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Abstract

This thesis summarizes some important results from the theories of Riemann
surface geometry and complex dynamics in order to apply them in the anal-
ysis of quadratic correspondences. The example of the arithmetic-geometric
mean value is used as a starting point to expose some properties of qadratic
correspondences. Attempts to define Fatou and Julia sets as well as regular
and limit sets for correspondences are presented.

Resumeé

Denne afhandling opsummerer nogle vigtige resultater fra teorierne om geo-
metri p Riemann flader og kompleks dynamik og behandler deres anvendelse
i analysen af kvadratiske korrespondencer. Den aritmetisk-geometriske mid-
delvaerdi benyttes som udgangspunkt til en undersggelse af egenskaberne af
kvadratiske korrespondencer. Forsgg p4 at definere Fatou og Julia maengde
savel som regular og gransemangde for korrespondencer praesenteres.
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Guidelines for the Reader

This report is a Master of Science thesis, and though the first chapters are
written so that most readers with some background in mathematics should
be able to read it, the level of difficulty will increase throughout the text. In
accordance with the Roskilde University Mathematics Department rules, this
thesis covers an equivalent of two mathematical courses, and the contents of
these shall be represented in this thesis. The subjects I have chosen are the
following

e Geometry of Riemann surfaces in particular the geometric tools that
are suitable for considering the covering surfaces of the complex map-

pings.

o Complexr Dynamical systems, some of which is from the “Intensive Pro-
gramme on Complex Dynamics” in University of G6ttingen, summer
1998. The programme consisted of different mini-courses taught by
some of the researchers in the field.

Many of the results in this thesis are built on some basic concepts which will
be known to some readers but not all. I have chosen to include some of these
useful concepts in the beginning of the thesis. The outline of the dynamics of
rational functions is presented on a somewhat easier level for the interested
non-specialist or student. Some readers may want to skip these parts if they
are familiar with the basics of topology, geometry or complex dynamics. I
apologize for the decreased readability of the thesis on this account.

I will now give a brief outline of the thesis:

1. We will draw heavily on the theory of Riemann Surfaces, and the
theory will be presented as the first of the two defined subject areas

2. The second subject area is complex dynamical systems. We will begin
with an apetizer of complex dynamical systems with an introduction
to the problems of rational iteration and some examples of what a
dynamical system can be.

3. With the advent of the notion of normal families there was a vast
development in dynamical systems theory. We will explore this theory
and the dynamical dichotomy of the Julia and Fatou sets as well as
that of the regular and limit set of the Fuchsian groups.

4. Starting with the arithmetic-geometric mean we will move into general
quadratic correspondences and try to find parrallels to the themes of
rational iteration, in particular the dynamical dichotomy.
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Preface

Some of the most publicized images of mathematics through the last few
decades are the fractal images exposed by BENOIT MANDELBROT [Man82].
One of these, The Mandelbrot set shown in figure 1, is important in this thesis,
and we shall return to it in section 3.3. It is obvious that mathematics with

Figure 1 The Mandelbrot set.

such a pretty face would become known (at least the face of it) in a great part
of the general public. The field that the Mandelbrot set became a symbol of,
however, is capable of a lot more than creating pretty pictures. The reason
why the mathematics of dynamical systems have become a key field is that
the computer power which enabled mathematicians to create the pictures
of fractal sets also enables physicists and mathematicians to consider such
problems where computation leads to unpredictable results, or where the
results are so complicated that “chaotic” is almost a suitable word for them.
Not quite though, since the results in this case are deterministic, governed by
the equations of the system. This has led to the term “deterministic chaos”
which is something of an oxymoron.

It has been known for centuries that some mathematical computations give
very diverse and unpredictable results. One of the early examples is the
arithmetic-geometric mean of C.F. GAuss which is found in chapter 4. The
above picture of the Mandelbrot set shows just how intricate the results
can be. If you look closer on the boundary of the Mandelbrot set you will
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encounter smaller structures similar to the original cardioid-and-circle-with-
antennas shape. This type of self-similarity and periodicity are features
which also appear in the physicists’ theories of dynamical systems.

Chaos is one of the great inventions in modern physics, and the methods
of dynamical systems are used in theoretical physics to shed light over the
relationships between small perturbations of initial conditions and large scale
differences in system evolution. The commonly known example of the effect
is known as the butterfly effect proposed by the meteorologist EDWARD N.
LoRreNz: A butterfly flapping its wings in Asia sets a breeze in motion which
is amplified by the atmospheres instantaneous wind patterns and a few days
later the flapping of the butterfly’s wings in Asia has turned into a storm on
the US West Coast. This scenario is now becoming more of a natural law in
the public eye than the paradox it was originally posed as.

The part of theoretical physics which deals with theoretical equilibrium prob-
lems builds on statistical theory and measure theory, and it is beyond the
scope of this thesis to deal with this branch of dynamical systems, but we
can hint to where the problems lie. The ergodicity theory has its roots in the
ergodic hypothesis which in one of its many forms has the essence that

Any point in a system’s phase space will be approrimated arbi-
trarily close by the system in finite time.

This basically means that the variation we can expect from the system as
time goes by is all the possible variation the system is capable of. The usual
thought experiment which illustrates this is that we consider a small box
with some air in it and place it in a much larger box that is empty. We
open the small box and let the air distribute in the larger space and ask
ourselves: Can the gas again, by its own movement end up in the smaller
box again? We can by statistical methods determine the probability of any
given distribution of air in the box; and of course, the probability of the gas
returning to the small box is very small but positive. With this in mind, the
ergodic hypothesis, that the gas will at some point end up in the smaller box
again is perhaps plausible.

It is not difficult to realize that when everything is predictable, there is no
chaos in this system. The only type of chaos we can have in the system
is the ignorance of the exact distribution of particles due to the diversity
of the system. It isn’t chaotic in the sense that we have no possibility of
knowing what happens. We can by the laws of mechanics determine the
exact position of any particle if we know its initial position and velocity. We
can be unable to measure the exact positions of any one particle, but the
behaviour of the system is well understood. We can call the condition of the
system “deterministic chaos” and this is a property that is present in many
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mathematical models of real-life systems. The existence of the “chaotic”
behaviour in mathematical systems can even be what essentially makes the
system a model of the real-life chaotic dynamics. This is why fractals and
chaos are often mentioned in one sentence, and it is why there is good sense
in studying such systems from other than a purely mathematical points of
view.

It is customary to state some characteristics of chaotic behaviour in deter-
ministic systems. The following characteristics are adapted from ROBERT
L. DEVANEY [Dev92], [Dev86].

1. The system is critically dependent on initial conditions. Two arbitrarily
close points* will eventually end up arbitrarily far from each other
(“butterfly effect” discovered by Lorenz).

2. The system has dense periodic orbits, so that anywhere in the sys-
tem, we encounter points which in a finite number of steps map to
themselves.

3. the system is ergodic as described above, any point can be ApProx-
imated arbitrarily close in-a finite number of steps. Some authors
use instead of ergodicity the notion of topological transitivity, which is
largely equivalent, see e.g. [Dev86]t.

Recently it has been proved that any topologically transitive system with
dense periodic orbits is critically dependent on initial conditions, i.e. the
two latter properties imply the first [BBD*92].

This work is in the tradition of complex iteration, where the goal is to com-
pletely classify the dynamics of rational functions under iteration. The prob-
lem I have chosen to work on is that of generalizing the results of rational
dynamics to quadratic correspondences. To pose it as a question:

How do some of the important features of rational dynamics
translate into quadratic correspondences?

The applications of the mathematical theory in physical systems we will leave
behind, but it is briefly discussed in an article of Shaun Bullett [Bul88].

*These points can be mathematical points under repeated use of a function or points
in phase space of a physical system, where time evolution is determined by the physical
system.

tergodicity has its roots in the work of BIRKHOFF and KoLMoGoROV and is used mostly
in the theoretical physics branch of dynamical systems

9




1 Riemann Surfaces

The theory of Riemann surfaces gives a good basis for examining complex
dynamics. There is much sense in beginning with this since it will facilitate
many results. Riemann surfaces are topological spaces which meet some
extra demands. Given a map which is holomorphic on some domain in C, we
can analytically continue the map to a maximal (Riemann) surface on which
the mapping is holomorphic, thereby extending the domain of analyticity.
This line of thought is the original idea of the Riemann surfaces from which
the present notion is a generalization which we shall define in the following.

1.1 Some preliminaries

In the following we will draw on the concept of a topological space. A topo-
logical space is a pair (X, T) consisting of a set X and a topology 7 on X.
It is assumed that the reader is familiar with the fundamentals of topology.
Some properties will however be so important that we will mention them
briefly. All of the topological spaces we will treat will have the Hausdorff

property.

Definition 1.1
A topological space X is a Hausdoff space if for two arbitrary points a,b € X
there exist disjoint, open neighborhoods U of a and V of b.

The reason why this property is important is that a sequence in a Hausdorff
space can have at most one limit point. We will assume all topological spaces
in the following to be Hausdorff spaces. Let’s now move on to the property
which ensures that a sequence has at least one limit point, the notion of
compactness.

Definition 1.2

Let X be a topological space. A subset K is compact in X, if for any open
covering {U; : i € I} of K, there can be found a finite open subcovering
Ui, Us, ..., Uk of sets from {U; : i € I} that covers all of K.

Continuous mappings on compact sets are particularly nice to deal with.
They send compact sets to compact sets, and any mapping f : K —- R

11



12 Riemann Surfaces

attains minimum and maximum values. We will also deal primarily with
connected topological spaces.

Definition 1.3
A topological space X is connected, if there is no partition of X, X = UUUj,
consisting of disjoint, nonempty open sets Uy, U,.

The class of functions which conserve topology are the homeomorphisms.

Definition 1.4
Let X and Y be topological spaces. A homeomorphism f: X — Y is a one-
to-one and onto continuous map with continuous inverse.

If two spaces are homeomorphic, we also say that they are topologically equiv-
alent.

1.2 Definition of Riemann Surfaces

We review the basic concepts of Riemann surfaces with emphasis on defi-
nitions and theorems. For more details, the interested reader may look to
[For81], [FK80] and [AS60], where most of the following is found.

An n-dimensional topological manifold is a Hausdorff topological space on
which there exists an open covering by sets homeomorphic to open sets
in R™ These homeomorphisms are called charts and they define a local
coordinate on the manifold by the corresponding coordinates in R™. In the
following we will consider two-dimensional manifolds — surfaces. When a
collection of charts covers the surface and any two charts ¢; and ¢; have
holomorphic overlap, that is, the change ¢» 045;1 from one coordinate to the
other is holomorphic in any point where both are defined, then the family
of charts is called an atlas. A complex structure is an equivalence class of
atlases defined by the equivalence relation where two atlases are equivalent
if the overlapping charts from the two atlases have holomorphic coordinate
change.

Definition 1.5
A Riemann surface is a connected two-dimensional manifold S together with
a complex structure of local charts ¢ : S — C.

Functions on Riemann surfaces can be said to inherit the properties of com-
plex functions in the following way. A continuous mapping between Riemann
surfaces S and T is holomorphic if for every pair of charts, ¢ : S — C and
¥ : T — C, the complex function o fop~! : C = C is holomorphic. In this
fashion, all the well-known complex function theory applies to the Riemann
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surfaces. A singularity for a function f : § — T between Riemann surfaces is
removable if the corresponding singularity is removable in C. Two Riemann
surfaces S and T are said to be isomorphic if there exists a biholomorphic
map f:S—T.

Charts and atlases are usually of no interest to us. We assume from now on
that we can use the maximal atlas on the Riemann surface. The maximal at-
las contains, losely put, all possible charts from the atlases in the equivalence
class. '

The simplest example of 2 Riemann surface is the complex plane itself. The
identity map is an obvious chart. Any subset of the complex plane is also
a Riemann surface, using the restriction of the identity map as chart. The
extended complex plane C = CU{oo} is also a Riemann surface, and is called
the Riemann sphere. The simplest atlas we can use in this case consists of
the identity chart for 2 € C, and the chart

e { e forze Ut w1)

0 for z=o0

The overlap C\ {0, 00} has holomorphic change of chart z — 1/z, so there is
a complex structure. The Riemann sphere is a simple example of a compact
Riemann surface, it is also called the one-point compactification of C.

Definition 1.6
Let S be a Riemann surface and X C S an open subset. A meromorphic map
f : X — C fulfills the following:

1. f is holomorphic on a subset X' C X.
2. X'\ X’ contains only isolated points.

3. Vpe X\ X' :lim,yp | f(2)| = 0.

When § = C, infinity is just like any other point on this surface, and therefore
all functions f : C — C which have poles which are removable singularities
in the chart z — 1/, are meromorphic. An example is the polynomials. They
are meromorphic in a neighbourhood U of oo since they are holomorphic in
all of C except co which then is an isolated point in U\ (CNU). Furthermore,
any polynomial p(2) maps oo to itself d = deg(p) times. To realize this, look

at
1

p(Yz)
which maps 0 to itself d times, and therefore 0 is a removable singularity.

=24(14..) (1.2)

In complex analysis we have LIOUVILLE’s theorem which states:




14 ' Riemann Surfaces

Theorem 1.7 (Liouville’s theorem)
Any bounded holomorphic function f : C — C is constant.

For compact Riemann surfaces we have the corresponding theorem as an
immediate consequence

Theorem 1.8
Any holomorphic function f : X — Y from a compact Riemann surface X
to an open Riemann surface Y is constant.

Evidently, holomorphic maps on C are not very interesting, but the mero-
morphic maps give rise to many interesting situations, just as holomorphic
mappings on open Riemann surfaces.

1.3 Geometry on surfaces

In order to treat some of the geometrical issues of dynamics, we shall need
some basic tools, such as curves and fundamental groups.

Definition 1.9
By a curve in a topological space X, we mean a continuous map u: I — X,
where I is the closed unit interval [0, 1] in R,.

The point @ = u(0) is called the initial point of the curve, and b = u(1)
the end point. Note that the definition of the curve gives an orientation of
the curve. The curve runs from a to b. We can define the curve with the
opposite orientation uv~ (t) = u(1 — t).

The product curve of two curves is defined if the curves have a common end
point. If » : I — § has initial point @ and end point b, and v: I — S is a
curve from b to ¢, then the product curve is defined by

_ J u(2t) 0<t <Y,
”'”(t)‘{ v(2t-1) <t

If uis a curve on a surface, and f is a surjective continuous function f : I — I
fixing the end points, then « and u o f are two different curves which consist
of the same set of points, but at different parameter values. We wish to
develop a way to view the two curves as identical. Also, we would like
that, to some extent, curves which connect the same two points, but not
necessarily through the same set of points, can be equivalent. The concept
which allows this is homotopy. Two curves with identical initial and end
points are homotopic if they can be continuously deformed into each other.
More formally, we say
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Definition 1.10
Two curves u and v with initial point a and end point b are homotopic on
a topological space X if there exists a continuous map A : I X I — X such
that fort,s € I:

1. A(z,0) = u(z).
2. A(t,1) = v(2).
3. A(0,s)=a and A(l,s) =b.

Note that the curves © and »~ are not, in general, homotopic.

