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Abstract:

Branner-Hubbard motion is a systematic way of deforming an attracting
holomorphic dynamical system f into a family (f,), cL» Via a holomorphic
motion which is also a group action. We establish the analytic dependence
of fs on s (a result first stated by Lyubich) and the injectivity of fs on f.
We prove that the stabilizer of f (in terms of s) is either the full group L
(rigidity), or a discrete subgroup (injectivity). The first case means that
fs is Mobius conjugate to f for all s € L, and it happens for instance at
the center of a hyperbolic component. In the second case the map s +— f;
is locally injective. We show that BH-motion induces a periodic holomor-
phic motion on the parameter space of cubic polynomials, and that the
corresponding quotient motion has a natural extension to its isolated sin-
gularity. We give another application in the setting of Lavaurs enriched
dynamical systems within a parabolic basin.
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1 Introduction

This paper describes systematic perturbations of holomorphic dynamical systems via
structured holomorphic motions that are also group actions. The technique, commonly
known as the Branner Hubbard motion or in short BH-motion, was introduced by Branner
and Hubbard in [BH1] to study parameter spaces of monic polynomials. It was later used
by, for example, Branner’s Ph.D. student Willumsen [Wi] (see also [Ta] in this volume).

In order to better exhibit the general properties of BH-motions we introduce the notion
of attracting dynamics (see Definition 2.3), on which the BH-motion naturally acts. Given
an attracting dynamics f, a BH-motion provides a parametrized family of attracting
dynamics (fs),.,, with the parameter space L equal to the right half complex plane,
equipped with its usual complex structure and with a specific real Lie group structure.
The map s — f, is naturally a group action.

We give a thorough description of the construction of the BH-motion together with ba-
sic properties. We prove then the holomorphic dependence of f; on s (Theorem 2.5.(2)), in
a holomorphic motion context more general than BH-motions (Theorem 2.7). This result
was first stated without proof by Michael Lyubich. We proceed to prove the injectivity
of f — fs (Theorem 2.5.(6)). These two results will be our main tool, while performing
BH-motions on a full slice of cubic polynomial attracting dynamics, to promote a holo-
morphic motion of the dynamical planes to a holomorphic motion of the parameter space
of such polynomials.

We then study the mapping properties of s — f;. We show that the stabilizer (see
Definition 3.1) exhibits the following dichotomy: it is

e cither the full group L, in which case f behaves like the center of a hyperbolic
component, in other words all critical points attracted by the attracting cycle actually
lay on the cycle or its preimages;

e or a discrete subgroup of I contained in the vertical line 1 + ‘R, in which case f is
necessarily a non-center, in other words at least one attracted critical point has an infinite
orbit (Theorem 3.3).

There are many possible applications of BH-motions. We have chosen here two of
them which we find illustrative for the diversity of applications.

The first one concerns a family (P,) of cubic polynomials, such that 0 is an attracting
fixed point of multiplier independent of a, and attracts exactly one simple critical point.
We will perform a BH-motion on each P,, thus obtain a double indexed family P, ; of cubic
polynomials. As mentioned above, we prove that these dynamically defined BH-motions
promote to a holomorphic motion of the a-slice within the space of cubic polynomials,
which turns out to be 27i-periodic on s (Theorem 4.1). This induces naturally a quotient
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motion over D* & I /27iZ, which is the most natural way to change the multiplier of P,
at 0, but keeping the remaining part of the dynamics fixed. We then make one more effort
to extend this motion over I, and thus succeed in deforming systematically the attracting
fixed point into a superattracting fixed point (Theorem 4.2).

The second one concerns the BH-motion of the basin of oo of the quadratic cauliflower

2 224 i, enriched by a Lavaurs map g. We give a detailed study of the effect of the

BH-motion on the enrichment of the dynamics (Theorem 4.6).

For other illustrations beyond the paper of Willumsen and the original paper of Bran-
ner and Hubbard, the reader may want to consult the beautiful master thesis of Uhre
[U], the paper [D] in this volume and the paper [P-T] which explores further the notion
of attracting dynamics.

Acknowledgement We would like to thank Institut Henri Poincaré, Paris and the or-
ganizers of its trimester program on holomorphic dynamics during the autumn 2003 for
hospitality and stimulating activities. The first author would also like to thank CNRS-
UMR 8088 at Université de Cergy-Pontoise for its hospitality during the creation of this

paper.

2 Definition and basic properties of BH-motions

In this paper we shall use the notion of holomorphic motions in a slightly more general
sense than the usual definition:

Definition 2.1. (Holomorphic motion) Let (X, A, p) be a triple with X, A two complex
analytic manifolds and p : X — A an analytic surjective mapping. Denote by Xy the fiber
p(\). Choose \y € A a base point and E C X),. A holomorphic motion of E over
A into X is a mapping H : A X E — X, (), z) — H(A, 2) satisfying:

1. For any fized \, z — H (A, z) is injective on E and maps E into X).
2. For any fived z € E, A — H(-, z) is analytic.
3. H(Xo,*) is the identity map on E.

In practice, we often have X = A x X, in which case we suppress the first coordinate
of H and write H : A x £ — X.

2.1 The model BH-motion

The notation below is taken from [Wi]. Further calculations can be found there.

Define L = {u+iv,u > 0} and for any s = s, +is, € L, define an R-linear diffeomor-
phism [, : C — C by:

T(2) = (5—1) etz = smpbizg = ST oy 2=l (80 O (& Y sem )
s = T = SZg vy 2 2 o Sy 1 Zy - Syzzv+zy )




where 2z = 2, + iz,. Moreover define a homeomorphism [, : C — C by

ls(z) — ls(7”62m0) — pSe2mil — . ps=l 6(s—l)logr :
so that exp ois = [, 0 exp. Then the almost complex structure o, = E(ag) obtained by
pulling back the standard almost complex structure oy, is given by the 'constant’ Beltrami

form ts(% where the constant ¢, = jf} depends only on s, but not the position z.

Let % : L x . — IL denote the group structure for which the map s — E, is a group
isomorphism onto its image, i.e. s’ x s — [y o[, and in algebra
, s'(s+35)+ (s—3) 1 sy 2—545

! . ! _
S x8s= =55, + (5,5, + S and s = — —i— = -
2 ’” (s, v Sy Sy s+5

Note that s = (s, + 10) % (1 +4s,). The group (LL, x) is therefore a real Lie group and is
generated by the two Abelian but non mutually commuting subgroups (W, x) and (S, x)
called wring and stretch respectively. Where W = 1 4 iR with % is given by addition
of imaginary parts and where W acts on the group (L, ) from the right by addition of
the imaginary part. And § = R, with x given by multiplication and where S acts on the
group (L, *) from the right by multiplication. The (collection of) maps I, and [, have
many useful properties. We state them below as:

Define Hy = {z € C| £ R(z) > 0}, the right (left) half plane.

Lemma 2.2. (basic properties ofE and ls)

1. The map ﬁ is the unique linear map mapping the ordered triple (i,0, 1) to the ordered
triple (i,0,s). The maps

(s,2) ~ 1;(z), LxC—C, LxH,—H.

(s,2) = 1s(2), LxC—=C

satisfy simultaneously the following properties:

e they are holomorphic motions over L, with base point sq = 1
e they are group actions of (L, x), acting on the left.

e they are dynamical conjugacies, more preciselyis conjugates z — kz (k € R)
to itself and conjugates z — 2+ L to z — 2 + Lg, where Ly = Z;(L); and 1,
conjugates z — 2% (k € N) to itself and conjugates z — Az to z — \,z, where
A =1 (A) = A= AL

2. E|ZR = Id, it maps R to the oblique line passing through 0 and s, and any other
horizontal line 1y + R to the line parallel to s, passing through iy. It maps any
vertical line to a vertical line.

3. Forany z € Hy.: dHi(z,E(z)) = dH+(1, s) = Cs, where d, denotes the hyperbolic
distance.
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4. For sy =14 2mi, Z;l maps m+1i-R (m € Z) onto itself, mapping m to m + 2mwim.

