
L2s (Σ,EΣ )

= ‖(Id+|B|)sξ‖2L2(Σ,EΣ ). (3.23)

(3) Whenever it is clear from the context whether we are taking norms of sections over R+ × Σ or over Σ we will, as
before, denote Sobolev norms of order s by a subscript s.

3.3.2. Mapping properties of Q+.
The following proposition will be useful for the study of the mapping properties of the invertible double and of

the remainder terms in the construction of the Poisson operator and the Calderón projection, see Sections 5.2 and 5.3.
Proposition 3.16 establishes a weak convergence of Q+(x) → P+, x → 0+, in compensation for the generally not valid
convergence in the operator norm.

Proposition 3.16. Let ϕ ∈ C∞0 (R+),m ∈ Z+.
(a) For s ∈ R the operator

idmR+ ϕQ+ : ξ 7−→
(
x 7→ xmϕ(x)Q+(x)ξ

)
(3.24)

maps L2s (Σ, EΣ ) continuously to L
2
comp(R+, L

2
s+m+1/2(Σ, EΣ )).

(b) For s ≥ −1/2 it maps continuously to L2s+m+1/2,comp(R+ ×Σ, EΣ ).

Proof. Let us first prove the claim (b). It is fairly easy to see that idmR+ ϕQ+ maps L
2
s (Σ, EΣ ) continuously to

L2comp(R+, L
2
s′(Σ, EΣ )) for some s

′. Thus once we have proved that the range of idmR+ ϕQ+ is contained in the space
L2comp(R+, L

2
s+m+1/2(Σ, EΣ )) the continuity will follow from the Closed Graph Theorem.

Furthermore, since idmR+ ϕQ+ commutes with B it suffices to prove the claim for s large enough: namely, we pick a λ0 in
the resolvent set of B. Then for arbitrary s ≥ −1/2 we choose k large enough such that the claim holds for s+ k. The claim
for s now follows from the identity

idmR+ ϕQ+|L
2
s = (λ0 − B)

k(idmR+ ϕQ+|L2s+k)((λ0 − B)−k|L2s ). (3.25)

Finally, by complex interpolation (cf. e.g. [21, Sec. 4.2]) it suffices therefore to consider s = n + 1/2, n ∈ Z+. Now pick
ξ ∈ L2n+1/2(Σ, EΣ ) and put f (x) := x

mϕ(x)Q+(x)ξ . It is straightforward to check that f is smooth on (0,∞)×Σ . From(
d
dx
+ B

)j
f (x) =

((
d
dx

)j
xmϕ(x)

)
Q+(x)ξ (3.26)

we infer by the boundedness of P+(B) (according to Theorem 3.14) that(
d
dx
+ B

)j
f

∣∣∣∣∣
x=0

=


0, j = 0, . . . ,m− 1,(
d
dx

)j∣∣∣∣∣
x=0

xmϕ(x)P+(B)ξ ∈ L2n+1/2(Σ, EΣ ), j ≥ m,

∈ L2s+m+1/2−j−1/2(Σ, EΣ ). (3.27)
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From (3.27) and (an obvious adaption of) [18, Cor. 2.17] (cf. also Remark 2.5) we infer that f ∈ L2s+m+1/2(R+×Σ, EΣ ). Hence
(b) is proved.
For s ≥ −1/2 the claim (a) follows from (b). For arbitrary s we again conjugate by (λ0 − B)k as above and we reach the

conclusion. �

Remark 3.17. The claim of the previous proposition also follows by applying more sophisticated pseudo-differential
techniques (cf. Grubb [22, Thm. 2.5.7]). Our proof only uses the basic trace results for Sobolev spaces, the ellipticity of
B, and the boundedness of the positive sectorial projection on Sobolev spaces. The previous proposition can therefore be
generalized to situationswhere pseudo-differential techniques are not necessarily available. An abstract version is as follows
(see also Section 5.1 where scales of Hilbert spaces are recalled to some extent):

Proposition 3.18. Let B be a sectorial operator in a Hilbert space. Let Hs := D((B∗B)s/2), s ≥ 0, be the scale of Hilbert spaces
of B∗B and H̃s := D((BB∗)s/2) be the scale of Hilbert spaces of BB∗. For negative s the spaces Hs and H̃s are defined by duality
(cf. [18, Sec. 2.A]). Furthermore, put for s ≥ 0

Hs(R+,H•) :=
⋂
0≤t≤s

L2s (R+,Hs−t)

(cf. [18, Sec. 2, Prop. 2.10] for other descriptions).
Assume that the positive sectorial projection P+ of B maps Hs continuously to H̃s for all s.
Let ϕ ∈ C∞0 (R+),m ∈ Z+. Then

(a) For s ∈ R the operator

idmR+ ϕQ+ : ξ 7−→
(
x 7→ xmϕ(x)Q+(x)ξ

)
(3.28)

mapsHs(R+,H•) continuously to L2comp(R+, H̃s+m+1/2).
(b) For s ≥ −1/2 it maps continuously toHs+m+1/2,comp(R+, H̃•).

For elliptic pseudo-differential operators the distinction between Hs and H̃s is, of course, unnecessary. For general
unbounded operators, however, we cannot expect Hs to be equal to H̃s.

4. The invertible double

We return to the set-up described at the beginning of Section 2.2 and give a construction of the invertible double of a
general first order elliptic differential operator.

4.1. The construction of ÃP(T )

We introduce the operator

Ã := A⊕ (−At) : Γ∞(M; E ⊕ F) −→ Γ∞(M; F ⊕ E). (4.1)
We are going to consider a special class of boundary conditions for Ã:

Definition 4.1. Let T ∈ CL0(Σ; EΣ , FΣ ) be a classical pseudo-differential operator of order 0, acting from sections of EΣ to
sections of FΣ . We put

P(T ) =
(
−T Id

)
∈ CL0(Σ; EΣ ⊕ FΣ , FΣ ). (4.2)

Viewed as an operator in L2s (Σ, EΣ ⊕ FΣ ) the operator P(T ) has closed range which equals

im P(T ) = L2s (Σ, FΣ ) ⊂ L
2
s (Σ, EΣ ⊕ FΣ ). (4.3)

Since this is a closed subspace of L2s (Σ, EΣ ⊕ FΣ ), the boundary condition for Ã given by P(T ) can be realized by a pseudo-
differential orthogonal projection, as noted in Remark 2.5(3).

To be more specific we recall that the realization ÃP(T ) of Ãwith respect to the boundary condition P(T ) has domain

D (̃AP(T )) :=
{(
f+
f−

)
∈ L21(M, E ⊕ F) | %f− = T%f+

}
. (4.4)

Lemma 4.2. If T is invertible, the dual of the boundary condition P(T ) for Ã is

P(−J−10 (T
t)−1J t0),

i.e., (̃
AP(T )

)∗
= Ãt

max,P(−J−10 (T t )−1Jt0)
. (4.5)
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Proof. Let f =
(
f+
f−

)
∈ D (̃AP(T )) and g =

(
g+
g−

)
∈ D

(
(̃AP(T ))∗

)
. Note that g+ ∈ L2(M, F), g− ∈ L2(M, E). Green’s formula

Lemma 2.2 yields

0 = 〈̃Af , g〉 − 〈f , Ãtg〉
= 〈Af+, g+〉 − 〈f+, Atg+〉 − 〈At f−, g−〉 + 〈f−, Ag−〉
= −〈J0%f+, %g+〉 − 〈%f−, J0%g−〉

= −〈%f+, J t0%g+ + T
t J0%g−〉. (4.6)

This holds for all f ∈ D (̃AP(T )) if and only if J t0%g+ + T
t J0%g− = 0 and we reach the conclusion. �

4.2. The local ellipticity of P(T ) for Ã

Proposition 4.3. Let T be an invertible bundle homomorphism from EΣ to FΣ with J t0T > 0. Then the boundary condition defined
by P(T ) satisfies the Šapiro–Lopatinskiǐ condition for Ã.

Remark 4.4. (1) Obvious candidates for T with J t0T > 0 are J0 and (J
t
0)
−1. We can in addition choose T to be unitary by

putting T := (J0J t0)
−1/2J0.

(2) Note that if J t0T is positive definite then it is in particular self-adjoint andhence the dual condition for Ã
t (cf. Lemma4.2)

is given by

T dual = −J−10 (T
t)−1J t0 = −(T

t J0)−1J t0 = −(J
t
0T )
−1J t0 = −T

−1. (4.7)

In particular we find that fulfilling the assumption J t0T > 0 of the preceding proposition implies that the boundary condition
for Ãt defined by P(T dual) also satisfies the Šapiro–Lopatinskiǐ condition. To see thiswe recall from (2.19) that the front bundle
endomorphism J0(At) of At is given by J0(At) = −J t0, so

(−J t0)
tT dual = J0T−1 = J0(J t0T )

−1J t0 > 0. (4.8)

Proof. We refer to Remark 2.8 and use the language of idempotents. During this proof, for an endomorphism b of a
finite-dimensional vector space, P±(b) will denote the spectral projection corresponding to a closed contour encircling all
eigenvalues λwith Re λ ≥ 0 (respectively< 0), cf. Section 3.
From (2.18) and (2.19) we see that the tangential operator of Ã has leading symbol b0 ⊕ −(J t0)

−1b∗0J
t
0, b0 := σ 1B(0).

Consequently the positive spectral projection of b0 ⊕ −(J t0)
−1b∗0J

t
0 is given by P+(b0) ⊕ (J

t
0)
−1P−(Bt)J t0. In each y ∈ Σ and

ζ ∈ T ∗y (EΣ ), ζ 6= 0, we consider the Šapiro–Lopatinskiǐ mapping from im P+(b0(y, ζ ))⊕ (J
t
0)
−1 im P−(b0(y, ζ )∗) to Fy, given

by σ 0P(T ) = (−T Id):

im P+(b0(y, ζ ))⊕ (J t0)
−1 im P−(b0(y, ζ )∗) −→ Fy(

e+, (J t0)
−1e−

)
7−→ −Te+ + (J t0)

−1e−.

Multiplying by J t0 we see that this map is bijective if and only if the map

Ey = im P+(b0(y, ζ ))⊕ im P−(b0(y, ζ )∗) −→ Ey
(e+, e−) 7−→ −J t0Te+ + e−

(4.9)

is bijective. To explain why Ey = im P+(b0(y, ζ ))⊕ im P−(b0(y, ζ )∗)we note that im P+(b0(y, ζ ))⊥ = ker P+(b0(y, ζ ))∗ =
ker P+(b0(y, ζ )∗) = im P−(b0(y, ζ )∗), so the sum on the left of (4.9) is indeed an orthogonal decomposition (cf. also
Lemma 3.5).
Since the dimensions on the left and on the right side of (4.9) coincide, it suffices to show that themap in (4.9) is injective:

so let −J t0Te+ + e− = 0, e+ ∈ im P+(b0(y, ζ )), e− ∈ im P−(b0(y, ζ )
∗) = im P+(b0(y, ζ ))⊥. Taking scalar product with e+

we find 0 = −〈J t0Te+, e+〉. This implies, since by assumption J
t
0T > 0, that e+ = 0. But then e− = 0 as well. �

4.3. The solution space ker ÃP(T )

Next we indicate why the boundary conditions of Definition 4.1 are significant. Before doing that we recall the various
solution spaces and Cauchy data spaces associated to A.

Definition 4.5. (a) Put

Z s(A) :=
{
f ∈ L2s (M, E) | Af = 0

}
, s ≥ 0.
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Z s(At) ⊂ L2s (M, F) is defined analogously. For brevity we often write

Z s
+
:= Z s(A), Z s

−
:= Z s(At). (4.10)

It follows from (2.25) and (2.26) that the tracemap sends Z s
±
continuously to L2s−1/2(Σ, EΣ ) respectively L

2
s−1/2(Σ, FΣ ), s ≥ 0.

(b) We define the Cauchy data spaces by

N s
±
:= %(Z s+1/2± ), s ≥ −1/2,

N± := N0±.
(4.11)

(c) Finally let

Z+,0(A) :=
{
f ∈ L21(M, E) | Af = 0, %f = 0

}
(4.12)

denote the space of all inner solutions. It is the finite-dimensional kernel of AId (cf. Proposition 2.4). Z−,0(A) := Z+,0(At)
denotes the corresponding kernel of AtId.
(d) We say that A has the weak inner unique continuation property (UCP) if Z+,0(A) = {0}.

Proposition 4.6. Let T be as in Definition 4.1. Then there is a canonical inclusion

Z+,0(A)⊕ Z−,0(A) ⊂ ker ÃP(T ).

If, in addition, J t0T is positive definite, then the inclusion is an equality.

Proof. If f± ∈ Z±,0 then
(
f+
f−

)
= f ∈ ker ÃP(T ) since %f− = 0 = T%f+, cf. (4.4).

Now assume that J t0T is positive definite and let
(
f+
f−

)
= f ∈ ker ÃP(T ). Then certainly f± ∈ Z1± and %f− = T%f+. Since J

t
0T

is nonnegative and invertible, the operatorW := (J t0T )
1/2 exists and is invertible. Now Green’s formula Lemma 2.2 yields

‖W%f+‖2 = 〈%f+, J t0T%f+〉
= 〈J0%f+, %f−〉
= −〈Af+, f−〉 + 〈f+, At f−〉
= 0, (4.13)

and sinceW is invertible we find %f− = 0. Thus %f+ = T−1%f− = 0 and hence f± ∈ Z±,0. �

4.4. The main result

Recall from Proposition 2.9 that by checking the Šapiro–Lopatinskiǐ condition we have not only proved the regularity of
P(T ) for Ã, but also that ÃP(T ) is a Fredholmoperator. Let us summarize the results of Propositions 2.4, 2.9 and 4.3, Remark 4.4,
and Proposition 4.6:

Theorem 4.7. Let M be a compact Riemannian manifold with boundary and

A : Γ∞(M; E) −→ Γ∞(M; F)

a first order elliptic differential operator. Write

D = ΦFA(ΦE)−1 =: Jx
( d
dx
+ Bx

)
as in (2.16) and (2.17) for suitable isometriesΦE, ΦF .
Let T be an invertible bundle homomorphism from EΣ to FΣ and consider the boundary condition for Ã := A⊕ (−At) given

by

P(T ) =
(
−T Id

)
. (4.14)

Assume furthermore that

J t0T is positive definite, in particular self-adjoint. (4.15)

Then
(a) P(T ) is strongly regular for Ã := A⊕ (−At).
(b) The dual condition is given by P(T dual) = P(−T−1). It is strongly regular for Ãt .
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(c) The operator ÃP(T ) is Fredholm with compact resolvent and

ker ÃP(T ) = Z+,0(A)⊕ Z−,0(A),

coker ÃP(T ) ' Z−,0(A)⊕ Z+,0(A).

(d) Finally, if A and At satisfy weak inner UCP then ÃP(T ) is invertible. Moreover, in this case, the inverse
(̃
AP(T )

)−1
maps

L2s (M, F ⊕ E) continuously to L
2
s+1(M, E ⊕ F) for all s ≥ 0.

