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ABSTRACT. Results in the spectral theory of differential operators, and recent results on
conformally covariant differential operators and on sharp inequalities, are combined in a study
of functional determinants of natural differential operators. The setting is that of compact
Riemannian manifolds. We concentrate especially on the conformally flat case, and obtain
formulas in dimensions two, four, and six for the functional determinants of operators which
are well behaved under conformal change of metric. The two dimensional formulas are due to
Polyakov, and the four dimensional formulas to Branson and Orsted; the method is sufficiently
streamlined here that we are able to present the six dimensional case for the first time. In
particular, we solve the extremal problems for the functional determinants of the conformal
Laplacian and of the square of the Dirac operator on S§2, and in the standard conformal
classes on S* and S®. The S? results are due to Onofri, and the §* results to Branson,
Chang, and Yang; the S® results are presented for the first time here. Recent results of
Graham, Jenne, Mason, and Sparling on conformally covariant differential operators, and of
Beckner on sharp Sobolev and Moser-Trudinger type inequalities, are used in an essential
way, as are a computation of the spectra of intertwining operators for the complementary
series of SOg(m +1,1), and the precise dependence of all computations on the dimension. In
the process of solving the extremal problem on S¢, we are forced to derive a new and delicate
conformally covariant sharp inequality, essentially a covariant form of the Sobolev imbedding
L3(5%) «— L3(S5) for section spaces of trace free symmetric two-tensors. Finally, we present
results of Branson, Chang, and Yang on using the functional determinant to bound metrics
in a given conformal class. The setting here is that of compact four-manifolds which admit
locally symmetric (but not necessarily conformally flat) Riemannan metrics.
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.ABSTRACT. Results in the spectral theory of differential operators, and recent results on

- conformally covariant differential operators and on sharp inequalities, are combined in a study

~ of functional determmants of natural differential operators. The setting is that of compact

Riemannian manifolds. We concentrate especmlly on the conformally flat case, and obtain .
formulas in dimensions two, four, and six for the functional determinants of operators which

" are well behaved under conformal change of metric. The two dimensional formulas are due to

~ " Polyakov, and the four diniensional formulas to Branson and Orsted; the method is sufficiently
streamlined here that we are able to present the six dimensional case for the first time. In
particular, we solve the extremal problems for the functlonal determinants of the conformal
Laplacian and of the square of the Dirac operator on S2, and in the standard conformal
classes on S* and S®. The S? results are due to Onofri, and the S* results to Branson,
Chang, and Yang; the S8 results are presented for the first time here. Recent results of -
Graham, Jenne, Mason, and Sparling on conformally covariant differential operators, and of
Beckner on sharp Sobolev and Moser-Trudinger type inequalities, are used in an essential
way, as are a computation of the spectra of intertwining operators for the complementary
series of SOg(m + 1, 1), and the precise ‘dependence of all computations on the dimension. In
the process of solving the extremal problem on S, we are forced to derive a new and delicate -
conformally covariant sharp inequality, essenhally a covariant form of the Sobolev imbedding
L%(S8) — L3(S°®) for section spaces of trace free symmetric two-tensors. Finally, we present
results of Branson, Chang, and Yang on using the functional determinant to bound metrics
in a given conformal class. The setting here is that of compact four-manifolds which admit
locally symmetric (but not necessarily conformally flat) Riemannan metrics.

0. INTRODUCTION -

Some very recent work in Analysis and Geometry has revealed strong new connections
among fields which, while never completely separate, have at least been studied in very
different ways. Part of the stimulus for this has been physical String Theory, which led in
the last decade to a fresh look at Riemann surfaces, always a meeting ground for different
disciplines in Analysis. In these notes, we would like to clarify some of these connections
as they have manifested themselves in the study of string theoretic principles in higher
(> 2) dimensions. Broadly speaking, the fields in question are:

I the spectral theory of differential operators,
II conformal geometry; and
III sharp inequalities.

