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This is a collection of three notes announcing recent progress made in understanding the {-determinant of self-
adjoint global elliptic boundary problems for Dirac operators acting on sections of Clifford module bundles over
compact Riemannian manifolds with boundary.

The first note is expository: We recall the concept of the {-regularized determinant for Dirac operators
over closed manifolds, based on previous work by Ray and Singer, Hawking, and Singer; we introduce the
smooth self-adjoint Grassmannian of self-adjoint global elliptic boundary conditions for (compatible) Dirac
operators on compact odd-dimensional manifolds which differ from the Calder6n projector by a smoothing

& operator; we construct the {-determinant over the smooth Grassmannian; we recall (and slightly modify) the
algebraic construction of the ‘canonical’ determinant bundle due to Quillen, Segal, and Scott which is trivial when
restricted to the smooth Grassmannian; and we announce the equality of the {-determinant and the canonical
determinant up to a constant. In particular it follows that the phase of the canonical determinant is determined
by the n-invariant and that pasting laws which are naturally formulated in the canonical, algebraic context remain
valid for the analytically defined {-determinant.

The third section of the first note presents a different application of the Grassmannian, namely a
discussion of the four-dimensional situation motivated by previous work of Morchio and Strocchi in Quantum
Chromodynamics, i.e. the establishment of a gauge-invariant section of chiral symmetry in the Y;-symmetric self-
adjoint Grassmannian over the space of connections on V'x € (here V denotes a large 4-dimensional ball) which
are pure gauge at the boundary. A special feature of our note is that a rigorous meaning is given to these various
physical concepts.

The second note is devoted to studying the geometry of the determinant line bundle and presents a
crucial component in the proof of the coincidence of the C-regularized determinant and the canonical
(algebraically regularized) determinant over the smooth Grassmannian. The calculations are carried out for the
odd-dimensional case.

The third note describes the even-dimensional case. Our starting point is the special situation of
euclidean Quantum Chromodynamics discussed in the third section of our first note which yields a determinant
with vanishing imaginary part as a consequence of the established chiral symmetry. Now we provide a further
modification of the choice of gauge-invariant boundary conditions and establish the constance of the determinant
on the connected components of the self-adjoint ys-invariant Grassmannian for the 4-ball for any fixed connection.

Applications of the new results are indicated briefly for new developments in the mathematical
understanding of Quantum Field Theories as modified cohomology theories and for the conservation equation
of the chiral current in Quantum Chromodynamics.
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INTRODUCTION

This is a collection of three research notes which deal with different aspects of
the determinant theory of elliptic boundary value problems for Dirac operators on
compact manifolds. The motivation for this work were recent studies in Topological
Quantum Field Theory and in Quantum Chromodynamics. Let D : C®(M;S) —
C>(M; S) denote a compatible Dirac operator acting on sections of a bundle S of
Clifford modules over a compact manifold M with boundary Y. The first problem
here is the correct definition of the determinant of IDp , the Dirac operator I
subject to the boundary condition P. We make a specific choice of the space of
admissible boundary conditions which implies that the operator Pp has nice spectral
properties. We use the (-function regularization to give an analytic definition of
the determinant which we call the (-determinant of the operator Dp and denote by
det:Dp . Let us point out that in the case of a first-order operator we have to study
the phase of the (-determinant. The phase is determined by the n-invariant of the
operator Dp as will be explained in the beginning of the first paper.

We follow Quillen and Segal in order to give a geometric construction of the
determinant. Quillen explained that the generalization of the algebraic determinant

of an operator acting on a finite-dimensional space to the infinite-dimensional case

of the Dirac operator does not yield a function, but a section of the ‘determinant line
bundle’. The determinant bundle over Gr(), the Grassmannian of the generalized
Atiyah-Patodi-Singer boundary conditions is a non-trivial line bundle. However,
it becomes a trivial bundle when restricted to Gr*(J)), the subspace of self-adjoint
conditions. There is a natural choice of the ‘canonical trivialization’, which defines
the determinant as a function over Gr* () , which we call the canonical determinant
and denote by det¢cPp . The natural question here is if the equality

.

det(mp = detcDp
holds for any P € Gr*([D).

We found that the phase of the canonical determinant is equal to the phase
of the (-determinant. We shall work out the details of the proof of the equality
separately. This topic and some further results on the geometry of the determinant
line bundle are discussed in the first and the second paper. The results will play an
important role in the analysis of the Pasting ’ziom in Quantum Field Theory.

The last section of the first paper and the third paper deal with a different
problem. We study the (-determinant of the Dirac operator with coefficients in C?
on a four-dimensional disc. Let JD4 denote the Dirac operator lifted by means of an
auxiliary connection A on the trivial bundle. It has the form

b= (g PR,




We are looking for a map & from the space of connections which are pure gauge
at the boundary to the space of elliptic self-adjoint boundary conditions for the
operator [D4, which satisfies certain additional conditions in order to describe the
physical situation. It turns out that there is an obvious construction of such a map,
which depends on the choice of a single boundary condition from the Grassmannian
Gr(JP%). We show that the (-determinant of the operator (IPA) ? does not depend |
on this particular choice. L i

Though we discuss problems which arose in different mathematical and phys-
ical situations, we use the same principle to solve them: We pick up a one-parameter
family {P,} of boundary conditions, and we study the variations of the determinant
under the change of the boundary condition. This is quite difficult in the general
case, as the domain of the unbounded operator Pp, is changing with the parameter.
However, in the situations discussed above, we use our knowledge of the structure of
the Grassmannians. It turns out that the choice of a family of boundary conditions
is equivalent to the choice of a family {T,} of unitary pseudo-differential operators
on Y of the form Id+ k, , where k, is an operator with a smooth kernel. We use the
family {T’-} to construct a family {U,} of unitary transformations on the manifold
M. The operator Dp, is unitarily equivalent to the operator D, = (U,.PU)p, .
The family {D,} has a fixed domain and therefore we can use methods similar to
the ones we used in the case of a closed manifold to study the variation of the
determinant.
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1. The (—~determinant on closed manifolds

Let T : CV — CV be an invertible, positive operator with eigenvalues 0 < A; <
A2 < ....< An . We have the equality

detT = HAJ- = exp( Zlnz\-e_’ln’\flmo)
d
= exp(—= Z/\ Jls=0) = exp(=—=Cr(s)ls=0) -

If T is a positive definite self-adjoint elliptic operator acting on sections of a
vector bundle over a closed manifold, then T" has discrete spectrum A; . We define
(r(s) as above and this function is holomorphic for R(s) sufficiently large. It has
a meromorphic extension to the entire complex plane, which is holomorphic in the

* Fourth International Conference on Clifford Algebras and Their Applications in Mathematical
Physics, Aachen (Germany), May 28-31, 1996. The talk was delivered by K.P. Wojciechowski.
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neighborhood of s = 0. It is natural then to define

- —d )
detT := exp(;—-g-s-(T(s)lmg) .