Proof. We only have to comment on the very last statement. As in the proof of Proposition 2.4 we infer from the strong
regularity that on

{
f ∈ L2k | P(T )(%f ) = 0

}
we have estimates

1
C
‖f ‖k ≤ ‖f ‖k−1 + ‖̃Af ‖k−1 ≤ C‖f ‖k. (4.16)

Hence Ã−1P(T ) maps L
2
k continuously to L

2
k+1, k ∈ Z+. Now the claim follows from complex interpolation. �

Remark 4.8. We emphasize that the condition (4.15) holds for

T ∈
{
J0, (J t0)

−1, (J0J t0)
−1/2J0

}
. (4.17)

5. Calderón projection from the invertible double

5.1. Sobolev scale

Next we recall the purely functional analytic notion of the Sobolev scale of an operator (cf. [17,18]). For the moment let D
be a closed operator in the Hilbert space H . For s ∈ R let Hs(D) be the completion of

H∞(D) :=
⋂
s≥0

D((D∗D)s/2) (5.1)

with respect to the scalar product

〈x, y〉s := 〈(Id+D∗D)sx, y〉. (5.2)
Obviously H1(D) = D(D) and the scalar product 〈., .〉0 extends to a perfect pairing betweenHs(D) and H−s(D). Furthermore,
the spaces Hs(D) have the interpolation property, that is for s < t and 0 ≤ Θ ≤ 1 we have

HΘt+(1−Θ)s(D) = [Hs(D),Ht(D)]Θ (5.3)
in the sense of complex interpolation theory (cf. e.g. [21, Sec. 4.2]).
Note that D induces bounded linear maps Hs(D)→ Hs−1(D∗). We will mostly use the case |s| ≤ 1.
Since H−1(D) is canonically (C-anti-)isomorphic to the dual of H1(D) it follows from (5.3) that Hs(D), |s| ≤ 1, depends

only on the spacesH0(D) andH1(D); it does not depend on the particular operatorD generating the scale. This independence,
of course, is not true for |s| > 1.
If the condition (4.15) (J t0T > 0) is fulfilled, then in view of (4.4) it is appropriate to put

3

L2s,−T−1(M, F ⊕ E) := Hs((̃AP(T ))
∗), −1 ≤ s ≤ 1. (5.4)

Obviously, for 1/2 < s ≤ 1 we have by (4.7)

L2s,−T−1(M, F ⊕ E) =
{(
f+
f−

)
∈ L2s (M, E ⊕ F) | %f− = −T

−1%f+

}
. (5.5)

The latter definition makes sense also for s > 1 but the equality (5.4) is limited to |s| ≤ 1.
We have by construction L2s,T ⊂ L

2
s , hence % induces bounded linear maps

L2s,−T−1(M, F ⊕ E) −→ L2s−1/2(Σ, FΣ ),
1/2 < s ≤ 1.(

f
g

)
7−→ f �Σ,

(5.6)

Denote by %∗ the L2-dual of %. I.e., %∗ is a bounded linear map

%∗ : L2s (Σ, FΣ ) −→ L2s−1/2,−T−1(M, F ⊕ E), −1/2 ≤ s < 0, (5.7)

such that for ξ ∈ L2s (Σ, FΣ ) and f ∈ L
2
−s+1/2,−T−1

(M, F ⊕ E)we have 〈%∗ξ, f 〉 = 〈ξ, %f 〉.

3 Later on the following considerations will always be used for the dual boundary condition T dual = −T−1 , see (4.7). Therefore we present them already
here for−T−1 instead of T .
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5.2. Induced Poisson type operators and inverses

We use the notation of the previous Section 4. Throughout the whole section we assume (4.15)

J t0T is positive definite, in particular self-adjoint (5.8)

and additionally

[J t0T , B
t
0] is of order 0. (5.9)

Remark 5.1. [J t0T , B
t
0] = 0 for the choice T = (J

t
0)
−1.

If A = At and B0 − Bt0 is of order 0 then [J
t
0T , B

t
0] is of order 0 for all three choices of T in (4.17).

Recall from Remark 4.4 that condition (5.8) implies that the dual boundary condition for Ãt is then given by−T−1.
According to Theorem 4.7 the boundary condition P(T ) is regular for Ã and

ker ÃP(T ) = Z+,0(A)⊕ Z−,0(A) = Z+,0(̃A),

coker ÃP(T ) ' Z−,0(A)⊕ Z+,0(A) = Z−,0(̃A).
(5.10)

The orthogonal projections onto Z+,0(̃A), Z−,0(̃A) are denoted by PZ+,0 (̃A), PZ−,0 (̃A), respectively.
In a collar of the boundary we expand A in the following form, omitting the explicit reference to ΦE,ΦF etc. (cf. (2.17)

and (2.18)),

A = J0
( d
dx
+ B0

)
+ C1x+ C0 (5.11)

with a first order differential operator C1 and x-independent bundle morphism C0 ∈ Γ∞(Σ;Hom(EΣ , FΣ )). Here and in the
sequel, by slight abuse of notation, xwill also denote the operator of multiplication by the function x 7→ x.
To see (5.11) we expand J and B near x = 0

Jx = J0 + J (1)x x = J0 + J
′

0x+ J
(2)
x x

2

Bx = B0 + B(1)x x.
(5.12)

Noting that [ ddx , x] = 1 we find

Jx
d
dx
= J0

d
dx
+ J (1)x x

d
dx

= J0
d
dx
+

(
J (1)x
d
dx

)
x− J (1)x

= J0
d
dx
+

(
J (1)x
d
dx
− J (2)x

)
x− J ′0

JxBx = J0B0 +
(
J0B(1)x + J

(1)
x Bx

)
x,

(5.13)

thus

C1 = J (1)x
d
dx
− J (2)x + J0B

(1)
x + J

(1)
x Bx,

C0 = −J ′0.
(5.14)

The formal adjoint can be written similarly as

At =
(
−
d
dx
+ Bt0

)
J t0 + C̃1x+ C̃0, (5.15)

where again C̃1 is a first order differential operator and C̃0 is an x-independent bundle morphism. More precisely,

C̃1 = C t1 +
1
x

(
[x, C t1] − [x, C

t
1]|x=0

)
,

C̃0 = C t0 + [x, C
t
1]|x=0 = −(J

′

0)
t
+ (J ′0)

t
= 0,

(5.16)

thus C̃0 in fact vanishes. Note that in (5.11) and (5.15) x is intentionally on the right of C1. From this it also becomes clear
that C̃0 = 0 because in the expansion of At =

(
−
d
dx + B

t
x

)
J tx near x = 0 the commutator [x,

d
dx ] does not show up.
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Remark 5.2. We note that if the tangential operator B0 has a self-adjoint leading symbol we may replace B0 by 12 (B0 + B
t
0)

and still write A, At in the form (5.11) and (5.15). This changes, of course, C0 and C̃0.

We fix a real number c > 0 as in Section 3, Convention 3.7 and consider the corresponding family of operators Q±(x)
of Definition 3.8. Then we define the following operators mapping (distributional) sections of E � Σ into (distributional)
sections of E�R+ ×Σ:

(Rξ)(x) :=
(
Q+(x)ξ
Q−(−x)∗ξ

)
, RT ξ :=

(
Id 0
0 −T

)
Rξ . (5.17)

RT will allow us to study the regularity properties of the (generalized) inverse of AP(T ) (cf. (5.27)) and of the Poisson
operator (cf. Definition 5.9). The Poisson operator is a map sending sections on the boundary into the kernel of Ã in the
interior. R and RT do almost have this property. For the constant coefficient operator A = J0

(
d
dx + B0

)
one has indeed

ÃQ+ = 0 by Proposition 3.11(a), (c). Even in the constant coefficient case ÃR is not necessarily 0 but, thanks to (5.9), small
in a certain sense. This will become clear below. Note that RT does not map into the domain of AP(T ). Its role will become
transparent in formula (5.21).
For a cut-off function ϕ ∈ C∞0 (R+)we consider ϕRT as an operator from sections of EΣ = E�Σ to sections of E ⊕ F over

M; note that the range of ϕRT consists of sections vanishing outside a collar of Σ . From Proposition 3.16 we infer that ϕRT
maps L2s (Σ, EΣ ) continuously to L

2
s+1/2,comp(M, E ⊕ F), s ≥ −1/2.

To calculate ÃϕRT we proceed by component:

AϕQ+(x)ξ =
(
(C1x+ C0)ϕ(x)+ J0ϕ′(x)

)
Q+(x)ξ (5.18)

and

AtϕTQ−(−x)∗ξ =
(
(̃C1xT + C̃0T + [Bt0, J

t
0T ])ϕ(x)− J

t
0ϕ
′(x)

)
Q−(−x)∗ξ . (5.19)

The mapping properties of the right hand sides with respect to Sobolev spaces can be deduced from Proposition 3.16.

Definition 5.3. We write S(A, T )ξ for the differential expression Ã applied to ϕRT ξ .

Remark 5.4. The ‘‘differential expression’’ is emphasized here since ϕRT does not map into the domain of ÃP(T ). However,
by duality (cf. Section 5.1) ÃP(T )may also be viewed as a bounded operator L2(M, E⊕F) −→ L2

−1,−T−1
(M, F⊕E). This should

be viewed as applying Ã in the distributional sense.
The distinction between S(A, T ) and ÃP(T ) acting on L2(M, E ⊕ F) is crucial. The difference between the two operators is

(see (5.21)) %∗J0(P+ + P∗−).
S(A, T ) will allow us to control the error (in terms of regularity, not in terms of size) between the approximate Poisson

operator constructed from RT and the true Poisson operator.
S(A, T ) also depends on the choice of c in Convention 3.7, but this will be suppressed in the notation. S(A, T ) is a 2 × 1

column consisting (up to sign) of the right hand sides of (5.18) and (5.19).

We single out an immediate but important consequence of Proposition 3.16:

Proposition 5.5. S(A, T )maps L2s (Σ, EΣ ) continuously to L
2
s+1/2,comp(M, F ⊕ E), s ≥ −1/2.

From the mapping properties of ϕRT we conclude in particular that for ξ ∈ L2s (Σ, EΣ ), s ≥ −1/2, we have ϕRT ξ ∈
L2(M, E ⊕ F) = H0(̃AP(T )). Hence we may apply ÃP(T ) ∈ B(L2(M, E ⊕ F), L2

−1,−T−1
(M, F ⊕ E)) (cf. Section 5.1) to ϕRT .

Recall that this is defined by duality and the result will be different from the differential expression Ã applied to ϕRT ξ .
Indeed for f ∈ D((̃AP(T ))∗) = L2

1,−T−1
(M, F ⊕ E) we find using Green’s formula, (5.8) and the boundary condition

%−f = −T−1%+f ; %±f := %(f±):

〈ϕRT ξ, (̃AP(T ))∗f 〉 = 〈J0P+ξ, %+f 〉 − 〈J t0TP
∗

−
ξ, %−f 〉 + 〈S(A, T )ξ , f 〉

= 〈J0(P+ + P∗−)ξ , %f 〉 + 〈S(A, T )ξ , f 〉

= 〈
(
%∗J0(P+ + P∗−)+ S(A, T )

)
ξ, f 〉. (5.20)

Here P± denote the positive/negative sectorial spectral projections of B0 in the sense of Definition 3.10. Recall P+(Bt0) =
P+(B0)∗.
Thus as an identity in H−1((̃AP(T ))∗) = L2

−1,−T−1(M, F ⊕ E)we arrive at

ÃP(T )ϕRT ξ =
(
%∗J0(P+ + P∗−)+ S(A, T )

)
ξ . (5.21)
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It is important to note that, even if ξ has better regularity than L2
−1/2, this is just an identity in H−1((̃AP(T ))

∗) since ϕRT ξ does
not fulfill the boundary condition for AP(T ). The boundary condition plays no role as long aswe viewϕRT ξ as an element of L2.
With some care we can now basically proceed as in [11, Sec. 3.2 and 3.3]: Firstly we note that by Lemma 3.5 P+ + P∗− is

invertible. Secondly we introduce the (Hilbert space) pseudo-inverse G̃ of ÃP(T ), namely,

G̃f :=

{̃
A−1P(T )f , f ∈ im ÃP(T ),

0, f ∈ im
(̃
AP(T )

)⊥
,

(5.22)

taking account of the possible absence of weak unique continuation. Here Ã−1P(T )f denotes the inverse image in
(
ker ÃP(T )

)⊥
of f under ÃP(T ).
Let

U : L2(M, E ⊕ F) −→ L2(M, F ⊕ E) (5.23)

be the partial isometry which sends Z+,0(̃A) onto Z−,0(̃A) by interchanging the summands in (5.10) and which is zero on the
orthogonal complement. Then

PZ+,0 (̃A) = U
∗U, PZ−,0 (̃A) = UU

∗, (5.24)

and

G̃ = (Id−U∗U)(̃AP(T ) + U)−1. (5.25)

We recall that Z+,0(̃A), Z−,0(̃A) are finite-dimensional and consist of sections which are smooth up to the boundary (cf.
Remark 2.5(1)). Hence U and U∗ are smoothing operators. Furthermore, from %U = 0, %U∗ = 0 we immediately obtain

U∗%∗ = 0, U%∗ = 0. (5.26)

By construction ker ÃP(T ) ⊂ H∞(̃AP(T )). Hence ÃP(T ) + U induces invertible bounded linear maps from Hs(̃AP(T )) onto
Hs−1((̃AP(T ))∗). Consequently, G̃ induces bounded linearmaps fromHs((̃AP(T ))∗) ontoHs+1(̃AP(T )). Togetherwith themapping
properties of %∗ we conclude that G̃%∗ maps L2s (Σ, FΣ ) continuously to L

2
s+1/2(M, E ⊕ F) for−1/2 ≤ s < 0.

G%∗ is the main building block of the Poisson operator (Definition 5.9) which should act at least on L2. Therefore we have
to improve the bound on s, which is now straightforward:
To apply the pseudo-inverse G̃ to (5.21) it is enough that (5.21) is an identity in H−1. Hence we find

G̃%∗ =
(
(Id−PZ+,0 (̃A))ϕRT − G̃S(A, T )

)
(J0(P+ + P∗−))

−1. (5.27)

Theorem 5.6. For −1/2 ≤ s ≤ 1/2 the operator G̃%∗ maps L2s (Σ, FΣ ) continuously to L
2
s+1/2(M, E ⊕ F).

Proof. This follows immediately from Proposition 3.16, (5.18), (5.19), (5.27), and Proposition 5.5. �

5.3. The Calderón projection

From the invertible double, the construction of the Calderón projection is straightforward. During the whole subsection
we assume that the conditions (5.8) and (5.9) are fulfilled.

Definition 5.7. For a section f =
(
f+
f−

)
of E ⊕ F we recall the notation %±(f ) := %(f±) and r±(f ) := f±. Furthermore, we

put for sections f , g of E, F

e+(f ) :=
(
f
0

)
, e−(g) :=

(
0
g

)
. (5.28)

Proposition 5.8. G̃%∗ maps L2s (Σ, FΣ ) to Z
s+1/2
+ ⊕ Z s+1/2− ,−1/2 ≤ s ≤ 1/2.

Proof. In view of Theorem 5.6 it remains to be shown that G̃%∗ maps into the kernel of Ã.
Let f ∈ L2s (Σ, FΣ ),−1/2 ≤ s ≤ 1/2, and a test function ϕ ∈ Γ∞0 (M \ Σ; F ⊕ E) be given. In view of (5.7) we

choose a real number s′ with −1/2 ≤ s′ < 0, s′ ≤ s. Then, by (5.7), we have %∗f ∈ L2
s′−1/2,−T−1

(M, F ⊕ E) and thus

G̃%∗f ∈ Hs′+1/2(̃AP(T )); note s′ + 1/2 ≥ 0. Since ϕ has compact support away fromΣ we certainly have ϕ ∈ H∞
(
(̃AP(T ))∗i

)
.

