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1 Statement of the problem and main result

1.1 Statement of the problem

Roughly speaking, the spectral flow counts the net number of eigenvalues changing from

the negative real half axis to the non-negative one. The definition goes back to a famous

paper by M. Atiyah, V. Patodi, and I. Singer [3], and was made rigorous by J. Phillips [23]

for continuous paths of bounded self-adjoint Fredholm operators, by K.P. Wojciechowski

[30] and C. Zhu and Y. Long [34] in various non-self-adjoint cases, and by B. Booss-

Bavnbek, M. Lesch, and J. Phillips [7] in the unbounded self-adjoint case. We shall give a

rigorous definition of spectral flow, most suitable for our purpose, below in Subsection 2.1

together with a review of its basic properties. For a definition of spectral flow admitting

zero in the continuous spectrum, we refer to A. Carey and J. Phillips [13].

In various branches of mathematics one is interested in the calculation of the spectral

flow of a continuous family of closed densely defined (not necessarily bounded) self-adjoint

Fredholm operators in a fixed Hilbert space. We consider the following typical problem

of this kind.

Assumption 1.1. Let {As : C∞(M ;E) → C∞(M ;E)}s∈[0,1] be a family of formally self-

adjoint linear elliptic differential operators of first order with continuously varying smooth

coefficients over a smooth compact Riemannian manifold M with boundary Σ, acting on

sections of a Hermitian vector bundle E over M . Let {Ps} be a continuous family of

orthogonal pseudodifferential projections in L2(Σ;E|Σ). Define As,Ps
to be the unbounded

operator in L2(M ;E) with domain

Ds := {x ∈ H1(M ;E) | Ps(γ(x)) = 0}, (1)

where

γ : H1(M ;E) → H
1

2 (Σ;E|Σ) (2)

denotes the (continuous) trace map from the first Sobolev space over the whole manifold to

the 1
2

Sobolev space over the boundary. (Note that in this paper the symbols x and y do not

denote points of the underlying manifolds M or Σ, but points in Hilbert spaces, sections

of vector bundles, etc., following the conventions of functional analysis and dynamical

systems.) Assume that each Ps defines a self-adjoint elliptic boundary condition for As,

i.e., As,Ps
is a self-adjoint Fredholm operator for each s ∈ [0, 1].

Then the spectral flow sf{As,Ps
; s ∈ [0, 1]} or, shortly, sf{As,Ps

} is well defined. As a

spectral invariant it is essentially a quantum variable which one may not always be able

to determine directly by eigenvalue calculations. As an alternative, one is looking for a

classical method of calculating the spectral flow. There are two different approaches. One

setting expresses the spectral flow (of a loop of Dirac operators on a closed manifold) as

an integral over a 1-form induced by the heat kernel (for a review see [13]). The other

setting is reduction to the boundary, i.e., one expresses the spectral flow (of a path of
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self-adjoint boundary value problems on a compact manifold with boundary) in terms of

the intersection geometry of the solution spaces of the homogeneous differential equations

and the boundary conditions. That is the approach we shall follow in this paper.

Problem 1.2. Give a classical method of calculating the spectral flow of the family

{As,Ps
} by reduction to the boundary, i.e., a method not involving the determination of

the spectrum near 0 and yielding an expression on Σ.

The preceding spectral flow calculation problem is formulated for families by analogy

with Bojarski’s Theorem for single operators which expresses the index (which is the

difference between the multiplicities of the 0-eigenvalue of the original and the formally

adjoint problem and so a priori a quantum or spectral invariant) of an elliptic operator

over a closed partitioned manifold M = M− ∪Σ M+ by the index of the Fredholm pair of

Cauchy data spaces from two sides along the hypersurface Σ (which are classical objects,

see Bojarski [4] and Booss and Wojciechowski [10, Chapter 24]).

1.2 General functional analytic setting and announcement of the General

Spectral Flow Formula

Now we translate our problem into a functional analytic setting. For any such family

there are three geometrically defined relevant Hilbert spaces of global sections which

remain fixed under variation of the coefficients of the operators and under variation of

the boundary conditions:

L2(M ;E), H1
0 (M ;E), and H1(M ;E). (3)

Here H1
0 (M ;E) denotes the closure of C∞

0 (M \Σ;E) in the first Sobolev space H1(M ;E),

where C∞
0 (M \Σ;E) denotes the smooth sections with support in the interior of M \Σ.

Since the trace map γ : H1(M ;E) → H
1

2 (Σ;E|Σ) is continuous, we have H1
0 (M ;E) =

ker γ, i.e., the space H1
0 (M ;E) consists exactly of the elements of H1(M ;E) which vanish

on the boundary Σ .

For each s ∈ [0, 1], we shall denote the unbounded operator As acting in L2(M ;E)

with domain H1
0 (M ;E) also by As . Since the differential operator As is elliptic, the

unbounded operator As is closed by G̊arding’s inequality

‖x‖H1(M ;E) ≤ C
(
‖x‖L2(M ;E) + ‖Asx‖L2(M ;E)

)
for x ∈ H1

0 (M ;E) . (4)

Denote by dom(A) the domain of an operator A, by A∗ the adjoint operator of A,

and

Dmax(A) := dom(A∗). (5)

Since A is closed and symmetric, it follows that Dmax(A) = {x ∈ L2(M ;E) | Ax ∈
L2(M ;E)} with Ax taken in the distributional sense. For As formally self-adjoint, it

follows immediately that H1(M ;E) ⊂ Dmax(As) and that As (with domain H1
0 (M ;E))

is symmetric.
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In local coordinates, we view each coefficient of {As} as a continuous map which

assigns to s ∈ [0, 1] a smooth section. Then the continuity of the curve {As}s∈[0,1] in the

sense of continuously varying coefficients implies the continuity of the curve

[0, 1] ∋ s 7→ A∗
s|H1(M ;E) ∈ B(H1(M ;E), L2(M ;E)) , (6)

as a curve of bounded operators from H1(M ;E) to L2(M ;E).

