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Abstract

The Jones polynomial Vi(t) of oriented links and knots is defined
as the trace of a representation of the braid groups in a tower of finite
separable T-extensions. Finite separable extensions are the split sep-
arable extensions of IMFUFA text 210 (1991), just renamed in honor
of example 4.3. T stands for trace on the smallest algebra, which,
when composed with conditional expectation, defines trace elsewhere
on the tower of algebras. The tower of algebras is obtained through
iteration of a basic construction for finite separable extensions.
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1 Introduction |

Jones’ index theory of type I']; von Neumann algebra subfactors was pub-
lished in 1983, and led in the spring of the following year to a new polynomial -
invariant of knots and links.” Subsequently, the Jones polynomial was gener-
alized in different directions and several old problems of Tait’s in knot theory
were solved. Certain key ingredients of Jones’ theory may be reduced to al-
gebra in different ways. For example, the Jones polynomial may be defined
from certain traces of Ocneanu’s on a sequence of finite dimensional algebras
named after Hecke. A second example: the semi-discrete index spectrum of
I, subfactors may be obtained from the classification of matrix norms of
the 0-1 matrices - accomplished long ago - the 0-1 matrices arising as the
inclusion matrices of the multimatrix ¢;-algebras As, C Agn41. Another
algebraic direction to Jones’ theory was started by M. Pimsner and S. Popa
in [16] in which they find an “orthonormal basis” that shows a /1, factor M
to be a finitely generated projective module over a finite index subfactor N,
the index bemg the Hattori-Stallings rank of the module [10].

" In pursuing the algebraic direction of Pimsner and Popa, the author and
D. Kastler in [10] showed that N C M is a separable extension of rings. The
reader will recall the notion of a separable field extension [11] and separable
algebra over a ficld [15], which received various insightful generalizations in
Hochschild’s homological algebra [7, 1945], and.in Auslander and Goldman’s
theory of the Brauer group of a commutative ring [1,-1960]. In this paper
we build from a small system of axionis, one being relative separability and
another its module-theoretic dual notion of split extension, the Jones theory
leading up to the Vi, polynomial for a link L. We define finite separable
extensions of k-algebras, and show that these possess the key elements of
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Jones’ theory: basic construction, index, and, upon iteration of the basic
construction to produce a tower of algebras, a countable family of idempo-
tents satlsfymg braid:like relations. Inc]udmg trace in thls plcture one trace
T ‘o1 the’ tower f- algebras {éxtending ‘the iprevious by edmposing it with the
condltlonal expectatlon the Jones polynomlal VL of a link L can then be
finite separable T extens1onA _ ‘ :

The structure theory of finite sepalable thensxons of a]gebras, its rela-
tions with representation theory of groups, and the duality of separable and
split extension is treated in my paper [9]. In the present paper we further
discuss a dimension question and what relation' finite separability has with
qua_si‘-Fljobgnius‘ extvensi_ons_.

PSR

M|

'*2 Flnlte separable extensmns

“Let: k be a commutative ring, and k° its :group of unlts Leb S be a
subalgebra of a faithful k-algebra A such:that 14 € S. We.identify k- with
k1,. We:consider-only natural module and bimodule structure coming from
‘inclusion S" <> A and tensor product over S: Let u denote the multiplication
map A ®3 A - A an A A blmodnle morphxsm defined by ao ® ay+— aoa1

Deﬁmtlon 2. 1 A is ca]led a finite separa,ble extension of S if there ex1sts
an.element f € A ®s A, an S-S bimodule homomorphlsm E:A—- S and
. T € k° such that ‘

1. af - fa (Va G A) arrldvy.(f)‘ = 1;
2 B1)=1;"
3. p(1®s )f u(E ®sl)f

An element. f satisfying axiom 1 is called a separating element, or a
separability element, and its existence alone defines a separable extension of
rings, a theory generalizing separable algebras and developed by Sugano and
several others [3].

The existence of f is equivalent to p being a split epimorphism of A-
‘bimodules, which is in turn equivalent to the vanishing of relative Hochschild




cohomology groui)s ! with arbitrary coefﬁcierlltsd(:n > 0),
| H"(A,8;-) =

The map E : A — S satisfying axiom 2 is a conditional expectation as
_in operator theory, and its existence for a subalgebra S C A defines a split
extension of rings. It is equivalent to requiring the subalgebra S be a direct
summand in the bimodule sAg: since the inclusion map splits the kernel
exact sequence of the S-S epimorphism E : A — S, we note that .