Lecture Notes, First Global Analysis Research Symposiufn on Pure and Applied Mathematics, Seoul
National University. Partially supported by the Danish Research Council.
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In this discussion, we work in the category of compact Riemannian manifolds. Under
the heading (I) are such tools as the heat kernel expansion, index theory, and functional
determinants. Two of the major goals involve relating geometry to spectral data. In
the isospectral problem, one tries to show that the spectrum of some natural differential
operator (for éxample, the Laplacian A) determines the geometry (Riemannian metric),
or at least that there is a very small set of metrics with the same spectrum. In the
uniformization problem, one tries to use some spectral invariant S to “drive” the metric
to a uniform state (usually one of constant curvature in some sense), either by solving
an extremal problem for & as a functional on the space of metrics, or by setting up a
“heat flow” (parabolic equation) which will produce the uniform state at time infinity.
Under the heading (II), the main tools are conformally invariant differential operators.
(III) is'a hard analytic topic; among the major tools relevant here is symmetrization and
the use of symmetric decreasing rearrangement to “improve” the value of functionals like
those mentioned in the discussion of (I) above. “Sharp” inequalities are those with best
constants and extremals given. Geometrically, a sharp inequality can usually be viewed
as an invariant quantity, i.e., the quantity asserted to be nonnegative. Sharpness, not to
_mention the applicability of symmetrization in the proof, are intimately connected to the
geometric invariance exhibited by the eventual inequality. More functional analytically, a
sharp inequality can often be viewed as a norm computation for an imbedding of Banach
spaces, the prototypical example being the Sobolev Imbedding Theorem. Both of these
viewpoints will be useful here.

The more or less straightforward connections are (I)«>(II) and (II)«>(III); the link
(I)~(11I) has been somewhat mysterious. For example, one would like a reason for the
fact that Onofri’s analysis of the extremal problem for the functional determinant det A
on the sphere S? leads directly to the Moser-Trudinger inequality, other than that both
problems are extremely natural. A main goal of this treatment, aside from showing that
similar phenomena occur in higher dimensions, is to show that these phenomena should
be expected, i.e. are to some extent predictable from the geometric formulation of the
problems. In other words, we would like to make the link (I)—(III) explicit.

A curious additional connection is that between (III) and the theory of the complemen-
tary series of the Lie group SO¢(m + 1,1); we make this completely explicit in Sec. 3 of
these notes. It has been remarked that, with respect to the problem of determining the
unitary dual of a semisimple Lie group, the complementary series is an anomalous sort of
object, not really fitting into any framework that does much good in the study of unitary
representations in general. For this reason, complementary series representations have even
acquired a reputation as being somewhat “useless”. Furthermore, according to {Vo, p. 17],
“One hopes not to need them for most harmonic analysis problems.” It is, therefore, ironic
that they are so important in the present treatment, and more so because they are useful
for the same reason that they have been thought useless: the invariant inner product is a
“strange” one, obtained from the L? inner product (-, -) by insertion of a pseudo-differential
intertwining operator A to form (-, A:). These A are actually elliptic operators defining
invariant versions of the inner products in the Sobolev spaces L2 (meaning L2, with v
derivatives in L?, v € R). Otherwise said, they are invariant Banach isomorphisms from
L2 to its dual L2, ; for a discrete set of v, they are actually differential operators, and
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in fact the realizations on the standard sphere S™ of conformally covariant differential
operators that exist for general Riemannian metrics. Furthermore, the spectra of these
. intertwining operators are explicitly computable from the intertwining relation. We return
" to this theme in Sec. 7 to derive an essentially new estimate crucial to the extremal prob-
lem for the functional determinant on S%; kiere we need not only the complementary series
' representations from the sphencal principal series (principal series representatlons carried
by spaces of scalar valued functxons), but also a tensor valued complementary series. In a
way, the complementary series is the central object. in this investigation; indeed, we just
have touched upon links to all the other ideas in this circle (including (I-III)) in discussing
it.

