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Motivated by David Hilbert’s program and philosophy of mathematics we
give in the context of natural deduction an introduction to the Dialectica
interpretation and compare the interpretation with modified realisabil-
ity. We show how the interpretations represent two structurally different
methods for unwinding computable information from proofs which may
use certain prima facie non-constructive (ideal) elements of mathematics.
Consequently, the two interpretations also represent different views on
what is to be regarded as constructive relative to arithmetic. The differ-
ences show up in the interpretations of extensionality, Markov’s principle
and restricted forms of independeuce-of-premise. We show that it is com-
putationally a subtle issue to combine these ideal elements and prove that
Markov’s principle is computationally incompatible with independence-
of-premise for negated purely universal formulas.

In the context of extracting computational content from proofs in
typed classical arithmetic we also compare in an extensional context (i) the
method provided by negative translation + Dialectica interpretation with
(i) the method provided by negative translation + A-translation + mod-
ified realisability. None of these methods can be applied fully to E-PAY,
since E-HA" is not closed under Markov’s rule, whereas the method based
on the Dialectica interpretation can be used if only weak extensionality is
required.

Finally, we present a new variant of the Dialectica interpretation in
order to obtain (the well-known) existence property, disjunction property
and other closure results for typed intuitionistic arithmetic and extensions
hereof. ‘Hence it is shown that functional interpretation can be used also
for this purpose.
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CHAPTER 1

Setting and Object of Survey

This thesis concems proof theory and the significance of certain proof theoretical investiga-
tions. Proof theory is the part of mathematical logic which studies the concepts of mathemat-
ical proofs and mathematical provability. Proofs are an indispensable part of mathematics
and therefore proof theory is also a study of the foundations of mathematics. Let us elaborate
on the connection between proof theory and philosophy of mathematics.

First, proof theory studies proofs as formal objects whereas, generally, mathematical
proofs are informal and to a certain degree imprecise. There is, however, in practice a close
affinity between formal and informal proofs. Parts of proofs used in mathematical arguments
can be more or less formal. But in case there is a disagreement on a proof one can try to make
the problematic part of the proof more formal in order to be precise on the matter. One can,
in other words, formalise in different degrees and the complete formal proof can be viewed as
some kind of idealisation of the mathematical proof Iti is in this respect proof theory studies
mathematical proofs.

Second, from results obtained in the 1930s in mathematical loglc it follows that there
cannot be formal theories which represent all of mathematics: For any given formal theory
containing a minimum of arithmetic there will always be mathematical theorems which are
independent of that theory. There are, in other words, theorems of the theory which cannot
be proved nor disproved. It is, nevertheless, possible to represent big bodies of mathematics
in formal frameworks and to study internal relationships. A part of mathematical logic called
reverse mathematics is an impressive example of this; see e.g. (Simpson, 1999). Therefore,
relative to specific mathematical theories proof theoretical investigations can have important
philosophical consequences. We will call such investigations local.

But of course, proof theory does not give the full picture of a philosophy of mathematlcs
General epistemological, ontological, sociological and historical issues — which are treated
in philosophy, philosophy of science and history of science — play an important role in the
overall philosophical analysis of mathematics. In this thesis, however, we will only touch
the epistemological and ontological questions in so far as is necessary in order to derive
philosophical consequences of the proof theoretical investigations.

We will apply different methods from proof theory in order to study constructivity of
proofs and principles. Now, it is in itself a difficult question to point out what constitutes
a constructive proof. Below we will line up certain properties which a constructive system
should meet. But as it turns out, there is no unambiguous characterisation of constructivism.
Anyhow, a desirable property of a constructive theory is certainly the following: If we have
proved an existential statement 3xA(x) then we can in fact exhibit an object 7 such that A holds
forz.! Similarly, if we have proved a disjunction A V B, with no free variables then we can tell
which of the two actually holds. We will now give a simple example of a non-constructive
proof, due to H. Friedman.

'For an interesting and informative survey of the historical roots of these matters (which at least go back to
Whitehead and Russell’s Principia Mathematica from 1910-13) see Mancuso (n.d.). In connection with this paper
it should, however, be noted that it is somehow difficult to follow Mancuso’s separation of direct and indirect non-
constructive proofs, since they both by the end of the day rest on tertium non datur.
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Theorem. ¢ — 7 is irrational or ¢ + 7 is irrational.

Proof. Assume they both are rational. Since the sum of two rationals is a rational we have
that 2e is rational. Contradiction. -

It is questionable how much information this proof contains. Surely, the proof does not
tell us which of the two disjuncts is irrational. A little surprising due to the simplicity of
the problem, no method or proof on this problem has until now shown us which of the two
actually is irrational. The above proof only tells us that both cannot be rational, but it does
not exhibit a number of the two such that this number is the one—clearly it would have been
more satisfying if we knew that.

There are many examples from all over mathematics where existence statements or dis-
junction statements are proved but the proofs do not provide us with any instances or any
algorithms which make it possible for us to see why the theorems are true—all we see is that
it cannot be the case that their negations are true. This is certainly constructively unsatisfy-
ing.2 Indirect proofs are in general not constructive. But in lots of cases they are or seem to
be the only possible; as for instance in the above proof.

At the entrance to the 20th century mathematics had its so-called foundational crisis,
where fundamental questions appeared during the development of new mathematical theo-
ries. An example of such a theory is set theory as developed by Georg Cantor (1845-1918),
who introduced a beautiful and useful theory of transfinite arithmetic—arithmetic on infinite
numbers. Another example is the development of a general theory of topology, mainly by Fe-
lix Hausdorff (1868-1942), where concepts from analysis such as continuity were generalised
to quite abstract notions. Many of these new theories and concepts involved infinite totalities
and, moreover, inconsistencies and difficult open foundational problems were found in the
very first formulations of set theory. The paradox of Bertrand Russell (1872-1970) showed
that not all properties can be used for defining sets and Cantor posed the continuum hypoth-
esis (CH) which asserts that there is no set with cardinality strictly greater than the set of
natural numbers but also strictly less than the set of real numbers. If one views the CH as
a definite mathematical problem then it has remained open—it has even been shown that it
cannot be decided within the ZFC formalisation of set theory.

Meanwhile, also proof techniques were questioned. In 1888 David Hilbert (1862 — 1943)
proved his famous basis theorem in invariant theory by non-constructive methods but experts
on the field — e.g. P. Gordan — called Hilbert’s proof “theology”.> L.E.J. Brouwer (1881 —
1966), the founder of intuitionism, banned in his thesis from 1907 indirect proofs and non-
constructive methods in general. Also Hermann Weyl (1885 — 1955), a student of Hilbert,
became unsatisfied with set theoretical foundations and developed in (Weyl, 1918) his kind
of constructive mathematics, which later became known under the name “predicative math-
ematics”. The so-called “Grundlagenstreit” was just about to start. Many important mathe-
maticians such as Hilbert, Brouwer and Weyl took part in it, and — as we shall see — so did

21t is also epistemologically problematic to assume that any mathematical statement has a truth value—also in
cases where it completely impossible for us to get to know what that value is. We will not, however, deal with that
problem here, but see for instance (Jgrgensen & Pedersen, 2000). Also: Dummett (1977) argues that truth must be
something which is accessible to us.

3More on this in (Rowe, 2000).
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Kurt Godel (1906 — 1978) and Arend Heyting (1898 — 1980). Now and then the discussions
were rather emotional, but many important notions, insights and interpretations arose from
this intense period. One of them was proof theory.

1.1 Hilbert’s program and view on mathematics

Hilbert had a long mathematical career and was contributing in nearly all areas of mathemat-
ics such as algebra, geometry, number theory, mathematical physics, mathematical logic, etc.
He had worked with thé new mathematical theories and seen into the uncountable infinite
that Cantor’s set theory was about. He had seen and used the effectiveness and elegance of
non-constructive methods. Thus, “Aus dem Paradies, da} Cantor uns geschaffen, soll uns nie-
mand vertreiben konnen”, as Hilbert (1926, 170) puts it in his famous metaphor. Therefore
he developed his program.

The program was at heart Kantian.* It was formulated fully — by Hilbert and his co-
workers, especially Paul Bernays (1888-1977) — and put forth in the 1920s (Hilbert, 1922,
1926). The philosophical position behind the program is the following. Mathematics can be
split into two parts:

1. The finitary (or éontentual) part of mathematics.
2. The'ideal part of mathematics.

The finitary part of mathematics was meant to be that part of mathematics of which there
could be no doubts: Finitary reasoning about the natural numbers, i.e. no unrestricted quanti-
fiers, and simple reasoning on finite graphs and geometrical figures. Today there is a general
agreement on, that what Hilbert took to be the finitary part of (informal) mathematics was,
at least, what can be coded and justified by primitive recursive arithmetic (PRA), see (Tait,
n.d.) for a discussion of this. Ideal mathematics was taken to be the highly abstract elements
of mathematics of which the ontological status were not immediate. Examples of such ideal
parts of mathematics could be (i) completed infinities, such as the set of natural numbers
®, needed to develop a theory of the transfinite; (ii) the expansion of the real numbers by
the complex number i = y/—1, which enables us to prove the fundamental theorem of alge-
bra; (iii) the ‘completion’ of Euclidean geometry by an infinite line consisting of points at
infinity thus obtaining projective geometry, and so forth. As such, the ideal elements could
not, according .to Hilbert, be perceived by the senses. They had more the role of complet- .
ing the finitary and regulating it—in the same way as in Kant’s theory of knowledge where
ideas of reason regulate knowledge.? The ideal elements were supposed to be abstract el-
ements introduced in the development of mathematics in order to simplify, generalise and
complete already existing mathematics. But in such a process new mathematics would also
arise and this was how Hilbert saw the expansion and progression of mathematics. These

“Details on this is provided in Andersen (2000). Andersen also discusses the conflicts between Kant's view on
mathematics and Hilbert’s view on mathematics—in particular the role of the infinite. A theme we will not touch
here, but see also Majer (1993), Detlefsen (1995) and Posy (1995).

5Note, that Kant (1781/87) indeed had two kinds of ‘ideas’: (1) The constitutive use of transcendental ideas
causing paralogisms and antinomies of pure reason (Kant 1781/87, A338-A567); and (ii) the regulative use of
general ideas of pure reason, as used in science (Kant, 1781/87, A642-A704).
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ideal elements of the mathematical method and universe were, of course, of indispensable
value. However, Hilbert was at the same time aware of the fact that this progressiveness of
the mathematical method was transcending the secured finitary parts of mathematics and it
was therefore in need of some kind of justification.

This justification would consist in showing, mathematically, that the ideal part of mathe-
matics could not prove new purely finitary statements, i.e. could not prove finitary statements
which were not provable already in the finitary part of mathematics. This is where Hilbert
~ connected the axiomatic approach, the idea of a ‘proof theory’, with his general view on math-
ematics as just described. In modern technical terms the goal of the program is described by
the following.

Let S be some formal system representing mathematics—both the ideal and the finitary
part. A formula in the language of S is a finite object and it can therefore be coded effectively
by a natural number; proofs in S can likewise be coded. Thus, Proofs(x,y) is a predicate
obtaining between two natural numbers x and y expressing that x encodes a proof in S of
some formula having code y. As is standard, let "A™ be the code of A. (The argument below
is in the given form a little vague—the details rely on the specific properties of the encoding;
see (Smorynski, 1977, sect. 2—4).) In technical terms the essence of Hilbert’s program was
that for any finitary statement R(x) with x as free variable the reflection principle

Proofs(u,"R(x)™) — R(x) (1.1)

should be provable by finitary means (where x refers to the x-th numeral). However, it would
be sufficient to establish consistency of S in a finitary way. For suppose one has a proof in S
of some finitary statement R(x) containing only x as free variable, hence

Proofs(u, "R(x)™) (1.2)

would be finitarily provable. However, if R(x) were not true for all x then for some ¢, ~R(c)
would be provable within S. In fact we would have, due to £, completeness,

=R(x) = Proofs(v,,"—R(%)7), (1.3)

where v, depends on which value x takes. If, on the other hand, we could prove consistency
of S by finitary means we would have

= (Proofs(u,"R(x)™) A Proofs(v,”=R(x)")). (1.4)

Now, (1.2), (1.3) together with (1.4) implies that ~—R(x) has a finitary proof, and since R(x)
is a finitary statement this implies R(x).

The argument is a modern version of Hilbert’s argument as found, for instance, in (Hilbert,
1927, 78):

Aber auch wer sich mit der Widerspruchsfreiheit nich begniigt und noch weiter-
gehende Gewissensskrupel hat, muB die Bedeutung des Beweises der Wider-
spruchsfreiheit anerkennen, nimlich als einer aligemeinen Methode aus Be-
weisen fiir allgemeine Sitze vom Charakter etwa des Fermatschen Satzes, die
mit Hilfe der e-Funktion gefiihrt sind, finite Beweise zu gewinnen.6

6The € operator was a technical invention within proof theory, and Hilbert saw it as representing a highly ideal
aspect of mathematics.
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On page 78-79 Hilbert then goes on to explain — by use of Fermat’s last theorem as an
example — how this can be accomplished. In that argument Hilbert also uses ; completeness,
although he due to his time does not recognize it as something special. Note, this also throws
light on the late Hilbert’s conception of the connection between consistency and existence.

Consequently, Hilbert focused on the program of proving consistency of mathematics in
order to provide a finitary foundation for ideal mathematics and thereby justify the use of
ideal elements. Bernays sums up the advantage and goal of such a program:’

Unter diesem Gesichtspunkt werden wir versuchen, ob es nicht moglich ist, jene
transzendenten Annahmen in einer solchen Weise zu begriinden, daf3 nur primi-
tive anschauliche Erkenntnisse zur Anwendung kommen. (Bernays, 1922, 11)

Moreover, Bernays stresses the importance that the central problem becomes a mathematical
problem:

Gerade darin liegt der groBe Vorzug des Hilbertschen Verfahrens, daB die Prob-
leme und Schwierigkeiten, welche sich in der Grundlegung der Mathematik bie-
ten, aus dem Bereich des Erkenntnistheoretisch-philosophischen in das Gebiet -
des eigentlich Mathematischen iibergefiihrt werden. (Bernays, 1922, 19)

It is important to note that underlying the program is the idea of separating the foundational
studies of mathematics from philosophy and epistemology. Of course, the characterisation
of finitism is motivated by a philosophical analysis—but when that is done it is up to the
mathematicians to take care of their own foundation, “gerade wie ja auch der Astronom
die Bewegung seines Standortes beriicksichtigen, der Physiker sich um die Theorie seines.

'Apparates kiimmern muB und der Philosoph die Vemunft selbst kritisiert” as Hilbert (1918,

155) expresses it.

1.2 Failure of Hilbert’s program—failure of separation

Gudel, though not a student of Hilbert, was attracted to Hilbert’s foundational questions and
problems. Around 1930 he proved, within less than a year, not only the completeness of
first order predicate logic,® but he also showed — when pursuing the program — that Hilbert’s
original program was unattainable. Gddel (1931) showed that for any consistent theory T
containing just a minimum of arithmetic and given by a recursively enumerable set of axioms
— and certainly this was included in Hilbert’s finitism — two things are the case:®

"Bemays uses the words anschauliche Erkenntnisse which belong to the Kantian theory of knowledge. These
are often translated into English by intuitive knowledge. Intuitive here refers to intuition which is the translation of
Anschauung. Thus, intuitive knowledge is knowledge based on intutition (Anschauung) and, consequently, it does
not necessarily mean immediate. It rather means that' when such knowledge is obtained it is qua its obtainment
objective. The justification of the ideal elements that Bernays refers to would thus be absolute.

8 A problem formulated by Hilben & Ackermann (1928).

9Gidel actually assumed the slightly stronger w-consistency, but J.B. Rosser later replaced this by consistency.
Furthermore, theorem 2 was stated by Gadel (1931) without proof. The first published proof of the theorem is in
(Bernays & Hilbert, 1939).
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Theorem 1. T is syntactically incomplete in the sense that there exists a sentence
A in the language of T such that T does not prove A nor —A.

Theorem 2. One cannot in T prove the consistency of T.

The theorems are a disaster for Hilbert’s program. First of all, they show that there is no
absolute proof of the consistency of all mathematics: The reduction of ideal elements used in
proofs of finitary statements cannot be obtained by a finitary consistency proof, since such a
proof does not exist.

Secondly, it was more than an implicit assumption of Hilbert and his co-workers that the
formal systems were representing mathematics completely. As late as 1930 they conjectured
that Peano arithmetic was deductively closed, in the sense that adjoining any sentence not
provable in Peano arithmetic would make it inconsistent, see (Bernays, 1976, 59). However,
this conjecture is certainly refuted by theorem 1, and this has severe consequences for the
program. Due to theorem 1 any consistent formalisation S of any mathematical theory will
be incomplete in the sense, that there will be a sentence A true in the standard model but A
is undecided by S.1° Moreover, S + A will also be incomplete, and such an iterated process
of adding undecidable formulas will go on forever. Therefore, there is no obvious way to
choose an § and such a choice becomes a central question.

All this shows that the global reduction - to use a phrase of Solomon Feferman (2000) -
Hilbert had in mind is impossible. But maybe a more local reduction is possible?

However, after theorem 2 there is no obvious choice of a constructive part of mathematics
to which some of ideal mathematics can be reduced to. But maybe Hilbert’s finitism was only
a first approximation of constructivism. In any case we see that the separation of foundational
studies from philosophy and epistemology, which Hilbert aimed at, is lost. Questions regard-
ing the nature of mathematical concepts and how we come to have knowledge about them are
certainly not eliminated as Hilbert hoped. And what constructivism is, or how a satisfactory
interpretation of constructivism can be strong enough to interpret — in some way or another —
parts of ideal mathematics are very open ended questions after Godel (1931).

We will try to follow such questions in this thesis. We will single out certain principles
of classical mathematics which certainly look non-constructive and therefore belong to ideal
mathematics. On the other hand we will also try to give a characterisation of constructivism.
But as it turns out, there are different interpretations of mathematics—and different interpre-
tations validate different classical principles.

After theorem 2 it is not obvious what a possible constructive foundation looks like and
what we should understand under the term ‘constructive’. How can we interpret mathematics
and the mathematical language? There are, as we shall see, different layers of constructivism
and different understandings of what is to be regarded as a constructive proof. Intuitionism
offers one such account.

10Such sentences need not to be artificial and without mathematical meaning. Paris & Harrington (1977) gave an
example of a finite version Ramsey’s theorem which is independent of Peano arithmetic. Later Kirby & Paris (1982)
" gave a simpler independence result concerning so-called Goodstein sequences. Recently H. Friedman has in a series
of papers (which can be downloaded at http://www.math.ohiostate.edu/~friedman) provided theorems from finite
graph theory, which are even unprovable in predicative mathematics, e.g. the Graph Minor Theorem.
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1.3 The proof interpretation by Heyting

Brouwer, certainly, had a conception of mathematics that was different from Hilbert’s. He
thought that intuitionistic reasoning should be rhe reasoning in mathematics. Although
Brouwer was not in favour of Hilbert’s formal approach, Heyting (1930,a, 1934) — a stu-
dent of Brouwer — gave a formalisation of intuitionistic logic. The basic element motivating
Heyting’s formalisation was, indeed, Brouwer’s idea of ‘constructions’. Heyting asked the
question ‘how should we understand the logical symbols of mathematics’? Below we will
see Heyting’s answer, i.e. his interpretation. On the basis of this interpretation Heyting sing-
_led out the axioms of Principia Mathematica which were sound under the interpretation and
this lead him to the formalisation of intuitionistic logic. Heyting was to some extent anti-
cipated by Kolmogorov (1925), and the interpretation is therefore referred to as the “BHK
interpretation”. '

The interpretation is very general and is based on the notions of informal proofs and
constructions. Actually, a proof here should be understood as a construction which informally
verifies a statement. :

The BHK interpretation takes the meaning of prime formulas for granted. Prime formulas
in this setting are formulas with finite meaning: We can determine the truth of any (closed)
prime formula €.g. 13> = 169. For compound A, BHK then explains “p proves A”, which
we abbreviate by p : A, in terms of provablhty of the components. The clauses defining the
interpretation are:

(1) L denotes contradictionand there is no proof of contradiction.

(A) p:ANABIff pis apair (po, p1) such that po : A and p; : B.

(V) p:AVBIiff pisapair (pg,p1), po € {0,1} and p; : A if po=0and p; : Bif py = 1.
(=) p:A— Biff pis aconstruction taking any g such that ¢ : A into p(g) such that p(q) : B.
(0) p:-Aiffpisa constl;uction taking any ¢ where ¢ : A into p(q) such that p(g) : L.

(V) p:VxA(x) iff p is a construction taking any ¢ from the intended domain into p(t) such
that p(2) : A(?).

(3) p:IxA(x) iff p is a pair (po, p1), where py is an object of the domain and p; : A(po).

The interpretation tells us what constitutes a constructive proof. For instance, a proof of an
existential statement is constructive if it actually provides an instance together with a proof
of the desired property of that instance. Likewise it tells us what a constructive proof of a
disjunction is—and under this interpretation our proof of the irrationality of e — Tt or e + 7t
fails (again) to be constructive. Consequently, the interpretation says under which conditions
we (constructively) can assert a formula A.

As mentioned above, Heyting tested the axioms and rules of Principia Mathematica under
this interpretation. Most of these passed the test, e.g. modus ponens:

A A—-B
B
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Inductively one would have g: A and p: A — B, and since p converts any proof of A into a
proof of B, p(q) will be a proof of B. The axiom .. = A, i.e. any formula A follows from
a contradiction, is trivial under BHK since there will never be a proof of L (guaranteed by
the first clause); therefore anything well-formed is a proof of L — A. ‘One can think of it in
terms of a game. Person; has to give a proof of .L. For any such proof person; has to give a
proof of A. But this is very easy for person; since he will never have to do anything. Persony
therefore has a winning strategy for all (games) A. However, tertium non datur:

AV-A

is not sound under BHK—since one would have to provide a universal method for obtaining
either a proof of A or a proof of A for any A. But this method would then decide any hitherto
undecided statements such as, say, Goldbach’s conjecture.

On the other hand it seems plausible that a system sound under BHK would have

* Existence property: From a proof of a closed formula 3xA(x) one can extract a witness
t such that A(z), and

 Disjunction property: If one obtains a proof of AV B, for A, B closed then one can tell
which of the formulas is true.

But that intuitionistic logic in fact has these properties is not clear from BHK. We will show
this later on by a variant of Godel’s Dialectica interpretation.

Now, the BHK interpretation has some problematic aspects. There is an inherent vague-
ness in what is meant by (informal) “proof™ and “construction”. Furthermore, the property
of being a proof of a statement is impredicative and in general not decidable. We say that
a definition is impredicative if it refers to a totality which involves the object that is being
defined.!! The impredicativity of BHK shows up, for instance, in the case of implication. p
is a proof of A — B if for any proof g of A, p(q) is a proof of B. Moreover, it is not in general
decidable whether p is actually able to do this, since there is no finite procedure that generates
all possible proofs of A.!? This led Kreisel (1962a) to formulate additional clauses, namely:
p:A — Biff p is a pair (v, p) such that for all g if ¢ : A then p(g) : B and v is a verification
that j actually does this. Likewise Kreisel added additional clauses for the interpretation of
V and —. N. Goodmann (1970) developed a rather complicated theory of constructions based
on Kreisel’s additional clauses, but as it turned out they were needless for the result Goodman
had in mind, namely showing that intuitionistic arithmetic plus countable choice is conserva-
tive over intuitionistic arithmetic itself. It generally seems that second clauses are problematic

as they only raise the complexity. We see, however, that under the BHK interpretation one
~ will not in general be able to recognise a proof when one sees it.!>

HFor instance, the least upper bound axiom used in classical analysis requires an impredicative definition.

12G. Kreisel (1987, 397) has formulated the problem in the following way: “Until the mid fifties I found the
subject [intuitionistic logic] distasteful because ... iterated implications made my head spin.

3Recently S. Artémov has given a BHK-semantics for intuitionistic propositional logic, where one interprets
“p:A” as “pis a proof of A in a formal system”, e.g. PA; hence whether p is such a proof becomes decidable. The
logic Art€émov has developed is thus a logic of operations on proofs and Artémov shows that the propositional part
of intuitionistic logic is complete with respect to this semantics. See Artémov (2001).
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1.3.1 Negative translation and consistency of classical logic relative to intuitionistic

Later in the 30s Godel (1933) and, independently, Gerhard Gentzen (1933) (1909-1945) (who
was a student of Hilbert and Bernays) discovered a very important relation between classical
logic/arithmetic and intuitionistic logic/arithmetic.!* Using a so-called negative translation
they proved that with respect to consistency intuitionistic logic and arithmetic is no better
than classical logic and arithmetic. By a negative translation they embedded classical logic
in intuitionistic logic in such a way that provability is preserved. Let A’ denote the transla-
tion of A. It was proved that if A is classically provable then A’ is intuitionistically provable,
thus showing that if classical logic is inconsistent then so is intuitionistic logic.!> This result
together with (Godel, 1931) showed another interesting thing for the Hilbert school: Ap-
parently finitism is much more restrictive than the foundation advocated by Brouwer, since
intuitionism is sufficient for consistency of classical arithmetic while finitism is not. Godel
and Gentzen were probably the first to point out this fact, and it had the following impact on
a possible continuation of a generalised Hilbert program, as noted in 1967 by Bernays (who
in 1930 had thought (1976, 60) that finitism and intuitionism were coextensive):

It thus became apparent that the “finite Standpunkt” is not the only altemative to
classical ways of reasoning and is not necessarily implied by the idea of proof -
theory. An enlarging of the methods of proof theory was therefore suggested: in-
stead of a restriction to finitist methods of reasoning it was required only that the
arguments be of a constructive character, allowing us to deal with more general
forms of inferences. (Bernays, 1967, 502)

The result by Godel and Gentzen was, in other words, just stressing the poiht that there were
probably different kinds of constructive foundatlons In fact this point will be among the
conclusions of this thesis.

1.4 Gaodel’s view on a constructive foundation

With respect to Godel’s view in the 30s and beginning of the 40s on proof theory and construc-
tivism there are three important documents (Godel, 1933a, 1938, 1941). These documents are
scripts Godel made for lectures, but they were not published until 1995. It seems quite clear
from these lectures, that Godel in those years was closer to the ideas and goals of the Hilbert
school than has been generally assumed. The three papers just mentioned witness that Gédel
viewed his Dialectica interpretation — developed at the end of the 30s — as a contribution to
the ongoing discussions on the foundations of mathematics, more specific:

1. Godel generalised Hilbert’s finitism to a constructive theory I, which was strong
enough for a partial realisation of Hilbert’s program.

2. The proposal of L as a constructive theory can also be viewed as Gédel’s replacement
of imprecise notions of intuitionism.

14 Again, Kolmogorov (1925) anticipated this.
15Chapter 4 of this thesis is partly devoted to these matters.
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Seen from a strictly constructive point of view, basically two notions of classical mathe-
matics are problematic according to Godel (1933a): (i) The non-constructive notion of exis-
tence (based on tertium non datur) and (ii) the use of impredicative definitions. These parts
are problematic, Godel says, because of a necessary Platonist presupposition “which cannot
satisfy any critical mind and which does not even produce the conviction that they [the classi-
cal axioms)] are consistent” (Godel, 1933a, 19). A Platonistic a priori justification of the ideal
parts of mathematics (‘ideal’ in the sense of Hilbert) is not enough. Earlier in the year 1933
Godel discovered the negative translation and he became dissatisfied with intuitionism as a
foundation, due to the problems mentioned above. He was of the opinion (1933a, 22) that

the domain of this intuitionistic mathematics is by no means so uniquely deter-
mined as it may seem at first sight. For it is certainly true that there are different
notions of constructivity and, accordingly, different layers of intuitionistic or
constructive mathematics. As we ascend in the series of these layers, we are
drawing nearer to ordinary non-constructive mathematics, and at the same time
the methods of proof and construction which we admit are becoming less satis-
factory and less convincing.

The most fundamental of the constructive theories could very well be Hilbert’s finitism. But
for a constructive foundation for parts of ideal mathematics we need more. A candidate is
Hilbert’s finitism + quantifier free transfinite induction along constructive ordinals up to €.
This is the approach of Gentzen (1936) who showed consistency of Peano arithmetic relative
to this basis. Gadel, in his Vortrag bei Zilsel (1938, 12), emphasizes that with respect to
the epistemological side “one will not deny a high degree of intuitiveness to the inference
by induction on &g thus defined”.!® In the lecture Godel is quite positive towards Gentzen’s
approach, however, he has another idea which later became the Dialectica interpretation.

Returning to the different layers of constructive theories we have, still further up the
hierarchy, intuitionism. Thus, we see the impact of Godel’s incompleteness theorems: There
is apparently no clear cut characterisation of a constructive foundation.

In all three lectures Godel (1933a, 1938, 1941) discusses which criteria a strictly con-
structive system should meet and these criteria vary only a little in the three lectures. The
clearest account is in (Godel, 1941, 5-6). It boils down to:

(a) The primitive functions and relations must be calculable and decidable, respectively.

(b) Existential quantifiers function only as abbreviations of actual constructed objects and
propositional operators cannot be applied to universal statements.

In order to meet criteria (b) universal statements VxAgr(x) (where Ay is quantifier free) can
not be negated — only in the sense that one has obtained a counterexample Ix—Ag(x), i.e.
—Ag (1) for some 1. These considerations lead to a class of constructively meaningful state-
ments in IV-form. Goédel formulates a finite type theory of primitive recursive functionals
T which meets these criteria.!” In (Godel, 1941) the description of I is reasonably detailed

16We will hardly discuss this approach of Gentzen any further, but see e.g. Andersen et al. (1996).
7% essentially became Godel’s system T in the published paper (Godel, 1958). More details on the theory and
the constructiveness hereof in forthcoming chapters.
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and likewise how classical arithmetic — via negative translation — can be interpreted in L. The
interpretation of intuitionistic number theory in I is essentially the Dialectica interpretation
published in 1958, (Godel, 1958).

1.4.1 Benefits and applications of Gédel’s interpretation

It is clear that-Godel understood his interpretation as a contribution to the foundational dis-
cussion. But it is more difficult to say precisely in which sense. Godel mentions (1941,
26-29) four applications of the interpretation. Let HA denote intuitionistic arithmetic, then:

1. There is a number theoretical formula A(x) such that for C = -Vx(A ().c) V-A(x)) we
have HA + C is consistent (given HA is).

2. If HA proves 3xA(x) then T will prove the translated formula 3xAP(x). And since
existential quantifiers in L are only abbreviations one has that T proves A°(t) for some
term ¢ of £.

3. Negative translatlon together w1th the new mterpretatxon proves consistency of classical
arithmetic relative to Z.

4. The following rule holds: If classical arithmetic proves the closed formula AxAge(x)
then we can find a number ~ such that I proves Aq¢(n), for A4r quantifier free.

At the very end of the lecture (1941, 30) Godel says that “[i]t is perhaps not altogether
hopeless to try to generalize these conéistericy proofs to analysis by means of functions of
still higher (i.e. transfinite) type.” In fact Spector (1962) generalised Gédel’s interpretation
to analys1s by adding a generalised version of bar induction (induction along well-founded
trees), and later on Friedrich (1985) provided a generalisation to the transfinite types. Godel’s
interpretation can, on the other hand, also be used to show that a mathematically rich sub-
system of analysis named WKL can be reduced to PRA. This follows from a result of U.
Kohlenbach (1992).

It is probably a combination of all these applications and possible generalisations that
were the motives for Godel. According to A.S. Troelstra (1990, 219) (i) S.C. Kleene reports
that the above 1 was the principal goal; (ii) Kreisel says that Godel wanted to establish that
intuitionistic proofs of existential theorems provide explicit realisations (in the sense of 2).
Whereas the publication of the interpretation (Godel, 1958) is most clearly devoted to 3. The
motives of Godel were probably a combination.