A.;; S®kerE.

Conditional expectations and ‘separating eléments are not unique, but

axiom 3 demands the existence of a condltlonal expectation £ : A — S and -

séparating element in A®s A
f=7 Y Ti®syi -
g

such that 7 € k° and

(1) ZE(x, Vi Z:racEyt =

Indeed, a short c_orhputa,tlon reveals that we may choose T, =y = 1 and
z;,yi € ker E for ¢ = 2,...,n. We will say that E and f are compatible in
case they satisfy axiom 3 Now fix the notations SCA, f, E, Tiy Yi, i, and
T for the rest of this paper. :

Lemma 2.1 For every a € A, we have

(2) ‘ ZE az;) szy, = a.

Proof. One can define a linear map from A®sA®rhoms(A, §) — homi(4, S)
and make use of axiom 1 together W1th equation (1). The argument is re-
~ peatable on the right. O o

Corollary 2.1 F is a nondegenerate S-valued bilinear form on A such that
{E(—=;)}~, is a dual basis of {y;}, for the projective module sA and
{E(y;—)}%, is a dual basis of {z;}}, for As. ‘ '

Proof. Nondegeneracy of E follows from assuming E(az) = 0 for every
z€ A, thena=Y Flaz;)y; =0. O

!defined in (8]




38 The basic construction

~ Define a k-algebra structure on the k-module, A®s A, on which we place
a k-algebra structure with multiplication given by

(ao ®s a1)(az ®s az) = agF(a1a2) ®s as.

The unity element of A; is 1 = Y1, ©: Qs ¥i.
Define index of S in A, [A: S]g = 771, an invertible element in k. This
definition is independent of f since p(1) = 771

Proposition 3.1 A; is a finite separable extension of A with index [A : S]g.

Proof. A separating element
f=) 2:.051Qsy:
i=1

is compatible with the conditional expectation
Ei=rmu.: Ay - A O

Remark 3.1 Note that the element ¢; = 1®s1 in A, is an idempotent, and
a cyclic generator of A; as an A-A bimodule. Also note the identities,

(3) : erae; = E(a)ey,

for every a € A and ,
(4) , E;(e]) =rl.

Proposition 3.2 If B is a finite separable extension of A, which in turn
is a finite separable extension of S, with conditional expectations E; and
E,, resp., then B is a finite separable extension of S with index satisfying
Lagrange’s equation, '

[B : S]EzOE] = [B . A]El[A . S]Ez



Proof. Let (B, A,,Ey, i =11 22, 4i®avi), (A, S, Ea, fa = 12 Y0 Qs Y;)
be the data for finite separable extension. Note that E = E2 oFEy:B— S
‘18 a condltxonal expectatlon and

. n,

f=nmn Z D wiz; ®s Y5v;

- oa=lg=l ‘

is a compatible separating element in B®g B. O ~

" As a corollary we note that finite separable extension is closed under -

- tensor product with index behaving multiplicatively. Since every algebra is

a finite separable extension of itself with index 1, we are permitted a change

of ring k on a finite separable extension of k- algebras with no alteration to
the index. '

4 Examples

~ 1. Matrices. The full matrix al;gebra M, (A) over any k-algebra A is a
finite separable extension of A (embedded in the constant diagonals)
so long as n is 1nvert1ble in k. Of the n separability elements, (j =

1,2,...,n)
. ZLU @4 PJH

i=] .
(Eij is the (,7)-matrix unit) we ‘average to obtain [ = 1 7% | f; as .- o
our separating element. The conditional expectation ! .

E(X) ZX,, whe1e X = (Xi;) € M, (A).
i= 1 .
is easily computed to be compatible with' f, having index reciprocal
Taking different weighted averages of the elements f; we can find
separating elements and compatible expectations with index other than
2
n®.

2. Subfactors. Let N be a subfactor of M with Jonesindexn < [M : N} <n + 1.

If {m;}7%| is the Pimsner-Popa orthonormal basis [16] with respect to
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the trace-preserving conditional expectation £ : M — N, a separating
element compatible with E is then given by

n+1
[M N] me@m

~ This exampleis obéerved and proven by D. Kastler and the author in
[10]. The proof of these assertions follows from the relations in (16, p. -
65], the isomorphism in [4, p. 189], the relations e;ze; = E(x)e; and
the implication e;z = e;y = x = y, where e, denotes the projection of

L*(M,tr) onto L*(N,tr).