5. ls|{z1=1y = id, l; maps the circle |z| = r to the circle {|z| = r*} (where u = R(s)),
and the ray €*™ - R to an oblique (logarithmic) ray.

6. The Beltrami coefficient ofﬂ(z) 1$ a constant depending only on s, i.e. is transla-
tionally invariant and that of ls is invariant under linear maps z — az, a # 0:

ai,

—1 0 —1
by=2"totep, =2l
ol

s+1 Ol

(2) =

Moreover the dilatations K (1) = K(I,) = 24 are also constants.

7. When s varies from 1 to 1 + 2mi, the circle {|z| = €™} makes m-turns, relative to
the unit circle, for all m € Z, under the action of [;.

Proof. We will only prove 3 for H, the rest being straight forward. Fix zy € H,. The
map w — w — i - J(zp) is a hyperbolic isometry of H, mapping z to R(zp) and l5(29) to
1,(R(z0)) (by the conjugacy property). Now w — w/R(z) is again an isometry, mapping
R(20) to 1 and [;,(R(2)) to Is(1) = s (by the conjugacy property). O

2.2 BH-motion of an attracting dynamics (f, W, «)

Definition 2.3. We say that (f, W, a) or in short (f,a) or f, is an attracting dynam-
ics, if: i) W C C is open, ii) f : W — C is holomorphic and iii) « € W is an attracting
or superattracting periodic point for f.

Any attracting dynamics (f, W, ) comes with a long string of informations

(f, Woa, k(f),A(f), B(a), B(a), $,U)

defined as follows: k = k(f) € N is the exact period of o, and N(f) € D denotes the
multiplier (f*) (o). The set

Bla):={ze W|V¥n f*(z) e W & f™**(z) o« for some | € N}
n——+0o0
denotes the entire attracted basin of the orbit of v, and B(«) denotes the immediate basin
of a, i.e. the connected component of B(a) containing «. The map ¢:U — C is a
choice of a linearizing (possibly a Béttcher) coordinate defined and univalent on some

neighborhood U of «.

Note that different choices of ¢ on a given U differ by a multiplicative constant. In
what follows we shall for any subset W C C denote by W€ the complement C~\V.



Definition 2.4. Define a BH-motion of (f, W, «) to be a map:
s (g, hg, (fs,Ws,05), ¢5,Us) , s €L or in short s+ hy, s€L

as follows (see the diagram (1) below):

e 0, is the measurable and bounded Beltrami form defined by

(Iso @)*(00) onU
o, =14 (f")os on f[7"(U), neN
of on B(a)°

That is o is given by the above formulas on U and B(a)° and extended to B() by iterated
pull-backs of f. Note that for every zy € U the assignment s — 04(zy) is a complex analytic
function on L. In fact if we write o,(2) = p,(2)% in some local coordinate z on W' C W,
then for every fized zy € U the map s — us(20) : L — D is a Mdébius transformation.
On C which has a natural preferred chart the identity, we shall abuse the notation and

stmply write p for the Beltrami form ué—‘f.

e hy=hs;: C— C is a family of integrating maps for o, normalized so as to
depend complex analytically on s, as supplied by the measurable Riemann mapping theorem
with parameters.

b (fé:’?Wfs)afs) = (fsaWSaas) = (hs Of o h;1, hs(W)a hs(a))
e o= =l;0¢p0h;t and Us = Uy, = hy(U).

Note that another s-analytic normalization /ﬁs of hy differs by an s-analytic family of
Mobius transformations. In other words hy = M o hy with M, Mobius and analytic in s.

Example 1. (f,W,a) = (e7'z + 22,C,0) is an attracting dynamics with k(f) = 1 and
A f) = e7'. In a BH-motion of it, we may normalize the integrating maps h, so that
they fix 0 and oo and they are tangent to the identity at oo. Then one checks easily that
fs(z) = ez + 22

Example 2. Let P be a monic centered polynomial. We do a BH-motion for (f, W, a) =
(P,C, 00). We normalize h, so that each f, is again monic centered. In case that P has a

connected Julia set, a theorem of Branner-Hubbard ([BH], Prop. 8.3) shows that f; = P.
We will reprove this result below in a more general setting.

The basic properties of a BH-motion are:

Theorem 2.5. (BH-motion of dynamics) Let (f,W,«) be an attracting dynamics with
k(f) = k and A(f) = X and let s — (o5, hs, (fs, Ws,s), ¢s,Us) be a BH-motion of
(f,W,«). Then:

1. For any z € C, the assignment s — 04(2) is independent of the choices of (¢,U) in
the long string information.

2. The two maps of two complex variables (s, z) — fs(z) and (s, z) — ¢s(z) are complex
analytic in {(s,2),s € L,z € Wi} and {(s,2),s € L,z € Us} respectively.
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3. For any s € L the triple (fs, Wy, o) is again an attracting dynamics, whose long
string of information takes the form:

(fos Wos s, K, AP g (B(@)), ho(B(@)), 64, Us) -
If A € D* then s — Ag is holomorphic and depends on X\ only.

If X\ = 0 then \; = 0 and ¢4 is a Bdttcher coordinate for (fs,as), defined and
univalent on U,. Moreover write f*(2)—a = a(z—a)?+higher order terms, with a #
0 and d > 1 the local degree at o, then f¥(2)—a, = a(s)(z—a,)?+higher order terms,
with a(s) non vanishing and holomorphic in s.

4. If ¢ extends holomorphically to some domain~U’ C g(a) then ;0 ¢ o h,t is a
holomorphic extension of ¢ to U, = hy(U") C B(a).

5. The maps (s, z) — hs(z2)

e form a holomorphic motion of C over L with base point s = 1;

e are dynamical conjugacies as indicated in the following diagram.:

(f) (Az, 2™) (z + L, mz2)
WoB)>U -2  U)cC & ¢, (i,0,1)
1 b L L1, linear (1)
W,> B(a,) DU,  —>» L 6s(U) C T «— C, (i,0,5)
(f.) P e (et Lama)

e are group actions. More precisely, (fs)s = foxss hsws,f = ho g, © hs g and
Psrxs,f = (qﬁs,f)s,’fs, (subject to suitable normalizations). And for any fized s €
L, the map

SI — (Us’*sa hs’*s; (fs’*sa Ws’*s; as’*s)a ¢s’*s; Us’*s)

1s a BH-motion of fs.

6. (injectivity) If (fs,, Wy, ,az.,) and (gsy, Wy, , ay,,) are Mobius conjugate by M
(see Definition 2.6 below) for some sy € L. and some pair of attracting dynamics
(f,Wp,ap) and (g, Wy, ). Then (fs, Wy,,ap,) and (gs, Wy,, ag,) are Mébius con-
gugate for all s by a holomorphically varying family My of Mdbius transformations
with Ms, = M.

The proof of this theorem is postponed to the next subsection.

Definition 2.6. Two attracting dynamics (f, Wy, ap) and (g, W, oy) are Mobius con-
jugate, if there is a Mdbius transformation M, with M(ay) = oy, M(Wy) = W, and
Mo f=golM.

Remark. The map s — f; may not extend continuously to the boundary iR of L. See
[BH1], [Wi], [KN] or [Ta] for details.



2.3 Proof of Theorem 2.5

The non trivial part of Theorem 2.5 is the analytic dependence on s of fy(z) and ¢4(z). It
is a consequence of a theorem first stated by Lyubich, which we restate and prove below.
It requires however a little setup.

Let U,V C C be open subsets and f: U — V be a holomorphic map. Let A be a
complex analytic manifold and suppose o : A x V' — Bel(V) is an analytically varying
family of bounded measurable Beltrami forms supported on V. Let ¥ : A x C — C be a
corresponding analytically varying family of integrating quasi-conformal homeomorphisms
as supplied by the measurable Riemann mapping theorem with parameters. That is for
each fixed z € C: A + W,(z) is holomorphic and for each A the map ¥y = W(A,-) is a
quasi-conformal homeomorphism with W} (op) = o on V' and ¥3(0y) = 0¢ on V. Let
similarly ® : A x C — C be an analytically varying family of integrating quasi-conformal
homeomorphisms ®, = ®(),-) for the pulled-back structures o) = f*(0,), with ®%(0y) =
o) on U and ®5(0p) = 0y on U°. See diagram (2) .