Homotopy of curves is an equivalence relation. Given zy € X, the equivalence
classes of curves with zp as both initial and end point form a group which
is called the fundamental group of the surface (X, z9). A simply connected

Riemann surface is a surface which has trivial fundamental group. Then all
~ closed curves, i.e. curves with identical initial and end point, are homotopic
to the constant curve, which consists of only one point. Interpreted on a
simply connected surface which has a complex structure, we may say that
the surface can have no holes. Figure 1.1 is an example of a surface which has
a hole. There are two different paths from a to b which are not homotopic
since the curve can’t be continuously deformed into a curve on the other
side of the hole. If we consider the product curve of the two curves, then
we get a curve u; which begins and ends at the same point, but which loops
around the hole and therefore cannot be homotopic to the constant curve.
If we then consider the curve which is the product of u; with itself, we get
a curve which loops twice around the hole and can’t be homotopic to either
u; or the constant curve. In this way, the curve u; acts as generator of the
one-generator cyclic group, which is the fundamental group of the surface
pictured in figure 1.1.

=

Figure 1.1 Surface with a hole. Not simply connected.

In general, the complement of an n-connected domain in C contains » disjoint
components. As an example, the disc is simply (n = 1) connected, an annulus
is doubly (n = 2) connected. :
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A topological space is called arcwise connected if any two points in X can
be connected by an arc that runs within the topological space. Clearly, the
surface in figure 1.1 is arcwise connected.

1.4 Tangent Spaces

Let S be a Riemann surface. The following is valid for any n—manifold,
but we will assume our surface is two-dimensional. Let p € S not on the
boundary of S. The class of functions on .S which are (C*°) differentiable in
P, 5(5), is defined by the method described on page 12.

Definition 1.11
A tangent vector to S at p is a function V, : §(S), = C sending f — V,f
and which fulfills for all f,g € §(S), and all r € C,

L Vo(f+9) =Vof +Voy;
2. Vp(rf) =1V, f;
3. Vo(fg9) = fVog +gV,f; where fg is the product of functions and fV,g

is the product of complex numbers.

This definition is from [MP77], and we will build on this.

The tangent vector V,, may be interpreted as the directional derivative of the
function in the V, direction. Let v : I — S be a differentiable curve with
v(to) = p. Let V;' be defined by

Vo) = 420 ) (13)

where the right hand side is the usual derivative of a complex function.

Proposition 1.12
V, is a tangent vector.

Proof
We must check the three conditions stated in the definition 1.11. Given two
functions f,g € F(S)p,

d(foy+goy) d(fo7) d(go7)
Y — t -_— 2 —_— L
V(f+9) 7 (to) 7 (to) + 5 (to)
since it is the real derivative of a real function, which proves that condition
1 is fulfilled. Condition 2 and 3 are also proved by reference to rules for
derivatives of real functions. ]
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The tangent space to S at p, T,,(S) is the set of all tangent vectors to S at p.
It can be seen from the definition of tangent vectors that the tangent space
is a vector space. Moreover, it can be proved that the tangent space of a
Riemann surface is a 1-complex-dimensional vector space. Given a chart ¢
defined in a neighbourhood of p on the Riemann surface, with ¢(p) = z + 1y,
a basis for the tangent space T,(S) is obtained by the functions

d 0
g, a : %'(S)p -»C
given by
d 0 . :
' (5;),, = 5;(f°¢)_1|¢(p) (1.4)
0 i)
(E>p = a—y(f°¢)_1|¢>(p) (1.5)

If we have two charts ¢, : Uy — C and ¢, : U; — C, both mapping p to 0,
the change of basis in the tangent space corresponding to the biholomorphic
change of charts 7 = @3 0 o7 : Uy = U, is given by the differential

Oy Omy
Dy= ( =W ) )
3z By

as 7 is biholomorphic, the change of charts is equivalent to multiplying with
the complex number

because of the Cauchy-Riemann equations.

(1.7)

1.5 Covering maps

Given two points z € X and y € Y on Riemann surfaces X and Y, and a
mapping f : X — Y, we say that any point z € f~1(y) lies over y. The set
of points lying over y is called the fiber of f over y. A point z € X is called
a branch point or ramification point if there is no neighbourhood U of z such
that fly is injective.

We may consider the mapping w = z¢ : C = C which has branch point and
value 0, since in any neighbourhood W of 0, a point wo € W has exactly d
inverse images ¢wp.

Definition 1.13

A continuous map f between Riemann surfaces X and Y is a covering map
if Vy € Y there exists a neighbourhood w of y such that f~!(w) = U;e1U;
and
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1. UyNnUx =0 forany j £k, j k€ I.

2. for all t € I the map f : U; = w is a homeomorphism.

If there is a covering map from X to Y, then X is said to be a covering surface
for Y. We haven’t used the fact that the spaces are Riemann surfaces. The
above definitions and many of the following propositions go for Hausdorff
spaces also, but we are mainly concerned with Riemann surfaces.

If a projection 7 from a Riemann surface X to a manifold U satisfies

1. Each point of X has a neighbourhood where 7 is injective.

2. Given any curve v in U and any point z¢ € 77 (v(0)) there is a unique
curve 71 C X such that y1(0) = 2o and 7(y1) = 7.

Then 7 is said to have the curve lifting property. Every covering map must
have the curve lifting property. For proof, the interested reader may look in
[For81].

Definition 1.14
Let f : X — Y be a covering map and h : Z — Y be a continuous map

between topological spaces. Then h:Z — X is alift of h if h = foh.

X

o

VA Y

The conditions under which a lift exists can be found in [For81].

1.6 Uniformization of Riemann surfaces

It is also shown in [For81], that if f : X — Y is a covering map and X is
simply connected, then f is the universal covering map, and X is the universal
covering of Y. There are only three distinct universal coverings.

Theorem 1.15 _
Any simply connected Riemann surface is isomorphic to either C, C or the
unit disc D.
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The proof can be found in [AS60]. This result is a cornerstone in the theory
of Riemann surfaces. It allows us to examine these three surfaces only. It
turns out that the Riemann sufaces with C or C as universal coverings are
few and simple. The most diverse surfaces and those we shall examine in
this thesis have the disc or equivalently a half-plane as universal covering.

A convenient way of treating the Riemann surfaces is by considering the
automorphisms of the universal covering surface. Let T be the universal
covering surface, and f be the universal covering map of a Riemann surface
S. An automorphism g : T — T is called fibre-preserving if any pomt t lying
over s maps by g to another point lying over s, i.e.

f(t) = fog(t) (1.8)

The fibre-preserving automorphisms for a universal covering map of any
Riemann surface form a group called the group of deck transformations. The
particular group is determined by the particular covering map. The Riemann
surface of a group of automorphisms is then the quotient surface of the
covering surface modulo the deck transformation group. An example is the
torus, which is isomorphic to the complex plane modulo a group with two
generators. '

Let T" represent a deck transformation group. The possible quotient Riemann
surfaces of the universal covering surfaces are the following

1. C/T =C.
2. C/T=C/Z or C/T =T.
3. D/T : all other cases.

Definition 1.16
A Riemann surface S is called hyperbolic if it has the disc as universal covering
surface, i.e. 3f : D — S a universal covering map.

The Riemann surfaces we are mainly concerned with here are the hyperbolic
ones. The thrice-punctured sphere C\{a, b, ¢} has the disc as covering surface
and is called the maximal hyperbolic example {Wil92].

1.7 The hyperbolic metric

The hyperbolic metric is a metric that allows the unit disc to become a com-
plete (hyperbolic) metric space, whereas it in the regular metric is bounded.
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We create the metric by defining a weight function L : D — R4 which gives
the length of a curve v in the new metric as a function of euclidean length
and position in the disc.

t = [ A (19)

The complex euclidean metric is adapted from the real 2-dimensional space,
where the distance between two points is given by

d(z,y) = V(1 — 21)% + (y2 — 72)? (1.10)
Distance between two points z;, 22 € D in the hyperbolic metric is given by
d(z1, 22) = inf {L(7)} (1.11)

~€eD

where v is any curve which connects the two points z; and zs.

The function ds = 2ldzl/;_|,p2 is called- the POINCARE or hyperbolic metric
on the disc. A line from the center towards the edge of the unit disc has
infinite length. The geodesics of the metric (curves with curvature zero with
respect to the metric — “straight lines”) are circular arcs with perpendicular
intersection of the unit circle. The metric space itself has curvature —1*.
Hyperbolic space can also be represented by the upper half plane, H, and
then the Poincaré metric is

ds = |dw|/v where w=u+ive H (1.12)

The real axis is excluded from hyperbolic half-space. Any arc along the real
axis in hyperbolic halfspace would have infinite length. Between any pair of
points on the real axis, however, one can define a unique geodesic formed as
a semicircle.

The reason why the hyperbolic metric is good to work with is of course that
the unit disc is the covering space for many Riemann surfaces. In addition,
there is a result which we shall use later on,

Lemma 1.17 (SCHWARTZ’s lemma)
Any holomorphic map f : D — D with f(0) = 0 has |f’(0)| < 1.

The version we shall use is sometimes called Pick’s theorem.

Theorem 1.18 (Pick’s theorem)
If f: 8 — T is a holomorphic map between hyperbolic Riemann surfaces S
and T with hyperbolic metrics ds and dr respectively, then

dr(f(z1), f(22)) < ds(z1,22) (1.13)
If equality holds, then f is a covering map.

Proofs of these theorems are in [Mil91] and [CG93].

*Some authors use the metric ds = IJ_%‘P-, and then the curvature of the space is —4.
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1.8 Euler characteristic

The Euler or Poincaré characteristic of a surface is deciding of the type of
covering maps which exist. The characteristic is decided by the geometry or
rather the topology class of the surface. A triangulation is a division of the
surface into triangles, where one of the edges can be the edge of the surface
if it is a plane surface. The disc, for example, can be triangulated with pie
wedges, and the Euler characteristic is

x=F-E+V (1.14)

where F is the number of faces (triangles); E is the number of edges; and
finally, V is the number of vertices. The trivial triangulation of the disc is
obtained by simply letting three arbitrary points on the boundary be vertices
and considering the intermediate arcs as edges. This gives one face, three
edges and three vertices. Hence, the Euler characteristicis y =1-3+3=1.
Dividing the disc into three wedges, we get the same characteristic x =
3 — 6 + 4 = 1, which is unique for the disc and the topologically equivalent
surfaces. . ' : ‘

The relationship between the Euler characteristic and the genus g of a com-
pact surface is

g=—= (1.15)

The genus is only defined for compact surfaces, however.

1.9 Ramified covering maps

When we have the theory of covering maps then we can prove that the degree
of the covering map has something to do with the number of critical points
of a map on the domain being covered.

Theorem 1.19

Suppose f : X — Y is a non-constant holomorphic mapping between Rie-
mann surfaces. Let a € X and f(a) = b € Y. Then there exists an integer
k > 1, neighbourhoods U and U’ around a and b respectively, neighbour-
hoods V and V' in C, and charts ¢ : U = V and ¢ : U' = V' such that

1. ¢(a) =0 and ¥(b) = 0.
2. f(U) CU".

3. pofop l: VoV mapszw 2F forall z€ V.
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Proof From [For81].

Properties 1. and 2. are easily fulfilled by careful choices of (U’,%) and
(Ur, ¢1) (replacing (U, ¢)), because X and Y are Riemann surfaces and f is
holomorphic. The function F} = 7o fo <p1“1 : V1 = V’ then has the property
F1(0) = 0 by construction, and can be written Fj(z) = 2*g(z) if g is some
non-constant holomorphic function on V' with ¢g(0) # 0. Then there exists a
function h satisfying h* = g in some neighbourhood of 0. Let a be the map
z = zh(z). a is a biholomorphic mapping from a neighbourhood V; C V;
of 0 into a neighbourhood V of 0. Now let U = (V). Then by using
¢=aoy; :U— V we obtain the map F =0 fop™! : V = V' satisfying
F(z) = z* by construction. O

A proper map is a continuous map by which the inverse image of any compact
set is a compact set. A map f : X — Y between Riemann surfaces is
a ramified or branched covering map if every point of Y has a connected
neighbourhood U so that each connected component of f~!(U) maps onto
U by a proper map. The degree d of a mapping f at a point z is a mapping
from the class of rational functions, deg: R — Nj to the positive integers
and zero, and represents the number of inverse images of w = f(z), counted
with multiplicity. We also say that w is taken with multiplicity d. A proper
holomorphic map has finite degree at any point. The importance of proper
maps is evident from the next theorem, which asserts that proper maps have
the curve lifting property. For proof, consult [Ste93].

Theorem 1.20
Suppose that f : D — S is a proper map.

1. Every arc v avoiding critical values of f has a lift ' in D which is
uniquely determined by its initial point.

2. Every local inverse of f can be analytically continued along any path
in S avoiding critical values of f

Exactly which types of domains can be mapped to each other is determined
by the Riemann-Hurwitz formula (1.16)

Theorem 1.21

Suppose that f is a proper map of degree d mapping a domain X of Euler
characteristic x(X) onto a domainY of Euler characteristic x(Y'), and f has
n critical points ny,n2,...,n. in Y (counted with multiplicity), then

X(X) =dx(Y) - ) _(deg,,(f) - 1) (1.16)

=1
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Proof

Any point in Y which is not a critical value has d distinct preimages in
X. Assume that Y is triangulated such that all critical values of f are
vertices. Then each face of the triangulation in Y has d preimages in X
so the triangulation of X by the preimages of the triangulation of Y has
F(X) =dF(Y) faces, and likewise the number of edges of this triangulation
in X are E(X) = dE(Y). Let ¢ be a critical point mapping to a critical
value v with multiplicity m, meaning that f maps d — m points of X to v.
Then there must be d — m vertices in X, mapping to the one vertex v in Y,
and similarly for other critical values. Non-critical vertices in Y correspond
to d vertices in X, and the Euler characteristic of X is then easily calculated
to what is given in (1.16). a

For a proper map f : C — C of degree d, the number of critical points
{c € C: f'(¢) = 0} is found by calculation from the Riemann-Hurwitz
relation, and since x(C) = 2, we find the number of critical points of f,
counted with multiplicity to be

> (deg,,(f) 1) =2d -2 o a7)

=1

The Euler characteristic of a surface is a topological invariant which is con-
served under any homeomorphism.
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The fascinating part about complex dynamics is that seemingly innocent
maps can have an intricate behaviour, when we consider the iterates of the
maps. One of the first discovered examples of this type is the “NEWTON’s
method”, which is a numerical method of finding zeroes of differentiable
. functions, but which doesn’t always work because of some chaotic behaviour
in some regions, both with real and complex functions. This is often called
CAYLEY’s problem, but we shall not go into further detail here. For details,
consult [Ale94] and [DJH*98]. Another example is that of the Mandelbrot
set on page 7, which we shall look at in section 3.3. We will consider the
problems of dynamics of quadratic functions on complex numbers. Rational
dynamics is a cornerstone in this thesis, and we shall examine many details
in this theory.