. Finite Separable Extensions of Fields F;/F; with characteristic
coprime to the degree n. Let a be a primitive element, F; = Fi(a),
with minimal polynomial

n—l_
- Z C,'IIIz
1=0
Let ) ;
E = —trace : Fy — Fy,
n .

the normalized trace, where trace is a nondegenerate bilinear forrn on
the Fi-vector space F; with dual bases [12, cf. p. 213 {o!}?) and

P (a0

{

A separating element is given [14] by

n-1 ZI_ cja
f= Za @ 7 (;az+1

Denoting f by Y7o u; @ v; where E(u;v;) = 16; ;, we easily compute
YuiE(v) = L uiB(upvi) = ,11, since up = 1. Letting 1 = 3 bv;, we
get ¥ E(ui)vi = L bjE(u;)v; = LY bjv; = 1. Hence, f and E are

compatible with index n. In characteristic p the index is n (mod p).



4. Crossed product algebras. Let H be a subgroup of G with finite
index [G : H] € k°, B a k-algebra with action a : G — Aut B. Then
A= Bx,Gis a ﬁmte separable extension of S = B x, H. For if
{9i}7~, is a left transversal of H in G, then '

- 1 1'
f [G H] Zgi ®S gl

1=1
is a separatmg element compatlble with the natural pro_]ectlon

-Bx G - B x, H'

whence 7 = [IG—‘ Note that group algebras, and specifically those gen-
erated by Sylow p-subgroups of finite groups over characteristic p are
included in this example. The proof of these assertions is elementary.

Remark 4.1 Galois extensions of commutative rings, multimatrix exten-
sions My, (S) x -+ X My, (S), are finite separable extensions as are separable
algebras over a local or global ﬁeld (if d1mens1on is coprime to the character— o
istic). '

5 Tower of algebras

We have seen in section 2 that the basic construction is itself a finite
separable extension with canonical expectation and same index. Let A;y,
be defined inductively for i = 1,2,3,... as the basic construction of the finite
separable extension A;_ C A;. We make use of the natural notation Ag = A,
multiplication map g1 : A; ®a,_, Ai — A, and conditional expectation
E;11 = Tpiyr. By this 1teratlon of the basw constructxon a tower of algebras

over S is generated: :
S Q A Q Ay g A C

Theorem 5.1 If the ground ring k of a finite separable extension S C A
possesses an invertible solution t to the quadratic equation (¢ + 1)1 = {,
then for every n there exists a nontrivial homomorphism of the braid group
B, into the group of units in A,_;. Under the same hypothesis, there exists
a nontrivial homomorphism of the Hecke algebra H(t,n) into A,_;.



Proof. We have the idempotent e;4; = 1 ®A, , Lin A;yy; the family of
idempotents {e;}32, in the tower of algebras § C A C A, C ... satisfies the
braid-like ,relatlons (=71 >2):

(5) ei€iy1€i = T€;,
(6) €it1€iCiy1 = TEit1,
(7) - ‘ €ie; = €j€;.

Equation (6) follows from equations (3) and (4). Equation (7) is a simple

consequence of noting that S is the centralizer subalgebra of e; in the basic

construction. Equation (5) is the tedious computation that e;eze; = Te;.
Map the Artin generators {o;:¢ =1,...,n — 1} of B, as follows:

(8) d,: g w; = (t—{;l)gi~1.

One can readily check that the w; are units of A,_; and satisfy the Artin
relations: : :
0{0; = 0504
Oi+10{0i41 = U‘lal+lat

Hence, the map ®, extends multiplicatively to a homomorphlsm of B, into
the group of units in A,_;.
The Hecke algebras H(t,n) have the standard presentation

(915, Gn-1l97 = (E=1)gi+t, Gigit19i = Git19iGi+1,9:9; = 9;9i» V1,7 ¢ [i—j] > 2).

Since the w; also satisfy w? = (t — 1)w; + {, an algebra homomorphism is
obtained by sending each g; onto w;. O

6 Markov traces

Recall that a trace on a k-algebra B is a k-linear map T : B — k satisfying
for each z,y € B, T(zy) = T(yz). In addition, we assume a trace to be
normalized: T'(1) = 1.

Definition 6.1 Suppose there exists a trace T's on S. We say A is a finite separable
T-extension of S if A is a finite separable extension of S with conditional ex-
pectation F : A — S such that Ts o FE defines a trace on A we denote by

Ty.