(U,5y) =% (Uy,00)

fi L (2)

(Vo) 2 (Vi 00)

Define for each A € A : Uy = ®,(U) and Vy = ¥, (V) and open subsets ¢,V C A x C
by U = {(\z)|z € Uy} and V = {(),2)|z € V)}. Finally define a continuous map
(homeomorphism if f is bi holomorphic) F : U4 — V by

F(\z) =\ fi(2) = (W Tro fod (2)) .
Note that although W, (2) is still quasi-conformal in z and continuous in (), 2), it is
in general no more analytic in A\. However, we have, as a miracle,

Theorem 2.7. (Lyubich) The above map F is complex analytic or equivalently (X, z) —
r(2) is complex analytic.

Proof. The map (A, z) — fr(z) : U — C is continuous, because the two maps
(A 2) = (A Pa(2) : AxU — U and (N 2)— (AU(2):AXV —V

are homeomorphisms. Moreover f) is holomorphic for each fixed Ay as f) pulls back the
standard Beltrami form oy to itself,

fr(o0) = (Tro fo @) (a0) = (@31) o f* 0 Wi(0) = (231) (f*(0n)) = 00

Thus we need only check that for each fixed 2 the map A — f,(z) is holomorphic in each of
the coordinate functions of a complex analytic local chart on A. Equivalently we need to
prove that fy(z) has a complex partial derivative at each point (Ao, 29) € U with respect
to each such coordinate function. Hence the theorem is an immediate consequence of the
following one variable version. O
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Proposition 2.8. In the notation above suppose A, U,V C C are open subsets and U,V C
A x C. For (X, z0) € U write wy = @, ' (20) € U then

dfx Ma(z0) = fao(20)  OWy , oD,
X D) (£ (o)) —fro(20) - ﬁ(wo)

R l
(20) im s

)\:)\0' A—=Ao A— )\0

A=Xo

The same proof shows that if A is a real parameter and @) (wg) and W, (f(wy)) are real
partially differentiable as functions of A at Ao, then fy(zo) is partially real differentiable
at Ao with the same formula for the partial derivative. See the following diagram:

Wo m 20
fl L
Flwe) 28 fy(20)

Proof. At first (X, z) — fi(z) is continuous on (), z) and analytic on z. By the Cauchy
integral formula, f}(z) and f}(2) depend continuously on (A, z). In particular, for

u(A, 2) = fa(2) = falz0) — f1(20)(2 — 20)
there is some k > 0 such that |u(}, 2)| < k|z — 20|? for (A, 2) in a neighborhood of (g, 20).

As the maps A — @, (zp) and A — W, (f(wy)) are C-differentiable at )y, we can write
923 (wo) |re = A, B2(f(wo))]5, = B and @y (wy) — 29 = A(A = Xg) +0(|A — Ao|). From the
relation f), o ®y = ¥, o f we obtain

Ua(f(wo)) = ¥no (f(wo)) _ fa(®a(wo)) = fao (Pao(wo)) _ fa(Palwo)) — fo(20)

B +— = =

A= Ao A— o A— o A—Xo
_ [a(@a(wo)) — () n fr(20) = fro(20)
A—Xo A—Xo
_ Li(z0) (Pawo) = z0) +u(X Pa(wo)) | fa(20) = Fro(%0)
A— Ao A—Xo
_ ) A = do) +o(]A = o) | Sa(z0) = Fro(20)
A—Xo A— Ao '

It follows that

lim f/\(Zo) - f/\o(Zo)

j— _— ! .
A—=0 A — )\0 =B f/\o (ZO) A

Proof of Theorem 2.5.

1. Let (¢;,U;), i = 1,2 be two choices of the linearizer (or Béttcher coordinate). Then
on a neighborhood U C U; NU, of «, there is a constant a # 0 such that ¢; = a- ¢».
But (a-)*(l¥og) = l¥0g, by 6. of Lemma 2.2. Thus on U, (50 ¢;)*0g = (ls0pa)*0p. It
follows from the f-invariance of o, that o4(z) is independent of the choice of (¢, U).
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2. Complex analyticity of the maps (s, z) — fs(2) and (s,2) — ¢,(2) follow immedi-
ately from Theorem 2.7 applied to the following two commutative diagrams:

e, e,
fi Vs ol 1 ¢s
Ly -,

3. As hy is a homeomorphism and f,(z) = hy o f o hy' it follows that ay = h(a) is a
k-periodic point. Moreover

pso ffop,t =l,0pohtohsoffohtohsop tol;! =l,0p0ffoptoll.
If A\ # 0 then ¢po fFo¢p1(2) = Az and
b0 fFodTHz) =10 0l7 (2) = Nz = MA" 2.

If A\ =0, we have f*(z2) — a = a(z — a)? + higher order terms for some a # 0 and
¢o f¥o¢t(d) = 2% then

Beo fro g (2) =l ol M (z) = 4.

Moreover f¥(z) — a, = a(s)(z — a,)® + higher order terms with a(s) = (¢'(a,))”
depending holomorphically on s.

The facts that B(c,) = hy(B()) and B(a,) = hy(B(«)) are immediate from the
definition.

-1

4. The extension of ¢, is immediate from the definitions.

5. The map (s, z) — hg is a holomorphic motion by the measurable Riemann map-
ping theorem with parameters. Each h; is automatically a dynamical conjugacy by
the commutative diagram. To prove the group action properties, just look at the
following diagram:

f, W> Blay) DU Y sU)CC,
1 hS,f i

(5, f) = fo, W, D Blay) o U, sl 4 () € C
L by, Ly

, . b,
g="(5fs), (WS)s' ) B(ag) ) (US)s' — ¢g((U8)s') cC

Aslgoly = ly,s, the map hy g ohg ¢ integrates the complex structure pulled back by
lyss © ¢y. So, up to normalization, hy g 0 hy r = e and (fs)y = foxs. Similarly

¢g=lyopsoh,’, =lsolyopohtoh,' =ly,0¢0h,,

8/ %s"
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6. Injectivity. If s = 1 so that ¢ = M o f o M~'. Then M*(o5,) = 0, so that
My = hgg0Mo h;l is a Mobius transformation, depends holomorphically on s € L.
and conjugates (fs, Wy,,ay,) and (g5, W,,, a,,). For the general case note that by
the group action property for any s € L. the inverse map hs_} : C — C integrates
the f; invariant almost complex structure o,-1 g, i.e. (h;})*(ao) = 04-14,. And
simillarly for g. If (fs,, Wy, ,ay,) and (gs,, Wy, , g, ) are Mobius conjugate by
some M. Then M* (asal’gso) = 0,1, and hence M, = hyl,0 M ohg, f is a Mébius

conjugacy between (f, Wy, ay) and (g, W,, ). So the first part applies and yields

M, =M.
h
C (05,7, 00) I (00,05-11,)
5 RN fs o 0 I
\l/ Ml \l/ Ms
hs.g
gCOas’g’ oy — g:COUU, Os-14,
o» 1 g,
(C l:(O'U),O'() (C 0o, l;k_l(O'o)

3 Centers, stabilizers and proper attracting dynam-
ics

In this section we study the mapping properties of s +— f; in a BH-motion. We will
show that it is either locally injective (as in Example 1, page 5) or constant (rigid, as in
Example 2, page 5). For this we will need some notations:

Definition 3.1. In a BH-motion of an attracting dynamics (f,W,«a), we denote by
Stab(f) C L, the stabilizer, to be the set of s for which (fs, Ws, a) is Mébius conjugate
to (f, W, a).

Definition 3.2. We say that an attracting dynamics (f, W, «) is proper, if on every con-

nected component Q of B(a) the restriction f: Q —> () is a proper map (for ezample
a rational map with an attracting cycle and with the choice W = C is always proper).