Hence 〈̃ÃG%∗f , ϕ〉 = 〈̃G%∗f , (̃AP(T ))∗ϕ〉. Viewing the rhs as the dual pairing between Hs′+1/2(̃AP(T )) and H−s′−1/2(̃AP(T )) we
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may also move G̃ to the right and find 〈̃ÃG%∗f , ϕ〉 = 〈%∗f , G̃∗(̃AP(T ))∗ϕ〉, cf. Section 5.1. By construction of the generalized
inverse we have, note again that ϕ ∈ H∞

(
(̃AP(T ))∗

)
⊂ L2(M, F ⊕ E),

G̃∗(̃AP(T ))∗ϕ = (I − U∗U)ϕ. (5.29)

However, U∗Uϕ ∈ H∞(̃AP(T )) and %U∗Uϕ = 0, cf. (5.26). Thus 〈%∗f , (Id−U∗U)ϕ〉 = 〈f , %ϕ〉 = 0.
This calculation shows that if Ã is applied in the weak sense to G̃%∗f one gets 0. But then G̃%∗f ∈ Z s+1/2+ ⊕ Z s+1/2− . �

Definition 5.9. (1) Define the Poisson operator by
K± := ± r±G̃%∗J0.

K± maps L2s (Σ, EΣ ) continuously to L
2
s+1/2(M, E) (L

2
s+1/2(M, F)) for−1/2 ≤ s ≤ 1/2.

(2)

C+ := %+K+, C− := T−1%−K−.

C+ is called the Calderón projection of A. Recall that T is the operator defining the boundary condition for Ã.

K± and C± depend on the pair (A, T ).

We summarize the result of the construction before Theorem 5.6, cf. in particular (5.27):

Proposition 5.10. Let ϕ ∈ C∞0 (R+) and let RT be defined as in (5.17). Furthermore, let P+ := P+(B0), P− := P−(B0) be the
positive respectively negative sectorial spectral projections of B0 as introduced in Definition 3.10, cf. Theorem 3.14.
Then the Poisson operators are given by

K± = ±r±
(
(Id−PZ+,0 (̃A))ϕRT − G̃S(A, T )

)
(P+ + P∗−)

−1, (5.30)

and the Calderón projections are given by (see also (5.6) and (5.7))

C+ =
(
P+ − %+G̃S(A, T )

)
(P+ + P∗−)

−1

C− =
(
P− + T−1G̃S(A, T )

)
(P+ + P∗−)

−1.

(5.31)

Proof. The theorem follows immediately from (5.27). �

Remark 5.11. Note that in the formula for K+ in (5.30) RT can be replaced by R (cf. (5.17)), hence the first summand for K+
is independent of T .
Note that ‘‘our’’ Calderón projection differs from P+,ort = P+(P+ + P∗−)

−1 (cf. Lemma 3.5, (3.5)) by an operator which
regularizes by at least one Sobolev order. So our construction of the invertible double naturally yields a version of the
orthogonalized Calderón projection; if T = (J t0)

−1 then C+ is indeed an orthogonal projection, see the next proposition.
This is in contrast to the classical Calderón projectionP+ of Seeley [9] which is a pseudo-differential operator of order 0

whose leading symbol coincides with that of P+. Hence our C+ differs from the orthogonalized Calderón projectionP+,ort
by an operator which regularizes by at least one Sobolev order. With some more work one can indeed show that C+ is a
pseudo-differential operator which differs fromP+,ort by an operator of order−1.
If B0 = Bt0, or more generally if B0 has a self-adjoint leading symbol, then Proposition 5.10 shows in particular the well-

known fact (cf. [1, Corollary 14.3]) that C+ − P+(B0) is an operator of order−1.
Our approach also reproves a stronger result in the product situation: namely assume that A = J0( ddx + B0) in a collar of

the boundary with B0 = Bt0. Using the following modified version
4 of R

(R′ξ)(x) :=
(

Q+(x)ξ
(J t0T )

−1Q−(−x)∗(J t0T )ξ

)
, R′T ξ :=

(
Id 0
0 −T

)
R′ξ, (5.32)

one then has ÃRT ξ = 0 and hence S(A, T )ξ is supported in suppϕ′ away from the boundary. Then it is not difficult to see
that S(A, T ) is smoothing (cf. [11, Prop 3.15 and Eq. (3.38)]) and thus C+ − P+(B0) is a smoothing operator.
This result was proved by Grubb [23, Prop. 4.1]. Before it was shown by S. Scott [24, Prop. 2.2] for self-adjoint Dirac

operators on spin manifolds in the case ker B0 = 0.
In general, C+ and P+(B0) belong to different connected components of the Grassmannian of pseudo-differential

projections with fixed leading symbol even for symmetric B0, see [1, Remark 22.25]. For operators of Dirac type, however,
C+ can be continuously deformed into a finite range perturbation of P+(B0) in the L2 and the L21/2 operator topology, see
[2, Corollary C.3].

4 The whole discussion after (5.17) can be carried out with this modified R′ , too.



Author's personal copy

806 B. Booß-Bavnbek et al. / Journal of Geometry and Physics 59 (2009) 784–826

Proposition 5.12. C± are idempotents with C+ + C− = Id and

C+(L2s ) = N
s
+
,

C−(L2s ) = T
−1N s

−
,
− 1/2 ≤ s ≤ 1/2.

Furthermore if T := (J t0)
−1 then C∗

±
= C±, i.e., C± act as orthogonal projections on L2. In that case C±� L20 are L

2 extensions of
pseudo-differential projections.

Remark 5.13. In view of the previous proposition and Theorem 4.7 we can always construct ÃP(T ) in such a way that C± are
orthogonal projections (as mentioned, by choosing T := (J t0)

−1). However, even if A is symmetric it may happen that ÃP(T )
is not self-adjoint.
IfA = At and if T = J0(−J20 )

1/2 satisfies (5.9)wemay construct a self-adjoint extension of Ã at the cost of a non-orthogonal
Calderón projection.
Only if J20 = −Id and T = (J

t
0)
−1 then ÃP(T ) is self-adjoint and C± are orthogonal projections.

Proof of Proposition 5.12. We already know from Proposition 5.8 that

C+(L2s ) ⊂ N
s
+
,

C−(L2s ) ⊂ T
−1N s

−
.

We show
(i) N s

+
∩ T−1N s

−
= {0},

(ii) C+ + C− = Id.
This easily implies the first claim.
(i) Let ξ ∈ N s

+
∩ T−1N s

−
. Then there are f ∈ Z s+1/2+ , g ∈ Z s+1/2− with %f = ξ = T−1%g . Then(

f
g

)
∈ ker ÃP(T ) = Z+,0(̃A). (5.33)

Since elements of Z+,0(̃A) vanish on the boundary we infer ξ = 0.
(ii) Let ξ ∈ L2s (Σ, EΣ ),−1/2 ≤ s ≤ 1/2, and f ∈ D

(
(̃AP(T ))∗

)
. Then %+f = −T%−f (cf. Remark 4.4) and exploiting the

self-adjointness of J t0T we obtain

〈(C+ + C−)ξ , J t0%+f 〉 = 〈%+G̃%
∗J0ξ − T−1%−G̃%∗J0ξ, J t0%+f 〉

= 〈%+G̃%∗J0ξ, J t0%+f 〉 − 〈%−G̃%
∗J0ξ, J0J−10 (T

−1)t J t0%+f 〉

= 〈(%+ ⊕ %−)̃G%∗J0ξ, (J t0 ⊕ J0)(%+f ⊕ %−f )〉

= 〈̃G%∗J0ξ, (̃AP(T ))∗f 〉

= 〈%∗J0ξ, f 〉 = 〈ξ, J t0%f 〉. (5.34)

This proves (ii).
Finally, let T = (J t0)

−1 and pick ξ ∈ N0
+
, η ∈ T−1N0

−
. Choose f ∈ Z1/2+ with %+f = ξ and g ∈ Z

1/2
− with T−1%+g = η. Then

Green’s formula Lemma 2.2 gives

〈ξ, η〉 = 〈J0%+f , %+g〉 = −〈Af , g〉 + 〈f , Atg〉 = 0. (5.35)

Hence N0
+
⊥ T−1N0

−
and we are done.

To prove the pseudo-differential property we recall from [9, Appendix] Seeley’s construction of the Calderón projection
which always yields a pseudo-differential projection Ps

+
onto N s

+
. By orthogonalization, cf. Lemma 3.5, we obtain an

orthogonal pseudo-differential projection onto N s
+
which must coincide with C+ for s = 0. �

6. The General Cobordism Theorem

In the preceding sections, we gave a newdefinition of the Calderón projection.We achieved a canonical construction, free
of extensions and other choices, and in greatest generality. Our main goal with the new definition was a construction which
admits to follow precisely a continuous variation of the coefficients of an elliptic differential operator up to the induced
variation of the Calderón projection. We shall return to this application below in Section 7.
An added bonus of our construction of the Calderón projection is that it leads immediately, and somewhat surprisingly, to

a simple proof and a wide generalization of the classical Cobordism Theorem. We shall now give five different formulations
of the Cobordism Theorem and show that the first claim (I), expressed in the language of symplectic functional analysis,
follows immediately from our construction of the Calderón projection, and that the four other definitely non-trivial claims
(II)–(V) are easily derived from the first claim. Put differently, we shall show that the Cobordism Theorem and its various
generalizations and reformulations are an almost immediate consequence of our construction of the Calderón projection.
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In this sectionwe shall assume that our first order elliptic operatorA over the smooth compactmanifoldM with boundary
Σ is formally self-adjoint, i.e., A = At . For convenience we shall write B0 := B(0) and J0 := J(0) as in the previous sections.

6.1. The General Cobordism Theorem

The main result of this section is

Theorem 6.1 (The General Cobordism Theorem). Let A : Γ∞(M; E)→ Γ∞(M; E) be a first order formally self-adjoint elliptic
differential operator on a smooth compact manifold M with boundary acting between sections of the vector bundle E. We assume
that (5.9) is satisfied5 by T = J0(−J20 )

−1/2

Then we have the following results:
(I) Let C± denote the Calderón projections introduced in Definition 5.9, constructed from the invertible double with

T ∈
{
(J t0)
−1, J0, J0(−J02)−1/2

}
. Then the range of C+ is a Lagrangian subspace of the strongly symplectic Hilbert space(

L2(Σ, EΣ ),−J0
)
. Note that im C+ is independent of T . Moreover, im C− is also Lagrangian, if T := J0(−J02)−1/2.

(II) We have sign iP0J0 � W0 = 0. Here W0 denotes the (finite-dimensional) sum of the generalized eigenspaces of B0
corresponding to purely imaginary eigenvalues and P0 denotes the orthogonal projection onto W0; in general J0 will not map
W0 to itself.
If B0 = B0t , then J0 anticommutes with B0 and we have sign iJ0�ker B0 = 0.
(III)Under the same additional assumption, i.e., for B0 = B0t , the tangential operator B0 is oddwith respect to the grading given

by the unitary operator α := iJ0(−J02)−1/2 and hence splits into matrix form B0 =
(
0 B−

B+ 0

)
with respect to the±1-eigenspaces

of α. The index of B+ : ker(α − 1) −→ ker(α + 1) vanishes.
(IV)While we do not know whether C+ is a pseudo-differential operator for T = J0(J20 )

−1/2, we can prove the following:
There exists a pseudo-differential projection P over Σ such that ker P is a Lagrangian subspace of the strongly symplectic

Hilbert space
(
L2(Σ, EΣ ),−J0

)
, and (ker P, im C+) is a Fredholm pair of closed subspaces of L2(Σ, EΣ ).

(V) There exists a self-adjoint pseudo-differential Fredholm extension AP .

In the following, we shall first give our view of elements of symplectic functional analysis. Based on that, we shall
prove the preceding theorem as indicated above, i.e., we shall prove (I) directly from our new construction of the Calderón
projection, then the implications (I) H⇒ (II) H⇒ (III), and then (II) H⇒ (IV), (V).
To us, our order of proving Theorem 6.1 is themost simple and natural, beginningwith and footing on claim (I). However,

at the end of this section we shall explain that one can reverse the order of the proof. In particular, we shall show that (V)
was essentially proved by Ralston in 1970 in [15] and that (I) can be derived from (V) independently.

Remark 6.2. (1) An alternative reading of (III) is the following: the index of any elliptic first order differential operator C
with smooth coefficients over a smooth closedmanifoldΣ must vanish, if the block operator B :=

(
0 C t

C 0

)
can bewritten as

the tangential operator of an elliptic formally self-adjoint operator A on a smooth compact manifoldM with ∂M = Σ . That
is a new generalization of the illustrious Cobordism Theorem for Dirac operators on spin manifolds which played a decisive
role for the first proof of the Atiyah-Singer Index Theorem (1963). Since then, it was slightly generalized and an impressive
variety of different proofs were given. Our point here is to show that the Cobordism Theorem has nothing to do with the
specific form of Dirac type operators but generalizes to all elliptic formally self-adjoint differential operators of first order.
(2) To some extent, our approach is motivated by [18, Section 1.C], and is similar to C. Frey’s [25, Section 3.4]. The main

difference between our approach and Frey’s is that we reduce the arguments a bit more to purely algebraic reasoning. That
permits us to get through, also in the general case, not assuming Dirac type, i.e., not assuming constant coefficients near the
boundary in normal direction - as Frey does, as does all the other literature on cobordism invariance.
(3) From a geometric point of view, the assumption of constant coefficients may appear sufficiently general for many

applications, justified for index problems by K -theory and homotopy invariance of the index, and sufficiently challenging
for constantly attracting ever new andmore simple andmore ingenious proofs of the cobordism invariance of the index over
the last 50 years. For a recent example and summary of the highlights, we refer to Braverman [26]. However, from an analysis
point of view, it is not natural to assume constant coefficients near the boundary. Moreover, it seems more than timely that
the pilot work by Ralston, admitting general coefficients and so showing away for our General Cobordism Theorem, is taken
into account in the analysis and topology literature.

6.2. Elements of symplectic functional analysis

Let us briefly summarize the basic set-up of symplectic functional analysis (see, e.g., [7,27] or [28]).

5 As noted in Remark 5.1 this is the case if B0 − Bt0 is of order 0.
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6.2.1. Basic definitions
LetH be a real or complex Hilbert space. Aweakly symplectic form onH is a non-degenerate Hermitian sesquilinear form

ω onH . Sesquilinearmeans, following the tradition inmathematical physics,ω(λx, y) = λω(x, y), ω(x, λy) = λω(x, y), and
Hermitian means ω(y, x) = −ω(x, y) for x, y ∈ H . Finally, non-degeneracy means that the map H 3 x 7→ ω(x, ·) ∈ H∗ is an
injective continuous linear map; it then follows that the range of this map is dense.
The pair (H, ω) is called a (complex) weakly symplectic Hilbert space. Since ω is continuous there is a unique skew-

symmetric injective map γ ∈ B(H) such that

ω(x, y) = 〈γ x, y〉, x, y ∈ H. (6.1)

Here, as before,B(H) denotes the space of bounded endomorphisms of H .
For a subspace λ ⊂ H we have

λω := {x ∈ H | ω(x, y) = 0 for y ∈ λ} =
(
γ λ
)⊥
, (6.2)

hence λ is Lagrangian (i.e. λω = λ) if and only if λ =
(
γ λ
)⊥
.