In describing the results of this work we shal] stay on a not-too-technical level for
the remainder of the introduction (just referring ahead for definitions and clarification).
~ We continue the study of the functional determinant in higher (> 2) dimensions begun
in [B@3, BCY], and derive new formulas for fiinctional determinants of operators with
. certain nice conformal propertles, in particular for the conformal Laplacian (or Yamabe
operator) Y and the square- 7 of the Dirac operator, on conformally flat manifolds of
dimension six. One motivation for going to dimension six is the search for a pattern in the
extremal problem for the functional determinant. In a fundamental paper [On], Onofri
showed that as a functional on the space of volume 47 Riemannian metrics on the Riemann
“sphere 52, the functional determinant det A of the La.placxan is maximized exactly at the
standard metrxc go and its transforms under the Mébius group of S2. His method was
- as follows: (1) prove the statement replacing “Riemannian metrics” by “metrics in the
standard conformal class [go) := {g. = €?“g | w € C*(5?)}.” This is done by computing a
quotient (det A, )/(det Ag), where A, is the Laplacian in the metric g,, , and then noticing
‘that the resulting quantity is exactly that asserted to be nonpositive by the celebrated
" Moser-Trudinger inequality. This inequality may be viewed as the norm computation
for the imbedding of the Sobolev class' L? into the Orlicz class e£. (2) Then note that
any Riemannian metric on S2 is the pullback of some g, under a diffeomorphism ¢ €

- Diffeo(S?). Since spectral invariants of A or of any other natural differential operator are

also diffeomorphism invariants, the result follows; the spectral invariants involved here are,
of course, det A and the volume (which appears in the spectral asymptotics of A). Similar
results hold for the Laplacians of higher spin bundles; in particular the spin Laplacian, i.e.
the square Y of the Dirac operator Y, though one important dissimilarity is that det Y?
is minimized in the standard geometry.

The first thing to go radically wrong with Onofri’s argument when we go up in dimension

“is this second step: generalizing the Mébius group to the conformal group ctran(S™, go), up
to covering a copy of SO¢(m +1,1), we get an extremely large space of metrics, even after

deflation by the infinite dimensional groups of diffeomorphisms and of conformal changes

of metric. To be somewhat more precise, the cone G of Riemannian metrics is acted upon

by the group Diffeo(S™) x C$°(S™), where x is semidirect product, and the action of

e” € C°(S™) is g — e?“g. The product is semidirect because diffeomorphisms pull back

conformal factors €. If m = 2, the orbit space G/ Diffeo(S™) x C$°(S™) is a single point,

but if m > 2, it is infinite dimensional and quite complicated structurally. The upshot

is that, in higher dimensions, we must stay within a given conformal class, at least at
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ﬁrst in looking for analogues of Onofri’s Theorem and other fundamental string theoretic
principles. Almost no work has been done on the question of cutting across conformal
classes, either for the extremal problem or the closely related isospectral problem.
, There are still more unpleasant facts to be faced in higher dimension: much as we like
the ordinary Laplacian A (for example, for its topological significance), it simply does not
have the good conformal behavior necessary to get a Polyakov formula for the conformal
variation of its determinant. Nature strongly prefers that we compute the determinant of
a conformally covariant differential operator, or at least a positive integral power of such.
The Dirac operator Y is conformally covariant, so we can always consider Y There is
also a Laplacian on functions, the conformal Laplacian ' :

m—2
Y:=A+ —————4(m — 1)1',
where 7 is the scalar curvature, which has nice conforma.l propertxes and which specializes
to A in dimension two.

At this point one would like to examine the situation in dimension m = 3. However,
the functional determinant is quite rigid conformally in odd dimensions, and so at least
for the problem we are looking at, the next dimension is m = 4. Here Branson and @rsted
[B@3] computed quotients of the form