The first real breakthroughs in the area of rational iteration were the work of
PAauL MONTEL (1876 — 1975), GASTON JULIA (1893 — 1978) and PIERRE
Farou (1878 — 1929). Montel’s notion of normal families was first presented
in 1901 and the work of Julia and Fatou commenced immediately before the
first world war.

2.1 Preliminary Dynamics

We will in the following freely use any of the two terms map or function, even
though some authors use the term function only for maps f : C — C. The
dynamics we are interested in is the behaviour of some point under iteration.
Iteration is the process of mapping consecutive images by the same function.
The iterates of a point z by a function f are the points

2, £(2), £(f(2)),- -

and this sequence of iterates of z is called the orbit of z. We will write the
composition of the function f with itself as follows

}ofofo...of(z):f"(z) (2.1)

this will also be called the n’th iterate of z (by f). A fixed point is a point
z such that f(z) = 2. A periodic point of period p for f is a point such
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that fP(z) = z, and therefore z is a fixed point of the function f7. If it
is an attracting fixed point, 2 is called an attracting periodic point of f.
Preimages of a periodic or fixed point are called preperiodic points.

Let’s now turn to the dynamics of the simple linear map g(z) = Az where
A € C is called the multiplier of g. Iteration of g is the process

z Az Nz = A"z

The point 0 is a fixed point for any value of A\. What happens to the rest of
the points z in the complex plane under iteration of g is strongly dependent
on the parameter A and falls in the following categories:

1. When |A| > 1, all iterates of z # 0 will tend to infinity as the process
goes on, and we then call 0 a repelling fixed point (section 2.3).

2. If [A] < 1 the iterates of all points z € C will tend to zero, and we call
0 an attracting fixed point (section 2.3).

3. If [\] =1 and X\ = ¢?™ where # is irrational, the family of points
{A"}neN is dense on the unit circle, and a point zp will have an infinite
orbit of iterates all lying on the circle 2z = |2g|. In this case, 0 is called
an irrationally neutral fixed point.

4. When |A| = 1 and A is a root of unity, the iteration process will give
periodic orbits since for some n, A"z = z. In the general case of a ra-
tional function f”(z) # z, and there will exist attracting and repelling
directions emanating from the fixed point. It is then called a rationally
neutral or parabolic fixed point (section 2.4).

The map z — Az is a good place to start (except in case 4), since it is as
simple as they get, but still is strongly dependent on the value A. Moreover,
we will now show that many functions have the same dynamics as g(z) = Az
in some domains.

2.2 Linearizing analytic functions

Given a function, we will try to examine the global dynamics, that is, the
behaviour of the function in all of the domain of definition. It is reasonable
to start examining the behaviour of local dynamics, for instance at fixed
points.
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We start by noting that any analytic mapping f: C — C can be expressed in
a series expansion around a fixed point zp*

f(2) = 20+ f'(20)(z — 20) + O((z = 20)?) (2.2)

The Russian mathematician K@&N1GS proved about this familiar class of
functions that in a neighbourhood of any fixed point having f'(z) = A ¢
{0, 1}, the dynamics of the functions is equivalent to the dynamics of the
simple linear mapping ¢ : z = Az in the following sense:

A linearizing map is a map ¢: X — Y where X and Y are neighbourhoods
in C of 29 and 0 respectively and ¢ satisfies:

¢(f(2)) = g9(p(2)) or g=¢ofoy™ (2.3)

This is also referred to as SCHRODER’s functional equation after the German
mathematician who was the first to introduce this conjugation. Another way
of putting the linearization condition is that we want to find a map ¢ so that
the following diagram commutes:

X

Y Y

A linearizing map must satisfy that it sends zg to 0. The fixed point zp can
be sent to the origin by first conjugating f by the affine map ¢ =z — 2o to

h(z) = Az 4 O(2%) (2.4)
We can always perform this affine conjugation and keep dynamics intact, so
we can always assume that fixed points are placed at the origin.

We can then write the linearizing map ¢ which conjugates f of equation
(2.2) to g(z) = Az as @ = 1) 0 1o where ¥, is the map which conjugates h
to g.

*The notation O(z%) means that there exists a radius R and a constant K such that

|z] < R = |f(2) = Az] < K|z|%.
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2.3 Attracting fixed points

We assume now that we have a fixed point at the origin, so the series expan-
sion can be written -
flz) =Xz +2° Z A(n+2)2" (2.5)
n=0

where the tail is a power series and has positive radius of convergence.

Proposition 2.1
If0 < |A] < 1, then on an open disk of radius r, f: D(r) = C is a contraction,
and points in D(r) will converge to the fixed point 0 under iteration by f.

Proof
To show this, we first note that we can rewrite equation (2.2)

|f(2) = Az| < K|2]* = K]2| - |2] (2-6)

Given any € > 0 we can choose a radius r rendering K|z| < ¢ for |z| < r.
This gives us
|f(2) — Az| < K|z| - |2| < €|7] (2.7)

Now choose a number S, so that 0 < |A] < § < 1, and denote the number
— |A\| = €. Then we have

(2] < |Al|2| +elz] = S]z] < || (2.8)

That f"(z) converges to 0 clearly follows from the contraction. O

We also deduce that if the fixed point is 2o, and |f'(20)] = |A] < 1, fis a
contraction in a neighborhood of zy and therefore one-to-one in the neigh-
bourhood. This follows from the fact that 0 is a fixed point of multiplicity
1 and then theorem 1.19 states that in a neighbourhood of the origin, f has
degree 1 and therefore is a proper map. If 0 had multiplicity & > 2, then 0
would have |A| = 0 and be called a superattracting fixed point.

Any point that converges toward zp under iteration by f is said to be in the
basin of attraction of z;. The Immediate basin of attraction is the connected
component of the basin of attraction which contains the fixed attracting
point. In some cases there also exists preimages of the immediate basin
which are then also components of the basin of attraction since any point
in a preimage of the immediate basin of attraction maps eventually into the
immediate basin and from there converges to the attracting fixed point. The
basins opf attraction which do not contain the fixed point contain a preimage
of the fixed point whenever f is a rational function.

We wish to show as in [CG93] that
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Proposition 2.2
There exists a ¢ that linearizes all iterates of f in the immediate basin of
attraction of a fixed point.

Proof
Define the mapping

en(z) = f:f,z) (2.9)

For all n, this inherits from f the property of being a holomorphic, one-to-
one map ¢, : D(r) — C, with ¢,(0) = 0 and ¢[(0) = 1. Consider the
composite of ¢, and f

n o n+1
pnof =Lt o a L < (2.10)

If it is true that ¢, — ¢, then ¢ would be a chart linearizing f in the
neighborhood, and then equation (2.10) implies

wo f(2) = Ap(2). (2.11)

For the proof of the existence of such a ¢, we will use that the supremum
metric on functions on a compact set completes the function space such that
any Cauchy sequence converges, and find that ¢, in this space is a Cauchy
sequence:

We define the function space C(K, C)
C(K,Q)={f:K - C| f is continuous} (2.12)

And equip it with the supremum metric, such that given two functions f
and g in C(K,Q),

d(f,9) =11f - 9lleo (2.13)

From calculus we know that the resulting metric space Coo (K, C) has the
following property.

Lemma 2.3
Let K be a compact set. The metric space Co (K, C) is complete. O

It is therefore sufficient to prove that {¢,}, is a Cauchy sequence on a
compact space, which we will take to be the closed disc D(r). It then follows
from the lemma that ¢, converges.

Consider the difference

(M=) - A2 o (KIfE))D?

[Pnt1 — @a| = PRes! = TP

(2.14)
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f is a contraction, so we can find an S such that 0 < |A\|< S < 1
(KIf ()2 _ K2

2.
RS T (215)
We may as well assume S < /|| such that when n — oo,
K? (S%\"
n+l = <= = .
which implies that ¢, is a Cauchy sequence. O

Contrary to the attracting fixed points, the repelling fixed points where
|A] > 1, such as 1 for the function f : z — 22, are unstable fixpoints. Any
point not quite of modulus 1 will end up at zero or infinity under iteration
by f, so we can find no iterative subsequence which is uniformly convergent
in a small neighbourhood of 1. Linearization, however, is still possible, since
the repelling fixed point is attracting for any branch of f~!: If D denotes
the differentiation operator, then the determinant is det(Df) = |A|2 > 1 and
any inverse branch will have det(Df~1) = 1/a2 < 1, so the repelling fixed
point for f will be attracting for f~1.

2.4 Parabolic Fixed Points

A parabolic fixed point arises when the multiplier A is some root of unity,
such that A9 = 1, but f? # id. Then there will be directions in which the
periodic or fixed point will be attracting and other where it will be repelling.
Around attracting directions, sets which map into themselves exist. We can
define an attracting petal U as an open set with compact closure U which
satisfies:

fOYCcUu{o} and ()T ={0} (2.17)

k>0

A repelling petal for f can be defined as an attracting petal for f~1. The
attracting petals make up the basin of attraction of the fixed point, and the
LEAU-FATOU flower theorem describes the dynamics near the fixed point

Theorem 2.4 (Leau-Fatou)

If the origin is a fixed point of multiplicity n 4+ 1, then there are n disjoint
attracting petals alternating with n disjoint repelling petals, each attracting
petal intersecting the two adjacent repelling petals. The union of these 2n
petals together with the origin itself form a neighbourhood of the origin.

A proof of this theorem is found in [Mil91]. The figure 2.1 depicts the
construction.
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Figure 2.1 The Leau-Fatou flower for a parabolic fixed point of degree 3
(multiplicity 2). Two attracting petals and two repelling petals are shown. From
[Ale94].

Any point in a small neighbourhood of the parabolic fixpoint is both in an
attracting petal and in a repelling petal. The actual orbit of the point under
iteration is dependent on the distance to the repelling and attracting axes.
If it is close to a repelling axis, it may escape, or it may map further away
only to return along or close to an adjoining attracting axis.

2.5 Automorphisms of C

Returning to the dynamics of our function z — Az, we find that if |A] # 1,
the iterates converge uniformly to either 0 or oo, but if |A] = 1 the whole
complex plane is rotated by f around the origin. Here we have an example
where it is convenient to consider the compactification of C, the extended
complex plane: C = CU {co}, also called the Riemann sphere, since we then
can consider the mapping a rotation of the sphere (like a globe) with the two
fixed points 0 and oo as poles. Also, we can consider the point co a fixed
point of the mapping z — Az in exactly the same way as 0.

We are in general interested in linearizing maps of higher degree, and we
want to use conjugation to send interesting dynamics to a neighbourhood of
the origin, so we will now treat an example where we see that we can move
around with our functions and still keep the dynamics.

Polynomials have the property that they fix infinity. General rational func-
tions of degree two are fractional quadratic functions

az2+bz+c

@)= e THrr o (2.18)
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-which map the Riemann sphere twice onto itself with three fixed points,
-counting multiplicity (one is placed at 00). The automorphisms or bijections
of the Riemann sphere C are the M&bius transforms.

Definition 2.5
A Mébius transform is a fractional linear transform, that is, a transform of the
form:

(2.19)
with a,b,c,d € C.

These are also known as the regular linear transformation matrices for rota-
tion and displacement in R2:
e b
M= ( g ) (2.20)

with a, b, ¢,d € R. These transforms will be key elements in the rest of this
work since conjugation with a Mébius transform can send any two points of
the extended complex plane C to the origin and infinity respectively. For
example the two points which are fixed by the fractional quadratic map
(2.18). Since the M&bius transforms are isomorphisms of C, they conserve
the dynamics of a function defined on C, and therefore we can treat dynamics
for classes of functions which are conjugate by Mébius transforms as one case
instead of investigating each function explicitly.

For any polynomial of degree 2, it is especially simple to conjugate to f;(z) =
2% 4 t using a subgroup of the Mdbius transforms, the affine maps.

Proposition 2.6
Given any polynomial P:C — C

P(z) =az’ +bz+c (2.21)

the affine map A = az + b/2 conjugates P to fi(z) = 2% + t, where t =
ac+ bz — (¥2)%.

Proof
Consider the conjugacy condition
fiocA=AoP (2.22)
Using the definition of the mappings this becomes
(az+%2)% +t =a(az’ + bz +c)+ % (2.23)
expanding and solving for ¢t we get the desired result. O

The dynamics of the function f; and thereby the dynamics of degree two
polynomials are treated in section 3.3.
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2.6 Superattracting fixed points

We saw that the dynamics of a polynomial of degree 2 was conjugate to
the dynamics of 22 + ¢t. More generally, we wish to know the dynamics of
polynomials with critical points of higher multiplicity, that is, with roots of
order d > 1. Assuming again that the critical point is at the origin, the
expansion for f is of the form

f(2) = 2% + O(24+1) | (2.24)

As in the case of the linearizable maps (p. 27), it is possible to conjugate
"any map of the form (2.24) to the map z — z¢%, a result due to the Polish
“mathematician L.E. BOTTCHER. We call the number d the degree of the

map f, since it maps the unit disc onto itself d times, except at the critical

point, also called the ramification point!. We may visualize the image space

of the map as a collection of d unit discs joint at the common point z = 0,

spiralling one into the other. The unit disc is then called the ramified covering

of this surface. Everywhere, except at the removable singularity z = 0, there
is a locally one to one correspondence between the cover and the Riemann
surface. The action of the map z — z? on a point on the unit circle is that
of multiplying the argument of the point by d. The points on the unit circle
which satisfy (d”—1)arg(z) = p2n for some n and p are thus repelling periodic
points of period n for the map, and 1 is a repelling fixpoint. Furthermore,
2% maps a pie wedge of angle 27/d onto the whole disc.

Just as in the case of z — Az, the origin and oo are fixed points for z — z¢.
All points in the open unit disc are eventually mapped arbitrarily close to 0
under iteration, and all points not in the closed unit disc escape to infinity
under iteration, hence both 0 and oo are attracting fixed points. In the case
where f is of degree d and is conjugate to z¢, the multiplier \ is zero and we
call the fixed point superattracting.

tFor an equivalent and more formal definition refer to p. 22.
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As we encountered in the cases of the functions z — 22 and z — 2%, there
can exist basins of attraction where the iteration contracts the domain such
that all points converge to the fixed point, or alternatively sends points to
an attracting basin. The domains where the function has this nice behaviour
are called Fatou components for the function.