1.5 Motivation for and focus of this thesis

The view on mathematics underlying Hilbert’s program is interesting. It has a high explana-
tory power: First, it explains clearly why a great body of mathematics is robust and unchanged
over time. This is simply so because it is finitary or is founded immediately on such grounds.
Those parts of mathematics which are finitarily justified'® are intuitively true and therefore

8Notice that we use the word “justified”. By this we mean that what is justified by, say, primitive recursive
reasoning is finitarily justified and therefore intuitively true. But note also, that if we allow (free) variables in PRA
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objective.!® Second, it also explains why some objects are introduced in mathematics, then
abandoned, but later on — maybe — re-introduced; as infinitesimals for instance. Such objects
are simply ideal elements, and the introduction of ideal elements is in general indeed a non-
trivial matter. It is-a difficult process to define and thereby introduice new (ideal) objects and
concepts which are meaningful and useful. Sometimes they are, but sometimes they are not
and will perhaps need to be modified.? Thus, the philosophy of ideal elements leaves room
for the possibility of errors made by mathematicians doing their science. However, fluctua-
tion will only happen on the very edge of the whole science, so to speak. On the other hand,
such a philosophy also leaves room for creativity and progressiveness.?! It gives an account
of how and why mathematical theories grow and evolve over time.

The motivation underlying this thesis is the just described generalized Hilbertian view
on mathematics. But contrary to Hilbert we will not focus on consistency. Primarily so
because mathematicians and logicians have been working for a long time with mathematics
and formal theories representing mathematics. Today, only a few sceptics (if any at all) in
the mathematical and logical enterprise doubt the consistency of, say, ZFC. We will mainly
focus on other themes from the ‘Grundlagenstreit’, namely on the constructivity of proofs
and, generally, on the permissibility?? and justification of ideal methodology. In this respect
we will be in line with Kreisel and his program of “unwinding” proofs:

To determine the constructive (recursive) content or the constructive equivalent
of the non-constructive concepts and theorems used in mathematics, particularly
arithmetic and analysis. (Kreisel, 1958, 155).

By not focusing on consistency as Hilbert did we intend to ascribe more specific constructive
meaning to non-constructive proofs. The activity of applying this to specific proofs could be
named proof mining — a name suggested by Dana Scott to Ulrich Kohlenbach — and it has im-
portant mathematical applications as for example Kohlenbach has demonstrated clearly, see
e.g. Kohlenbach (1992, 1993,a, n.d.). But our survey is also related to reductive proof theory
— associated with Solomon Feferman — and there are certainly philosophical consequences
too.

The modern mathematician interested in constructive mathematics, or interested in the
constructive content of proofs, has many different elements of (classical) mathematics which

then we can formulate in the language of PRA questions with no immediate answers. The Goldbach conjecture, for
instance, can be represented in PRA as a formula, with one free variable. But this does not rule out the possibility that
an answer to Goldbach’s conjecture could be intuitive in the sense of anschaulich (in the sense of Kant), although
not immediate.

%In Kantian terms we could say that they are necessary conditions prior to any knowledge. This guarantees
objectivity. On the relation between (axiomatic scientific) knowledge and finitism Bernays (1928, 145) says “Fiir
die Hilbertsche Grundlegung ist aber kennzeichnend, da8 hier der finite Standpunkt in zusammenhang gebracht wird
mit der axiomatischen Begriindung der theoretische Wissenschaften. Dadurch stellen sich die Voraussetzungen der
finiten Einstellung zugieich als Bedingungen dar fiir die Moglichkeit theoretischer Naturerkenntnis, ganz im Sinne
der Kantischen Problemstellung.” See also (Andersen, 2000, 34-39).

20There are many examples of this in the history of mathematics. As mentioned is infinitesimals one example.
Another, from at the end of the 19th century, is Frege’s idea of the extension of a general property; a third is Church
and Curry’s proposal around 1930 of A-calculus as a foundation for mathematics.

21Similar to what Cantor and Hilbert maintained, namely that the essence of mathematics lies in it its freedom of
abstraction.

22The German word Zuldssigkeit is probably better here.
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he must judge between. These elements and principles are very fruitful in the development
of mathematics. But which of them can be given a constructive foundation? And what are
the mathematical and logical relations between the principles?

We will primarily investigate — locally in the framework of typed arithmetic — the follow-

ing elements of ideal mathematics:??

1. Extensionality: Two functions are equal if they are equal on all arguments.

2. Markov’s principle: If A(x) is decidable for any x and if =—~3xA(x) holds then 3xA(x),
i.e. ' . .

Vx(A(x) VA (x)) A—~TrA (x) — DA (x).

3. Axiom of choice: If for any x there exists a y such that A(x,y) holds, then there exists
a total (choice) function f which takes any x and gives f(x) such that A(x, f(x)) holds.

4. Independence-of-premise (for certain classes of formulas). If A — JyB(y) holds and y
is not a free variable of A then 3y(A — B(y)) holds, i.e.

(A= 3yB()) - Iy (A — B(y)).

One of our main purposes is to give a systematic analysis of 1-4 in order to provide coher-
ent and consistent systems that partly contain these prima facie non-constructive principles.
Systems, that nevertheless can be seen as constructively meaningful,

Generally speaking, the notions and principles in 1—4 are constructively problematic:
Some of them are not justified by the BHK interpretation, and though AC is justified under
this interpretation then certainly it is a non-constructive principle over classical logic.?* As
such they are often rejected by intuitionists of today. We will see, however, that if one takes
the constructive slogan “existence = computability” seriously then a closer analysis of the ap-
parently non-constructive notions has a lot to say about which methods can be applied where.
But we will also see that different interpretations validate different principles. Nevertheless,
individually the interpretations give coherent and meaningful views on constructivity and as
such we will therefore not end up with one true and unique formulation of constructivity.
Despite of this we will try to give a comparison of the different interpretations.

Our general agenda, however, will be that:

If we insist on constructivity with respect to existence proofs, how much of clas-
sical logic can then be justified and given a constructive interpretation in the
context of typed arithmetic?

We will thereby investigate the thesis that in order to obtain constructive results it is not
necessary to restrict the methodology to the intuitionistic one. This follows views expressed
by Feferman and Kreisel amongst others.

B0Other examples of important principles of mathematics which we will only discuss briefly in this thesis are
Church’s thesis (every algorithm is recursive), Konig's lemma (an infinite tree branching only finitely many times
has an infinite branch) and bar induction.

24Recall Zermelo’s classical result from set theory that AC implies that any set can be well-ordered.
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We will mainly be concerned with extensions of intuitionistic systems which enjoy fully
constructive interpretations in the sense that existence proofs, for instance, allow for explicit
realisations. If, however, one is interested in other kinds of constructive information, say ef-
fective bounds; many other principles of logic and mathematics than those mentioned above
can be used; this approach has been developed by Kohlenbach (1998). We will only touch
these perspectives on classical methodology in last chapter. Firstly we will, however, intro-
duce and investigate the proof theoretical tools to be used throughout this thesis. These are
mainly the Dialectica interpretation and modified realisability. The following chapters will
be rather technical but conclusive results will show up, which form a kind of critique of the
BHK interpretation—if this is taken to be a global interpretation.




CHAPTER 2

Introduction to Godel’s Dialectica Interpretation

In 1958 Kurt Gédel finally published his interpretation (Godel, 1958). In the paper he inter-
preted Heyting arithmetic in a quantifier free type theory with primitive recursion in all finite
types. This type theory is called Godel’s system T and the interpretation became known
as Godel’s ‘Dialectica’ interpretation — named after the journal in which it was published.
As mentioned in the forgoing chapter, Godel (1933) had earlier interpreted Peano arithmetic
in Heyting arithmetic via a negative translation, so by the Dialectica interpretation Godel
proved, among other things, that Peano arithmetic is consistent relative to T. Besides the
consistency proof Godel provided via the soundness theorem a method for extracting terms
(programs) which realise theorems of arithmetic.

The interpretation given by Godel extends easily to typed Heyting arithmetic. This exten-
sion of Godel’s result was first carried out in details by Troelstra (1973). For the rest of this
thesis HA is the theory of Heyting arithmetic, HA® is Heyting arithmetic generalized to all
finite types, HA® is HA® formulated in a Hilbert style calculus and HAY is HA® formulated
'in a natural deduction calculus.! As an introduction to the subject we will state the soundness
theorem for HAY (with weak extensionality) and sketch the proof. Thereafter the theorem
will be proved for HA® (also with weak extensionality) in detail. Flrst however, the formal
theories. :

2.1 A Hilbert system for weakly éxtensional Heyting arithmetic in all finite types

The typed theory of Heyting arithmetic will be formulated with weak extensionality. This
theory will therefore have the name WE-HA®. Since WE-HA® is typed it has a type structure,
T. ' .

1. 0e 7,

2. IfoeTandt€Ttheno = 1€ 7.

Intuitively each type represents a class of objects. Type 0 is thought of as representing the
nz;tural numbers and ¢ — 7 is the type of functions from objects of type o to objects of type
T. )

That A is an object of type G can be written in different ways: A® or A : . If it is clear
from the context what type A has then it is usually written without indication of type, i.e. A.
Parentheses for types are associated to the right, e.g., 6 = T — T is shorthand for¢ — (T — ‘t)
and quite often we will omit ‘-’ and just write GTT.

To each type 6 we can assign a natural number lev(G) as its type level by:

The general terminology regarding the different names of the theories (with or without extensionality/inten-
sionality) is also due to Troelstra (1973). Furthermore, a precise introduction to the Dialectica interpretation is found
in (Troelstra, 1973, 230~-249), whereas a modern and comprehensive survey of the subject is found in Avigad &
Feferman (1998).

2Thus, the type structure can be thought of as a hierarchy given by specifying sets 7 for each type ¢ and an
application mapping f : Ts¢ X Tg — T; forany ¢ and <.

15
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1. lev(0) =0,
2. lev(o — 1) = max{lev(c) + 1,lev(1)}.

The type structure T is said to be of finite type since any type ¢ € 7 is assigned a ﬁnite; level.

2.1.1 Language, terms, formulas and notation

The language £L(WE-HA®) of WE-HA® has for every type ¢ denumerably many variables
x°,5%,2°,. ... The constant symbols are 0°, $%, and in all types there are symbols for the pro-
jector Iy 1 : 670, for the combinator X, 1 5 : (pt0)(pT)po, and for recursion, R; : 6(600)006.
The logical constants are A, V, —, V, 3. Equality is a primitive concept only for type 0, so
=¢ belongs to the language, but equality in higher types will be defined in terms of equality
in type 0; (in case of equality the type is indicated by subscript).

In order to be able to make a distinction between equality in the object language and
identity in the meta-language we have = as meta-symbol. This symbol is used to express
syntactical identities or syntactical abbreviations. For definitions we use := which could be
read as “is defined to be identical to”. However, when no misunderstanding can occur we
may also use = as a meta-symbol. The normal mathematical symbols as =, € and so forth
are meta-symbols with their standard mathematical meaning.

The terms and formulas of WE-HA® can now be defined.

Definition 2.1.1. The terms are generated according to:
(i) Constant symbols c® and variables x° are terms.

(ii) If t°F and 5 are terms, then (r5)" is a term.

4
Definition 2.1.2. The formulas are generated from:
(i) Prime formulas which have the form s© =¢ 1°.
(i) If A and B are formulas, then A ¢ B is a formula, o € {V,A,—}.
(iii) If A is a formula and x° a variable, then Qx°A is a formula, Q € {V,3}.
q

Notation

Define L := 0 =¢ 0. Then, since our language contains arithmetical symbols, we can define
negation: ~A4 := A — 1. Also equivalence: A +3 B:= (A — B) A{B — A), (A binds stronger

than —). By vector notation x we mean a finite string of variables xy,...,x,. Then Qx
abbreviates Qx; ...Qx, for O € {V,3}. The vector notation also applies generally to terms:
ift=u,...,1, and s = 5y,...,5, then ts abbreviates 1y ...5,,0281 ...Sp, -, taS1---Spm. In

general f113...1, is short for (... ((;72)13) . ..1,). In order to refer to the possibly empty set of
free variables xi,...,x, in a term r we write #[xy,...,x,). Then t[t;,...,t,] denotes the result
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of simultaneously substituting ¢,,...,t, for xi, ..., x,, respectively. This notation also applies
to formulas with parentheses instead of the squared brackets, i.e. A(b) denotes the result of
substituting & for x in A.

Since we only have equality in type O as a primitive, higher type equauons are abbrevia-
tions of lower type equations. If ¢ is not 0 and 6 = 6 ...0,0 then s° =4 t° is short for

Vx?‘ cxTn(sOxT xS = % L xS,

where the x;’s are vanables not occurrmg in 5%, 9. We have in other words an extensional
notion of equality.

2.2 Axioms and rules of WE-HA?

The logic is intuitionistic and either formulated within natural deduction which gives us WE-
HA® or formulated in a Hilbert style, WE-HA®. Dialectica 1nterpretat10ns of Hilbert systems
are in many respects considerably less complicated than interpretations of systems formulated
within natural deduction. Furthermore, the former are the well-known versions and as an
introduction to the interpretation we therefore present WE- HA“’ in Hilbert style and sketch
the proof of the interpretation theorem.

The following formulation of the underlying logic is due to Spector (1962). The axiom
schemes and rules are:

_ A=A, (axioms of implication).
A—AVB, B—AVB, - (axioms of weakening).
AAB = A, . A/\B—)B, (axioms of weakening).

1 > A, - (ex falso quodlibet).
A A-B A—-B B-C A->B A-C
— MP ——— Syl ————— Con
B A=C _ A— BAC
AAB—C A (B—=C) A—-C B—=C _
—————EXp0 ————— Impo ————  Dis
‘A= (B—=C) AANB—C AVB—C

Quantifiers are introduced in the following way:
B — A(b°)

B — VxSA(x°)

A(t°) = IxCA(x°), (Q3)

Q1 Vx®A(x%) = A(t°), (Q2)
A(b°) = B
I®A(x°) > B

Here b° is eigenvariable, which means that regarding the rules Q1 and Q4 b° is not allowed
to occur free in B.
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Equality and Extensionality

Since equality in higher types is defined in terms of lower types we only have equality axioms
for type 0. These include (the universal closure of):

X=X, X=oy—=y=0X, X=9YAYy=02—>Xx=02 X=¢Y— fx=¢ fy,

where x and y are of the same length, x =q y is an abbreviation of x; =¢ y\A,...,AX; =g ¥n
and f is any n-ary function symbol of type level 1.

What is to follow is a short discussion of equality and extensionality as a motivation for
the quantifier free rule of weak extensionality, QF-ER.

By the abbreviation of equality in higher types we have an extensional notion of equality,
e.g. we consider two one-argument number theoretic functions® f! and g! to be equal if
they are equal with respect to all arguments: f =, g = Vx%(fx =¢ gx). But this only says that
equality is extensional. Another matter is whether or not the functionals behave extensionally.
We say a functional is extensional if the results of any application of the functional to two
equal arguments are equal, more precisely if 6 = 6)...0,0:

n
2% is extensional = Va',y]',...,x5n,y0n (/\ Xi =¢; Vi = 2X =0 2¥)- 2.0
i=1

Say Es(z%) holds iff z° is extensional. Now, if our system under consideration had full ex-
tensionality this would mean that all functionals in all types would behave extensionally, i.e.
VZz°Es(z). This requirement would give us the system E-HA®. However, Howard (1973)
has shown that E-HA® does not have a Dialectica interpretation in itself or in any subsys-
tem of itself. For, there is no functional of E-HA® that satisfies the Dialectica translation of
the extensionality axiom of type 2: Vz?E»(z). We will come back to the non-interpretability
of E-HA® later. Since we want to define a version of. typed intuitionistic arithmetic which
has a Dialectica interpretation we will have to weaken (the schema of) full extensionality.
Therefore WE-HAY has the following rule of weak extensionality:

Aqf — SG = tc

Ags — r[s°]" = r[t°T°

QF-ER

where A is a quantifier free formula, and 5°,2° and r{x°]" are terms.

In order to propose the connection between QF-ER and full extensionality let the follow-
ing be mentioned briefly.

The derived rule

SG =g IG

—————EXTR
r{s°]" = r{t°]

is a trivial consequence of QF-ER (assume we have derived s® =4 °; this formula can be
weakened to 0 = 0 — s® =4 1 then apply QF-ER to obtain 0 = 0 — r[5s°]* = r[t°] and then

3Note that type 00 is also called type 1.
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apply MP on thisand 0 = 0).4
Now, say z is of type p, where p is p; ...p,0 and assume we have derived the premise of
the right hand side of (2.1), namely '

for all i < n(y; =p; 9i)-

We are then able to conclude zy =¢ zJ with the use of EXT-R by taking r[x°]* to be
z”x‘l’ '...xh". Thus, the schema of full extensionality is replaced by a (weaker) rule in or-
der to obtain WE-HAY. We will see later that because of this the deduction theorem does not
hold for the theory with weak extensionality.

Arithmetic

The arithmetical axioms for the successor symbol S are
Sx=p0— L, Sx=¢Sy - x=¢,
and the axiom schema of complete induction is:
IA) A(0%) AVXO(A(x) - A(SK)) — VXA().

In order to do primitive recursive arithmetic inside WE-HAY we have the following ax-
ioms for projector Il ¢ and combinator X 7 s:

ey =6 2°, I; " ot0,
Loroyz =¢ x2(¥27), X:PT0,Y:PT, 2:P, Lpro: (PTO)(PT)PO,

and for Rg:

chyo =g X

: : :0,Rg: .
RoxySz =6 y(Roxyz)z } x:0,y:000, z: 0, Rs : 6(600)00.

One can think of the equations as reduction rules: The terms on the left ‘reduces’ to the terms
on the right, thus defining rules for calculations.

By using projector Il;; and combinator £, ;s we now introduce the A-operator as a
defined notion. This is done by induction on the complexity of the term ¢[x°]*, where IT and
X are of suitable types:

Axx = ZIIII
AMr = II, if x ¢ FV(r)
Ax.(ts) = Z(Axt)(Ax.s), if x € FV(ts)

From this it follows that

4Bezem (1988) has shown that EXT-R over WE-HA is deductively equivalent to QF-ER. He has in other words
shown that when we have the replacement axiom for type O (i.e. x =g y = fx =¢ fy) then if we have Agr = 5% =51
then we are able to conclude Ags — r{s®]® =¢ r{r°]" by use of the rule EXTR.
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(i) Ax®.f" is of type o,
(i1) FV(Ax©.1]x°)%) = FV(#[x°]")\{x°},
(i) The following equality is derivable in WE-HA®:
(Ax°.2[x°))s® =< t[s°]".
When equations are seen as reduction rules the last equation is called a B-contraction.
That the defined A-operator in fact has these three properties is proved by induction on

the complexity of the term ¢. Here we just sketch that the equality given by B-contraction is
provable by vsing IT and £. The proof is by induction of the complexity of .

la. t=yZx (Axy)s= (Iy)s=y.
1b. t =x. (Ax.x)s = (ZI)s = IIs(Ils) = s.

2. t = 5182. Assume x € FV(s;s3). From the definition of A it follows that

(hx.(s152))s = E(Ax.s1) (Ax.s2)s = (Aest [x])s((Ax.s2x])s) E s1[s]sa[s],

what equals (s157)[s].

Arithmetical examples

Let us see how some very basic arithmetic works with the A-operator and the recursion op-
erator. First of all we want to show that absolute difference |x —y| is definable. For this we
need to define a plus operator + and a cutoff operator =. The sum of two numbers x° and y°
is defined as follows:

x+y = Rox(Aw,u.Sw)y.

On the basis of this definition it is immediate that x+ 0 = x and x+ Sy = S(x+y). The next
thing we need is the predecessor of a number:

prd! := Ax.RoO(Aw, u.u)x.

From this definition it is also immediate that prd(0) = O and that prd(Sz) = z. Finally we
define cutoff:

x+y:= Rox(Aw,u.prd(w))y

Intuitively the operator works (or computes) like this: It takes y cuts 1 of y and writes prd on
a list. When y is turned into O it takes x and applies the list of prd to x. Thus, it applies prd
to x exactly y times and we see that if y is greater than x then x ~y = 0 else = tells us how
much x is bigger than y.

With — it is easy to define formally x is greater than y, namely: x > y:=x+y #0, and
x>y:=(x>y)V(x=y). Furthermore,x <y:=y > x.
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Also using = we can define absolute difference:

x—y:=x=y)+(y=x).

Now we will see that ‘definition by cases’ is also definable on the basis of the recursion
operator. Define:

Cond := Ax%,)°, 20 Rox(M®, w0 y)z

‘Then we read Condr1,2° as “if z = O then 1; else t,.” For the sake of readability we will usu-
ally write Cond(x,y,z) instead of Condxyz. With Cond and — we are able to define operators
that give us the maximum and minimum of two numbers:

Ax0,y°.Cond(y, x,x = y)
Ax0,30.Cond(x,y,x ~ )

max
" min

i

As in the case of Cond we will write max(m,n) and min(m, n) instead of maxmn and minmn,
respectively. : : ' o

23 WE-T, as the quantifier free subsystem of WE-HAY

The weakly extensional version of Godel’s system T, called WE-T, is essentially the quan-
tifier free subsystem of WE-HA®. Again this system can be formulated either in natural
deduction or in Hilbert style. The interpretation of WE-HA® in WE-T is a little easier when
. we formulate WE-T in Hilbert style. . , _

WE-Ty arises from WE-HA® when we drop the quantifiers of WE-HAY. So, the type
structure underlying WE-T,, is the same as the structure underlying WE-HA®; the language
L(WE-T})) of WE-T,, is same as L(WE-HA®), just without quantifiers; terms and formulas
are constructed in the same way as for WE-HA® but without quantifiers. WE-T, has the same
axioms and rules as WE-HA? except for: (i) the rules and axioms regarding the quantifiers,
i.e. Ql, Q2, Q3 and Q4 as given on page 17; (ii) The axiom of complete induction (IA) is
replaced by the quantifier free rule of induction:

A(0) AGD) = A(SKY)
A(xO) .

QF-IR

Furthermore, (iii) the absence of Q1 and Q2 force us to introduce a substitution rule:
A(x®)
A(f°)

Sub

A remark should be made pertaining to the rule of weak extensionality (QF-ER) and
higher type equations in WE-T,. QF-ER remains essentially the same but since quantifiers
are not at our disposal we have to view higher type equations as abbreviations of lower
type equations containing fresh variables that in the presence of quantifiers could be uni-
versally quantified: If o is not 0 and 6 = 6;...6,0 then s° =4 ¢° is an abbreviation of
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s"x‘l" R t°xf' ...x3" where the x;’s are variables not occurring in s, t° and which
are not free anywhere in formulas implying s® =4 r°. Moreover, we have to require that
§% =4 t° occurs positively, in order to guarantee that if we were allowed to quantify, the
quantifiers would be universal quantifiers. In paiticular all this means that the new variables
are not allowed to occur in the hypothesis Ay of QF-ER.

Characteristic terms

The prime formulas of WE-T,, are decidable. This is proved by induction on the complexity
of the terms, see (Troelstra & van Dalen, 1988, Vol. 1). From this it follows that all formulas
of WE-T,, are decidable, and we have classical truth reasoning in WE-T,,. This allows for the
elimination of logical connectives in favour of a set of defined constants called propositional
functions. If we define sg := Ax®.Ro0(Au, v.50)x and 58 := Ax?.Ro(50)(Au,v.0)x then we have

sg(0) =0 sg(Sx) = S0,
58(0) = SO 5g(Sx) =0.

Now we define the propositional functions as:

con = max,
dis := min,
imp = Ax,y.min(Sg(x),y).

Then we have primitive recursive functions con, dis and imp of type 000 such that

con(Sx,y) = con(y,85x) # 0, con(0,0) = 0O,
dis(0,x) = dis(x,0) = 0, dis(Sx,Sy) # O,
imp(Sx,y) = imp(z,0) = 0, imp(0,Sx) # O.

One then constructs inductively for any formula A in the language of WE-T,with FV(4) =
{x} aclosed term 14 (type of z4 determined by x) such that

WE-T, F t4x =0 0 > A(x). (22)

For #(y)—|y] we take absolute difference Ax,y.|s[x] —r[y]|. Assume FV(A) = {x} and FV(B) =

{y} then tanp := Ax,y.con(t},13); tavp := Ax,y.dis(t},15) and ta_,p := Ax,y.imp(z},5),
where ¢, and rp are identical to #4 and g, respectively, just without the lambda abstraction.

That the equivalence stated in (2.2) is derivable in WE-T, is proved by induction on the

complexity of A. See (Troelstra & van Dalen, 1988, Vol. 1, 120-125) for some of the basic
primitive recursive arithmetic which is needed.

2.4 Definition and analysis of Dialectica translation

To each formula A(a) of L{WE-HA®), where FV(A) = {a}, we now inductively associate
its Dialectica translation (A(a))?:

(A(a))® = 3xvyAp(x,y,a) (23
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where Ap is a formula of L(WE-T) and thereby quantifier free. x and y are sequences of
fresh variables. We note that FV(A) = FV(AP), and that x and y can be empty sequences.
Very intuitively: think of (2.3) in the following way: If A is provable then according to the
translation AP there are x making Ap ‘true’ for all possible instances of y.
Now, (-)P and (-)p are defined simultaneously, where (A(a))? = JxVyAp(x,y,a) and
(B(b))P = 3uvvBp(u,v,b):
Definition 2.4.1. (Dialectica translation). o
(PP) ‘ (A(a))P Ap(a) := A(a), if A(a) is prime,
(A%)  (A(a) AB(D))° 3x,uVy, v(Ap(x,y,a) ABp(u,v,b)),
(VP)  (A(a)VB(b)P 320, x,u¥y,v((z =0 Ap(x,,a)) A
|  (z#£0— Bp(u,v,b))),.
32°,2VyAp(X,,2,4),
3XVy,z2°Ap(Xz,y,2,a),
U, Yvx,v(Ap(x,Yxv,a) > BD(Ux v,b)).

TR

@) (ECAza)?
(VP)  (Vz°A(z,0))P
(—=P) (A(a) = B(b))P

o

2.4.1 Analysis of translation

Let us discuss this definition in order to make some sense of it. One of the questions in
this connection is what makes it possible to prove the equivalence A <> AP? The definitions
(PP), (AP), (VP) and (3P) are straight-forward. For instance, if we have IxVyAp(x,y) A
3uVvBp(u,v) and the variables are fresh then, of course, we are able to get the quantifiers
to the front of the whole formula by intuitionistic logic. What is special about (V?) is, that
it ‘eliminates’ V from the formula. On the other hand it could be said that the translation
just spells out the intuitionistic meaning of disjunction. Actually one can inside arithmetic
dispense with disjunction, since AV B can be defined as 3z((z =0 = A) A (z # 0 = B)),
and then prove the axioms for V to be derivable from the other axioms on the basis of this
definition. We find it more natural, however, to include V as primitive. But we see from
this remark that A? V BP «+ (A v B)? is intuitionistically provable within the framework of
arithmetic.’

The intuitive motivation for (V) is that if a functional should make (VzA(z))? true then
this functional will, possibly among other arguments, take z as an argument. Now, assume
we have VzaxVyAp(x,y,z). The constructive reading, i.e. the BHK interpretation, of this is
that there are functionals X which take any given z as an argument and produce a sequence
x making Ap true for every y. The ‘formal motivation” makes use of the axiom of choice. In
the context of typed arithmetic the axiom of choice is given by the schema

= U {AC®"}

o,teT

SWhat also motivates this definition is that one can prove about intuitionistic logic, that for sentences A and 8, if
we can prove A V B then we can prove either A or B and we can tell which one. This can be proved for intuitionistic
predicate logic by normalization on proofs, e.g. cut elimination for sequent systems. For intuitionistic arithmetic this
can, as we will see later on, be proved by realisability or by Q-interpretation, which we will introduce as a variant of
the Dialectica interpretation.
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where® ,
AC®T:  YxFy'A(x,y) — Y VACA(x, Y x).
In connection with the D-translation this gives
VzIxVyAp(x,y,z) — AXVzVyAp(Xz,y,2).

The motivation and analysis of (—?) is more delicate. To make an implication A — B
true requires basically two things: (i) If A is true we have to make B true and (ii) if B is
false we have to make A false. These requirements should the functionals U and ¥ sat-
isfy for all possible x and v. The following motivation is given by Gédel (1941, 196-7)
and can be seen in the light of (i) and (ii). Suppose we have an expression of the form
3xVyAp(x,y) — 3uVvBp(u,v). The meaning of this is that if there exist objects x satisfying
a certain condition then there exist objects u satisfying a certain other condition. Reading
this in a constructive setting means that there exist procedures or functionals U taking any
x witnessing the existential quantifiers in the antecedent into Ux witnessing the existential
quantifiers in the conclusion, i.e.

3UVx(VyAp(x,y) = VvBp(Ux,v)). 2.4

But we have not yet arrived at the Dialectica normal form; how to interpret VyAp(x,y) —
VvBp(Ux,v). Well, what would in general VxC(x) — VyD(y) mean. A quite natural (com-
putational) interpretation hereof would be: For any counterexample of D we can construct
a counterexample of C, i.e. AXVy(=D(y) = =C(Xy)). Under this interpretation (2.4) trans-
forms into

3UVx3YVv(-Bp(Ux,v) = —Ap(x,Yv)).

Now we have an implication between Ap and Bp and we take the contraposition of this and
obtain ~—Ap(x,Yv) — ——Bp(Ux,v). Since we have stability for quantifier free formulas:
~=Cqf > Cyr, we can discharge the double negations and we arrive at:

3UVx3AYVv(Ap(x,Yv) = Bp(Ux,v)).
The constructive reading of Vx3Y gives us the Dialectica normal form.
On the other hand a complete formal examination of the translation (as spelled out by

Spector (1962)) is given by the equivalences
(3xVyAp(x,y) — JuVvBp(u,v))
Vx(VyAp(x,y) — 3u¥vBp(u,v))
Vx3u(VyAp(x,y) — VvBp(u,v))
Vx3uVv(VyAp(x,y) = Bp(u,v)) b
Vx3uvvIy(Ap(x,y) = Bp(u,v)) M
3U,YVx,v(Ap(x,Yxv) - Bp(Ux,v))

ey

g

5Note that the BHK interpretation of AC is trivial: The interpretation of Vx®3y*A (x,y) is that there is a procedure
taking any x and produces y such that A(x,y). But this is essentially the same as the interpretation of the conclusion
of AC.
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These equivalences are all justified from a classical point of view, whereas only (i) and (iii)
are intuitionistically valid. The last equivalence (v) is true in virtue of (AC) and is, thus,
constructively justified. In this way we see that the decisive factor in provmg the equwalence
between the top and the bottom are (ii) and (iv).

Independence-of-premise

Let ‘independence-of-premise’ for type G be the following principle:
IP?: (A — E°B(x)) = 1°(4 - B(x)),

where x° is not free in A. Let IP® be the union of all instances of IP® for all types 6. Now we
restrict IP? to the case where the premise 4 is purely universal: call the restricted principle
ng,’. It then follows that (ii) is justified on the basis of IP\‘?. In general, the constructiveness
of IP? is questionable. The BHK interpretation of A — 3xB(x) would be that given any proof
of A we can from this proof construct a witness ¢ for the existential quantifier and a proof of
B(c). Thus, our construction of the pair consisting of ¢ and the proof of B(c).will in general
depend on the proof of A. But the principle ‘independence-of-premise’ says that we can find
such a ¢ independent of the proof of A. Thus, IP? is not sound under the BHK interpretatiorn.