This was first observed by Ray and Singer in [8] who used this determinant in order
to define analytic torsion. Hawking later observed that the (- determinant gave

a natural renormalization of the path integral in curved space time in [5]. The
(—determinant has been an important tool in quantum field theory since then.
Physicists have been particularly interested in the study of the determinant of the
Dirac operator ). This is an elliptic self-adjoint differential operator of first order,
which therefore has infinitely many discrete positive eigenvalues A; and infinitely
many negative eigenvalues —pu;. Since ID is not positive, to make sense of the (-
determinant in this case we choose a branch of (—1)* = ¢!™* and define

lndetT = ~d/ds (Y X7* + 3 (=175 li=o

= ——d/dS (C[TI(S);"'?T(S) + e”’-qu( );nT(S)> (s:o .

In the preceding formula {jr|(s) = 3_A7® + )_p;° denotes the (—function of the
operator [T'| and nr(s) =3 A;° = >-u;° denotes the eta-function of the operator
T which is a measure of spectral asymmetry. Once again nr(s) is a holomorphic
function of s for R(s) large with a meromorphic extension to the whole complex
plane which is holomorphic in the neighborhood of s = 0 . We also know that
¢i71(0) = ¢r=(0). This all gives the formula '
T
Indet T = —(j7(0) + 5 (17(0) = ¢r2(0)).-

We refer to the beautiful work of Singer [13] for a review of different aspects of the
theory and applications of the (~determinant on closed manifolds. In this paper we

discuss two aspects of the determinant theory for the Dirac operators on manifolds
with boundary.

2. The smooth Grassmannian of elliptic boundary problems on odd— di-
mensional manifolds

Let M be a compact smooth Riemannian manifold with boundary Y, andlet § — M
be a bundle of Clifford modules with compatible Clifford structure and connection.
Let : C®(M;S) — C*™(M;S) denote the corresponding compatible Dirac opera-
tor acting on sections of S (see (4] for details). Let us assume now that dimM =n
is odd. We also assume from now on that all metric structures involved are product
in N =[0,1] x Y the collar neighborhood of the boundary. In this case D takes the
following form in N

Pp=T(8, + B),

where u denotes the inward oriented normal coordinate and T' : Sly — S|y is a
unitary anti-involution, so ' = —Id and I'" = —TI'. The operator B : C®(Y;S|y) —
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C*®(Y;S|y) is the Dirac operator on the boundary Y, which anti-commutes with
the tangential operator B. To simplify the exposition we assume that ker B = 0.
The results stated in this section hold also in the case of non-invertible tangential
operator B. Contrary to the case of a closed manifold, the space

kerlD‘:)z {s e C®(M;S) | Ps =0}

of solutions of P is an infinite dimensional subspace of C*°(M; S). Furthermore one
no longer has regularity of the solutions. To regain elliptic regularity we restrict
the domain of the operator ) by imposing a boundary condition. Let IT denote
the spectral projection of the operator B onto the subspace of L?(Y; Sly) spanned
by the eigensections corresponding to the positive eigenvalues of B. The operator
I1 is a pseudodifferential operator, which allows us to apply analytical tools to the
boundary problems defined below. We define

Dg =P  with
dom () = {s € HY(M;S) | I(s]y) = 0},

where H!(M; S) denotes the first Sobolev space of sections of S on M. The operator
D - dom Dy — L?*(M, S) is a Fredholm operator and, moreover, ker I and coker Jp
consist only of smooth sections of S. In fact it follows from Green’s formula that
Dr is a self-adjoint operator. We call P an elliptic boundary problem for lD and
the operator II an elliptic boundary condition.

The structure of the space of all elliptic boundary conditions for the operator
Dis not yet known, and so we restrict our consideration to various subspaces built
around the projection II whose topology are well understood. We introduce the
Grassmannian of psendodifferential projections

Gr(p)={P=P?|P=P €V¥gand P-TT€¥_,},

where ¥, denotes the spaces of pseudodiffential operators over Y of order &.

The second condition implies that the difference P —1II is a compact operator in
L*(Y;Sly). The operator Pp : dom (Pp) — L%(M;S) is a Fredholm operator, and
its kernel and cokernel contain only smooth sections. In general, however, Dp is not
a self-adjoint operator as the number index Pp = dimker Dp — dimcoker Dp can
take any integer value. The space Gr(J) has infinitely many connected components
and two projections P; and P, belong to the same connected component if and only
if

index Pp, = index Pp, .

It follows from Green’s formula that [p is a self~adjoint operator if and only if
~-TPT=1d-P.
Therefore we define the self-adjoint Grassmannian as follows
Gr* (D) :={PeGr(p) | -TPl'=1d - P}.

Unfortunately at the moment we are not able to construct the {(-determinant on

Gr™ (D).
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We introduce the smooth self-adjoint Grassmannian. Let us point out that in fact
we can identify the projections with their ranges which are closed infinite dimensional
" subspaces of L2(Y; S|y) with an infinite dimensional orthogonal complement. Let
Py denote the orthogonal projection onto W C L?(Y, S|y ). We deﬁne

Groo( ) = {WCLZ(Y Sly) | Pw EGr (E) and PW IIe \I’_oo}

Thls space was mtroduced and studled by Scott in [10] The 1mportant analytlcal fact
here is that the Calderdn projection is also an element of the smooth Grassmannian.
The Calderdn projection P () is defined as the orthogonal projection of L2(Y; Sly)
onto the Cauchy data space

H(P) = (sl 15 € C= (I 5) and Ps = 0mm M\ Y] 0 7).

We refer to [10] for the details.

In his recent work [16] Wojciechowski studied the n-function and the {(—function
of the operator Dp, where range(P) is an element of the smooth self~adjoint Grass-
mannian. It turns out that they share the properties of the corresponding functions
on a closed manifold. Consequently we have the following result.

Theorem 2.1 Let W be an element of the smooth, self-adjoint Grassmannian, then
det¢ (W) := det(Ppy, ) s well defined.

Now we want to discuss the relation of the (—determinant to the canonical deter-
minant introduced by Scott. Let H denote a separable Hilbert space and let F be
the space of all (bounded) Fredholm operators on H. It was explained by Quillen in
his famous paper [7] that it is impossible to construct the determinant as a function
on F. He showed that the determinant arises as a canonical section of the deter-
minant line bundle over F and, using the {(-function, constructed a natural metric
whose curvature measures the local obstruction to triviality (see also [2] and [13}).

We describe briefly the Segal variant of the definition of this bundle. We restrict
ourselves to Fp, the connected component of the operators of index equal to 0. We
fix an operator T € Fj and define Det T the determinant line over T as follows. Let
Fr ={P € F|P—Tis trace class}. Then

DetT :=Fpr x C/.,

where the equivalence is defined by (Ryg, z) ~ (R,det(g)z) for ¢ € End(Hy) of the
form 1 + trace—class. The determinant of T is then defined to be the canonical
element det(T") := [(T,1)] of Det T
The bundle structure is given by introducing local trivializations in the following
way. Let a denote an operator of trace class (possibly equal to 0) such that T+ a
is an invertible operator. The local trivialization of the bundle over the open set
U, := {R € Fo | R+ ais invertible} is defined by the section R — [R + a,1]. The
two local trivializations over U, N U, are then patched together by the holomorphic ,
transition function

gav(R) := det((R+b)(R + a)™ 1),
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which is well defined since (R+b)(R+a)~! = 1+ (b— a)(R + a)~* differs from the
identity by a trace-class operator.