Remark 6.1 Note that T4 restricted to S equals the trace Ts, We call Ty
the Markov trace over S. Note the identity (Vs € S, a € A)

9) | S TA(sa)=Ts(sE(a))

Examples of finite separable T-extensions abound: each of the four main.
examples above of finite separable extension is also a T extensnon with respect'
-to the canonical trace on §. - '

Recall the notatlon el =1 ®g 1 and E1 = Tp

Theorem 6.1 Suppose A is a ﬁmte separable T'- extensxon of S. Then the
basic construction A; is a finite separable T-extension of A.

' Proof We must check that 7,41 =T4o0 E1 defines a trace Note that the
k-linear map Ty, : A1 — k is, glven by ‘

N S
' TAI(Z aiélbi) =T ZTA(G,‘I),’).
L=l i=l ) '
A computatlon with simple tensors and using equatlon (7) shows that Ty, is
a trace: , | _ . _
T4, (ace1a102€103) = TAl(qu(alaz)e]a3) =

TTa(E(araz)asao) = tTs(E(aydz)E(azao)) =
' TA](G2¢103¢061€-€1)' :

- This together with proposition 1.1 completes the proof. O

‘We note the identity, which iterates up the tower of algebras over A
(Va € A): U
(10) » ; TA](ael) = TTA(a)

Abbreviating the n’th Markov trace Ty, to Ty, we get values for trace such -
as T5(€4é3€26365) = 7%, In the next section we will need only know the values
of trace on the e;-algebra Ag, generated by 1 el, .., €, within the tower

(B=14: S).



7 The Jones polynomial

Jones associates in [5] a Laurent polynomial in {3 to an oriented link L.
This has been done in various ways via von Neumann algebras and Hecke
algebras. In this section we show how it may be done with finite separable
T-extensions.

Given a link L, we can find at least one braid « on n strings, which when
closed up gives back the link L (a theorem of Alexander). Illustrations of
closure are given below, and further reading on knot theory can be found
_in (2] and [6]. Now there is uncertainty in the correspondence L ~ a. It

turns out that for any other braid 3 on n strings, SaB~! as well as the two
braids 0¥« in B,4; all % close up to give L: moreover, by a theorem of
Markov the various finite compositions of conjugation and left multiplication -
of o£! a,ﬂl, ... are all the braids closing up to give L: these conjugation and
left multiplication operations are called the first and second Markov moves,
respectively. , -

Consider a finite separable T-extension A of S with index reciprocal 7 =
(t_+t1-)_2’ such as may be obtained from a change of rings,

ko~ k[t t71/((t + 1)1 —t).

By theorem 5.1 the group homomorphism &, : B, — A,_;° defined in
equation (6). Making use of trace, we note that T'o®,, is a character function
on B, (i.e., a scalar-valued function constant on conjugacy classes of the
group). We need an adjustment or normalization for the other possible types
of braids closing up to give the same link: the Jones polynomial V() in
k[v%, 71{] gets the job done.

Let exponent e(a) equal the sum of powers in the expansion of a in
Artin generators, o; - an invariant of word reduction in B,! Define the Jones
polynomial of the link L with corresponding braid o« in B, as follows:

(1) Vilt) = (=S (VT (@ )

To prove this an invariant under the second Magkov move, note that
T(®na (ot @) = T((t2 +1)e,@a(a)) — T(Pn(@)) = —£57T(®@4(a)); plugging

2The Artin generators o; cross the i’th and i+1’st strings while fixing the other strings.
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3

Figure 1. 0%, The Hopf link

this in the right-hand side above, with appropriat‘e changes made to the
powers n — 1 and e(«), one sees the polynomial does not change. It follows
from Markov’s and Alexander’s the01 ems that V;,(t) is an isotopy invariant
of links.

Example 1: The Hopf link. The bla.ld o? in B, closes up to give the
Hopf link, which is two interlocking circles oriented as shown below. The
exponent of this braid is 2 and n = 2. Hence,

t+1

VL(t) = _TtT((el(t +1)-1)° )
2t 5 1
—(t+ DVt - it 1) = —t2 — 2,

Example 2: The left-handed trefoil knot. The braid o2 in B, closes up -

to give the left-handed trefoil knot as shown below. The equality sign below
should be understood as an isotopy in the ambient space. We compute:

t+1

T

(t3+1)t— (t+1)%) = —t* + 3 +1.