We denote byQs : L2(Σ;E|Σ) → L2(Σ;E|Σ) the Calderón projection. It is a projection

onto the Cauchy data space of A∗
s which is defined as the L2-closure of γ(ker(A∗

s|H1(M ;E)).

It can be described as a pseudodifferential operator, e.g., when continuing As to an elliptic

operator on a closed manifold M̃ ⊃ M , see R.T. Seeley [29, Sections 4 and 8] and [10,

Chapter 12]. For an alternative canonical construction based on a natural boundary value

problem and avoiding the choices of closing the manifold and continuing the operator,

see B. Himpel, P. Kirk, and M. Lesch [16, Section 3] and recent joint work of the authors

with M. Lesch [8].

For each s ∈ [0, 1], there is a natural (strong) symplectic form ωs on the quotient

space Dmax(As)/H
1
0(M ;E) induced by Green’s form of As as

ωs(γ(x), γ(y)) := 〈A∗
sx, y〉 − 〈x,A∗

sy〉 , x, y ∈ Dmax(As). (7)

Here γ denotes the natural projection

Dmax(As) → Dmax(As)/H
1
0(M ;E) .

Identifying the quotient space Dmax(As)/H
1
0 (M ;E) with a subspace of the Sobolev (dis-

tribution) space H−1/2(Σ;E|Σ), we obtain that this γ extends the Sobolev trace map of

(2). A rigorous definition of symplectic structures and Lagrangian subspaces will be given

below in Subsection 2.2.

For our formally self-adjoint differential operators of first order, we have an explicit

description of the form in (7), restricted to H1(M ;E) , by Stokes’ Theorem

ωs(γ(x), γ(y)) = −
∫

Σ

〈σ1(As)(·, dt)
(
x|Σ

)
, y|Σ〉dvolΣ , (8)

where σ1(As)(·, dt) denotes the principal symbol of As at the boundary, taken in inner

(co-)normal direction dt. Notice that we do not require that the manifold M is orientable:

for our application of Stokes’ Theorem it suffices that any collar neighborhood of Σ in

M is oriented by the normal structure. Then the form ωs|H1(M ;E) of (8) extends to a

(strong) symplectic structure ωs on L2(Σ;E|Σ). One can show that ωs|H1(M ;E)/H1
0
(M ;E)

is a weak (but not strong) symplectic form on the Hilbert space H1(M ;E)/H1
0 (M ;E) ∼=

H
1

2 (Σ;E|Σ) (cf. Booss and Zhu [11, Remark 1.6b]).

We have H1(M ;E) = Dmax(As) if and only if dimM = 1. For higher dimensional

case, the strict inclusion H1(M ;E) ⊂ Dmax(As) and the weakness of ωs|H1(M ;E) causes

technical difficulties.

However, we still have the following theorem (cf. Theorem 0.1 of [11]).
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Theorem 1.3 (General Spectral Flow Formula). Let {As}s∈[0,1] and {Ps}s∈[0,1] be

operator families like in Assumption 1.1. We assume that {kerPs}s∈[0,1] is a continuous

family of Lagrangian subspaces in (H,ωs). If As satisfies weak inner UCP, i.e., kerAs =

{0} for each s ∈ [0, 1], we have:

(a) The family {As,Ps
}s∈[0,1] of closed self-adjoint Fredholm operators on X is a continuous

family (in the gap norm, or equivalently, in the projection norm).

(b) The Cauchy data spaces imQs are Lagrangian subspaces in the weak symplectic Hilbert

space (H
1

2 (Σ;E|Σ), ωs) and form a continuous family in H
1

2 (Σ;E|Σ) for s ∈ [0, 1].

(c) Finally, the following formula holds:

sf{As,Ps
} = −Mas{kerPs, imQs}, (9)

where the spectral flow sf and the Maslov index Mas are defined by Definitions 2.1 and

2.11 below respectively.

Remark 1.4. (a) The General Spectral Flow Formula contains and generalizes all pre-

viously known spectral flow formulae, as given by M. Morse [21], W. Ambrose [1], J.J.

Duistermaat [14], A. Floer [15], P. Piccione and D.V. Tausk [24] and [25], and C. Zhu

[32] and [33] for the 1-dimensional setting of the study of geodesics, and for the higher

dimensional setting the formulae given by T. Yoshida [31], L. Nicolaescu [22], S.E. Cap-

pell, R. Lee, and E.Y. Miller [12], B. Booss, K. Furutani, and N. Otsuki [5] and [6], and

P. Kirk and M. Lesch [18].

(b) The main difference to [5] and [6] is that we admit varying maximal domain and

varying Fredholm domain. The main difference to [18] is that we admit more general

operators than Dirac type operators with constant coefficients in normal direction close

to the boundary.

(c) The proof of the above theorem is rather technical and complicated. In this review

article, we only prove the following fixed maximal domain case which completely covers

all above cited one-dimensional cases (cf. Corollary 2.14 in [11]). Moreover, it contains [5]

and [6] and generalizes it to varying Fredholm domains, and contains [18] for the case of

fixed maximal domain and generalizes it under that restriction to more general operator

families.

1.3 Statement of the result for fixed maximal domain

Let X be a Hilbert space, and Dm ⊂ Dmax be two dense linear subspaces of X. Let

{As}s∈[0,1] be a family of symmetric densely defined operators in C(X) with domain

dom(As) = Dm. Here we denote by C(X) all closed operators in X. Assume that

dom(A∗
s) = Dmax , i.e., the domain of the maximal symmetric extension A∗

s of As is

independent of s.