This yields a canonical holomorphic line bundle Det (F) over the space of Fred-
holm operators (see [10]) with a canonical global section T — det T

Through the embedding (identifying dom Pp,, with L?)

Gr(p) — F
W — Dp,,

we obtain by pull-back a holomorphic determinant line bundle Det over the param-
eter space of elliptic boundary value problems Gr(J)). This bundle is non-trivial,
but its restriction to the sub-manifold Gr™ (D), or to Gr,([D), is trivial. Scott has
found a natural choice of trivialization of this bundle which canonically identifies
the determinant section as function given by a nice explicit formula giving the value
of this canonical determinant dete (W) at W. He also showed that

detg (W) = detc¢ (W)

in the case dimM = 1. The general case is open at the moment though Wojcie-
chowski has proved the following result.

Theorem 2.2 Up to a constant the phase of the (-determinant is equal to the phase
of the canonical determinant. |

In other words, the phase of the canonical determinant is determined by the
n—invariant. The details will be presented in the forthcoming work by Scott and
Wojciechowski [11].

<

3. Grassmannian and chiral symmetry. The even dimensional case ..

Assume now that dimM = n is even. The new feature is that the bundle S splits
into S = S* @ S~ the direct sum of subbundles of spinors of positive and negative
chirality. The Dirac operator has the following form on the collar V:

(0 P\ _[0-I B 0
b (55)- (75 0+ (3 o)
The operator T' : S|y — S|y is a unitary isomorphism. The operator Pt :
C®(M;S*T) = C*(M;S~) has the following form on the collar

D" =T(6, + B),

where B is the Dirac operator on Y. Once again we define the Grassmannian Gr(*)
as in Section 2. The operator .ZZ); i1s now a Fredholm operator with index given by
the famous Atiyah~Patodi-Singer formula. In quantum chromodynamics one has to
study the determinant of the total Dirac operator J). There is natural choice of the
boundary condition in this case

R(I) = G)I I'(Id —On)r-l) '
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The operator Pr(m) is a Fredholm operator. It is also a self-adjoint operator with
discrete spectrum. However the (- determinant defined in Section 2 for such oper-
ators is usually equal to 0, because it is often the case that Pr(my has a non-trivial
kernel. Therefore physicists came up with a regularization which took care of this
problem in the case ny = kerlll?i = ker $1:(I d—mr-1 = N—- However, in the general

~_case ny # n_ the imaginary part of the determmant appears unnatural 1n the case

“of an operator with symmetric spectrum.

We now describe a specific situation which appears in quantum field theory.
We take as M the four dimensional disc of radius R. Our bundle S is now equal
to S ® C2, the Clifford bundle of Euclidean spinors with coefficients in-the trivial
bundle M x C2. The full Dirac operator is in this case the operator Py = DR 41d the
Dirac operator J acting on sections of S lifted -to sections of S ® C? by means of the
connection A acting on the trivial bundle. The detailed construction is described in
(6], [13], or [15]. The connection A on the trivial bundle is of the form d +w,, where
w4 is the one form (with coefficients in C?). Once again, to avoid technicalities, we
deform the Euclidean metric in the collar neighborhood N of the boundary ¥ = $3
to a product metric in N. We also restrict the class of the connection we admit. We
assume that in N the connection A is of the form

d+ h~tdh

where A : S — SU(2) is a smooth map. Following the physics terminology we
say that the connection A is pure gauge at the boundary. We denote by Conng
the space of connections on M x C2, which are pure gauge on the boundary. The
important feature is that under this assumption then the tangential operator By =
By, corresponding to the partial Dirac operator Jf takes the form:

By, = (Id® h)(B®1dc:)(1d®@ A7), (1)

where B®Id = B®y1d = B® B, and B is the Dirac operator on S2, which is
the tangential operator corresponding to JP+. We refer to [3] for all details. Now
we want to impose a boundary condition on the operator [J4. More precisely we
want to construct a continuous map of Conng into the space of boundary conditions,
which satisfies the set of assumptions given below. Of course once again, we have to
restrict our choice of boundary condition. The natural choice here is:

R(A) = (I%Jh I‘(Id—?Ih)I‘*) :

where II; denotes the Atiyah-Patodi-Singer condition, the positive spectral projec-
tion of the operator B. Note that it follows from the formula (1) that the operator
B (and also B;) 1s an invertible operator with symmetric spectrum. For the calcu-
lations of the spectrum of B we refer to [9] (see also [3] and [14]). The map R(A)
satisfies the following conditions:

1. For each A the operator D4 r(4) := (Pa)r(a) is a self-adjoint operator with dis-
crete spectrum and finite dimensional kernel, which consists only of smooth spinors.
2. The domain of the operator P4 »(4) is gauge-invariant. This has the following
meaning. Let U : M — SU(2) denote a gauge transformation. Then the operator
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Dy av-1,rav-1) is equal to the operator (Id @ U)Pa(Id® U~?) with domain (Id ®
U)(dom 4, =r(a))- Therefore the new operator is unitary equivalent to the operator
Par(ay-

3. The operator JD4 »(4) has symmetric spectrum. In physics terminology this is
expressed by saying that the boundary condition is s invariant. The involution
45 : S =S8t US™ — S is defined to be equal to the identity Id on St and ~Id on
S~. Clearly we have y5D4vs = —[Da and on the boundary

YsR(A)vs = R(4).

Now if Das = As and s is an element of the domain of D4 =(4), then v5s is in the
domain of P4 »(4) and

Da(yss) = _—’7510,43 = —XA(ys5s).

The map R(A) satisfies all properties listed above. Ideally in physics one would
like also to have the additional property

4. chiral symmetry: which means the equality ny =n_ .

This is, however, not true in the case of the map R(A). The space Conng has
infintely many connected components classified by the topological invariant deg(h),
the degree of the map h. Therefore we restrict R(A) to the fixed component of
Conng corresponding to the non-trivial number deg(h). In this case we can apply
the Atiyah-Patodi-Singer Index Theorem (1} and obtain

n4 —n_ = index JD{."I(h) = deg(h).

We have to discuss different choices of mapping from the space of connections into a

parameter space of boundary conditions. We restrict ourselves to the study of maps
of the form A — P(A), where P(A) € Gr(P}) = Gr(J* ®1Idc2) . The corresponding °
condition for [, is given by the formula

(PE)A) F(Id—]o’(A)I“l) :

The natural choice here is P([}) the Calderén projection of the operator JJ; . This
is due to the result proved by Booss— Bavnbek and Wojciechowski

P(I;) = T(1d - PP,
(see [4]). Therefore the map

_(PED) 0
4 700= (7 o))

satisfies the first three conditions. Moreover because of the choice of the boundary
conditions we know that

ny = dimker ¥ =0 =dimker JJ, =n_

PPE) P(RZ)
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and chiral symmetry is preserved.

