Basics for "Inorganic Chemistry"

- 1. Give a name to the following compounds
 - CF₃SO₃H
 - NH₄SCN
 - H₃N
 - N₃H
 - NaNH₂
 - CCl₃CO₂H
 - CS_2
 - KI₃
 - CH₃CSNH₂
 - D₂O
 - C₅H₁₁OH
 - $(NH_4)_3 PMo_{12}O_{40}$
- 2. Name the following
 - A. Na₂[HgI₄] B. [Cr(NH₃)₆]Cl₃ C. TIPO₄ D. NH₄Fe(SO₄)₂ \cdot 12H₂O E. (NH₄)₂Cr₂O₇ F. Eu₂(SO₄)₃ G. KFe[Fe(CN)₆]
- 3. Draw the structure of the compound and its corresponding acid (if any). Give an approximate value of the pK's.
 - A. acetic acid
 - B. ammonia
 - C. 2-aminoacetic acid (glycine)
 - D. hydroxylamine
 - E. acetamide
 - F. N-hydroxyacetamide (also called acetohydroxamic acid)
 - G. pyridine
 - H. imidazole
 - I. 3-(4-imidazolyl)-2-aminopropanoic acid also called histidine
 - J. 2-amino-3-mercaptopropanoic acid also called cysteine

K. N-(2-aminoacetyl)-2-amino-3-mercaptopropanoic acid - also called glycyl cysteine.

- 4. Give a name and write a formula for
 - 5 insoluble hydroxides and give their colour
 - 3 insoluble hydroxides, which are soluble in aqueous sodium hydroxide
 - 5 insoluble sulphides and give their colour
 - 3 insoluble sulphides, which are soluble in aqueous sodium sulphide
 - 2 insoluble sulphates and give their colour

- 5. Give a name and write a formula for
 - 5 insoluble barium salts in basic aqueous solution
 - 2 soluble barium salts in basic aqueous solution
 - 5 insoluble phosphates in basic aqueous solution
 - 2 soluble phosphates in basic aqueous solution
 - 2 insoluble phosphates in aqueous acetic acid
 - 3 soluble silver salts in aqueous nitric acid
- 6. A calcium salt also contains phosphate. Analysis reveals 18.5% P. Determine a possible formula of the salt.
- 7. 72.4% iron is found in a chemically pure iron oxide. Calculate a formula of the oxide and give a systematic name.
- 8. A blue inorganic compound dissolved in dilute hydrochloric acid forms a white precipitate, when barium chloride is added. The precipitate does not dissolve in concentrated hydrochloric acid. To 464 mg of the blue compound is added 2 g of potassium iodide. To the brown slurry formed is added a solution of starch and the mixture is titrated with17.2 ml 0.108 M of sodium thiosulphate from black to white slurry. Which compound do we have?
- 9. Suggest methods for the determination of the stoichiometry and structure of a green compound, in which Cr^{3+} , Cl^- and NH_4^+/NH_3 have been identified.
- 10. Discuss the statements

"The hydrolysis follows first order kinetics" "The hydrolysis is a bimolecular reaction".

- 11. Calculate E^0 for $Cu^{2+} + e^- \rightarrow Cu^+$ when $E^0_{Cu^{2+}/Cu} = 0.34$ V and $E^0_{Cu^+/Cu} = 0.52$ V
- 12. 1 litre of an aqueous A solution was prepared by dissolving the following compounds in water: glycinium chloride (0.1 mol), potassium hydrogen phosphate (0.2 mol), sodium dihydrogen phosphate (0.1 mol) and ammonium chloride (0.4 mol). What is the pH of the solution?
- 13. Write the electron configuration for the oxygen atom. Draw an electron energy diagram for the oxygen atom and for the oxygen molecule
- 14. Write the electron configuration for the cobalt atom. Draw an electron energy diagram for the cobalt atom and for the cobalt(II) ion