3.1 Normal Families

The notion of normality, which is due to PAUL MONTEL, is defined as follows.

Definition 3.1
A family § of functions defined on a domain U is called a normal family if for
every subfamily there exists a locally uniformly convergent subsubfamily.

We are interested in the situation where we are dealing with the repeated
composition of one function with itself as the family of functions, and in that
case we can define

Definition 3.2

A domain of normality for a function f is a domain U in which for every
subsequence of the sequence of iterates, { f*|u }neN there exists a subsubse-
quence which converges locally uniformly.

For families of holomorphic functions it is a necessary and sufficient condition
for normality that the family be uniformly bounded, which is the statement
of Montel’s little theorem:

Theorem 3.3 (Montel’s little theorem)
Let U C C be a domain and let § be a family of analytic functions on U. If
$ is uniformly bounded, then ¥ is a normal family. '

An immediate corollary of Montel’s little theorem is:

Theorem 3.4
The family of all analytic maps from the unit disc to itself is normal.

35
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The disc endowed with the hyperbolic metric is the covering surface of hyper-
bolic surfaces. The “big” theorem of Montel says that as long as the family
of maps omits at least three points of the Riemann sphere, then the family
is normal. In the theory of covering surfaces we have mentioned that the
universal cover of the thrice-punctured sphere is the disc, so the little theo-
rem of Montel is a corollary of the big theoremand the covering statement.
As-you can see, Montel’s theorems are powerful tools for categorizing the
behaviour of functions on domains.

Theorem 3.5 (Montel’s big theorem)
The family of analytic maps from any domain U into the thrice-punctured

Riemann sphere C \ {a, b, ¢} is normal.

Note that the points a, b, c can be placed anywhere on the sphere as long
as they’re distinct (¢ # b # ¢). Mdbius transforms can move them around
arbitrarily, and composition with Mobius transforms does not change ana-
lyticity.

Proposition 3.6
If U is a domain in C which omits at least three points, then the universal
cover of U is the disc D

The theorem of Picard deals with this type of domain:

Theorem 3.7
Any holomorphic map from C to C which omits at least three distinct values
is constant.

Which follows from Liouville’s theorem and the proposition 3.6.

3.2 The Fatou set

For z +— 2% then, the interior and the exterior of the closed unit disc belong
to the domain of normality. These domains are also called Fatou compo-
nents. Any basin of attraction or preimage of a basin of attraction is a Fatou
component. The union of all Fatou components forms the Fatou set which
has some nice properties. Given a mapping f : C = C, we define

Definition 3.8
1. A point z is called normal (with respect to f) if the sequence of iterates
{f"} is normal in some neighborhood of z.

2. The Fatou set F; = F is the set of all points z € C that are normal
with respect to f.
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3. The Julia set J; = J is the complement of the Fatou set: J =C \ F.

An alternative definition of the Fatou set used in [Bea91b] involves the notion
of equicontinuity. A family § of functions between metric spaces X and Y is
equicontinuous at zg if Ve > 0 there exists § > 0 such that for all 2 € X and
forall fegF

dx(zo,z) < § = dy(f(2z0), f(z)) <€

The Fatou set of f can then be defined as the maximal open set for which
the family of iterates of f is equicontinuous.

These two sets are named after the french mathematicians PIERRE FATOU
and GASTON JULIA who explored the properties of these sets. We shall also
examine these sets closely since they are important in any iterative setting.
Let’s first look at an example.

3.3 The Mandelbrot family

Since we started this thesis talking about the Mandelbrot set and we are
dealing with quadratic maps in general, we should probably take a look at
the quadratic family f;(2) = 2% +¢.

The Mandelbrot set M is defined as the set of parameter values ¢ such that
iteration of f;(0) does not escape to infinity.

In fact, it can be shown that
M= {t:|ff(0)| <2Vn e N} (3.1)

This means that we can compare norm of iterates with 2 as an easy bailout
test for creating computer images of the Mandelbrot set such as the one in
the preface.

For any polynomial, oo is a superattracting fixed point, and consequently the
immediate basin of attraction A(oo) is in the Fatou set and has as its bound-
ary the Julia set of the polynomial. Furthermore, Bottcher’s theorem states
that A(oo) is either simply connected or of infinite connectivity. This means
that there are two possibilities for the Julia set for polynomials and thereby
for f;. It is either connected or consists of infinitely many components. A
simple test of which case applies is

0¢ A(co) & A(co) simply connected

Hence, the Mandelbrot set contains the parameter values ¢ for which the
Julia set is connected. The proof is omitted.
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Figure 3.1 Julia set for ¢t = 0.25. The “cauliflower”.

As an example of a conected Julia set, we have the below figure, the Julia set
at t = 0.25 (on the boundary of the Mandelbrot set) where the dark part is
the basin of attraction of 0 together with the Julia set and the white region is
A(o0). For t = 0.26, outside the Mandelbrot set, 0 escapes to infinity under
iteration by f;, and then F has infinite connectivity, and .7 therefore consist
of infinitely many disjoint components, which is indicated in the figure below
where the black points is the Julia set of fo.26. It consists of a Cantor set of
points.

Another example of the connected Julia set is for ¢ = 7, known as a dendrite.

3.4 Properties of the Fatou and Julia sets

There are a number of properties of the two sets that need to be mentioned.
From the definition of the Fatou set, it is clear that it is an open set. The
Julia set is then closed, and since C is compact, the Julia set is compact also.
Moreover, if we take any domain D which intersects the Julia set, we know
that {f™} is not normal on D. If we form the union set,

U o,

n€N

then Montel’s theorem (Theorem 3.5) tells us that this set can omit at most
two points of the Riemann sphere. Hence the Julia set displays the chaotic
characteristic that arbitrarily close initial points can end up arbitrarily far
from each other.
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Figure 3.2 Julia set for ¢ = 0.26.

Figure 3.3 Julia set for t = 7, a dendrite.

Another reason why the Julia and Fatou set are so interesting in iteration
theory is that they are invariant under iteration

Proposition 3.9
The Fatou set and the Julia set of f : C — C are completely invariant, that
is,

fHUF)=F=f(F), and f(I)=J =) (3-2)

Proof
It is only necessary to prove that F is completely invariant. The identity
C = FU J then ensures that also J is completely invariant.
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Let D C C be any domain and let A be any component of f~!(D). Assume
D C F. That means that there exists a subsubsequence {f™*i +1} which
converges in D, let’s say that f""i+1 ~+ gon D as ng; +1 — co. Then
f™ — gof~' on A as n; — co. Then there exists a function h : A — C
defined by h o f = g such that f™ — h on A, which proves that A C F.

Conversely, a similar argument shows that if {f™i ™'} converges, then so
does {f™i}, such that A C F implies that D C F. 0

Since f(F) = F, we also have f*(F) = F, and recalling the definition of the
Fatou set we see that

Corollary 3.10
All iterates of f have identical Julia and Fatou sets.

Another way of defining the Julia set that perhaps more directly shows us
what the set contains is the following identification, which is valid for any
polynomial f, and where we use the immediate basin of attraction of co.

J = 8A(00) with A(0)={z€C|n—o0= f*(z) > 0} (3.3)

That means that if there exists repelling periodic points, that is points where
f'(z) > 1 such that a nearby point is sent towards infinity, then the Julia
set contains these points. In figure 3.1 then, the Julia set is the boundary of
the black set, and all of the interior of the set is A(0).

The following is a characterization of the Julia set which is equivalent to the
ones we have seen until now [MR91]. The Julia set is the set of accumulation
points of U, f~™(2) for almost all z € C. Or equivalently, The Julia set is
the attracting set for f~1. Note that f~! is a multivalued map and therefore
iteration of the Julia set using this method involves a choice for each inverse
image. This involves no practical difficulty, since a random choice of inverse
image does the trick.

One of the early examples we have discussed is the map f : z — z¢. We know
that the family {f™}, is normal on the two domains |z| < 1 and |z| > 1, since
any subsequence of maps from the family converge to the constant functions
0 and oo respectively. What is left over is the unit circle, and this is precisely
the Julia set for this map. For instance, 1 is a fixed point of z ~ 2¢, and
the multiplier is d14~! = d > 1 so 1 is repelling, and it is easy to realize that
any neighbourhood of 1 will be mapped to C\ {0, o0} by iteration.

When we iterate a rational function we will inevitably bump into some
chaotic-like behaviour, as is clear from the following theorem from [Ste93].

Theorem 3.11
The Julia set is non-empty for any rational function f of degree deg(f) > 2.
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Proof

Given a function f of degree d > 2, assume the Julia set J ¢ is empty. Then
any infinite subsequence of iterates {f™},,¢; has a uniformly convergent
subsequence {f"* }nkj on all of C. From some N, all f™i have the same
degree as the limit function, which follows from the uniform convergence of
the sequence and the continuity of the degree function (see [Bea91b] Theorem
2.8.2). However, deg(f") = (deg(f))", which implies that deg(f) = 1,
which contradicts the assumption. |

Moreover, the Julia set always has infinitely many points, so for any rational
function there exists infinitely many points where an iteration sequence is not
convergent. An important theorem we will not prove here (see e.g. [Bea91b])
but which relates to the big theorem of Montel, 3.5 is the following

Theorem 3.12
The Julia set is the smallest closed set with at least three points which is
completely invariant under the action of a rational function f.

We have claimed that the Julia set is a chaotic set, and one of the proper-
ties of chaotic sets we mentioned in the preface, is that any point can be
approximated arbitrarily close, and this is true about the Julia set.

Proposition 3.13
The Julia set is perfect. That is, it has no isolated points.

Proof

Let Jp be the set of accumulation points of 7. J is infinite and compact, so
Jo is not empty. Since f is continuous and of finite degree, f(Jo) C Jo =
Jo € f~1(Jo)- Since f is also an open map, f Y Jo) C Jo. This shows that
Jo is forward and backward invariant. From theorem 3.12 we then know
that it consists of the whole Julia set 7. 0

3.5 Fuchsian Groups

We will now look at the Fuchsian group theory of the dichotomy of the
Riemann sphere, since the theory of correspondences can benefit from both
theories, even though we have as starting point the rational iteration theory.
A topological group is a group which is also a topological space. The topology
of a group G is induced by demanding that the maps z — z~! : G — G and
(z,y) = zy : G x G = G are continuous maps.

Let M be the group of isomorphisms of the Riemann sphere. As mentioned,
these are the Mébius transforms of equation (4.28). In algebra, this group
is known as the group PSL(2,C). The Mébius transforms form the group
generated by even numbers of reflections over lines and circles in C.
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We say that G C M, is discrete if every g € G is isolated with respect to the
topology of the group G. That the group acts discretely means that there
are no accumulation points for a sequence of elements from G. Discrete
subgroups of PSL(2,C) are called Kleinian groups.

Let G C M. We say that G acts discontinuously on an open set U C C, if for
all compact subsets K of U:

#{g € G:g(K)NK # 0} < o0. (3.4)

A group which acts discontinuously on an invariant disc in C, is called a
Fuchsian group. Fuchsian groups are subgroups of PSL(2,R)

The region of discontinuity of a Fuchsian group, Q(G), is the set of all points
z in C where G acts discontinuously on a neighbourhood of z, and the com-
plement A(G) = C\Q(G) is called the limit set of G. Here we have a division
of the Riemann sphere into two disjoint sets just as we did in the case of the
Julia and Fatou sets, and there is a very close connection between the two.
The region of discontinuity of the group corresponds to the Fatou normality
set of the elements of the group of M&bius transforms. Furthermore, there is
a main theorem of uniformization connected to the Fuchsian groups, which
we will not prove here.

Theorem 3.14
Any hyperbolic Riemann surface S has a Fuchsian group as deck transfor-
mation group I'. In particular, S = D/r.

For detailed analysis of topological groups on Riemann surfaces, please refer
to [Bea83] and [FK80].

A fundamental domain F of the group G is an open subset of the disc with
the properties:

1. UgEG g(m) =D
2. Vg,he€G,g# h:g(F)Nh(F)=0

so that every point in the disc is in the closure of some image of F, and no
two images of the fundamental domain overlap. For more details, consult
[Bea91a].

We call a Fuchsian group G geometrically finite if there exists a fundamen-
tal domain F of G, with finitely many sides. About a geometrically finite
Fuchsian group we can say the following.

Theorem 3.15
A Fuchsian group G is geometrically finite if and only if G is finitely gener-
ated.
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Again, we omit the proofs and refer to texts such as [FK80].

We will introduce a way to find the limit set by construction rather than
exclusion, as we did earlier with the Julia set.

Proposition 3.16

The set A(G) = G(0) \ G(0) is the limit set of G.

This means that it is possible to have a computer generate the limit set of
a Fuchsian group. The parallel between the limit set of the Fuchsian group
and the Julia set is that where the Julia set is the complement to the set
of points in C where the iterates of a function form a normal family, the
limit set is the complement to the set of points in C where the group forms
a normal family. In an iterational setting however, we are not dealing with
a function and a point, and finding backward images. We investigate how
a set of points is treated by a group of functions which means that there is
an actual choice between images in each step of the iteration. For practical
purposes, the choice is made randomly. This is called stochastic iteration.

The Julia - Fatou set dichotomy is based on functions on Riemann surfaces,
where the Fuchsian group limit - regular set dichotomy is based on group
permutations, but in essence they treat the same behaviour difference. The
Julia and limit sets are both sets of accumulation points, as can be seen from
proposition 3.13 and from the definition of the limit set.




4 Dynamics of Quadratic
Correspondences

The dynamics of quadratic correspondences have been treated by Shaun
Bullett [Bul91] [Bul88], Christopher Penrose [BP98a], [BP98b], and Miinzner
and Rasch [MR91], and a review of the arithmetic-geometric mean and its
history can be found in an article by David A. Cox [Cox84]. The quadratic
correspondences have as a subset the polynomials of degree 2, so therefore
we shall refer to the overview of the field of rational iteration, and give some
indications of which theorems don’t hold for the general case of quadratic
correspondences. We will begin with an example of great importance.

4.1 The Arithmetic-Geometric Mean

Though the method has been known for very long, the first thorough inves-
tigation of the relationship between the arithmetic and the geometric mean
values of complex numbers was made by Gauss. The arithmetic mean value
between numbers a and b is half the sum,

a+b

Ma-: 2

(4.1)
and the geometric mean is the square root of the product.
M, =Vab ‘ (4.2)

That the arithmetic mean and the geometric mean usually do not coincide,
we know from real numbers, and therefore the same goes for the moduli,
when we use the two methods on two complex numbers. Geometrically,
the arithmetic mean finds the midpoint on a straight line between the two
numbers in the complex plane. The geometric mean of two complex numbers
with same modulus |2| = |w] is again a complex number with same modulus
V1zl|lw| = |z|, while its argument is the mean value of the arguments of
z and w. Here the troubles begin, for the angle between two vectors has
two distinct values (using angles modulo 27). We can no longer choose the
“positive” root since they are in general complex. For instance, the geometric

45
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mean of 1 and -1 is v/—1 = %4, and there is no obvious reason for choosing
one over the other.