From the point of view of physics this solution is not completely satisfying be-
cause, unlike the Atiyah-Patodi-Singer condition, which depends only on the bound-
ary data, the Calderén projection varies with change of the operator inside of the
manifold. Therefore some alternative choices of the map R(A) have to be discussed.

Recently we have come up with a satisfying solution to this problem. This to-
gether-with- the discussion-of the variation of the(-determinant undeér the change
of the boundary conditions is a subject of a joint ungoing work of Booss-Bavnbek,
Morchio, Strocchi, and Wojciechowski.
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Abstract: We study the relations between different determi-
nants of the Dirac operator over a manifold with boundary con-
sidered as sections of a holomorphic line bundle over the Grass-
mannian of boundary conditions of Atiyah- Patodi-Singer type.
MOS number: 58G11, 58G25, 57R90, 35355, 35535.

§0 Introduction ,
Recent studies in Quantum Field Theory (see for instance (1], [15], [16], [18])
- have stressed the importance of the correct definition of the renormalized determi-
nant of the Dirac operator over a closed manifold. With new developments in the
mathematical understanding of QFTs as modified cohomology theories [1], [18] thé
need to extend the study of the determinant of the Dirac operator to manifolds
with boundary has become clear. In [12] Quillen gave a construction of the deter-
minant line bundle over a space of Fredholm operators and explained that, without
making further choices, the determinant has to be viewed as a canonical section
of this bundle. For a family of 8 operators over a Riemann surface Quillen identi-
fied a canonical trivialization of the determinant bundle by defining a metric and
holomorphic connection through (-function renormalization and computing the
curvarture, thus identifying the determinant up to a phase with a specific holo-
morphic function. These constructions have been used in many different contexts
since then (see for instance [4], [16], [17]).

This note announces recent progress made in understanding these construc-
tions for the (-determinant over the Grassmannian of elliptic boundary conditions
for the Dirac operator. This is especially important in view of recent results which
show that Quillen’s determinant satisfies a nice pasting law (see [13],[14]) which
is naturally formulated in terms of a Fock space bilinear pairing associated to the
Grassmannian and may explain the nature of the pasting axiom in Fermionic Field
Theory. '
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7 Ini Seétiox} 1 :Vwe'stu:dy Ehe geomefzry of the aeterminant line bundle. We con-
sider the inifinite Grassmannian Gre(4) of elliptic boundary conditions to be the
parameter space for a holomorphic family of first order elliptic differential opera-

tors. This follows the approach taken by Bismut.and Freed (see [4]) who. extended. _ _ ..

the results of [12] to a general smooth family of Dirac operators over a closed man-
ifold and showed that the curvature of the (-metric is the 2-form component of the
local family index density. The method we use is to link up the Quillen-Bismut-
Freed analysis with the holomorphic geometry of the Grassmannian as elucidated
by Booss-Bavnbek, Wojciechowski (see [5], [6]) and Segal (see [11], {15]). More
precisely, we find that the (-metric determines the same geometry as the canonical
metric on the fundamental holomorphic line bundle over Gro,(A) . To do this we
identify the ¢ metric with a metric constructed by a natural algebraic regulariza-
tion of the Laplacian determinant and calculate its curvature. This is naturally
understood as a statement of the Local Family Index Theorem for Groo(A) . The
case of a family of varying Dirac operators with fixed Atiyah-Patodi-Singer bound-
ary condition has been studied by Bismut, Cheeger [3] and Melrose, Piazza [10].
By considering the dual situation of a fixed Dirac operator with varying bound-
ary condition we are able to take advantage of the well-understood properties of
Groo(A) which effectively reduces the heat kernel analysis of the determinant to an
algebraic problem. It is this reduction which allows the pasting to be formulated
as a bilinear pairing on the Fermionic Fock space over Gro(A) . The details of
the pasting will be presented in [14], but see also [13].

In Section 2 we present a crucial component in the proof of this theorem.
We show using heat equation methods that the n-invariant, the phase of the (-
determinant in the odd-dimensional case, i1s up to a constant equal to the phase
of the determinant defined by the algebraic regularization.

Details of the proofs will be published in the forthcoming paper [14].

§1 Geometry of the determinant line bundle over the Grassmannian

Let M denote a compact odd-dimensional manifold with boundary Y . Let
A : C%(S) — C®(S) denote a compatible Dirac operator acting on the space of
sections of a bundle of Clifford modules S over M (see [6]). We discuss the case
of a product metric structure in a neighborhood of the boundary. More precisely,
we assume that the Riemannian metric on M and the Hermitian product on S are
products in N = [0,1] x Y, the collar neighborhood of Y in M . In this case, A
has the form

A=T(8, +B), (1.1)

over N, where I' : S|Y — S|Y is a unitary bundle automorphism (Clifford multi-
plication by the unit normal vector) and B : C®(Y; S|Y) — C=(Y;S|Y) is the
tangential part of A on Y. Here B is the corresponding Dirac operator on ¥ and
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hence is a self-adjoint elliptic operator of first order. Furthermore, I' and B do
not depend on u and satisfy the following identities.

I?=-Id and T'B=-BT. (1.2)

In particular, S|Y decomposes into the direct sum ST @ S~ of subbundles of
eigenvectors of T' corresponding to the eigenvalues i . With respect to this
decomposition the operator B has the representation

0 B~ =(B*)

B=|p+ 0

(1.3)
We assume that ker B = {0} in order to avoid unnecessary technical details
in the presentation. The obvious modification to the general case will be pre-
sented elsewhere. Let ITs denote the spectral projection of B onto the subspace of
L*(Y; S|Y) spanned by the eigenvectors corresponding to the positive eigenvalues
of B. 1t is well-known (see [2], [6]) that II, is an elliptic boundary condition for
the operator A , which means that the operator An, defined by

A > =A .
{donm An, = {s € H'(M;5|M) : I (s|Y) = 0} (1.4)

is an unbounded operator, such that An, : dom(An, ) & L*(M;S) is a Fredholm
operator and the kernel of An, and its cokernel consist of smooth sections of S .
It is also well-known that

index An, = dim ker Bt |

and hence in our case it is equal to 0 . The operator Ar, is now a self-adjoint
operator and it is a particular example from the class of self- adjoint boundary
problems which appear naturally in this context.

We define the Grassmannian of elliptic boundary value problems Groo(A) as
follows. The elements of Gro.(A) are pseudodifferential projections P atcting on
C(Y;S|Y) , such that they are orthogonal (P = P? = P*), and such that the
difference P — IIs is an operator with a smooth kernel. We can identify any
projection Py in the Grassmannian with its range W C L*(Y’; S|Y). Animportant
example of an element of Gre.(A) is provided by the Calderon projection P(A)

of the operator A . This is the orthogonal projection onto the subspace H(A) of
C>®(Y; S|Y) defined as

H(A) = {v € C(Y;S|Y) : Jseceo(m;s) As =0 and s|Y = v}.
We refer to [6] (see also [5] and [13)) for more details on P(A) and H(A4) .
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7 It wajs exﬁlajxied in [13] that one éan construct the; detérmiilantiline bur;dle;
over Groo(A) in many different ways. The Quillen determinant line bundle £ is
the holomorphic pullback of the determinant line bundle from a space of Fred-

_holm operators under the map W — Ap, , where Py denotes the orthogonal . . _

projection onto the subspace W C L%(Y; S|Y) .

