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Abstract.

Emphasizing special features of manifolds with symmetry in dimensions 2, 3, and 4
we develop various simple approaches to index theory over partitioned manifolds.
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Eugene Wigner’s sarcastic remark in [1], that mathematics is the science of skill-
Jul operations with concepts and rules invented just for this purpose, might have
been read by generations of mathematicians as a biank cheque to work with con-
cepts not chosen for their conceptual simplicity... but for their amenability to clever
manipulations and to striking, brilliant arguments. Since then it became socially
accepted among mathematicians not to keep track of what was going on in physics.
For a while, algebraic topology became more fashionable than partial differential
equations.

Surprisingly, Wigner’s expectation of the mathematzcal concepls cropping up in
physics also held for the most elaborate and remote concepts of modern differential
topology. To judge from the terminology or the content of the papers, some issues of
learned journals in differential geometry and in mathematical physics can hardly be
- distinguished from each other. Mathematicians tend to give that fact an emphatic
interpretation like Michael Atiyah [2]: When the ezcitement is over and a proper
perspective can be achieved the present decade (written in 1989) may well stand
out as a landmark comparable to that of Einstein’s Theory. Physicists, trained in
Wigner’s way of thinking, do not always evaluate so positively the inflation of new
topological and differential geometrical concepts turning up especially in quantum
field theory and elementary particle theory. Usually they have two objections: They
ask for the phenomena, which according to Wigner’s first quality assessment criterion
should find a close and accurate description by help of the fancy mathematical
concepts. This question we leave to the physicists. And they ask for the ingenious
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logical operations which appeal to our aesthelic sense both as operations and also in
their resulls of great generality and simplicity, Wigner’s second quality assessment
criterion. Is not the terminology becoming too much mathematized, too esoteric
and too bizarre? ‘ ' :

To this question we have an answer regarding the global analysis of elliptic
boundary value problems: No! Understanding internal symmetries of partial (es-
pecially elliptic) differential equations in terms of invariants looks like a puzzle.
But it is not since the basic building blocks in analysis and topology are the same:
manifolds with boundary. Of course, the emphasis is different. In the theory of
partial differential equations one traditionally treats higher order differential equa-
tions of greatest generality on bounded planar regions or open regions in higher
dimensional Euclidean space, subject to local Dirichlet/Neumann or very abstract
pseudo-differential boundary conditions. In fopology one investigates combinatorial
properties of quite general manifolds made up by glueing of simple pieces, celles or
singular simplices. A link between these two very different theories is provided by
differential topology which treats mainly geometrically defined first order differential
operators of Dirac type, acting on sections of bundles of Clifflord modules, subject to
strong symmetry principles and concrete global spectral boundary conditions. That
provides an abundance of cross references between analysis and topology. Whether
they have a deep physical meaning or not, these cross references are interesting
mathematics.

Computations of invariants like the index, the eta-invariant, and the determinant
for a Dirac operator over a closed manifold can be in some cases reduced to the fol-
lowing scheme: We divide the manifold into two parts. One part may be complicated
from a topological point of view; but the analysis is easy on this part. The other
part may be topologically trivial, but interesting from the analytical point of view.
Here we make explicit computations. This is the idea e.g. behind the recent work
of Kirk and Klassen [3], [4] on Casson’s invariant which gives one reason, why it
is important to study the decomposition of manifolds and operators into problems
over manifolds with boundary.

Let us look at a few concrete calculations to illustrate the most basic concepts
and to argue for our philosophy that manifolds with boundary are, in principle,
easier to grasp than closed manifolds. We shall restrict ourselves to the easiest case
of the index. Modifications of our approach for the slightly more intricate situation
of the eta-invariant and the truly more intricate situation of the determinant and
torsion will be worked out separately.

1. A Simple Proof of the Index Theorem on S?

Consider an elliptic differential or pseudo-diflerential operator over a closed manifold
(i.e. compact and without boundary). The index denotes the difference of the
dimensions of the kernel and the cokernel of the operator. It is continuous on a
suitable space of Fredholm operators and hence locally constant on the connected
components. Then the Atiyah-Singer index theorem expresses the index in terms of
topological characteristics of the operator’s coefficients.