If we define the sequences {a, }nen and {b,},en recursively:

@y + by
2

Ap41 = bn+1 = anbn (43)
where we set ap = a and by = b with a, b € R, then the sequences converge
rapidly to a common limit, M(a,b), called the arithmetic-geometric mean
(agm). This method gives exponentially fast, precise approximations, and
has early been used to find expansions of 7 and v/2. When @ and b are com-
plex and we allow both values of the square root in equation (4.3), we cannot
automatically rely on the convergence of the method, since we are faced with
a two-valued map with a two-valued inverse: (an,b,) — (@n41,bn+1) from
C? — C?, of which we can only be sure that one choice of value for each
n will make the sequences converge to a mutual limit. On the other hand,
Gauss gave examples where, even with a number of “wrong” choices for the
square root for some n, the sequences may still converge. In the following
we will assume that @ # 0, b # 0 and a # =+b, since these values will make
the limit the trivial e or 0.

Definition 4.1
Let a,b € C, with the limitations above. The value b, = \/a,,_1b,—1 is called
the right choice if |a, — by| < |an + by|.

With the right choice of b, for all = € N the sequences converge, but it is not
necessary to make the right choice every time. In fact, we will prove that
every pair of sequences which contain only a finite number of wrong choices
is a convergent pair of sequences. To this end we define a “good” pair of
sequences

Definition 4.2
A pair of sequences {a,} and {b,} is called good if b,4; is the right choice
for all, except finitely many, n € N.

To rationalize the term “good pair” we will show the proposition of [Cox84]
that any pair of sequences converges, but only the good sequences have a
non-zero limit.

Proposition 4.3
Let a,b € C\ {0}, a # +b. Any pair of sequences ({@r }neN, {bn}nen) defined
as in (4.3) converges to a common limit, which is non-zero if and only if
{an}nen and {b,}nen are good sequences.
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Proof
Claim 1: Bad sequences tend to zero. Let us define. the sequence M, =
max{|ays|, |b|}. Notice that for the right choice of square root b, 41 = Va,b,,
an + b,)2 an — b,|?
lan+1—bn41ll@nt1+bns1] = a2, —b2 | = gn—4—) —apby| = lnTl
(4.4)

If bny; is the right choice, then |an41 — bny1] < |@ng1 + bnt1], and we get
from the equation above that [an41 — bnt1| < lan — b,| for the right choice
of bp4+1. Then for the wrong choice, we have that |an+1 +bnt+1]| < V2lan —bs|,
and then,

_ang1 +bnga|  |an — by

an42 = 2

and since |bnq2| < M, and /1/2 < 3/s we have for a wrong choice of b2,

< < 1My, (4.5)

Miys < |an+t2| ;— [bn+2]

Which must occur infinitely often for bad sequences proving that M,, — 0
for n — oc. '

< 3/aM, (4.6)

Claim 2: Good sequences are Cauchy sequences. From some point on, the
good sequence will have the right choice for every b,, so we may as well
assume that we have the right choice for all » € N. Then we have

|an —by] <27%a—-b| and 6,=2""6y (4.7)

where 8, is the angle between a, and b, which is halved in the square root
of b,, which for the right choice is 0 < 6, < 7. From (4.7) we can conclude
that the two sequences converge toward each other, and since a, — ap4; =
o(an — by) we get '

lant+1 — an| < 2_(n+l)|a - b (4.8)

which is a Cauchy sequence, which proves that both sequences converge to
a common limit.

Claim 3: The common limit isn’t zero if we are dealing with a good pair. Let
us again assume we have made the right choice for every step, and let

my, = min{|an|, |bn} (4.9)

where @, and b, are both non-zero. Obviously, |bp41| = |V@nbn| > m4, so
it remains only to show that a, does not tend to 0 for n — 0o to complete
the proof. Consider

(2lan41l)? = lanl® + 1bal® + 2lanlbn cosbn

> 2m2(1+ cosb,) = 4m2 cos? (%ﬂ) (4.10)
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We can replace an4; with m,.1, and for the right choice, cos Gn € [0,1] so
6,
Mp41 > My COS 5 (4.11)

using the second part of (4.7) we find that

n—1

6
mp > My H cos —2—1.% (4.12)
=0

where the product is an expansion for sinéo/g, which is greater than 0 for
6o € [0, 7[, which completes the proof. O

So now we are finally ready to define the arithmetic-geometric mean values,
which is the set of limit points for the sequences.

Definition 4.4
1. The arithmetic-geometric mean, M (a, d) is a set of limit points p satis-
fying
u= nl_i_)rgo an, = lim b, (4.13)

n—oo

where the pair of sequences ({an}neN, {bn}nen) is a good pair.

2. The value of p obained with only right choices for b, is the simplest
value of M(a,b).

Hence there is a countable amount of values of the arithmetic-geometric
mean. David A. Cox [Cox84] proves the following result, which has also
been obtained by von David [vD2§], and which Gauss hinted at in his math-
ematical diary.

Theorem 4.5

Let a,b € C with |a| > |b|, both non-zero, and let u, A be the simplest values
of M(a,b), M (a+b,a—b) respectively. Then all non-zero values p' of M(a,b)
are given by

with d =1 (mod 4) and ¢ =0 (mod 4).

The proof of the theorem is quite involved, and for the complete proof, please
consult the article of David A. Cox [Cox84]. However, we will discuss some
of the steps involved because they are interesting applications of the notions
of the universal cover and fundamental domains.
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4.2 Iteration of the agm

We will first reduce the dimension such that we only deal with one sequence.
The arithmetic and geometric mean maps (4.3) are linear with respect to
multiplication with a scalar, so we can without loss of information project
the maps onto the Riemann sphere by using the projection =:

T:(CxC*—=>C 7(ab)= (4.15)

c-la

We utilize the fact that the projective space for C? \
sphere C using the equivalence relation

—~—

(0,0)} is the Riemann

(21,22) ~ (wl,’U)g) <= A€ C : Az =w;, Azg = wy

to identify pairs which are mapped to the same point. 1t is then clear that the
projection m sends any pair in C?\{(0, 0)} to a point in C = (C?\{(0,0)})/ ~.

Any mapping f respecting ~ in (Cx C), ie. f(Az1,Az2) = Af(2, z3), can

be projected onto C requiring that the prOJected mapping m o f=f:C=>C

fulfills that given any z € C there exists a 2’ € C such that f(r "l(z))
n~=1(z’). This is indeed fulfilled by the mapping (4.15).

The projetion defines the sequence {z, }nen:

an41 (1 + Zn)2 |

= -_ 4.16
Fntl bn+1 4z, (4.16)

which has the arithmetic-geometric mean of 1 and z, as limit values.

Let us describe the dynamics of the agm iteration function
(1+2)?

=4 — 4.17
fr@) = (417)

f+(1) = 1, and it is a superattractive fixed point since f} (1) = 0. However,
1 also maps to —1, which is critical in the sense that it has only one forward
and backward image where other points have two. The same is the case with
0, and -1 — 0 ~ oo. The point at infinity is also fixed and is repelling.
Hence all of the critical points for the mapping (4.16), {-1,0, 1,00}, are on
a common orbit, sometimes called the critical orbit.

2:1 2:1 2:2 1:2 1:2
11— 11— -1 0 00—

Other fixed points of f are the remaining roots of the cubic polynomial
423 — 22 — 22 — 1 = 0 which are R = (—3ii\/7)/g. The eigenvalues at these
fixed points are f} (R) = (-3iV7)/4. These values are on the unit circle with
irrational rotation number, and hence the fixed points are neutral.
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In [Bul91] Bullett shows that an infinite number of symmetrical periodic orbits
exist, i.e. orbits which are invariant as sets under the involution J (which
also leaves the pair R invariant)

Z+1
z-1

Jiz

Such periodic orbits are neutral, since points which are invariant under the
involution have derivative ¢ which satisfy ¢~! = (, and therefore |¢| = 1
[Bul88]. He furthermore conjectures that all periodic orbits except the fixed
points 1 and co are symmetric.

We shall prove the following proposition:

Proposition 4.6
Every periodic orbit of the agm iteration function is irrationally neutral.

Proof

Assume we have a repelling periodic point z of period n that is not in the
critical orbit. By this we mean that there exists a branch of f} which sends
z to itself. When we omit the critical orbit and lift f7 to the unit disc,
which is the universal cover of the sphere with four punctures, such that the
lift fﬁ fulfills f_"_‘ (0) = 0, then we can analytically continue f_’; to the whole
disc since the critical points are omitted. This contradicts Schwarz’s lemma
which says that |(f2)’] < 1. The same argument applies to f~!, proving
that a periodic point is neutral.

Given an integer n, the number of periodic points with period dividing »
is at most 2"*! since they are solutions to a polynomial equation of degree
27+1, Assume that the derivative at z is ™. Then f}? would lift to the
identity on the unit disc, and there would be an infinite number of periodic
points with period dividing ng. This contradiction shows that any periodic
point has irrational derivative. |

This means that the periodic points of the agm correspondence are sur-
rounded by Siegel discs and a computer generated picture of iteration of the
agm is displayed in figure 4.1 where the siegel discs are coloured black. The
computer programme takes a point 2 and iterates using

sy 212
-4z
and compares iterated values with z. If the iterated point is sufficiently close
to z, then z is coloured black. We use this M&bius conjugated version of the
map f in order to have the discontinuity line of the square root on the line
y = z for reasons of numerical stability in the second quadrant. Some of

the siegel discs are not quite filled by the iteration, but increased number of
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Figure 4.1 Iteration of the agm in the domain Re(z) €] — 2,0[ and Im(2) €]0, 2[.

iterations would fix that. Other discs display sharp as opposed to rounded
edges (near imaginary axis), which are also present in [Bul91]. They are due
to the discontinuity. Other choices of the square root and discontinuity axis
gave less round discs.

4.3 The covering of the agm

The universal cover of the arithmetic-geometric mean when we remove the
four critical points is the unit disc, or equivalently the hyperbolic half-plane.
For technical reasons I will use the latter:

H={r € C:Im(r) > 0} (4.18)
In [Cox84] it is shown, that the functions which are the covering maps of

the arithmetic and geometric means, are built from two of the “Jacobi ©-
functions” (in the notation of [Cox84]):

p(r) = 1+2) & (4.19)
n=1

~3
—~

\‘
-

il

(o o]
1+2) (-1)me™™ (4.20)
n=1
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If 7 is a point in H, then '™ is a point which is inside the unit circle, so the
functions p and r are well defined since the series converge. It takes some
lengthy calculus, but it is possible to show that (p(27))? and (r(27))? are the
arithmetic respective geometric mean of (p(r))? and (r(7))2. We will accept
this without proof and again refer to [Cox84] and [vD28]. With the above
notation, the projection function from H to C we will call

1 (p(r)?
0 ) (4.21)

and the lifting of (4.16) from C* = C\ {-1,0,1} to the hyperbolic upper
halfplane is then the simple map 7 +— 27.

T 27

Then the following lemma from [Cox84] gives us a limit to the sequence,
provided we can find a point lying over 4/a in the covering space.

Lemma 4.7

Let a,b € C* satisfy a # =b, and suppose there is a T € H such that
K'(r) = bja. Set u = a/(p(7))? and, for n € N, set a, = pu - (p(2"7))? and
b, = - (r(2"7))2. Then limn_y00 tn = liMpoyoo bn = p.

Thus, if we are able to find p(7)2, we are able to find a value for the agm.

The next lemma we will discuss, but not prove (refer again to [Cox84]),
involves the fundamental domain of the agm. This is the domain in which
the value of the agm mentioned in the previous lemma is the simplest value
of M(a,b).

Lemma 4.8
Let r € F where F is the domain:

F={reH:-1< Re(r) <1, |rx1/4|>1/4, |r£3/4]|> 1/4} (4.22)

then p = a/(p(r))? is the simplest value of M(a,b)
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N

4 0 1

:Recalling from our discussion of Fuchsian groups, we suspect that this is a
fundamental domain of a Fuchsian group. This is correct, and the group is
geometrically finite, and therefore finitely generated since the fundamental

~ domain has finitely many sides as discussed on page 42. The generators can
be determined from the shape of the fundamental domain.

G= {[ Z Z] : Z_jg(_:;n](;(i(lgidcgo (mod 4) } (4.23)

Such that the upper halfplane modulo G is the universal covering surface for
the agm, since
. K, 1/K H— C\ {-1,0,1}

are universal covering maps with deck transformation group G. The mapping
4.16 lifts to 7 — 27 by 1/k’ such that

Znp1 = 1/k' 0210 1/ (2,) (4.24)

In [BP94] it is proven that any critically finite correspondence, i.e. any corre-
spondence with finitely many critical points and values in a common orbit,
can be resolved by removing the critical orbits and lifting to the universal
cover as described above. Furthermore it is shown that the lift is the (Fuch-
sian) group action of a group G generated by the free product between an
infinite cyclic group and an order two cyclic group G = C, X C3. The results
in proposition 4.6 transfer to any critically finite correspondence with three
or more critical points.

4.4 General Quadratic Correspondences

As we have seen in previous chapters, the rational iteration and the Kleinian
group iteration have many common features. The correspondences are a
generalization of both of these fields. We will mostly limit ourselves to .
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quadratic correspondences, but further generalizations are possible, and we
will touch upon them when appropriate.

There are a lot of open questions about the dynamics of the quadratic corre-
spondences. I will in the following try and show why the usual theorems of
rational iteration don’t apply in the case of correspondences. For instance,
it is difficult to define a Julia set for this type of maps. If we decide to define
the Julia set as the closure of the union of all backward orbits of the branch
points of f(z) as in [MR91], we obtain a dichotomy with a reasonable normal
set, but the obtained Julia set is not forward invariant, and the normal set
is not backward invariant.

Definition 4.9
Given a quadratic equation in two complex variables with complex coeffi-
cients,

P(z,w) = Az*w*+ B22w+ Czw? + D2 + Ew? + Fzw+Gz+ Hw+J =0,

(4.25)
with no factors of the form (z + a) or (w+b). the quadratic correspondence
f arising from P is the set of pairs

f={(zw)eCxC: P(z,w) =0} (4.26)

The polynomial equation is regarded as an implicit 2-valued map z — w
of the Riemann sphere to itself with a 2-valued inverse, when P has no
factors of the form (z + a) or (w + b). Otherwise, the values a and b would
be points where the map, respectively its inverse, would have the whole
Riemann sphere as values.

In general, a quadratic correspondence has a lattice of possible values with
two possibilities in both directions for each point 2:

21 w1

\ B /
n 7 ™~ w,

Another point 2’ having a preimage in common with z, say z;, needn’t
necessarily have w; or w; as image point, so a drawing of the full system
would be impossible.