We can also use the construction of the determinant bundle due to Segal
(see [15]). Let T : Ho — H, denote a Fredholm operator with index equal to 0
acting on separable Hilbert spaces Hy and H; . Let Fredr denote the space of all
Fredholm operators which differ from T by a trace class operator. We define

Det T = Fredrx C /&

where the relation is defined as follows. Let S : Hy — H; denote an invertible
operator such that S — T is an operator of trace class. Then any operator Q €
Fredr is of the form @ = S(Id+q) , where ¢ : Hy — Hj is a trace class operator.
We identify

(S(Id+ q),2) = (S,z-detp(Id + q))

where detp R denote the Fredholm determinant of the operator R . For a smooth
family of such Fredholm operators the lines fit together to define a line bundle
canonically isomorphic to £ . Under this isomorphism the canonical determinant
section, defined over the index zero component by

T - [(T,1)]

maps to the canonical determinant section of £ .

In order to study the determinant bundle £ associated to the family of elliptic
boundary value problems Aw parameterized by the Grassmannian we use the
operators

pw : PwP(A): H(A) - W (1.5)

The operator pw is Fredholm with index equal to indez Aw and with correspond-
ing determinant line Det pw . Globally we obtain a holomorphic line bundle Det
isomorphic to £ with determinant section canonically identified with that of £ (see
(18] for the details).

We now restrict our attention to the connected component Gro_(A) of Gro.(A)
parameterizing subspaces W with indez Aw = 0 . Locally we may work over the
open dense subset of Gr9 (A) consisting of all those W which are the graphs of the
invertible operators T : L2(Y; S*) — L?(Y;S™) such that T — (B¥*B~)~2B* is
an operator with a smooth kernel. The orthogonal projection onto W = Graph(T)
is given by
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po, — | A+ TT)"'  (Id+T"T)7'T*
WTI\T(Id+T*T)™* TId+T*T)'T*

Let K denote the operator such that H(A) = Graph(K) . Then we have a
canonical trivialization of Det over Ugrqepr defined by Py with

(1.6)

W = Graph(T) — [(pw,detp(TK*))] (1.7)

The isomorphism Det = £ identifies det Aw with det pw and hence a canoni-
cally renormalized determinant of Aw defined with respect to this local gauge by
the formula det¢c Aw = detr(pw). One computes

dete Aw = detp(%(ld + KT").

To connect this with the global geometry of the determinant bundle we define a
Hermitian metric on £ via the Laplacians

Daw = AwAw , APw = p;prW .

It is not difficult to see that there exists a natural isomorphism between the deter-
minant lines Det A 4,, and Det A,,, preserving the canonical sections. The Lapla-
cian A,y : H(A) — H(A) is an operator of the form Idy(a)+smoothing operator
and hence has a well-defined Fredholm determinant as a number in C' . Therefore
it is natural to define the regularized determinant of A4, by

detcAay = detpl,y, (1.8)

Proposition 1.1 There is a natural inner product on £ given over the index 0
component of Gr.,(A) by

lldet Aw |2 = detcA 4, (1.9)

where Aw is invertible and 0 otherwise.

One also has the usual Quillen norm ||.||¢ defined on £ by ||det Aw||% =
det¢A 4y, , where the right-hand side denotes the regularised zeta-function deter-
minant, and it is important to know its relation to the C norm of Proposition 1.1.
A holomorphic line bundle £ with a Hermitian inner- product has a canonical
connection compatible with the two structures whose curvature is the (1,1) form
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; equal to Bdlog ||s||2 for a,ny holo;norphiq seétiori ‘. T};e eiiiptic Grassmaﬁniah
Greo(A) is endowed with a preferred form of type (1,1), namely the Kahler form

T T {;TriPdP/\—dP.—— — = = = {110) -

Since any P € Gryo(A) is of the form IIs + smoothing operator the trace on the
right side is well-defined.

Theorem 1.2: The metrics HH(; and I-lle on the determinant line bundle have
curvature equal to

R = —2miw.

The proof for the C metric follows from straightforward computations, the case
of the Quillen metric uses heat kernel methods generalizing those presented in
Section 2, details will be presented in [14]. On the other hand explicit calculations
show that

Theorem 1.3: Over UGraph the following formula holds:

detpl(Id+ K*T)-detpi(Id+ T*K)

detpA,, =
P Sow detpi(Id+T*T) ’
or in different notation
ldetcAwlz
dete A = .
e = GetrI(Id+ T°T)

Thus from Theorem 1.2 and Theorem 1.3 the canonical determinant of Ay
on the set Ugrqph is related to the global geometry of £ by

deteA 4, = exp(—k)|detcAw|?,

where k is the standard Kahler potential. Equivalently , by taking a section over
UGraph flat for the C metric connection, detcAw is the function defined rela-
tive to this trivialization up to a scalar of absolute one. We note that the local
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anomaly formula of Theorem 1.2. is a measure of the failure of the canonical de-
terminant to be multiplicative. Thus the fact that det¢cA 4, is not of the form
|holomorphic function|? is equivalent to the non-triviality of the determinant
line bundle.

The local formula of Theorem 1.3 is also true for the Quillen metric up to a
constant scale factor. The proof is modelled on the proof of theorem 2.1 in Section
2 (see [14] for the detailed exposition) . As an example, consider the simplest case

of the operator A = 1 % on M = [0,1] with boundary conditions parametrized
by CP' . Then W = Graph(a) for a € C \ {0} corresponds to the homogenous
coordinate [1,—a~ '] € CP* . The (-determinant of Ajg o is equal to
Tz Graph(a
1-af
detcA; =2—-"7
L raphia) 14+ |al?

which coincides with the result of Theorem 2 up to factor 4 .

§2 The phase of the determinant on the self-adjoint Grassmannian

| In this section we restrict ourselves to the situation studied in [13] (see also
[20]). We study the canonical determinant and the (-determinant on the real
submanifold of Gre(A) parameterizing self- adjoint generalized Atiyah-Patodi-
Singer boundary conditions for A. Specifically we define

Gr: (A) = {P € Greo(A) : P is orthogonal and —TPI'=1Id-P} (2.1)

The second condition implies that the range of the projection in L*(Y’; S|Y) is a La-
grangian subspace with respect to the symplectic structure defined on L?(Y; S|Y)
by the involution T'. The projection P is an element of Gr,(A) (in the case
of invertible operator B). Another important example is provided by P(A) , the
Calderon projection of the operator A (see [13]).