We consider the simplest possible two-dimensional case and write the 2-sphere
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S? as the closed double of the 2-disc D? := {(z,y) | 2 + y*> < 1}. We show
that, correspondingly, up to homotopy any elliptic operator on $? is completely
determined by the pasting of trivial pieces of the operator. More precisely, we
construct two operators A and A’ which are, in topological language, non-trivial,
i.e. their principal symbols define the two generators of the K-group K(TS?), one
with vanishing index, the other with non-vanishing index. The building blocks
are provnded by the Cauchy-Riemann operator § : C®(D?) — C*(D?), where
3(8/0z + i8/8y). In polar coordinates out of the origin, this operator has
the form 1e'%(8, + (i/r)0,). Therefore, after some small smooth perturbations
(and modulo the factor 1), we assume that § = (9, + id,) in a certain collar
neighbourhood N of the boundary. Then (8)* = e~%¢(-8, +u9 +1) (u =r-1)in
N, and
A=08U(d)" : C®(§* H) = C®(S%, H™Y) (1)
is a well-defined elliptic differential operator. 1lere for integer k, H* denotes the
Hopf bundle, which is obtained from two copies of D? x C by the identification
(z,w) = (2, z¥w) near the equator. By definition, the kernels of A and its adjoint
operator are isomorphic, hence index A = 0.
To produce an operator with a nontrivial index, we define an operator d; on the
upper hemisphere, equal to § outside of N. On N we define:

8y := €% (By + 10, — x(u)), ()
where x(u) > 0 is a smoothing function equal 1 close to the equator © = 0. Then
the operator
A= 8,U(0)" : C®(S?%, H?) — C*(S%; HY) A
is well defined. The only difference from the operator 8 U (d)* is the modiﬁca.t.ion
on the collar N. :

To-compute index A’ —index A observe that the index of any Dlrac operator over -
a closed manifold M is given by a local formula

index A = | ofz),
M

where a(z) is a density given at the point z by a complicated algebraic formula
in terms of coeflicients of the operator A in z (accounted for e.g. in [5]). It is a
consequence of the locality of the index expressed in the preceding formula that we '
get: '

index A’ = index A’ — index A = index [e'¥(8y + 18, — x(u))], (3)

where the operator on the right side is a well-defined elliptic operator on the torus
S! x S1. Its index coincides with the index of the elliptic operator T := 8, 418, — u

~acting on functions f(u, ¢) from C*(R x Sl) which satisfy the periodicity condition:
fu+1,0) = e f(u,p) . (4)

Separation of variables and series expansion of f shows that there is no non-trivial
solution of Tf = 0 with the required periodicity and that the l\emcl of T* with the
required periodicity is one-dimensional, hence

index A’ = —1. (5)
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A

Fig. 1. The spectrum of {i;‘-’; - u}yer

More generally, this argument proves the following result:

Theorem 1 Let A’* denote an operator over S? which is equal to 8 on D>\ N, (§)*
on the second copy of D?, and €'¥(8y + 18, — kx(u)) on N. The operator A% is
in fact the operator A® Idyy : C®(S?%; H¥+1) — C=(S5?%; H*~1) and we have the
following indez theorem:

index A’* = —k. (6)

Remarks 2 (a) Alternatively, we can prove (5) by a spectral argument. Consider
the family {B, = id, — u} of self-adjoint differential operators over the circle S?,
parametrized by u € S = I/{0,1}. Such families have only one topological in-
variant, the spectral flow sf{B,}. It is just the difference between the number of
eigenvalues of By, which change the sign from — to + as u goes from 0 to 1, and the
number of eigenvalues, which change the sign from + to —. With some work, involv-
ing K-theory, one finds some very fundamental relations between families of self-
adjoint elliptic differential operators {B,} over a closed manifold M parametrized
by S?!; their suspension 8, + B, which is an elliptic differential operator over Af x S*:
and their desuspension Py — WP, which is an elliptic pseudo-differential operator
over M. Here P> and P, denote the spectral projections of the operator By on -
the eigenspaces corresponding to the non-negative part and the negative part of the
spectrum; and W is a unitary morphism chosen in such a way that it provides a
unitary equivalence By = ¥~ BV, here ¥(yp) = €'?. One gets for T = 8, + B,

index (8y + Bu) = sf{ By} = index (P> — ¥P,), (7

hence, especially, index A’ = sf{B,} = —1, see Figure 1.