We recall from [5] (see also B. Lawruk, J. Śniatycki, and W.M. Tulczyjew [19] for early

investigation of symplectic structures and boundary value problems) for each s ∈ [0, 1]:
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(1) The space Dmax is a Hilbert space with the graph inner product

〈x, y〉Gs
:= 〈x, y〉X + 〈A∗

sx,A
∗
sy〉X for x, y ∈ Dmax . (10)

(2) The space Dm is a closed subspace in the graph norm and the quotient space

Dmax/Dm is a strong symplectic Hilbert space with the (bounded) symplectic form

induced by Green’s form

ωs(x+Dm, y +Dm) := 〈A∗
sx, y〉X − 〈x,A∗

sy〉X for x, y ∈ Dmax . (11)

(3) If As admits a self-adjoint Fredholm extension As,Ds
:= A∗

s|Ds
with domain Ds,

then the natural Cauchy data space (kerA∗
s +Dm)/Dm is a Lagrangian subspace of

(Dmax/Dm, ωs) .

(4) Moreover, self-adjoint Fredholm extensions are characterized by the property of the

domain Ds that (Ds + Dm)/Dm is a Lagrangian subspace of (Dmax/Dm, ωs) and

forms a Fredholm pair with (kerA∗
s +Dm)/Dm .

(5) We denote the natural projection (which is independent of s) by

γ : Dmax −→ Dmax/Dm.

The main result of this paper is the following theorem which reproves parts of the

preceding list.

Theorem 1.5 (General Spectral Flow Formula for fixed maximal domain). We

assume that on Dmax the graph norms induced by As, 0 ≤ s ≤ 1 are mutually equivalent.

Then we fix a graph norm G on Dmax induced by A0. Assume that {A∗
s : Dmax → X}

is a continuous family of bounded operators and each As is injective. Let {Ds/Dm} be a

continuous family of Lagrangian subspaces of (Dmax/Dm, ωs), such that each As,Ds
is a

Fredholm operator. Then:

(a) Each
(
Ds/Dm, γ(ker(A

∗
s)

)
is a Fredholm pair in Dmax/Dm.

(b) Each Cauchy data space γ(kerA∗
s) is a Lagrangian subspace of (Dmax/Dm, ωs) .

(c) The family {γ(kerA∗
s)} is a continuous family in Dmax/Dm .

(d) The family
{
As,Ds

}
is a continuous family of self-adjoint Fredholm operators in C(X).

(e) Finally, we have

sf{As,Ds
} = −Mas{γ(Ds), γ(kerA

∗
s)}. (12)

2 Definition of spectral flow and Maslov index

2.1 Spectral flow, revisited and generalized

Let X be a Hilbert space. For a self-adjoint Fredholm operator A ∈ C(X), there exists a

unique orthogonal decomposition

X = X+(A) ⊕X0(A) ⊕X−(A) (13)
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such thatX+(A),X0(A) andX−(A) are invariant subspaces associated toA, andA|X+(A),

A|X0(A) and A|X−(A) are positive definite, zero and negative definite respectively. We

introduce vanishing, natural, or infinite numbers

m+(A) := dimX+(A), m0(A) := dimX0(A), m−(A) := dimX−(A),

and call them Morse positive index, nullity and Morse index of A respectively. For finite-

dimensionalX, the signature of A is defined by sign(A) = m+(A)−m−(A) which yields an

integer. The APS projection QA (where APS stands for Atiyah-Patodi-Singer) is defined

by

QA(x+ + x0 + x−) := x+ + x0,

for all x+ ∈ X+(A), x0 ∈ X0(A), x− ∈ X−(A).

Let {As}, 0 ≤ s ≤ 1 be a continuous family of self-adjoint Fredholm operators. The

spectral flow sf{As} of the family should be equal to m−(A0)−m−(A1) if dimX < +∞.

We will generalize this definition to general X.

For each t ∈ [0, 1], there exists a bounded open neighborhood Nt of 0 such that ∂Nt

is of class C1, σ(At)∩ ∂Nt = ∅, and P (At, Nt) is a finite rank projection. Here we denote

the spectrum of a closed operator A by σ(A), and the spectral projection by

P (A,N) := − 1

2π
√
−1

∫

∂N

(A− zI)−1dz

if N is a bounded open subset of C with C1 boundary and ∂N∩σ(A) = ∅. The orientation

of ∂N is chosen to make N stay on the left side of ∂N . Since the family {As}, 0 ≤ s ≤ 1

is continuous, there exists a δ(t) > 0 for each t ∈ [0, 1] such that

σ(As) ∩ ∂Nt = ∅, for all s ∈ (t− δ(t), t+ δ(t)) ∩ [0, 1].

Then {
P (As, Nt)

}
s∈(t−δ(t),t+δ(t))∩[0,1]

for fixed t ∈ [0, 1],

is a continuous family of orthogonal projections. By Lemma I.4.10 in Kato [17], they have

the same rank. We denote by A(s, t) the operator As acting on the finite-dimensional

space imP (As, Nt). Since [0, 1] is compact, there exists a partition 0 = s0 < . . . < sn = 1

and tk ∈ [sk, sk+1], k = 0, . . . , n− 1 such that [sk, sk+1] ⊂ (tk − δ(tk), tk + δ(tk)) for each

k = 0, . . . , n− 1.