We will, nevertheless, later on see that the Dialectica interpretation verifies IP\‘;’ and that this

therefore is a constructive principle. At the same time we will see that — in connection with
the Dialectica interpretation — this is the best possible: Let IP®, denote the principle where
the premise is negated purely universal; at the end of the next chapter (page 53) we will see
that this principle is not D-interpretable. '

Markov’s principle

Equivalence (iv) is validated by the so-called Markov’s principle. The general logical form
of this principle is

Vx(A(x) V =A(x)) A~—FxA(x) - xA(x).

In our setup the decidable formulas are the quantifier free formulas. Furthermore the the-
ory is typed. Therefore Markov’s principle, MP®, in the context of typed Heyting arithmetic
is the union of all instances of the following schema for all o:

MP® ; ﬁﬁichqf(x) = CAge(x),
where Agf is quantifier frele. In our justification of (iv)
Vx3uvv (VyAp(x,y) = Bp(u,v))

is given. By classical logic one could derive Vx3uVv3y(Ap(x,y) = Bp(u,v)) and therefore
intuitionistic logic gives

VxSqu—\—-By(AD(x,y) — Bp(u,v)),
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and then with MP® we get the desired conclusion. In general, Markov’s principle is not
accepted by constructivists. But assuming decidability of quantifier free formulas and that
the variable x is ranging over natural numbers the reading is: given ——3xAg holds (i.e. it
is contradictory that for all # A(n) does not hold)’, thén in fact there exists an n such that
A(n). The argument for Markov’s principle of type 0 is simply: Assume we have a decidable
procedure for testing whether A(n) holds or not and assume furthermore that it cannot be the
case that for every natural number n —~A(n) then we can find a natural number m by testing
whether or not A holds for 0, for 1 and so forth; sooner or later we shall find a number m
such that A(m) holds. In terms of Turing machines the argument is: If it is impossible that
the Turing machine will compute forever, then the clear algorithm for obtaining an output is
by continuing the computation until the machine halts.

In this form Markov’s principle is accepted by some constructivists, e.g. the so-called
Russian school of constructivity. :

Arbitrarily large types needed

The analysis of (—?) displays another interesting feature. The translation of an implication
raises the type of the functionals needed, since either U or Y (or both sequences) are of higher
type than any functional occurring in 3xVyAp(x,y) and JuVvBp(u,v). Now, the use of —
can be iterated as often as we want to the effect that we need functionals of arbitrarily high
type in order to express the functionals needed for the interpretation of any implication.

In the discussion of the translation of implication there is another important remark to
make. There are four different ways of getting the quantifiers to the front i.e. to get the
formula on 3V normal form (see (Troelstra, 1973, 232-233)). The Dialectica makes use of
one of them — the one we have just seen. As we will see on the next couple of pages the
Dialectica translation gives rise to an interpretation in WE-T. But the other three translations
of implication ask for non-recursive realisations already for A — A when A is IxVy—T zxy,
and T is Kleene’s T-predicate.® Therefore the specific translation given by —2 is the only
possible of these four. For further details in this respect see (Troelstra, 1973, 232-233) and
(Kohlenbach, 1998a, 39-41). .

Foundational discussion of translation

The conclusion we consequently arrive at is:
WE-HA® + MP® + 1P + AC - A + AP. (2.5)

We see that the faithfulness of the translation cannot be validated alone by intuitionistic prin-
ciples. But this is not the point either. The point is not that the translation should preserve
the intuitionistic meaning of the formulas, but that we can come up with a translation such
that the soundness theorem below is provable. The soundness theorem gives a reduction of

TNote that ~~3xA(x) & —Vx—A{x) is intvitionistically provable.

8Kleene’s T is a primitive recursive predicate and T'xyz expresses that Turing machine with Godel number x
applied to input y terminates with a computation whose Gtdel number is z, see for instance (Troelstra & van Dalen,
1988, Vol. 1).
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typed arithmetic using quantifiers to the quantifier free WE-T. The value of this reduction is
independent of the analysis of or motivation for the translation. The three ‘extra’ principles
of (2.5) are validated by the interpretation and therefore we can in fact use MP®, IP? and
AC on top of intuitionistic logic and still extract constructive content. This will be discussed
later, but we can already say it shows in the context of WE-HA® that these ‘partly classical
principles do carry computational content. This support the general view on the methodology
of mathematics that Solomon Feferman advocates: *“I do not see the necessity, insisted upon
by Brouwer and his followers, to restrict to constructive reasoning in order to obtain con-
structive results ... ” (Feferman, 1998, ix). This is most definitely also in line with Hilbert’s
view on the methodology of mathematics. Hilbert wanted with his program to show that the
use of ideal elements in proofs of finitary statements could in principle be eliminated. Thus,
the use of ideal reasoning could safely be used in order to obtain elegant proofs of finitary
statements. :

2.5 Interpretation theorem for WE-HAY

We will now present the interpretation theorem for WE-HA® and give some examples from
the proof. The theorem in this form is stated and proved in all details by Troelstra (1973,
234-237).

Theorem 2.5.1. (Soundness of D-translation).

If WE-HA® - A(a) then WE-T, - Ap(Ta,y,a),

for a certain sequence of closed terms T which can be extracted from a derivation of A(a).in
WE-HAY.

Proof. The proof is by induction on the length of the WE-HA®-derivation. Here we present
three cases from the proof that display the idea.
Case 1. Axiom A(a) — A(a). This translates to

3X,YVx,y(Ap(x,Yxy,a) - Ap(Xx,y,a)).
From this we see that with T := Ag,x.x and Ty := Aa, x,y.y we have
WE-T, + Ap(x,Taxy,a) — Ap(T ax,y,a).
Case 2. MP. Assume as induction hypothesis

(l) WE'TH + AD(Tlaayaa)a
(i) WE-T, F Ap(x,Tocxv,a) — Bp(Tscx,v,b),

for given T, T, and T3; ¢ is written for ay,...,a,,by,...,by. Find T4 such that WE-T,, -
Bp(T4b,v,b). Set x in (ii) to Ta and let y in (i) be To¢(T)a)v. Then use MP (in WE-T,)) to
obtain

WE-T | Bp(T3¢(T,a),v,b).
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Let ¢ = G)...6,0 and define o° := Ax% ...x%.0%. Now substitute all free variables in
T3¢(T)a) that do not occur in b by o of the corresponding type; name the result T. If
we put T4 := Ab.T we have the required result.

Case 3. We will see-that ‘definition by cases’ corresponds to a kind of contraction. We
will see this by verifying rule Con.

A—=B A-C
A= BAC

For notational simplicity we omit free variables. Then the induction hypothesis is:

WE-T, + Ap(x,Tixv) = Bp(Tox,v) and
WE'TH }_ AD(x,T3x‘I) - CD(T4xa Q)s

for given sequences of terms T';,T,T3 and T4. When we translate A — BAC we get:

3U,P,YVx,v,q(Ap(x,Yxvq) — Bp(Ux,v) ACp(Px,q)).

Con

From this we see that we have to provide sequences of terms §;,S> and S5 such that:
WE-T, F Ap(x,81xvq) = Bp(S2x,v) ACp(Six,q).

This is done by taking 8> := Ax.T2x and 83 := Ax.T4x. For §) we need ‘definition by cases’
and characteristic terms for formulas of WE-T. Take

S = Ax,v,q.Taxq, iftg,(T2x)v =40,
=91 Ax,v,q.Tixv, else,

where tg;, is the characteristic term for Bp. 8, is definable in WE-T since as we have seen
Cond is definable in terms of the recursion operator.

The rest of the verification of the logical axioms follows along the same line. All the
arithmetical axioms, except induction, are immediately interpreted by their counterparts in
WE-T,. Induction is interpreted by the recursion operator. We will see this when we verify
the interpretation for the natural deduction system in the next chapter. 4

Example

As seen above, contraction as represented by the Con rule is crucial for the Dialectica in-
terpretation: Characteristic terms and decidability of prime formulas are needed. Due to the
importance of this phenomenon we will give an example of contraction. In some formula-
tions of the Hilbert style calculus A — A A A is an axiom. In those formulations this axiom
represents contraction and, as in the case of the Con rule, the realising terms are defined
by definition by cases. From the translation of A(a) — A(a) A A(a) we see that we have to
provide sequences of terms Ty, T, and T3 such that

WE-Ty - Ap(x,T1axy,y,,a) = (Ap(T2ax,y,,a) AAp(Tax,y,,a)). (2.6)

Take T := Aa,x,y;,y,.Cond(y,,¥,,2ap,Xy,a) and T2 := T3 := Aa,x.x. This yields (2.6).
We will now go directly to natural deduction and thus postpone the mathematical and
philosophical consequences of the interpretation.




CHAPTER 3

Interpretation Theorems within Natural Deduction

After having seen the interpretation of WE-HA® formulated in Hilbert style we turn to natural
deduction. We will do this for two reasons: Apparently the Dialectica interpretation has
never been presented within natural deduction. This is of course a motivation in itself, but for
practical reasons it would be interesting for the future to have such an interpretation, since
natural deduction provides-a flexibility which is not present within Hilbert style. Another
reason is that as the interpretation unfolds new insights show up. These connect, in particular,
with a “contraction lemma” which is necessary for our natural deduction interpretation. But
first we will introduce the system and discuss some of the central features regarding natural
deduction. ' '

The discovery of natural deduction as an elegant and natural way of formalising predicate
logic, intuitionistic as well as classic, is often ascribed to Gentzen (1935), but apparently
Gentzen was anticipated by S. Jaskowski who developed this formalism for classical logic
in a kind of linear style, see (Troelstra & Schwichtenberg, 1996, 47). It is, nevertheless,
Gentzen who introduced natural deduction in the form we know it today and him who made
the first deep investigations of the formalism. One of his main reasons for choosing natural
deduction (and giving it it’s name) was that it comes very close to informal reasoning. This
feature makes it easy to do derivations inside natural deduction. The essential difference
between doing derivations in Hilbert style contra natural deduction is that in the latter one
does derivations under assumptions. This feature has, of course, crucial consequences when
we want to do the Dialectica interpretation.

A derivation in natural deduction takes the form of a rooted tree. The formula appearing
at the root note at the bottom of the tree is the proven formula and the formulas at the top
of the branches, i.e. the leaves, are the assumptions of the derivation. Some rules discharge
some of the assumptions of the derivation; when we discharge an assumption we indicate this
by writing one of the letters u, v, w to the left of the formula and simultaneous writing the
" label to the right of the name of the rule. Actually a whole class of formulas of the same form
occurring at different places in the tree can be discharged, namely the formula occurrences
with the same label. An assumption class consisting of formulas of the same form, say A, is
written in squared brackets [A]. A derivation in natural deduction starts typically by assuming
one or more formulas, and then — in an ongoing proces — a tree is generated by the rules of
inference. Some rules used in the process then discharge some of the assumptions.

3.1 Formulation of WE-HA, and WE-Ty,

The language, definition of terms and formulas, notation and the type structure underlying
the theory are the same as for WE-HA®Y. It is the formulation of the logic and arithmetic that
makes the difference.

29
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3.1.1 Rules of WE-HAZ,

The rules of WE-HA®, operate on derivarions. In this respect the formalism is on a higher
level than Hilbert style, since within the Hilbert style formalism one only. operates on formu-
las. The rules of natural deduction are inductive rules: They are used on given derivations to
obtain new derivations — we therefore have above an application of a rule one, two or three
derivations pertaining to the specific rule: The rule Al for instance, requires two derivations
whereas AE only requires one. The initial derivation is the trivial derivation: an assumption
of A is by definition also a derivation of A from the only assumption A.

One convention regarding natural deduction is that when we write down the rules we only
mention those assumptions that are of interest to the rule we are writing down, but there can
in general be any finite number of assumptions to a given derivation. The logical rules are:

A B Al NA>
—— Al is
AAB A;
[u:A] [v:B]
A; I . :
\% iy , ;
AVB C C
AVAz VE,u,v
C
[u:A]
: A A—B E
. —_—
B
—_— S Lu B
A—B
A(b%) VI Vx°A(x°)
Vx®A(x°) A(t®)
[u:A(D°))
I |
O A(O Ix®A(xC° C
ICA(C) ( )C 3
1
— 1
A

The rules in the left column, except for L are naturally called introduction rules and the
rules in the right column are called elimination rules. The subscript I in 1 denotes that the
rule is intuitionistic. The variable b° in V1 and JE is the eigenvariable. This means that with
respect to the application of VI, b° must not occur free in (non-discharged) assumptions of
the derivation. With respect to 3E, b® must not occur free in assumptions on which C depend,
except for A(b°). Furthermore JE has the restriction that b° is not free in C, i.e. b° ¢ FV(C).

A discharged assumption is naturally not an assumption (anymore). We stress that not
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necessarily all assumptions of the same form occurring above an application of —1I, VE or IE
are being discharged—we discharge only those formula occurrences that are labelled (which
can be zero). We are working with what is called CDC (crude discharge convention) if we
always discharge every assumption that is dischargeable.

We will try to explain two of the rules. First VE. Why is this an elimination rule? The
rule can be seen as corresponding to the informal method of “proof by cases”: Assume we
have established A or B and that we want to show C. Then it suffices to show the simpler
cases—that C follows from A and that C also follows from B. On the more formal level we
see that if we want to derive C from AV B we can eliminate V and derive C from A and from
B, separately.

Second 3E. Here SE serves to eliminate the existential quantifier from 3xA(x) when we
want to derive C from 3xA(x) and possibly other assumptions. The rule corresponds to the
standard mathematical proof procedure “there exists an x such that A(x); now pick such an
object b, then ... . If our conclusion does not contain that specific object b and does not with
respect to any other assumptlon depend on b, then we can conclude that C mdeed follows from

. IxA(x).
Contraction and notatibn
In the Hilbert style formalism presented earlier contraction is present by the rule:

A—-B A-C
A—> BAC

Con

In linear logic this is not allowed, since one has to be ‘economical’ with respect to assump-
tions. AsJ.-Y. Girard puts it: It does not follow from the fact that I can buy a pack of cigarettes
for a dollar and the fact that I can buy a lighter for another dollar that I can buy a pack of
cigarettes and a lighter for a dollar. Therefore Con is not a rule of linear logic. Contraction is
present in natural deduction in a way similar to Con. When we for instance discharge a class
[A] from our assumptions using —1, we are allowed to discharge all occurrences of A as an
assumption above the rule. Having this in mind, implication introduction, —1, says:

T,A,...,AFB=TFA>B.

One should therefore pay attention to all occurrences of assumpiions when discussing the
rules of natural deduction. We will especially have to be careful in connection with the
Dialectica interpretation, since, as we saw in the foregoing chapter, contraction plays a central
role corresponding to ‘definition by cases’.

Another notation for natural deduction is with context. The notation is horizontal com-
pared with the notation displayed above. With context notation one sees at the bottom what
the assumptions of the proven formula are, i.e.-what the context is. The notation is useful
in connection with the so-called Curry-Howard correspondence and is essentially the same
notation as Gentzen’s sequent calculus. We will later in this chapter use this notation in
connection with linear logic, but here we will use Gentzen’s original notation for natural
deduction with formula-trees.
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Equality and arithmetic

The equality rules of WE-HAS) are the following rules, where all terms are of type O (the first
rule is naturally called a zero-premise rule):

t=qps t=08 S=¢r
—E, E» E3
t=qt s=qt t=or
Rule of weak extensionality:
Lyf
S = (©
QF-ER,

r[s®)" = [t}

where I'gs only consists of quantifier free formulas, and s°,7° and r[x°] are terms.
Defining rules for S', where all symbols except ! belong to type 0:

Sx=0 Sx =Sy

2
4 X=y

Note, that the converse of Sy, i.e. x = y — Sx = Sy follows from QF-ER.
Rule of induction:

[u: A7)

A(0%) A(SBY)
5 In
A(y")
where b0 is eigenvariable not occurring free in any assumptions on which A(Sp®) depends,
except A(b°) and y° is any variable not occurring free in any assumptions.

Defining equations for I, 1, Xp 1, and Ry are the same as in the Hilbert system, and with
these we again obtain lambda abstraction as a defined notion.

d, u

3.1.2 The subsystem WE-T,,

Again, the weakly extensional version of Godel’s system T is to be considered as the quanti-
fier free subsystem of the theory. Therefore WE-T,, arises when we ‘remove all quantifiers’
from WE-HAS). Thus, the rules are mainly the same; we omit the quantifier rules but as a
result of this we introduce a substitution rule:

A(x°)
A(f°)

Sub,

t° is any term and x° not in free in any assumptions. The induction rule remains the same
which is also the case regarding equality rules and the axioms for Ip1. Zp16 and Rg. The
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rule of weak extensionality has to be slightly modified in order to cope with the definition of
higher type equations within WE-T,,. If 6 is not 0 and 6 = 6, ...6,0 then s° =4 ¢ is within
WE Tuo short for sx7" ... x3n = 1%x7! ... xS, where the x;s are vanables not occurring in s°

S, and which are not free m assumptions on which s° =4 7° depends Therefore, in WE- T
the rule of weak extensionality has the form

r

SG =g tc

————— QF-ER
r[sc]T = r[tc]t Q Ts

where none of the x;’s which are hidden in s® =4 ¢° occur in T

3.2 Discussion of the deduction theorem

Before turning to the interpretation of WE-HA®, into WE-Ty, let us examine the deduction
theorem in the context of WE-HA®—both Hilbert style and natural deduction. We do this
since we have to do Dialectica translations of deductions under assumptions, since derivations
in natural deduction are done under assumptions. Furthermore, Troelstra makes the following
remark when discussing different formulations of HA® (either with intensional equality, I
HA® or with extensional equality E-HA® or WE-HA®):

WE-HA® as an intermediate possibility [between I-HA® and E-HA®] is not very
attractive: the deduction theorem does not hold for this the theory. (Troelstra,
1990, 231).

Let us begin with an examination of the point that the deduction theorem does not hold
for WE-HAP®. But, first of all, we will have to specify which version of the deduction theorem
we are talking about.

Let S be a theory, A(x) a formula where FV(A) = {x}. Now, “,” denotes the operation
when we assume, for the sake of an argument, a formula say A(x), whereas “+” denotes the |
operation when we add a formula as an axiom to a theory and no longer regard that formula
as an assumption (in the technical sense of an assumption that can be discharged). When
we add an axiom it is implicitly understood to be universally closed. Now, using this simple
difference between “+” and “,” there are at least two different versions of the deduction
theorem:

Deduction theorem 1. If S,A(x) I B then S + A(x) — B.
Deduction theorem 2. If S + A(x) +- B then S I VxA(x) — B.

When we do deductions under open assumptions by the operation “,” we must in the context
_of Hilbert style make some restrictions with respect to the quantiﬁers.

Ci(e1),-..,Calea) F B(b) = A(a) = Ci(c1),...,Calcn) F B(b) — VxA(x),
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incase a ¢ {b,cy,...,c,}. Likewise
Ci(e1),...,Ca(en) F A(a) = B(b) = Ci(c1),...,Ca(en) F IxA(x) — B(b),

incasea ¢ {b,c1,...,cn}. .

Following (Kleene, 1952, 98), these restrictions could also be made by displaying vari-
ables that cannot be used as eigenvariables by superscript on the turnstile, i.e. -* means that
none of the variables occurring in x.can be used as eigenvariables.

The following argument is the standard argument when one shows the failure of the de-
duction theorem WE-HA®, see for instance (Troelstra, 1973, 242). It takes place in the
context of Hilbert style.

Let f! and g' be functions of type 1. Assume f = g; this gives us a derivation of f =) g.
Now apply QF-ER where r{x°] is z2x' thereby obtaining z?f =g z’g.! If deduction theorem
1 were true we could derive f =) g = z2f =¢ z2g and introduce universal quantifiers for the
free variables f,g and z. We would then have derived the extensionality axiom Vz?E(z) in
WE-HA®. In the foregoing chapter we saw that WE-HAQ has a functional interpretation
into WE-T,,. But Howard (1973) has shown by using the notion of majorizability that no
functional of WE-T,, can Dialectica interpret Vz2E»(z). Therefore deduction theorem 1 fails
for WE-HAY.

Drawbacks of the argument:

(i) It does not provide a counterexample to deduction theorem 2.
(i) It does not work for our natural deduction formulation, WE-HAZ,.

In the context of natural deduction we have to distinguish strictly between assumptions and
axioms, and here we cannot take f =) g as an open assumption and then apply QF-ER, since
J =1 g is not quantifier free. With respect to (i) we will of course not introduce f =) g as
axiom, since it would make our theory inconsistent. Thus, we see that the argument simply
does not work for WE-HAY), and it does not produce a counterexample for deduction theorem
2.

A more interesting and conclusive argument showing version 2 of the deduction theorem
to fail can be made with the axiom Conps (Kohlenbach, 2001). Conpa expresses the consis-
tency of Peano arithmetic: Let Proof(x,y) be a primitive recursive predicate expressing that x
is (the Godel number of) a proof in PA of a formula (with the G6del number) y. Then Conpy
is the closed IT-formula

Vx=Proof(x,"0 = 17).
Let tps of type 1 be the characteristic term for —=Proof(x,”0 = 17), i.e. WE-T proves the

equivalence tpax =p 0 4> ~Proof(x,70 = 17). By a relatively short argument it is shown in
(Kohlenbach, 2001) that deduction theorem 2 fails with respect to the axiom Conpa. For

Note that we can always weaken a derived formula A to B — A, for any formula B: from the axiom AAB — A
derive by Expo A — (B — A) and then apply MP.
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B = (2%(tpa) =0 22 (Ax.0)), where 22 is a free variable of type 2, we have?
WE-HA® + Conpa - B, but WE-HA® I/ Conps — B.

Apart from showing the failure of the deduction theorem this is also interesting in itself: If
we tell WE-HA® that Peano arithmetic is consistent then B is provable, but WE-HA® cannot,
. on the other hand, prove that B follows from the consistency of Peano arithmetic.

Now, why is it important that the deduction theorem holds? There are mainly three rea-
sons here. The first is principal. If the deduction theorem holds for a theory S, then we know
that there is formal agreement between our notion of logical deduction in §, t-5, and the for-
mal symbol for implication —. This expresses, in other words, that — formalises in S the
concept of deduction in S. This is of course in itself a desirable property.

The second reason is that the deduction theorem in connection with Herbrand’s theo-
rem has an interesting application. A simplified version of Herbrand’s theorem for classical
predicate logic runs as fO]]OWS‘

Simplified Herbrand’s theorem. If Aqf is a quantifier free formula with just x
as free variable and I 3xAq¢(x) is true in classical logic then there exists a finite”
sequence of closed terms 11, ...,1, such that = Age(t1) V- V Ags(t). .

In connection with classical theories given by purely universal axioms this allows for a re-
duction to logic if the deduction theorem holds: If we have derived IxAge(x) from a set I" of
purely universal axioms Ay, ...,A,, where Ags is quantifier free with just x as free variable,
then we can use the deduction theorem and derive without use of axioms (others than the ax-
ioms for logic) A} = --- = A, = JxA4e(x). Then we get all the quantifiers to the front where
they become existential and we are able to use Herbrand’s theorem. We then get a finite se-
quence of formulas where the formulas are implications of the form A} — --- = A} = Ag(1;)
where A’; has closed terms replacing the originally quantified variables in A j and the index

J
of #; is running from 1 to (some) m. Thus A’j follows from A; and we can by assuming the

original axioms I' derive Age(1)) V - - V Age(tm) 3

The third reason for wishing that the deduction theorem (here version 1) should hold is
practical. If we want to derive A — B we can, hypothetically, assume A then derive B and
use the deduction theorem to derive A — B. Anyone with the slightest experience regard-
ing derivations in Hilbert style calculi knows, that this is of great convenience. Because it
shows — as also said above — that with respect to assumptions our formal concept of deriva-
tion is consistent with our informal concept of proof, which is much more flexible. K]eene
formulates this in the following way:

The property of deducibility expressed by the next theorem [the deduction the-
orem] corresponds to a familiar method in our informal reasoning. To establish

2 Actually the argument in (Kohlenbach, 2001) shows the deduction theorem to fail also for the classical theory:
WE-PA®,

3A distinguishing feature about intuitionistic logic is the Explicit Definabiliry: 1f we have proved + 3xB{x) for
a sentence IxB(x) then we can find a closed term ¢ such that - B(¢). But this fails for classical logic. However,
Herbrand’s theorem shows that the next best thing is the case with respect to quantifier free formulas, namely that
we can find a finite sequence of closed terms 11,...,1, such that Ay holds for at least one of them.
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an implicatiori “if A, then B”, we often assume A “for the sake of the argument”
and undertake to deduce B. (Kleene, 1967, 39).

Now, if the deduction theorem does not hold for the theory we are working with we feel
‘unsafe’. The formal and informal concepts. of proofs do not agree, and it is a lot more
troublesome to make formal derivations.

3.2.1 Deduction theorem 1 holds for WE-HA®,

In natural deduction we distinguish between assumptions and axioms, as the latter are not
counted among the assumptions. This means that within natural deduction the deduction
theorem is true w.r.t. (open) assumptions simply by definition of —1: If we have derived A
under the assumption B we can conclude B — A, and discharge B from our assumptions.

Deduction theorem 1. (Restated).

IfCy,...,Cp,BF A in WE-HAQ then Cy,...,C, - B— A in WE-HAQ,.
Note that the variable conditions with respect to quantifiers (which were stated earlier in
the case of Hilbert systems) are automatically satisfied by definition of derivation in natural
deduction.

Summing up, this points to the following: The deduction theorem holds for WE-HA®
w.r.t. assumptions, because our very formulation of QF-ER blocks for the problematic cases.
Furthermore, the deduction theorem holds for axioms as long as these axioms are not leaves
of branches where QF-ER is used. We see that the way we usually want to use the deduction
theorem, namely w.r.t. assumptions, is valid, and this is of practical importance when we do
derivations because it is precisely w.r.t. assumptions we want the deduction theorem to hold.

Analysing the deduction theorem in this way we do not find the failure of the full deduc-
tion theorem that inconvenient as Troelstra does.

We note that this way of using the deduction theorem corresponds to the use of @ in
(Kohlenbach, 2001), though the analysis here in the context of natural deduction displays
more detail.

3.3 Translation of derivations under assumptions

In WE-HA® the term extraction starts with the terms given by the verification of the ‘real
axioms’. From these terms we build up realising terms according to the algorithm given
by the verification of the rules; an example is MP which corresponds to application of terms.
But how does the term extraction start in natural deduction? A derivation in natural deduction
begins typically from an assumption, say A which at the same time is a derivation of A. In a
moment we will see, that the verification of this gives the initial realising terms.

Again the difference between natural deduction and Hilbert style is that in the former
we are considering derivations under assumptions. This was not the case when we defined
the Dialectica translation on page 23 and we must therefore extend the translation in order
to include derivations under assumptions. This is actually straightforward. If we have a
derivation in WE-HAS, of A from the assumptions Ay, ...,An, i.e. Ay,..., A, I A then —~ since
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the deduction theorem holds for assumptions — this is equivalent to - A} = --- = A, — A4,
modulus any permutation of the n A;’s (parenthesis associated to the right). Therefore, since
we have complete agreement between - and — w.r.t. assumptions we Dialectica translate
Al,...,A, F A just as we would translate A} — - -+ — A, — A. Thus we see that the translation
of Af,...,Ap F Ais that there exist Yy,...,Y,, X such that for all x,,...,x,,y

Ar(x, Yix . xny), - An(Xn, Y oxy - x0y) EA(XX) - X, ),

where x1,...,X,,¥,Y1,...,Y,,X are fresh variables.

3.4 Interpretation theorem for WE-HAS

We know that WE-HA®, and WE-HA® are equivalent in the sense that everything which is

derivable in the former is also derivable in the latter and vice versa. Therefore the soundness

theorem is also true for WE-HAY,. However, when we want to extract terms we will have to

do it by recursion on derivations in WE-HA®. To get an algorithm for extracting terms from

derivations in WE-HA%, we have to give a independent proof of the soundness theorem.
First we need some lemmas. '

" Lemma 3.4.1. Let A(x°) be quantifier free, then
qu
tO’ — SG’ ( 0') »
QF-ER',.
A(s%)
is derivable in WE-T,,,, where none of the x;’s hidden in t° = s® occur free in Cyt.

Proof. Let 74 of type 00 be the characteristic term for A, i.e. WE-Ty, F 14x° =0 0 ¢ A(x%).
From this follows '

Dyt
t° =g o

o QFERT o

tat® =g t45° CA(®) A(®) o 14t° =40

——E —E

IASU =0 tAtc IAIG =90
E;

IAS6 =00 ' tASG =00— A(Sq)
—E

A(s%)

Notation

In the following it will be convenient to use some notation for finite sequences of formulas.
Say" . .

(C'(x;,Tix))7, :=C'(x1,T1x),...,C" (%n, T ).
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This notatidn will also be used when all the C’s are one and the same formula, just
with at most that many different free variables and terms; then without indexing C, i.e.
(C(x:,Tix)).,

=1
The following contraction lemma takes care of the contractions which are present in the
rules that discharge assumptions. :

Lemma 3.4.2. (Contraction lemma). Let A,B and C',...,C" be formulas of L(WE-T), and
say x denotes xy ...xy. If

(C'(x:, Tixzzv)) ., Az, T'x22v), A(Z, T"xz2v) - B(Tx2z,v)

for sequences of closed terms T y,...,T,,T'.T" T then
(C'(xi,Sixzv)) | F Az, 8 xzv) — B(Sxzv)
for certain sequences of closed terms §,,...,S,,8",S.
Proof. From the assumption of the lemma we have by substitution of z for 2:
(C'(xi, Tixzzv)) ., A(z, T'xz2v), A(z, T" x22v) - B(Txzz,) (3.1
Let t4 be the characteristic term for A. Then define
§* := Ax,2,v.Cond(T'xzzv, T"xzzv, ta2(T" x22v)) .

From this definition and the general definition of Cond (see page 21) we see that in WE-T,,
it is true that

taz(T"x22v) =00 — 8§ =2x,z,v.T'xz2v, 32)

taz2(T"xzzv) #00 — 8" = Ax,z,v.T"xzzv. )

We have in WE-T\, that any term of type 0 reduces (computes) to a number. Therefore
WE-Ty, b (taz(T"x22v) =0 0) V (ta2(T"x22v) #0 0).

If we assume 14z2(T" xzzv) = 0 we get S*xzv = T'xzzv from (3.2) by use of - E, QF-ER’ and
B-contraction, therefore

S'xzv=T'xzzv  A(z,8 xzv)
A(z, T'xzzv)

QF-ER/,

and at the same time, since t,4 is the characteristic term for A,
taz(T"xz2z2v) =0  t42(T"x22v) = 0 = A(2, T"xz2V)
A(z,T"xzzv)

On the other hand, if 142(T"xzzv) # 0 we have by (3.2) that $*xzv = T"xzzv which gives us

S'xzv=T"xzzv  A(z,S"xzv)
A(z,T"xzzv)

QF-ER'. (3.3)
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Again, since 1, is the characteristic term for A and since it is generally vahd to take the
contraposition, we have

142(T"xzzv) #0  A(z,T"xzzv) — taz(T"xz2v) = 0
-A(z,T"xzz2v)

Contraposition.

Still under the assumption that t4z2(T"xzzv) # 0, this together with (3.3) gives us
A(z,T"xzzv)  -A(z,T"xzzv)
1

S—
A(z, T'xzzv)

Thus, independently of whether t42(T"'xzzv) equals O we see that from A(z,S*xzv) we can in
WE-T,, derive both A(z, T'xzzv) and A(z, T"xzzv). In the derivation given by (3.1) we can
therefore replace the assumptions A(z,T'xzzv) and A(z, T”xzzv) by the above derivations
from the assumption A(z,S™ xzv) :

Define therefore

Si:=2x,z,v.Tixzzv and §:=Ax,z.Txzz.
We hereby have, togéther with $*, that )
(C'(xi,Sixzv))_,, A(z,5" x2v), A(z,8"x2v) - B(Sxz,v).