The pair (H, ω) is called strongly symplectic, if the injective operator with dense range H 3 x 7→ ω(x, ·) ∈ H∗ is in fact
surjective and hence has a bounded inverse. Equivalently, the skew-symmetric operator γ which implementsω is invertible.
In a strongly symplectic Hilbert space we may choose an equivalent scalar product 〈·, ·〉γ such that the operator which

implements ω with respect to 〈·, ·〉γ is the unitary reflection γ (−γ 2)−1/2: namely

ω(x, y) = 〈γ x, y〉 = 〈(−γ 2)1/2γ (−γ 2)−1/2x, y〉 = 〈γ (−γ 2)−1/2x, y〉γ (6.3)

with 〈ξ, η〉γ := 〈(−γ 2)1/2ξ, η〉.
The scalar product 〈·, ·〉γ is equivalent to 〈·, ·〉 in the sense that there is a constant C such that

C−1〈x, x〉 ≤ 〈x, x〉γ ≤ C〈x, x〉, x ∈ H. (6.4)

In view of (6.3) the operator which implements ω with respect to 〈·, ·〉γ is the unitary reflection γ (−γ 2)−1/2.
Finally, we comment on isomorphisms: let R : (H1, ω1) −→ (H2, ω2) be an invertible bounded linear map which is

symplectic but not necessarily isometric. Ifωj(·, ·) = 〈γj·, ·〉, j = 1, 2with skew-symmetric γj then γ1 = R∗γ2R, in particular
(H1, ω1) is strongly symplectic if and only if (H2, ω2) is.

Remark 6.3. For simplicity, we assume from now on that all vector spaces, Hilbert spaces, and symplectic spaces are
complex. Note, however, that our definition of symplectic Hilbert space does not require the existence of a Lagrangian
subspace (as opposed to e.g. [28, Sec. 6]). Indeed, it might be that there are no Lagrangian subspaces at all. Take, e.g., H := C
and ω(x, y) := ixy; see also [28, Rem. 6.13].

6.2.2. Algebraic observations
Dealing with elliptic problems on manifolds with boundary naturally leads to symplectic Hilbert spaces, see below

Section 6.2.4. However, keeping the arguments on a purely algebraic level where possible may make proofs more
transparent. Moreover, Sobolev chains of symplectic Hilbert spaces are equipped with a variety of non-equivalent norms
but compatible symplectic forms. For such applications it is nice to establish results independent of topological choices.
So, let (H, ω) be a symplectic vector space; i.e., no boundedness of the symplectic form is assumed.
First we note that the quadratic form x 7→ iω(x, x) has well-defined signature, if H is finite-dimensional. In that case we

have

sign iω = 0 ⇐⇒ ∃λ ⊂ H Lagrangian subspace, (6.5)

cf. Remark 6.7(1).
Next,we recall a simple algebraic observation, taken from [27, Lemma1.2]. Here, and in the proposition further below, the

point is to establish the Lagrangian property for isotropic subspaces via a purely algebraic Fredholm pair property, i.e., finite-
dimensional intersection and finite codimension of sum; no closedness is assumed. The algebraic Fredholm pair property
can be considered as the natural generalization of the well-known definition of Lagrangian subspaces in finite dimension as
isotropic subspaces ofmaximal dimension.

Lemma 6.4. Let (H, ω) be a symplectic vector space with transversal subspaces λ,µ, i.e., λ + µ = H, λ ∩ µ = 0. If λ,µ are
isotropic subspaces, then they are Lagrangian subspaces.

Proof. From linear algebra we have

λω ∩ µω = (λ+ µ)ω = {0},

since λ+ µ = H . From

λ ⊂ λω, µ ⊂ µω (6.6)
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we get

H = λω ⊕ µω. (6.7)

Since H = λ⊕ µwe conclude from (6.6) and (6.7) that λ = λω and µ = µω . �

The preceding result can be generalized:

Proposition 6.5. Let (H, ω) be a symplectic vector space with isotropic subspaces λ,µ. If (λ, µ) forms an algebraic Fredholm
pair with ind(λ, µ) ≥ 0, then λ and µ are Lagrangian subspaces of H and we have

ind(λ, µ) = 0, (λ+ µ)ω = λ ∩ µ, and (λ+ µ)ωω = λ + µ.

For the proof we refer to [27, Proposition 1.13a].

6.2.3. Symplectic reduction
We recall a lemma on symplectic reduction from [28, Prop 6.12] (see also [29, Proposition 2.2] for a generalization to

weakly symplectic Hilbert spaces):

Lemma 6.6. Let (H, ω) be a strongly symplectic Hilbert space, λ ⊂ H a Lagrangian subspace and W ⊂ H a closed co-isotropic
subspace. Assume that λ+Wω is closed. Then the form

ω̃(x+Wω, y+Wω) := ω(x, y), x, y ∈ W

is a strongly symplectic form on W/Wω . Moreover, the symplectic reduction of λ by W

RedW (λ) :=
(
(λ+Wω) ∩W

)
/Wω

⊂ W/Wω (6.8)

is a Lagrangian subspace of W/Wω .

Remark 6.7. (1) Without the assumption λ+Wω closed ω̃ will still be a non-degenerate sesquilinear form on the quotient
W/Wω . However, in that case it might be that there are no Lagrangian subspaces at all, as pointed out in Remark 6.3. If
the form ω̃ is written as ω̃(ξ , η) = 〈γ̃ ξ , η〉 with a suitable scalar product and a skew-symmetric unitary operator γ̃ , then
the existence of a Lagrangian subspace is equivalent to the fact that the ±i eigenspaces of γ̃ have the same dimension,
corresponding to (6.5).
(2) In [28, Prop. 6.12] the Lemmawas formulated under seeminglymore restrictive assumptions. Let us give an equivalent

formulation of the Lemma which clarifies the link to [28] and which will be useful below:

Lemma 6.8. Let (H, ω), λ ⊂ H andW ⊂ H be as in Lemma 6.6. Let γ be the invertible skew-symmetric operator in H such that
ω(·, ·) = 〈γ ·, ·〉.
Let W0 ⊂ W be a closed subspace such that W = W0 ⊕ Wω (the sum is not necessarily orthogonal). Furthermore, let P0

denote the orthogonal projection onto W0 and let Q0 denote the projection alongWω onto W0.
Thenω�W0 = 〈P0γ ·, ·〉 is a strongly symplectic form onW0, Q0(λ∩W ) is a Lagrangian subspace of (W0, ω) and the quotient

map π : W0 −→ W/Wω is a bounded invertible symplectic linear operator.

Proof. Let us briefly sketch the proof of this and of the previous lemma. First as remarked at the beginning of this subsection
we may choose a scalar product such that the corresponding γ is unitary. Consider first W0 = (Wω)⊥ = W ∩ γW . [28,
Prop. 6.12] and its proof show that (W0, ω) is symplectic and that Q0 = P0 maps λ ∩W onto a Lagrangian subspace ofW0.
Furthermore, since W0 = (Wω)⊥ in this case, the quotient map π �W0 : (W0, ω) → (W/Wω, ω̃) is a unitary symplectic
isomorphism. This proves that (W/Wω, ω̃) is indeed a strongly symplectic Hilbert space and that RedW (λ) is a Lagrangian
subspace. Hence Lemma 6.6 is proved.
To prove Lemma 6.8 for an arbitrary closed subspace W̃0 ⊂ W withW = W̃0 ⊕Wω we only have to note that we have

the following commutative diagram

W̃0
π̃

$$IIIIIIIII
PW0

��
W0

QW̃0

OO

π // W/Wω

(6.9)

where π, π̃ denote the quotient map W −→ W/Wω restricted to W0, W̃0 respectively, PW0 denotes the orthogonal
projection ontoW0 and QW̃0 denotes the projection alongW

ω onto W̃0. π, π̃ are symplectic bounded invertible maps. From
this, all remaining claims follow. �
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6.2.4. The von-Neumann quotient of all natural boundary values
We recall the basic findings about self-adjoint extensions and the relation between Fredholm Lagrangian pairs in the

von-Neumann quotient D(Amax)/D(Amin) =: β(A) and in L2(Σ, EΣ ):
Let Am be a closed symmetric operator with domain Dm in a Hilbert space H . Following von Neumann and the Russian

tradition of M. Krein, Vishik, and Birman, the operator Am defines a (strongly) symplectic Hilbert space β(Am) := Dmax/Dm
of natural boundary values. Here Dmax denotes the domain of A∗m. The Hilbert space structure on β(Am) is given by the graph
scalar product, and the symplectic form is given by Green’s form

ω(x+ f , y+ g) := 〈Ax, y〉 − 〈x, Ay〉 for x, y ∈ Dmax, (6.10)

independent of the choice of f , g ∈ Dm (see our Eq. (2.11) and [7, Section 3]). It is well known that there is a one-to-one
correspondence between

• domains Dm ⊂ D ⊂ Dmax which yield a self-adjoint operator AD := A∗m�D
• and the Lagrangian subspaces λ of β(Am)

by

D 7→ λ := D/Dm and λ 7→ D := {x ∈ H | x+ Dm ∈ λ}.

In our situation, we set H := L2(M, E) and consider Am = Amin = A� D(Amin) with Dm = D(Amin) = L21,0(M, E), the
closure of Γ∞0 (M \ Σ; E) in L

2
1(M, E) as in Remark 2.5. Then β(Am) naturally becomes a subspace of L

2
−1/2(Σ, EΣ ). From

now on we will use this identification and view β(Am) as a subspace of L2−1/2(Σ, EΣ ).
To discuss self-adjoint extensions by boundary conditions given by pseudo-differential projections, it is helpful to

consider two other symplectic spaces: the strongly symplectic Hilbert space L2(Σ, EΣ )with symplectic form induced by−J0
and theweakly symplecticHilbert space L21(M, E)/L

2
1,0(M, E)with symplectic form inducedbyGreen’s form, or, equivalently,

by −̃J0, as well. Here we identify the quotient with the subspace L21/2(Σ, EΣ ) ⊂ L
2(Σ, EΣ ) of sections over the boundary,

but with different scalar product 〈·, ·〉L21/2(Σ,EΣ ), hence J̃0 = (Id+|B|)−1J0. Note that J̃0 is not invertible for dimM > 1, as
explained in [27, Remark 1.6b].
The relations between the Lagrangian subspaces of these three different symplectic spaces are somewhat delicate because

neither L2(Σ, EΣ ) ⊂ β(Am) nor L2(Σ, EΣ ) ⊃ β(Am). Wemay, however, recall a very general result from [30, Theorem 1.2a]:
Let β and L be strongly symplectic Hilbert spaces with symplectic forms ωβ and ωL, respectively. Let

β = β− ⊕ β+ and L = L− ⊕ L+ (6.11)

be direct sum decompositions by transversal (not necessarily orthogonal) pairs of Lagrangian subspaces. We assume that
there exist continuous, injective mappings

i− : β− −→ L− and i+ : L+ −→ β+ (6.12)

with dense images and which are compatible with the symplectic structures, i.e.,

ωL(i−(x), a) = ωβ(x, i+(a)) for all a ∈ L+ and x ∈ β−. (6.13)

Let λ0 be a fixed Lagrangian subspace of β . We consider the Fredholm Lagrangian Grassmannian of λ0
FLλ0(β) := {µ ⊂ β | µ Lagrangian subspace and (µ, λ0) Fredholm pair}.

The topology ofFLλ0(β) is defined by the operator norm of the orthogonal projections onto the Lagrangian subspaces.

Theorem 6.9 (Booß-Bavnbek, Furutani, Otsuki). Under the assumptions (6.11), (6.12), and (6.13), we have a natural continuous
mapping

τ : FLβ−(β) −→ FLL−(L), µ 7−→ µ ∩ L,

where β and L are identified with subspaces of β+ ⊕ L−.

The following splitting lemmata are of independent interest. Note that we do not claim a direct sum decomposition
of β(A) into Lagrangian subspaces for now. Later, this will be a consequence of our Theorem 6.1. See also the recent [31,
Section 1]. In the following lemma, we could use our C+ instead of using Seeley’s Calderón projectionP+. All these direct
sum decompositions of β(A) are different, but equally valid, see Lemma 6.11 and Remark 6.12.

Lemma 6.10. Let A be an elliptic formally self-adjoint first order differential operator on a compact smooth manifold M with
smooth boundaryΣ and let P+ denote Seeley’s corresponding (pseudo-differential) Calderón projection. Then the space β(A) :=
D(Amax)/D(Amin) can be described explicitly as the direct sum

β(A) = im(P+,−1/2)⊕ im(Id−P+,1/2), (6.14)

whereP+,s denotes the extension/restriction of the pseudo-differentialP to L2s (Σ, EΣ ).
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Proof. (1) First we show the inclusion im(P+,−1/2) ⊂ β(A). Let f belong to im(P+,−1/2). Then there exists f1 ∈
L2
−1/2(Σ, EΣ ) with f = r+G̃ρ

∗J0f1, where G̃ denotes Seeley’s ‘inverse on the double’ (which in contrast to our G̃ is not
canonically defined) and ρ∗ Seeley’s dual of the trace (which, once again, in contrast to our ρ∗ is neither canonically defined).
We observe that g := G̃ρ∗J0f1 ∈ D (̃Amax) with Ãg = 0. Note that this is Seeley’s Ã which is not canonical and therefore
not suitable for discussing the parameter dependence, but has the advantage of delivering a pseudo-differential Calderón
projection. So f = ρr+g with r+g ∈ D(Amax). Hence f ∈ β(A).
(2) Next we observe that L21/2(Σ, EΣ ) ⊂ β(A) since L

2
1(M, E) ⊂ D(Amax).

(3) Together with argument (1) this implies

im(P+,−1/2)⊕ im(Id−P+,1/2) ⊂ β(A).

(4) To show the equality, we notice β(A) ⊂ L2
−1/2(Σ, EΣ ). Applying Seeley’s result

P+,s +P−,s = Id (6.15)

for s = −1/2 we can write each f ∈ β(A) in the form

f = f1 + f2, where f1 ∈ im(P+,−1/2) and f2 ∈ im(P−,−1/2).

By (1), f1 ∈ β(A), so f2 = f − f1 ∈ β(A), i.e., there exists a g ∈ D(Amax) such that f2 = ρg . NoteP+f2 = 0 by the splitting
(6.15). Applying one version of Gårding’s inequality (see, e.g., [1, Chapter 18])

‖g‖L21(M,E) ≤ C
(
‖g‖L2(M,E) + ‖Ag‖L2(M,E) + ‖P+ρg‖L21/2(Σ,EΣ )

)
, (6.16)

we obtain g ∈ L21(M, E) and so f2 = ρg ∈ L
2
1/2(Σ, EΣ ), i.e., f2 ∈ im(P−,1/2). �

Lemma 6.11. Let P,Q be two pseudo-differential projections with the same leading symbol. Then

im(P−1/2)⊕ im(Id−P1/2) = im(Q−1/2)⊕ im(Id−Q1/2). (6.17)

Proof. So, let f ∈ im(P−1/2)⊕ im(Id−P1/2). Then there are ϕ ∈ L2−1/2(M, E), ψ ∈ L
2
1/2(M, E) such that

f = Pϕ + (I − P)ψ = Qϕ + (I − Q )ψ + (P − Q )(ϕ − ψ)︸ ︷︷ ︸
=:h

.

By assumption P − Q is a pseudo-differential operator of order≤ −1, hence h ∈ L21/2(M, E) and thus f = Q (ϕ + h)+ (I −
Q )(ψ + h)with ϕ + h ∈ L2

−1/2(M, E) and ψ + h ∈ L
2
−1/2(M, E), proving the claim. �

Remark 6.12. By combining the two preceding lemmata we obtain the useful formula

β(A) = im(P−1/2)⊕ im
(
(Id−P)1/2

)
(6.18)

for all pseudo-differential projections P with σ0(P) = σ0(P+) whereP+ denotes Seeley’s (pseudo-differential) Calderón
projection.
Eq. (6.18) generalizes a previous result in [32, Proposition 7.15] obtained for the spectral Atiyah-Patodi-Singer projection

P := P≥(B0). There, the von Neumann space β(A)was expressed as the direct sum of

• the L21/2(Σ, EΣ )-closure of the linear span of the negative eigenspaces of the tangential operator B0 with
• the L2

−1/2(Σ, EΣ )-closure of the linear span of the nonnegative eigenspaces of B0
in the special case that the operator A is of Dirac type in product metric near the boundary (in particular, that A has a

formally self-adjoint tangential operator B0 and constant coefficients in normal direction near the boundary).