In [20] it was proved for P € Gri (A) that n4,(s) and (42 (s) behave exactly
like the n-function and the (-function of the Dirac operator on a closed manifold.
In particular 74,(0) , (42 (0) and d/ds(CA%)|s;o are well-defined, and hence the
(-determinant of Ap equal to

—d/dS(CA%)|a=O

det¢cAp = e 714r (). (2.2)

is well-defined.
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Tt was explained in Section 1 that we have a ca,nomcal section of the determx-

nant line bundle which over the set Uc;mph , after the identification of the natural
trivialization, allows us to define the determinant as the function which we call

the canonical determinant. Actually Gr’ (A) C Ugreph-and so:the determinant.. -

line bundle restricted to Gr: (A) is a canonically trivial line bundle. Now we
make use of a result about the self-adjoint Grassmanian stronger than for Ugraph
Namely, there is a canonical one-to-one correspondence between elements of
Gr?,(A) and L%-unitary isomorphisms S : L?(Y;S%) — L?(Y;S™) which differ
from the operator V(B"'B",)‘%BJr by a smoothing operator. The correspondence
is given by ’
_1l1d s-!
It is obvious that Ran(P) = Graph(S) . The canonical determinant det¢(W) is
given by

(2.3)

dete(W) = detr %(Id + KS™) (2.4)

Let us assume for the moment that the operator KS~! : L(Y; §~) — L2(Y;S7) is
of the form e'® , where o : L?(Y;S~) — L%(Y;S™) is a self-adjoint operator with
a smooth kernel. This is always the case when K.S™! is close to the Id in GLoo(S7),
the group of the invertible operators of the form Id plus smoothing operator
acting on spinors of negative ”chirality” on Y. The reason is that the space of
such operators is a Lie algebra of GLo(S™). This means

wlp

det %(Id +KS1) = det(e"—?-.—iz——z—) = e5tm(®) . det cos % (2.5)

This formula explains the structure of the canonical determinant, which is similar
to the structure of the (- determinant (see (2.2)). The latter has phase determined
by the 7n-invariant and modulus equal to the exponent of ¢/, (0) . The main result
of Section 2 is the following Theorem.

Theorem 2.1: Let W denote an element of Gr’ (A) . The phase of the canonical
determinant 1s equal to the integral of the variation of the n- invariant. More
precisely, let {W,.}o<r<1 denote a one parameter family in Gri,(A) such that
Wo = H(A) and Wy, = W and let A, denote the operator Aw, , then the phase of

the canonical determinant is equal to fol d/dr(na,)dr .
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The proof of the Theorem consists of two parts. First we compute the varia-
tion of the n-invariant for a specific family of boundary conditions. Then we show
that the result is independent of all choices and deformations made. We sketch
the proof of the first part. Let

P_gfd S _1[1d 0 Id K'1[Id 0 o
“ols Id| 2{0 SKY'WK Id 0 KS'|

1 Sl 2]

We show that 1Tr « is the integral of the variation of the n-invariant for some
family of the boundary conditions. We define the operator A, as Ap, , where the
projection Py is given by the formula

Id 0 Id O
P. = [ 0 e—iTe jl P(A)[ 0 eira:| (26)
We will show that in this case
1 1
/ d/dr(na,)dr = ;Tr Q. (2.7)
)

In fact, it is not difficult to see that we can replace Calderon projection by the
spectral projection. We refer to [14] for the details. In the following we consider
the family of projections defined by the formula

Id 0 Id 0
H" = |: 0 e—ira :l 1-I> l: 0 eiroz :| ) (28)
and we define the operator A, as Ay, . Employing the method used in papers
[7) (see Appendix 1) and [9], we perform a Unitary Twist on the operator A,
. The operator we obtain has the same spectrum as A, and moreover the new
family has a fixed domain. We define a specific unitary transformation U, :
L*(M;S) = L*(M; S) as follows. First introduce a smooth nonnegative function
f:[0,1] = [0,1] equal to 1 for 0 < u < —g- and equal to 0 for £ < u < 1. We define
Id on M\ N

Ur = (2.9)

Id 0
[ 0 eirf(u)aj| on {u} xY
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It is obvi%)us tha;i the operator

0 e—ira

has the same spectrum as the operator (U,.AU 1 Ju, and so we can study the
variation of the n-invariant of the family {(U, AU !)n, } . We follow the strategy
of the papers [7] and [9] (see also [8], [19], [20]) and show that the only contribution
to the variation of the n-invariant comes from the cylinder. The operator U, AU !
is given by the formula

U, AU = A +
Lo _ 0 B~(emr/We—1d4)] [0 0
0 —i||(efrfWe_ 1Bt 0 0 —rf'(wal’
and the operator E(—U’%,U—f_i has the following form:
d(U-AUY) 0 f(u)B=ae~irfme] 1o 0 (2.10)
dr T | f(w)aemfWapT 0 0 fllwe] 7
We use this representation in order to study:
d __2 d “1y(__ o~V AUTDE o
2 U, AU g, Ir=0 = == limVeTr — (U AU )| r=0e I,
(2.11)

The contribution due to the first term on the right side of (2.10) is equal to 0 .
This follows from (1.2). Hence we only have to study the trace of the operator

' 0 0 —¢ ot
‘f(“)[o a]e WAV

The function f’(u) is non-zero only for % <u< % and we can use Duhamel’s
Principle and replace the original heat kernel by the heat kernel of the Dirac
operator I'(9, + B) on the cylinder (—o0,+00) xY . Now we obtain the formula

A-=An, =Arp g Id 0 '
Ploo et
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d _ 2. d -1 —e((U,AUTHZ ),
27 (U, AU Y gy, lr=0 = -—;}5%\/5'7"7‘ E;(UrAUT )lr=0€ 1> =0 =

——hm\/—Trf( )[g 2} —e~0248% = 2 e gy flu)ae BT =

1
\/;r_e—r \/7—?6—-)0 Varre

L
- 1
-l-/ du lir%Tr f'(u)ae‘EB+B ==Tr a. (2.12)
0 €

™ T

In fact, using the unitary twist, we are able to show that Ezd_’?(U AU Y, (0) =
—Tr a forany 0 < r < 1. We use a similar argument to show that we can replace

H> by the Calderon projection and also to show that the integral depends only
on the end-points of the family. Details will appear in [14].
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Abstract. In this paper we discuss the boundary contribution to the (—determinant for a particular
QCD model: For any fixed element P in the Grassmannian Gr{*) of the (half) Euclidean Dirac
operator It on the 4-ball V we define a smooth v5 and gauge-invariant mapping A — Rp(4).
from the space of connections which are pure gauge at the boundary of V into the self-adjoint
Grassmannian of the (total) Dirac operator )4. The boundary condition R p(A) depends solely
on the data of A at the boundary and provides for chiral symmetry ny — n_ = 0. We show that
for any fixed connection A and any smooth path {P;} in Gr(Jpt) the variation

d
- (— In det(ﬁA'RP‘ (A)) [e=0

of the corresponding (-determinant vanishes. This yields that the (—determinant is constant on "
the connected components of the Grassmannian.

1. Euclidean Dirac Operators in Finite Volume

Let V denote the 4-dimensional ball of radius R and D4 : C*(V; §) = C*=(V; §) be
the (total) Dirac operator acting on the bundle §:= V x (§ ® C?) of spinors with
coefficients in the trivial bundle V x C?2, twisted according to a conncetion A for
V x C2. _

One fundamental problem here is the computation of the determinant det 4.
Unfortunately, the operator JD4 has bad spectral properties. E.g., the space ker D4 of
smooth solutions of 4 is infinite—-dimensional. Therefore it is necessary to impose
suitable boundary conditions. A preliminary discussion of the various boundary
conditions involved was provided in [2]. Here we shall be more specific and discuss
a particular and universal choice of boundary conditions which seems to be most
appropriate from the point of view of QCD.