One application of —1I gives the conclusnon of the lemma. -
For the interpretation of the induction rule we need the following induction lemma.

Lemma 3. 4.3 (Induction lemma). If '+ C(0°, v) and T+ C(x° Tx°v) — C(8x0,v) in WE-
T, where x° and varenot freeinT, thenT'F C(x ,v) in WE-Ty,.

Proof. The proof of the lemma is particularly lengthy. One needs among other things simul-
taneous recursion and various kinds of arithmetical operations. See (Troelstra, 1973, 51_ -56)
for a detailed proof. ' -

Theorem 3.4.4. (Soundness of D- translatlon) If (C(ci));, F A(a) in WE-HA%,, then

(CD(xi7 Ticaxyy ci)) =1 + AD(Tcax,y, a)>

in WE-T,,, for certain sequences of closed terms Ty,...,T,,T which can be extracted from
a derivation of A(a) in WE-HA®,, wherec = ¢ ...c, andx = Xy ... x,,.

Remark 3.4.5.

1. The special case of the theorem where the deduction has no assumptions appears as:
WE-HA® F A(a) = WE-Ty, + Ap(Ta,y,a) for suitable closed terms T. Note the
flexibility natural deduction provides compared with Hilbert style. There is of course
a price to pay. This will be clear from the following proof of the theorem. This points
towards an essential difference between the two calculi: Natural deduction gives us
flexibility and naturalness, whereas Hilbert style meta-mathematically provides short
and elegant proofs.
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2. The theorem is formulated with sequences of formulas as assumptions. But with re-
spect to the mere existence of programs (terms) Dialectica realising the derived formula
we could have written the assumptions as a set of formulas. The actual program de-
pends, in other words, on the formula occurrences in a concrete proof, whereas the
claim of the existence only depends on the set of assumptions — not on a sequence.

Proof. The proof is by induction on the length of the derivation of A(a) in WE-HAY,. We
will in the following proof not indicate explicitly whether the derivations are in WE-Ty, or
in WE-HAY,, since it should be obvious from the context. Furthermore, we will abbreviate a
A-abstraction Axy,...,x, by Ax; ...x,. Notice, that sometimes we say “functionals” thereby
meaning closed terms of WE-T.

Base case. A(a) - A(a). As previously discussed in this chapter the translation of A(a) -
A(a) corresponds to A(a) — A(a). This was verified on page 27 and we therefore see that if
we define T; := Aaxy.y and T := Aax.x we have in WE-Ty,

Ap(x,Taxy,a) - Ap(T,ax,y,a).

Induction case. We are considering derivations from assumptions and we will have to
consider all formula occurrences because different terms can realise the same formula at
different occurrences in the derivation. We therefore assume some enumeration of all the
occurrences of assumptions. This could for instance be done by enumerating the formulas on
the top of the branches of the derivation-tree from left to right. Sometimes we will omit free
variables, which is done for sake of simplicity of notation.

Subcase 1. Last rule of the derivation is AL

A(a)  B(b)

A(a)AB(b)
- Let T =Cl(¢y),...,C"cy) and A= C"*(cyy1),-..,C™(Cm), for some enumeration of the
assumptions of the derivations of A(a) and B(b), respectively. Since I and A are sequences
it can happen that C'(¢;) = C/(c;) for some i and j. We assume that FV(C') = {¢;} and
furthermore we write ¢ for ¢;...¢,; € for €pyp...Cm; X for x;...x, and % for X4 ...X,.
Then the induction hypothesis (IH) is:

n

(CE(xi,Ticax)’,ci)),-=1 E AD(Tcaxay7a)’

_ 3.4
(Ci(xi, Tieb%v,c;)) +  Bp(T*b%,v,b). G

ient
Write ¢ for ¢; ... ¢, and x for x; ...x,,. We have to provide S;,S,8" such that

(Ch(x:,S;cabxyv, (:,~)):."=I  Ap(Scabx,y,a) ABp(S*cabx,v,b). 3.5
From IH, (3.4), we derive in WE-T, by using Al

m

( iD(xi’Ticaxyvci))?-_:l (CiD(xiaTiEbiWci))i:,,_;_l

Ap(Teax,y,a) Bp(T*&b%,v,b)
Ap(Tcax,y,a) ABp(T*¢b%,v,b)
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Now we expand on all terms realising this in order to get terms of the right type, i.e. terms
that fit and realise (3.5). By using QF-ER’ we see that the following sequences of terms will
do that.

S = Acabxyv.Tcaxy, if1<i<n,
T Acabxyv.TEbxv, ifn<i<m,
S := Acabx.Tcax, S = Acabx.T*ebx.

Subcase 2. The last rule of the derivation is AE;:
A(a)AB(b
(a) AB(b) AE
A(a)

Assume some enumeration of the occurrences of the assumptions I'. Say, for this enumeration
I consists of C!(¢1),..-,C"(¢n). When we write ¢ for ¢y ...c¢, and x for x, .. .x,, the IH is

(Ch(xi,Ticabxyv,c;));_, + Ap(Tcabx,y,a) A Bp(T*cabx,v,b).
We have to provide sequences of ciosed terms S;, S éuch that ,
(Cp(xi,Sicaxy,c;))_, F Ap(Scax,y,a). | » (3.6)
By using AE in WE-T,;, on the TH we get k‘ A
(Cb(x:, Ticabxyv,c;));._, + Ap(Tcabx,y,a)

Now replace every b; in b which do not occur in a nor in ¢; by the zero functional o;; let
the result be b'. Replace likewise v by a corresponding 0. It is now clear that the following
terms are closed and that they satisfy (3.6):

S; = Acaxy.Ticab'xyo', 1<i<n,
S = Acax.Tcab'x.

Rule AE; is symmetric to AE.
Subcase 3. —1. The last rule of the proof in WE-HAZ, is

[u :'A],l"

B

—— —=Lu

A= B
Assume some enumeration of the formula occurrences in I': C!,...,C", and assume also
some enumeration of all the occurrences of A labelled by u. Say there are m — n occurrences
of u: A. We omit free variables. Comparing with the Dialectica translation of C! — --- —
C" — A > --- 5 A > B we see that when we write x for x; ...x,,, the IH is:

(Cp(xi, Tixv))_,, (Ap(xi, Texv)) 1o, + Bo(Tx,v).

i=1? i=n-+1
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We write x for x; ...x,. Closed terms §y,...,S,,S",8 are required such that
(Co(xi, Sixxns1V)) i, F Ap(Xnt1,8" XX 41¥) = Bp(SxXni1,V). (3.7
Write ¥’ for x; ...x;,—1. We use the contraction lemma on the IH and get

(CE)(Xi,Ri-!,V)):}:l, (AD(xi)Ri‘!,v)):'”:;i_l F AD(xm—] ,Rm—l-I’V) - BD(R._X_I, V).

Now take Ap(Xn—1,Rm—1Xx'v) as an assumption and derive by use of =E

(Cf)(xi,Ri.;’v)):'zl, (AD(x;,R,-g’v));":_"L] + BD(R.E,,V).

We are now in a position where we can use the contraction lemma again. This proces
is repeated m —n — 1 times in total. At the end we get sequences of realising terms,
Si,...,8,,8%,8 for (3.7).
Subcase 4. —E.
A A—B
B

—E,

where ' = C!,...,C" are the assumptions of A and A = C"t!, ... ,C™ are the assumptions
of A — B. We omit free variables—the treatment of free variables is essentially the same
as under the Hilbert style verification of MP, see page 27. If we write x for x,...x,; X for
Xy+1---Xm and x for x; ...Xx,, the IH becomes

(Coxi, Taxy))y, + Ap(T*x,y) 3.8

(Co(xi, TEx'V));L ., b Ap(¥,T'%'v) - Bp(Txx,v), (3.9)

and we have to find sequences of closed terms such that
(CiD(xiasiEV))Zl__l F BD(S.!, V).

In (3.8) we substitute T'%(T*x)v for y to and in (3.9) substitute T*x for x’. Then applying
—E gives:

(Co@:, Tx(T'#(T x)v))) ., (Co(x:, TiX(T*x)v)) " + Bp(TH(T*x),v).

i=1? i=n+1

Defining the following sequences will do what is required:

s = Axv.Tix(T'%(T*x)v), if1<i<n,
T Axv.T:x(T*x)v, ifn<i<m,
§ = Ax.Tx(T'x).
Subcase 5. VI;.
~— V]|

AVB
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Omit free variables and say that the assumptions of the derivation of A are C',...,C". Write
x for xy ...x,. Then the IH is (C5(x;, T,-xy)):'=1 + Ap(Tx,y). From the Dialectica translation
of C' — -.- = C" = AV B we see that we have to find sequences S;,S*S, S’ such that

(Ch(x:,8:xyv)) i, F (8"x =00 — Ap(Sx,)) A ($*x #0 0 = Bp(S'x,v)).

Read of the type that the terms in the sequence S’ should have. Let o be the corresponding
sequence of zero functionals. Now we derive from IH in WE-T,,:

0=0 u:0#£0
H —]——F
: o —
Ap(Tx,y) Bp(ox,v)

0=0-Ap(Tx,y) - 0+#£0— Bp(ox,v)
(0=0— Ap(Tx,y)) A (0+#0— Bp(ox,v))

From this derivation we see that the following sequences will do what is required:

Axyv.Tixy, S§*
x.Tx, s

S;

Ax.0,
S :

T 0.

Rule VI, is similar. The difference is that we derive 1 = 0 — Ap(ox,y) and define §* by
Ax.1. : v » .

Subcase 6. VE.

[u Al [v : B]

AVB o c
c

VE,u,v

For some enumeration, the assumptions of AV B are D!,...,D". In the second sub-tree the
assumptions of C apart from [u: Al are D**!,..., D", and in the third sub-tree the assumptions
of C are, apart from [v: B], D"'“,...,D’". . Write x for xy...x,; X for X,41...%,; x' for
Xyt -..Xy and x for Xy ...x,,. After the use of the contraction lemma the TH becomes

(D (i, Tixyv)) i, F (Tx =0 Ap(Tx,)) A (Tx # 0 — Bp(Tx,v)), (3.10)
(Dp(xi, Ti%x0q)) ., F Ap(%0, T'%x0q) = Cp(To%x0,q), (3.11)
(Di,(.:\:,-,T,~x’uq)):."=n,+l + Bp(u, T'x'uq) - Cp(Tox'u,q). (3.12)

We have to find closed terms §),...,S.,, S such that

(Dp(xi,Sixq)) i, - Co(Sx,q)
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In (3.10) we substitute T’Z\':(T x)q fory and T'x (T'x)q for v; in (3.11) we substitute Tx for xo
and in (3.12) we substitute Tx for u. This gives

(Db (x, Tx(T'H(Tx)a)(T'¥ (Tx)q))) .,
(Tx=0— Ap(Tx,T'%(Tx)q)) A (Tx # 0= Bp(Tx,T'x (Tx)q)), (3.13)
(Dp(xi, TETX)Q)) 1., F Ao(Tx, T'E(Tx)q) = Co(Tok(Tx),q), (3.14)
(D;,(x,-, T,'x’(f'x)q)):."=n,+1 + Bp(Tx, T'x (Tx)q) = Cp(Tox' (Tx),q). (3.15)

We use computability of type 0 terms of WE-Ty, which gives us WE-Ty, - (Tx=0)V (Tx #
0). Therefore either the first or the second antecedent in (3.13) is derivable and we thereby
have Ap(Tx,T'%(Tx)q) for (3.14) or Bp(Tx,T'x'(Tx)q) for (3.15). In both cases we are
able to conclude Cp, though Cp will contain different terms pertaining to the specific case.
Terms satisfying the interpretation are therefore

S =4 Axq.Tx(Tx)q, ifn<i<n,

Axq.Tix(T'¥(Tx)q)(T'x (Tx)q), if1<i<n,
\xq.Tx' (Tx)q, ifn' <i<m,

8 := Ax.Cond(To¥(Tx), Tox' (Tx), Tx).

Subcase 7. 1.

L
— 1
A

Let the assumptions of L be C!,...,C" and write x for x; ...x,. IH is
(Cp(xi;, Tix)),_, F L.
From the translation of C! — --- = C" — A we see that we should find sequences such that
(Cb(xustxy)):l_—_l [ AD(Sx7y)'

From this we read of the types that the terms in S should have. Let the sequence o of zero
functionals correspond hereto. Then we derive in WE-Ty,

(Cb(xi ) Tix))?:l
1
AD(ox7y)
Define §; := Axy.T;x and S := 0.
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Subcase 8. 3I.
Ala,r%)
A:°A(a,z)

We will include free variables. Say the assumptions are C!(cy),...,C"(c,) and that FV(¢®) =
{b}. Furthermore we write ¢ for ¢, ...c, andx forx; ...x,. IHis

(Ch(xi, Ticabxy,ci))_, F Ap(Tcabx,y,a,1),
and we should provide sequences of closed terms such that
(Ch(xi,Sicaxy, c;));_, F Ap(Scax,y,a,S cax).

This is done in the following way: Replace in b and in ¢° every b® that does not occur in ¢,a
by a corresponding zero-functional o, in other words: if b} ¢ {a,c} then replace b7 by o".
Let the result be b’ and ¢'. Given these terms we use the usual 1)-expansion to get the required
closed terms:

‘ S; := Acaxy.Tcab'xy, S:=A\cax.Tcab'x, S :=hcax.t'.

Subcase 9. JE. .
[ A)]

A(2) B

HE,u

where b is not free in B nor in assumptions of B except A(b). Assume again some enumeration

-of all formula occurrences of assumptions, and say the assumptions of 3zA(z) are Cl,...,C"
and that the assumptions of B apart from [u : A(b)] are C"*!,...,C™. Write x for x;...%,; &
for X,41...X, and X for x;...x,. Suppose that k is the number of times where u : A(b) is
occurring as an assumption in the right part of the derivation. After the use of the contraction
lemma & — 1 times on the (right part of the) IH it becomes:

(CoiTay))ie, + Ap(Txy,Tx), - NERT)
(Cp(xi, Tibxxov)), ., F  Ap(xo,T*bixov,b) — Bp(T bixo,v). (3.17)
We have to find terms S),...,S,,,S such that: ‘
(Cp(xi, Sixv)) T, + Bp(Sx,v). (3.18)
In (3.16) we substitute T*(Tx)%(Tx)v for y and in (3.17) we substitute Tx for xo and T'x for
b. This gives us in WE-Ty, the following:

(Co(x, Tx(T*(Tx)x(Tx)v)))._, + Ap(Tx,T*(Tx)%(Tx)v,Tx),

(Cox, T(TXTxWV),L .|+ Ap(Tx, T*(Tx)¥(Tx)v,Tx) =
Bp(T'(Tx)%(Tx),v).
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Applying —E to this gives us:

(Ch(xi, Tix(T*(Tx)X(Tx)v)));_,, (Ch(xi, T{(Tx)X(Tx)v)) L . | + Bo(T'(Tx)x(Tx),v).

We can therefore take as realising sequences for (3.18) the following

S = Aev. T ix(T*(Tx)%(Tx)v), if1<i<n,
T A T(Tx)x(Tx)v, ifn<i<m,

8 := AT (Fx)%(Tx).

Subcase 10. V1. In WE-HA®, we have
A(a,b°%)
Vz°A(a,z)

where b is not free in the assumptions which are C!(ey),...,C*(c,). It is assumed that
FV(C') = {¢i} and FV(A) = {a,b}, i.e. that b ¢ {a}. Write ¢ for¢;...¢, and x for x| ... x,.
The IH is

(Ch(xi, Ticabxy,c;));_, + Ap(Tcabx,y,a,b),

and from the translation of C! — --- — C" ~ VzA(z) we see that we have to find sequences
S;,8 such that

n

(Cb (xl" Sicaxyz7 ci)),'=1 F AD(SCHXZ,)’, a, Z) .
This is done simply by taking
S; := Acaxyb.T;cabxy, S :=hcaxb.Tcabx.

Not surprisingly we see that free variables not free in assumptions are essentially treated as if
they were universally quantified. Thus, term extraction treats free variables as if they would
be universally quantified further down in the proof.

Subcase 11. VE.

Vz®A(a,z)
A(a,r®)

Say, the assumptions equal C!(¢1),...,C*(c,) and that
FV(C') = {c;}, FV(VZA(2)) = {a} and FV(t°) = {b}.
In accordance with the usual abbreviations we write x for x;...X,; ¢ for¢;...c,. The IH is

(Co(xi, Ticaxyz,c)));_, + Ap(Tcaxz,y,a,2), (3.19)



3.4 Interpretation theorem for WE-HAS), 47

and we have to find sequences such that
(Ch(xi,Sicabxy, ci)):.;l F Ap(Scabx,y,a,t).

Replacing the free variable z% by 19 everywhere in (3.19) and n-expansion (that will also
close with respect to the free variables b in #) gives the required sequences:

S; .= Xcabxy.T;caxyt, S :=Acabx.Tcax:.

Subcase 12. The last rule of the derivation is the induction rule, Ind.

[ :A‘(bo)],

A(0%) A(.S;bo)
A

Ind,u

2° not free in any assumptions. The verification is considerably easier if we verify the follow-
ing rule ' o

0 ‘ 0
A0%)  AQR®) o A(SEY) 1
AR

The rule is over natural deduction deductively equivalent to Ind. We see the equivalence by
applying Ind’ to B(y) = A(0) AVx({A(x) = A(Sx)) — A(y) which gives :

nd’

A(0) AVx(A(x) = A(Sx)) — VxA(x).
Assume therefore as IH

‘WE-Ty, - Ap(T4,5,0,a),
WE-Ty, - Ap(x,T2baxy,b,a) — Ap(T3bax,y,Sh,a).

We have to find sequences of terms S such that
WE-Ty, - Ap(Sba,y,b,a).

By simultaneous primitive recursion in higher types we define T such that Ta0 = T)a and
Ta(Sb) = T3ba(Tab). Then substitution of Tab for x and y for y give

Ap(Ta0,y,0,a),
Ap(Tab,T;ba(Tab)y,b,a) — Ap(Ta(Sh),y,Sh,a).

If we then put T := Aby.Tba(T ab)y it follows by the contraction lemma 3.4.3 that
Ap(Tab,y,b,a)
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is derivable in WE-Ty,. Define therefore S := Aba.Tab and we have, that
AD(Sba,y: baa)

is derivable without assumptions in WE-T ;.

Left in the soundness proof of the D-translation are the rules for equality, the rule of weak
extensionality (QF-ER), the rules for successor symbol, defining equations for the combi-
nators Iy 5, p 1,5, and for recursion Rs. Essentially nothing happens when one Dialectica
translates these formulas — the formulas are either quantifier free or universally closed — and
the translations are therefore equivalent to the non-translated formulas. !

3.5 Relation between the Dialectica interpretation and the Diller-Nahm interpretation

J. Diller and W. Nahm (1974) gave a variant of Godel’s Dialectica interpretation where one
does not need decidability of prime formulas. This decidability was needed for instance in
the proof of the contraction lemma 3.4.2. In this respect the Diller-Nahm variant can be seen
as a generalisation of Dialectica, but in some respects it is another interpretation. This should
be clear from the following discussion.

Central to the Diller-Nahm translation® is that one translates from formulas of WE-HA®
into some fragment which contains the quantifier free formulas and formulas with bounded
universal quantifiers. We therefore introduce bounded universal quantifiers for type O as a
primitive notion. The following axioms define the syntax of bounded universal quantification,
where all x’s and t’s are of type O:

i (Vx<0)A(x) ) (Vx<SnA(x) = (Vx < )A(x)
(i) (Vx < St)A(x) = A(z) (iv) (Vx<nAX) AA(L) = (Fx < SHA(R).

In (iii) and (iv) we require that ¢ is free for x in A, i.e. no free variables of ¢ are quantified
by the substitution. Normally, bounded quantification is introduced as a defined notion, but
we have extended the language of WE-HA® and the theory itself. However, the following
equivalence

(Vx < 1)A(x) & Vx(x <t — A(x))

is provable in the extended theory, thus showing that the bounded quantifier is definable
in WE-HA®, We will therefore not make any distinction between WE-HA® and WE-HA®
extended by the axioms for the bounded quantifier.

The Diller-Nahm translation assigns to every formula A a formula A = 3xVyA,(x,y)
where A, may contain bounded universal quantifiers and formulas from the quantifier free
fragment. The inductive clauses for the definition of Diller-Nahm are the same as the Di-
alectica translation except for ‘—’. The translation of bounded universal quantification and
implication is defined by:

(V2 <nA@R)" = 32Xy <1)An(Xz,¥,2),
(A= BN = 3IW,U,YVx,v((Ww° < Wxv)A,(x,Ywxv) = BA(Ux,v)).

4For a short description of the Diller-Nahm variant see (Troelstra, 1973, 243-245).
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Note, that if we require Wxv = 1, this would result in an interpretation equivalent to the
Dialectica interpretation.
Diller gives a description of the idea underlying the translation of A — B:

Given a deduction IT of a prenex formula 3yVzB from an assumption IvWwA, we
should be able to construct from I, for any given v, an object y such that, for any
z, every path in IT leading upwards to an occurrence of the assumption 3vWwA
gives us an object w which in this path is the reason for A to imply B; as different
paths in IT may produce different objects w, the deduction IT as a whole only
gives us a set W of objects (reasons) w such that IT contains a proof of B from
assumptions A for all w € W.3 (Diller, 1979, 149)

Diller says, in other words, that given the deduction IT of 3yVzB from an assumption IvWwA
that can occur as assumption at many places we collect all the witnesses for w; then we dis-
charge 3vWwA and derive (A — B)". Note that Dialectica chooses all the time among the
witnesses whereas Diller-Nahm collects them. When we look at contraction we see that the
Diller-Nahm variant is an interpretation different from Dialectica: Two students of Diller —
P. Rath and M. Stein, have in their theses given a Diller-Nahm interpretation of Heyting’s -
arithmetic formulated in natural deduction, where the language also contains set theoretical
symbols, (Rath, 1978; Stein, 1977). But since the Diller-Nahm interpretation chooses a wit-
ness at the very end among a set of witnesses one is not in need of the contraction lemma. So
at the very end one picks globally a witness by brute force, whereas the Dialectica chooses
a witness locally all the way down the proof. From a methodological point of view this
has important consequences when one wants to optimize a realiser: maybe local choices are
preferable rather than one global choice. However, with respect to the principal eplstemolog-
ical matter whether there is a realiser or not, this has no influence: -

3.6 Intuitionistic linear logic and the Dialectica interpretation

Girard (1987) presented linear logic as a refinement of classical logic. ‘Refinement’ should
here be understood in the sense that the standard connectives are decomposed into more
simple connectives but still, one can faithfully translate classical logic into linear logic such
that derivability is preserved. Here we will consider only a fragment of the intuitionistic
version of linear logic. Intuitionistic linear logic is denoted ILL.

Central to linear logic is that formulas are thought of as types of information—not as
propositions. And each formula occurrence of, say A is a piece of information of type A. This
implies that one occurrence of A is not equivalent to several occurrences of A. Naturally, we
want to keep track of use of information and linear logic is designed to do this; in this respect
linear logic can be seen as a ‘resource logic’. Since one occurrence of A is not equivalent
to several occurrences of A, contraction and weakening are not allowed unrestricted in linear
logic. Therefore, in contrast to the standard logics, all different formula occurrences will have
different labels.

SThis explanation makes good sense when we contrast it with the discussion of (—=P) on page 24; the reason
why we should be able to go upwards and produce an object w should be seen in connection with the interpretation
of VxCq¢(x) = VyDqt(y): from a counterexample to Dys we can produce a counterexample to Cyr.
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The notation for the natural deduction version of ILL is a little easier when we use the
context version instead of the formula-tree version, which we used for the presentation of
WE-HA,‘;:,.6 Now the hypothesis are multisets and the structural rule ‘exchange’ (which is
a rule we only need because of the context notation) is therefore implicitly a nile of linear
logic. Linear implication, —o, is introduced and eliminated in the following way:

NuwArRB I'+A AFA—B
——— —oLu —E
I'rA—B I A+B

In —I we discharge one and only one occurrence of A.
The missing contraction and weakening give rise to two different notions of conjunction.
Firstly, the multiplicative conjunction called ‘times’:

I'-A A+B I'-A®B A, wAv:iB-C
— - | QE,u,v
I''AFA®B LARC

And secondly, the additive conjunction, ‘with’:

'-A I'kB I'tA &A2

&l &E;, ie€{1,2}
T'+FA&RB T'A;

Notice that the resources (or hypotheses) for obtaining A respectively B in the introduction
rule for & have to be exactly the same amount of the same formulas. This rule therefore says,
that if the resources I" allow us to infer A and if I also allow us to infer B then we can from
one copy of I infer A & B; we have in other words to make an ‘internal choice’ pertaining to
which one we actually want. We see that if contraction and weakening are allowed then the
rules for ® and & collapse to the usual rules for A.

There are also two different connectives of disjunction; but here we will only consider
one of them: @ (‘plus’):

I'FA; I'A®B AuArC A v:B-FC
—— @l,ic{1,2} ®E, u, v
I'FA ®A; IA-C

Note that there is only one multiset of resources A that establishes C from A or from B. This
is so because only one such A of resources will actually be used in establishing C, depending
on how A @ B is established.

Now contraction is re-introduced in linear logic via the bang-operator “!”. One motivation
for this is that it allows for an embedding of (standard) intuitionistic logic into ILL; see
(Troelstra & Schwichtenberg, 1996, 242). Another reason is that in many circumstances
contraction makes sense, €.g. when we know it is possible to establish a formula without any
hypotheses (resources). We therefore introduce the new symbol ! (pronounced ‘bang’ or ‘of
course’) which is an operator saying that the following formula can be used as often as one

SProofs are therefore written as trees where the nodes are labelled with sequents (context notation) all the way
down. Alternatively we could have written the formulas with proof terms in the sense of Curry-Howard. This would
have the effect that a whole proof would be contained in one (compact) line.
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wants. One can think of ! in very much the same terms as O in the modal logic S4. Apparently
there are different formulations of rules concerning this operator (see (Troelstra, 1995)); the
specific formulation is not that interesting in our context. It is, however, important that with
the modality ! one can re-introduce weakening and contraction in a controlled way:

I''B AI-AW I'-!B w!Bv:IBAFA
ARA ' IAFA

C,u,v

Notice that by specializing I' = !B and A =T we have

BF1B TFA
T,'BFA

since !B+ !B is an axiom. )

The fragment of ILL that we now consider is the fragment of provable formulas built up
from ®, @, —o, 3, V and ! (quantifiers are in ILL treated in precisely the same way as in the
standard loglcs) It is now easy to define a translation from this fragment into L(WE-T) such
that we get a functional interpretation. First we translate from our fragment of ILL under
consideration into £L{WE-HA®). This is straight forward—the linear connectives go to their
standard counterparts, and one just strips ! off the formulas. It is now immediate that deriv-
ability in ILL implies derivability in WE-HA®, Now we apply the Dialectica mterpretatlon
and we get an interpretation of the fragment.

The point about this long remark is that the only time we use the contraction lemma 342
is in the case of rule C of ILL. This shows that the contraction lemma is a resource lemma—it
handles the witnesses for the existential quantifiers and when we apply the lemma we choose
between different realisers. This also shows that if we do not have (or use) the contraction
lemma then we can only interpret the pure part of the fragment of ILL (by pure is meant ILL
without the Bang-operator). So, by the contraction lemma we separate linear logic from the
standard logic.

3.7 Interpretation theorem for WE-HA® + MP® +IP? + AC

We will riow see that the Dialectica interpretation interprets the principles MP®, IPY and AC.
This displays one of the attractive features about Dialectica, namely that MP® is validated.
A natural deduction formulation of the principles MP®, IP$ and AC consists of the rules:
ﬂ—aﬂx"Aqf(x)
achqf (x)

VxAge(x) = °B(y)
3y° (VxAqe(x) — B(y))

MPR VR

Vx®3y*A(x,y)

oo o ALR

Y VxCA(x, Y x)

Regarding IP;, there is the usual restriction that y° ¢ FV(Aqr)\{x}, but there are no re-
strictions on the rules with respect to assumptions (as usual, 4f means that the formulas are-
quantifier free). For the proof of the following theorem it will, nevertheless, be easier if we
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work with the usual axiom schemes, which over WE-HAY, are deductively equivalent to the
rules. Let

MP® ; —-—E!x"Aqf(x), - achqf(x), . .
IPG:  (VxAge(x) = H°B()) = I°(VxAq(x) = B()), v ¢ FV(Aq)\{x},
ACO*: Yx°Iy'A(x,y) — IJYOWVaCA(x,Yx).

MP®, IP\‘;J and AC are the collections of these schemes, respectively, for all types. We can
now formulate the extended interpretation theorem, which was first proved by Yasugi (1963).

Theorem 3.7.1. If (Ci(c;))_, F A(a) in WE-HAS, + MP® + IP® + AC, then

i
n

(Cp(xi, Ticaxy,c)));_, F Ap(Teax,y,a),

in WE-T,, for certain sequences of closed terms Ty,...,T,,T which can be extracted from
a derivation of A(@), wherec =c¢|...c,andx=x) ...X,.

Proof.

Case 1. MP®, We can assume the quantifier free A to be a formula without disjunction,
since if it contained V it would be equivalent to a quantifier free formula without Vv, say
tx =¢ 0, where ¢ is the characteristic term for As. Since Ay is without V the translation is the
identity. The translation of an instance of the principle is therefore

JYVx(——Aqf(x,a) - Age(Yx,a)).
Let T equal Aa,x.x. Then we have
WE-T,, F —|—‘Aqf(x,a) - Aqf(Tax,a).

Thus MP® is interpretable because quantifier free formulas are stable.

Case 2. IP{. The translation of the antecendent of an instance of IP is identical to the
translation of the conclusion and the interpretation therefore reduces to C — C. From the
translation of an instance of the principle it is seen that we need to provide sequences of
terms Ty, T,, T3 and Tj such that

(Aqe(X(T1cXypq)) — Bp(p, T1cXypq,y)) —
(Aqt(T2cXypq) — Bp(T3cXyp, q, TacXyp))

is provable in the quantifier free fragment, where FV (VxAg(x)) UFV(3yB(y)) = c. This is
accomplished with

Ti:=XAc,X,y,p,q9, Ty:= e, X,y,p X,
T; .= M1X7y1p'pa Ty = M,X,y,p.y.

Case 3. AC. Analogous to case 2: The translation of the premise of an instance of AC is
identical to the translation of the conclusion. =
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3.8 The non-constructive theory WE-HA® + IP%, + MP?

One could wonder whether or not the Dialectica interpretation of IP is optimal; is it the best

possible? It is as we shortly will see. :
Let us restrict independence-of-premise to the case where the premise is a negated purely

universal formula; call this principle IP%,,. In natural deduction the principle takes the form:

ﬁvaqf(-x) — JyB(y)
Jy(—VxAqs(x) = B(y))

0]
-VR?

where y € FV(Aqs)\ {x}, and A is quantifier free. We will see that Dialectica cannot intérpret
this principle. Note firstly, that

 Va=C(x) = ~~IC(x), (3.20)

is intuitionistically valid for any C. Let T be Kleene’s T-predicate.

Theorem 3.8.1. There is a I1 sentence Vx3yVz(Txxz — Txxy) provable in WE-HA® +
IPS, + MP® but no interpretation can provide a computable witness for the existential quan-

-

tifier.