(0.1) (det A,)/(det Ao)

for reasonably general operators A and background metrics go. (In particular, conformal
flatness was not assumed.) As above, the subscript w indicates that we evaluate in the
metric g, = €2“gy. Later, Branson, Chang, and Yang [BCY] attacked the isospectral
and extremal problems related to these formulas. One result of this latter work is that
something survives of the Onofri reasoning: consider the extremal problems for detY,,
and det Wi in the standard conformal class [go] on S4. What emerges from the quantities
(0.1) is now a linear combination of two norm computations: one for the exponential
class imbedding L2 < el, and another for the “ordinary” borderline Sobolev imbedding
L? — L*. The latter inequality is that involved in the Yamabe problem, and in fact it
is quite fruitful to think of it in this way. The former inequality is the four dimensional
version of a generalized Moser-Trudinger inequality due to Beckner [Bec). The “miracle”
that occurs is that in this linear combination, the signs of the two coefficients agree, both
forA=Y and A= Wz, so we get extremal results. But just as in dimension 2, the Y signs
disagree with the Y2 signs, so we have opposite kinds of extrema. This is summarized
in the first two lines of Table 0.1 below. As is clear from the third line of the table, the
sign miracles continue in dimension six (where in fact they seem more improbable, in that
more coefficients have to fall into place with the correct sign). Note that the difference
between the behavior of Y and ¥72 is essential and is not due to conventions; we use the
same convention in each case (i.e., that the leading symbol is multiplication by |¢|?). The
third line of the table is the main new “factual” result of the present work; it is written
out precisely as Theorem 0.1.
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- THE FUNCTIONAL DETERMINANT AT THE STANDARD
'METRIC AND ITS CONFORMAL TRANSFORMS

detY,, det Y:
S? max min
S¢ min max
S max min

TABLE 0.1

Theorem 0.1. On S, for g = g, = €?>“gq in the conformal class of the standa'rd metric go
“and having the standard volume 16x° /15, the quantity det Y,, (resp. det ¥ w) is maximized
* (resp. minimized) exactly when g., = h*go for some conformal diffeomorphism h on (S®, go).

The use of a generalized Polyakov formula to compute quotients of the form (0.1) re-
quires a fairly explicit knowledge of one of the heat kernel invariants of the operator A in
question, that at the “index level”; i.e. ‘that with a homogeneity degree (under uniform
dilation of the metric) which compénsates that of the Riemannian measure . We call this
invariant Up, [A] It is often said that the combinatorial complexity of the heat invariants
" explodes as one goes up in level; since level equals dimension in our problem, our difficul-
ties explode as the dimension goes up. It has been possible, and hopefully not completely -
tasteless, to compute in dimension 6 by paying close attention to the dependence of all
quantities on dimension; that is, by performing what physicists might call dimensional
regularization. Specxﬁcally, we deal with universal polynomial formulas whose coefficients
are rational functions of the dimension m, and use computations valid for large even m
to make conclusions about a specific m. In other words, we meromorphically continue
rational functions of m, using m = oo as the limit point. This point of view excuses us
from considering pure divergence terms in thé heat invariant Un,[A] in some subcomputa-
tions. The advantage gained from this is nonexistent in dimension 2, minor in dimension
4, and considerable in dimension 6. To make things even more tractable, we work in the
conformally flat category; this is of course stable under the changes of metric we want to
consider, and does not discard the case of the sphere.

Extrapolating from dimensions 2, 4, and 6, the philosophy would seem to be as follows:
the term corresponding to the exponential class Beckner-Moser-Trudinger inequality [Bec],
i.e. that related to the norm computation for the imbedding L2, /2= el, is, in a sense to
be made precise, the leading term in the functional determinant. Its coefficient originates
in the leading term (really an equivalence class in the space of metric invariants) of Um[A4];
such leading terms were studied in [G5, BG@1]. Looking at these formulas, one finds
that if the leading term alone were decisive, the result would be the obvious continuation
of Table 0.1 to arbitrary even m. The sign miracles, then, consist in coeffients of “trailing
terms” having the correct sign. The estimation of the trailing terms, by the time we get
to dimension 6, entails some relatwely delicate conformal geometry. To oversxmphfy quite
a bit, what ends up being used, in addition to the imbedding L2 < eZ, is the borderline
unbeddxng L? — L3, both in the trivial scalar bundle, and in the bundle TFS? of trace
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free symmetric two-tensors. More specifically, we have to study the effect of the scalar
imbedding on the scalar curvature function, and of the TFS? imbedding on the Einstein
tensor. '