To avoid technicalities, we deform the Euclidean metric of V and the Hermitian
metric of S in a collar neighborhood N of the boundary Y = 5% to product metrics.

* Working paper, 9 August 1996. This is part of a joint project with G. Morchio and F. Strocchi,
Pisa .
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Then the Euclidean Dirac operator : C®(V; £) — C*®(V, §) splits over N = I x §°
into the following product form:

p= (ll(;* 4%- ) =T(6, +B) = (8 "6—1 )(Bu + (ﬁ_vgv-l )) (1)

- — . — -— -where udenotes-the inward oriented-normal (radial) coordinate-and B-+C=(¥+-§*)—5— — - - .-

C®(Y;S*) denotes the total Dirac operator on S3. It is an invertible self~adjoint
operator with discrete spectrum. Clifford multiplication by the (inward) normal
vector provides for the unitary isomorphism V : S*{ss = 5™ |gs.

Let IIy denote the spectral projection of B-onto the direct sum of the eigenspaces
of B for eigenvalues greater than 0. To begin with we consider the operator Pt :
C*®(V; S*) — C*®(V; S™) and define its realization corresponding to Il as follows:

.{Z{-‘}) = pr with
dom (BE;,) = {s € H*(V:§*) | Iy (sls+) = 0},

where H*(V; S*) denotes the first Sobolev space of sections of S* on V. The operator
[D}-}) :dom lDf—}) — L*(V;S7) is a Fredholm operator (with index equal to 0).
The adjoint operator is :

(IDEQ* = %(Id—n>)v-1'

Hence the boundary condition

H# — I, 0
> 0 V(Id—H>)V_1

for the total Dirac operator makes the operator J# to a self-adjoint Fredholm
>

operator with discréte spectrum.

In fact we can take any projection P belonging to the total Grassmannian Gr(p")
of the half Dirac operator (i.e. a pseudo—differential projection with the same princi-
pal symbol like IT5 ) and obtain a self-adjoint operator Pp# by the preceding twisting
construction. As shown in [2], any global, ys-invariant boundary condition provid-
ing for an operator with compact resolvent arises in this way. Then the nullspace of
Dp+# splits into the zero modes of positive (resp. negative) chirality, two subspaces
of dimension ny with ny = dimker P} and n_ = dimker 173;(1 d—P)V-1- Moreover
we have

ny —n_ = index P = index PP(P*), (2)

where PP(DY) : H(JPt) — range(P) and P(JP*) denotes the Calderdén projector,
which is a projection of the L? sections over S2 onto the Cauchy data space H(P)
which is the L? closure of the space {s|ss | Pts =01in V\ dV}.

Next we consider the extension of the preceding constructions to the twisted
Dirac operator P4 := P®41dc= which is lifted from the Euclidean Dirac operator P
using a connection A on the bundle V x C? (see [2] and references therein). We call
a connection A pure gauge at the boundary, if there exists a collar neighbourhood
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N4 C N of the boundary such that A|y, = h~*dh for a suitable smooth gauge
transformation h : S — SU(2).

Let Conng denote the space of connections which are pure gauge at the boundary.
This space has infinitely many connected components labelled by the degree deg(h)
of the mapping h. We have (see [4], p. 320)

1 1
h=——= 1]t fldh3=___/ .
deg Y /53 r(h ) 3557 vtrF/\F ,

where F = F(A) is the curvature form of the connection A.
The tangential operator B of JD4 has the following form on the boundary (see

[2]):
B =By = B®-1gn1d = (Id®h) (B®Idcs) (Id ® h)~* (3)

and the corresponding spectral projection is equal to
Ik = (Id ® h)(II, ® Id)(Id @ h71).

We form the operator D, - It is a self-adjoint operator with symmetric spec-

trum and we want to compute its determinant. To begin with we discuss the deter-
minant of the Dirac Laplacian D? := (P, %)%
>

2. The (-Determinant

We use the concept of the (—determinant as it was introduced by Ray and Singer
([8], see also Schwarz’s monograph [9]). Let us assume for the moment that P, jr«
>

is invertible, hence its spectrum is {—A;, Aj}jen with 0 < A; < Ay < Az <
Formally the determinant is the product of the eigenvalues and we have

detD? = H - _exp( Zln/\2 —slna; )l,=o
J

= exp( 22 emsIn ] )]s=0) = exp( 2—"(2 2) Ns=o0) -

To make it precise let us remind that the zeta function (pa(s) = 23 (A%)~* is well
defined (see [1], [9], [10], [13]) and holomorphic for R(s) large; it has a meromorphic
extension to the whole complex plane; and s = 0 is not a pole. Thus (p2(s) is
holomorphic in a neighbourhood of 0 and we can define

detD? := e~$2(0)

This definition works well in the case of invertible D, but unfortunately this is
seldom the case. Let

ny = dimker w:,n; and n_ := dimker w;,v(xd_n;)v-x .

We have
ny —n_ =index Pt ., = deg(h) (4)
. ¥ >
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by the Atiyah—Patodi-Singer theorem. If we replace the spectral projection by any
arbitrary P € Gr(]p*) we get correspondingly

ny = n_ = index IDX,P = deg(h) +i(P,I12),

where i(P, 1% ) is the virtual index (see [2]).

= “Equation (4) implies that
dim ker DA,H;* =ng+n_

in general is not equal to 0. A standard convention here is to replace det(, ya#)?
>

by det’(D, H;#)Z defined by the removal of the zero eigenvalues. Because of the
renormalization procedure, however, it is much more convenient to add a fermion
mass term to 4. Let 75 denote the involution on §equal to +1 on ST & C2. We
define
— - — 1 gm -
M = M(m,0,) == me*’s°™ : ker EA’H;# — ker ;DA,H;# -

The determinant of M on ker D, e is equal to

mn++n- | ei(ﬂ.).—n_)am )

Hence we may define
Det oy e = det M (m, 6,) - det' D 1ne

This definition, however, yields a determinant of a self-adjoint operator (with
symmetric spectrum) with a non-trivial imaginary part. There are also strong
physical arguments against a complex determinant. It is therefore, the condition
n4 = n_ becomes an important issue here.

3. A Universal Section in the Grassmannian

More generally, what we want to do is to construct a smooth map
R : Conng(V x C?) 3 A R(A) € Gr(Pa)

which satisfies the following conditions (see [2]):

(a) Par(a) is self-adjoint with compact resolvent;
(b) R(A) is ys-invariant;

(c) the domain dom P4 »(4) is gauge-invariant; and
(d) the index ny(R4) —n_(R.4) vanishes.