Proof. Given IP% we would have the following derivation in WE-HA® + MPR + IPS
which has no assumptions: : _

u:——3zTxxz
——————— MP?
JzTxxz

—Lu
——=3zTxxz = JzTxxz (3.21)
(3.20)

=Vz-Txxz — 7T xxz

| 2o
3y(-Vz—Txxz — Txxy)

Since (=Vx—B(x) = C) — Vx(B(x) — C) is intuitionistically valid for any B and C where
x ¢ FV(C) it follows that

Vx3yVz(Txxz — Taxxy).

If an interpretation could provide a computable witness f! for Jy then
Vz(Txxz = Txx(f'x)),

and hence by logic
3zTxxz —~ Txx(f'x).

Since Txx(f"x) is decidable given x this would solve the halting problem: if Txx(f'x) then
f'x would witness 3zTxxz; but also the other way around: if —Txx(f'x) then ~3zTxxz. -
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It is, of course, also the case that when independence-of-premise is restricted to purely
existential statements, then this principle is also not interpretable: From 3yTxxy — JyTxxy
one could immediately derive a contradiction given such a principle.

We see that MP® and IP%; are incompatible with respect to computational content; that
WE-HA® + IP%, + MP® is a non-constructive theory. In the context of functional interpre-
tation it shows that Dialectica cannot interpret IP%,, since it interprets MP®. Note, that in
the above proof we only used MP® and IPQV; thus the result actually applies already to HA
together with these principles formulated in the language of HA. In chapter 4 we will define
HA properly as a subsystem of WE-HA®.

On the other hand we will see later on, that a much stronger version of independence-of-
premise where the premise does not contain 9 nor V is interpretable by modified realisability.
Using a variant of modified realisability this leads to a proof of the fact that WE-HA® alone
is closed under a corresponding rule. However, the argument above shows that this closure
property breaks down if MP® is added:

Theorem 3.8.2. There are quantifier free formulas Ay and Bys such that
WE-HA® + MP® F -Vx%44¢(x) = 3y°Bye(»),
but

WE-HA® + MP® + IP + ACY 3° (=Vx"Age(x) = Bye(9)).

Proof. From (3.21) we see that WE-HA® + MP® - —Vx—Tzzx — 3yTzzy. Now, assume that
WE-HA® + MP? +1PY + AC & 3y(=Vx~Tzzx — Tzzy).
By theorem 3.7.1 it then follows that there exists a closed term f! of WE-T such that
WE-HA® FVx(Tzzx = Tzz(fz)),

which is absurd. Take therefore Age(x?) = =T zzx and Bys(3°) = Tzzy. -

This displays the computational conflict between Markov’s principle and independence-
of-premise. But it also displays that two different interpretations, modified realisability and
functional interpretation, give different views on what ‘constructivity’ is, and one will have
to choose between the different interpretations in order to get a coherent view of what a
‘constructive method’ is. This is a theme we will come-back to later on.



CHAPTER 4

Classical Arithmetic and Kuroda’s Negative Translation

We will now turn to classical arithmetic. Mathematically there are many reasons why we
should study classical logic and arithmetic. One reason, above a lot of others, is that clas-
sical logic is the logic used by virtually every mathematician. This is probably so mostly
due to the fact that classical logic provides short and often elegant proofs. The method of
indirect proof is the essence of classical logic—if one works intuitionistically but suddenly
allows for indirect proofs, one will get classical logic. As was discussed in chapter 1 Godel
saw his Dialectica interpretation as a continuation of Hilbert’s program, but generally also
as a contribution to the discussions on constructivity and the foundations of mathematics.
The Dialectica interpretation carries a lot of benefits in the context of classical arithmetic:
Together with a negative translation it makes a characterisation of the class of provably total
recursive functions possible, and as to Hilbert’s thoughts on a justification of classical logic it
provides, among other results, the following: (i) With respect to a certain important class of
formulas it is shown that the quantifier free type theory is just as good as classical arithmetic
(the reflection principle, see (1.1) on page 4), and (ii) the interpretation makes it possible to
show that classical arithmetic is consistent—or at least consistent relative to the quantifier
free theory. This was the property Godel referred to in the title “Uber eine bisher noch nicht
beniitze Erweiterung des finiten Standpunktes”.

4.1 Formulation of WE-PA?®

Definition 4.1.1. Classical arithmetic in all finite types with weak extensionality based on
natural deduction, WE-PAQ , arises when we exchange in WE-HA®, the intuitionistic Ly rule
with the classical rule: '

[u: ‘vA]

L
— Lc,u
A
. 4 7‘ _ a
The rule L¢ formalises in WE-PAY the method of indirect proof. If we want to show A
we assume its negation, —A, — possibly among other assumptions — and then show that -A
simply is not possible: it will lead to an inconsistency. On the basis of this we are allowed to
conclude that A, indeed, is the case, and to discharge all —A’s labelled by u. We see that the
intuitionistic rule L is nothing but a special case of L, since if no occurrences of —A are
labelled by u no formulas are discharged and the rule is precisely 1;. However, if we work
intuitionistically and derive L from —A then we can discharge -=A by —1 and conclude, only,
—|"1A,
Another way of getting classical logic from intuitionistic logic is by adjoining “tertium
non datur”—the principle of excluded middle. The principle says that every well-formed
mathematical statement has a determinate truth value: It is either true or false, independently

55
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of whether that truth value is accessible to us. The principle is formalised by the schema:
TND: AV =-A.

The method of indirect proof implies formally the principle of the excluded middle:

u:A
vy
AV-A v:-(AV-A)
—E
s
— —=Lu
-A
a0
AV-A v:-{AV-A)
—E
4
le,v
AV-A

The implication also goes in the other direction. Using intuitionistic logic we get L¢ as a
derived rule from TND:

[v: —|A]

L
AV-A u:A A

VE,u,v

Definition 4.1.2. Classical arithmetic in all finite types with weak extensionality in Hilbert
style, WE-PA? is WE-HA® plus (A V —A) for any formula A. 4

When it is of no importance whether we work with WE-PA® or with WE-PA? we simply
write WE-PA®. '

4.2 From classical to intuitionistic logic: Kureda’s negative translation

There are different ways of reducing classical logic and arithmetic to their intuitionistic coun-
terparts. We will here use one of the so-called negative translations. A negative translation
takes a formula of a classical system and translates it into a formula of an intuitionistic system
in such a way that provability is preserved. In our case we will translate every formula A of
L(WE-PA®) into a formula A’ of L(WE-HA®) such that WE-PA® - A implies WE-HA® |- A",
One immediate consequence of this and the fact that WE-HA®F (0=1) & (0=1) isa
(constructive) proof of the consistency of the classical system from the consistency of the
intuitionistic system. But there are, as we shall see, many other interesting consequences of
negative translations.
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There are at least four different kinds of negative translations. The first ones were discov-
ered independently by Kolmogorov (1925), Gentzen (1933) and Gédel (1933). We will in the
following work with a negative translation due to Kuroda (1951).!

Definition 4.2.1. (Kuroda’s negative translation). Let A be a formula of £L(WE-PA®). Then
the translation of A is A’ := ——A*, where A* is defined inductively as follows:

(P*) A* = A,if A is prime,
(A*)  (AAB)* = A*AB,

(V')  (AVB)* = A*VB"

(=»*) (A—-B)y = A*— B,

@) EAR) = A,

(V) (VxA(x)* = Va——(A (x)) i

<

Definition 4.2.2. We say that a formula is negative if it is built up by negated pnme formulas
using only the symbols A,—, and V. <
Since WE-HA® |- P +» =P, for any prime formula P, it can be proved by mducuon of the
complexity of A that A’ is equivalent within WE-HA® to a negative formula, see (Luckhardt,
1973, 43). In fact this is the core of a negative translation: Essentially it translates into the
negative fragment. ‘

Theorem 4.2.3. For formulas Ci,... ,C,, A of L(WE-PA®) it is the case that
if Cy,...,CoF A in WE-PAY then C},...,C,F A" in WE-HA®,

It could be noted that for the following proof we are not in need of the intuitionistic lemma
A + ——A for negative A. However, one needs this lemma when proving the corresponding’
theorem for the Godel-Gentzen negative translation. But when the Kuroda translation is com-
pared with other translations, e.g. the Godel-Gentzen translation, it is seen that the Kuroda
translation uses negations, —, at a minimum.

Proof. The theorem is proved by induction on the length of the proof in WE-PA® 2 In case
of the logic we will only verify two of the rules; one simple and one more complex.
Case 1. AE;. Assume that the last rule used in the classical proof is AE;:

AANB
— AE;
A

By induction hypothesis we have an intuitionistic derivation of =—(A* A B*). The following

"There is a thorough treatment of the different kinds of negative translations in (Luckhardt, 1973, 41-50). See
also (Murhty, 1990) for a discussion of the different negative translations in the context of extracting computational
content from classical proofs. Different translations use double negations in different ways. Since negations raise
the type of the extracted programs, different translations give rise to different programs.

2See (Luckhardt, 1973, 44) for the proof within Hilbert style.
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derivation verifies the rule:
u:A*A\B*
A* vi-A*

H
4 :

—_— :
-(A* AB¥) ~=(A*AB*)

1

v
—|—\A*

Case 2. VE. This is the only part of the proof which is a little tricky. We have by IH
that I' + ==(A* v B*) and A',[--A*] F ==C* and E/,[~~B*] F ~~C* using intuitionistic
logic where I, A’, &', ~—-A* and =—B* are the translated assumptions. We have to prove
—=C” by intuitionistic logic. The proof is not that simple because we cannot intuitionistically
conclude (——A* V ~—B*) from ~—(A* V B*). The idea is to replace every assumption ——A*

and —-—B* by a derivation of =—-A* and =—B* from A* and B* respectively and then to work
on towards =—C*:

vo:A* u:-AY v :B" u:-B

L L
* u * u
—y ]
w:A*VB* -a—;C* —1—;C*
Vo, V1
—C* v:-C*
IH
1 :
A* VB w A; "
—(A*VB’) —-—(A* VB*)
L
v
_T'_|C*

The verification of the classical use of JE follows along the same lines.

Case 3. Induction rule. The induction rule is verified by itself using that ——(A — B) +
(——A — == B) holds intuitionistically.

Case 4. Equality, arithmetical axioms and rules (except induction). For these it suffices
to note that WE-HA® proves

(i) Agf ¢ ~Agr and (i) VXA (x) ¢ —Vx——A4e(x).
The last equivalence is due to
WE-HA® I VxAge(x) € Vx—Age(x) > mVx-—Age(x). 4.1

As an example, take rule QF-ER. The Kuroda translation of the hypothesis is by (ii) equivalent
to Vx(s®x = #9x). Since the translated assumptions are quantifier free we use QF-ER to
obtain Yy(r[s]ly =o r{t]y) which again is equivalent to its Kuroda translation. .
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Theorem 4.2.3 is interesting in itself for many reasons. Firstly, we note that the theorem
also holds when CL® (typed classical predicate logic) is interpreted into IL®—this is seen
directly from the proof. Secondly, by the proof we are given an algorithm which takes any
classical proof of a formula and transforms it into an intuitionistic proof of a corresponding
formula. Consequently — and independently of whether one is an intuitionist or not — one has
a constructive proof of the consistency of the classical logic relative to the intuitionistic.

4.3 Interpretation theorem for WE-PA® + QF-AC and consistency of the theory

In the context of functional interpretation a negative translation has important consequences.

It makes it possible to interpret classical arithmetic plus quantifier free axiom of choice, QF-

AC. Recall, in natural deduction it has the form:

3y ‘“Vx"Aqf (x, Yx)

QF-ACR,

where Ayf is quantifier free, but there are no restrictions on assumptions.

Lemma 4.3.1. For formulas Cy,...,Cy,, A of L(WE-PA®), if

Cy,...,C, F A in WE-PA® + QF-ACR, then
,C, b A in WE-HA® + QF-ACg + MP2.

The lemma is an example of a technique often used in reductive proof theory. First one
reduces some classical system to the corresponding intuitionistic system plus Markov’s rule
or principle. Then, later on by some method or another one mterprets this intermediate system
in the pure intuitionistic system.

Proof. We have by theorem 4.2.3 an interpretation of WE-PAZ, in WE-HA®,. To be shown
is that

~=Vx® =3y A (x, )

4.2)
=Y T V% -Aqe(x, Y x)
with no restrictions on assumptions, 1s a derived rule in WE-HA®, + QF-ACR + MP“‘
We. will need
~=Vx=C(x) = Vx—=C(x) 4.3)

(fairly easy to prove intuitionistically) and use C - ~—C. The following derivation shows
(4.2) to be a derived rule.
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—Vx——3yAge(x,y)

3)
vx—'_’ayAqf(xvy') VE u: Aqf(xa.V)’
~—JyAqe(x, y) —~—Age(x,)
e MP Y
ayAqf(x,y) Eiy—-—'Aqf(x,y)

U
ay_"_'Aqf(xLV)

Vx3y--Aqe(x,y)
AYVx--Age(x,Yx)
=AY Vx-—Ag(x, Y x)

QF-ACr

Now we are in a position where we can interpret WE-PA® + QF-AC.

Theorem 4.3.2. If (C'(c;));_, + A(a) in WE-PAZ, + QF-ACg, then

((C")o(xi, Ticaxy,c))), + (4')p(Tcax,y,a),
in WE-T,,, for certain sequences of closed terms Ty,...,T,, T which can be extracted from
a derivation of A(a), wherec =c)...c, andx = x1...Xp.
Proof, The theorem follows from lemma 4.3.1 and theorem 3.7.1. =

Due to the fact that the theorem is formulated within natural deduction it is a little heavy
in notation. But the flexibility with respect to assumptions has for practical use advantages
over Hilbert style. If there are no assumptions of the derivation we have the more simple
formulation:

WE-PA® + QF-AC - A(a) = WE-T+ (4')p(Ta,y,a)

for closed extractable sequence T of terms.

Our next theorem, a corollary to the forgoing theorem, is an important contribution to a
generalised Hilbert program. The interpretations prescribe a purely finitistic and combinato-
rial way of interpreting WE-PA® + QF-AC in WE-T. As such the proof of the next corollary
is very close to Hilbert’s prescriptions for consistency proofs. see also (Yasugi, 1963, Th. 3).

Corollary 4.3.3. Consistency of WE-T implies consistency of WE-PA® + QF-AC.
Proof. If WE-PA® + QF-AC is inconsistent then WE-T + (0 = 1)’; hence WE-TF0=1.

4.4 Extraction theorem and conservativeness
We can now prove the important extraction theorem.
Theorem 4.4.1. (Extraction theorem). Let Vxlcéf(xl )y-ne s Y2y gf(x,,) and Vx°3y*Aq(x,y)
be sentences of L(WE-PA®), where Cj, Ay are all quantifier free. If

VX Coe(X1), .., VX Cle(Xn) b Vx®3y Age(x,y)
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is provable in WE-PAY, + QF-ACk then
Céf(tlx"), e gf(t,,x") F Age(x°,1x°)

is provable in WE-T,,, for closed extractable termst, ... ,t,,1°".
Compare the theorem with (the simplified) Herbrand’s theorem on page 35 and note how .
this have been generalised.

Proof. Strictly speaking the theorem is a corollary of theorem 4.3.2 but if we prove it directly
from this theorem the types of the extracted terms would raise unnecessarily in type due to
the double negations. We therefore give a slightly different proof in order to keep the types
of the terms down.

Suppose we have the derivation in WE- PA® + QF- ACR Vialemma 4.3.1 we arrive at the
following in WE-HAY + MPR + QF-ACr:

=YXy == Cpp(X1), . .., V== Ce(x) b —=Vx=3yAge(x,y).

The assumptions —~—Vx;—— qf(x,) are over WE-HA® equivalent to Vx, (x,) see (4. 1) ‘Fur-
thermore, we have the intuitionistic valid formula —=—Vz~—B(z) — Vz—hB(z) This used
together with an application of MP}, gives us

Vx]Céf(XI), . ,Vx,,Cgf(x,,) F Vx3yAge(x,y).

Now we simply use the interpretation theorem for WE- HAS, + MPR + QF- ACR (theorem
3.7.1) to get the desired terms. 4

‘We note that the terms 1), ¢, referred to in the theorem are trivial realisers: They spec-
ify which instances of the universal assumptions we have used in the proof of the conclusion.

The extraction theorem is connected with an analysis of provably total recursive func-
tionals of WE-PA® + QF-AC. Now, any quantifier free formula of WE-PA® 4+ QF-AC is
decidable—remember we have already in the intuitionistic theory that Aqs V —Ays is provable
for quantifier free formulas. Thus Age(x®,)°) as a formula of £L(WE-PA®) with just x and y
as free variables defines a partial recursive functional @ of type 60:

‘I)(xc) = min yO(Aqf(xy)’))’ if ayoAqf(xa}’)a
undefined, otherwise.

When Vx®3y%Aq¢(x,y) is proved in WE-PA® + QF-AC the totality of & is proved. From
the extraction theorem we see that every recursive functional ® of type 60 proved total in
WE-PA® + QF-AC is denoted by a term in WE-T. Furthermore we have a procedure for
extracting such a term for ® from a classical proof of its totality. We have, in other words,
that WE-PA® + QF-AC does not prove more functionals of type 60 to be total than WE-HA®,
since WE-T is the quantifier free fragment of WE-HA®.

With respect to extraction of constructive information it is actually easier to consider the
following theorem, which is stated and proved by Luckhardt (1973). For simplicity we take
the Hilbert style version.
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Theorem 4.4.2. Let A(a) be a formula of L(WE-PA®), then
WE-PA® + QF-ACt+ A(a) = WE-HA® - Vy(A')p(T a,y,a)
fo} closed extractable sequence T of terms. 7

Proof. Since WE-T is the quantifier free fragment of WE-HA® we have actually already
proved this theorem. But the verification of induction is considerably easier when done in
WE-HA® instead of WE-T: :

We will verify the rule of induction, which is deductively equivalent to the axiom schema,
see page 47.

A(0°a) A(XDL,a) = A5, a)
A(X°,a)

Since we are not interpreting into the quantifier free fragment we will not need the induction
lemma. Let B = A’. Generally we have by intuitionistic logic -—(C — D) +3 (=—=C — —~—D).
The induction hypothesis is therefore equivalent to

VzBp(T a,2,0,a) and
VyaS’(BD(}’, sza}’S’,X,a) - BD(T}xayaj'a Sx:a)) .

We then define T by simultaneous primitive recursion in higher types such that

Tad = T,a,
Ta(Sx) = Tixa(Tax).

The second part of the induction hypothesis now implies
VzBp(Tax,z,x,a) — VzBp(Ta(Sx),z,5x,a),
and we obtain
VzBp(Tax,z,x,a)

by the induction rule. -
From this theorem we also get (immediately) an extraction theorem as theorem 4.4.1: just
replace WE-T with WE-HA® and retain the universal quantifiers. This yields:

Corollary 4.4.3. WE-PA® + QF-AC is conservative over WE-HA® with respect to sentences
of the form Vx3yA¢(x,y), where Aqs(x,y) quantifier free.

4.5 The philosophical significance of interpretation theorems

Theorems 4.3.2 and 4.4.1 have important consequences for the philosophy of mathematics.
First of all, theorem 4.3.2 is an important contribution to a generalised Hilbert program—the
consistency of classical arithmetic is conceptually reduced to a quantifier free type theory.
That this type theory actually is a reasonable extension of Hilbert’s finitism will depend on
an argument for the constructivity of the functionals of the theory.
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4.5.1 Support for Hilbert

Godel’s theory of functionals is a natural generalisation of Hilbert’s finitary part of mathemat-
ics: It is primitive recursion generalised, only, to higher types. Primitive recursive functionals
of higher types were originally introduced by Hilbert (1926) as means to prove the continuum
hypothesis. Such a proof should of course not use disputable elements of ideal mathemat-
ics and this indicates that Hilbert considered the functionals of higher types to be a natural
generalisation of finitism, though he does not state it explicitly.
There are, however, more direct arguments in favour of constructivity of the functionals.
“The more complicated functionals are defined inductively by a chain of definitions where
each step defines a new functional in terms of previously defined ones. Now, the single steps
describe simple calculations. But given a concrete well-formed closed term we cannot di-
rectly read of how many calculations we have to perform before the overall calculation is
done. By mathematical reasoning we can, of course, give bounds for any term, but this is in
the case at hand useless since it is the same mathematics we want to justify by our interpre-
tation. However, we are given inductive rules in order to do the computatlon—mtumvely we
just do not know how many we will have to perform 7
Godel (1941, 17) argues for calculability of the functionals by the following argument:

So the schemes of definition are formally the same as in recursive number the-
ory, the only difference being that the objects with which we are dealing now are
not,only numbers but also functions or, in other words, procedures for obtain-
ing numbers out of given numbers (respectively, for obtaining procedures out of
given procedures, ... ). Accordingly, we have a new primitive operation, namely,
the operation of applying the procedure to an object of appropriate type. But this
operation is actually calculable since it is contained in the nonon of a procedure
that it can always be carried through.

Therefore, when we deﬁne new procedures (or functionals) out of previously defined ones by
the schemes we get a calculable functional since the equations defining Il 1, £ 15 and Rg
prescribe constructive operations. Epistemologically, to follow inductive rules can hardly be
problematic and thus it seems justified to expand Hilbert’s finitism by Godel’s functionals.
We consider the ability to carry out such operations to be a part of the general human ability
to reason and do science. On this general ability Hilbert says

Nun gebe ich zu, daf schon zum Aufbau der theoretischen Fachwerke gewisse
apriorische Einsichten notig sind und daB stets den Zustandekommen unserer
Erkentniss solche zugrund liegen. Ich glaube, daB auch die mathematische
Erkenntnis letzen Endes auf einer Art solcher anschaulicher Einsicht beruht. ...
‘Das Apriori ist dabei nichts mehr und nichts weniger als eine Grundeinsteliung
oder der Ausdruck fiir gewisse unerldliche vorbedingungen des Denkens und
Erfahrens. ... [Das Apriori] ist im wesentlichen die von mir in verschiedenen
Abhandlungen charakterisierte finite Einstellung. (Hilbert, 1930, 383-385).

A mathematical approach to the constructiveness of Gddel’s functionals is taken by defin-
ing a functional T of type &) --- 6,0 to be calculable if for arbitrary calculable tf" N L1
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can be proved that Tt}" ...7%" equals a number. In a series of lectures held at Princeton — also
in 1941 — Godel observes that every functional can be proved to be calculable in this sense.?
However, the proof of this uses rules and axioms of mathematics which we want to justify
by the interpretation. Therefore, thé proof has strictly speaking no value foundationally.*
Another mathematical approach to the problem involves assigning notations representing or-
dinals less than &, i.e. constructive ordinals, to terms in such a way that a computation or
reduction described by the equations for Ilg -, Zp,f,c and Ry decreases the associated ordinal.
Hence the well-foundedness of € guarantees the calculability of the functionals. This idea
is also present in Godel’s Princeton lectures. Over a quarter of a century later the idea was
carried out by Hinata (1967), Diller (1968) and Howard (1970). For a recent reformulation
of Howard’s approach (also for various fragments of T) see Weiermann (1998).

4.5.2 Implications for constructive existence

The theorems on the forgoing pages also have consequences in a somewhat different direc-
tion. This direction concerns existence and computational content of classical proofs, rather
than consistency. With respect to this, the extraction theorem says the following. If we from
a set I" of purely universal assumptions have proved Vx®3y*Aq¢(x,y) using classical logic and
quantifier free axiom of choice then this existence proof is not fraud: in fact we can extract
constructively a program ¢ of type 67T such that for any x of type G, Ag¢(x,2x) is verified in a
quantifier free calculus. But the theorem also says something important about the influence
of the way we have established I". We could very well view I as a set of lemmata which we
know to be true, or which we have proved earlier in order to keep the length of the proof of
Vx93y"Aqe(x,y) down. Now, the theorem says that if we have proved these lemmata earlier,
then these proofs have absolutely no influence on our program ¢ realising Vx®3y*Aq(x,y).
We can in other words use as much classical logic as we want to prove purely universal
lemmata—these proofs will have no consequences for the computational content of the final
proof of Vx°3y*Ay¢(x,y).

We can also add universal axioms I to WE-PA® + AC at no cost—this was stressed con-
tinuously by Kreisel in the 50s. Since universal sentences are trivially interpreted by them-
selves they do not influence on the computational content. Therefore, for a set I" of purely
universal axioms in the language of WE-PA® we have that WE-PA® + I' + QF-AC has the
same provably total recursive functionals as WE-HA® + T has. There are many interest-
ing axioms of this kind, such as universal sentences undecidable by WE-PA®, say, Conpa.
But also conjectures of different kinds as for instance Goldbach’s conjecture or the Riemann
hypothesis.® Kohlenbach (1996), working within proof mining, extended this idea using so-
called monotone functional interpretation to much more general lemmata. All this points to
the fact, that the kind of questions Hilbert originally directed the foundational interest to-
wards, namely consistency, are harmless with respect to computational content. So Hilbert’s

3Troelstra (1995a, 188) mentions these lectures by Godel.

“The idea that Godel here mentions is similar to the idea of “convertibility” predicates that Tait (1967) uses in
order to show normalisation of functionals. For an elegant version of this, see (Schwichtenberg, 2000, 149-151).

5We note that Diller’s ordinal assignment is not optimal in the sense that ordinals above ¢ are used.

6That the Riemann hypothesis in fact is equivalent to a purely universal statement is proved in (Kreisel, 1958).
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original program searching for consistency and Kreisel’s program searching for computa-
tional content really go in different directions.

In any case, these remarks support Kreisel’s view that in order to obtain constructive
results we do not always have to restrict ourself to constructive reasoning. Therefore, a
closer analysis shows that mathematicians interested in constructive existence can in fact use
classical logic in many situations.

4.6 PA as a subsystem of WE-PA®

In this text we have not defined PA (nor HA) explicitly. A completely standard way to do
this is to take as language of the theory some (untyped) first order language with the standard
logical symbols. There is an infinite list of number variables, the constant 0 and the unary
function constant S. In the lariguage we also have function symbols for addition, multiplica-

tion, some initial primitive recursive functions and a single binary predicate symbol =, which

denotes equality between numbers. Terms and formulas are defined in the usual way and the
logic is classical first order predicate logic with equality. There are defining equations for
initial primitive recursive functions (O-function, successor-function and n-place projection
functions); furthermore there are schemata for composition and recursion. The precise selec-
tion of these initial functions and the schemata do not really matter, but see (Troelstra, 1973,
18-19) for a simple example. The point is that from the initial functions and the composi-
tion and recursion schemata we can introduce in PA all primitive recursive (definitions of)
functions. ’

We can now associate to each function constant f of PA a term Ty of WE-PA® such that
PA becomes a subsystem of WE-PA®. The idea of the mapping F is to use the properties we
know that the A-operator and Ry have. For instance F(0) = 0°, F(x) = 2, F(S) = §%;if Ul is
a function symbol such that U} (xy,...,x,) = x; then F(U}) =Ax,...,x,.x;; and so forth—see
(Troelstra, 1973, 42) for details of the mapping.

~ In precisely the same way we see HA as a subsystem of WE-HA®.

4.7 The no-counteréxample interpretation of Peano arithmetic

With respect to quantifier complexity the extraction theorem is the best possible. Let us
consider the formula Vx°3y%vz®(Txxy v ~Txxz), which is classically provable. In fact we
have seen on page 53 that it is provable in WE-HA® + IP%,, + MP®. But a realisation of the

existential quantifier cannot be recursive in x, since it would then solve the halting problem. -
However, we can extract a different kind of constructive information from classical proofs

of formulas as this via the general Dialectica interpretation, theorem 4.3.2. When it comes
to PA this connects with Kreisel’s (1951) no-counterexample interpretation (n.c.i.) of Peano
arithmetic: the n.c.i. is a corollary of theorem 4.3.2,

4.7.1 Herbrand normal form and the n.c.i.

The n.c.i. of PA can be seen as a spin-off from the Dialectica interpretation as was noted by
Kreisel (1959). First we need two definitions. '

e d
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Definition 4.7.1. (Herbrand normal form). Let A be a formula on prenex normal form, i.e.
Vyodx ¥y - .. 3x,YYnAge(¥0,X1,¥1, - - - X, Yn). The Herbrand normal form of A is then defined
to be

H.— :
A" i=Yy0,2),...,Z,3x1,. . X0Age(¥0, X1, Z1X1, - Xy ZyX) - Xn),

where Z),... ,Z, are variables not free in Ag. <

The transformation of A to A” is intuitionistically provable and we therefore have intu-
itionistically A — AH_ But it is a little awkward to state it in this way, since A has to be on
prenex normal form. If A is not on prenex normal form then we have to get A on this which,
generally, requires classical logic. Consequently, for any formula A:

CLOF A — A,

However, to get a proof of A — A we need classical logic + axiom of choice for numbers.
This is proved by using

vx'3y0-B(x,y) = Iy 'vx®-B(x,Yx) AYVx-B(x,Yx) = L
—Vx"3y’-B(x,)

and the classical equivalence VxC(x) ¢+ —3x—C(x) and cancellation of double negations.
In PA we do not have the typed language and therefore no higher order quantifiers. If we
want to express A¥ we supply with new function symbols fi,... , f; and use f; instead of Z;.

Definition 4.7.2. (The no-counterexample interpretation). Let A € £(PA) be a sentence on
- prenex normal form. If a sequence of closed terms T = Ti,...,7, realises the Herbrand
normal form of A, i.e.

WE-T+ Agt(v0, T2, 21(T12), - - , Tn2, 20(T12) .. (Tr2))
then we say that T satisfies the n.c.i. of A in WE-T or just T n.c.i. A. <

Remark 4.7.3. Note how the index functions z; are of type level 1 and that the realising
functionals 7; are of type level 2. These levels are consequently independent of n.

Theorem 4.7.4. For any PA-provable sentence A of L(PA) on prenex normal form there exist
T of WE-T such that T n.c.i. A.

Proof. Let A be a sentence on prenex normal form and suppose PA - A. By theorem 4.4.1
there exist closed terms T such that T n.c.i. A. .|

The name of the n.c.i. is motivated by trying to find counterexamples to formulas. Let us
for instance consider the closed Eg formula

AxVyIzAge(x, ¥, 2). @4

The Herbrand normal form of this formula is Vf3x,zAq¢(x, fx,2). If we could come up with
some Skolem function g such that for any x,z

—quf(JC,gx, 2),
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then we would have a counterexample to (4.4). Now we want to show constructively that in
case (4.4) is classically provable this cannot be the case: There cannot exist such g—there is
no counterexample. This would be to show that for any g there exist functionals 7} and 7>
such that

Ag(Tig, g(T1g), T28)-

But this is precisely the Dialectica interpretation of Vf3x,zA4¢(x, fx,z) and we have the n.c.i.
of (4.4). ' ‘

So generally, if we have proved A in PA, then by the n.c.i. we know constructively that
there cannot be a counterexample to A. This also provides us with a proof of the consistency
of PA. Since, if PA were inconsistent then certainly there would be a formula A on prenex
normal form such that both A and —A were provable. But due to the n.c.i. we know that this
cannot be the case. However, such a consistency proof does not provide new insight since we
arrived at the n.c.i. via negative translation and Dialectica interpretation, which already yield
consistency. Therefore, when we want to evaluate the significance of a proof of consistency
by the n.c.i. it depends on the techniques which have been used to obtain the n.c.i.