Our treatment depends heavxly on two pieces of technology that have only recently come
clearly into view. The first is the construction by Graham, Jenne, Mason, and Sparling
[GIMS) of conformally covariant operators on scalar functions with leading term A™/2, n a
positive even integer, as long as it is not the case that the dimension m is even and less: than
n. In particular, this allows us to find a representative of the leading term equivalence
class described above which behaves relatively simply under conformal variation. The
other is Beckner’s recent work on sharp Sobolev and Moser-Trudinger inequalities, based
on fundamental work of Lieb [Lie] on best constants and extremals for Hardy-Littlewood-
Sobolev inequalities in R™. In Sec. 3 below, we give versions of some of Beckner’s proofs
that use group invariance (and indeed, the complementary series) in an essential way.

The sequence of events in these notes will be as follows. Sec. 1 is about conformal
covariance in general, and the Graham-Jenne-Mason-Sparling operators P, in particular.
Something of extreme importance to us is the zeroth order term Q, of such a P,, defined
here by applying P, to the constant function: P,1 = (m — n)Qn/2, where m is the
dimension. Sec. 2 is about the principal series of SOg(m+1, 1), and especially its subseries,
the complementary series. Here we show how to compute the spectrum of an intertwining
operator, and relate such operators to the operators P, of the previous section. Sec. 3
presents Beckner’s theory of sharp inequalities on the sphere (i.e. that part of the theory
that we shall need, from a point of view that suits our needs), with heavy emphasis on
connections to the complementary series. Sec. 4 presents joint work of Branson and @rsted
on conformal index theory and the generalized Polyakov formula. Sec. 5 presents the 2 and
4 dimensional theory from the dimensional regularization point of view; the end results
are somewhat different derivations of known results of Onofri and of Branson and Orsted.
In Sec. 6, we do the computations necessary to get formulas for detY and det ¥ in 6
dimensions. In Sec. 7, these are applied to prove Theorem 0.1. A large part of Sec. 7
is devoted to some delicate conformal geometry and a new sharp inequality that seems
to be necessary to the proof. Sec. 7 concludes with a discussion of the sign pattern of
Table 0.1 and its continuation, based on the leading term analysis of Gilkey [G5), and of
prospects for future work. In Sec. 8, we compute the denominators det Ay of (0.1) on low
dimensional spheres for A=Y and A = Y72; in particular, this gives the extremal values
of detY and det ¥? on these spheres. Here the method, arithmetic with explicitly given
zeta functions, is mostly disjoint from that used to compute (0.1). In Sec. 9, we work in
the four dimensional, not necessarily conformally flat case, and present results of Branson,
Chang, and Yang [BCY] on the question of bounding Riemannian metrics g, within a
conformal class by their spectral invariants det A (for appropriate A) and vol(g.,).

It is a pleasure to thank Bill Beckner, Alice Chang, Peter Gilkey, Bent @rsted, and
Paul Yang for their help in clarifying the thinking of these notes; the remaining unclarity
is, of course, the fault of the author. This material was part of a series of talks given by
the author at the First Global Analysis Research Center Symposium on Pure and Applied
Mathematics at Seoul National University; thanks are due to the organizers, especially
Hyeong In Choi, Dong Pyo Chi, and Jongsik Kim, for their efforts. Finally, the author
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thanks Roskilde University, Seoul National University, and Sonderforschungsbereich 170
at the Umver51ty of Gottingen for their hospitality, and the Danish Research Council for
financial support, during the writing of these notes.