As a simple example of a correspondence, consider the class of maps
g(z,w)=czw+dw—-az-b=0. (4.27)

Since it is not a quadratic correspondence, there are no two-value problems
with these maps. They are the by now familiar Mébius transforms
az+ b
w =
cz+d

(4.28)
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which are biholomorphic. In fact, they are the only isomorphisms of the
Riemann sphere.

The quadratic map z = 2% + ¢ which I have treated in an earlier chapter is
given by the correspondence

gz, w)y=w— (2 +¢)=0 (4.29)

hence rational iteration in the degree two case, which is covered in the pre-
ceding chapters, treats some classes of quadratic correspondences with two-
value problems in one direction only (g is of degree one in w). The question
is then, how much of the rational iteration theory can be applied to the gen-
eral quadratic correspondences? We shall try and define regular and limit
sets and Fatou and Julia sets, but the branching of the maps shall give us a
bit of extra work.

Our example of the Arithmetic-Geometric mean is a quadratic correspon-
dence. Recall the sequence (4.16):

142 '
Zn41 = 2\/2_” (4.30)
" Let 2, = z and z,4; = w and rewrite to
4wz —(z+1)2=0 (4.31)

This shows that the sequence we defined as the arithmetic-geometric mean
defines a quadratic correspondence which will from now on be called the agm-
correspondence. This correspondence as a map (the iteration map of section
4.2) ft : z = w is single-valued when restricted to the upper halfplane
except on the set (f)~!1(R).

4.5 Orbits and Paths

In iteration of rational maps, we defined the forward and backward orbits of
a point. Correspondences, however, have no predefined forward or backward
map, since the two maps z = w and w — 2z are equally valid as maps
derived from the correspondence. From the point of view of kleinian groups,
a direction of iteration doesn’t make much sense, so in general we will allow
iteration in both directions of any z and call the resulting sequence of points
the grand orbit of z. The existence of two images in both directions gives
2" possible different orbits of length n for a generic point. Therefore we
will need an adaptation found in [BP98b] of the notion of an itinerary known
from rational iteration as the sequence of iterates of a point. First we need
to decide which direction we will consider forward. Let ft : z — w be the
“forward” map defined by a quadratic correspondence, a forward direction,
which is not intrinsic to the correspondence. It is generally branched, and
so is it’s inverse which we take to be the map f~ = (f*)"!: w— 2.
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4.6 Maps of pairs

We will now consider a special class of quadratic correspondences, which
have some nice properties. The reason we deal with this class is that it
contains the arithmetic-geometric mean correspondence.

We say that a quadratlc correspondence f defines a map of pairs, f: S — T,
with S,T C c’ , if, given a pair of points 2, 2o, the images under f is a
unique pair of points. The possible actions of a map of pairs are

2] —

><{

2 — W2

We now define ® : C — C which interchanges the two points z which map to
the same w. ® is bijective since every quadratic must have exactly two roots,
counting multiplicity, and it is easily seen to be holomorphic except possibly
at critical points for the correspondence, df /dz = 0, which are removable
singularities because the correspondence is continuous. Therefore, ® must
be a Mdbius transform with ®2 = id. And hence it is an involution of the
Riemann sphere. Any involution of the Riemann sphere is Mbius conjugate
to z — —z. Consider the Riemann surface C/p. It follows from the fact
that ® is an involution that this surface is isomorphic to C, and that the
projection mapping g : C — C/p is a fractional quadratic, since it is a
2 : 1 holomorphic map from C to itself. Similarly there exists a projection,
a fractional quadratic map h such that for any u € C, the set A~} (u) =
{w1, wp} forms a pair which is the image of a pair (21, 23) under f.

Proposition 4.10
A quadratic correspondence defines a map of pairs, f = h™! o g, if and only
if the following equivalent conditions are satisfied:

1. The coefficients in equation (4.25) satisfy

A C FE
B F H|[=0
D G J

or P(z,w) is of the form (azw + bz + cw + d)*.
2. Equation (4.25) can be rewritten in the form
9(z) = h(w) (4.32)
where g and h are fractional quadratic functions with complex coeffi-
cients, i.e. on the form
az?+bz+c

9(z) = dz2+ez+ f
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Proof
For the proof of 1, we note that if f is the square of a M&bius transform which

is one-to-one, f must be a map of pairs. For a proof of the result about the de-
terminant, please look in [Bul88]. For the proof of 2, let f: (21, 22) — (w1, w2)
be a map of pairs. Consider the map ® : C — C which interchanges the two
points z which map to the same w. & is bijective since every quadratic must
have exactly two roots, counting multiplicity, and it is easily seen to be holo-
morphic except possibly at critical points for the correspondence, ¢ [dz =0,
which are removable singularities because the correspondence is continuous.
Therefore, & must be a M&bius transform with ®2 = id. And hence it is an
involution of the Riemann sphere. Any involution of the Riemann sphere
is Mdbius conjugate to z — —z. Consider the Riemann surface /. It fol-
lows from the fact that & is an involution that this surface is isomorphic to
C, and that the projection mapping § : C — C/p is a fractional quadratic,
since it is a 2 : 1 holomorphic map from C to itself. Similarly there exists
a projection, a fractional quadratic map h such that for any v € C, the set
h=1(v) = {w;, we} forms a pair which is the image of a pair (21, z2) under f.
The map of pairs f defines a map M:u — v which makes the diagram
commutative:

C - C
f
g h
M
C C

Similarly to ®, M can be shown to be a Mébius transform. By defining
g = M og, we see that a map of pairs can be written as in (4.32).

Conversely, if we have a map satisfying (4.32), then the diagram shows that
it can be considered a map of pairs. O

The maps h and g are double covers of the Riemann sphere branched at
the critical points dh/dw = 0 or dg/dz = 0. The condition in 4.32 is called
separability, and we shall mostly treat correspondences that are separable,
i.e. are maps of pairs.

Proposition 4.11
® maps any circle through the two critical points to itself, exchanging the
two discs bounded by the circle.

Proof

Consider the case where the two critical points are 0 and co and let ®(z) =
—z. Any other case can be M&bius conjugated into this. Any circle through
0 and oo is a straight line through 0, and then ® has the desired effect.
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For a map of pairs with real coefficients and purely imaginary critical points
and f(z, w)=0 & f(l/z, 1/@) = 0, the unit circle is invariant under
forward and backward iteration, and if a definition of the Julia set should
make sense for quadratic correspondences, we may want the unit circle to be
included. With an arbitrary initial value, iteration using a random choice of
the two values will accumulate on the unit circle [Bul88].

It is then not suitable to define the Julia set for a correspondence as the
points which form the boundary of A(co) (as can be done for rational maps)
since a point may escape to infinity under one sequence of choices of forward
values, but with other choices, the point sequence may converge to a finite
image or not at all.

In [Bul88], examples are given where Julia sets found as accumulation points
of a generic point under random backward iteration of maps of pairs are
difficult to obtain, since attracting and strongly repelling points in some
regions are close together, making computer experiments difficult. A solution
would be to restrict certain regions from the iteration in order to obtain a
sharp Julia set. However, as we mentioned about the agm-correspondence,
different single-valued restrictions of iteration domain for correspondences
give different iteration pictures, and therefore different ‘Julia sets’ if we are
not careful.

4.7 Zipeomorphisms

The following class of correspondences defined in [Bul88] give us the possi-
bility of comparing dynamics with Fuchsian group dynamics. Given a map
of pairs, f = k™Y o g : (21, 22) = (wy, w2), we have from proposition 4.11
that for each z, the corresponding values of w occur in pairs. Either with
one value inside a circle C through the critical points ¢ and d of k, and one
value outside it, or with both values on the circle.

Then the correspondence is single valued in either of the discs surrounded by
the circle, except on the set of preimages of the circle through ¢ and d. If the
critical points s and t of g are also on the circle C, then the correspondence
as a map of pairs is a homeomorphism on each of the discs, except the two
arcs of preimages of the circle.

The action of f is to send the arc ¢/d’ to the circle cd, and conversely sending
¢d to an arc in the disc. This “zipping” of circles into arcs and “unzipping”
of arcs into circles has given rise to the term zipeomorphism. The zipeo-
morphisms only differ from the complex analytic maps on a halfplane by the
existence of the zip discontinuity.
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Figure 4.2 The Riemann sphere with the circle through the critical points ¢, d of
h.

¢ 1)

d | > fd)

Figure 4.3 The action of f as a zipeomorphism.

4.8 Desingularization of correspondences

In the quest for helpful tools in defining a set of normality for correspon-
dences, we will now move to the covering surface of a correspondence. A
quadratic correspondence f can be considered as a graph, or set of pairs:
f={(z,w) €e Cx C: P(z,w) = 0}. Let the projection 7_ : Cx C —» C
given by 7m_(f) = 2z be named the backward projection, and likewise the
forward projection 7y : f — w.

It is then clear, that what we until now has referred to as the forward and
backward maps defined by the correspondence are the maps

fr=mpo ()™ (4.33)
fo=m_o(myly)! (4.34)
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CxC

C C
The correspondence f itself can be regarded an algebraic hypersurface. Prob-
lems occur when we encounter singular points. A forward singular point z

of f is a point with fewer images under f* than its immediate neighbours.
Backward singular points are defined in a similar way.

Definition 4.12

A point (z,w) € f is forward non-singular if there exists a neighbourhood
U of (z,w) in f such that n_|y is a homeomorphism onto its image. The
composition w4 o (_|y) ™1, which then is single valued, is called a branch of
f at z.

For the singular point problem, we will draw on the theory of desingular-
ization, which, in the version of [BP98b], says that given a correspondence
f € Z x W between Riemann surfaces, there exists a manifold cover X
containing f and projections Q- and @4 such that

Q-:X—>Z and Q4+:X->W
X

Q- Q+
f

z w

and the product map Q@ = Q- X Q4+ : X = f C Z x W given by
Q(z) = (Q-(z),Q+(z)) has f as image and is one to one except if (2, w)
is both forward and backward singular for f. The surface X is called the
desingularization of Z x W since (one-way) singular points in Z x W are not
singular in X. In our work we have f € C x C, and may assume X to be
the desingularized graph Q~1(f) of f since it is a closed Riemann surface
and covers f. We shall not prove these results or go further into desingular-
ization, but we shall enjoy the results. With these definitions we have the
backward projection Q- = 7_ 0 Q and @4 = 7, o  as holomorphic maps
of degree two from X to C.
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X

O

al
X
al

We will now restrict our attention to some correspondences where we can
define completely invariant regular or normal set and limit set. We will now
introduce a further restriction on our separable correspondences.

Definition 4.13 :

A holomorphic correspondence is a correspondence f between compact Rie-
mann surfaces Z and W which has a factorization f = Q. o QZ!, where Q_
and Q4 are holomorphic maps from a Riemann surface X onto Z and W
respectively.

About these holomorphic correspondences, we can state the following version
of the Riemann-Hurwitz relation.

Proposition 4.14

An m : n holomorphic correspondence on the Riemann sphere has at most
2(m — 1)n backward singular points and at most 2(n — 1)m forward singular
points.

Proof (sketch)

Let the correspondence be defined by a polynomial P of degree m in z and
degree » in w. A point wg is backward singular if and only if P(z, w) and
8P(z,w)/5, has a common root z. This system has 2(m—1) degrees of freedom
in z. Each of the two polynomials are also of degree n in w, and this gives
the total number of backward singular points as 2(m —1)n. Forward singular
points are counted similarly. O

Then the number of backward and forward singular points are four fora 2 : 2
correspondence. We have earlier mentioned that the desingularized graph of
the correspondence forms a closed hypersurface. the genus of the surface can
also be computed.

Proposition 4.15

If P(z,w) is an irreducible polynomial of degree m in z and n in w, then the
graph f of the holomorphic correspondence defined on the Riemann sphere
by P(z,w) = 0 has genus at least (m — 1)(n — 1).
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Proof

The graph f expressed as a polynomial in z is an m-fold cover of the Riemann
sphere, and has at most 2(m — 1)n backward singular points. Therefore, X
has Euler characteristic at least 2m — 2(m — 1)n =2 — 2(m — 1)(n — 1) by
the Riemann-Hurwits formula, and so does @Q~!(f). Then the genus of f is
at least (m — 1)(n — 1). a

For our polynomials of degree two in both variables, the graph has genus
at most 1, which corresponds to a torus. This is the case when the poly-
nomial has four distinct roots. In [BP94] the topological possibilities of the
normalization surface are listed. If there are one double or one triple root,
the surface is a sphere which self-intersects or with a nonsmooth point. Two
double roots or one quadrouple root makes the surface a pair of disjoint
spheres.

4.9 Normalization of quadratic correspondences

Recall that anlytic maps can be conjugated to z — 2%, where d is the degree
of the original map. The key was finding an automorphism ¢ of the Riemann
sphere moving the map to the origin. The same is possible for the projections
@- and Q4. The degree of these projections is defined locally for any 2 €
Q7'(f), and we know that Q~*(f) is a covering Riemann surface with a
complex structure. We can therefore choose the appropriate charts such
that a neighbourhood of z is mapped d : 1 onto a neighbourhood of the
origin.

Definition 4.16

We say that Q_ of degree m and Q4 of degree n are simultaneously nor-
malizable if there exist neighbourhoods U, V and W around z, z and w
respectively and charts ¢ : Z — C and v : W — C such that

poQ_:z9—0(m:1)
PpoQ4+:20~0(n:1)

Simultaneous normalization is possible only if m and n are coprime. If
ged(m, n) = d > 1 then we may have some point z in any neighbourhood of
zo, for which po Q_(z) = 0(m : d) and ¥ 0o Q4 (z) = 0(n : d), whereby 2
aswell as zp is a singular point, contradicting that singular points are isolated
in a holomorphic map.

With the definition above, the construction looks as follows:
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Definition 4.19

The iterates of a holomorphic correspondence f at zo are called equicontin-
uous if Ve > 0 there exists a § > 0 such that for all branches f¢ along paths
z starting at 2,

fa(Bs(20)) € Be(2a)-

. We still have difficulties defining a normal family of iterates since they are
multi-valued, but since we have the equicontinuity set as Fatou set for ratio-
nal functions, it is possible that future progress could come from this basis.

The complement of the equicontinuity set we will call J(f). However, this
set is not completely invariant, which is an important feature of the Julia set
for rational functions. If f is a rational map then with this definition J(f)
contains not only the usual Julia set but also forward and backward images
- of attractive and superattractive periodic points. To exclude these, one may
use the forward equicontinuity set where the orbit z is constructed by forward
iteration only. Grand orbits of Siegel discs, which we have encountered in
the agm correspondence are, however, included in the equicontinuity set as
it is defined above. Comparing this with proposition 4.6, we deduce that
for all critically finite correspondences with a critical orbit with at least
three points, all of the Riemann sphere except the critical orbit is in the
equicontinuity set, leaving the critical orbit as the only elements of J(f),
which is then neither infinite nor perfect.