We shall use the term central orbit synonymously with the grand orbit of a : G.O.(a) =
{z|3n e N: f*(2) = a}.

A proper attracting dynamics (f, ) is a center if all critical points in g(a) are central,
i.e. belongs to the central orbit, in particular o is f-superattracting. In other words, f is
not a center if either A\(f) # 0 or A(f) = 0, but at least one critical point in B(«) is not
a preimage of a.
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Theorem 3.3. (Injective or rigid) Let (f,W,a) be a proper attracting dynamics with
k(f) =k, A(f) = A

e Assume that (f,a) is not a center. Then Stab(f) is a discrete subgroup of W :=
(1+iR,x) and the map s — fs is injective on the semi strips {R(s) > 0,|I(s — so)| < I}
for some 6 > 0 and any so € L. Moreover Stab(f,) = s~ x Stab(f) % s.

e Assume now (f,a) IS a center. Then Stab(f) = Stab(fs) = L and fs = f for all

s € L (after suitable normalization of hy).

Remark that Branner and Hubbard’s original result ([BH]’s Prop. 8.3, see also [Wi]’s
Prop.5.5) corresponds to the case that f is a polynomial and (f,o0) is a center, which
means in this case the absence of escaping critical points, or equivalently the connectedness
of the Julia set.

The first step in our proof is the following:

Proposition 3.4. For any attracting dynamics (f,«) (with k(f) = k, M(f) = \), the
stabilizer Stab(f) is a subgroup of (IL,x) and is independent of the normalizations of h.
If A\ € D" then Stab(f) is a discrete subgroup of W. If X = 0 and if Stab(f) is not

discrete, then there is a sequence s!, %51 such that fo = f, after suitable normalization
of hy. Consequently f; = f under this normalization.

Proof. Assume s,5s, € Stab(f). We shall prove that s, s, € Stab(f), which implies
that (Stab(f),*) is a group.

By Theorem 2.5.(5), the maps s + fgs,, § = fos, are BH-motions of f;, and fs,
respectively.

Fori = 1,2 let M; be M&bius transformations with M;(a) = ay, and f = Mo f,.0 M;.
Then f,, = N~'o f,, 0N, where N = My o M;"'. By Theorem 2.5.(6) the dynamics fi,,,
and f,, are Mobius conjugate for all s € L. Setting s = 57" we get that f and fsfl*SQ
are Mobius conjugate, i.e. s, % sy € Stab(f).

Therefore Stab(f) is a subgroup. Now different normalizations of hg lead to Mdbius
conjugated fs, and therefore the same Stab(f).

Assume now A € D*. A necessary condition for s € Stab(f) is that A\, = A, i.e.

se{l+ ilfg"f“ |n € Z} which is a discrete subgroup of W.

Assume now A = 0. We will make a sequence of Mobius conjugations to reduce f to
a suitable normal form.

We start by remarking that there is a Mobius transformation G' with G(«) = 0 such
that in a neighborhood of the origin

Gfl OkaG(Z) — Zd(l —i—D(Z)) -1 'Zd —i—p-zdﬂ +D(Zd+2) :

where d is the local degree of f* at a.
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Next we choose a further Mébius transformation M fixing 0 so that (Go M)~'o fko
G o M(z) has a local expansion in the following normal form

2214+ 9(22) =1-2940- 27 + O(242) . (3)
By looking at the local expansions one can check easily that such M exists, and there are

precisely d — 1 of them, in the form

M(z) = N(pz) , p" ' =1, N(2) = 5~ - (4)

It follows easily that there are exactly d — 1 choices of the composed Md6bius map G o M
to reduce f to its normal form.

Now for each s we may and shall post-compose hgy by Mobius maps G o M, to reduce
fs to its normal form. Again there are exactly d — 1 choices for each given s. By Theorem
2.5.(2), the map s — f; is analytic. So Gy o M, can be chosen to be s-analytic.

Therefore there are s-analytic normalizations of h; so that all f; have the above normal
form. We may and shall thus suppose that all f, have already the above normal form.

Assume that Stab(f) is not discrete. Then there is a sequence s, € Stab(f) with

S 7, s € L. Then there is a sequence of Mobius transformations M,, with M, (0) = 0
and M, 'o fo M, = f,,. As both f and f,, have the normal form (3) , by (4) we
conclude that M, (z) = p,z with p?~t = 1.

If there is a subsequence (n,) for which p,, =1, then f; = f;, . But the right hand
side converges to fy. So fs, = fi = fg.

Otherwise there is a subsequence with p, = p for some fixed p with p* 1 = 1. Thus
My, (2) = M(2) = pz and M"'o fo M = f, . Again the right hand side converges to
fs’- So fSnp =M"! OfOM - fs’-

In both cases we get f = (fs)(s)-1 = f(sr)-14s,,- Setting s}, = (s") ! % sp,, we get the
proposition, except the final consequence.

But due to Theorem 2.5.(2) the map s +— fs(z) is analytic for each fixed z. By the
isolated zero theorem we conclude that fs(z) = f(2). O

Using Riemann-Hurwitz formula, it is quite easy to prove that (f, «) is a center if and

only if any connected component A of B(«) is simply connected and has a unique point
in the central orbit.

Proof of Theorem 3.3, non-center part. If A € D* we know already that Stab(f) C

{1+ iﬁg&” n € Z} which is a discrete subgroup of W.

For A\ = 0 we have to work a little harder. Let ¢ : U — V be a Bottcher coordinate
for f* near a.

Case 1. There is at least one non central critical point in the immediate basin B(«).
There is a maximal radius 0 < r < 1 and an open subset U° C B(a) such that 9 U°
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contains at least one at most finitely many critical points ¢/ and ¢ extends as a biholo-
morphic map ¢ : U® — D(r). The radius r is a conformal invariant. For the Bottcher
coordinate ¢, of f, the maximal radius r(s) = 7). Hence if R(s) # 1 then f; and f,
can not be Mobius conjugate, yielding Stab(f) C W := {s, R(s) = 1}.

Assume that Stab(f) is not discrete. Then by Proposition 3.4 we have f; = f after
suitable normalization of hy. For s close to 1 the map h, is close to the identity and must
map ¢/ to some ¢/'. So hy(c/) = ¢/ for all s close to 1. But as s — hy(c?) is continuous
(even holomorphic), we have hy(c/) = ¢/. Similarly ¢,(hs(c?)) = constant. This is not
possible as ¢4(hs(c?)) = ls(d(c?)) # constant. We conclude that Stab(f) is a discrete
subgroup of W.

Case 2. The point « is the sole critical point of f* in B(a). Then ¢ extends to a
biholomorphic map ¢ : B(a) — D and by assumption there is at least one connected
component (2 of E(a) containing a critical point not in the central orbit. Let n be the
minimal iterate for which f"(Q2) = B(«) and let r be the maximal modulus of the critical
values of ¢o f™ on (2. Then again r is a conformal invariant, and the corresponding value
for f,is r(s) = r®®). Reasoning as above we may conclude that Stab(f) is again a discrete
subgroup of W.

Finally we show that s — f, is injective on the semi strips. Let § > 0 be minimal so
that 1+ d7 € Stab(f). Then Stab(f) = {1 +ind,n € Z} and

fo = foy => 55" %51 € Stab(f) = In € Z, 51 = sy % (1 +ind) = (s, — 53) € 67Z .

O

Rather than proving now the center part, we prove at first a slightly more general
result, unrelated to BH-motions:

Definition 3.5. We say that two attracting dynamics (f,W, ) and (fo, W, o) are hy-
bridly equivalent, if there is a g.c. homeomorphism h: C — C, h(a) = ag, h(W) =
Wy which is conformal a.e. on E(a)c, and which is a conjugacy ho f = fooh on a
neighborhood of E(a)c. We also call h a hybrid conjugacy.