Definition 2.1. The spectral flow sf{As} of the family {As}, 0 ≤ s ≤ 1 is defined by

sf{As} :=
n−1∑

k=0

(
m−(

A(sk, tk)
)
−m−(

A(sk+1, tk)
))
. (14)

After carefully examining the above definition, inspired by [23], we find that the

necessary data for defining any spectral flow are the following:
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• a co-oriented bounded real 1-dimensional regular C1 submanifold ℓ of C without

boundary (we call such an ℓ admissible, and denote by ℓ ∈ A(C));

• a Banach space X;

• and a continuous family of admissible operators As, 0 ≤ s ≤ 1 in Aℓ(X).

Here we define A ∈ C(X) to be admissible with respect to ℓ, if there exists a bounded

open neighborhood N of ℓ in C with C1 boundary ∂N such that (i) ∂N ∩ σ(A) = ∅; (ii)

N ∩ σ(A) ⊂ ℓ is a finite set; and (iii) P 0
ℓ (A) := P (A,N) is a finite rank projection.

Note that P 0
ℓ (A) does not depend on the specific choice of N . We call νh,ℓ(A) :=

dim imP 0
ℓ (A) the hyperbolic nullity of A with respect to ℓ. We denote by Aℓ(X) the set

of closed admissible operators with respect to ℓ. It is an open subset of C(X).

Similarly as before, we can define the spectral flow sfℓ{As}. It counts the number of

spectral lines of As coming from the negative side of ℓ to the non-negative side of ℓ. For

the details, see [34].

Example 2.2. a) In the above self-adjoint case, ℓ =
√
−1(−ǫ, ǫ) (ǫ > 0) with co-

orientation from left to right. Then a self-adjoint operator A is admissible with respect

to ℓ if and only if A is Fredholm.

b) Another important case is that ℓ = (1 − ǫ, 1 + ǫ) (ǫ ∈ (0, 1)) with co-orientation from

downward to upward, and all As unitary. A unitary operator A is admissible with respect

to ℓ if and only if A− I is Fredholm.

The spectral flow has the following properties (cf. [23] and Lemma 2.6 and Proposition

2.2 in [34]).

Proposition 2.3. Let ℓ ∈ A(C) be admissible and let {As}, 0 ≤ s ≤ 1 be a curve in

Aℓ(X). Then the spectral flow sfℓ{As} is well defined, and the following holds:

(1) Catenation. Assume t ∈ [0, 1]. Then we have

sfℓ{As; 0 ≤ s ≤ t} + sfℓ{As; t ≤ s ≤ 1} = sfℓ{As; 0 ≤ s ≤ 1}. (15)

(2) Homotopy invariance. Let A(s, t), (s, t) ∈ [0, 1]× [0, 1] be a continuous family in

Aℓ(X). Then we have

sfℓ{A(s, t); (s, t) ∈ ∂([0, 1] × [0, 1])} = 0. (16)

(3) Endpoint dependence for Riesz continuity. Let Bsa(X), respectively Csa(X)

denote the spaces of bounded, respectively closed self-adjoint operators in X. Let

R : Csa → Bsa(X)

A 7→ A(A2 + I)−
1

2

denote the Riesz transformation. Let As ∈ Csa(X) for s ∈ [0, 1]. Assume that

{R(As)}, 0 ≤ s ≤ 1 is a continuous family. If m−(A0) < +∞, then m−(A1) < +∞
and we have

sf{As} = m−(A0) −m−(A1). (17)
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(4) Product. Let {Ps} be a curve of projections on X such that PsAs ⊂ AsPs for

all s ∈ [0, 1]. Set Qs = I − Ps. Then we have PsAsPs ∈ Aℓ(imPs) ⊂ C(imPs),

QsAsQs ∈ Aℓ(imQs) ⊂ C(imQs), and

sfℓ{As} = sfℓ{PsAsPs} + sfℓ{QsAsQs}. (18)

(5) Bound. For A ∈ Aℓ(X), there exists a neighborhood N of A in C(X) such that

N ⊂ Aℓ(X), and for curves {As} in N with endpoints A0 =: A and A1 =: B, the

relative Morse index Iℓ(A,B) := − sfℓ{As, 0 ; ≤ s ≤ 1} is well defined and satisfies

0 ≤ Iℓ(A,B) ≤ νh,ℓ(A) − νh,ℓ(B). (19)

(6) Reverse orientation. Let ℓ̂ denote the curve ℓ with opposite co-orientation. Then

we have

sfℓ{As} + sf ℓ̂{As} = νh,ℓ(A1) − νh,ℓ(A0). (20)

(7) Zero. Suppose that νh,ℓ(As) is constant for s ∈ [0, 1]. Then sfℓ{As} = 0.

(8) Invariance. Let {Ts}s∈[0,1] be a curve of bounded invertible operators. Then we have

sfℓ{T−1
s AsTs} = sfℓ{As}. (21)

Now we give a method of calculating the spectral flow of differentiable curves, inspired

among others by J.J. Duistermaat [14] and J. Robbin and D. Salamon [28].

Definition 2.4. Let ℓ ∈ A(C) be admissible and {As}s∈[0,1] be a curve in Aℓ(X).

(1) A crossing for As is a number t ∈ [0, 1] such that νh,ℓ(At) 6= 0.

(2) Set Ps = P 0
ℓ As. A crossing t is called regular if dom(As) = D fixed for s near t, Asx

is differentiable at s = t for all x ∈ D, and PtȦtPt is hyperbolic, i.e. νh,ℓ(PtȦtPt) = 0,

where Ȧs is the unbounded operator with domain D defined by

Ȧsx =
d

ds
Asx

for all x ∈ D.

(3) A crossing t is called simple if it is regular and νh,ℓ(At) = 1.