4.7.2 Remarks on n.c.i.

Kreisel originally introduced and proved the n.c.i. of PA by using the technically complicated
method of e-substitution.” This method of using &-terms instead of quantifiers was originally
introduced by Ackermann and Hilbert in the 20s. As such the n.c.i. is an interpretation dif-
ferent from negative translation + Dialectica interpretation, but the n.c.i. can be seen as a
spin-off, as the proof of theorem 4.7.4 shows. There are similarities between the two inter-
pretations but, certainly, there are also important differences. '

First of all, with respect to I'Ig formulas the n.c.i. coincides essentially with the interpre-
tation by negative translation + Dialectica. However, they diverge with respect quantifier
complexity greater than or equal 2(3’. If IxVy3zAq¢(x,y,2) is a closed PA-provable Eg formula
then, by the n.c.i., there exist functionals 7; and 75 of type 2 such that for any g of type 1

Aqr(Tig, 8(T1g), Tog)

is provable in WE-T. Contrary to this, the negative translation + Dialectica interpretation of
xVy3zAqe(x,y,2) is that

A (DY, Y (BY)TLY), LY (Y (BY)(TWY))),

is provable in WE-T for certain 73 of type (010)0 and T of type (010)1. Thus negative trans-
lation + Dialectica use functionals of higher types, whereas the functionals provided by the
n.c.i. stay within type level 2. That this is only seemingly an advantage of the n.c.i. shows up
in connection with the modus ponens rule. Kohlenbach (1999) has shown that the n.c.i. has
no simple and uniform interpretation of modus ponens which stays within any finite subsys-
tem of Godel’s functionals. Moreover, if PA-provability of A and A — B is not assumed then

"That Kreisel's original proof indeed is non-trivial is witnessed by Feferman (1996) who says that he “never tried
to wade through™ the proof.
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one needs bar recursion of type O for the n.c.i. of B. On the other hand negative translation
+ Dialectica provide uniformly realising functionals for (') from any realisations of (A")?
and ((A — B)")P.

Moreover, the n.c.i. is not faithful for fragments of PA where induction is only to be
applied to formulas of a certain complexity, whereas Dialectica together with negative trans-
lation faithfully interprets various subsystems of PA as was shown by Parson (1972).

These points are due to the fact that the combination of negative translation and Dialectica
interpretation of a formula A is much closer to the original A than the n.c.i. of A is. As
observed by Kreisel (1959, 120), it is not difficuit to prove that

WE-PA® + QF-ACH A « (4")P

However, to prove the equivalence between A and the n.c.i. of A one needs classical logic with
choice (though only for numbers) for arbitrary arithmetical formulas whereas the combination
of negative translation with Dialectica interpretation only needs quantifier-free choice (in
higher types). Thus, negative translation + Dialectica use higher types in order to stay closer
to the original formula.

Furthermore, Spector (1962) showed that if one adds bar recursion to WE-T then the
Dialectica interpretation together with negative translation can be extended to subsystems of
analysis. On the other hand, no such extension of the n.c.i. to systems of analysis is known.

All this points towards the fact that both mathematically and philosophically Dialectica
+ negative translation is as device preferable compared with n.c.i. Consequently, we will not
pay more attention to the n.c.i. in this thesis.



CHAPTER 5

Modified Realisability, A-translation and Applications

We have in the foregoing chapter seen that the Dialectica interpretation together with nega-
tive translation provides a strong tool for extracting constructive information from classical
proofs. One of the reasons that Dialectica is powerful is the way it treats universal quantifiers
occurring negatively in formulas, as for instance —VxAg¢(x). This quantifier is treated as if it
were the existential quantifier in 3x~Aq¢(x). Classically we have equivalence between these
two formulas, but not intuitionistically. What makes Dialectica strong is that it is able to
verify (or interpret) this classical equivalence. More generally, an implication between two
universal sentences Vx®Age(x) — Vy*By(y) is by Dialectica interpreted in the way that there
is a primitive recursive functional T of type to such that, given any counterexample to Bye
this functional produces a counterexample to Ay

Vy* (—Bqs(y) = —Agt(TY))

This interpretation is computationally meaningful, although the BHK interpretation does not
interpret VxAq(x) — VyBge(y) in this manner. But precisely this way of treating universal -
quantifiers has the effect that Dialectica can interpret Markov’s principle, which again is
not validated by BHK. That Markov’s principle is not provable in intuitionistic arithmetic
was demonstrated by Kreisel at the end of the 50s. To show that, Kreisel further developed
numerical realisability — which was discovered by Kleene (1945) — into modified realisability.
. Modified realisability is, as Dialectica, a way of interpreting typed intuitionistic arithmetic.
Thus, the Dialectica interpretation and modified realisability present two ways of interpreting -
mathematics where the former validates Markov’s principle whereas the latter invalidates
it. This is, of course, philosophically interesting and we will discuss it, but there are also
mathematical reasons motivating a study of modified realisability as well.!

Modified realisability together with the so-called A-translation and negative translation
can — as Dialectica and negative translation — be used to extract constructive content from
classical proofs. Though modified realisability and Dialectica in certain respects behave sim-
ilarly they are generally very different. For instance, the combination of negative transla-
tion, A-translation and modified realisability can only extract constructive information from
proofs of V3-statements,? whereas negative translation + Dialectica interpretation provide
constructive interpretations of proved formulas in'general.> We will take a closer look at the
differences. '

Realisability by numbers was introduced by Kleene in order to scrutinize the connection
between intuitionism and recursive functions. In a way one could say that Kleene’s realisabil-

!"The notion of realisability as developed by Kleene, uses partial and untyped operations as realisers, whereas
modified realisability uses only total but typed realisers. Interestingly, Kleene’s realisability validates Markov’s
principle in the context of HA. Hence the requirement of totality is in conflict with Markov’s principle.

2Note that Berger and Schwichtenberg (2000) has slightly generalised this by introducing the notions of definite
and goal formulas.

30f course, if a formula is provable in PA then one can put it on Herbrand normal form and then apply negative
translation, A-translation and modified realisability. This gives an interpretation in the style of the n.c.i,, but there
are, as we have just seen, problems connected with such an interpretation, and we will therefore not go deeper into
this idea. .

69
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ity (in fact a variant of realisability, as we will see) shows that intuitionistic arithmetic really
is constructive in the sense that if one proves A V B for sentences A and B then by realisability
one can tell which one of them actually holds; realisability shows, in other words, that intu-
itionistic arithmetic possesses disjunction property. Likewise existence property: If we prove
the sentence 3xA(x) in intuitionistic arithmetic, then by realisability we can extract a number
n such that A(n) holds. In-many respects recursive realisability is very close to the BHK in-
terpretation, but instead of being based on the notions of abstract ‘proofs’ and ‘constructions’
itis based on the concepts of recursive function and number. It is thus more concrete (at least
in the context of arithmetic) and can be seen as giving a classically meaningful definition of
intuitionistic truth.

As Dialectica, modified realisability (m.r.) is an interpretation of typed Heyting arith-
metic. But m.r. only interprets into the negative fragment, i.e. the fragment containing
A,—,V. Thus, m.r. is not a (conceptual) reduction to the quantifier free fragment as the Di-
alectica interpretation is. On the other hand m.r. interprets a stronger theory than Dialectica;
m.r. namely interprets typed Heyting arithmetic with full extensionality.

5.1 Definition of E-HA® and modified realisability

Definition 5.1.1. Heyting arithmetic in all finite types with full extensionality, E-HA®, is an
extension of WE-HA®. Pertaining to how the logic is formulated there are to possibilities:

1. E-HA is the extension of WE-HA® where the quantifier free extensionality rule QF-
ER is exchanged with .

n
g (+3
vzo-ax[l:y[l"'-,xgna g"(/\xi =o; Yi — X =0 Zy)

i=1
for all types o, (6 = 6;...0,0).

2. E-HAY) is the extension of WE-HA® where the quantifier free rule of extensionality is
exchanged with:

s® =g 1°
r[s°T = 1)

The rule is thus the same as QF-ER for natural deduction, just without restrictions on
assumptions.

<

Now we turn to the definition of modified realisability as introduced by Kreisel (1962). Let
() be the empty sequence of variables.

Definition 5.1.2.  (Modified realisability). Let A(a) be a formula of L(E-HA®) with
FV(A) = {a}. Then xmrA(a), where {x} N {a} =0 and FV(3x(xmrA(a))) = {a}, is de-
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fined inductively:

(PmI) (mrA(a) := A(a),if A(a) is prime,
(AT x,ymr(A(a) AB(b)) := xmrA(a) AymrB(b),
(var)y  2x,ymr(A(@)VB(b)) := (*=0- xmrA(a)) A

- - (2 #0— ymrB(b)),
(3=) yo,xmr(3°A(z,a)) = xmrA(Y®,a),
(vm) xmr(V°A(z,0) = VO(xzmrA(z,a)),
(=) xmr(A(a) = B(b)) := Vy(ymrA(a) — xymrB(b)).

q
Clause (A™I) requires that {x} N {y} = 0.
Notice that mr is a defined predicate symbol of £L(E-HA®), which holds between a se-
quence of terms and a formula. As an example we see that .

xmr——3yP(y)
for any prime formula P is the formula
~Vy=P(y).

x is; in other words, the empty sequence.

An important property of mr is that for any sequence t of terms, tmrA is 3- and V-
free. If we say that 3x(xmrA) is the mr-translation of A then the translation of any formula
is 3 quantifiers followed by a negative formula. Another important property of mr is that
xmrA = A for negative A.

Instead of using the notation, xmrA, we cquld have used a notation somewhat closer to the
notation we used in case of Dialectica. In such a notation we would write Ay, (x) instead of
xmrA and the translation of A would be A™ := IxAp,(x). Using this notation, the translation
of, say, an implication would be - '

(A — B)™ := 3XVy(Am(y) o Bm(Xy)).

Our ‘official’ notation — used in the definition - is, however, the commonly used notation in )
the literature, and it is probably a little easier to use.

It is important to note that the mr translation focuses on existential quantifiers occurring
strictly positively in a formula. So, there is a difference between Dialectica and realisability
translations. Classically, a universal quantifier occurring negatively in a formula is essentially
an existential quantifier, in other words (CL® denoting typed classical logic):

CL®F (Vx°A(x) - B) «» 3x°(A(x) — B), x° ¢ FV(B).

As we have seen the Dialectica interpretation will look for witnesses to (some of) these uni-
versal quantifiers. But this is not the case for mr. This is clear from the definition of (—2I):
The sequence y realising A — B will only take any realiser x of A and turn it into a realiser
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yx of B. Thus y is not realising anything in A. Nested implications show this clearly. z would
be arealiser of (A = B) — C, if z could do the following:

Vy(Vx(xmrA — yxmrB) — zymrC).

Thus Vx which occur negatively are not analysed any further.*

In this respect, mr is close to the BHK interpretation. If we go through the different
components of the BHK interpretation we see that modified realisability can be motivated
from this. Actually modified realisability corresponds to BHK—we only concentrate on
arithmetical information in case of 3 and choices for disjunctions and the ‘constructions’
mentioned when V and — are interpreted are considered to be computable operations.

5.2 Realisability interpretation of E-HA® + AC +IP%
In the next definition we follow Troelstra (1998).

Definition 5.2.1. A formula A of L(E-HA®) is called 3-free if it is built up from prime for-
mulas using only the symbols A, = and V. Let independence-of-premise for type o restricted
to I-free formulas be

%:  (A—T°B(x)) - I®(4 = B(x)),

where A is 3-free and x ¢ FV(A). Then

PG .= U {1P%}.
ceT

q

The motivation for calling this class of formulas 3-free is, that Vv can be defined in terms
of 3, A and —. Therefore, if one works with a defined notion of Vv, 3-free implies V-free.
Note that any 3-free formula is over E-HA® equivalent to a negative formula.

Let axiom of choice be as previously defined. Whether one wishes to have IP$ and AC
expressed as rules (for natural deduction) or as schemes is not important. We can now state
and prove the mr interpretation theorem for E-HA® plus the extra principles.

We state the interpretation theorem within natural deduction. Therefore: By consider-
ations similar to those we had when discussing how to Dialectica translate derivations with
assumptions, we translate any assumption A to xmrA, where no variable occurring in x is free
in the original derivation or among the other translated assumptions except those labelled by
the same letter as A. Those assumptions (formula occurrences) labelled by the same letter u
will be translated with the same string x,, of variables. If I" is a multiset of formulas occurring
as assumptions of a derivation, then by I'm; we mean {xmrA|A € I'}. The following theorem
within Hilbert style is stated and proved in details in (Troelstra, 1973, 215-217). A proof
within natural deduction of soundness for a refined version of modified realisability is found
in (Schwichtenberg, 2000, 154-157).

4This is perhaps seen more clearly in our Dialectica style notation. With that ((A—- By C)m‘[ would be

3Z9Y (Vx(Ams(x) ~ Bue(¥Y X)) = Ce(ZY)).
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Theorem 5.2.2. (Soundness of g-transiation) Let H' be E-HA® + IP$% + AC and let A(a) be
a formula of L(E-HA®) with FV(A) = {a}.
If T+ A(a) in H' then Tpy -t mrA(a) in E-HA®

ND?

for some sequence of terms t with FV(t) C {a} U {x|x € FV(ymrB) and B € '}, which can
be extracted from a proof of A(a) from F

Proof. The proof is by induction on the length of the denvauon in H* of A(a). We give two

examples.
Case 1. —1.
T, [u:A]
B
— =L u
A—> B

The induction hypothesis is that 'y and x, mrA prove ¢ mrB, where t have free variables at
most among the free variables of x,, mr mrA, B and I'm,. On the basis of this we get: '

e, [u: xymrA]
tmrB
—lLu

vl

X, MrA — tmrB

Vx, (x, mrA — t mrB)

From this we see that
I'e b Ax, .t mrA — B

in E-HAR), where FV(Ax,.t) C FV(A = B)U{x|x e FV(ymrC) and C € T}.
Case 2. 3E.

r A, [u :.A(b")]
Elz"}x (2) o

Cc

From the induction hypothesis we get (displaying only the free variables of importance):

JE,u

Ame, [u:x,mrA(5%)]

t3[xu,1'7]mc
Fr —Lu
. x, mrA(b) = t3[xy,bjmrC

VI, VE

ty mrA(e§) 1, mrA(ig) — 13(11,13) mrC

’3[’17’8]mc
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Hence, 3[t1,§] realise C, and the free variables of #3[t,£5] are among the free variables of C
and the free variables of the translated assumptions. (If the realising terms have free variables
among the free variables of A replace them by zero functionals o of the corresponding type).

The rest of proof is similar to the soundness proof of Dialectica. For example is —E re-
alised by function application; V1 is realised by lambda abstraction and so on. IP; is also easy
to realise: just take the identity functional(s) of the right type(s). AC is also realised by the
identity. Equality axioms (rules); extensionality; defining equations for combinators, recur-
sors etc. are trivially realised, since they are negative. Induction is realised by the recursion
operator. -

It should be noted that WE-HA® is also mr-interpretable. QF-ER is trivially realised,
since it concerns only purely universal formulas which are (provably equivalent to purely
universal formulas) not containing V.

5.3 Contraction and negatively occurring universal quantifiers

There are many similarities between the soundness proof of the Dialectica translation and
the proof above. But there are also some important differences; most conspicuously, the way
negatively occurring universal quantifiers are treated. Among other consequences, this is to
the effect that for the proof of mr soundness there is no need for a contraction lemma. This is
an essential difference.

In case of an application of the contraction lemma the Dialectica interpretation always
chooses the realiser to the left if this does the job, so to speak. But this can of course be
loosened so that we are free to choose the most optimal realiser, as long as this realiser
makes the deduction possible. In any case Dialectica has to consider all the different possible
realisers, whereas modified realisability chooses a realiser from the beginning and uses that
all the way. Accordingly, Dialectica is more flexible with respect to getting the most optimal
realiser—but Dialectica is also more lengthy.

In order to compare Dialectica and modified realisability let us again take the example
with the valid formula A —+ A AA. We saw on page 28 that the Dialectica realisation of this
corresponds to definition by cases: In case Ap(T2x,y;) AAp(T3x,y,) is false T will have
to choose between y, and y, in order to falsify Ap(x,7ixy,y,)—this is done by checking
which of the conjuncts is false. Consequently, the Dialectica interpretation needs decidability
of prime formulas. The modified realisability realiser of A —+ A A A is on the other hand
very simple; this is Ax.(x,x).> This realiser copies any given realiser of A and turns it into a
realiser of AAA. Contraction is also present in Hilbert style by the axiom schema AVA — A.
Modified realisability interprets this by using definition by cases, but need not decidability of
prime formulas. This is similar to the way Dialectica interprets the schema.

Another matter concerning the different behaviour on negatively occurring universal
quantifiers shows up in case of Markov’s principle. The mr-translation of an instance of
Markov’s principle (A¢r assumed w.}.0.g. to be without V) is

Iy (y° mr (+—Ix®Age(x) = ICAg(x))) = FyT(-VaT-Age(x) = Ags(5°)).

SRecall, Ax.(x,x) is shorthand for Ax.x, Ax.x.
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Seeing this it seems impossible that modified realisability can provide a realiser of every
instance of Markov’s principle. That modified realisability cannot do this we will see due to
a counterexample. From this counterexample it is, via the mr soundness theorem, immediate
to infer that E-HA® 4 IPg + AC cannot prove the principle.

But there are also some positive consequences of the treatment of universal quantifiers.
First of all, mr validates IP$; which is much stronger than IP. Furthermore we can have, not
only purely universal lemmata, but 3-free lemmata of an intuitionistic proof with no influence
on an eventual realiser of a conclusion. This follows from soundness (theorem 5.2.2) since the
translation of 3-free formulas are literally themselves. Therefore, proofs of 3-free lemmata
(sentences) have no influence on the mr-realisers.

5.4 Markov’s principle intuitionisticaily unprovable

 The rest of this chapter is devoted to different applications of modified reahsablllty The first
results in the followmg theorem due to Kreisel (1959, 1962).

Theorem 5.4.1. Markov’s principle, even for type 0, is unprovab]e in E-HA® + IP4 + AC.

Proof. ‘Assume E-HA® + 1P + AC - MPP. Since any instance of IP% v is provable from IPG
it follows from theorem 3.8. 1 that

E-HA® +1IP$ + AC - Vx3yVz(Txxz — Txxy),

where Jy requires a non-computable realiser. This, however, contradicts soundness of the -
mr-translation, theorem 5.2.2. -

Again we see that Markov’s principle and independence-of-premise for 3-free formulas
are computationally incompatible. '

Assume we really want our functions to be recursive functions, in other words add some
version of Church’s thesis as an axiom. Let CTy, in the language of HA, be a formal version
of Church’s thesis, i.e. if VxJyA(x,y) holds then there is total recursive function f realising
3y. Now the following result by Troelstra (1973, 201) should not be a big surprise:®

HA +CTo + 1P+ MP is inconsistent.

Due to theorem 3.8.1 this result can be strengthened if IP; is replaced by IP

Philosophically and methodologically this has consequences for the mathematlclan who
wants all functions to be recursive. For instance the Russian school of constructivity (Markov
and followers) accepted both Church’s thesis and Markov’s principle. As a consequence they
are not allowed to use Ing. However, the Dialectica interpretation shows that they can use
IPY in case they do not require full extensionality.

5.5 E-HA®:IP$ + AC not closed under Markov’s rule

Extensionality is in general constructively problematic. However, modified realisability can
in the context of E-HA® extract terms that realise existential statements as Ix®A(x), even if

$1P.¢, MP are, respectively, formulations in the language of HA of PG, MPY,
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full extensionality is used. But the fact that the extracted terms actually realise the formula,
ie. 19, smr3x®A(x) is, on the other hand, verified in E-HA®,

With respect to extensionality one has to be careful. Theorem 5.4.1 showed that Markov’s
principle is unprovable in E-HA® +1P3 + AC. But something stronger is in fact the case.
The following theorem — an unpublished result of Ulrich Kohlenbach — shows that any of the
theories E-HA® £ IP% = AC is not closed under Markov’s rule, not even for type 0. Markov’s
rule is the special case of Markov’s principle where there are no assumptions, thus for type
o, Markov’s rule is

for quantifier free Ay

Theorem 5.5.1. There is a quantifier free formula Ag(x°) of L(E-HA®) such that

E-HA® b ~~3x°Age(x), but E-HA® + IPS + AC i T4 4(x).

Proof. The simplest non-trivial case of the extensionality axioms of E-PA? is
V2, flg! (f =18~ 2f =0 28), .1
which is the same as VxO(f'x =g g'x) — 22f = z%¢. From this follows by classical logic that
E-PA® F 0(flx = g'x = 22f =¢ 2%g). (5.2)

Now, Kuroda’s negative translation also provides a reduction of E-PA® to E-HA®. One only
has to extend the proof of theorem 4.2.3 by showing that the Kuroda translation of any in-
stance of the extensionality axioms is provable in E-HA®. But this is done by noting that
E-HA® | ——Vx——Ag(x) > VxAg(x), (recall the equivalences of (4.1) from page 58). Thus
(5.2) implies

E-HA® F ——3x0(f'x =g g'x = 22f =0 2g).
Assume (working towards a contradiction) that
E-HA® +1PS + ACF O (flx = g'x = 22f =0 2g).

By soundness of mr-translation (theorem 5.2.2) there would be a term 1 with FV(¢) C
{z%,f',g"} realising this in E-HA®. By introducing universal quantifiers we get

E-HA®F V2, g (£'10 =0 g'10 — 22f =¢ 2g).

But then Az%, f', g'.£% would satisfy the Dialectica translation of (5.1) which is contradicting
the result of Howard (1973, 458, Th. 3.2) stating that there cannot be any such primitive
recursive functional. Take therefore f'x0 = g'x0 — z2f = z%g for Aqf(xo). —
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With respect to our analysis this is very interesting since it shows, among other things,
that one has to be extremely careful when extensionality and Markov’s principle/rule are
combined. Also of interest is that Howard in the paper cited above shows that there are
models of ZF (Zermelo Fraenkel set theory without axiom of choice) in which there are no
functionals satisfying the Dialectica translation of the extensionality axiom of type 3. Full
extensionality is, in other words, in the presence of MP® a very strong principle.

5.6 The Friedman-Dragalin A-translation for formulas of HA

'We now come to the A-translation which was discovered independently by H. Friedman
(1978) and A.G. Dragalin (1980). The A-translation makes it possible to extract computa-
tional content from PA-proofs of Hg—formulas via negative translation and modified realis-
ability. Using this device one will first have to apply negative translation, then A-translation
and finally modified realisability. The goal of the A-translation is to show closure of HA
under Markov’s rule. The overall strategy in this approach is that, if PA  3xAq¢(x,a) then
by negative translation HA - =—3xAq¢(x,a). Closure under Markov’s rule. would then give
HA F JxA4i(x,a) and one could then apply modified realisability. . This strategy is in fact
possible. But given the result above (theorem 5.5.1) it cannot be extended to E-PA® and
E-HA®, : '

Definition 5.6.1. (A-translation). Let B and A be formulas of L(HA) such that no free
variables of A are bound in B. Then B is the formula that arises when every occurrence of a
prime formula P in B is replaced by PV A. B* is called the A-translation of B. <

The definition expresses the general idea of an A-translation. But the translation can be
optimized in various ways. For instance, Troelstra & van Dalen (1988) define it similarly
with the extra clause that L is replaced by A only. This is due to the fact that we have over
" intuitionistic logic A &> AV L. But this again suggests another optimization, namely, that
every obvious false quantifier free sentence is replaced by just A.

Remark 5.6.2. Although the idea of the A-translation is very simple it does not seem to work
for theories with a certain upper bound with respect to quantifier complexity on assump-
tions. Specifically, it does not work (at least directly) in case we have weak extensionality:
WE-HA®. As we will see after the following proof, the translation is problematic in case of
the weak extensionality rule QF-ER.

If T is the multiset consisting of Cy, . . .,C, then I denotes the corresponding A-translated
multiset.

Lemma 5.6.3.
(i) Intuitionistic logic proves A — BA.
(ii) IfC+ B in HA then also T - BA in HA.

Proof.
(i). This is proved by formula induction. We show just the case where B is some prime




78 Modified Realisability, A-translation and Applications

formula P.
u:P

VI,
PVA
— Lu
P—PVA

(i1). This is easy by induction of the length of the proof in HA. We give two examples
from the canonical proof. Case L;. Here we need part (i) of the lemma. Say that I' - B and
that the last rule used is L. Induction hypothesis is I* - L v A. By this we derive:

1:—‘A v:il

LVA A u:A

A A— B

Casex =y — fx= fy. We have to prove (x=y VA) = (fx= fy V A):

U:x=y x=y= fx=1fy

fx=fy v:iA
x=yVA fx=fyvA fx=fyVA
fx=fyVA “

The pattern from the last derivation goes through in all the arithmetical rules and axioms of
HA. The induction rule is verified by itself since it can be applied directly on the derivations
given by the induction hypothesis. =

Let us continue remark 5.6.2 by looking at the problematic aspect of the A-translation in
connection with WE-HA®. The translation is problematic in case of the weak extensionality
rule QF-ER where the assumptions must be quantifier free: By induction hypothesis we
would have

Tt

Vx(sx =(') txVA)

but we cannot use the derivation pattern from above, and there seem no obvious way to prove
Vy(r[s]ly =o r(t]y V A). On the other hand, if we had classical logic at our disposal then we
could interpret QF-ER.” But of course we cannot use classical logic, but it seems necessary

"This is seen from the following equivalences which are classically provable:
((P = Vx(sx =1x)) = (P> Vy(rlsly = rlt]y))) iy ((PA-Vx(sx=1x)) V (=P V Vy(r[sly = rlt]y)})
PVA - Vx{sx=1xVA) “ (=P A-A)V (Vx(sx =1x) VA)
-(PVA = Vy(r[sly =rltlyvA)) & PA(=Vy(rlsly = rit]ly) A—-A)

By assuming the left-hand side of these formulas it is easy to conclude L and therefore, classically, PVA =
Vy(r[sly = rit]y v A) follows from QF-ER and the induction hypothesis.
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for the verification to have Vx(P(x) V A) — VxP(x) V A, which is not intuitionistically valid.
We therefore conjecture that the A-translation does not work for WE-HA®. However, there
may be some special trick such that a refined A-translation can avoid this problem.

The strategy of applying negative translation + A-translation + modified realisability has
another disadvantage: It cannot interpret QF-AC, since Markov’s principle is used for this. A
refined A-translation as given by Coquand & Hofmann (1999) can, nevertheless, remedy this
problem.

5.6.1 HA is closed under Markov’s rule

In the case of HA we can now show closure of Markov’s rule. The first published proof of
this is in (Kreisel, 1958, remark 6.1), but the proof we give is due to Friedman (1978) and
Dragalin (1980).

Theorem 5.6.4. HA is closed under Markov’s rule, i.e. for quantifier free Aqs we have

HAF ——=3xAg(x,a) = HAF IxAg(x,a).

Proof. Suppose HA F ——3xAy(x,a) and that FV(A4) = {x,a;... ,a,}. Lets be the charac-
teristic term (i.e. n+ 1-ary function) for Ag¢(x,a). We have HA |- -—3x(txa = 0). Now we
use 3x(zxa = 0) as translation formula. By soundness of translation (lemma 5.6.3 (ii) ) we
get v

HA F (=—3x(txa = 0)) =0

And since B +» L V B for any formula B:
HA + (3x((rxa = 0) V Ax(txa = 0)) — 3x(txa = 0)) — Ix(txa = 0).

Intuitionistic logic proves 3y(B(y) V3yB(y)) — (3yB(y) V 3yB(y)) for any formula B(y). This
leads to ' ‘ 4 :

HA F (3x(txa = 0) v 3x(rxa = 0) — x(rxa = 0)) — x(rxa = 0).
Now, for any B we have by logic BV B — B and consequently, '
HA + 3x(txa = 0),

which is equivalent to the conclusion of the theorem. 4

Essential in the proof is that we have characteristic terms for quantifier free formulas.
This is what makes it possible to prove the theorem for quantifier free formulas. In case one
works with a theory where this is not possible one gets a weaker theorem where the quantifier
free A is exchanged by any prime formula P.

Within natural deduction one could be tempted to formulate the theorem with assumptions
I. These would then also be translated into IT=()=0) In case I consists of purely universal
formulas this would be valid, since I'2*([4=0) would follow from I". Accordingly we see
(again) that proofs of universal lemmata have no influence on the computational content.
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5.6.2 Extraction theorem for PA by negative translation, A-translation and m.r.

The idea of extracting programs realising ITJ formulas provable in PA is a part of Kreisel’s
program, and the following theorem displays a strategy in this direction that U. Berger.and
H. Schwichtenberg have developed and refined, see for instance (Berger & Schwichtenberg,
1995).

Theorem 5.6.5. (Program extraction for PA). Let Ay be a quantifier free formula of L(PA)
containing only x and y free.

If PA - Vx3yAge(x,y) then HA & VxAg(x, fx)

for a closed term f of type 1 of Gédel’s system T.

Proof. Suppose PA F VxdyAg(x,y), by Kuroda’s negative translation we get HA F
—=Vx——3yAqs(x,y). This is by intuitionistic logic the same as HA I Vx——3yA4(x,y). Using
Jy(ta,xy = 0)-translation, theorem 5.6.4 yields

HA F Vx3yAqe(x,y).

Via soundness of mr-translation (theorem 5.2.2) we extract by recursion on the last derivation
aterm f! doing what is required. =

Note, that we also have a proof of conservativity for Hg—scntences of PA over HA. It is
negative translation and A-translation which are responsible for this.

5.7 Realisability with truth: Closure properties

We have just seen three applications of modified realisability. Firstly, we showed non-
derivability of Markov’s principle and thereafter — using also negative translation — that
E-HA® and various extensions are not closed under Markov’s rule.® In our third application
modified realisability together with negative translation and A-translation made it possible to
unwind computational content from classical proofs in PA of IT3-statements. In this section a
fourth application of realisability will be introduced. By a “modified realisability with truth”
translation closure of H* under different rules will be shown, where H* is any of the theories
E-HA® £1PG £ AC. We will show:

« disjunction property (DP),

* existence property (EP),

* closure under rule of choice (ACR) and

+ closure under the rule of independence-of-premise for 3-free formulas (IPR%})

for H*.

$To be accurate, we used the notion of majorizability in that proof too, since this notion is used in Howard’s
proof.
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For reasons which become obvious in connection with the next soundness theorem we
will in this section work with Hilbert style. The following definition can be found in (Cook
& Urqubhart, 1993), but is an outgrowth of similar realisability translations. For a systematic
approach to truth translations and historical notes see (Troelstra, 1998).

Definition 5.7.1.  (Modified realisability with truth). Suppose that A(a) is a formula of
L(E-HA®) with FV(A) = {a}. Then xmrtA(a) is defined inductively, where {x} N {a} =0
and FV (3x(xmrtA(a))) = {a}.

The clauses for prime formulas, A, V, 3 and V are the same as for mr. Implication is
translated in the following way:

(+75) xmrt(A(a) - B(b)) = Vy(ymnA(a) - xymnB(b)) A (A — B).

. <
This truth translation has the crucial truth property, which also explains its name: An
interpreted formula implies the original formula. .

Lemma 5.7.2. (Truth property).
E-HA®F (tmrA) — A

for any sequence t of terms.

Proof. The proof is straightforward by induction on the complexity of A and since the free
variables do not play any role we omit them. For the base case, where A is a prime for-
mula there is nothing to prove, since the translation leaves prime formulas unaffected. The
induction case is also easy. We only show the case where A = Ix°B(x).

First note that 7%, s mrt 3x° B(x) is literally s mrt B(t®). From the induction hypothes1s we
get smrtB(t") — B(t°). Consequently:

(smrtB(:%)) — B(:©°)  B(t°) = A°B(x)
(smrtB(:°)) — A°B(x)

Syl

e. (19,smrt3x°B(x)) — Ax®B(x).
The rest of the inductive cases are similar, except for 1mp11catlon which follows directly
from the definition of mrt. ~
The following theorem is in its essence found in (Troelstra, 1973). See also (Cook &
Urquhart, 1993, 155-158) for a full proof.