6.3. Proof of Theorem 6.1

As announced above, we prove the five claims successively.

6.3.1. Application of the new construction of the Calderón projection

Proof of (I). We recall that (u, v) 7→ ω(u, v) := 〈−J0u, v〉 is a symplectic form for the Hilbert space
(
L2(Σ, EΣ ), 〈·, ·〉

)
.

It is strong since J0 is a bundle isomorphism. Then the range im(C+) = N0+ is an isotropic subspace because of Green’s

formula (A.13), applied to the kernel of the formally self-adjoint operator A. Here we use T := J0
(
−J02

)−1/2
to construct

C±, see Remark 5.13. Then also im(C−) = T−1(N0+) is an isotropic subspace since the chosen T is clearly symplectic. By
Proposition 5.12, we have C+ + C− = Id, so N0+ and T

−1(N0
+
) make a pair of transversal isotropic subspaces of L2(Σ, EΣ ).

Then (I) follows by applying Lemma 6.4. �
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Remark 6.13. We notice that the splitting P+ + P− = Id in Seeley, [33, Lemma 5] does not provide two transversal
Lagrangian subspaces but only an isotropic range of P+ with the preceding argument in the case of symmetric A. The
problem is that even for symmetric A Seeley’s continuation into a collar and further over the double does not preserve
symmetry in general.

6.3.2. Stability arguments
Before deriving (II)we shall address stability aspects of the issue.
We see at once that any formally self-adjoint operator of the form

A := −jt
d
dt
−
1
2

(
d
dt
jt

)
− bt , jt invertible

on the unit interval t ∈ [0, 1] admits self-adjoint boundary conditions. The symplectic form on the space of boundary
values is given by J := j0⊕ (−j1)with respect to the reversed orientation at the ends of the interval. By continuity, we have
sign j0 = sign j1. So, sign iJ = 0. (Note that there is no tangential operator in the 1-dimensional case).
In higher dimension, a similar continuity argument does not work in general.
The following lemma yields the stability of the signature of the almost complex form Jt on the nullspace ker Bt under

variation of the parameter t . It can be considered as an index stability statement (and certainly can be proved also that way
instead of the proof given below).

Lemma 6.14. Let (H, 〈·, ·〉) be a Hilbert space and (St) and (Jt) be two continuous families of bounded invertible operators on
H, t ∈ [0, 1]. Assume that all St are positive definite. Let (Bt) be a continuous family of closed Fredholm operators. We assume
that all iJt and Bt are self-adjoint with respect to the newmetric 〈x, y〉t := 〈Stx, y〉. Moreover, we assume that all Jt have bounded
inverses, and JtBt = −Bt Jt for all t. Then we have

sign(iJt�ker Bt) = constant. (6.19)

Proof. We divide the proof into three steps.
Step 1.We can assume that St = Id. Indeed, denote by A∗t the adjoint operator of Awith respect to the scalar product induced
by St . Then we have

〈Stx, A∗t y〉 = 〈StAx, y〉.

So A∗t = S−1t A∗St . Set

J ′t := S
1
2
t JtS

−
1
2

t , B′t := S
1
2
t BtS

−
1
2

t .

Then iJ ′t and B
′
t are self-adjoint, J

′
tB
′
t = −B

′
t J
′
t , and

sign(iJt�ker Bt) = sign(iJ ′t�ker B
′

t).

So we can assume St = Id.
Step 2. We reduce to the finite-dimensional case: For each t ∈ [0, 1], there is a small ε > 0 such that [−ε, ε] ∩ σ(Bt) ⊂ {0}.
Then for s close to t ,±ε 6∈ σ(Bs). Let Dε := {z ∈ C | |z| < ε}. Define

Ps := −
1
2π i

∫
∂Dε
(Bs − z Id)−1dz.

Then Ps is a continuous family of orthogonal projections of finite rank, and PsJsPs, PsBsPs : im Ps → im Ps satisfy our
assumptions, and PtBtPt = 0.
Step 3. Since in the finite-dimensional case sign(iJt) is constant, it suffices to prove the following
Claim. Let H be finite-dimensional. Then we have sign(iJt) = sign(iJt�ker Bt).
In fact, let Vt denote the orthogonal complement of ker Bt . Then both ker Bt and Vt are invariant subspaces of Jt . Since on

Vt , Bt is invertible, and since we have−Jt = B−1t JtBt , we have sign(iJt�Vt) = 0. Hence our claim follows. �

6.3.3. Proof of (II), (III)
We now proceed to show the General Cobordism Theorem (II).
We exploit the formal self-adjointness of A and choose, in a collar of the boundary, the normal form

A = Jx
( d
dx
+ Bx

)
+
1
2
J ′x

of Eq. (2.21) with the relations J∗ = −J , JB = −Bt J . The relation JB = −Bt J has consequences for the positive/negative
sectorial spectral subspaces with regard to the natural symplectic structure on L2(Σ, EΣ ), see the proof of Lemma 6.15.
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Fig. 4. Three contours encircling all eigenvalues in the right half plane, on the imaginary axis, and all eigenvalues in the left half plane, respectively.

Similarly to Fig. 1 we now choose contours Γ<,Γ> and Γ0 as follows (see Fig. 4): Γ< encircles all eigenvalues in the left
half plane, Γ> encircles all eigenvalues in the right half plane, and Γ0 encircles all eigenvalues on the imaginary axis iR. The
corresponding spectral projections are denoted by P<(B0), P>(B0) and P0(B0). In view of Theorem 3.14, these are pseudo-
differential operators of order 0, andhence bounded, and as closed idempotents they dohave closed range (see Section 3.2.1).
P0(B0) is of finite-rank and hence a smoothing operator with range being the sum of the generalized eigenspaces of B0 to
imaginary eigenvalues. We therefore have a direct sum decomposition

L2(Σ, EΣ ) = im P<(B0)⊕ im P0(B0)⊕ im P>(B0) =: W< ⊕W0 ⊕W>. (6.20)

In particular, (W>,W<) is a Fredholm pair of closed subspaces of L2(Σ, EΣ ). Recall that the closedness ofW<,W> and the
finite codimension ofW< +W> in L2(Σ, EΣ ) imply thatW< +W> is closed, see [32, Remark A.1].

Lemma 6.15. W>,W< are isotropic subspaces with Wω
> = W0 ⊕W> and Wω

< = W< ⊕W0.

Proof. This is a consequence of the relation J0B0 = −Bt0J0 which implies for ξ ∈ L
2
1(Σ, EΣ ) (cf. Section 3.2)

J0P>(B0)ξ =
1
2π i

∫
Γ>

λ−1J0(λ− B0)−1dλ B0ξ

=
1
2π i

∫
Γ>

λ−1(λ+ Bt0)
−1dλ Bt0J0ξ

= P<(Bt0)J0ξ . (6.21)

Then

Wω
> = (J0W>)

⊥
= (J0 im P>(B0))⊥ = im P<(Bt0)

⊥

= ker P<(Bt0)
∗
= ker P<(B0) = W0 ⊕W>.

The other claim is proved analogously. �

Lemma 6.15 is now the key to the proofs of the remaining implications in this paragraph. Before proceeding, we note:

Lemma 6.16. Let P and Q be bounded idempotents in a Banach space H, and P − Q compact. Then the pair (ker P, imQ ) is
Fredholm.

Proof. Consider the operator

R := QP + (Id−P)(Id−Q ) = Q (Q + P − Q )+ (Id−Q + Q − P)(Id−Q )
= Q + Q (P − Q )+ Id−Q + (Q − P)(Id−Q )
= Id+Q (P − Q )+ (Q − P)(Id−Q ).

Since P−Q is compact, R is Fredholm. Since (ker P∩ imQ ) ⊂ ker R and (ker P+ imQ ) ⊃ im R, we have dim(ker P∩ imQ ) <
+∞ and dim(H/(ker P + imQ )) < +∞. Thus the pair (ker P, imQ ) is algebraically Fredholm, and hence Fredholm, since
the spaces ker P, imQ are closed. �

Proof of (I)H⇒ (II). Let P+ denote Seeley’s corresponding (pseudo-differential) Calderón projection. Then we have
im C+ = imP+. Since the difference between P+ and P>(B0) is of order -1, we have that (imP+,W<) is a Fredholm
pair by the preceding argument (and finite-dimensional perturbation). Hence imP+ ⊕W< is a closed subspace.
By (I), imP+ is a Lagrangian subspace. Applying Lemma 6.8 to the co-isotropic subspaceWω

< = W0⊕W< we obtain that

RedWω< (imP+) ' π(RedWω< (imP+)) ⊂ W0
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is a Lagrangian subspace of

Wω
</W

ωω
< = (W< +W0)/W< ' W0.

So, the finite-dimensional symplectic Hilbert space
(
W0, 〈iP0J0·, ·〉

)
has a Lagrangian subspace. Therefore

sign iP0J0�W0 = 0. �

We assume B0 = B0t and put α = −iJ0(−J02)−1/2. Then the special case of claim (II) of Theorem 6.1 follows. Moreover,
we have under that assumption:

Proof of (II)⇔ (III). We follow the conventional lines and refer, e.g., to [1, Theorem 21.5] with the immediate
modifications: Note that α is a grading which thanks to B0 = B0t and B0J0 = −B0t J0 anticommutes with B0, making B0 an
odd operator. More precisely, let (EΣ )± denote the positive (negative) eigenspace of α. Under the direct sum decomposition
EΣ = (EΣ )+⊕(EΣ )−, the operator B0 takes the form B0 =

(
0 B−

B+ 0

)
, where B− := (B+)t and B+ : ker(α−1)→ ker(α+1) .

Then we have ker B0 = ker B+ ⊕ ker B−, and the positive (negative) eigenspace of iJ0|ker B0 is ker B
± . That proves

sign(iJ0|ker B0) = ind B
+. �

6.3.4. Proof of (II)H⇒ (IV), (V)
To show that (IV) and (V) are trivial consequences of (I), one is tempted to set P := C+. However, in Proposition 5.12 we

have established that C+ is the L2 extension of a pseudo-differential projection only for the boundary operator T := (J t0)
−1,

contrary to our assumption T := J0(−J20 )
−1/2 in (I) for achieving that ker C+ = im C− becomes a Lagrangian subspace of

L2(Σ, EΣ ). To prove that C+ is also pseudo-differential for the last choice of T would require applyingmore advanced elliptic
boundary value theory. Instead of that, we give a simple construction of the wanted P as a perturbation of the positive
spectral projection P>(B0) by a suitable finite-rank operator, and let simple symplectic analysis do the remainder of the
work:

Proof of (II)H⇒ (IV), (V). The vanishing of the signature sign iP0J0 � W0 on the finite-dimensional space W0 implies the
existence of a transversal pair of Lagrangian subspaces (λ, µ) ⊂ W0. The pair

(
W> + λ,W< + µ

)
is a transversal pair of

Lagrangian subspaces of L2(Σ, EΣ ). Denote by P the projection of L2(Σ, EΣ ) ontoW> + λ. Then P is a zeroth order pseudo-
differential operator, and P−P+ is of−1 order. Then (ker P, imP+) is a Fredholm pair, and ker P = W<+µ is a Lagrangian
subspace of L2(Σ, EΣ ). Since im C+ = imP+, (IV) follows.
Now we consider (V). By Remark 6.12 we have β(A) = im P−1/2 ⊕ im(Id−P1/2). Clearly im P−1/2 and im(Id−P1/2) are

isotropic subspaces of β(A). By Lemma 6.4, they are Lagrangian subspaces. Then the extension AP is a self-adjoint extension.
Fredholmness follows from leading symbol consideration. �

6.4. Alternative routes to the General Cobordism Theorem

We describe alternative routes to prove Theorem 6.1. In the present context (I) is an immediate consequence of our
Calderón construction. Therefore, we began the proof of the General Cobordism Theorem with a proof of (I).
One true alternative is to begin with a proof of (V): That claim was proved in [15, Theorem I] for bounded regions M in

Euclidean space. However, Ralston’s arguments fully generalize and can be summarized in the followingway (in our present
notation):

Outlines of a proof of (V). (1) First we notice the pointwise vanishing of the signature of the form iJ0� p on the fiber Ep for
each p ∈ Σ . This can be obtained by deforming J0�p into a strict anti-involution J̃0�pwith

(
J̃0�p

)2
= − Id and exploiting the

anti-commutative relation (2.20) with the elliptic symbol. Consequently, the fiber dimension of the bundle E must be even.
That permits the first trick, namely to split E = E+ ⊕ E− and to show that there exists a well-posed symmetric Fredholm
extension given by the graph of a pseudo-differential elliptic operator P : Γ∞(Σ; E+�Σ)→ Γ∞(Σ; E−�Σ).
(2) Next we show that the deficiency indices κ1, κ2 of A are finite and that their difference is equal to the index ind P .
(3) Then we show that −ind P = sign−iω� vN(P) where ω denotes the Green form and vN(P) denotes a suitably defined
subspace of the von Neumann quotient D(Amax)/D(Amin) =: β(A).
(4) Finally we show that ind P vanishes, and hence that AP can be extended to a self-adjoint AP̃ with domain given by a
pseudo-differential projection and preserving the Fredholm property. �

Note that we can deduce (I) from (V) in the following way, and independently of the delicacies of our Calderón
construction. We firstly show that we have (V)H⇒ (II).

Proof of (V)H⇒ (II). Since AP is a self-adjoint Fredholm operator, by [7, Proposition 3.5], imP+,−1/2 is a Lagrangian
subspace of β(A).
By Remark 6.12 and Eq. (6.20), we have

β(A) = im P<,1/2(B0)⊕ im P0(B0)⊕ im P>,−1/2(B0). (6.22)
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Using the same method as in the proof of (I) H⇒ (II) and applying Lemma 6.8 to the co-isotropic subspace
im
(
P<,1/2(B0)

)ω
= im P0(B0)⊕ im P<,1/2(B0), we obtain that

Red(P<,1/2(B0))ω (imP+,−1/2) ' π(Red(P<,1/2(B0))ω (imP+,−1/2)) ⊂ W0

is a Lagrangian subspace of W0. So, the finite-dimensional symplectic Hilbert space
(
W0, 〈iP0J0·, ·〉

)
has a Lagrangian

subspace. Therefore

sign iP0J0�W0 = 0. �

Proof of (V)H⇒ (I). By the above proofs we have L2(Σ, EΣ ) = im P ⊕ im(Id−P) and β(A) = im P−1/2 ⊕ im(Id−P1/2). By
Theorem 6.9, imP+,−1/2 ∩ L2(Σ, EΣ ) = imP+ = im C+ is a Lagrangian subspace of L2(Σ, EΣ ). �

7. Parameter dependence

In this section we discuss the continuous dependence of the Calderón projection and the Poisson operator on the input
data. That is, given a first order elliptic differential operator A ∈ Diff1(M; E, F) and T ∈ Diff0(Σ; EΣ , FΣ ),Σ = ∂M (cf.
Definition 4.1), we want to have criteria to ensure that (A, T ) 7→ K+ = K+(A, T ) respectively (A, T ) 7→ C+ = C+(A, T ) is
continuous in an appropriate sense.
Therefore we first introduce various metrics on the spaces of pairs (A, T ). Referring to (5.11) and (5.15) we consider

J0, B0,
(∼)

C0 ,
(∼)

C1 as functions of A.

Definition 7.1. (a) Let V (M; E, F) denote the subspace of Diff1(M; E, F) × Diff0(Σ; EΣ , FΣ ) consisting of those (A, T ) for
which [Bt0, J

t
0T ] is of order 0 (cf. (5.9)). By E (M; E, F) we denote the subspace of V (M; E, F) consisting of those pairs (A, T )

where

(1) A is elliptic
(2) T is invertible and satisfies (5.8).