Proposition 3.6. (rigidity) Let (fi1, Wi, a1) and (fa, Wa, ag) be two proper attracting
dynamics which are centers and which are hybridly equivalent to each other by a quasi-
conformal map h (in particular k(f1) = k(f2) := k). Then they are Mdbius conjugate (see
Definition 2.6), by a Mébius transformation M, which coincides with h on B()".

Proof. Let p; : B(a;) — D denote Riemann maps (Bottcher coordinates) such that p; o
fF = (p)"*, where p +1 = deg(f* : B(a) — B(a)). The maps are unique modulo
multiplication by a pth-root of unity. Let A : C — C be a hybrid conjugacy. Then
the quasi-conformal homeomorphism 7 := py 0 ho p;' : D — D extends by reflection to
a global quasi-conformal homeomorphism and conjugates z — 2P*! to itself on a neigh-
borhood of St. Tt follows that its restriction to S' equals to a rigid rotation of order p,
that is wz with w? = 1 (see Lemma 3.8 below and its trailing remark). Hence given a
choice of p; we can choose p, such that the restriction of n to S' is the identity. Define
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¢ =p;"op: B(ay) — Blay). We shall also express this fact that n(z) = z on S' by
saying that ¢ and h are identical on the ideal boundary or h~! o ¢ is the identity on the
ideal boundary. See the following diagram.

o % Ba) 2 D

hilda hild nilid (5)
h() — B(ay) — D
VES P2
Since 7 is quasi-conformal and equal to the identity on S', there exists a constant C' > 0
depending only on the maximal dilatation of ) (and thus implicitly on h) such that Vz € D:
dp(z,m(2)) < C or equivalently Vz € B(ai): dp,)(h(2),¢(2)) < C. This is a classic
compactness result for q.c. mappings. For completeness we reprove it in Lemma 3.9 below.

For € any connected component of B(a;) let n = n(Q) = min{m|f™(Q) = B(x;)} and
p(Q) = deg(f: Q@ — B(w;)). Then p(Q2) = p(h(2)) and n(Q) = n(h(Q)) and ¢ o f]* lifts
by f3 to an isomorphism ¢gq : Q@ — h(2). This lift is uniquely determined up to post
composition by a deck-transformation for fJ'. Also h and ¢q differs on the ideal boundary
by a deck-transformation for the action of fJ' on the ideal boundary. We let ¢q be the
unique choice of lift for which h and ¢q are identical on the ideal boundary of 2. Then
by the same argument as above we have Vz € : djq)(h(2), ¢a(2)) < C, with the same
C, since h o qSS_)l is K-qc with the same K as above.

Define H: C — Chy H = hon E(al)c and by H = ¢q on each connected component
Q of B(al).

In order to prove that H is continuous, choose two distinct points 3,y outside E(Ozl).

Let w, € Q,, where the €2, are (not necessarily distinct) connected components of B(«;)
and w,, — w € 0B(ay). (The point w may be one of 3,7, but is never oy € B(«)). Then

0C ity (00), H () < gy (h(w,), i, (1)) < C < 0.

By a classical inequality (see for example Milnor [Mi]) we have H(w,) — h(w) as n — oo.

Thus H is a homeomorphism, which coincides with k outside B(ay ).

But then by Rickman’s lemma ([Ri], see also [DH2|, Lemma 2) H is also quasi-
conformal, because h is globally quasi-conformal and the patches ¢q are also quasi-
conformal, in fact conformal. Moreover H is l-quasi-conformal, because the maps ¢q
are conformal and h is conformal a.e. on B(ay)¢. Finally H is conformal and thus a

Mobius transformation by Weyl’s lemma. U

Remark. Note that the key point here is the existence of bi-holomorphic conjugacies
b, ¢a equal to h on the ideal boundaries, as indicated in the diagram (5) . We may thus
replace the assumption of being centers by this requirement and obtain a more general
rigidity result. We will need this fact twice in Section 4.
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Definition 3.7. A degree d > 2 orientation preserving covering map f :S' — S! is
called weakly expanding iff Vx,y € S' and for each of the two complementary subarcs
I, = [z,y] and I = [y, ] of {z,y} in S' there exists an n € N such that f*(I;) = S' or
equivalently f™ is not injective on any of the two arcs.

The following Lemma is a classical result included for completeness.

Lemma 3.8. For any pair of degree d > 2 weakly expanding covering maps f; : S' — S!
and any choice of fized points oy € S, fi(o;) = «; for i = 1,2. There exists a unique
orientation preserving homeomorphism h : St — St with h(ay) = ay and ho fi = fyoh.

Proof. Existence: Let hg : S' — S! be any orientation preserving homeomorphism with
ho(en) = g, e.g. ho(z) = 52. Define recursively A, : S' — S' to be the unique lift of
hp—10 f1 to fo, with h, () = as. (Equivalently define h,, to be the unique lift of hg o f]'
to fy.) Then each f, is order preserving and for every m > n : h,,(f; "(an)) = f; "(a2).
As each f; is weakly expanding, both families {h,} and {h;'} are equicontinuous and
hence pre-compact. Let h : S' — S! be any limit map. Then A is a homeomorphism and
ho fi = fo o h on the subset, U, f; " (1), which is dense because f; is weakly expanding.
Hence ho f; = fy0h on S! as desired.

Uniqueness: If & : S! —» S' is any orientation preserving conjugacy with () = as,
then h = h on the dense subset U, f; "(a;) and hence everywhere in S'. O

As an immediate consequence of this Lemma the automorphism group of z — 2¢ for
d > 2 (i.e. the set of orientation preserving homeomorphisms which commutes with 2¢)
equals the set of rigid rotations {z — pz|p? ! = 1}, since {p|p? ! = 1} equals the set of
fixed points in S* of z¢.

Lemma 3.9. There exists C = C(K) > 0 such that for any K-qc homeomorphism,
h:D— D with h=1id on S': V2 € D: dp (2, h(z)) < C.

Proof. Define
Kk ={h:D — D|his K-qc and h = id on S'}.

Then Kg is compact, because any h € K extends by Schwarz-reflection in S! to a global
K-qc map, which fixes three distinct points say 1,i, —1. Since the map h — dp(0, ~(0))
is continuous on the compact set g we can define C' = C'(K) as its maximal value.

Let h € K and 25 € D be arbitrary and let M(z) = Z£22 so that M(0) = 2. Then

14+Zp2
M~YohoM € K and since M is a hyperbolic isometry we have

d]D)(Z(), h(Z())) = d]D)(O, ]\471 oho M(O)) S C.

O

End of the proof of Theorem 3.3, the center part. This can be deduced easily as follows:
We normalize hg so that it fixes a and two points of B(a)¢. For any s the maps fi, f;
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and hy satisfy the hypothesis of Proposition 3.6 and the Md6bius conjugacy M, fixes three
points on the sphere. So f; = f and Stab(f) = L. O

_Remark. The proof of Proposition 3.6 can also be done explicitly using the formula
of [,.

4 Applications

4.1 Cubic slices

The first of our two examples is the two parameter family of cubic polynomials

Pro(2) = Az +az? + 2° | NaeC. (6)

Here the two different determinations of y/a yields maps which are conjugate by the
map z — —z and hence are holomorphically equivalent. Moreover any cubic polynomial
admitting 0 as a fixed point is linearly conjugate to P, , for some unique parameters A, a.
Let B B

H ={(N\a)eDxC| both critical points belong to By ,(0)}

#H° = {(\,a) € D x C | only one simple critical point belongs to E,\ya(())}
Py = {()\’, a)|)\' = )\} ~C, ﬁA = ﬁ NPy, in particular
ﬁg,l = {a € C | only one simple critical point belongs to ge_l,a(())} :

We study the effect of the BH-motion on both the parameter space and the dynamical
plane, and determine completely the stabilizers.

Theorem 4.1. There exists a holomorphic motion H : (s,a,z) — (v(s,a), h(s,a,z2)),
L x C?> — C? over L based at sy = 1 such that for \g =e 1 =e %0

1. For each fized a, the map s — h(s,a,-) is a BH-motion of the attracting dynamics

(Pe-1,4,C,0), in particular hy o0 Pty = Pos y(5.0) © hs .