Proposition 2.5 (cf. Theorem 4.1 of [34]). Let X be a Banach space and ℓ =√
−1(−ǫ, ǫ) (ǫ > 0) with co-orientation from left to right. Let As, −ǫ ≤ s ≤ ǫ (ǫ > 0), be

a curve in Aℓ(X). Suppose that 0 is a regular crossing of As. Set P = P 0
ℓ (A0), A = A0

and B = Ȧs|s=0. Assume that

P (AB − BA)P = 0. (22)

Then there is a δ ∈ (0, ǫ) such that νh,ℓ(As) = 0 for all s ∈ [−δ, 0) ∪ (0, δ] and

sfℓ{As; 0 ≤ s ≤ δ} = −m−(PBP ), (23)

sfℓ{As;−δ ≤ s ≤ 0} = m+(PBP ). (24)

Here we denote by m+(PBP ) (m−(PBP )) the total algebraic multiplicity of eigenvalues

of PBP with positive (negative) imaginary part respectively.
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2.2 Symplectic functional analysis and Maslov index

A main feature of symplectic analysis is the study of the Maslov index. It is an intersection

index between a path of Lagrangian subspaces with the Maslov cycle, or, more generally,

with another path of Lagrangian subspaces. The Maslov index assigns an integer to each

continuous path of Fredholm pairs of Lagrangian subspaces of a fixed Hilbert space with

continuously varying symplectic structures.

Firstly we define symplectic Hilbert spaces and Lagrangian subspaces.

Definition 2.6. Let H be a complex vector space. A mapping

ω : H ×H −→ C

is called a (weak) symplectic form on H , if it is sesquilinear, skew-hermitian, and non-

degenerate, i.e.,

(i) ω(x, y) is linear in x and conjugate linear in y;

(ii) ω(y, x) = −ω(y, x);

(iii) Hω := {x ∈ H | ω(x, y) = 0 for all y ∈ H} = {0}.
Then we call (H,ω) a complex symplectic vector space.

Definition 2.7. Let (H,ω) be a complex symplectic vector space.

(a) The annihilator of a subspace λ of H is defined by

λω := {y ∈ H | ω(x, y) = 0 for all x ∈ λ}.

(b) A subspace λ is called isotropic, co-isotropic, or Lagrangian if

λ ⊂ λω , λ ⊃ λω , λ = λω ,

respectively.

(c) The Lagrangian Grassmannian L(H,ω) consists of all Lagrangian subspaces of (H,ω).

Definition 2.8. Let H be a complex Hilbert space. A mapping ω : H × H → C is

called a (strong) symplectic form on H , if ω(x, y) = 〈Jx, y〉H for some bounded invertible

skew-adjoint operator J . (H,ω) is called a (strong) symplectic Hilbert space.

Before giving a rigorous definition of the Maslov index, we fix the terminology and

give a simple lemma.

We recall:

Definition 2.9. (a) The space of (algebraic) Fredholm pairs of linear subspaces of a

vector space H is defined by

F2
alg(H) := {(λ, µ) | dim (λ ∩ µ) < +∞ and dim

(
H/(λ+ µ)

)
< +∞} (25)

with

index (λ, µ) := dim(λ ∩ µ) − dim(H/(λ+ µ)). (26)
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(b) In a Banach space H , the space of (topological) Fredholm pairs is defined by

F2(H) := {(λ, µ) ∈ F2
alg(H) | λ, µ, and λ+ µ ⊂ H closed}. (27)

We need the following well-known lemma (see, e.g., [11, Lemma 1.7]).

Lemma 2.10. Let (H,ω) be a (strong) symplectic Hilbert space. Then

(1) there is a 1-1 correspondence between the space

UJ = {U ∈ B
(
H+, H−)

| U∗J |H−U = −J |H+}

and L(H,ω) under the mapping U → L := G(U) (= graph of U), where H± =

H∓(
√
−1J) in the sense of the decomposition (13);

(2) if U, V ∈ UJ and λ := G(U), µ := G(V ), then (λ, µ) is a Fredholm pair if and

only if U − V , or, equivalently, UV −1 − I is Fredholm. Moreover, we have a natural

isomorphism

ker(UV −1 − I) ≃ λ ∩ µ . (28)

Definition 2.11. Let (H, 〈·, ·〉s), s ∈ [0, 1] be a continuous family of Hilbert spaces, and

ωs(x, y) = 〈Jsx, y〉s be a continuous family of symplectic forms on H , i.e., {As,0} and

{Js} are two continuous families of bounded invertible operators, where As,0 is defined

by

〈x, y〉s = 〈As,0x, y〉0 for all x, y ∈ H.

Let {(λs, µs)} be a continuous family of Fredholm pairs of Lagrangian subspaces of

(H, 〈·, ·〉s, ωs). Then there is a continuous splitting

H = H−
s (

√
−1Js) ⊕H+

s (
√
−1Js) (29)

associated to the self-adjoint operator
√
−1Js ∈ B(H, 〈·, ·〉s) for each s ∈ [0, 1]. By

Lemma 2.10, λs = Gs(Us) and µs = Gs(Vs) with Us, Vs ∈ UJs, where Gs denotes the

graph associated to the splitting (29). We define the Maslov index Mas{λs, µs} by

Mas{λs, µs} = − sfℓ{UsV
−1

s }, (30)

where ℓ := (1 − ǫ, 1 + ǫ) with, ǫ ∈ (0, 1) and with upward co-orientation.

Remark 2.12. For finite-dimensional H , constant µs = µ0, and a loop {λs}, i.e.,

for λ0 = λ1 , we notice that Mas{λs, µs} is the winding number of the closed curve

{det(U−1
s V0)}s∈[0,1] . This is the original definition of the Maslov index as explained in

Arnol’d, [2].