Finally, we denote by EUCP(M; E, F) the subspace of E (M; E, F) consisting of pairs (A, T ) where A and At satisfy weak inner
UCP.
(b) On the linear space V (M; E, F)we introduce two norms:

N0(A, T ) := ‖A‖1,0 + ‖At‖1,0 + ‖T‖1/2,1/2, (7.1)

and

N1(A, T ) := ‖B0‖1,0 + ‖Bt0‖1,0 + ‖[B
t
0, J

t
0T ]‖0 + ‖T‖0 + ‖J0‖0 + ‖C1‖1,0 + ‖C0‖0 + ‖̃C1‖1,0 + ‖̃C0‖0. (7.2)

Except for C1, C̃1 the norms in (7.2) are the mapping norms between Sobolev spaces overΣ while the norms for C1, C̃1 are
mapping norms between Sobolev spaces over the collar [0, ε)×Σ .
(c) We equip the space E (M; E, F)with the metric d0 induced by the metric N0 of (7.1). I.e.

d0((A, T ), (A′, T ′)) := N0(A− A′, T − T ′). (7.3)

The norms N0,N1 induce metrics on subspaces of V (M; E, F), in particular on E (M; E, F).
To study the dependence of K+ and C+ on (A, T ) the formulas (5.30) and (5.31) in Proposition 5.10 are crucial.
To illustrate this let us consider a map Z 3 z 7→ (A(z), T (z)) ∈ E (M; E, F) from a metric space Z to E (M; E, F).

To conclude that the corresponding map z 7→ K+(A(z), T (z)) ∈ B(L2(Σ, EΣ ), L2s (M, E)) is continuous for some fixed
0 ≤ s ≤ 1/2 it suffices to show the continuity of

(1) z 7→ ϕRT (z)(A(z)) ∈ B(L2(Σ, EΣ ), L2s (M, E ⊕ F)),
(2) z 7→ S(A(z), T (z)) ∈ B(L2(Σ, EΣ ), L2(M, F ⊕ E)),
(3) z 7→ G̃(A(z), T (z)) ∈ B(L2(M, F ⊕ E), L21(M, E ⊕ F)).

For the continuity of z 7→ C+(A(z), T (z)) ∈ B(L2(Σ, EΣ )) (1) has to be replaced by the continuity of the map

(1′) z 7→ P+(B0(A(z))) ∈ B(L2(Σ, EΣ )).

The continuity of these maps is by no means necessary for ensuring the continuous dependence of K+, C+. In order to keep
the presentation reasonable in size we estimate generously — we are not striving for optimality here.
Let us now state the main result of this section.
We define the strong metric on the space E (M; E, F) by

dstr((A, T ), (A′, T ′)) := N0(A− A′, T − T ′)+ N1(A− A′, T − T ′). (7.4)

Note that by complex interpolation ‖T − T ′‖s,s ≤ dstr((A, T ), (A′, T ′)) for all 0 ≤ s ≤ 1/2.
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Theorem 7.2. (a) The map

(EUCP(M; E, F), dstr) −→ B(L2(Σ, EΣ ), L2s (M, E))

sending (A, T ) to the Poisson operator K+(A, T ) is continuous for 0 ≤ s < 1/2.
(b) Let (A(z), T (z))z∈Z be a continuous family in (EUCP(M; E, F), dstr) parametrized by a metric space Z. Assume that the

corresponding family

z 7→ P+(B0(A(z))) ∈ B(L2s (Σ, EΣ ))

of positive spectral projections of the tangential operator is continuous for some fixed s ∈ [−1/2, 1/2]. Then the map

Z −→ B(L2s (Σ, EΣ ))

sending z to the Calderón projection C+(A(z), T (z)) is continuous.

Remark 7.3. (1) Of course, analogous statements hold for K−, C−. We leave it as an intriguing problem whether the
statement about K+ still holds for s = 1/2. This would be more natural since K+ maps L2 to L21/2.
(2) The fact that the continuous dependence of P+ in (b) has to be assumed is not very satisfactory. The point here is not

that the construction of P+ requires a spectral cut. Suppose a spectral cut for B0 = B0(A(z0)) is chosen. Then P+ should vary
continuously as long as no eigenvalues approach the contours Γ± (cf. Fig. 2). Unfortunately we cannot prove the continuity
of B 7→ P+(B) ∈ B(L2(Σ, EΣ )) if we equip Diff1(Σ; EΣ ) say with the norm ‖ · ‖1,0; we cannot prove it for any other norm
either. We will come back to this problem below in Section 7.5, where we will give a criterion for the continuity of P+ in
special cases.
Proof. The Theorem follows from Propositions 5.10, 7.8, 7.12, and Theorem 7.9. �

The discussion in Section 7.5 will give at least the following result:

Corollary 7.4. Denote by E saUCP(M; E, F) the subspace of EUCP(M; E, F) consisting of pairs (A, T ) where the corresponding
tangential operator B0(A) has a self-adjoint leading symbol. Then for s ∈ [−1/2, 1/2] the map

(E saUCP(M; E, F), dstr) −→ B(L2s (Σ, EΣ ))

sending (A, T ) to the Calderón projection C+(A, T ) is continuous.
Proof. Wemay adopt the language of a family (A(z), T (z))z∈Z (with Z = E saUCP(M; E, F)!) of the previous Theorem 7.2.
The point is that locally (cf. Convention 3.7) one can choose a continuous family z 7→ P+(B0(z)). Then the result follows

from Theorem 7.2b.
To see this we recall from Remark 5.2 that if the tangential operator has a self-adjoint leading symbol, the B0 = B0(A(z))

in (5.11) can be chosen to be self-adjoint. Hence let B0(z) now denote this self-adjoint operator in the representation (5.11).
To show continuity at z0 pick a spectral cut c for B0(z0). Then by Proposition 7.15 the family P+(B0(z)) := 1[c,∞)(B0(z)) ∈
B(L2s (Σ, EΣ )) depends continuously on z in a neighborhood of z0. Hence Theorem 7.2b yields the claim. �

Remark 7.5. In [7, Section 3.3] Booß-Bavnbek and Furutani give a purely functional analytic proof of the continuous
variation of the Cauchy data spaces as subspaces of the von-Neumann quotient β(A) of all natural boundary values, as
defined above in Section 6.2.4, in great generality: only the symmetry of A, weak inner UCP and the existence of a self-adjoint
Fredholm extension are assumed. In particular, no product form near the boundary or symmetry of a tangential operator is
assumed. However, [7] is restricted to continuous variation by bounded perturbations, i.e., perturbations of lower order in
the operator norm, whereas the preceding corollary admits arbitrary continuous variations, though in the strong metric.
Below in Proposition 7.13we shall explainwhy lower order perturbations of a fixed operator lead to continuous variation

of the sectorial projection in our setting, and hence to continuous variation of the Calderón projection according to the
preceding theorem.

We now proceed to give criteria for the continuity of the maps (1)–(2), (1′). We start with some basic estimates.

7.1. Some estimates

We fix a first order elliptic differential operator B ∈ Diff1(Σ; EΣ ) such that B − λ is parameter dependent elliptic in a
conic neighborhood of iR (cf. Section 3.1). Choose contours Γ± accordingly as in Fig. 2.
Beforewe address the continuous dependence of the sectorial projections on the data, i.e., on B, we shall give some useful

estimates.
We will frequently use that for V ∈ CL1(Σ; EΣ )we have by duality ‖V‖0,−1 = ‖V t‖1,0.
Our first result is the following perturbation lemma.

Lemma 7.6. Let V ∈ Diff1(Σ; EΣ ). If ‖V‖1,0 + ‖V t‖1,0 is sufficiently small, then B + V − λ is a parameter dependent elliptic
in a conic neighborhood of iR containing Γ+, Γ−.
Furthermore, for |s|, |s′|, |s− s′| ≤ 1 we have for λ ∈ Γ− ∪ Γ+

‖(λ− (B+ V ))−1 − (λ− B)−1‖s,s′ ≤ C(s, s′, B)
(
‖V‖1,0 + ‖V t‖1,0

)
|λ|−1+s

′
−s.
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Proof. The first claim is clear. The second follows from a straightforward application of the Neumann series for the resolvent
of B+ V and complex interpolation. For the convenience of the reader we present some details of the estimate.
For s ∈ {0, 1} Eq. (3.20) yields for λ ∈ Γ+ ∪ Γ−

‖(B− λ)−1V‖s,s ≤ ‖(B− λ)−1‖s−1,s (‖V‖1,0 + ‖V t‖1,0)

≤ C(s) (‖V‖1,0 + ‖V t‖1,0), (7.5)

and similarly

‖V (B− λ)−1‖s,s ≤ C(s) (‖V‖1,0 + ‖V t‖1,0). (7.6)

Furthermore, complex interpolation (or Hadamard’s three line theorem) gives that there is a constant C such that

sup
0≤s≤1, λ∈Γ+∪Γ−

‖V (B− λ)−1‖s,s + sup
0≤s≤1, λ∈Γ+∪Γ−

‖(B− λ)−1V‖s,s ≤ C (‖V‖1,0 + ‖V t‖1,0). (7.7)

Choose V such that C (‖V‖1,0 + ‖V t‖1,0) < 1/2. Consequently, B+ V − λ is invertible for all λ ∈ Γ+ ∪ Γ− and as operator
L2s → L2s−1, 0 ≤ s ≤ 1, its inverse is given by the Neumann series

(B+ V − λ)−1 = (Id+(B− λ)−1V )−1(B− λ)−1

=

∑
n≥0

(−1)n
(
(B− λ)−1V

)n
(B− λ)−1.

Hence

‖(B+ V − λ)−1 − (B− λ)−1‖s,s′ ≤
∑
n≥1

∥∥∥((B− λ)−1V )n (B− λ)−1∥∥∥
s,s′
. (7.8)

Now one has to check case by case.
1. Let s′ ≥ 0, s′ − s ≥ 0. Then∥∥∥((B− λ)−1V )n(B− λ)−1∥∥∥

s,s′
≤ ‖(B− λ)−1‖s,s′ ‖(B− λ)−1V‖ns′,s′

(3.20)
≤ C ′ |λ|−1+s

′
−s(C (‖V‖1,0 + ‖V t‖1,0))n

≤ C̃ |λ|−1+s
′
−s(1/2)n−1 (‖V‖1,0 + ‖V t‖1,0). (7.9)

Summing up gives the claim in this case.
2. Let−1 ≤ s ≤ s′ ≤ 0. Then∥∥∥((B− λ)−1V )n(B− λ)−1∥∥∥

s,s′
≤ ‖(B− λ)−1V‖0,s′

∥∥∥((B− λ)−1V )n−1∥∥∥
0,0
‖(B− λ)−1‖s,0

≤ C |λ|−1+s
′
+1 (‖V‖1,0 + ‖V t‖1,0) (1/2)n−1 |λ|−1−s.

Again, summing up gives the claim also in this case.

For estimating
∥∥∥((B− λ)−1V )n(B− λ)−1∥∥∥

s,s′
, the roles of s and s′ are symmetric. Hence the cases s′ ≤ s follow

analogously. �

We shall investigate the stability of the sectorial projections under perturbation of the input data B by V and show that
the operator norm of ϕ(Q±(B+ V )− Q±(B)) from L2s (Σ, EΣ ) to L

2
s′,comp(R+ × Σ, EΣ ) is bounded by a constant depending

on s, s′, B, ϕ times (‖V‖1,0 + ‖V t‖1,0).

Proposition 7.7. Let ϕ ∈ C∞0 (R+) and V as in Lemma 7.6. Q±(B) and Q±(B + V ) are the operator families of B respectively
B+ V introduced in Definition 3.8.

(a) For −1/2 < s ≤ s′ < s+ 1/2, s′ ≤ 1 we have for ξ ∈ L2s (Σ, EΣ )∥∥ϕ(Q±(B+ V )− Q±(B))ξ∥∥s′ ≤ C(s, s′, B, ϕ) (‖V‖1,0 + ‖V t‖1,0) ‖ξ‖s. (7.10)

(b) For −1 ≤ s ≤ 0 we have for ξ ∈ L2s (Σ, EΣ )∥∥idR+ ϕ
(
Q±(B+ V )− Q±(B)

)
ξ
∥∥
s+1 ≤ C(s, B, ϕ) (‖V‖1,0 + ‖V

t
‖1,0) ‖ξ‖s. (7.11)
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Proof. We use Lemma 7.6 and estimate for−1 ≤ s ≤ s′ ≤ s+ 1, s′ ≤ 1, ξ ∈ L2s (Σ, EΣ ) andm ∈ {0, 1}∥∥xmϕ(x)(Q±(B+ V )− Q±(B))(x) ξ∥∥s′
≤
xm

2π
ϕ(x)

∫
Γ±

|e−xλ|
∥∥((λ− (B+ V ))−1 − (λ− B)−1)ξ∥∥s′ |dλ|

≤ C(s, s′, B)
xmϕ(x)
2π

∫
Γ±

|e−xλ| |λ|−1+s
′
−s
|dλ| (‖V‖1,0 + ‖V t‖1,0) ‖ξ‖s

≤ C(s, s′, B)(‖V‖1,0 + ‖V t‖1,0) ‖ξ‖s xm−s
′
+s
| log x|ϕ(x). (7.12)

Analogously and using the previous estimate (7.12) we find for 0 ≤ s ≤ s′ = 1∥∥∥∂x(xmϕ(x)(Q±(B+ V )− Q±(B))ξ(x))∥∥∥
L2(Σ,EΣ )

≤ C(s, B, ϕ)(‖V‖1,0 + ‖V t‖1,0) ‖ξ‖s

×

(
xs∂x(xmϕ(x))+ ϕ(x)xm−1+s

)
| log x|. (7.13)

The log x-terms on the right of (7.12) and (7.13) are necessary only in the case s = s′. They are obsolete if s < s′.
From these two estimates, both claims will follow in a straightforward manner:

(a) It suffices to prove the claim for −1/2 < s < s′ = 0 and for 1/2 < s ≤ s′ = 1. It is clear that it then holds for
−1/2 < s ≤ s′ ≤ 0 and 1/2 < s ≤ s′ ≤ 1. The general case then follows from the complex interpolation method.
So let us start with the case −1/2 < s ≤ s′ = 0. Since s > −1/2 we may integrate the square of (7.12) and reach the

conclusion.
If 1/2 < s ≤ s′ = 1 then apply (7.12) and (7.13) with m = 0. Squaring and integrating the inequality gives the claim in

view of (3.21).
(b) By interpolation theory it is enough to deal with the cases s = −1 and s = 0. If s = −1 apply (7.12) with s′ = s+ 1 = 0
and if s = 0 apply (7.12) with s′ = s+ 1 = 1 and (7.13). Again referring to (3.21) we are done. �

7.2. Continuous dependence of ϕRT (B0)

Since RT is the multiplication of R by a simple matrix containing Id and T it suffices to study the dependence of R = R(B0)
on B0:

Proposition 7.8. Let (A, T ) ∈ E (M; E, F). Fix a real number c > 0 such that spec B0∩{z ∈ C | |z| = c} = ∅, cf. Convention 3.7.
Let V ∈ Diff1(Σ; EΣ ) be a first order differential operator. According to Lemma 7.6 assume that (‖V‖1,0 + ‖V t‖1,0) is small
enough so that B0 + V − λ is a parameter dependent elliptic in a conic neighborhood of iR containing Γ+ ∪ Γ−.
Then for −1/2 < s ≤ s′ < s+ 1/2, s′ ≤ 1 we have∥∥ϕ(R(B0 + V )− R(B0))∥∥s,s′ ≤ C(s, s′, B0, ϕ)(‖V‖1,0 + ‖V t‖1,0). (7.14)

Proof. This follows immediately from Proposition 7.7 and Eqs. (5.18) and (5.19). �

7.3. Continuous dependence of the invertible double

Dealing with the generalized inverse would make the discussion of the parameter dependence of the invertible double
rather tedious. Therefore we assume in this Section 7.3 that UCP holds. Although with some care the results of this section
carry over to families of operators where the dimensions of the spaces of ‘‘ghost solutions’’ Z+,0(A), Z−,0(A), see (4.12),
remain fixed (cf. [11, Thm. 3.16]).
Recall the definition of spaces and norms of Definition 7.1. The goal of this subsection is to prove:

Theorem 7.9. The map (EUCP , d0) −→ B(L2(M, F ⊕ E), L21(M, E ⊕ F)), (A, T ) 7→ Ã−1P(T ) is continuous.