It is proved in [BP98b] that for a finitely generated kleinian group regarded
as a correspondence, the equicontinuity set of f is equal to the regular set

Q(G).




Conclusion

The scope of this thesis is to survey the current knowledge of the dynamics
of the quadratic correspondences, and in order to round off the subject, the
volume of the subjects treated has been weighted to the detriment of depth
and precision in some instances. However, we have seen that when treating
the dynamics of a quadratic correspondence, we can profit from drawing on
experience from both the dynamics of holomorphic functions and that of
Kleinian groups.

Restricting iteration to one direction of the correspondence with a choice of
domain of iteration may give good results as we have seen in the case of the
agm correspondence, but the choice of domain and discontinuity plays an
important role in the quality of the generated pictures.

Because of the nondirectionality of the correspondences, a regular — limit
set dichotomy is easiest to define and determine in the (separable) multi-
valued cases we have treated, whereas a Fatou — Julia dichotomy requires
many arduous definitions and limitations to make sense even in the simplest
multivalued cases.

It seems, though, that separability is a necessary condition to get anywhere,
and good definitions of a universal dichotomy may never be found. Even
in the very limited cases we have encountered, the sets we define are not as
elegant as the ones found in rational dynamics.

66



Bibliography

[Ale94] Daniel S. Alexander. A History of Complex Dynamics. Aspects
of Mathematics. Vieweg, 1994.

[AS60] Lars V. Ahlfors and Leo Sario. Riemann Surfaces. Princeton
University Press, 1960.

[BBD*92] J. Banks, J. Brooks, G. Davis, G. Cairns, and P. Stacey. On
Devaney’s definition of chaos. American Mathematical Monthly,
99, 1992.

[Bea83] Alan F. Beardon. The Geometry of Discrete Groups. Springer-
Verlag, New York, 1983.

[Bea9la] Alan F. Beardon. An introduction to hyperbolic geometry. In
T. Bedford, M. Keane, and C. Series, editors, Ergodic Theory,

Symbolic Dynamics and Hyperbolic Spaces. Oxford University
Press, Oxford, 1991.

(Bea91b] Alan F. Beardon. Iteration of Rational Functions. Springer-
Verlag, New York, 1991.

[BP94] Shaun Bullett and Christopher Penrose. A gallery of iterated
correspondences. Ezperimental Mathematics, 3(1), 1994.

[BP98a] Shaun Bullett and Christopher Penrose. Perturbing circle-
packing Kleinian groups as correspondences Preprint, 1998.

[BP98b] Shaun Bullett and Christopher Penrose. Regular and limit sets
for holomorphic correspondences. Preprint, 1998.

[Bul88] Shaun Bullet. Dynamics of quadratic correspondences. Nonlin-
earity, 1, 1988.

[Bul91] Shaun Bullet. Dynamics of the arithmetic-geometric mean.
Topology, 30, 1991.

[CG93] Lennart Carleson and Theodore W. Gamelin. Complez Dynam-
ics. Springer-Verlag, New York, 1993.

67




[Cox84] David A. Cox. The a.rithrhetic—geometric mean of Gauss.
L’Enseignement Mathématique, 30, 1984.

[Dev86] Robert L. Devaney. An Introduction to Chaotic Dynamical Sys-
tems. Benjamin/Cummings Publishing, 1986.

[Dev92] Robert L. Devaney. A First Course in Chaotic Dynamical Sys-
tems. Studies in Nonlinearity. Addison-Wesley, 1992.

[DJH*98] Rikke Degn, Bo Jakobsen, Bjarke K. W. Hansen, Jesper S.
Hansen, Jesper Udesen, and Peter C. Wulff. Cayleys problem.
Tekster fra IMFUFA, 357, 1998.

[FK80] Hershel M. Farkas and Irwin Kra. Riemann Surfaces. Springer-
Verlag, New York, 1980.

[For81] Otto Forster. Lectures on Riemann Surfaces. Springer-Verlag,
New York, 1981.

[Man82] Benoit Mandelbrot. The fractal geometry of nature. Freeman,
1982.

[Mil91} John Milnor. Dynamics in One Complezx Variable. Institute for
Mathematical Sciences, SUNY, Stony Brook, New York, 1991.

[MP77] Richard S. Millman and George D. Parker. Elements of Differ-
ential Geometry. Prentice-Hall, New Jersey, 1977.

[MR91] H.F. Miinzner and H.-M. Rasch. Iterated algebraic functions and
functional equations. Interantional Journal of Bifurcation and
Chaos, 1(4), 1991.

[Ste93] Norbert Steinmetz. Rational iteration: complezx analytic dynam-
ical systems. Walter de Gruyter, Berlin, 1993.

[vD28] L. von David. Aritmetisch-geometrisches Mittel und Modulfunk-
tion. J. fiir die Reine u. Ang. Mathematik, 1928.

[Wil92] Pia Birgitte Northcote Willumsen. Kleinian groups and holo-
morphic dynamics. Master’s thesis, The Technical University of
Denmark, 1992.

68




227,92

Liste over tidlige?e udkomne tekster

228/92
tilsendes gerne. Henvendelse herom kan . /
gske til IMFUFA's sekretariat
t1f. 46 74 22 63

; . 229/92
217/92 "Two papers on APPLICATIONS AND MODELLING
0 IS TCULUM"
IN THE MATHEMATICS CURRTCU 230/92
by: Mogens Niss
218/92 "A Three-Square Theorem"
by: Lars Kadison
/92 “RUPNOK - i ing i i "
219/92 UPNOK stationar stremning i elastiske rer 231A/92
af: Anja Boisen, Karen Birkelund, Mette Olufsen
Vejleder: Jesper Larsen
220/92 "Automatisk diagnosticering i digitale kredsleb"
af: Bjern Christensen, Ole Meller Nielsen'
Vejleder: Stig Andur Pedersen 231B/92
221/92 A BUNDLE VALUED RADON TRANSFORM, WITH
APPLICATIONS TO INVARIANT WAVE EQUATIONS"
by: Thomas P. Branson, Gestur Olafsson an
Henrik Schlichtkrull
222/92 On the Representations of some Infinite Dimensional 5
Groups and Algebras Related to Quantum Physics 32/92
by: Johnny T. Ottesen
223/92  THE FUNCTTONAL DETERMINANT
by: Thomas P. Branson
524/92  UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT 233,92
' LOW TEMPERATURES
by: Jeppe C. Dyre
225/92 "HATMODELLEN" Impédansspektroskapi 1 ultrarent
’ —-krystallingk silicium
enrry 234/92
af: Anja Boisen, Anders Gorm Larsen, Jesper Varmer,
Johannes K. Nielsen, Kit R. Hansen, Peter Beoggild '
og Thomas Hougaard -
Vejleder} Petr.Viscor 235,92
2926/92 "“METHODS AND MODELS FOR ESTIMATING THE GLOBAL
CIRCULATION OF SELECTED EMISSIONS FROM ENERGY
CONVERSION"
A by: Bent Serensen

"Computersimulering og fysik"

af: Per M.Hansen, Steffen Holm, .
Peter Maibom, Mads K. Dall Petersen,
Pernille Postgaard, Thomas B.Schreder,
ivar P. Zeck

Vejleder: Peder Voetmann Christiansen

“Teknologi og historie®
af:

Mogens Niss, <ens. Heyrup,
Hans Hedal

Fire artikler
ib Thiexrsen,

"Masser af information uden becydning”

En diskussion af informationsteorien
1 Tor Nerretiranders' "Mark Verden® og
en skiise til et alternativ basserec
pd andenordens kybernetik og semioiik.

af: Seren Brier

"Vinklens tredeling - et klassisk
problem"

et matematisk projekt af

Karen Birkelund, Bjern Christensen
Vejleder: Cohnny Ottesen

"Elektrondiffusion i silicium -
matematisk model"”

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Meller Nielsen

en

Vejleaere: Johnny Ottesen, H.B.Hansen

"Elektirondiffusion i silicium - en
matematisk model" Kildetekster

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, 0Ule Mgller Nielsen

Vejlecere: Johnny Ottesen, H.B.Hansen

"Undersogelse om den. simuliane opdagelse

af energiens bevarelse og iszcdeles onm

~de af Mayer, Colding, Joule og Helmholtz

udferte arbejder™
af: L.Arleth, G.I.Dybkjer, M.T.@stergdrd

Vejleder: Dorthe Posselt

"The effect of age-dependent host
mortality on the dynamics of an endemic
disease and

Instability in an SIR-model with age-
dependent susceptibility

by: Viggo Andreasen

"THE FUNCTIONAL DETERMINANT OF A FOUR-DIMENSIONAL
BOUNDARY VALUE PROBLEM"

by: Thomas P. Branson and Pefer B. Gilkey

OVERFLADESTRUKTUR 0OG POREUDVIKLING AF KOKS
- Modul 3 fysik projekt -

af: Thomas Jessen




236a/93

236b/93

237/93

238/93

239/93

240/93

241,93

242,793

243/93

244/93

245a+b
/93

246/93

INTRODUKTION TIL KVANTE
HALL EFFEKTEN

af: Anija Boisen, Peter Beggild

Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

’

STROMSSAMMENBRUD AF KVANTE
HALL EFFEKTEN

af: Anja Boisen, Peter Bzggildr

Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

The Wedderburn principal theorem and
Shukla cohomology

af: Lars Kadison

SEMIOTIK OG SYSTEMEGENSKABER (2)
Vektorband og tensorer

af: Peder Voetmann Christiansen

Valgsystemer - Modelbygning og analyse
Matematik 2. modul

af: Charlotte Gjerrild, Jane Hansen,
Maria Hermannsson, Allan Jergensen,
Ragna Clauson-Kaas, Poul Lutzen

Vejleder: Mogens Niss

Patologiske eksempler.

Om s@re matematiske fisks betydning for

den matematiske udvikling

af: Claus Draby, Jern Skov Hansen, Runa

Ulsee Johansen, Peter Meibom, Johannes
Kristoffer Nielsen

Vejleder: Mogens Niss

FOTOVOLTAISK STATUSNOTAT 1
af: Bent Sprensen

Brovedligeholdelse - bevar mig vel

Analyse af Vejdirektoratets model for
optimering af broreparationer

af: Linda Kyndlev, Kare Fundal, Kamma
Tulinius, Ivar Zeck

Vejleder: Jesper Larsen

TANKEEKSPERIMENTER I FYSIKKEN
Et l.modul fysikprojekt

af: Karen Birkelund, Stine Sofia Korremann

Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN og dens anvendelse

i CT-scanning
Projektrapport

af: Trine Andreasen, Tine Guldager Christiansen,

Nina Skov Hansen og Christine Iversen

Vejledere: Gestur Olafsson og Jesper Larsen

Time-Of-Flight midlinger p& krystallinske

halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Boye Olsen

HVERDAGSVIDEN OG MATEMATIK
- LEREPROCESSER I SKOLEN

af: Lena Lindenskov, Statens Humanistiske

Forskningsrdd, RUC, IMFUFA

247,/93 UNIVERSAL LOW TEMPERATURE AC CON-

248/93

249/93

250/93

251193

25293

253/93

254/93

255/93

256/93

257/93

258/93

259/93

260/93

DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS

by: Jeppe C. Dyre

DIRAC OPERATORS AND MANIFOLDS WITH
BOUNDARY

by: B. Booss-Bavnbek, K.P.Wojciechowski

Perspectives on Teichmuller and the
Sahresbericht Addendum to Schappacher,
Scholz, et al.

by: B. Booss-Bavnbek °

With comments by W.Abikoff, L.Ahlfors,
.Cerf, P.J.Dhavis, W.Fuchs, F.P.Gardiner,
.Jost, J.-P.Kahane, R.Lohan, L.Lorch,
.Radkau and T.Sodergvist

[ )

EULER OG BOLZANO - MATEMATISK ANALYSE SET I ET
VIDENSKABSTEORETTSK PERSPEKTIV

Projektrapport af: Anja Juul, Lone Michelsen,
Tomas Hejgdrd Jensen

Vejleder: Stig Andur Pedersen

Genotypic Proportions in Hybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFELDIGE FANOMENER

Projektrapport af: Birthe Friis, Lisbeth Helmgaard,
Krigtina Charlotte Jakobsen, Marina Mosbek
Johannessen, Lotte Ludvigsen, Mette Hass Nielsen

Kuglepakning

Teori og model

af: Lise Arleth, Kare Fundal, Nils Kruse
Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus

af: Jergen Larsen

TID & BETINGET UAFHENGIGHED
af: Peter Harremoes

Determination of the Frequeney Dependent
Bulk Modulus of Liquids Using a Pieso=~
electrie Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Modellering af dispersion i piezoelektiriske
keramikker

af: Pernille Postgaard, Jamnik Rasmussen,
Christina Specht, Mikko Qstergdrd

Vejleder: Tage Christensen )

Supplerende kursusmateriale til

"Linewre atrukturer fra algebra og analyse”

af': Mogens Brun Heefelt

STUDIES OF AC HOPPING CONDUCTION AT LOW
TEMPERATURES

by: Jeppe C. Dyre

PARTITIONED MANIFOLDS AND INVARIANTS 1IN
DIMENSIONS 2, 3, AND 4

by: B. Booss~Bavnbek, K.P.Wojeiechowski
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265/94
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267/94

268/94

269/94

270/94

271/94

OPGAVESAMLING
Bredde-kursus i Fysik
Eksamensopgaver fra 1976-93

Separability and the Jones
Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Line®re strukturer fra algebra

oq analyse" II

af: Mogens Brun Heefelt

FOTOVOLTAISK STATUSNOTAT 2

af: Bent Serensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

To Sigurdur Helgason on his
sixtyfifth birthday

by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets-oscillationer i
laterale supergitre

Fysikspeciale af: Anja Boisen,
Peter Bgggild, Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik

Lindelof, Peder Voetmann Christiansen

"Kom til kort med matematik pa

Eksperimentarium - Et'forslag til eﬁ
opstilling

af: Charlotte Gjerrild, Jane Hansen
Vejleder: Bernhelm Booss-Bavnbek

Life is like. a" sewer

Et projekt om modellering af aorta via
en model for stremning i kloakrer

af: Anders Marcussen, Anne C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,
Jannik Rasmussen

Vejleder: Jens Hejgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT-BAS-proiekt

vejleder: Jens Hejgaard Jensen
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275/94

276/94

277/94

278/94

279/94

280/94

281/94

282/94

Tradition og fornyelse

Det praktiske elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppe og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistanceleb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
Bettina Serensen

Vejleder: Mette Olufsen

MODEL 10 -~ en matematisk model af intravenese
anastetikas farmakokinetik
3. modul matematik, fordr 1994

af: Trine Andreasen, Bjorn Christensen, Christine
Green, Anja Skjoldborg Hansen. Lisbeth
Helmgaard

Vejledere: Viggo Andreasen & Jesper Larsen

Perspectives on Teichmiller and the Jahresbericht
2nd Edition

by: Bernhelm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af: Gitte Andersen, Rehannah Borup, Lisbeth Friis,
Per Gregersen, Kristina Vejre

Vejleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK ~ Om tre tolkninger af
problemorienteret projektarbejde

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jern Skov Hansen, Thomas
Thingstrup

Vejleder: Jens Hejgaard Jensen

The Models Underlying the Anaesthesia
Simulator Sophus

by: Mette Olufsen(Math-Tech), Finn Nielsen
(RIS@® National Laboratory), Per Fege Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Roskilde University)

Description of a method of measuring the shear
modulus of supercooled liquids and a comparison
of their thermal and mechanical response
functions.

af: Tage Christensen

A Course in Projective Geometry

by Lars Kadison and Matthias T. Kromann

Modellering af Det Cardiovaskulare System med

Neural Pulskontrol

Projektrapport udarbejdet af:

Stefan Frello, Runa Ulsse Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Andreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen
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290/95%

291/95
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293/95

294/95

295/95

Granser for tilfeldighed

(en kaotisk talgenerator)
af: Erwin Dan Nielsen og Niels Bo Johansen

Det er ikke til at se det, hvis man ikke
lige ve' det!

