Symbols in coordination equilibria.

Elements ML_n symbolises a coordination compound in equilibrium in aqueous solution

To simplify charges has been omitted.

n is an integer $(0 \le n \le N)$: it means the number of (monodentate)

ligands - L – which are bound to the metal ion M.

The maximum coordination number is N.

 ML_n is therefore a short notation for $ML_n(H_2O)_{N-n}$ (charges omitted).

M may be called <u>metal ion</u>, <u>central ion</u> or <u>central atom</u>

Concentration

 $[ML_n]$ molar concentration of ML_n

C_X stoikiometric concentration of X - the molar concentration of X in total

bound to the metal ions or free. Is often called the total concentration of

X. Of typographical reasons it may also be written as C(X).

 C_M Stoikiometric concentration of metal ion C_L Stoikiometric concentration of ligand

The degree of formation

 α_n The degree of formation of ML_n . (Of typographical reasons it may also be

written as $\alpha(n)$)

$$\alpha_{\rm n} = \frac{[ML_{\rm n}]}{C_{\rm M}}.$$

 \overline{n} The degree of formation of the <u>system</u> - (is pronounced n-mean).

$$\overline{n} = \frac{\sum n \cdot [ML_n]}{C_m}$$

Stability constant

 K_n the step wise stability constant for the step $ML_{n-1} + L \Leftrightarrow ML_n$

$$K_{n} = \frac{[ML_{n}]}{[ML_{n-1}] \cdot [L]} = \frac{\alpha_{n}}{\alpha_{n-1} \cdot [L]}$$

 $\beta_n \qquad \qquad \underline{over\ all}\ stability\ constant\ for\ the\ equilibrium\ M+nL \Leftrightarrow ML_n$

$$\beta_{n} = \frac{[ML_{n}]}{[M] \cdot [L]^{n}} = \frac{\alpha_{n}}{\alpha_{0} \cdot [L]^{n}}$$

$$\beta_n = \prod_{n=0}^{n} K_n$$