Note that this is much more than just graph continuity of (A, T ) 7→ Ã−1P(T ). Namely, by construction of the metric d0 this

means that also (A, T ) 7→
(
(̃AP(T ))∗

)−1
= (̃At

P(−T−1)
)−1 (cf. (4.7)) is continuous as a map toB(L2(M, F ⊕ E), L21(M, E ⊕ F)).

Graph continuity of (A, T ) 7→ Ã−1P(T ) means that (A, T ) 7→ A−1P(T ) ∈ B(L2, L2) and (A, T ) 7→
(
(AP(T ))∗

)−1
∈ B(L2, L2) are

continuous.
The result should not come as a surprise. We should take the invertible double as a guideline. Under more restrictive

assumptions on A one can construct from A an invertible operator Ã on the double M̃ of M . If A varies continuously in the
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metric d0 then the geometric invertible double is a continuously varying family inB(L21(M̃, Ẽ⊕ F̃), L
2(M̃, F̃⊕ Ẽ)) and hence6

its inverse varies continuously inB(L2(M̃, F̃ ⊕ Ẽ), L21(M̃, Ẽ ⊕ F̃)). In the case of a geometric invertible double the nice thing
is that the domains of all first order elliptic differential operators coincide with L21.
The difficulty we are facing here is that the domains L21,T vary with T . So our first task will be to transform, at least locally,

the whole situation to families of operators with constant domain.

Definition 7.10. Let e : L2s (Σ, FΣ ) → L2s+1/2(M, F), s > 0, be a linear right-inverse to the trace map (cf. e.g. Remark 2.5.1
and [1, Definition 11.7e]). For T , T ′ ∈ Diff0(Σ; EΣ , FΣ )we put

ΦT ,T ′

(
f+
f−

)
:=

(
f+

f− + e(T ′ − T )%f+

)
. (7.15)

We record some properties ofΦT ,T ′ which are straightforward to verify.

Lemma 7.11. ΦT ,T ′ ∈ B(L21(M, E⊕ F)) and we haveΦT ′,T ′′ ◦ΦT ,T ′ = ΦT ,T ′′ . In particular ΦT ,T ′ is invertible with inverseΦT ′,T .
Furthermore,ΦT ,T ′ maps L21,T (M, E ⊕ F) bijectively onto L

2
1,T ′(M, E ⊕ F).

Finally, we have

‖ΦT ,T ′ − Id ‖1,1 ≤ C(e)‖T − T ′‖1/2,1/2. (7.16)

After these preparations, the proof of Theorem 7.9 is straightforward:

Proof of Theorem 7.9. Themap (A, T ) 7→ Ã−1P(T ) can be factorized as follows: fix a T0 ∈ Diff
0(Σ; EΣ , FΣ ). Then the following

maps are continuous:

E −→ GB(L21,T0 , L
2)
inversion
−→ B(L2, L21,T0)

(A, T ) 7−→ ÃT ◦ ΦT0,T .
(7.17)

Here, GB(L21,T0 , L
2) denotes the invertible bounded linear maps between L21,T0 and L

2.
The continuity is seen as follows:

‖̃AP(T ) ◦ ΦT0,T − Ã
′

P(T ′) ◦ ΦT0,T ′‖L21,T0
→L2 ≤ ‖̃AP(T ) ◦ ΦT0,T − Ã

′

P(T ′) ◦ ΦT0,T ′‖1,0

≤ ‖̃A‖1,0‖ΦT0,T − ΦT0,T ′‖1,1 + ‖̃A− Ã
′
‖1,0‖ΦT0,T ′‖1,1. (7.18)

Furthermore, the map

Diff0(Σ; E, F)×B(L2, L21,T0) −→ B(L2, L21)

(T , T ) 7−→ ΦT0,T ◦ T
(7.19)

is continuous in view of Lemma 7.11. Hence

(A, T ) 7→ Ã−1P(T ) = ΦT0,T ◦ (̃A ◦ ΦT0,T�L
2
1,T0)

−1 (7.20)

is continuous as claimed. �

7.4. Continuous dependence of S(A, T )

Next we give a simple criterion for the continuous dependence of S(A, T ) on the input data.

Proposition 7.12. The map (A, T ) 7→ S(A, T ) ∈ B(L2(Σ, EΣ ), L2comp(M, E ⊕ F)) is continuous with respect to the norm N1
introduced in Definition 7.1.

Proof. This follows immediately from (5.18) and (5.19). �

7.5. Continuous dependence of P± on input data

Finally we study the dependence of P± on B, where B ∈ Diff1(Σ; EΣ ) satisfies the usual assumptions (cf. Section 7.1).
The definition of P+ = P+(B) for B ∈ Diff1(Σ; EΣ ) requires a choice of a spectral cut, i.e., a c > 0 such that

spec B ∩ {z ∈ C | |z| = c} = ∅. (7.21)

Obviously, for a choice of c the map B 7→ P+(B) has a discontinuity at B’s where (7.21) is violated.

6 Note that for any pair of Banach spaces X, Y the inversion mapB(X, Y ) −→B(Y , X), S 7→ S−1 is continuous.
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Apart from that P+(B) should depend continuously on Bwith respect to the norm V 7→ ‖V‖1,0+‖V t‖1,0. Unfortunately,
we cannot prove or disprove this conjecture. Instead we mention two simple continuity criteria. The first deals with lower
order perturbations of a fixed operator and the second deals with self-adjoint operators where the Spectral Theorem yields
continuity in a rather simple fashion.

Proposition 7.13. Let B ∈ Diff1(Σ; EΣ ) be a first order elliptic differential operator such that B − λ is parameter dependent
elliptic for λ in a conic neighborhood of iR. Furthermore, let V ∈ CLα(Σ; EΣ ),α < 1, with‖V‖α,0 sufficiently small. Then B+V−λ
is also parameter dependent elliptic in a conic neighborhood of iR and for c > 0 such that spec(B+ tV ) ∩ {z ∈ C | |z| = c} =
∅, 0 ≤ t ≤ 1, we have the estimate

‖P+(B+ V )− P+(B)‖0,0 ≤ C(B)‖V‖α,0.

Proof. By a Neumann series argument it is clear that such a c exists. Let Γ+ (see Fig. 2) be the usual contour. Analogously
to Lemma 7.6 one shows the estimate

‖(λ− (B+ V ))−1 − (λ− B)−1‖0 ≤ C(B)‖V‖α,0|λ|−2+α, λ ∈ Γ+, (7.22)

from which the claim, thanks to−2+ α < −1, follows by invoking the contour integral. �

We now turn to (formally) self-adjoint B. We first give a slight improvement of [34, Prop. 2.2] on the continuity of the
Riesz-map (cf. [34] Eq. (2.2)).

Proposition 7.14. Let Ell1,sa(Σ; EΣ ) ⊂ Diff1(Σ; EΣ ) denote the space of selfadjoint first order elliptic differential operators.
Then the Riesz-map

B 7→ B(Id+B2)−1/2

is continuous (Ell1,sa, ‖ · ‖1,0)→ B(L2s (Σ, EΣ )) for all s ∈ [−1/2, 1/2].

Proof. For s = 0 this was proved in [34, Prop. 2.2]. The proof in [34], however shows the claimed stronger statement (cf. [34,
Equ. (2.19)]). For the convenience of the reader let us present the argument.
It suffices to prove the continuity of F for s = 1/2. Since F(B) is self-adjoint ‖F(B)−F (̃B)‖1/2,1/2 = ‖F(B)−F (̃B)‖−1/2,−1/2

and hence by complex interpolation (cf. [34, Appendix]) ‖F(B)− F (̃B)‖s,s ≤ ‖F(B)− F (̃B)‖1/2,1/2 for |s| ≤ 1/2.
Fix a B ∈ Ell1,sa(Σ, EΣ ) and we have to prove the continuity of F at B. Let 0 < q < 1

2 and consider B̃ ∈ Ell
1,sa(Σ, EΣ )

with

‖(B− B̃)(B± i)−1‖0,0 + ‖(B± i)−1(B− B̃)‖0,0 ≤ q. (7.23)

Note that by ellipticity the graph norm of B is equivalent to the Sobolev norm ‖·‖1, hence the left hand side of (7.23) induces
ametric on Ell1,sa(Σ, EΣ )which is equivalent to themetric induced by ‖·‖1,0. TheNeumann series then immediately implies

‖(̃B+ i)−1(B+ i)‖0,0 ≤
1
1− q

. (7.24)

Thus, for f ∈ L2(Σ, EΣ )we have

‖(̃B+ i)−1f ‖0 ≤
1
1− q

‖(B+ i)−1f ‖0 (7.25)

and

‖(B+ i)−1f ‖0 ≤ ‖(B+ i)−1(̃B+ i)‖0,0 ‖(̃B+ i)−1f ‖0 ≤ (1+ q)‖(̃B+ i)−1f ‖0. (7.26)

This implies the operator inequalities

1
(1+ q)2

|B+ i|−2 ≤ |̃B+ i|−2 ≤
1

(1− q)2
|B+ i|−2. (7.27)

Since the square root is an operator-monotonic increasing function [35, Prop. 4.2.8] we may take the square root of these
inequalities and after subtracting |B+ i|−1 we arrive at

−
q
1+ q

|B+ i|−1 ≤ |̃B+ i|−1 − |B+ i|−1 ≤
q
1− q

|B+ i|−1. (7.28)

This gives

‖|B+ i|1/2 |̃B+ i|−1|B+ i|1/2 − Id ‖0,0 ≤
q
1− q

. (7.29)
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After these preparations we find

‖F(B)− F (̃B)‖1/2,1/2 =
∥∥|i+ B|1/2(F(B)− F (̃B))|i+ B|−1/2∥∥0,0

=
∥∥|i+ B|−1/2(F(B)− F (̃B))|i+ B|1/2∥∥0,0

≤
∥∥|i+ B|−1/2(B− B̃)|i+ B|−1/2∥∥0,0 + ∥∥ |B+ i|−1/2(̃B(|i+ B|−1 − |i+ B̃|−1))|i+ B|1/2∥∥0,0

≤ ‖|i+ B|−1(B− B̃)‖0,0 + ‖|i+ B|−1/2̃B|i+ B|−1/2‖ ‖Id− |i+ B|1/2|i+ B̃|−1|i+ B|1/2‖0,0

≤ q+ ‖|i+ B|−1̃B‖0,0
q
1− q

≤ q
(
1+

1+ q
1− q

)
. (7.30)

Here we have used that for a first order operator V one has

‖|i+ B|−1/2V |i+ B|−1/2‖0,0 ≤ ‖|i+ B|−1V‖0,0. (7.31)

This inequality also follows from complex interpolation (see [34, Appendix]). This shows that if ‖Bn − B‖1,0 → 0 then
F(Bn)→ F(B) in L21/2(Σ, EΣ ) and we are done. �

Proposition 7.15. Let Ell1,sac (Σ; EΣ ) ⊂ Ell1,sac (Σ; EΣ ) ⊂ Diff1(Σ; EΣ ) denote the space of selfadjoint first order elliptic
differential operators B with±c 6∈ spec B. Then for |s| ≤ 1/2 the map(

Ell1c , ‖ · ‖1,0
)
−→ B(L2s (Σ, EΣ ))

B 7→ 1[c,∞)(B)
(7.32)

is continuous.

Proof. We first note that for B ∈ Ell1,sac we have by the Spectral Theorem

1[c,∞)(B) = 1[F(c),∞)
(
F(B)

)
.

Since, independently of s ∈ [−1/2, 1/2], we have

spec
(
F(B)

)
⊂ [−1, 1], (7.33)

1[c,∞)(B) is given by the contour integral

1
2π i

∮
|z−(F(λ)+2)|=2

(
z − F(B)

)−1
dz. (7.34)

In view of the previous Proposition 7.14 this proves the claim. cf. also [34, Lemma 3.3]. �

7.6. Continuity of families of well-posed self-adjoint Fredholm extensions

In Theorems 3.8 and 3.9 in [3] the continuous dependence of the invertible double, the Calderón and Poisson operators
and the graph continuity of realizations of well-posed boundary value problems are discussed in a special case. More
precisely it was assumed that J2 = − Id and that the tangential operator had a self-adjoint leading symbol.
Unfortunately the proof of Theorem 3.9 in [3] was incomplete. Now we can present correct statements with complete

proofs. Our result is more general than [3] in the sense that we neither have to assume that J2 = − Id, nor do we have to
assume a self-adjoint leading symbol of the tangential operator in all cases. On the negative side, we must admit that the
topology we have to impose on the space of differential operators is stronger than we hoped at the time of writing of [3].
The correct replacement for Theorem 3.9a in [3] is Theorem 7.2a and the correct replacement for Theorem 3.9b in [3] are
Theorem 7.2b and Corollary 7.4.
Theorem 7.9 generalizes Theorem 3.8 in [3] and [2, Proposition B.1]
Next we deal with families of realizations of well-posed boundary conditions (cf. Theorem 3.9d in [2]).

Theorem 7.16. Consider the space of pairs (A, P)where A ∈ Diff1(M; E) is elliptic and formally self-adjoint and P ∈ CL0(Σ; EΣ )
is an orthogonal projection which is well-posed with respect to A and such that AP is self-adjoint. Equip this space with the metric
d0, i.e.,

d0((A, P), (A′, P ′)) = N0(A− A′, P − P ′). (7.35)

Then the map (A, P) 7→ (AP + i)−1 ∈ B(L2(M, E), L21(M, E)) is continuous with respect to the d0 metric on the space of such
pairs (A, P). In particular (A, P) 7→ (AP + i)−1 is continuous or, equivalently, (A, P) 7→ AP is graph continuous.
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Proof. The proof is basically the same as the proof of Theorem 7.9 once the analogue of the maps ΦT ,T ′ is established.
Note that if P,Q ∈ CL0(Σ; EΣ ) are orthogonal projections with ‖P − Q‖1/2,1/2 < 1 they form an invertible pair,
i.e., P : imQ −→ im P is invertible. For such P,Q we put analogously to Definition 7.10

ΨP,Q (f ) := f − e(P − Q )%f . (7.36)

Then as in Lemma 7.11 we have

‖ΨP,Q − Id ‖1,1 ≤ C(e)‖P − Q‖1/2,1/2, (7.37)

and thus ΨP,Q is invertible for ‖P − Q‖1/2,1/2 small enough. Furthermore, ΨP,Q maps D(AQ ) =
{
f ∈ L21(M, E) | Q%f = 0

}
bijectively onto D(AP) =

{
f ∈ L21(M, E) | Q%f = 0

}
.

Now one mimics the proof of Theorem 7.9 with ΨP,Q instead ofΦT ,T ′ and AP + i instead of ÃP(T ). �

Finally we state a more precise version of [3], Theorem 3.9c. Note that the following version applies to a much wider
class of operators than [3].