One example of such a map built on the Calderdn projector was discussed in [2].
Though it provides a perfect solution from the mathematical point of view, physical
constraints make us to look for another choice. We shall describe a construction
suggested by Morchio and Strocchi in [7] and already discussed in our previous
paper ([2], Alternative 4.2):
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The task here is that we have to compensate for the degree of the gauge trans-
‘formation h attached to the connection A by introducing a term of reversed degree
into the boundary condition. We fix the generator map

F:8% 2 su(2)
{|21|2+ |22’2 = 1} =) (21,22) - f(21,22) = ( 2 ?) ,

—22 23

of degree 1 and define

R, (A) == {([d @ h)(1d ® f*)(TT5 ®1dc2)(Id ® f*)(1d ® A=)} *

for any A € Conng with Aly, = h=ldh and degh = k.

The mapping A — Rn, (A) provides a choice of boundary conditions which
satisfy (a)-(d). Moreover, R, (A) depends only on the boundary data and not on
the form of the connection A inside of the manifold.

Let us remark that in fact we can use any projection in the Grassmannian to
produce a corresponding section

Rp: A~ Rp(A)
satisfying conditions (a)-(d). This leaves us with a universal mapping

R : (A, P) 3 Conng x Gr(P") = Rp(A) € Gr(Pa) .

4, The Main Theorem

In the following we discuss the dependence of the determinant det 02 Rp(4) O8 the
choice of the base projection P. Surprisingly we find:

Theorem 4.1 Let {P;}o<r<1 be a smooth path of projections such that Py — Py is a
smoothing operator. Then the variation of the (-determinant along the path is equal
to 0.

The starting point for the proof of the preceding theorem is the fact that

)
—Indet -wAz,’R,-(A) = C&?A.‘R,-): == /) t_lTl' e—t(pA.'R.-(A))zdt

where we write R, for Rp, and where on the right side we have the regularized
integral (see [12], [5]). A
In the following first we assume that all operators D, := 4 »,(4) are invertible.
Then we have
d ® .
— < / t~1Tret?! dt) lr=0 = 2 lim Tr DyDoDg 2e~<Ps .
dr 0 e—=0
We first show that . \
lim Tr DyDoe~*Pe =0
e—0
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The argument works in the case of

lim Tr Do Do Dy 2e =5 .
e—=0

as well. , ,
We employ the method of the unitary twist first used in [3], Appendix A (see

also [6], [13]). Hence we can assume that R,(A) is of the form P# with Pp =1,

“and close to P,

P, = eraPOe—ra

where o is an operator with smooth kernel. Note that the operators with smooth
kernel form the Lie algebra of the group

GLe := {g-invertible | g = Id + operator with smooth kernel}.

~ We introduce a smooth non-negative function x equal to 0 close to u = 1 and 1
near u = 0 and define

Id on V\ N
Uy == erx(u)e 0
< 0 Vex@ap- ) on N =[0,1] x 5%

Then the operator ), p# 1s unitary equivalent to the operator

(Ur.l',wAUT)Pc .
On the collar N we get:

U PaU- = Pa

0 =V-1! erX(u)oz[B’ erx(u)a] 0
+ ( 14 0 0 -—Ve""X(")"[B, erx(u)a]v—l

() (55" )

Next we compute the first derivate of the twisted family and get on the collar N:
d (-1 _ [0 =V (x(u)[B,e] 0
dr (U7 Palr) lr=o = (V 0 ) ( 0 ~x(u)V[B, o]V}

(070 ) (0 vedor)

A further calculation shows that @0% can be written as the sum of four terms:

i _ (x(w)B,e] 0
L (O Pl emaPa = ( —x(u)V[B,aW‘l)a“

dr
x(u)[B, a]B 0 )
0 x(u)V[B, a]BV !
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We obtain

lim Tr DyDye~¢Ps =0
e~—0

from Duhamel’s principle which shows the disappearance of the corresponding trace
for each of the four summands appearing in the preceding formula for DyDy due to
the antisymmetry of the matrices.

The details of the proof will be published elsewhere separately.
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TOK Modellering af traers vakst under pAvirkning
af" ozon
af: Glenn Meller-Holst, Marina Johannessen, Birthe
Nielsen og Bettina Serensen
Vejleder: Jesper Larsen
KOMPRESSORER - Analyse af en matematisk model for
aksialkompressorer
Projektrapport sf: Stine Boggild, Jakob Hilmer, N
Pernille Postgaard
Vejleder: Viggo Andreasen
Masterlignings-modeller af Glasovergangen
Termisk~Mekanisk Relaksation
Specialerapport udarbejdet af:
Johannes K. Nielsen, Klaus Dahl Jensen
Vejledere: Jeppe C. Dyre, Jorgen Larsen

304a/95 STATISTIKNOTER Simple binomialfordelingsmodeller

af: Jergen Larsen

3045/95 STATISTIKNOTER Simple normalfordelingsmodeller
af: Jergen larsen
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af: Jorgen Larsen

304d/95 STATISTIKNOTER Simple multinomialfordelingsmodeller
af: Jorgen Larsen

304e/95 STATISTIKNOTER Mindre matematisk-statistisk opslagsver

indeholdende bl.a. ordforklaringer, resuméer og
tabeller

af: Jorgen Larsen
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The Maslov Index: .
A Functional Analytical Definition
And The -Spectral Flow Formula

By: B. Booss-Bavnbek, K. Furutani

Goals of mathematics teaching - -

Preprint of a chapter for the forth-
comming International Handbook of
Mathematics Education (Alan J.Bishop, ed)

By: Mogens Niss

Habit Formation and the Thirdness of Signs
Presented at the semiotic symposium

The Emergence of Codes and Intensions as
a Basis of Sign Processes

By: -Peder Voetmann Christiansen

Metaforer i Fysikken

af: Marianne Wilcken Bjerregaard,
Frederik Voetmann Christiansen,
Jern Skov Hansen, Klaus Dahl Jensen
Ole Schmidt

Vejledere: Peder Voetmann Christiansen og
Petr Viscor

Tiden og Tanken
En undersdgelse af begrebsverdenen Matematik
udfert ved hjalp af en analogi med tid

af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek

Kursusmateriale til "Lineazre strukturer fra
algebra og analyse" (El)
af: Mogens Brun Heefelt

2nd Annual Report from the project
LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Serensen

Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojciechowski

THE IRREDUCIBILITY OF CHANCE AND
THE OPENNESS OF THE FUTURE
The Logical Function of Idealism in Peirce's

Phiiosophy of Nature

By: Helmut Pape, University of Hannover
Feedback Regulation of Mammalian
Cardiovascular Systen

By: Johnny T. Ottesen

‘"Rejsen til tidens indre" - Udarbejdelse af

et manuskript til en fjernsynsudsendelse

+ manuskript
af: Gunhild Hune og Karina Goyle

Vejledere: Peder Voetmann Christiansen og

Bruno Ingemann

316/96 Plasmaoscillation i natriumklynger

Specialerapport af: Peter Meibom, Mikko @stergird

Vejledere: Jeppe Dyre & Jern Borggreen

317/96 Poincaré og symplektiske algoritmer

Vejleder: Anders Madsen

af: Ulla Rasmussen

318/96 Modelling the Respiratory System

by: Tine Guldager Christiansen, Claus Draby

319/96 Externality Estimation of Greenhouse Warming

Impacts

by: Bent Serensen
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