2. For each fized (s,a) the quasi-conformal conjugacy z — h(s,a,z) is conformal on

the exterior of Be-1 4(0).

3. The holomorphic motion (s,a) — v(s,a) restricted to I X ﬁg,l is 2mi-periodic in
the s variable. In particular Stab(P,-1 ,) = 1+ 2miZ. Furthermore the holomorphic
motion H restricted to {(s,a,z),s € L,a € ﬁg_l, z € Ee—l’a(O)C} is also 2mi-periodic
in the s variable (but has a more complicated monodromy structure elsewhere).

By the A-lemma for holomorphic motions, the maps (s, z) +— h(s, a, z) for a € C fixed
and (s,a) — v(s,a) are continuous as functions of two variables. However in general the
map h(s,a, z) is discontinuous with respect to a.
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The periodicity leads naturally to the following operations:

Define v : D* x 7-l§,1 — Cbyv(e*,a) =v(s,a); define h : D* x 7-75,1 X Eeq,a(O)c — C
by h(e™*,a,z) = h(s,a, z), and finally define

H: {(\ya,2),\€ D", ac ﬁg_l,z € Eea,a(())c} —C
by H(\a,z) = (G(\ a),h(\a,2)) . Then both 3(-,-) and H(-,a,-) are holomorphic
motions over D* with base point Ay = e~!. We call them the quotient motions.

With a little extra work we obtain:

Theorem 4.2. The quotient holomorphic motions v(-,-) and I/:}(-,a,-) both extend to
holomorphic motions over D with base point 0.

Proof of Theorem /.1. For a € C fixed and a fixed choice of y/a, we consider a BH-motion
for the attracting dynamics (f, W, a) := (Po-1,, C,0). We normalize the integrating maps
hs = hgq so that hg,(0) = 0, hs4(00) = 0o and hy, is tangent to the identity at oo. This
implies that the new maps f; are again a cubic polynomial in the form (6) . Further,
by Theorem 2.5.(3), the new multipliers A(f;) equal to e t|le !|*"! = e *. Therefore

fs = Pe—s y(5,0) for some v(s,a) € C. Set h(s,a,z) := hy,4(2) and

H(s,a,z) = (v(s,a),h(s,a,z)).

We check at first that H : . x C* — C? is a holomorphic motion:

e Injectivity on (a,z): For any fixed s € L, assume H(s,a,z) = H(s,d',z'). In
particular v(s,a) = v(s,a’) and s0 P, y(5,0) = Pe-s(s,a)- By Theorem 2.5.(6), we con-
clude that P,-1, and P,-1, are linearly conjugate and hence a = a’. Consequently
h(s,a,z) = h(s,a,2"). But h(s,a,-) = hs,(-) is a homeomorphism of C, so we conclude

that z = 2/

e Analyticity in s: The map h(s,a, z) is analytic in s for any fixed a,z € C, by the
measurable Riemann mapping theorem with parameters. Due to Theorem 2.5.(2), for
a € C fixed, the map

§ > Pos (o) (2) = Xz +0(s,0)2° + 2° = hya0 (2 ¢ "2 +Vaz* + 2°) o b 4(2) ,
where v(s,a) = ¥(s,a)’ is analytic in s for every fixed z. It follows ¥(s,a) and hence
v(s,a) depends complex analytically on s.

e Identity at the base point s = 1. In this case hy,(z) = z and consequently
Po1 y1,0) ;= higo Pe1g0 hl_é =P,1, Sov(l,a) =aand H(1,a,z) = (a, 2).

This proves that H is indeed a holomorphic motion over .. We proceed to prove the
remaining part of Theorem 4.1.

(1) By construction.

(2) is obvious.
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(3). Fix now any a € ﬁc_l, and set B(0) = B,-1,(0) and B(0) = Eeq,a(O). Recall
that by definition of ’Hc_l, the entire attracted basin B(O) of 0 for P,-1 , contains a unique
critical point ¢y = ¢p(a). This critical point is in the immediate basin B(0) and has local
degree 2.

Let s € Stab(P,-1,). Thus P, (s is Mdbius conjugate to P.-1,. A necessary
condition on s is that e™* = e~!. In other words Stab(P,-1,) C 1 + 2miZ.

Claim. We have v(1 + 27mi,a) = v(l,a) = a, i.e. fiior; = Po1y(42m,) equals to
f = fi := P.-1,. Furthermore hy 97 ,(2) = h14(2) = 2 for all z € B(0)¢. Consequently
Stab(Py-1,,) = 1 + 2miZ.

Proof of Claim.

Let ¢ : B(0) — C be the linearizer with ¢(co) = 1 and let ¢) : D — U be the local
inverse carrying 0 to 0. Define hi=1toliarop:U— U so that h(f( 0)) = flco),
and extend h by iterated lifting to a quasi conformal homeomorphism 7 : B(0) — B(0),
which integrates o 9 and which conjugates f to itself. By further iterated lifting we
can uniquely extend h to a q.c. homemorphism 7 : B(0) —» B(0) which preserves each
connected component of B(0).

We now prove that % equals to the identity on the ideal boundary of B(0). Let
n: B(0) — D denote a Riemann map fixing 0 and define R =no fon~'. Then R is a
quadratic Blaschke product fixing the origin. Define h = no ho n~! and extend h to a
global q.c. homeomorphism h : C — C by reflection in the unit circle. Then hoR Roh
and in particular this holds on the unit circle which is invariant by both R and h. However
since the degree of I is 2 there is a unique self homeomorphism of St which commutes
with R. Tt is the identity. Thus A equals to the identity on S!. It follows that h equals to

the identity on the ideal boundary of B(0).

Similarly h equals to the identity on the ideal boundary of every connected component
of B(0). As in the proof of Proposition 3.6 (see also the Remark following its proof), we
conclude that the extension R B

ﬁ_{h on B(0)

id on B(0)"

is a global quasi-conformal homeomorphism, conjugating f to itself. As h integrates the
almost complex structure oy 95, fixes the origin and is tangent to the identity at oo, it
follows that h = hyiori, f = firem and hyior; equals to the identity on B(0)¢. This ends
the proof of the Claim.

Now we may prove that s — P,—s y(s,q) is 2mi-periodic, or equivalently s — v(s,a) is
2mi-periodic. We have

v(s+2mi,a) = v(s* (1 +2mi),a) = v(s,v(1 + 27i,a)) = v(s,a) (7)

where the first equality is due to the (simple) equality s+ 27i = s* (1 4 27i), the second
is due to the group action property (fy¢)s = fsesr in Theorem 2.5.(5), and the third is due
to the claim above.
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Assume now z € B(0)¢, we want to prove that s — h(s, a, z) is also 2mi-periodic. In
particular the maps hyyp.2riq(2), n € Z are the identity on B(0)¢. Again

h(s + 2mi,a,z) = h(sx (1 + 27i),a,z) = h(s,v(1 + 27mi,a), h(1 + 27i, a, 2)) = h(s,a, z) ,

where the second equality is due to the group action property hgy s = hsy, o hy ; in
Theorem 2.5.(5), and the third is due to the claim above. O

In the proof of Theorem 4.2 the hard work is really to prove that H extends to a
holomorphic motion to A = 0. Because then one can change the base point from e ! to 0
as follows: for any holomorphic motion K : A x F — X with base point Ay € A define
E), := E and more generally F) := K,(F) for A € A. Then K': A x E), — X given by
K'(\,z) = K(X, K, '(2)) is a holomorphic motion with the same fibers and the same set
of graphs {K (A, 2)|z € E)\,} = {K'(A, z)|z € E,, }, but with base point A;.

We start by proving

Lemma 4.3. Both maps v : D* x ﬁg,l — C and h : D* x 7-75,1 X Eeq,a(O)c — C have
unique extensions to A =0 such that A »—>~6(A, a) and X\ — h(\, a,z) are holomorphic for
every fized a € HS_, and every fived z € B.-1 ,(0)°.