8 THOMAS P. BRANSON

1. CONFORMALLY COVARIANT DIFFERENTIAL OPERATORS ON SCALAR FUNCTIONS

Let (M,g) be a smooth, compact Riemannian manifold without boundary. m will
always denote the dimension of M. Let V be the Levi-Civita connection and R be the
“Riemann curvature tensor of g. We shall say that a differential operator D on smooth
~ scalar functions on M is natural if it can be given by a universal polynomial expression
in g, its inverse g%, V, and R, using tensor product and contraction. Such an object,
of course, is not really an operator, but a rule that canonically assigns an operator to
‘each Riemannian manifold of a given dimension. For example, D could be the ordinary
Laplacian A = éd, where d is the exterior derivative and § its formal adjoint, since in the
‘usual invariant index notation, A = —~¢V;V;. A local scalar invariant can be described
as a natural differential operator of order zero, or alternatively, as a linear combination of
monomials

(11) C((Va, --- V,,,R.'ju) ooV, ... V,,'R,g.",)),

where C is some operator which groups indices into pairs, raises one index in each pair,
and contracts to a scalar. _

We shall also have some use for natural operators between bundles of tensor-spinors.
Recall that the structure group of Riemannian geometry is O(m); of oriented Riemannian
geometry, SO(m), and of oriented Riemannian spin geometry, Spin(m). (By Wey!’s invari-
ant theory, (1.1) is a basis of the local scalar O(m) invariants; see, e.g., [BFG, Sec. 5.8].)
If H is one of these structure groups, a tensor-spinor bundle is just a vector bundle of the
form Fy xa V, where (V, ) is a finite-dimensional representation of H, and Fy is the
bundle of H-frames. To define a natural operator between two such bundles, we just im-
pose the polynomial restriction above, noting the following: (a) if H = SO(m), the volume
form E is allowed to enter our polynomial constructions; (b) if H = Spin(m), the Levi-
Civita connection is extended to the Levi-Civita spin connection (which we also call V),
and E and the Clifford section v can enter our polynomial constructions. (v is a section of
TM @ End(EM), where £M is the spinor bundle.) For example, if * is the Hodge star op-
erator on differential forms, *d is a natural operator SO(m)-operator. Here E makes its ap-
pearance via its image * under the natural bundle injection A™ M — Hom(APM,A™"PM).
The Dirac operator Y = 4'V,; is a natural Spin(m)-operator on sections of TM.

A natural differential operator D is conformally covariant of bidegree (a,b) € R? in
dimension m if for any m-dimensional Riemannian manifold (M, go),

(1.2) gu = €*go, w € CP(M) = D, = e~*“Dop(e*),

where for any f € C®°(M), u(f) is multiplication by f. Here the subscripts indicate the
metric in which we are evaluating; for example, Dy is computed in go , and D, in g,,. We
fix this subscript notation for use whenever we vary the metric within a conformal class

[90] := {gew = €2*“go | w € C®(M)};

to avoid confusion, we call the base metric go instead of ¢ in this case. We shall also
apply the subscript notation to other quantities, for example, local invariants and the
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Riemannian measure dv. If SO(m) or Spin(m) bundles are involved in the construction of .
the operator D, we impose the compatible scalings E,=e¢™E; and 74, = e ¥y in (1.2);
the latter sca.hng is forced by the Clifford relations.

We shall sometimes have use for the infinitesimal form of the conformal covariance
relation (1.2). Suppose w € C®(M), and consider the curve g., of conformal metrics;
then (1.2) implies that ~ ‘

(1.3) (d/de)|e=0Dew = —(b — a)wDo + a[Do , p(w))-

where [,-] is the commutator. (Unless otherwise stated, all such variational formulas
are meant in the elementary sense; for example, if ¢ is a smooth section and z € M,
(((d/de)|e=0Dew)y)(z) means (d/de)l,_ol((Dw)cp)(z)) ) The finite and infinitesimal forms
‘of the conformal covariance relation are, in fact, equivalent: an application of (1 3) with
" geow in place of gy gives

(d/d€)|,=¢°{e"“"_pr(e-““")} =0

for any €¢ € R. :
The best- known example of a conformal covariant is the conformal Laplacian, or Yamabe
operator
m—2

Y=A+m m:;él,

where 7 is the scalar curvature R;; of g. (Our convention on placement of indices will
be the one that makes R!;; positive on standard spheres.) The Yamabe operator has
conformal bidegree ((m — 2)/2,(m + 2)/2). Somewhat less well-known is the fourth-order

Paneitz operator Py, which was introduced in [P] (see also [Bral, Theorem 1.21], and
[ES]). To describe P, let p be the Ricci tensor of V; p;; = R*;x;, and let '

J= 1'/(2(m - 1))a m # 1,

14
(14) V=(o-Tg)m-2), m#L2
Then

P=A%46Td+(m-4)Q/2, m#1,2,
where

=(m-2)J-4V.,
Q= 212 —2lV[2 + AJ.