Lemma 2.13. The Maslov index is independent of the choice of the complete inner

product of H.
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Proof. Let 〈·, ·〉s,k, s ∈ [0, 1] with k = 0, 1 be two continuous families of complete inner

products of H . We define

〈·, ·〉s,t = (1 − t)〈·, ·〉s,0 + t〈·, ·〉s,1
for each (s, t) ∈ [0, 1] × [0, 1]. Let (λs, µs) be a continuous family of Fredholm pairs of

Lagrangian subspaces of (H,ωs). For each inner product 〈·, ·〉s,t, we denote by Us,t and

Vs,t the associated generated ”unitary”operators of λs and µs respectively. We also denote

by Mast the Maslov index defined with 〈·, ·〉s,t for each t ∈ [0, 1]. By Proposition 2.3 we

have

Mas0{λs, µs} − Mas1{λs, µs}
= − sfℓ{Us,0V

−1

s,0 } + sfℓ{Us,1V
−1

s,1 }
= − sfℓ{Us,tV

−1

s,t ; (s, t) ∈ ∂
(
[0, 1] × [0, 1]

)
}

= 0.

�

Now we give a method of using the crossing form to calculate Maslov indices (cf. [14],

[28], [5, Theorem 2.1]; for a full proof of the following Proposition see [33, Corollary 3.1]).

Let λ = {λs}s∈[0,1] be a C1 curve of Lagrangian subspaces of H . Let W be a fixed

Lagrangian complement of λt. For v ∈ λt and |s−t| small, define w(s) ∈W by v+w(s) ∈
λs. The form

Q(λ, t) := Q(λ,W, t)(u, v) =
d

ds
|s=tω(u, w(s)), ∀u, v ∈ λt (31)

is independent of the choice of W . Let {(λs, µs)}, 0 ≤ s ≤ 1 be a curve of Fredholm pairs

of Lagrangian subspaces of H . For t ∈ [0, 1], the crossing form Γ(λ, µ, t) is a quadratic

form on λt ∩ µt defined by

Γ(λ, µ, t)(u, v) = Q(λ, t)(u, v) −Q(µ, t)(u, v), ∀u, v ∈ λt ∩ µt. (32)

A crossing is a time t ∈ [0, 1] such that λt ∩ µt 6= {0}. A crossing is called regular if

Γ(λ, µ, t) is nondegenerate. It is called simple if it is regular and λt∩µt is one-dimensional.

Proposition 2.14. Let (H,ω) be a symplectic Hilbert space and {(λs, µs)}, 0 ≤ s ≤ 1 be

a C1 curve of Fredholm pairs of Lagrangian subspaces of H with only regular crossings.

Then we have

Mas{λ, µ} = m+(Γ(λ, µ, 0))−m−(Γ(λ, µ, 1)) +
∑

0<t<1

sign(Γ(λ, µ, t)). (33)

3 Symplectic analysis of symmetric operators

3.1 Local stability of weak inner UCP

Let X be a complex Hilbert space and A ∈ C(X) a linear, closed, densely defined operator

inX. We assume that A is symmetric, i.e., A∗ ⊃ A where A∗ denotes the adjoint operator.
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We denote the domains of A byDm (the minimal domain) and of A∗ byDmax (the maximal

domain).

Definition 3.1. Let X be a Hilbert space and A ∈ C(X) with domA = Dm and A∗ ⊃ A.

We shall say that the operator A satisfies the weak inner Unique Continuation Property

(UCP) if kerA = {0}.

It is well known that weak UCP and weak inner UCP can be established for a large

class of Dirac type operators, see the first author with Wojciechowski [10, Chapter 8],

and the first author with M. Marcolli and B.-L. Wang [9]. However, it is not valid for

all linear elliptic differential operators of first order as shown by one of the Plís counter-

examples [26]. Moreover, one has various quite elementary examples of linear and non-

linear perturbations which invalidate weak inner UCP for Dirac operators. Two such

examples are listed in [9]. In the same paper, however, it was shown that weak UCP is

preserved under certain ‘small’ perturbations of Dirac type operators. Here we show an

elementary result, namely the local stability of weak inner UCP.

Lemma 3.2. Let X be a Hilbert space. Let As ∈ C(X), 0 ≤ s ≤ 1 be a family of

symmetric operators with domAs = Dm and domA∗
s = Dmax independent of s. Assume

that {A∗
s : Dmax → X} is a continuous curve of bounded operators, where the norm on

Dmax is the graph norm induced by A∗
0. If A0 satisfies weak inner UCP and there exists

a self-adjoint Fredholm extension A∗
0|D of A0, then for all s ≪ 1 the operators A∗

s are

surjective and the operators As satisfy weak inner UCP.

Proof. By our assumptions, imA∗
0|D is closed and is of finite codimension. Since imA∗

0|D ⊂
imA∗

0 ⊂ X, the full range imA∗
0 is closed. Since A0 satisfies weak inner UCP, imA∗

0 = X.

Then A∗
0 is semi-Fredholm. By Theorem IV.5.17 of Kato [17] we have imA∗

s = X for

s≪ 1. Since As are symmetric, As satisfy weak inner UCP for s≪ 1. �

3.2 Continuity of the family {As,Ds
}

Let X be a complex Hilbert space, and M,N ⊂ X be two closed linear subspaces. Let

PM , PN be the orthogonal projections ontoM , N respectively. Then the distance d(M,N)

is defined by d(M,N) = ‖PM − PN‖ and called the gap between M and N . For any two

closed operators A,B on X, we define d(A,B) as the distance between their graphs.