For P a monic polynomial of degree d denote by gp : C — [0, co[ the Bottcher po-
tential at infinity. That is ¢ = gp is the unique sub harmonic function, which satisfies i)
g(P(z)) =d-g(z), ii) g(z) = 0 on C\Bp(co) and iii) g(z) — log|z| = 0(1) at co. Denote
by gx. the map gp, ..

Proof of Lemma 4.3. The conjugacy hs, is conformal on the attracted basin of infinity
Be-14(00) for f = P,-1 , and hence preserves the Bottcher potential, i.e. ge-s y(s.0) ((s,a,2)) =
ge-1a(2). Hence for any z € Ee—l’a(O)c the map A — /I“\La()\,z) is bounded. To see this
note that the Bottcher coordinate at oo for Py o is tangent to the identity at oo for any
A, a' € C, and apply the compactness of normalized univalent maps. Similarly U(), a)
is bounded because U(\, a) =~ 3¢ (A, a)/2 for small A, where ¢;(\, a) = /ﬁa()\,cl) denotes
the critical point of P, 3, not in Tl/\’a(ge—l’a(())) and ¢; denotes the critical point of
P.-1, not in Ee—l,a(O). By the theorem of removable singularities both s — ¥(-,a) and
S B(, a, z) extends holomorphically to A = 0. O

To complete the proof of Theorem 4.2 we need to check that the extended maps
a +— v(0,a) and z — he(0, 2) are injective on HS_,, respectively on B,-1,(0)¢ for a € HS ..
For this we prove at first the following

Theorem 4.4. For any a € 7-75,1 and any A € D the map Pyj(xq) @5 hybridly equivalent
to Pyg(0,0). More precisely there exist hybrid conjugacies Hy o : C — C between Py (.0
and Py 50,0y, which are asymptotic to the identity at oo, such that, for each fized a, and as
A — 0, the dilatations ||5[—I,\,a/8[-f,\,a||Oo converges to zero uniformly , and Hy , converges
locally uniformly to the identity.

Proof. In the following we fix an arbitrary a € ’I-ng,l and suppress a in the rest of the
proof, e.g write Py for P\ 54 etc. It is easy to see (see below) that there is a center



20

attracting dynamics (see Definition 3.2) which is hybridly equivalent to P,-1. Once prop-
erly normalized, this center is a cubic polynomial of the form Py ,, with b € C~\ {0} as it
is a cubic polynomial with a superattracting fixed point of order 2. Moreover as TL,\ is a
hybrid conjugacy between P,-: and Py, the map P, is a common center for all Py, A € D,
by uniqueness of centers (Proposition 3.6). Thus to prove that ©(0,a) = b we need only
to show that, as A — 0, the coefficients of P, converge to those of F;,;, or equivalently,
the non-captured Py-critical point ¢;(\) € E,\,U(,\,a)(O)C converges to the Py ;-critical point
c1(b) € Byy(0)° (as the captured Py-critical point ¢o(\) € E,\,U(,\,a)(O) converges to 0 and
the critical points determine Fp).

To this end let ¢, : By(0) — D be the Riemann map with ¢,(0) = 0 and R, :=

¢y o Pyopy = zlzj; Note that D(|A|) contains the critical point of Ry in D as well

as both preimages of 0. Define V{ := ¢ (D(y/|\])) and Vi := P (V)) N B(0) so that
Vy cC V) and define a new map Py : C — C by
P, on Q\VA
Py=2S ¢y o (2 22) 0, on Vy
degree 2 quasi-regular interpolation on A := V)~\V} .

Note that on the boundary of the annulus A the map l/D: is a priori defined as real
analytic covering maps of degree 2. It easﬂy follows that there exists a, say C'! extension
also denoted Py, Py: A — A= o5 ({2 < |2] < V/]A]}), which is also a degree 2
covering. We need a little more, namely we need that this extension can be chosen so
that its complex dilatation converges to 0 as |A| — 0. Using the Riemann map ¢, we
can transport the problem to D, solve it and transport the solution back. That it can be
solved (for Ry in D) is a consequence of Lemma 4.5 below. The map Py is evidently quasi
regular. And any point of z passes at most once through the zone A, where /P; is not
conformal. With the quasi regular extension on A given by Lemma 4.5 through ¢y let p
denote the measurable Py-invariant Beltrami form, which equals the standard 0 Beltrami
form on V) and on B,-1,(0)°. Let also Hy : C — C denote the integrating map for s,
given by the measurable Riemann mapping theorem, and normahzed by H,(0) = 0 and
H) being tangent to the identity at co. Then Fy, = H) o P,\ o H and the dilatation
of H, is bounded by that of y on A, which is bounded by 16 - 2 - \/|A]/log \/|)], as
shown in Lemma 4.5. This bound of distortion tends to 0 as A — 0. With the chosen
normalization it follows that H) converges uniformly to the identity on compact sets of
C. In particular the Py-critical point ¢;(A) € Bjyra)(0)¢ converges to the P ,-critical
point ¢ (b) € E(),b(())c. We conclude then Py, = F. d

Lemma 4.5. There exists 0 < ro < 1 with the following property: Let R : D — D be any
degree d > 1 Blaschke product fixzing 0 and 1 for which the critical values and the zeros
are contained in D(r) for some v < ry. Define V' = D(\/7) and V = R=Y(V") (we have
VoV by Schwarz Lemma). Then there exists a degree d quasi reqular branched covering

F:D — D with F(z) = 2% on V' and F(z) = R(z) on D\V such that

‘ _ 16dy7T

< Tog v ®)
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Proof. Let A" = {z]r < |z| < 1}, A = R (A") and A" = {zr"/? < |z| < 1}. Let
[': A” — A denote the lift of 2¢ to R which fixes 1, i.e R(I'(2)) = 2% Set C' = {z|r'/?? <
|z| < 1}. Then it suffices to construct a quasi-conformal map G, which is the identity on
V' and equals I' on C', because then

would be the required map. Write 7 = exp(dm) (with m < 0) and let A, A", C,V' be
the preimages by exp(z) of the corresponding un-tilded (and hatted for V') sets in D*. In
particular

W= (o +iglaelm 0}, C={o+ivjeelZ0

~ d
o Vi={z+iaylr < Tm} .
Denote by [: A" —5 A the lift of T' o exp(z) to exp(z) which fixes 0. Then [(z+27) =
['(2) 4+ 27 and we shall construct a q.c. homeomorphism G : H. — H_ = {z + iy|x < 0}

which equals T on C' and Id on V', which satisfies G(z + 27) = G(z) + 27 as well as (8).
Then B
F(z) :=exp(d - G *(log2)) 9)

is the required map. To construct G we need only construct its values on the vertical strip
{z + iy|z € [%*, 2]} so that it verifies (8) and such that G is continuous. The extension
to this strip is the standard affine extension, i.e. it maps each horizontal segment affinely

to the segment whose endpoints are determined by the values of G already defined. More

precisely, set I'(u) = u + w(u). For z € [a,b] := (42 7] and y € R, we have
T +iy = b:z(a+iy)+%(b+iy) :

Set
~ b—ux T

. T
G(x+zy):b_a

(a+iy)+b%2f(b+iy):x+iy+r_;bw(b+iy).
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= om 3 0 dm
c 2
-7 - :
ST
LTS
il T
|~ ;47/ -
L - _ \exp exp/
L - ,;”/
ST r
T A" A
P \/
-T2 - d
///,%’// z R
dm m dm o m
2 2 2 2

The reader may check easily that G is a homeomorphism provided W' (b+1iy)| < I for
every y € R.