(b) Direct generalization yields the corresponding index theorem for Dirac operators
on even-dimensional spheres which gives the Atiyah-Singer index theorem on these
spheres by stable homotopy. That result, together with the computation of the
signature operator on complex projective spaces, was the basis of the first proof of
the index theorem.

(c) Notice that the cutting and pasting procedure explained above for the 2-sphere
also provides a direct proof of the Atiyah-Singer index theorem for elliptic pseudo-
differential operators on arbitrary closed Riemann surfaces.
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Y={0}xY

/-\1

Fig. 2. The partitioned manifold M = X; U X,

2. Index Theory on Partitioned Manifolds

Let M = X; U X, be an n-dimensional closed partitioned manifold with 8.X, =
0X2 = XiNX2 =Y, let S be a Cé(M)-module, and let 4 : C®(M;S) —

C™(M;S) be a generalized Dirac operalor, i.e. a linear differential operator of first
~order which can be written in terms of a local orthonormal frame V1,...,v, of TM

as

As|y = Zvv,, - (Dy, 5)]e,
v=1 .

whére: - denotes Clifford multiplication. We assume n even and get a chiral decom-

position _ '
- 0 AT
A= (55,

The partial Dirac operators A are especially interesting in index theory since they
are elliptic, but in general not self-adjoint and provide interesting integer-valued
Invariants as their indices. Like the Cauchy-Riemann operator all partial Dirac
operators A* can be written in product form o

At = G(u,y)(8u + Bu) (8

in a bicollar neighbourhood N of Y, where u denotes the normal coordinate running
from Xj to X, see Figure 2. We assume that the metrics of the manifold and the
Clifford module bundle are product close to Y, hence G and B, independent of u. -
Notice that G(y) is Clifford multiplication with the inward oriented normal tangent
vector and By is again a Dirac operator, sometimes called the tangential operator or
the Hamilionian. Due to (8) all the constructions shown for the two-sphere and the
Cauchy-Riemann operator have straight forward generalizations. ‘

Let @ be a unitary automorphism of S*|y (possibly with a shift f in the basis }").
Let a denote the principal symbol of the operator A*. In a bicollar neighbourhood
of Y, the symbol a has the form:

a(u, y;v,¢) = GY)(iv + b(y; () .

We assume consistency of ¢ and G, namely that for all y € Y and ¢ ¢ TY,:
WG = G(f(W)(y) and  B(W)b(y;¢) = b (F(); (F71) Q) ¥(y).
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Theorem 3 ([6]) Glueing A, := A*|X; with Ay := A%|X, in a bicollar neighbour-
hood of Y by consisient & defines a new Dirac operator A® over M with

index A® — index A* = index T® = sf{Bu} = index (P¢ — Qﬁz).

Here {B,} is a family connecting By and ®~'Bo®; T® denotes the elliptic differ-
ential operator given by the formula G(8, + By) over the mapping torus (I xY)/ f;
and P>, P, denote the speciral projections of By.

Corollary 4 The indez of the corresponding linear conjugation problem on the mani-
fold M equals the indez of the operator A®.

3. Additivity Formula for Problems of Atiyah-Patodi-Singer Type

The principal symbol p; of the spectral projection P is the projection onto the
eigenspaces of the principal symbol b(y, {) of By corresponding to non-negative eigen-
values. We call the space of pseudo-differential projections with the same principal
symbol p; the Grassmanntan Grp,. It has enumerable many connected compo-
nents; two projections Py, P, belong to the same component, if and only if the
virtual codimension

i(Py, Py) := index { P, P, : rangeP, — rangeP,} - (9)

of P, in P; vanishes; the higher homotopy groups of each connected component are
given by Bott periodicity. The Grassmannian is a natural space for global elliptic
boundary value problems, see [6] for the mathematics and [7] for the physics.