Vult) = (LT 4+ er - 1) =

t
IES

D&

Flgure 2. 03 Its closure: the left handed tnefonl knot.
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The mirror image link. Suppose the braid @ = o7 - - - 03 closes up to
give the oriented link L. Now we hold a mirror below the link as we look down
on it, which turns overpasses to underpasses as we follow the arrows around
the link (or knot): this is the mirror image knot denoted by L~. Clearly, the
braid = o;™ --- o, closes up to give L. -

Observe the easy identities: '—\‘53 = 5:—7:%'%, Q. (07") = (7T +1)e; = 1

t t
and ?t_fW = (tjt:—l)f It follows readily that the Jones polynomial of the

mirror image link is V7 (¢7!). For example, the right-handed trefoil knot has
polynomial —t=% 4 ¢=3 + ¢~L,

8 Relation to ring extension theory

Bruno Miiller published in [13, 1964-5] his theory of quasi-Frobenius ex-
tensions, in which various phenomena observable in this paper first appeared.
We establish in the next theorem that the basic construction of a finite sep-
arable extension is none other than the endomorphism ring of the natural
module associated to the extension. Then the inclusion of A in A, is simply
the left regular represention of A in End Ag. For a quasi-Frobenius extension
A 2 B, it was shown in [13] that the endomorphism ring End Ap is itself
a quasi-Frobenius extension of A: then the converse question was taken up
" and settled by Miiller. We explore what finite separability has to do with
quasi-Frobenius extension in this section.

Proposition 8.1 A; is Morita equivalent to S.

Proof. Recall that e; =1 ®s 1, an idempotent in A;. Define a ring homo-
morphism,

F: A, — End Ag
by

m m
F(Z a,-elb,-) = Z )\G;E/\b‘.
i=1 i=1

where A (y) = zy is the left multiplication map. It is easy to show that
F is surjective, and slightly harder to show that it is injective. But Ag
is a generator module since E(1) = 1 and finitely generated projective by
an earlier result. It follows from basic Morita theory that A; and S are
equivalent rings. O
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A right quasi-Frobenius extension is a ring A and subnng B containing
14 subject to two ax1oms

1. Ap is a finitely generated projective moddle;

2. Ais isomorphic as B — A modules to a direct summand of a direct sum
of a finite number of copies of homB(AB, Bpg).

Theorem 8.1 A finite separable extensmn A Z) S is a right qua31 Frobemus'v L

extension.

Proof. We have seen that the natural module Ag is a finitely generated
projective. : =
Define an S — A isomorphism ¥ : A — hom(4A4s, Ss) by

ar— E'(a—)

- where E(a—) denotes the map z — FE(az). Since E is nondegenerate (corol-
~lary, section 2), ¥ is injective. ¥ is surjective since, given a map f in the
range, ¥ : Y%, f(z;)y; = f. The S — A action on hom(As, Ss) is given by
the formula (sga)(z) = s[g(az)]. Now it is clear that ¥(sab) = s¥(a)b O3
It is not true that every quasi-Frobenius extension is a finite separable
extension. Indeed the next theorem can only be proven for finite separable
extensions. A simple example of a Frobenius algebra (i.e., the paradigm of

a quasi-Frobenius extension) not satisfying equality of global dimension of -

rings, D(—), is a group algebra of a p-group in characteristic p.

Theorem 8.2 If A is a Aﬁnit‘e separable extension of S, then »

Proof. D(-) may denote left, right, or weak global dimension of ring, though
we give the argument only for left modules. Let pd denotes projective di-
mension. Recall the well-known inequality for any change of rings S — A
and an A-module M, pd Ms < pd M, + pd As. Since the inclusion map of

3Left quasi-Frobenius extension may be defined oppositely. The inclusion in Theorem
8.1 is true for these as well.
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N — N ®s A is split by Id @s I whenever A is a splif extension of S, we
easily see that for split extensions

D(S) < D(A) + pd-As.

For finite separable extension we see moreover that D(S) < D(A), since
pd As = 0. Since A4, is a finite separable extension of A we have D(A) <
D(A;). But A, is Morita equivalent to S so that D(A,) = D(S). O

The last theorem is a generalization of Serre’s extension theorem for group
cohomology [17, the coprime index case]. For we recall that the cohomological
dimension of a group G over a field k&

~ cdi(G) = D(K[G)).
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