Let A ∈ C(X) be a linear, closed, densely defined operator in X. By Footnote 1 (page

198), Theorems IV.1.1 and IV.2.14 in [17], it is easy to verify the following

Lemma 3.3. Let B ∈ B(dom(A), X) be a bounded operator, where the norm on dom(A)

is the graph norm GA induced by A. Let d := ‖B − A‖GA
< 1

2
. Then we have

(1) B ∈ C(X), and it holds that

(1 − 2d)〈x, x〉GA
≤ 〈x, x〉GB

≤ (1 + d)2〈x, x〉GA
for x ∈ D.
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(2) d(B,A) ≤
√

2d
(1−d)−1 .

Lemma 3.4. Let X be a Hilbert space, and Y be a closed linear subspace of H. Then

there exists a bijection between the space of closed linear subspaces of X containing Y

and that of closed linear subspaces of X/Y which preserves the metric.

Proof. We view X/Y as Y ⊥. Let M,N ⊂ Y ⊥ be two closed subspaces and PM , PN be

the orthogonal projections onto M , N respectively. Then we have

d(M + Y,N + Y ) = ‖PM+Y − PN+Y ‖ = ‖PM − PN‖ = d(M,N).

�

From the definition of the gap norm and by some computations we have

Lemma 3.5. Let Dm ⊂ Dmax ⊂ X be three Hilbert spaces such that Dm is a closed sub-

space of Dmax and a dense subspace of X. Let
{
As ∈ C(X)

}
s∈[0,1]

be a family of densely de-

fined symmetric operators with domain Dm, and
{
Ds

}
s∈[0,1]

be a family of closed subspaces

of Dmax containing Dm. We assume that dom(A∗
s) = Dmax, each graph norm Gs of Dmax

induced by A∗
s is equivalent to the original norm G of Dmax , and

{
A∗

s ∈ B(Dmax, X)
}
,{

Ds/Dm ⊂ Dmax/Dm

}
are two continuous families. Then

{
As,Ds

∈ C(X)
}

s∈[0,1]
is a

continuous family of closed operators.

3.3 Continuity of natural Cauchy data spaces

In this subsection we generalize the proof of the continuity of Cauchy data spaces given

in [5, Section 3.3]. We need the following

Proposition 3.6 (Proposition 3.5 of [5]). Let X be a Hilbert space, and A ∈ C(X)

be a symmetric operator. Set Dm = dom(A) and Dmax = dom(A∗). If A admits a self-

adjoint Fredholm extension with domainD , then the quotient spaceD/Dm and the natural

Cauchy data space (kerA∗ + Dm)/Dm form a Fredholm pair of Lagrangian subspaces of

the (strong) symplectic Hilbert space Dmax/Dm (introduced above in Subsection 1.3, Item

(ii)).

Remark 3.7. From the arguments in Ralston [27] one can deduce (see [8]) that all linear

formally self-adjoint elliptic differential operators over a compact smooth Riemannian

manifold with smooth boundary admit a self-adjoint Fredholm extension.

Now we can prove

Proposition 3.8. Let X be a Hilbert space, and Dm ⊂ Dmax be two dense linear subspaces

of X. Let {As : Dm → X}s∈[0,1] be a family of closed symmetric densely defined operators

in X. We assume that
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(1) each As admits a self-adjoint Fredholm extension with domain Ds ;

(2) dom(A∗
s) = Dmax is independent of s and that all graph norms Gs of Dmax induced

by A∗
s are mutually equivalent;

(3) each As satisfies weak inner UCP relative to Dm ; and

(4) {A∗
s : Dmax → X} forms a continuous family of bounded operators, where the norm

on Dmax is the graph norm G induced by A0.

Then the natural Cauchy data spaces
(
Dm + kerA∗

s

)
/Dm are continuously varying in

Dmax/Dm .

Proof. We denote the projection of Dmax onto Dmax/Dm by γ . Note that kerA∗
s is closed

in Dmax .

To prove the continuity, we need only to consider the local situation at s = 0. First

we show that {kerA∗
s}s∈[0,1] is a continuous family of subspaces of Dmax; then we show

that γ(kerA∗
s) is a continuous family in Dmax/Dm.

We consider the bounded operator

Fs : Dmax −→ X ⊕ kerA∗
0

x 7→ (A∗
sx, P0x)

,

where P0 : Dmax → kerA∗
0 denotes the orthogonal projection of the Hilbert space Dmax

onto the closed subspace kerA∗
0 . By definition, the family {Fs} is a continuous family of

bounded operators.

Clearly, F0 is injective. Since imA∗
0|D0

⊂ imA∗
0 ⊂ X and A∗

0|D0
is Fredholm, imA∗

0 is

closed. From weak inner UCP we get imA∗
0 = X. So the operator F0 is also surjective.

This proves that F0 is invertible with bounded inverse. Then all operators Fs are invertible

for small s ≥ 0, since Fs is a continuous family of operators.

Note that

Fs(kerA
∗
s) ⊂ {0} ⊕ kerA∗

0, (Fs)
−1({0} ⊕ kerA∗

0) ⊂ kerA∗
s.

Since Fs are invertible for small s ≥ 0, we have

Fs(kerA
∗
s) = {0} ⊕ kerA∗

0. (34)

We define

ϕs := F−1
s ◦ F0 : Dmax

∼= Dmax and ϕ−1
s = F−1

0 ◦ Fs : Dmax
∼= Dmax

for s small. Since Fs are invertible for small s ≥ 0, from (34) we obtain that

ϕs(kerA
∗
0) = kerA∗

s . (35)

From (35) we get that

{Ps := ϕsP0ϕ
−1
s : Dmax −→ kerA∗

s}
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is a continuous family of projections onto the solution spaces kerA∗
s. The projections are

not necessarily orthogonal, but can be orthogonalized and remain continuous in s like in

[10, Lemma 12.8]. This proves the continuity of the family {kerA∗
s} in Dmax .