More precisely: The L? realization (A;)p, which acts like A; and is determined
by

dom (A1)p, := {s € H'(X1;5%) | Pi(sly) = 0},

is a Fredholm operator from L2(X;;S*) to L%(X,;57). Its index is determined by
a generalization of the Atiyah-Patodi-Singer indezx formula

index (A;)p, = / a(z) — 1 (np(0) + dimker B) + i(Py, P3). (10)

Xa

Here afz) denotes the index density of A; accounted for above and

np(z2) = Z signA|A|~* (11)

respecB\{0}

denotes the n-function of A;’s tangential part B. It is (i) well defined through
absolute convergence for R(z) large; (ii) it extends to a meromorphic function in
the complex plane with isolated simple poles; (iii) its residues are given by a local
formula; and (iv) it has a finite value at z = 0 (see e.g. [5]).

Let A*|ny = G(84 + B), i.e. independent of u. This can be obtained when the
metrics of the manifold and the Clifford module are product close to Y. Then

A1|[-1,o]xY = ("G)(_au - B) and A2|[0,1]x}’ = G(au + B), (12)
and it follows that (p1)4 =1d — (p2)+.
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" Theorem 5 Let P; be projections belonging to Gr(p‘)+, t=1,2. Then

index A* = index (A;)p, + index (A2)p, —i(P,1d— P;). = (13)

Note. It is immediate that i(P,,1d — P,) = index (G(dy + B); P2, ;) where the
last operator is on [0,1] x Y with boundary condition P; at u =0 and P; at u= 1.
Formulas similar to (13) hold also for some other interesting analytical invariants like
the eta-invariant of Dirac operators on odd:dimensional manifolds and the spectral
flow of families of operators (see [8], [9], and [10]).

Proof From (10) we get

index (A;)p, = / aa,(2) = 3(n-5(0) + dimker(—B)) +i(P1, P»(~B))

1

and
index (A3)p, = /X aa,(z) - %.(7)3(0) + dimker B) +i(P,, PZ(B)) .
Here a4, := a|x,. Then | |
inciex (Ar)p, + index(A2)p, _ ' - (14)
= /M a(z) — dimker B +i(Py, P5(—B)) + i(P2, P>(B)).
Since

i(P,P5(~B)) = —i(ld - P,1d — P5(-B))
= i(ld — Py(—B),ld — P\) = i(P5(B),1d — P,)

and i(P»(B),P5(B)) = — dimker B we get

i(P1,P5(-B)) = i(P5(B),P5(B)) +i(P>(B),ld — P,) — i(P5(B), P> (B))
= i(P5(B),Id — P,) + dimker B.

Inserting the preceding result in (14) yields

index (A;)p, + index (A2)p,
= index A* — dimker B + i(P2, P5(B)) +i(P5(B),1d — P;) + dimker B
= index A% + i(Pz,1d - P).

4. Specific Features in Dimensions 2, 3, and 4

Remarks 6 (a) Cutting and pasting of one single operator can generate (modulo
stable homotopy) the whole space of elliptic operators over a partitioned closed
manifold as was the case with the Cauchy-Riemann operator over S* in Section
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1. This requires that the group of unitary consistent automorphisms is sufficiently
rich. In other cases the group is too small to influence the index. This is the case
for the signature and the Euler characteristic which remain invariant under cutting
and pasting, i.e. they are rigid and behave additively. ‘

(b) For each Dirac operator A over a compact manifold X with smooth boundary
Y one has a second canonical element of Grp, besides the spectral projection P>,
namely the Calderén projection P, which maps sections over the boundary onto
the Cauchy data, i.e. the traces on the boundary of the solutions. By definition
index Ap, always vanishes.

Clearly, in dimension 2 the two projections for the Cauchy-Riemann operator
coincide. In dimension 3 we consider a smooth flat connection on X x SU(2) and the
corresponding twisted signature operator over X with coefficients in X xsu(2) where
su(2) denotes the Lie algebra of SU(2) (see [6]). The index of the corresponding
Atiyah-Patodi-Singer problem does not vanish: it does not depend of the connection
and can be expressed by 3 — 3g where g > 2 denotes the genus of Y. Exploiting
an argument of [11], one can find an example in dimension 3 (with the genus of the
connected boundary ¢ > 3) where P> and P, change their connected components
in Grp, independently under a smooth change of the metric. In dimension 4 [12]
shows that for the Euclidean Dirac -operator on the 4-ball ‘the boundary traces of
zero mode spinors of even chirality coincide with the space of eigenfunctions of the
Hamiltonian on the 3-sphere corresponding to non-negative eigenvalues’, or in our
language: the spectral projection and the Calderén projection coincide.
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