Theorem 5.7.3. (Soundness of mrt-translation). Let H* be any of the theories E HA® +
IPS% + AC, and let A be a formula of L(E-HA®).

IfH* - A then H' & t mitA

for some extractable sequence of terms t with FV(t) C FV(A).
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The proof is straightforward and is very much the same as the proof of the soundness theorem
for mr. But as the translation -of nested implications is a little complicated it is not a good
idea to prove the theorem within natural deduction. In the case of Hilbert style one only has
to be caréful when considering the rules exportation and importation. No serious difficulties
show up, though one will need lemma 5.7.2.

Corollary 5.7.4. (Closure properties). Let H* be any of the theories E-HA® & IP$ = AC,
then:

1. H* has existence property, i.e. if H* - 3x°A(x) then H* - A(¢®) for some extractable
termt with FV(z) C FV(A)\{x}.

2. H* has disjunction property, i.e. for closed A and B,

ifHF-FAVBthenH'-AorH - B.

3. H* is closed under the rule of choice (ACR):

if ' FVx°3y*A(x,y) then H F 3Y®"Vx%A(x, Y x).

4. H* is closed under the rule of independence-of-premise for 3-free formulas (IPR3):
H*F A - 3y°B(y) implies H' F 3)° (4 — B(y)),
y ¢ FV(A) and A is 3-free.

It is, of course, not surprising that for instance E-HA® + IP‘e"f is closed under IPR;‘}, but
we have stated the theorem in the form above for the sake of uniformity.

Proof.

1. If H* proves 3x°A(x) then by soundness H* proves ¢®, smrt 3xA(x). This is smrtA(z°)
and therefore by lemma 5.7.2, H* proves A(z).

2. This follows from 1 using the fact that every closed number term ¢ of T can (provably
in H*) be evaluated to a numeral.

3. This also follows from 1, but we give another proof. If H* proves Vx®3y*A(x,y) then by
soundness of mrt H* proves Vx® (sxmrtA(x,1%%x)). Lemma 5.7.2 yields Vx®A(x,%"x)
and thus we introduce the existential quantifier.

4. This is also straightforward using soundness and truth condition.

_|

The theorem has interesting applications together with the notion of majorizability. Com-

bining these two Kohlenbach (1992a) has shown that systems like E-HA® are closed under
the so-called fan rule. For a proof of this application see (Troelstra, 1998, 434-436).

Theorem 5.7.4 shows that H* for any of the theories above has a strong constructive

character in the sense that it possesses the important constructive properties expressed by the
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theorem. However, in case of the strongest theory these properties can also be proved by
modified realisabiliry, due to the observation:

Lemma 5.7.5. (Characterisation of mr).

E-HA® + IP% + ACF A + 3x(xmrA)

The proof is by induction on the complexity of A, see (Troelstra, 1973, 217).
Using this lemma we can prove the following theorem, where I" denotes any set of true
3-free sentences. o

Theorem 5.7.6. The theory E-HA® + P4+ AC+ T has disjunction property, existence prop-
erty and is closed under the rules ACR and IPR.

Proof. The proof is immediate from lemma 5.7.5 and theorem 5.2.2. -That any set of true
I-free sentences can be added freely is due to the observation that such a set has no influence
" on the mr-realisers, see page 75. =
All this shows that modified realisability with truth can be used to show that a whole se-
quence of theories from E-HA® to E-HA® +IP% + AC +I" have a strong constructive flavour.
But note, that none of the theories are closed under Markov’s rule—not even for type 0.
It is, however, natural to ask whether functional interpretation can be used to show closure
properties in the same way as realisability. In the next chapter we will see that this is fact the
case. : :




CHAPTER 6

Closure under Rules by Functional Interpretations

We will now come back to some of the questions Godel (1941, 1938) originally pursued
when he developed the Dialectica interpretation. Some.of these were — as the title of the 1941
lecture says — on the constructivity of intuitionistic logic. One of the applications Godel had
in mind (see also chapter 1, page 11 of this text) was

to answer the question in which sense intuitionistic logic as applied in number
theory, or more generally in any theory with decidable primitive terms, is con-
structive. Namely, if you are able to derive in intuitionistic number theory an
existential proposition (Ix)@(x), then ... we can find a term ¢ composed of the
functions of the system X such that ¢'(¢). (Godel, 1941, 26-27).

The notation used by Gddel here is that ¢ corresponds to our ¢p and L is almost the system T
of (Gbdel, 1958), except that the statements are in 3V form. That I proves ¢'(t) corresponds
to the case where the quantifier free fragment of typed Heyting arithmetic proves @p(z,y). It
seems as if Godel wants to show that intuitionistic number theory has the existence property,
but is able to show only the weaker result where the translated formula is witnessed. It is
weaker since @ does not follow intuitionistically from ¢P.

Until now it has been an open question whether or not interpretations in the style of
Dialectica can be used to show existence property and disjunction property for Heyting arith-
metic. In the foregoing chapter we have seen that modified realisability with truth shows
elegantly E-HA® to have these properties. But can this also be done by Dialectica (in the
case of WE-HA®) or is there a principle obstacle inherent in the D-translation?

6.1 There is no ‘Dialectica-with-truth’ interpretation of WE-HA®

The simplicity of mrt is striking; likewise the effective application. It is therefore natural
to ask whether or not there is a corresponding ‘Dialectica-with-truth’, (-)?". As we will see
below, due to a simple counterexample, there is not. But apart from showing that there is no
such Dr-interpretation, the counterexample will also display something about the differences
between modified realisability and Dialectica: Quantifiers occurring negatively in a formula
are forgotien, so to speak, by realisability whereas Dialectica is requested to provide wit-
nesses. This is the reason why the translation ‘with-truth’ does not work in connection with
Dialectica.

A Dialectica-with-truth would be defined as the standard Dialectica translation except for
implication. A formula with “—” as the outermost symbol would be translated according to:

(A= B)P := 3UYVxv((Ap(x,Yxv) = Bp, (Ux,v)) A (A B)).

But a soundness theorem for this translation cannot be established.

Theorem 6.1.1. The exportation rule is not sound under Dialectica-with-truth translation.

84
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Proof. Let A(x?) be the quantifier free formula Tzzx where T is Kleene’s T-predicate. Then
certainly we can derive Vx—A(x) A 3xA(x) — L, and therefore
Vx-A(x) AIxA(x) - L

E 6.1
Vi-AQ) — —IAx) TC ©.D

is provable within Hilbert style. The Dt-translation of the premise-is (equivalent to)

Yy ((CA(FY) AAQ) = L) A (Vx-A(x) ATxA(x) — L)).

This is interpretable by taking, say, Az,y.y. But the Dz-translation of the conclusion is (equiv-
alent to)

AV ((~A(fY) = (SAG) A=BAMX)) A (Fr-A(x) = ~BHARX) ).

If this were interpretable then there would be some closed term F of type level 1 witnessing
[ taking the free variable z and y as arguments. This would imply provability of

Vy, z(~Tzz(Fzy) = ~Tzzy A—-3xTzzx).

But then the closed term g := Az.Fz0 of type 1 would decide 3xT zzx for any given z which is
~ absurd. Thus, the exportation rule is not sound under the Dt-translation. -

On the other hand, if we compare this with mrt, both the premise and the conclusion of
(6.1) are easy to mrt interpret since we have for any B that () mrt ~B. Therefore intuitionistic
logic shows () mrtVx—P(x) A 3xP(x) — L. From this the mrt translation of the conclusion
of (6.1) follows.! Hence, the truth translation works for modified realisability just because it
‘forgets’ the negatively occurring universal quantifiers. '

This points towards:

1. The innocent looking exportation rule is indeed non-trivial. The soundness of mrt is
straightforward to verify, whereas there is no ‘Dialectica-with-truth’ because exporta-
tion is unsound for this translation.

2. We have seen that modified realisability and Dialectica validate different principles; ba-
-sically because they interpret implication differently. This difference has consequences
both philosophically and mathematically. It could, however, still be that they both can

be seen as different parts of a more general method for extracting computational con-
tent from proofs. But this is not a plausible view. The counterexample to a Dialectica-
with-truth shows that Dialectica and (modified) realisability are interpretations which

"The definition of mrt implies that () mrtVx—P(x) A IxP(x) — L is equivalent to
Vy(~(Vx=P(x) AP(y)) A =(¥x-P(x) A 2xP(x)) ),
and () mrtVx-P(x) = ~3xP(x) is equivalent to .
(Vx=P(x) = Yy=P(y) A=32P(z)) A (Vx~P(x) = ~TxP(x)).

The last formula can be further reduced to its second conjunct.
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are structurally different in an essential way: Every important notion of realisability
has a truth variant (see (Troelstra, 1998)), which is contrary to Dialectica. We therefore
reject the view that the Dialectica interpretation is by the end of the day just another
type of realisability.

The question whether or not Dialectica can be used to show existence property, disjunc-
tion property and so on for intuitionistic arithmetic is still unanswered. There is, however,
another problem which the counterexample above did not show. For the Dialectica interpre-
tation we need decidability of prime formulas. From this follows decidability of Ap for any
A, which is needed in case contraction is involved. But Ap, is in general not quantifier free
and therefore not decidable. Accordingly, in our further investigation of the possibilities of
showing closure under rules we will turn to the Diller-Nahm variant of the Dialectica inter-
pretation which does not need decidability of prime formulas. Now, with a variant of the
Diller-Nahm interpretation we can show existence property, disjunction property and closure
under different rules for intuitionistic arithmetic.

6.2 Definition and soundness of O-translation

Kieene (1969) used a g-variant of realisability to obtain derived rules of intuitionistic analysis
with function variables. Later Troelstra (1973) developed and applied q-variants for different
kinds of realisability — including modified realisability — in order to show closure properties.
Accordingly, the closure properties of E-HA® which we showed in the foregoing chapter
using mrt were originally shown using g-realisability. But g-realisability is not closed under
deductions (more on this below). Therefore the q-variant is — with respect to realisability —
now widely replaced by the ‘truth’-variant.

Contrary to the truth variant, it is possible to transfer the idea of a g-variant of realis-
ability into a q-variant of the Diller-Nahm interpretation. We will call this variant Q. For
the Q-translation we introduce bounded universal quantification as a defined notion. For the
Diller-Nahm interpretation (see page 48) we had the bounded quantifier as a primitive no-
tion, since we wanted an interpretation in WE-T extended by bounded quantification. This
time, however, we interpret only into WE-HA® and therefore we take the bounded universal
quantifier as a defined notion:

(Vx < 1)A(x) := Vx(x <1 = A(x)).
In the following definition we will omit the free variables. They do not play any signifi-
cant role and are treated as under the standard Dialectica translation. To each formula A of
L(WE-HA®) we associate its O-translation A2

A2 = TavyAg(x,y), (6.2)

where x and y are sequences of fresh variables; but in contrast to the Dialectica translation
Ag is not quantifier free.
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Definition 6.2.1. (Q-translation).

(Po)  4C
(n2) (AAB)?
(v9) (AVB)2

Ag:= A, if A is prime,
dx, uVy,v(AQ(x,y) ABQ(":V)):
320,x,uvy,v((z=0— Ag(x,y) NA) A
(z#0— By(u,v) AB)),
32°,xVy(Ag(x,y,2) AA(2)),
3XVy,%A0(X2,y,2),
IW, U, Y, Vx,v((Ww® < Wav)Ag(x,Ywxv) AA = Bp(Usx, v))

(39)  (3°A@)°
(V2)  (V2°A(2))¢
(=9 (A-B)p

il

<
The crucial clauses in the definition are 3¢ and - (since V and 3, A are inter-definable).
Among other things, we aim at the rule: if 3xA(x) is provable then A(¢) is provable for some
term z. This is the motivation behind 3¢: Given that we have soundness for the Q-translation
the argument would be: If 3xA(x) is provable then by soundness there are terms such that
VyAqp(t,y,t0) AA(tp); by taking the second conjunct we have the required. The definition of
—¢ is designed to make this possible. Compared to the standard Diller-Nahm translation
(see page 48) the Q-translation of implication makes the premise stronger by adding ‘AA™.
But precisely this modification makes it possible to Q-interpret 3-introduction.?

We will need some basic arithmetic in order to show soundness of Q-translation. Recall
from page 20 the definitions of ~; +; sg and so on. We will furthermore need a primitive
recursive functional of type (OO)OO takmg a finite list of terms and giving the maximum of
that list. We will write the list as {¢[x]°|x < s°}. The functional has the following propernes

max{t[x]|x < 0} =¢ 0, max {t[x] | x < Ss} =¢ max(max{t[x]|x < s}, ¢[s])

The functional is defined by iterating the maximum of two numbers defined earlier. We will
also need a monotone pairing functional (,) of type 000 with inverses j; and j» of type 00
having the following properties: :

<Oa0> =00, <07St> =0 (Oat>+St1 <S,I) =0 (0,s+t)+s
and
jus,ty =os, jals,t)=ot, (jinjar) =or

These are not difficult to define in WE-T, see e.g. (Diller & Nahm, 1974, 51-52) or (Kleene,
1952, 222-223).

Lemma 6.2.2.
(i) Ifx ¢ FV{A}, then

WE-HA® - AAB(x) = C(x) = WE-HA®F AA (Vx < t)B(x) = (Vx <1)C(x).

2We note that the g-variant is in general different from the truth-variant. We do not need to, neither can, show the
truth condition (lemma 5.7.2) in order to prove the soundness theorem or the closure properties.
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(1)
WE-HA® F (Vx <1)Sx+1t =0,
WE-HA®F s =1 =0 0 A (Vx < 1)A(x) = (Vx < 5)A(x),
WE-HA® } Ss =1 =9 0 A (Vx < 1)A(x) — A(s),
WE-HA®F (Vx < s+1)A(x) = (Vx < 1)A(s+x),
WE-HA® F (Vx < 1) (A(x) AB(x)) —= ((Vx < 1)A(x) A (Vx < £)B(x)).

(iii) Ifx ¢ FV{A}, then WE-HA® proves
(Vx < (s,max{t[y]|y < s})) A(jix, j2x) = (Vy < 5)(Vz < t[y])A(3,2).

Proof. See (Diller & Nahm, 1974, 52). -
Soundness is proved within Hilbert style:

Theorem 6.2.3. (Soundness of Q-translation). Let H® be WE-HA® + IPS. If A is a formula
of L(WE-HA®) with FV(A) = {a}, then

H®t\ A(a) implies H® - VyAo(Ta,y,a),

for suitable sequence T of closed terms, which can be extracted from a H®-proof of A(a).

Proof. We give the proof by verifying axioms and rules from the system given by Spector
(1962) (as presented here in chapter 2). There are no particular obstacles in the proof when
compared to the other soundness proofs we have seen and it has many similarities with the
proof of soundness for the Diller-Nahm translation; see for instance (Diller & Nahm, 1974,
57-59). However, there is a special phenomenon which all kinds of g-variants share. In
order to interpret modus ponens, syllogism and induction one needs sub-derivations from
the original derivations in order to prove the interpretation. This phenomenon is due to the
weakening of the premise which occurs when an implication is translated. Consequently, we
need every now and then the original derivations.
In the proof we will often use without mentioning the following rule (in Hilbert style):

Agt = s =t B(s)

6.3)

where Ay is quantifier free. The rule is a generalisation of lemma 3.4.1 and is derivable from
QF-ER by an induction argument on the complexity of B. In case B is a prime formula the
assertion is immediate from QF-ER. In the general case one uses

(C+ D) — (B[A:=C] ¢ B[A:= D))

where B[A := (] results by replacing some sub-formula occurrence of A in B by C.
Case 1. A(a) — A(a). The translation is

IW,Y,Uvx,v((Vw < Wxv)Ag(x,Ywxv,a) AA = Ap(Ux,v,a)).
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Define the following three sequences of closed terms:
Ti :=Aa,x,v.1°, Tp:=Aa,wx,v.v, T3:=A\axx.

With these definitions we start from an ‘axiom of weakening’; use (6.3) and (Vx < 1)B(x) —
B(0). The following can easily be transformed into a proof within WE-HA®:

Ap(x,v,8)AA — Ap(x,v,a)

Ap(x,T2a0xv,a) ANA = Ap(T3ax,v,a)

(Vw < 1)Ag(x, T2awxv,a) AA — Ag(T3ax,v,a)

(Yw < Tvaxv)Ap(x, T2awxv,a) AA — Ap(T3ax,v,a)

vx,v((Yw < Tiaxv)Ag(x, T2awxv,a) AA — Ag(Tax,v,a))

Then 71, T, and T3 witness the three existential quantifiers, respectively.
Case 2. A(a) — A(a) V B(b). Without writing the free variables the translation. is:

3IW,Y,Z,X,UVx,y,v((Vw < Wxyv)Ag(x,Ywxyv) AA =
: (Zx=0— Ap(Xx,y) AA) A (Zx # 0 — Bo(Ux,v) AB)).

The following derivation can clearly be transformed into a derivation in Hilbert style: o

‘ o vi0#0
u:Ap(x,y)AA Bg(o,v)AB
— v
0=0—Ap(x,y) AA 0#0— Bg(o,v)AB

(0=0-"Ag(x,y) ANA) A (0# 0 — Bp(o,v) AB)

u
Ag(x,y)AA = (0=0— Ap(x,y) NA) A (00— Bp(o,v)AB)
Let ¢ equal a,b and define

re,x,yv1®, T,

n = = A, w,X, Y, V.Y,
T = Ae,x.00, T, := Aic,xx,
Ts = _ 0,

where 8 are the zero functionals fitting in type. Then by using (6.3) and the properties of the
bounded universal quantifier the following is derivable in WE-HA®:

Vx,y, v( (Yw < Tiexyv)Ap(x, Tocwxyv) AA —
(Tsex =0 — Ag(T4cx,y) AA) A (Tzex # 0 — Bo(Tsex,v) AB)).

Case 3. B(a) — A(a) V B(b). This is treated symmetrically to the foregoing case.
Case 4. A(a) AB(b) — A(a). The translation is :

IW,Y,V,XVx,u,y((Yw < Wxuy)(Ag(x, Y wxuy,a) A Bp(u,Vwxuy,b)) A
(AAB) — Ag(Xxu,y,a)).
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Clearly we have
(Ag(x,y,8) ABg(u,0,b)) A (AAB) — Ag(x,y,a).
Write ¢ for a, b; if we define

T

Ae,x,u,y.1° T,
T, 5

o, T4

Ac,w,x,u,y.y,
Ac,x,u.x,

then we have

Vx,u,y((Yw < Tyexuy)(Ag(x, Tocwxuy, a) A By(u, Tycwxuy, b)) A
(AAB) = Ag(Tscxu,y,a)).

Case 5. A(a) A B(b) — B(b). Symmetric to the foregoing case.
Case 6. L — A(a). The translation is equivalent to

Axvy(L — Ag(x,y,a)).

Any closed term of right type will witness 3, e.g. the corresponding zero functionals.
Case 7. Assume that the last rule of the proof in H® is modus ponens:

A(a) A(a) - B(b)
B(b)

The induction hypothesis is, when we write ¢ for ab

(i) H®kVyAo(Ta,y,a),

(i) HOFVx,v((Vw < Thexv)Ag(x,Tscwxv,a) AA(a) — By(T4cx,v,b) ),
for given Ty, 73, T3, and T4. We need to find T'5 such that H® I- VvBy (T sb, v, b). Eliminate
Vx in (ii) by T ;a and likewise eliminate Yy in (i) by T3¢w (T a)v. Since modus ponens is the

last rule of the proof we have a derivation of A(a) in H? and this together with lemma 6.2.2
gives us with the instantiated (i)

(Yw < Tre(T1a)v)Ap(T1a,T3cw(T1a)v,a) A A(a).
By using modus ponens and introducing universal quantifiers we obtain
H® - VYvBo(T 4¢(T ) a),v,b).

Let o° be the zero functional of type ©; substitute o of the corresponding type for any free
variable in T4¢(T ) a) that do not occur in b and name the result T. If we define Ts := Ab.T
we have the required resuit.

Case 8. The last rule of the derivation in H® is syllogism:

A(a) = B(b) B(b) > C(c) Sul
A(a) = C(c)
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Due to heavy notation we will omit explicit treatment of the free variables in this case. How-

ever, these are easily incorporated from the induction hypothesis. One will only have to

substitute o for any free variable that occurs in B but not in A nor in C and proceed as below.
Induction hypothesis is that H® proves:

Vx,v((Vw) < Tixv)Ag(x,Towixv) AA = Bo(T3x,v)), 6.4)
Yu,q((Vwy < Tsuq)Bo(u, Tswrug) AB — Co(Teu,q)), (6.5)

and»we have to find 77, Tg and T'9 such that
vx,q( (Vw < Thxq)Ag(x, Tswxg) AA — CQ(Tgx, q)).

We eliminate Vv in (6.4) by Tswo(T3x)q and Vu in (6.5) by T3x and write T [w,x,4] for
Tswy(T3x)q and x, g] for T4(T 3x)q. Then we use lemma 6.2.2 (i) and obtain

(VW2 < t[xaq])(vwl < Tle[Wer) q])AQ(x’ T2W1XT[W2,X, q]) ANA —
(Vws < t[x,q])Bo(T 3x,T[w2,x,q]), (6.6)
(Vw2 <t[x,q])Bo(T3x,T{w2,x,9]) AB = Co(T6(T3x),q)- (6.7
From the left sub-derivation of the non-interpreted derivation wé have A — B. Let A* be the

first conjunct of the premise of (6.6). By using syllogism on the axiomA*AA — Aand A — B
and subsequently the contraction rule on this and (6.6) we obtain:

(sz < t[x,q])(Yw) < T1xT[w2,x,q))Ap(x, TowixT[w2,x,q]) AA —
(sz < t[x q})Bp(Tax, T[wz,x q)) /\B

By applymg syllogism to this formula and (6. 7) and using lemma 6.2.2 (iii) we get

(Vw< (f[xA],max{TIXT[Wz,x,Q]_ [ w2 < t[x,q]})) Ap(x, T2(j2w)xT (1w, ,4])
NA — CQ(T6(T3X),q).

Accordingly we define
I; = Axq(tlx,g],max{TixT [wz,x,q] | w; <1[x,q]}),
Tg = kw,x,q.Tz(jgw)xT[jlw,x,q],
Ty := kx.Ts(T?,x).

These terms suffice to prove the needed, due to (6.3).
Case 9. The contraction rule:

A(a) — B(b) A(a) - C(c)
A(a) = B(b) AC(c)

Con

The induction hypothesis is

Vx,v((Vw < Tyabxv)Ag(x,Toabwxv,a) AA — By(T1abx,v,b)),
Vx,q((Yw < Tsacxq)Ag(x, Tsacwxq,a) NA — Co(Tsacx,q,c)).
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Let d equal the sequence consisting of a,b,c. We have to provide closed terms 77, Tg, T9
and T g such that

vx,v,q((Vw < Trdxvq)Ag(x, Tsdwxvg,a) AA — Bo(Todx,v,b) ACy(T 10dx,q,c)).
Take?
Ts :=\d,w,x,v,q.Cond(Tabwxv, T5ac(w; Tyabxv)xq, Sw - Tiabxv).
From lemma 6.2.2 (ii; 2. and 4. line) it follows that

(Vw < Tyabxv + Tyacxq)Ap(x, Tzdwxvg) — (Vw < Tiabxv)Ag(x, T2abwxv),
(Vw < Tabxv + Taacxq)Ap(x, Tgdwxvg) — (Yw < Tyacxq)Ag(x, Tsacwxq),
and we therefore define

T
T

A, x,v,q.Tiabxv + Tyacxq, Ty := MAd,x.Tiabx,
A, x.Tgacx.

Using syllogism and contraction gives the required.
Case 10. Assume the last rule of the proof in H® to be exportation:

A(a) AB(b) — C(c)
A(a) - (B(b) — C(c))

Expo

Since the free variables play no essential role here we do not write them explicitly. Then the
induction hypothesis is that H® proves

vx,u,q( (Yw < Tyxuq) (Ag(x, Towxug) ABo(u,T3wxuq)) A (AAB) — Co(Tsxu,q)).
We have to find terms T5,7g,T7,Tg, T such that

Vx,u,q((Vw) < Tsxuq)Ao(x,T7wixug) ANA —
((vwy < Tsxuq)Bo(u, Tsxwrug) AB — Co(Toxu,q)) ).

Let
A* = (Yw < Tixuq)Ao(x,Towxuq),
B* = (VYw < Tixuq)Bo(u,T3wxugq),
(AAB)* = (Yw< Tixugq) (AQ(x, Towxug) ABo(u, Tgwxuq)) .

Generally we have in WE-HA® that

(Vz < 1)D1(2) A (V2 < 1)D2(z) = (V2 < 1) (D1(z) AD2(2)).

3See page 21 for the definition of Cond.
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Thus we can transform the following derivation into a derivation of H®

A*AA B*AB A*AA B*AB

A* B A B
(AAB)” AAB
(AAB)*A(AAB)

This together with the induction hypothesis giveé us Co(T 4xu,q). Then we introduce — two
times (firstly by discharging B* A B and secondly by discharging A* A A); accordingly:

(Vw < Tixuq)Ag(x, Towxug) NA - _
((Yw < Tyxuq)Bg(u, T3wxug) AB — Co(Tsxu,q)).
Now defining

T6:=Ty, T,
Ax,w,u,q.Tiwxuq, Ty

Ts
Ty

T,

-
ﬂ
>

will give the required termns. '
Case 11. Last rule is importation:

A(a) - (B(b) = C(c))
TA@) AB(B) = C(¢)

Impb

Again we leave out the free variables. Induction hypothesis is that H® proves
Vx,u,q((Vw) < Tixuq)Ag(x, T3w xuq) ANA —
((Ywa < Tyxuq)Bg(u,T4xwiuq) AB — Co(T sxu,q)) ).
We are looking for terms Ty, ..., T such that H® proves
vx,u,q( (Vw < Toxuq) (Aé(x, T7wxuq) ABg(u, Tgwxuq)) A (AAB)
- CQ(Tgxu,q) )
Let

A*
B*

(Vw < Tixuq)Ap(x,T3wixuq),
(Vw2 < Toxugq)Bp(u, T axwauqg).

From (A* A B*) A (A A B) we easily derive
A*AA and B" AB.
From this and the induction hypothesis we have that H® proves

((Yw1 < Tixug)Ag(x,T3w xuq) A (Ywy < Tyxuq)Bo(u, Taxwauq)) A
(AAB) — CQ(Tsxu,q).
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Now we write x for xuq and define

Ts
Ty

Ax.Tix+ Trx, T = Aw,xTawx,
)\.Wz,.E.T4x(W2 == Tl.g)uq. i

Then it follows from lemma 6.2.2 (ii; 2., 4. and 5. line) by using syllogism, exportation and
importation

(Yw < Tsx) (Ag(x, T7wx) ABo(u, Tswx)) A (AAB) — Co(Tsxu,q).
We have the required terms if we define

To:=Ax,u.Tsxu.

Case 12. Last rule is the disjunction rule:

A(a) > C(c) B(b)— C(c)
A{a)V B(b) — C(c)

Dis

We do not write free variables. The induction hypothesis is therefore

Vx,q((Yw < Tixq)Ag(x, Tawxq) AA — Co(T3x,9)), (6.8)
Yu,q((Yw < Tyuq)Bg(u,Tswuq) AB - Co(Tsu,q)). (6.9)

We want to find terms 77, ..., T 1o such that (if we write x for zxugq)

Vz,x,u,q((Vw < Tx) ((2 =0 = Ag(x, Tgwx) AA) A
(z#0— Bo(u,Towx) AB)) A(AVB) — Co(T \0zxu,q) ).

For any z° we have z =0 or z # 0.
Assume z equals 0. From

(Yw < Tixq)((z= 0 — Ag(x, T2wxq) AA) A (z# 0 — Bp(u, T swugq) AB)) A (AVB)
we derive the premise of (6.8) using lemma (6.2.2) (ii) and consequently

(Yw < T1xq) ((z=0— Ap(x,Towxq) AA) A
(z#0—> By(u,Tswuq) AB)) A(AV B) = Co(T3x,q)),

is derivable in H®.
Similarly if z # 0 we derive

(Yw < Tquq) ((z=0— Ap(x,Towxg) AA)A
(z# 0 — Bo(u,Tswuq) AB)) A(AVB) - Cy(Tsu,q)).
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The following terms therefore suffice

T, = Ax.Cond(Tixq, Taug,z),
Ty = Aw,x.Towxgq,

Ty := iwx.Tswug,

Tyo := Azx,q.Cond(T3x, Tou,z).

Case 13. The last rule is QI:
B(b) - A(a,?)
B(b) — VxA(a,x)

~ where z ¢ {b} When ¢ denotes the sequence consisting of b and a the induction hypothesis
is ’

Yu,y((Yw < Tyczuy)Bo(u,Toczwuy,c) AB — Ag(T3czu,y,a,z)).

for certain sequences of closed terms 77, T, and T3. We should find sequences of closed
terms, 74, T'5 and T¢ such that

Vu,y,x((Yw < Tycuyx)Bg(u, Tscwuyx,c) AB — Ag(Tscux,y,a,x) ). |

Take the terms
Ty = hec,u,y,z.Ticzuy, Ts = Xie,wu,y,z.Trczwuy,
Te = lc,u,z.T;;cgu. :

Case 14, The axiom Q2:
Vz°A(z,a) = A(1°,a).
Say FV(¢®) = {b}. We should find terms T}, T», T3 and T4 such that if we write x for abwXy
VX,y((Yw < TiabXy)Ag(X(T:x), T>2,T3%,8) AV2A(z,8) — Ag(T4abX,y,t,a)).
Now,
Ap(Xt,y,t,a) ANVZA(z,a) = Ap(Xt,y,t,a),
is an axiom. Hence we take

T\ = \a,b,X,y.10 T,
T := Aa,bwX,yt® T4

Aa,b,w,X,y.y
Aa,b,X X1°

we obtain the required, in the same way as in the previous cases.
Case 15. Axiom Q3. A(1°,a) — 3z°A(z,a). The Q-translation is

AW, X,Y,Z9x,y((Yw < Wxy)Ag(x,Ywxy,t,a) AA(t,a) = Ag(Xx,y,Zx,a) AA(Zx,a)).
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Say, FV(¢®) = {b}. Let

T
T,

Aa,b,x,y.1°, T,
M,b,w,x,y.y, T4

Aa,b,x.x,
A\a,b,x.t:°,

witness 3W, X ,¥,Z, respectively. Note, how the translation of — is designed to meet the
requirements of (39).
Case 16. Last rule in the proof is Q4:

A(a,z) — B(b)
3%A(a,%) — B(b)
where z is not free in B(b). Induction hypothesis is
Vx,v((Yw < Tyazbxv)Ag(x, Trazbwxv,a,z) AA(a,z) — Bg(T3azbx,v,b)).  (6.10)
We should provide terms Ty, T'5 and T'¢ such that

vz, x,v( (Vw < Taabixv) (Ag(x, Tsabwxv,a,%) AA(a,%))A
IyA(a,y) — BQ(T6abix,v,b)).

Assume
(Yw < Tyazbxv) (Ag(x, T2azbwav,a,z) AA(a,2)) A 37A(a,¥)

By eliminating the last conjunct of this formula and using 6.2.2 (ii) we obtain the premise of
(6.10). Accordingly we have that H® proves

(Vw < Tiazbxv)(Ag(x,T2azbwxv,a,z) AA(a,z)) A 37A(a,y) — Bo(T3azbx,v,b).

We therefore define:
T, = Ma,b,z,x,v.Tiazbxv, Ts := Aa,b,w,z,x,v.Trazbwxv,
T¢ = A\a,b,z,x.Tiazbx.