Theorem 7.17. Let Ell1,saUCP (M; E) ⊂ Diff
1(M; E) denote the space of formally self-adjoint elliptic differential operators acting on

sections of the Hermitian vector bundle E which satisfy UCP and whose tangential operator B0 has a self-adjoint leading symbol.
We equip this space with the strong metric induced by the embedding Ell1,saUCP (M; E)→ EUCP(M; E), A 7→ (A, (J t0(A))

−1)
Then the map

Ell1,sa(M; E) −→ B(L21(M, E), L
2(M, E)), A 7−→ AC+

sending A to the self-adjoint well-posed realization associated to the Calderón projection is continuous. Here C+ denotes the
version of the Calderón projection constructed from (J t0(A))

−1, cf. Proposition 5.12.

Proof. Note that AC+ is self-adjoint by Theorem 6.1(II), Proposition 5.12. AC+ is indeed a self-adjoint realization of a well-
posed boundary value problem.
By Corollary 7.4 A 7→ (A, C+) is now a continuous map from Ell

1,sa
UCP(M, E) to the space of pairs described in Theorem 7.16

and hence Theorem 7.16 yields the claim. �
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Appendix. Smooth symmetric elliptic continuations with constant coefficients in normal direction

In this Appendix, we restrict ourselves to formally self-adjoint operators. To begin with, we write D = J( ddx + B) as in
(2.9) with the relations J∗ = −J and JB = J ′ − Bt J of (2.20) without loss of generality.
Sometimes one is interested in operators satisfying additional relations. We shall consider the following cases:

(I) D arbitrary symmetric elliptic, e.g. no additional relations.
(II) J2(x) = − Id. We will see below that then, after a suitable coordinate transformation, we can even obtain that Jx = J is
constant. This is the Dirac operator case.

(III) B0 − Bt0 of order 0. In view of (2.20) this implies that J0B0 + B0J0 is of order 0, too.
(IV) B− Bt of order 0. Analogously then JB+ BJ is of order 0, too.

(V) D = J
(
d
dx + B

)
+
1
2 J
′
+ C with J∗ = −J , B = Bt , JB+ BJ = 0, J ′ = dJ

dx , and C of order 0. Then automatically C = C
∗.

One can think of even more cases. But the preceding cases suffice for the moment. From now on we shall write

D = J
( d
dx
+ B

)
+
1
2
J ′ + C (A.1)

in all five cases although the notation is redundant in cases (I)–(IV). Recall, that here C is of order 0 and B is of order 1.

Proposition A.1. Consider the case (II). Then there is a smooth unitary gauge transformation U ∈ C∞([0, ε),Γ∞(Σ;U (EΣ )))
such that

Jx = U(x)J0U(x)∗.
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With the unitary transformation

Φ1 : L2([0, ε)×Σ, EΣ ) −→ L2([0, ε)×Σ, EΣ ),
f 7−→ Uf

we find

Φ−11 DΦ1 = J0
( d
dx
+ U∗BU

)
+ C̃ . (A.2)

Here and in the following we use the abbreviation EΣ := E�Σ introduced in Section 2.1 and, by slight abuse of notation,
EΣ := E� [0, ε)×Σ as well. Note that self-adjointness of B or C and the relation JB+ BJ = 0 (of lower order) are preserved
underΦ1.

Proof. We give a brief sketch; it is basically a standard fact often used in K -theory [36, Prop. 4.3.3], see also [18, Section 3].
We only show a bit less, namely that the claim is true aftermaking ε a bit smaller; but this is not really a loss of generality.
After possibly making ε smaller we may assume that

‖Id+ JxJ0‖ = ‖Id− J−1x J0‖ < 2, for 0 ≤ x ≤ ε. (A.3)

Then the operator Zx := Id− 12 (JxJ0+Id) =
1
2 (Id−JxJ0) is invertible.Moreover, since J

2
x = − Idwe find JxZx =

1
2 (Jx+J0) = ZxJ0

and thus Jx = ZxJ0Z−1x .
One now checks by direct calculation that Zx is normal and that ZxZ∗x commutes with Jx and J0 [18, (3.7)]. Hence we may

put U(x) := Z−1x
√
ZxZ∗x to reach the conclusion.

The remaining assertions are now clear. �

Remark A.2. (1) One may ask under what conditions we can obtain unitary J0, i.e., J20 = −Id? It is not clear whether this
question has a definite answer, e.g., it seems impossible to find a coordinate transformation preserving the symmetry of
the fixed given differential operator D and providing a unitary leading symbol J̃ in the new normal direction, unless all
eigenvalues of the original J0 are of the form±i.
(2) For the symplectic Hilbert space

(
L2(Σ, EΣ ), 〈·, ·〉, ω(·, ·)

)
, however, there is a simple answer. Here we set

〈f , g〉 :=
∫
Σ

〈f (p), g(p)〉Ep dvol and ω(f , g) := 〈J0f , g〉.

As always in symplectic Hilbert spaces (see, e.g., [27, Lemma 1.5]), we can preserve the symplectic form ω while deforming
the inner product 〈·, ·〉 of L2(Σ, EΣ ) overΣ smoothly into

〈·, ·〉̃ := 〈Sf , g〉 with self-adjoint S :=
√
J∗0 J0

in such a way that ω(f , g) = 〈̃J f , g 〉̃ with J̃∗ = −̃J and J̃2 = − Id.

The notation (A.1) has another advantage in case (IV). Namely, replacing B by 12 (B+B
t) and C by C+ 12 J(B−B

t) if necessary
we see that we may assume that B = Bt . Note that this does not work so easily in case (III).
Summing up, the cases (I)–(V) may now be described as follows (when D is written as in (A.1)):

(I) D arbitrary symmetric elliptic, e.g. no additional relations.
(II) J2 = − Id, Jx = J0 constant. Again, this is called the Dirac operator case.
(III) B0 − Bt0 and J0B0 + B0J0 of order 0.
(IV) B = Bt , JB+ BJ of order 0.
(V) B = Bt , JB+ BJ = 0, C = C∗.

We consider D as before. The goal of this Appendix is to prove the following theorem.

Theorem A.3. Let D be as in (A.1)with families Jx, Bx, Cx smoothly depending on x. Then there is a δ > 0 and a symmetric elliptic
first order differential operator D̃ (i.e., with smooth coefficients) on Γ∞([−δ, ε)×Σ; EΣ ) with the following properties:

(1) D̃� [0, ε)×Σ = D, i.e., D̃ extends D.
(2) D̃� ([−δ,−2/3δ) × Σ) = J0

(
d
dx + B0

)
+ C0. In particular, D̃ has constant coefficients near the new boundary {−δ} × Σ ,

and the constant coefficients are given just by smoothly ‘‘rewinding’’ to the coefficients of D at 0.

Note that in the formula for D̃ near the boundary 12 J
′ is left out deliberately to make the constant coefficient operator

symmetric.
Note also that due to the concrete formula for D̃ near the boundary the additional relations in the cases (II)–(V) still hold

for the extended operator. It is not claimed (and it is open in some cases) that the relations in (IV), (V) are preserved on the
whole interval [−δ, 0].
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Proof. 1. Let

D0 := J0
( d
dx
+ B0

)
+ C0. (A.4)

SinceD0 has constant coefficients wemay think ofD0 as acting onΓ∞0 (R×Σ; EΣ ). Note that sinceD is formally self-adjoint,
so is D0. To see that we recall that D = Dt is (thanks to our singling-out of 12 J

′ in Eq. (A.1)) equivalent to the relations

J∗ = −J, −Bt J + C∗ = JB+ C . (A.5)

Then

Dt0 = J0
d
dx
− Bt0J0 + C

∗

0 = J0
d
dx
+ J0B0 + C0 = D0. (A.6)

2. Nowwe apply the definition of smoothness of maps defined on amanifold with boundary to conclude that J, B, C have
smooth extensions to the whole negative half-line. More precisely there exist

J̃ ∈ Γ∞((−∞, ε)×Σ; EΣ ), C̃ ∈ Γ∞((−∞, ε)×Σ; EΣ ) and B̃ ∈ C∞((−∞, ε),Diff1(Σ; EΣ ))

such that

J̃� [0, ε)×Σ = J, C̃� [0, ε)×Σ = C, and B̃� [0, ε)×Σ = B.

Replacing J̃ by 12 (̃J − J̃
∗) if necessary, we can, additionally, obtain that J̃∗ = −̃J .

The extensions of J and C are immediate. However, for B one might feel a bit uneasy because of the target space
Diff1(Σ; EΣ ). Well, first extend the leading symbol of B, which works like for J and C . Then choose a right inverse to
the symbol map on Σ to obtain an operator map B̃1. On [0, ε) × Σ , B̃1 coincides with B up to order 0. The difference
B̃1 − B � [0, ε) × Σ is again smooth. Extend it and subtract it to make up for the 0 order defect. This yields the wanted
B̃.
So, we can form the differential operator

D̃1 := J̃
( d
dx
+ B̃

)
+
1
2̃
J ′ + C̃ (A.7)

which is now defined on (−∞, ε)×Σ , has smooth coefficients and D̃1� [0, ε)×Σ = D.
So far D̃1 is not necessarily formally self-adjoint. Put

D̃2 :=
1
2

(̃
D1 + D̃t1

)
=: J̃

( d
dx
+ B̃2

)
+
1
2̃
J ′ + C̃2. (A.8)

Next, consider a cut-off function ϕ ∈ C∞(R)with

ϕ(x) =


1, x ≤ −

2
3
δ,

0, x ≥ −
1
3
δ.

(A.9)

Then we consider the operator

D̃ := ϕD0 + (1− ϕ)̃D2 +
1
2
ϕ′(J0 − J̃). (A.10)

The last summand was left out in [3, (3.14)]; the additional term is, however, necessary to make D̃ formally self-adjoint.
D̃ has the following properties:

(1) D̃t = D̃. That follows immediately from the formal self-adjointness of D0, D̃2 and the relations [D0, ϕ] = J0ϕ′, [̃D2, ϕ] =
Jϕ′.

(2) D̃� [0, ε)×Σ = D.

(3) D̃� [−δ,−2/3δ)×Σ = J0
(
d
dx + B0

)
+ C0.

It remains to discuss the ellipticity of D̃. So let

x ∈ [−δ, 0], p ∈ Σ, ξ ∈ T ∗p (Σ) and λdx+ ξ ∈ S∗x,p(R×Σ),
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S∗ denoting the cosphere bundle. Then |λ|2 + |ξ |2 = 1 and we find for the leading symbol of D̃

σD̃(x, p)[λdx+ ξ ] =
(
ϕ(x)σD0(x, p)+ (1− ϕ(x))σD̃2(x, p)

)
[λdx+ ξ ]

= ϕ(x)J0
(
iλ+ σB(0)(ξ)

)
+ (1− ϕ(x))Jx

(
iλ+ σB(x)(ξ)

)
= J0

(
iλ+ σB(0)(ξ)

)
+ (1− ϕ(x))

{
Jx(iλ+ σB(x)(ξ))− J0(iλ+ σB(0)(ξ))

}
. (A.11)

Hence, by the compactness ofΣ and by the continuity of Jx and σB(x) we may choose δ so small that D̃ is elliptic.
The theorem is proved. �

Remark A.4. We briefly discuss for the various cases (I)–(V) whether the construction of D̃ can be modified such that the
relations continue to hold.

(I) Since there are no relations, there is nothing to worry about.
(II) Since J is constant, we may extend it constantly.
(III) At the new boundary {−δ} ×Σ we have by construction B(−δ) = B(0) hence (III) also works fine.

(IV), (V) By construction of D0 it is clear that D̃ also satisfies (IV) or (V) in the collar [−δ,−2/3δ] ×Σ of the new boundary.
However, we do not know so far whether D̃ can be constructed in such a way that the relations hold on the whole
interval [−δ, 0].
We leave it to the reader to prove that the latter is indeed possible in the case (II)+ (IV) or (II)+ (V).

In Section 2.1we first applied a unitary transformation to our operator. It remains to clarifywhat happens if we transform
the whole construction back to the original situation. The result reads as follows:

Theorem A.5. Let (M, g1) be a compact Riemannian manifold with boundary, (E, h1) a Hermitian vector bundle over M and
A : Γ∞0 (M; E) → Γ∞0 (M; E) a first order elliptic differential operator which is formally self-adjoint in the Hilbert space
L2(M, E; g1, h1).
Choosemetrics g onM, h on E which are product near the boundaryΣ = ∂M and such that g�∂M = g1�∂M, h�∂M = h1�∂M.

Let Φ be the isometry of (2.8) and assume that we have

ΦAΦ−1 = J
( d
dx
+ B

)
+
1
2
J ′ + C . (A.12)

For δ > 0 form Mδ :=
(
[−δ, 0] ×Σ

)
∪Σ M.

Then for δ sufficiently small there are a Hermitian vector bundle (Eδ, h1,δ) over Mδ , a Riemannian metric g1,δ on Mδ and a first
order symmetric elliptic differential operator Aδ on Mδ such that:

(1) Eδ , g1,δ , h1,δ , Aδ are extensions of E, g1, h1, A respectively.
(2) g1,δ and h1,δ are product metrics near ∂Mδ . More precisely, we have on [−δ,−2/3δ] ×Σ

g1,δ = dx2 ⊕ g(0),
h1,δ(x) = h(0).

(A.13)

(3) With the natural extension of Φ to Mδ we have on [−δ,−2/3δ] ×Σ :

ΦAΦ−1 = J0
( d
dx
+ B0

)
+ C0. (A.14)

Proof. We apply the previous Theorem to ΦAΦ−1 in L2(M, E; g, h). Since the spaces of metrics onM and on E are positive
cones, we may extend the metrics g1, h1 to smooth metrics g̃δ, h1,δ onMδ in such a way that on the collar [−δ,−2/3δ] ×Σ
they are of the form (A.13). Now consider the unitary transformation Ψ : L2(Mδ, E; g1,δ, h1,δ) → L2(Mδ, E; g, h) as
in Lemma 2.1 (g, h extend trivially to Mδ since they are already product metrics). By the construction explained before
Lemma 2.1 we see that Ψ � [−δ,−2/3δ] ×Σ = Id and therefore we reach the conclusion from the previous theorem. �

Remark A.6. (1) The preceding theorem shows that it is always possible to extend a given symmetric elliptic differential
operator (of first order) A to a symmetric elliptic differential operator Ã by attaching a collar with finite cylindrical end
with new boundary Σ ′ such that the Riemannian and Hermitian structures become product close to Σ ′ and the operators
Jx, Bx and Cx become independent of the normal variable x close to Σ ′ ; i.e., we can always bring the operator in product
form near a new boundary by suitable prolongation under preservation of the symmetry property.
(2) The previous discussion shows that J20 = − Id is enough to obtain, by coordinate transformation, Jx = J0 and hence

J2x = − Id in a whole neighborhood of the new boundary. See also Remark A.2 for conditions for J
2
0 = − Id.

(3) The previous discussion can be made parameter dependent with the right notion of parameter dependency, cf. our
Section 7.
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(4) The question remainswhetherweak inner UCP can be preserved under the symmetric prolongation. The short answer
is

• yes in the cases (III)–(V), i.e., when the leading symbol of the tangential operator is symmetric;
• yes in a very restricted sense, namely that the UCP-defect dimension

d(x) := dim {u | Au = 0 and u�Σ(x) = 0} (A.15)

is constant on the last part of the collar, i.e., for sufficiently negative tangential coordinate x when constant coefficients
in normal direction are obtained. HereΣ(x) := {x} × ∂M denotes the parallel surface in the collar.
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