To give more precise estimates we write I'(z) = z(1+ ¢g(z)) and T7(2) = z(1 + h(2)).
Then

¢ =T"1T(2)) = 2(1+ 9(2) (1 + h(T'(2)), [|log(1+g())| = |log(1+h(T'(2))| . (10)

Assume now aq, - - -, aq are the zeros of the Blaschke product R, we have
S l-a; z—a T 1-a;l a;j/z
d(q d _ _ Y B 1+ 5 d _ e e Vi
At hE) = RE) = [y s 0he) =]
Jj=1 j=1
and
1 & a;
[log(1+ h(2))| < = 3~ (1og(1 = )] + | log(1 — ;2)| + | log(1 — )] + |log(1 — a)]) -
j=1

As |a;] < rand |z| > \/r, and |log(1 4+ v)| < 2|v| for |v] < 1, there is ro > 0 so that if
r <Tp,

[log(1 + h(2))] < 2(/r+3r) <8Jr.
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Therefore
Vue A", lw(u)| = |log(1 +g(e")] "= [log(1 + h(T(e")))] < 8V7 . (11)
Now we use the Cauchy integral to estimate w'(b + iy). Set p = 5" = —102ng. Note that
Db+ iy,p) C A”. So
8
lw' (b +iy)| < % —500 . (12)

We may thus adjust ry so that for r < ro, |w'(b+ iy)| < 1 and therefore G is a homeo-

morphism. We can readily estimate the Beltrami coefficient of G : for x €la, b,

w(b—+ iy) 10G

G
—(z+iy) =1+ (x+zy)—1+mw(b+zy)

Oz b—a ' i Oy
oG, 1(aG 10G Cwbtiy) + (2 — ) (b + iy)
az(x+zy)—2<ax(x+zy)+ ay(x+zy)>_1—|— o
a_é( WL')_1 @( —|—)_1@( +iy) _W(b+iy)—($—a)w'(b—|—iy)
oz T T\ g T T g, T T 2(b — a) '

We may therefore adjust again ry so that if r < r, |%(:E +iy)| > 1/2 for all = €]a, b|.
Note that b —a = (d — 1)p. So

OF G & ' 1

0 < sup % <2 g Wb+ iy)] + |w'(b + iy)| < 8\/17+8\/77: 6dyr :

oF x€]a,b| 0z (d - 1)p P P | lOg(\/F)|
See [Sh] for a similar estimate. O

Proof of Theorem /.2.

Let us first show that the map a — ©(0,a) is injective on 7:22_1. It follows from
Theorem 4.4 that if ¥(0,a) = v(0,d’), for some a,a’, then P,-1, and P,-1 , are hybridly
conjugate. The dynamics of P,-1 , and P,-1 4 are conformally conjugate on the immediate
attracted basins of 0, by a unique biholomorphic map fixing the origin, because both basins
are quadratic and the multipliers at the origin are identical. Hence essentially repeating
the proof of Proposition 3.6 (see also the Remark following its proof) one proves that this
hybrid equivalence coincides with a Mdbius conjugacy on E(fl,a(O)c. Details are left to
the reader. It follows that a = a'.

To prove that each /l\Lg,a is injective, we prove that it has a quasi conformal extension
to all of C. As in the proof of Theorem 4.4 fix an arbitrary a € ﬁc . and let Hy, A € D be
the hybrld conjuga(nes whose existence is assured by Theorem 4. 4 Fix A € D and define
h = h o H o H.-1, so that each h is a hybrid equivalence from P,-: to itself, which is
tangent to the 1dent1ty at co. Repeating once more the proof of Proposition 3.6 We find
that h coincides with the identity on B,-1(0)°. Hence the two maps hy and H;'o Hyt
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coincides on B,-1 (0)¢. Since Hj ' converges locally uniformly to the identity, it follows that

EA converges locally uniformly to the quasi conformal homeomorphism He-1 : € — C on
B.-1(0)¢, from which the injectivity of hy = He-1 on B.-1(0)¢ follows.

Finally,
H(0,0,2) = H0,d',2") = 5(0,a) =5(0,d") & h(0,a,z) = h(0,d, )
= a=2d & h(0,a,z) = h(0,d, 7
= a=d & h(0,a,z) =h(0,a,z)
— a=d & z="7
So H is injective. O

4.2 Lavaurs motion

The following example is different from the first and most other applications of the BH-
motion. It is a motion of a two generator dynamical system (P, g,) consisting of a center
attracting dynamics (P,C, 00) with P(z) = 2? + 1 (which is invariant under the BH-
motion, by Proposition 3.6) and a so called parabolic enrichment or Lavaurs map g,
coming from the complementary parabolic basin B(0). Let ¢ : B(co) — C~\D denote
the Bottcher coordinate at co. Let @ : B(0) — C denote an attracting Fatou coordinate
and ¥ : C — C denote a repelling Fatou parameter, i.e. ® o P(z) = 1+ ®(2z) and
PoW(z) = U(z+1) where defined. We shall normalize ® and ¥ by ®(0) = 0 and ¥(0) =
¢ '(e). Define the Lavaurs map g, : B(0) — C of phase ¢ € C by g,(z) = Vo T, 0 ®,
where T,(z) = z+o andlet ¥ = {0 € C | g,(0) € B(oo)} = ¥~!(B(cc)) 3 0. The Julia set
J(P, g,) of the Lavaurs enriched dynamical system is the closure of U, ,,>0P~"(g,™(Jp)).

Theorem 4.6. There exists a holomorphic motion h : ¥ x C — C, such that h, o P =
Poh, and hy 0 g9 = g, © h,.

The map h, fixes Jp point-wise, but moves the points of the enrichment. However the
the enriched Julia set is 1 periodic as a compact set, because ¢g,,1 = Po g, = g, o P and
hence the two enriched dynamical systems (P, g,) and (P, g, 1) have the same enriched
Julia set.

Proof. Denote by 9 : C~\D — B(oo) the inverse of ¢, the Bottcher parameter at oo.
We consider a BH-motion of the enriched dynamical system (P, go) based at the super
attracting fixed point co. More precisely let u, denote the unique Beltrami form which
equals (I5 0 @) (o) on B(o0), where py = 0 is the zero or standard Beltrami form and
which is invariant under the enriched dynamical system (P, gy), i.e. P*(us) = ps and
go(ps) = ps. Note that p, is also supported in B(1/2), because go maps part of B(1/2)
into B(c0).

Let hy : C — C denote the solution of the Beltrami equation 0h = p1,0h normalized
by hs(0) = 0, hy(1/2) = 1/2 and hy(cc) = oco. Then f = hy,o P o h;'is a centered
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quadratic polynomial with a parabolic fixed point of multiplier 1 at 1/2. There is only
one such polynomial, it is P. So h, conjugates P to itself.

Define fi; = U*(u,) on C, then Ty (fi;) = fis. Let n: C — C denote the solution of
the Beltrami equation 0f = ji;0f normalized by n5(0) = 0, ns(1) = 1 and 7,(c0) = oc.
We have ns(z + 1) = ns(2) + 1, because Ji, is 1-periodic.

For each s the map 7, o ® o h,! is holomorphic, conjugates P to translation by 1
and fixes 0. Hence it equals ® by uniqueness of normalized Fatou coordinates. Arguing
similarly we find that hy o Won;!' = Wo T, for some complex number o(s) € X. We
have hy o U o n7'(0) = hy(¢(e)) = ¥(e®) by the normalization of ¥. Thus o(s) can be
chosen to depend continuously on s. Furthermore hs 0 go = ¢, o hs. See the following
diagram.

To To- (s)

C,0~—2—¢C,0 C,0—=~¢C,0 C, *

v X

B(0),0<— B(0),0 = C, v)(c) C > B(oo), ¥(e*).

hs

The restriction ¥ : ¥ — B(oo) is a universal covering, (see e.g. [P]) with ¥(0) =
Y(e). And ¢ oexp : H — B(o0) is also a universal covering, but with ) oexp(1) = 1(e).
Hence there exists a unique lift o : H — X of ¢y oexp to ¥ with (1) = 0. This lift is an
isomorphism, since both coverings are universal, and it satisfies (2s) = o(s)+ 1. However
since W o Ts,) = W o T, and both functions o and o are continuous, we have o = 0.
As o is an isomorphism from H to ¥ we may use ¢ as a parameter for the holomorphic
motion, replacing the parameter space H by ¥ and the base point 1 by 0. O
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