Now we must show that {γ(kerA∗
s)} is a continuous family in the quotient space

Dmax/Dm. This is not proved by the formula γ(kerA∗
s) = γ(ϕs(kerA

∗
0)) alone. We must

modify the endomorphism ϕs of Dmax in such a way that it keeps the subspace Dm

invariant.

By Proposition (3.6), the Cauchy data space γ(Dm + kerA∗
0) is closed in Dmax/Dm.

So Dm + kerA∗
0 is closed in Dmax. We define a continuous family of mappings by

ψs : Dmax = Dm + kerA∗
0 + (Dm + kerA∗

0)
⊥ −→ Dmax

x+ y + z 7→ x+ ϕs(y) + z

with ψ0 = id. Hence all ψs are invertible for s ≪ 1, and ψs(Dm) = Dm for such small

s. Hence we obtain a continuous family of mappings {ψ̃s : Dmax/Dm → Dmax/Dm} with

ψ̃s(γ(kerA
∗
0)) = γ(kerA∗

s). From that we obtain a continuous family of projections as

above. �

Remark 3.9. From the preceding arguments it also follows that the Cauchy data spaces

form a differentiable family, if {A∗
s} is a differentiable family.

3.4 Proof of the spectral flow formula

We begin with a simple case.

Lemma 3.10. Let X be a Hilbert space, and A ∈ C(X) be a symmetric operator with

dom(A) = Dm and dom(A∗) = Dmax. Let AD := A∗|D be a self-adjoint Fredholm ex-

tension of A. We assume that A satisfies weak inner UCP. Then there exists an ǫ > 0

such that AD + aI is Fredholm and satisfies weak inner UCP for each a ∈ [0, ǫ]. Let

γ : Dmax → Dmax/Dm denote the natural projection. Then we have

sf{AD + aI; a ∈ [0, ǫ]} = −Mas{γ(D), γ(ker(A∗ + aI)); a ∈ [0, ǫ]}.

Proof. By the definition of the spectral flow we have

sf{AD + aI; a ∈ [0, ǫ]} =
∑

a∈(0,ǫ]

dim ker(AD + aI). (36)

Let ω denote the Green form on Dmax induced by A∗. Let W ∈ L(Dmax/Dm) be a

Lagrangian complement of γ(ker(A∗ + a0I)). By Proposition 3.8, γ(ker(A∗ + aI)) and

ker(A∗ + aI) are two differentiable families. For each y(a0) ∈ ker(AD + a0I), there exists

a continuous family w(a) ∈ W + Dm, |a − a0| small, such that w(a0) = 0 and y(a) :=

y(a0)+w(a) ∈ ker(A∗+aI). Since A∗(y(a)) = −ay(a) and the family {y(a)} is continuous
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in Dmax, the family {y(a)} is also continuous in X. For all x(a0) ∈ ker(AD + a0I), we

have

ω(γ(x(a0)), γ(w(a)) = 〈A∗(x(a0)), y(a) − y(a0)〉 − 〈x(a0), A
∗(w(a))〉

= 〈−a0x(a0), y(a) − y(a0)〉 − 〈x(a0), A
∗(y(a)) −A∗(y(a0))〉

= 〈−a0x(a0), y(a) − y(a0)〉 − 〈x(a0),−ay(a) + a0y(a0)〉
= (a− a0)〈x(a0), y(a)〉

Let the crossing forms Q and Γ be defined by (31) and (32) respectively. Then we have

Q(γ(ker(A∗ + aI)), a0)(γ(x(a0)), γ(y(a0)) = 〈x(a0), y(a0)〉 and

Γ(γ(D), γ(ker(A∗ + aI)), a0)(γ(x(a0)), γ(y(a0)) = −〈x(a0), y(a0)〉.

By Proposition 2.14 we have

Mas{γ(D), γ(ker(A∗ + aI)); a ∈ [0, ǫ]} = −
∑

a∈(0,ǫ]

dim ker
(
AD + aI

)
. (37)

Combine equations (36), (37), and our lemma follows. �

Now our main result follows at once.

Proof of Theorem 1.5. By Lemma 3.2, for each s0 there exists an ǫ(s0) > 0 such that

the operators As + aI satisfy weak inner UCP for all s, a with |s− s0|, |a| < ǫ(s0). Here

we use the continuity of the family
{
A∗

s} as bounded operators from Dmax to X. Since

[0, 1] is compact and As,Ds
are Fredholm operators for all s ∈ [0, 1], there exists an ǫ > 0

such that the operators As + aI satisfy weak inner UCP and As,Ds
+ aI are Fredholm

operators for all s ∈ [0, 1] and |a| < ǫ.

We only need to prove the formula (12) in a small interval [s0, s1]. We consider the

two-parameter families

{As,Ds
+ aI} and {γ(Ds), γ(kerA

∗
s + aI)}

for s ∈ [s0, s1] and a ∈ [0, ǫ]. Because of the homotopy invariance of spectral flow and

Maslov index, both integers must vanish for the boundary loop going counter clockwise

around the rectangular domain from the corner point (s0, 0) via the corner points (s1, 0),

(s1, ǫ), and (s0, ǫ) back to (s0, 0).

Moreover, for s1 sufficiently close to s0 we can choose ǫ sufficiently small so that

ker(As,Ds
+ ǫI) = {0} for all s ∈ [s0, s1]. Hence, spectral flow and Maslov index must

vanish on the top segment of our box.

Finally, by the preceding lemma, the left and the right side segments of our curves

yield vanishing sum of spectral flow and Maslov index. So, by additivity under catenation,

our assertion follows. �
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