By introducing universal quantifiers for the free variables x, z and v we obtain the required.
Case 17. The last rule of the proof in H® is induction:

A(0%a) A(°,a) = A(Sx°,a)
A(x,a)

Assume as induction hypothesis that H® proves

VzAp(T1a,2,0,a) and
vy, 7((¥w < Taxay§)Ag(y, Taxawy§,x,a) AA(x,a) = Ap(T sxay,¥,Sx,a) )-

We should provide terms S such that

H® |- VzAp(Sxa,z,x,a).
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Define T (as we did on page 62) by simultaneous primitive recursion in higher types such
that Ta0 = T a and Ta(Sx) = T4xa(Tax). With this definition the first part of the induction
hypothesis equals VzAp(T a0, z,0,a) and with the left sub-proof of the non-interpreted proof
we have a proof in H® of

VzAp(Ta0,2,0,a) A A(0,a).
The second part of the induction hypothesis implies
VeAo(Tax,z,x,a) AA(x,a) — VzAp(Ta(5x),z,5x,a). 6.11)
From the non-interpreted proof we haveA(x,a) — A(Sx, a)». This implies together with (6.11)
VzAp(Tax,z,x,a) A A(x,a) — VzAp(Ta(Sx),z,5x,a) A A(Sx,a) ..
By applying the induction rule we obtain VzAp(Tax, z,x,a) AA(x,a). This yields
H® +VzAp(Tax,z,x,a).

Thus, define § := Ax,a.Tax.
Case 18. The quantifier free rule of extensionality:

Agt — s=1°

QF-ER

Ags = 1[s°] = r[1°]

The translation of the hypothesis of the rule is equivalent to itself—likewise the conclusion.
The rule is therefore interpreted by itself.
Case 19. The axiom schema for independence-of-premise for purely universal formulas:

(VxAqe(x) = 32°B(2)) — 32° (VxAqe(x) = B(2)), (6.12)

where Ag¢(x) is quantifier free and VxAyr(x) does not contain z free. We assume w.L.o.g. that
Agr is V- and —-free. The translation of the hypothesis is

IW, X, z,uvv((Yw < Wy)Agr(Xwv) AVquf(x) — (Bg(u,v,2) AB(2))).
" And the translation of the conclusion is .
IW, X, 2, uvv( ((Yw < W)Age(Xwv) AVxAge(x) = Bp(u,v,2)) A (VxAge(x) = B(2)) ).

When these two are compared it is clear by witnessing the existential quantifiers by the obvi-
ous projection functionals that (6.12) is interpretable by functionals of WE-HA® only. -

Remark 6.2.4. MP® and AC cannot be Q-interpreted, since certain important quantifiers are
‘left behind’:

_ There is an instance of MP® such that the Q-translation of this instance is not satisfiable
by any term of WE-T. Let P(x) be the prime formula rryyx = 0, where tr is the characteristic
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term for Kleene’s T. When we replace P(x) A P(x) by the equivalent P(x) and delete bounded
quantifiers not referring to anything, the translation (——3xP(x) — 3xP(x))€ becomes:

AXVY, 22 (= ((vw < 2)~(P(¥Yw) A IxP(x)) A—3xP(x)) A ==3xP(x) — P(XzY) ).

Assume there is a closed term F of type 0010 interpreting this. Now, since we have intuition-
istically : '

((vx <)=(B(x) AA) A =A) & A,
we derive by eliminating the universal quantifiers by 0% and o'
~=3xP(x) — P(Fy0o).

This is of course a contradiction, since Ay.FyOo of type 1 would then decide the halting
problem. :
AC is likewise problematic. The translation of an instance of AC is (when x is wYUxv
andyis YUx)
IW,X,V,Y,UVY, 0, x,v((Vw < Wyv) (Ag(D (Xx),Vx,Xx,7 (Xx))
NA(Xx,Y(Xx))) AVZIYA(%,y) = Ag(Uy,v,x,Yy) AVZA(,YYUx)).

If we take standard projections then this turns into
(Ag(Ux,v,x,Yx) ANA(x,Yx)) AVZIYA(R,y) — Ap(Ux,v,x,Yx) AVEA(X,YX)

for any U,Y,x,v. But this certainly is not provable.

Because of these problems the closure properties, which are shown in the next section as
an application of the Q-interpretation, cannot be proved in this way with respect to AC and
MP®. However, as we shall see in section 6.5, this can partly be remedied due to the ordinary
Dialectica interpretation.

6.3 Closure properties of intuitionistic arithmetic showed by Q-translation

The following theorem — displaying various important properties of intuitionistic arithmetic
plus/minus IPY — follows immediately from the soundness of the Q-translation. Note, how-
ever, that all properties except closure under Markov’s rule follow from theorem 5.7.4.

Theorem 6.3.1. (Closure properties). Let H® be WE-HA® + IPy. Then:

1. H® has existence property, i.e. if H® + Ix°A(x), then H® I A(t®) for extractable term t
with FV(t) C FV(A)\{x}.

2. H® has disjunction property, i.e. for closed A and B,

ifH® AV B, then H°+ A or H® F B.
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3. HY is closed under the rule of choice (ACR):
ifH® - Vx°3y*A(x,y), then H® - 3Y°"Vx®A(x, Y x).

4. H® is closed under the rule of independence-of-premise for purely universal formulas
(IPRY):

H® F- VxAqe(x) — 3y°B(y) implies H® F 3y° (VxAqi(x) = B(y)),
y & FV(VxAqr) and Ayt is quantifier free.
5. H? is closed under Markov’s rule:
If H® b =—3x°Age(x,a), then H® - Tx®Aq(x,a).

Proof.

1. Assume H® - JxA(x,a). By soundness of Q-interpretation there are closed terms T and
T such that '

. - He kVyAQ(Ta,y;'Toa,a) AA(TOQ,O)- ‘

Take the-second conjunct of this.

2. Assume H® - AV B for closed A and B. By soundness of Q-interpretation and computabil-
ity of type O terms there are closed sequences of terms ¢, and a number term n such that

HF (n=0- VyAo(t1,Y) ANA) A (n#£0— YvBy(t2,v) AB).
If n equals O then H® }- A, otherwise H® - B. L
3. Similarto 1. -

4. Let a proof in H® of VxAq¢(x) — 3y°B(y) be given and assume w.L.o.g. that Aq¢ is —-free
and V-free. By soundness we have '

H® F Vv ((Vw < Tv)Aqt(T 1wv) AVxAge(x) = Bo(t1,v,1§) AB(5)).
This implies
H® - (Yw < Tv)Ag(T \wv) AVxAge(x) — B(15).
And since we have VxAq(x) — (Yw < Tv)Age(Twv) we also have
VxAge(x) = (Vw < Tv)Age(T 1wv) AVxAge(x),
and from this follows
VxAgt(x) = B(15)
by using syllogism. This implies by axiom Q3 and modus ponens the desired conclusion.

5. Similar to 1 using that H® F =—Ag ¢ Age. 4
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6.4 Q-interpretation is not closed under deductions

The following phenomenon is due to a combination of (i) the weakening which occurs when
an implication is translated and (ii) the fact that IPY is Q-interpretable in WE-HA®, ]

The Q-interpretation is not closed under deductions. This means that there exist formulas
A and B such that: '

1. B follows logically from A,
2. A can be Q-interpreted in WE-HA®, but
3. Bis not Q-interpretable in WE-HA®.

To show this, let C be some closed instance of IP?, such that C is not provable in WE-HA®.
It is not that simple to show that there exists such an instance, but see (Smorynski, 1973,
369-370) for an example. However, in virtue of soundness of Q-translation we know that

WE-HA® F VyCo(t,y), (6.13)

for some closed ¢. On the other hand, it is also the case that C — CVC is interpretable in
WE-HA®. But CVC is not. If it were, we would — due to the disjunction property — be able
to derive C in WE-HA®, but we know this is not possible. Now, a derivation of CV C could
have the following form in WE-HA® +IP®:

C C-sCvC
- MP
cve

But as was shown in the proof of theorem 6.2.3 we need the left sub-derivation of the non-

interpreted derivation in order to interpret the conclusion of modus ponens. Although both C

and C — CV C are interpretable in WE-HA®, CV C is only interpretable in WE-HA® + IPy.
In the general case this shows, by taking

A=CA(C—-CVC(C) and B=CVC,
that
WE-HA®/ (A — B) - (A2 - B9).

6.5 Closure properties of WE-HA® + IPY + MP® + AC +T by Dialectica

We have seen that the Q-interpretation cannot be used to show closure properties of theories
based on MP® or AC, but — as will become clear in this section ~ the ordinary Dialectica
interpretation can be used for this.

Strictly speaking it is not necessary to develop the Q-translation in order to derive part 5
of theorem 6.3.1. This fact can be proved by the Dialectica interpretation alone, due to the
equivalence

(—|—-3quf(x))D “© ELYﬂ-!Aqf(x) .
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Actually, something much stronger can be proved. For the rest of this chapter let I' be any set
of true purely universal sentences. It follows from theorem 4.3.2 that

if WE-PA® +QF-AC + ~—3xAq¢(x) from I, then WE-HA® |- 3xA4¢(x) from I".
. q q

In fact this is responsible for the success of Dialectica + negative translation in the context of
classical arithmetic.*

We will now use the Dialectica interpretation to show closure properties of WE-HA® +
IPY + MP® + AC+T. As was shown in chapter 2 we have

WE-HA® +1P® 4 MP® + ACH A < AD. (6.14)
This observation leads to the following theorem which can be found in (Troelstra, 1973, 260).

Theorem 6.5.1. (Closure properties). WE-HA® + IPQ + MP® + AC+ T has dxs_;unctmn
property, existence property, is closed under ACR, IPR“’ and Markov'’s rule.

Proof. The theorem is proved in the same way as the closure properties were proved by using
mrt, now using property (6.14) as truth property. That I can be added is due to the fact that
I does not contribute to the computational content, as was noted on page 64. oA

6.6 Constructiveness of WE-HA® + IP? + MP® + AC +T

Let us now see what the result obtained in the last paragraph has to say about constructivity,

and hence pursue the motives of Godel, as cited in the beginning of the chapter. We will
in a broader context try “to answer the question in which sense intuitionistic logic ... is
constructive”. It will be broader since we will also consider non-intuitionistic principles.

We denote the theory WE-HA® +IP® + MP® + AC+ T as H. For any such I, which we
happen to know, for some reason or another the truth of, we will argue that H is constructive.
Certainly, it is a strong and interesting theory. In our view theorem 6.5.1 together with the
general reduction (theorem 3.7.1) of the theory to the quantifier free fragment of WE-HA®
together with I" shows that WE-HA® + 1Py + MP® 4+ AC + T really is a constructive theory.
This is surely in conflict with the BHK interpretation, since already MP® and IP{ are not
validated under that interpretation. But we see no reason why BHK — which is a very general
interpretation independent of any specific mathematical theory — should have monopoly on
what is constructive in our specific context of arithmetic. On the contrary, we find that the
Dialectica interpretation provides conclusive evidence for the constructivity of H':

Firstly, theorem 6.5.1 shows that H' has the pleasant and desirable properties one would
be inclined to require of a constructive theory. For instance, if H' proves a sentence Ix°A(x),
where A is of arbitrary complexity, then if fact one can provide constructively a closed prim-
itive recursive functional ¢ of type ¢ such that H' proves A(t®). Thus, the principles are
computationally meaningful. Of course, that fact that ¢ actually has property A is proved

40n the other hand, if we want to extract computational content from classical proofs and work with modified
realisability we need some device in order to show closure under Markov’s rule. But as we have seen there is no
such result for E-HA®. However, A-translation can be used to show closure of HA under Markov’s rule.
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using the whole theory. But we see no specific problem in that—:° s still computable. How-
ever, if one is inclined for having a complete reduction to some theory, that even orthodox
intuitionists regard as constructive, then the following should convince them:

Secondly, we have in the Hilbertian sense a reduction of HI to the quantifier free part of
WE-HA® together with I". Theorem 3.7.1 shows this. Due to this reduction we have that if HT
proves a V3-sentence such as Vx®3y*Aq¢(x,y), then indeed there is a constructive procedure
given by the very proof of theorem 3.7.1 which provides a closed primitive recursive func-
tional ¢ of type o7 such that for any x°, Aq¢(x,2x) holds, and this is verified in an essentially
quantifier free way.




CHAPTER 7

Conclusions

Coming to the end of our investigation we will try to sum up the mathematical and philo-
sophical significance of the results obtained. But first we will make clear what parts of the
mathematical discipline proof theory we have studied and why. ‘

Proof theory is not exclusively a study of the foundations of mathematics. But large parts
of proof theory are foundational studies in different ways. Mathematical theories, and thereby
also various programs,' can be formalised and studied in several ways. We will mention three
such ways:

1. The theories can be studied with respect to ordinal strength. This part of proof theory
is called ordinal analysis. It can be seen as a natural outgrowth of Hilbert’s focus
on consistency, since typically in ordinal analysis one measures a formal theory S in
terms of the least constructive ordinal @ such that primitive recursive arithmetic plus
quantifier free transfinite induction up to ¢ proves consistency of S:

PRA + QF-TI(a) I Cons.

The paradigm for ordinal analysis is, without any doubt, Gentzen’s work (1936; 1943) .
on Peano arithmetic. We have not in this thesis been concerned with his part of proof
theory. ' :

2. The derivations of theories can be studied with respect to computational content.
This part of proof theory studies the constructive aspects of certain prima facie non-
constructive mathematical principles, as for instance weak Konig’s lemma. When ap-
plied to specific proofs using non-constructive notions this part of proof theory is called
proof mining. The program was initiated by G. Kreisel, but is also related to:

3. Reductive proof theory. In general one tries in reductive proof theory to understand and
justify ideal aspects of mathematics in more constructive terms. Non-constructive the-
ories can be reduced to constructive theories; theories using quantifiers can be reduced
— as we have seen - to theories without quantifiers, and so forth. This part of proof
theory can be understood as a generalised form of Hilbert’s program, where one seeks
local reductions, instead of global reductions. S. Feferman has contributed greatly in
this area.

These three branches are of course related, but their interests and purposes are somewhat
different. In ordinal analysis the main interest is a mathematical calibration of theories in
terms of ordinals. Proof mining unwinds the constructive content of certain proofs: this has

) "Examples of such programs are: 1. E. Bishop’s constructive mathematics. The philosophy behind this program
is expressed in (Bishop, 1970), and this could roughly be said to be comprised by IL® + N 4- MP® 4+ IP? 4+ QF-AC,
where N is the set of natural numbers. 2. The intvitionism of L.E.J. Brouwer is associated with intuitionistic
logic together with the theory of choice sequences and bar induction. 3. The mathematics of H. Weyl (1918) is a
predicative development of mathematics taking N for granted. This is formalised by system W, see Feferman (1988).
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both mathematical and philosophical consequences. Whereas in reductive proof theory, con-
ceptual reductions of specific theories are found, and the investigations are philosophically
and mathematically motivated. The branches are, however, related: Ordinal analysis can, for
instance, be one route into reductive proof theory, but certainly methods from reductive proof
theory can also provide results in ordinal analysis.> However, some directions express very
different motives. As an example of this we have seen that precisely those statements which
are central to ordinal analysis — purely universal sentences expressing consistency — are on
the contrary harmless with respect to computational content when used as assumptions. This
was noted repeatedly by Kreisel in the 50s and it probably sharpened his critique (Kreisel,
1958, 155) of Hilbert’s insistence on consistency proofs.3
The proof theory treated in this thesis has been a combination of 2 and 3.

A recapitulation of our motives and goals

As mathematicians we cannot restrict ourself to strictly constructive methods, where strictly
is understood in the sense that the methods are constructive in any given situation. Such me-
thods which are globally constructive are indeed pleasant to have, but not sufficient. Ideal
elements, in the sense of Hilbert, are in general indispensable but they need to be analysed.
One of our goals has been to analyse classical principles — primarily extensionality, Markov’s
principle, independence-of-premise and axiom of choice — locally in the framework of type
theory. We wanted to examine these concepts and principles in an un-biased way in order
to get some constructive understanding of them. In our proof theoretical analysis we have
used the Dialectica interpretation, modified realisability and variants hereof together with
Kuroda’s negative translation and A-translation. We have thereby examined the principles
and calibrated their computational contribution. But we have also used the Dialectica inter-
pretation as a general tool in reductive proof theory when we reduced WE-PA® + QF-AC to
WE-T.

7.1 Interpreting mathematics by methods from proof theory

The interpretation of “—” turns out to be crucial. This is where realisability and functional
interpretations really differ. Realisability only goes from left to right in an implication, so to
speak. This is clear from chapter 5 when we defined modified realisability. The first pages
of chapter 6 also showed this when we discovered that there is no Dialectica-with-truth inter-
pretation. In this respect realisability is quite close to the BHK interpretation. The Dialectica
interpretation of implication, on the other hand, goes in both directions, thereby verifying
the classical equivalence —VxAq(x) <> Ix—Aqs(x), i.e. verifies Markov’s principle. All this
points towards the fact that modified realisability and Dialectica interpretation are structurally
different: They present different ways of interpreting mathematics or — more precisely — of
interpreting the logical operations, most notably implication. These differences show up as

2See Feferman (2000) for a thorough survey, where reductive proof theory are divided into three separate
branches.
3For a clear account of this critique and a formulation of Kreisel’s own program see (Kreisel, 1987).
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differences in the interpretations of extensionality, Markov’s principle and independence-of-
premise. .

7.1.1 Extensionality and Markov’s rule

In general, the notion of equality as an extensional notion is constructively problematic. How-
ever, in most circumstances a mathematician would regard two functions f and g to be equal
if for any x, f(x) = g(x); likewise we regard two sets t0 be equal if they have the same
elements. Although natural, extensional equality is certainly not decidable. Two Turing ma-
chines M, and M,, can be given by two different descriptions. However, they compute the
same recursive function if for any x, M, halts on x iff M, halts, and if they halt they have
the same output—but this is not decidable. Extensionality is globally a non-constructive no-
tion, but how much of it can we retain in the framework of typed arithmetic. We have seen
that we can use full extensionality within' HA® when we prove an existence formula: mod-
ified realisability validates trivially extensionality. However, we do not get a reduction in
the sense of Hilbert, since the fact that the extracted realiser actually does what is required
is proved by applying to the full theory. But still, it is interesting and mathematical useful
that modified realisability can validate full extensionality. However, if we want any notion
of Markov’s principle - if only Markov’s rule for numbers — then the system immediately
gets non-constructive and eventual realisers cannot be any of the functionals in the sense of
Gdédel’s T: Due to theorem 5.5.1 we see that E-HA? is not closed under Markov’s rule and -
that there cannot be a modified realisability interpretation of E-HA® + Markov’s rule.

When we in general want to extract computational content from classical proofs, closure
under Markov’s rule is necessary. Suppose Ags is quantifier free and that JxAg¢(x) is prov-
able in some classical theory T.. Then by negative translation ~—3xAq¢(x) is provable in
the intuitionistic counterpart T;. Now we need closure under Markov’s rule. But if that is
impossible then we cannot use realisability nor Dialectica for extracting constructive content.
Therefore, if we want to unwind classical proofs we have to abandon the full theory E-PA®.
This shows that the application — mentioned as item 4 on page 11 — that Godel had in mind
when developing Dialectically is principally unattainable in the case of E-PA®.

We can, however, with respect to certain sentences provable in E-PA® eliminate exten-
sionality in the sense of Luckhardt (1973). But in the general case we have to stick to what
is next best: weak extensionality. From the Dialectica interpretation we see that weak exten-
sionality together with Markov’s rule, in fact the much stronger Markov’s principle, can be
validated. Therefore, weak extensionality together with Markov’s principle can be given a
constructive interpretation. '

7.1.2 Markov’s principle and independence-of-premise

Independence-of-premise, (A — JyB(y)) — 3y(A — B(y)), y ¢ FV(A), is another globally
non-constructive principle. But a particularly strong instance of a restricted principle is in-
terpretable by modified realisability, namely the case where A is 3-free: IPS. Due to mrt-
interpretability of the this principle we can use it when we prove existence theorems and still
extract a realiser. However, theorem 3.8.1 showed computational incompatibility between
Markov’s principle and IPg;: there cannot be given a computational interpretation of any
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arithmetical theory containing MP® and any independence-of-premise principle as strong as
IP%,. The theorem showed that such a theory would be strongly non-constructive, and we
even saw (theorem 3.8.2) that WE-HA® + MP? is not closed under the rule of independence-
of-premise for negated purely universal formulas :

IPRY, : F =VxAge(x) = 3yB(y) = + Iy(-VxAqe(x) = B(y)),

though WE-HA® is.

But in case of IP?, Dialectica validates both MP® and IP{;’ This poses a real choice be-
tween the two interpretations. We see that Markov’s principle and independence-of-premise
are in conflict, precisely as Markov’s rule and full extensionality are.

Markov’s principle is a strong principle with appealing mathematical consequences. It
is precisely due to the validation of Markov’s principle that functional interpretation (to-
gether with negative translation) can be used for extracting constructive content from proofs
in WE-PA® + QF-AC and many other classical theories. On the other hand, Markov’s prin-
ciple is not validated (theorem 5.4.1) by our second extraction method: negative translation
+ A-translation + modified realisability. Therefore, this strategy does not interpret QF-AC
on top of classical arithmetic. In fact, due to the limitations of A-translation, this device can
only be applied to proofs of Hg formulas in PA. These problems can partly be remedied using
refined versions of A-translations, see (Coquand & Hofmann, 1999; Schwichtenberg, 2000;
Berger et al., n.d.).

7.2 Evaluation of modified realisability and Dialectica interpretation

Modified realisability has certain advantages. In an intuitionistic context it interprets full ex-
tensionality and IPY. But because extensionality and IP$; are in conflict with Markov’s prin-
ciple certain problems show up. Foremost, negative translation + A-translation + modified
realisability cannot be used directly for interpreting classical type theory with full extension-
ality, only proofs in PA of Hg formulas allow for program extraction. This is a weak spot.
Moreover, the combination of the three translations is perhaps not that elegant and uniform as
negative translation + functional interpretation. However, there are many ‘parameters’ — so
to speak — in the overall interpretation which allow for optimisation. This is what U. Berger
and H. Schwichtenberg use in their paradigm of program extraction; see for instance (Berger
et al., n.d.). They treat equality on the meta-level and consider terms with the same normal
form to be equal. In this way they get around some of the problems occurring when one uses
realisability for extracting constructive content from typed classical arithmetic, though they
have to deal with normalisation.

On the other hand functional interpretation allows for a uniform approach to the problem
of extracting constructive content from proofs. It gives an optimal interpretation of the combi-
nation of extensionality, Markov’s principle and independence-of-premise. It is remarkable,
for instance, that Markov’s principle is validated even in higher types. These properties of
Dialectica is to the effect, as we will indicate below, that it is a strong tool for extracting
computational content from proofs in analysis.
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7.2.1 Closure under rules

Before the Q-interpretation it has been unknown whether the Dialectica idea could be used to
show closure under various rules, existence property and disjunction property of intuitionistic
arithmetic. Recall, that it was one of the motives for Godel (1941) to show such properties, but
that he was only able to show realisations of the interpreted formulas. Modified realisability
with truth has, on the other hand, been an effective tool in showing such results. We have,
however, shown that with respect to functional interpretations there is no principle obstacle
in these matters, and that the Q-interpretation can be used just as well to show these crucial
. properties of intuitionistic arithmetic (having only weak extensionality of course).

7.3 Two strong constructive theories

Depending on which interpretation one chooses, different theories are validated as construc-
tive. This shows how crucial the interpretation of implication is.

7.3.1 WE-HA®+1PQ+MP®+AC+T

If T" is some set of universal sentences which we happen to know the truth of then the Di-
alectica interpretation validates WE-HA® +IPY + MP® + AC +T as a constructive theory.
This was discussed extensively at the end of chapter 6. It is constructive in the sense that
it has existence property, disjunction property and is closed under various rules. Although
the theory is based on principles which are prima facie non-constructive (i.e. in conflict with
the BHK interpretation) a closer analysis shows that the principles are locally constructive.
They do carry computational content and we also have a method for extracting it. This shows
that the BHK interpretation is a very general (global) rule of thumb regarding constructivity,
but when it comes to specific theories one can constructively allow for more than what BHK
validates.

7.3.2 E-HA®+IP§+AC+T

Modified realisability interprets E-HA® + IP% + AC + I', where I is any set of true 3-free
sentences. Theorem 5.7.6 shows that this theory has existence property, disjunction property
and is closed under the different rules, except Markov’s rule. This last exception is, however,
a big disadvantage in connection with program extraction from classical proofs—as discussed
above. And if one requires of a constructive theory that it is closed under Markov’s rule, then
this theory fails to be constructive.

7.4 Dialectica as a tool in proof mining and reductive proof theory

In a continuation of Kreisel’s program — the program of proof mining — the Dialectica in-
terpretation and variants hereof have interesting applications in classical analysis. Dialectica
is a local transformation which means that the form of the proof is not changed essentially
under the interpretation. This makes it easy to apply to real proofs.

In contrast to the situation just five or ten years ago (see e.g. Feferman (1996)) it seems
today as if applications of proof theory in analysis has a promising future. Especially Kohlen-
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bach has by now given many interesting clear cut applications of the Dialectica interpretation
thereby providing specific information with respect to non-effective proofs in analysis. That
is, information actually sought by mathematicians of analysis.

Kohlenbach (1993) shows how to represent real numbers as Cauchy sequences of rational
numbers with fixed rate of convergence in extensions of systems we have studied here and
how to represent also complete separable metric spaces and compact metric spaces.* Using
these representations it is shown how many important theorems of analysis have forms which
allow for constructive interpretations, thus making it possible to extract constructive informa-
tion from non-constructive proofs in analysis, This turns out to be particularly successful in
connection with uniqueness proofs in best approximation theory. Specifically, Kohlenbach’s
work yields improvement of known estimates in connection with Chebycheff approximation.
This work is continued in (Kohlenbach, 1993a). Another result obtained recently in (Kohlen-
bach, n.d.) also gives an example of how successful the idea of analysing proofs in functional
analysis can be. Kohlenbach has by use of functional interpretation and majorization im-
proved bounds considerably in connection with the so-called Krasnoselski-Mann iteration.

One of the reasons why Dialectica is powerful in these interpretations is due to its inter-
pretation of VxAge(x) — VyBgs(y):

XV (Age(Xy) — ¥yBae(3)).

Because of this interpretation Dialectica provides computational information in the case
where VyBq(y) is false. This is in contrast to realisability.

Proof mining is interesting for mathematical and philosophical reasons concerning com-
putational realisations. Reductive proof theory is connected to this, but the philosophical
emphasis is closer to Hilbert’s ideas with respect to reducing complex theories to simpler
theories. Functional interpretation is a very important tool in reductive proof theory seek-
ing partial realisations of Hilbert’s program. In chapter 4 we saw Dialectica at work and it
reduces

WE-PA® + QF-AC to WE-T

in the sense that for any sentence Vx®3y*Aqs(x,y) of L(WE-PA®) we have a constructive
procedure (-)* which takes any proof p in WE-PA® + QF-AC of Vx93y*Ag(x,y) into a proof
p* in WE-T of A4 (x®, Tx), where T°F is some closed primitive recursive functional given by
the proof transformation. p* is not much longer than p and has essentially the same structure,
due to the locality of the interpretation. This is a clear cut contribution to a generalised Hilbert
program, since it shows that all ideal elements — such as tertium non datur, quantifier free
axiom of choice and induction on complex formulas — used in the proof of Vx®3y*Aq(x,y)
can be eliminated. The reflection principle — as stated on page 4 as the essence of Hilbert’s
program — is provable for this class of formulas. Moreover, we can extract for these formulas
a realiser for y. Finally, the reduction shows consistency of WE-PA® 4 QF-AC relative to a
natural generalisation of Hilbert’s finitism, as discussed in section 4.5.1.

“The typed language is very useful and allows for simplifications when compared with second order systems as
for instance WKLg as used by Simpson (1999).
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This reduction was extended (also in chapter 4) in order to get a redudion of
WE-PA® + QF-AC+T to WE-T+T,

where I is any set of true purely universal sentences. This observation generalises to many
different theorems of this kind based on functional interpretation. Both for stronger and
weaker systems and for systems not comparable to those studied in this thesis. For instance,
let WKL be a formalisation of a binary version of Ko6nig’s lemma. Utilizing the notion of
majorization Kohlenbach has shown that in systems of the kind studied in this thesis exrended
by WKL and restricted forms of comprehension one can add arbitrary axioms of the form

Wx!' Iy < sszOAqf(x, %2),

without having to consider their proves. This covers as a special case WKL. Also, let E-PRA®
denote the restriction of E-PA® with (i) quantifier free induction and (ii) primitive recursion
in type 0 only, but with parameters of arbitrary types. Now, Kohlenbach (1992) shows that

E-PRA® + QF-AC!? + QF-AC%! + WKL is conservative over PRA

for Hg formulas. Note that already QF-AC%? suffices to get the system WKLy as a subsystem.
This reduction is particularly interesting since E-PRA® + QF-AC!? + QF-AC%! + WKL is
a ‘strong theory where a good deal of analysis can be carried out. In the theory we can
prove, for instance, the Heine-Borel covering lemma: Every covering of the closed interval
[0,1] by a sequence of open intervals has a finite sub-covering. Within the theory it is also
provable that any continuous real-valued function on [0, 1], or on any compact metric space,
is bounded; see (Simpson, 1999, 36) for a list of theorems provable in WKLg. The theory
is, nevertheless, proof theoretical weak in the sense that it can be reduced to PRA, which
essentially corresponds to Hilbert’s finitism.

WKL expresses compactness of the Cantor space. It is thus interesting to see that func-
tional interpretation is capable of ascribing constructive meaning to a notion such as com-
pactness, which is a very fruitful concept in classical (ideal) mathematics.

We thus conclude that functional interpretation as a tool for analysing mathematics, for
justifying ideal elements and for unwinding constructive content from classical proofs is
a particularly strong tool, which provides deep insights with relevant conclusions both for
mathematics and for philosophy of mathematics.

7.5 Different interpretations—different validations: Mathematics and language

Finally, we will come back to the fact that different interpretations validate different princi-
ples; the fact that there is no unambiguous characterisation of constructivism. We see that
it is somehow up to the individual to choose the interpretation which fits the mathematical
problem at hand, or the one which - in his view — gives the broadest and most coherent inter-
pretation. Why is this? This certainly is a difficult question. But our generalised Hilbertian
view on mathematics — as outlined in the first chapter — has something to say on these matters.
There is some finitary and absolutely objective part of mathematics, and as such there are no
problems with respect to this. But as mathematics evolves, ideal objects are introduced—the
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set of all natural numbers for instance. But given this set it is natural to ask for the set of
all subsets of natural numbers. And in this way many other abstract ideal elements are in-
troduced, such as compactness, transfinite induction, and so on. However, as the progression
takes place, mathematics exceeds the power of any language, since — due to the following
argument — we cannot have names for all subsets of the natural numbers.

Any alphabet must be countable and any name must be some finite combination of letters
from an alphabet. Since all names from any given language can be ordered lexicographically
there can be only countable many names. Therefore no language can capture all aspects about
ideal mathematics. This is again contrary to Hilbert who thought that we could investigate all
aspects and details concerning mathematical concepts and objects by the axiomatic method.
But since language is what we have for describing mathematics, the failure of language to
capture all aspects about mathematics explains why we do not get a clear cut global inter-
pretation of mathematics, since any interpretation must be relative to some specific language.
However, as we have seen in numerously examples of this thesis, there are definitely local
interpretations which carry important mathematical and philosophical consequences. The
Dialectica interpretation is one of them.
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