Gymnasiematematikkens begrundelsesproblem

En specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Veileder: Mogens Niss

Slow coevolution of a viral pathogen and
its diploid host

by: Viggo Andreasen and
Freddy B. Christiansen

The energy master equation: A low-temperature
approximation to Bassler's random walk model

by: Jeppe C. Dyre

A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by: Jeppe C. Dyre

PROGRESS IN WIND ENERGY UTILIZATION

by: Bent Serensen

Universal Time-Dependence of the Mean-Square
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob Jacobsen

Modellering af uregelmazssige belger
Et 3.modul matematik projekt

af: Anders Marcussen, Anne Charlotte Nilsson,
Lone Michelsen, Per Merkegaard Hansen

Vejleder: Jesper Larsen

1st Annual Report from the project

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

by: Bent Serensen

Fotovoltaisk Statusnotat 3

af: Bent Serensen

Geometridiskussionen - hvor blev den af?
af: Lotte Ludvigsen & Jens Frandsen

Vejledur: Anders Madsen

Universets udvidelse -
et metaprojekt

Af: Jesper Duelund og Birthe Friis

Vejleder: Ib Lundgaard Rasmussen

A Review of Mathematical Modeling of the
Controled Cardiovascular System

By: Johnny T. Ottesen

296/95

297/95

298/95

299/95

300/95

301/95

RETIKULER den klassiske mekanik

af': Peder Voetmann Christiansen
A fluid-dynamical model of the aorta with
bifurcations

by: Mette Olufsen and Johnny Ottesen

Mordet p& Schrodingers kat - et metaprojekt om

to fortolkninger af kvantemekanikken

af: Maria Hermannsson, Sebastian Horst,

Christina Specht

Vejledere: Jeppe Dyre og Peder Voetmann Christiansen

ADAM under figenbladet - et kig pd en samfunds-

videnskabelig matematisk model

Et matematisk modelprojekt

af: Claus Draby, Michael Hansen, Tomas Hejglrd Jensen

Vejleder: Jergen Larsen

Scenarios for Greenhouse Warming Mitigation

by: Bent Serensen

TOK Modellering af trzers vakst under pldvirkning

af ozon

af: Glenn Meller-Holst, Marina Johannessen, Birthe

Nielsen og Bettina Serensen

Vejleder: Jesper Larsen

302/95

303/95

J

KOMPRESSORER - Analyse af en matematisk model for

aksialkompressorer

Projektrapport sf: Stine Beggild, Jakob Hilmer,

Pernille Postgaard
Vejleder: Viggo Andreasen
Masterlignings-modeller af Glasovergangen

Termisk~Mekanisk Relaksation

Specialerapport udarbejdet af:

ohannes K. Nielsen, Klaus Dahl Jensen

Vejledere: Jeppe C. Dyre, Jergen Larsen

304a/95 STATISTIKNOTER Simple binomialfordelingsmodeller

304b/95

304c/95

3044/95

304e/95

af: Jergen Larsen

STATISTIKNOTER Simple normalfordelingsmodeller

af: Jorgen Larsen

STATISTIKNOTER Simple Poissonfordelingsmodeller
af: Jergen Larsen N
STATISTIKNOTER Simple multinomialfordelingsmodeller

af: Jergen Larsen .

STATISTIKNOTER Mindre matematisk-statistisk opslagsvark
indeholdende bl.a. ordforklaringer, resuméer og
tabeller

af: Jergen Larsen



316/96 Plasmaoscillation i natriumklynger
305/95 The Maslov Index:

A Functional Analytical Definitjonl Specialerapport af: Peter Meibom, Mikko @stergérd
And The Spectral Flow Formula Vejledere: Jeppe Dyre & Jorn Borggreen

By: B. Booss-Bavnbek, K. Furutani
317/96 Poincaré og symplektiske algoritmer

306/95 Goals of mathematics teaching afr: Ulla Rasmussen

Vej : d
Preprint of a chapter for the forth- ejleder: Anders Madsen

comming International Handbook of

Mathematics Education (Alan J.Bishop, ed) 318/96 Modelling the Respiratory System

- By: Mogens Niss by: Tine Guldager Christiansen, Claus Draby

Supervisors: Viggo Andreasen, Michael Danielsen
307/95 Habit Formation and the Thirdness of Signs
. Presented at the semiotic symposium

319/96 Externality Estimation of Greenhouse Warmin
The Emergence of Codes and Intensions as / x Y m &

a Basis of Sign Processes Impacts

By: Peder Voetmann Christiansen by: Bent Serensen
308/95 Metaforer i Fysikken

af: Marianne Wilcken Bjerregaard, 320/96 Grassmannian and Boundary Contribution to the

Frederik Voetmann Christiansen, -Determinant
Jern Skov Hansen, Klaus Dahl Jensen C s .
: P.w .
Ole Schmidt by: K ojciechowski et al
Vejledere: Peder Voetmann Christiansen og
Petr Viscor 321/96 WModelkompetencer - udvikling og afprevning
af et begrebsapparat
309/95 Tiden og Tanken g PP

En undersdgelse af begrebsverdenen Matematik

- : ° Specialerapport af: Nina Skov Hansen,
udfert ved hjzlp af en analogi med tid

X Christine Iversen, Kristin Troels-Smith
af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek Vejleder: Morten Blomhej

310/96 Kursusmateriale til "Lineare strukturer fra 322/96 OPGAVESAMLING

algebra og analyse'" (E1) Bredde-Kursus i Fysik 1976 - 1996

af: Mogens Brun Heefelt

. 323/96 Structure and Dynamics of Symmetric Diblock
311/96 2nd Annual Report from the project
Copolymers
LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
PhD Thesis

ENERGY SYSTEM
by: Christine Maria Papadakis
by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Sorensen 324/96 Non-linearity of Baroreceptor Nerves

. by: Johnny T. Ottesen
312/96 Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojciechowski 325/96 Retorik eller realitet ?
Anvendelser af matematik i det danske
313/96 THE IRREDUCIBILITY OF CHANCE AND Gymnasiums matematikundervisning i
THE OPENNESS OF THE FUTURE perioden 1903 -~ 88

The Logical Function of Idealism in Peirce's Specialerapport af Helle Pilemann

Philosophy of Nature Vejleder: Mogens Niss
By: Helmut Pape, University of Hannover

326/96 Bevisteori
314/96 Feedback Regulation of Mammalian Eksemplificeret ved Gentzens bevis for

. konsistensen af teorien om de naturlige tal
Cardiovascular System

af: Gitte Andersen, Lise Mariane Jeppesen,

By: Johnny T. Ottesen Klaus Frovin Jergensen, Ivar Peter Zeck
bt Vejledere: Bernhelm Booss-Bavnbek og
315/96 '"Rejsen til tidens indre" - Udarbejdelse af Stig Andur Pedersen
a+b . . :
. et manuskript til en fjernsynsudsendelse 327/96 NON-LINEAR MODELLING OF INTEGRATED ENERGY
+ manuskript SUPPLY AND DEMAND MATCHING SYSTEMS
af: Gunhild Hune og Karina Goyle by: Bent Serensen

Vejledere: Peder Voetmann Christiansen og 328/96 Calculating Fuel Transport Emissions

Bruno Ingemann

by: Bernd Kuemmel




329/96

330/96

331/96

The dynamics of cocirculating influenza
strains conferring partial cross~immunity

and
A model of influenza A drift evolution

by: Viggo Andreasen, Juan Lin and
Simon Levin

LONG-TERM INTEGRATION OF PHOTOVOLTAICS
INTO THE GLOBAL ENERGY SYSTEM

by: Bent Serensen

Viskese fingre

Specialerapport af:
Vibeke Orlien og Christina Specht

Vejledere: Jacob M. Jacobsen og Jesper Larsen

332/97

333/97

334/97

335/97

336/97

337/97

338/97

ANOMAL SWELLING AF LIPIDE DOBBELTLAG
Specialerapport af:
Stine Sofia Korremann

Vejleder: Dorthe Posselt

Biodiversity Matters

an extension of methods found in the literature
on monetisation of biodiversity

by: Bernd Kuemmel

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Bernd Kuemmel and Bent Serensen

Dynamics of Amorphous Solids and Viscous Liquids

by: Jeppe C. Dyre

PROBLEM-ORIENTATED GROUP PROJECT WORK AT
ROSKILDE UNIVERSITY

by: Kathrine Legge

Verdensbankens globale befolkningsprognose

- et projekt om matematisk modellering

af: Jorn Chr. Bendtsen, Kurt Jensen,

Per Pauli Petersen

Vejleder: Jergen Larsen

Kvantisering af nanolederes elektriske
ledningsevne

Forste modul fysikprojekt

af: Seren Dam, Esben Danielsen, Martin Niss,

Esben Friis Pedersen, Frederik Resen Steenstrup

Vejleder: Tage Christensen

339/97

340/97

341/97

342/97

343/97

344/97

Defining Discipline

by: Wolfgang Coy

Prime ends revisited - a geometric point
of view -

by: Carsten Lunde Petersen

Two chapters on the teaching, learning and

agsessment of geometry
by Mogens Niss .

LONG-TERM SCENARIOS FOR GLOBAL ENERGY
DEMAND AND SUPPLY

A global clean fossil scenario discussion paper
prepared by Bernd Kuemmel

Project leader: Bent Serensen

IMPORT/EKSPORT—POLITIK SOM REDSKAB TIL OPTIMERET
UDNYTTELSE AF EL PRODUCERET PA VE-ANLEG

af: Peter Meibom, Torben Svendsen, Bent Serensen

Puzzles and Siegel disks

by Carsten Lunde Petersen

345/98

346/98

347/98

348/98

Modeling the Arterial System with Reference to
an Anestesia Simulator

Ph.D. Thesis

by: Mette Sofie Olufsen

Klyngedannelse i en hulkatode-forstevningsproces

af: Sebastian Horst

Vejledere: Jorn Borggren, NBI, Niels Boye Olsen

Verificering af Matematiske Modeller

- en analyse af Den Danske Eulerske Model

af: Jonas Blomqvist, Tom Pedersen, Karen Timmermann,
Lisbet Bhlenschlager

Vejleder: Bernhelm Booss-Bavnbek

Case study of the environmental permission
procedure and the environmental impact assessment

for power plants in Denmark

by: Stefan Kruger Nielsen

Project leader: Bent Serensen

349/98 Tre rapporter fra FAGMAT - et projekt om tal

350/98

351/98

og faglig matematik i arbejdsmarkedsuddannelserne
af: Lena Lindenskov og Tine Wedege N
OPGAVESAMLING - Bredde-Kursus i Fysik 1976 ~ 1998
Erstatter teksterne 3/78, 261/93 og 322/96
Aspects of the Nature and State of Research in
Mathematics Education

by: Mogens Niss
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359/99

360/99

361/99

362/99

The Herman-Swiatec Theorem with

applications

by: Carsten Lunde Petersen

Problemlesning og modellering i

en almendannende matematikundervisning

Specialerapport af: Per Gregersen og

Tomas Hejgaard Jensen

Vejleder: Morten Blomhej

A GLOBAL RENEWABLE ENERGY SCENARIO

by: Bent Serensen and Peter Meibom

Convergence of rational rays in

parameter spaces

by: Carsten Lunde Petersen and

Gustav Ryd

Terranmodellering

Analyse af en matematisk model til
konstruktion af terrznmodeller

Modelprojekt af: Thomas Frommelt,
Hans Ravnkjer Larsen og Arnold Skimminge

Vejleder: Johnny Ottesen

Cayleys Problem

En historisk analyse af arbejdet med Cayley
problem fra 1870 til 1918

Et matematisk videnskabsfagsprogjekt af:
Rikke Degn, Bo Jakobsen, Bjarke K.W. Hansen,
Jesper S. Hansen, Jesper Udesen, Peter C. Wulff

Vejleder: Jesper Larsen

Modeling of Feedback Mechanisms which Control
the Heart Function in a View to an Implemen-—
tation in Cardiovascular Models

Ph.D. Thesis by: Michael Danielsen

Long-Term Scenarios for Global Energy Demand
and Supply Four Global Greenhouse Mitigation
Seenarios

by: Bent Serensen

SYMMETRT T FYSIiK
En Meta-projektrapport af: Martin Niss,
Bo- Jakobsen & Tune Bjarke Bonné

Vejleder: Peder Voetmann Christiansen

Symplectic Functional Analysis and Spectral
Tnvariants ’

by: Bernmhelm Booss-Bavnbek, Kenro Furutant -

Er matematik en naturvidenskab? ~ en udspen-
ding af diskussionen

En videnskabsfagsprojekt-rapport af Martin Niss
Vejleder: Mogens Nergaard Olesen

363/99

364/99

365799

366799

367,99

EMERGENCE AND DOWNWARD CAUSATION
by: Donald T. Campbell, MArk H. Bickhard and
Peder V. Christiansen

Illustrationens kraft

Visuel formidling af fysik

Integreret speciale i fysik og kommunikation
af: Sebastian Horst

Vejledere: Karin Beyer, Seren Kjorup

To know — or not to know - mathematics.,
that is a question of context
by: Tine Wedege

LATEX FOR FORFATTERE
En introduktion til LATEX og IMFUFA~LATEX

af': Jergen Larsen

Boundary Reduciion of Spectral invariants
and Unique Continuation Property
by Bernhelm Booss-Bavnbek