Here V- is the natural action of a two-tensor on one-forms, (V - ¢); = Vijp;, and |V|? =
ViV;;. The conformal bidegree of P is ((m — 4)2, (m + 4)/2).

The examples of Y and P make it clear that the dependence of a conformal covariant on
the dimension m is potentially important. Indeed, this dependence can be used to derive
the Gauss curvature prescription equation in dimension 2 from the Yamabe equation in
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higher dimension. Applying the conformal covariance relation for Y = A 4+ (m — 2)J/2 to
the constant function 1, we get

nl ]
E»
3
|
N
e
o
g
»
€

an  (a+7F2)

2 : - w € C™(M).

-:Since A annihilates constants,

m;2

Ao(e™F% — 1) + Joe =T = ﬂ_ziﬁjwe%*—’W,

Because the coefficients appearing in the expressions of Y and J as formal polynomials are
rational in m, as are all terms in the conformal covariance relation for Y (after multiplica-
tion by appropriate exponential factors), we may apply analytic continuation; specifically,
we can divide by (m — 2)/2 and then evaluate at m = 2 to get

Aow + Jy = Joe?, m=2.

Thus the Yamabe equation, with its power function nonlinearity (viewed as an equation
on e(™~2)«/2) goes over to an equation with an exponential nonlinearity in w. On the
level of identities, this reflects the transition on the level of inequalities from the borderline
Sobolev imbedding L2 — L?™/(m=2) to the Moser-Trudinger inequality as m | 2 (see Sec.
3 below). Clearly the same argument describes the behavior of the Paneitz operator P
and Paneitz quantity Q) as we approach the critical dimension, in this case m = 4: starting

with the identity
<P° + mT_‘l Q) et = T 2Quette,
0

where P% = P — (m —4)Q/2, we get

Pow+ Qo = Que', m=4,

since P? annihilates constants, and P = P° in dimension 4. The corresponding event
on the level of inequalities is the transition from the borderline Sobolev imbedding L2 —
L?*™/(m=4) {5 an exponential class inequality as m | 4; such inequalities have been studied
in different settings by Lieb [Lie], Adams [Ad], and Beckner [Bec].

Onofri [On] and Osgood, Phillips, and Sarnak [OPS1-2] showed that the Moser-Tru-
dinger inequality is decisive in the study of the functional determinant of the Laplacian as
a functional on the space of metrics in dimension 2. Branson, Chang, and Yang [BCY]
showed that the exponential class inequality mentioned just above, together with the “con-
ventional” borderline inequality L? — L*, play a similar role in dimension 4. Here the
Paneitz operator, which arises naturally in 4-dimensional determinant computations of
Branson and Orsted [B@3), plays a central role. This is one of several motivations for a
study of higher-order generalizations of Y and P. Graham, Jenne, Mason, and Sparling
[GIMS] have recently made such a study; we collect some of their results here in a form
that will be useful to us.
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Theorem 1.1 [GIMS]. Let n be a positive even integer. Suppose that
(1.6) : m is odd, or n<m.

~ There is a conformally covariant differential operator P, on scalar functions, of conformal
bidegree ((m — n)/2,(m + n)/2), such that:

(2). The leading symbol of P, is that of A™/2. On R™ with its standard metric, P, = A™/2.

(b) P, =P+ B> Qn, where Qn is a local scalar invariant and P3 has the form §Sp—ad

for some natural differential operator S,—; on one-forms; in particular, P? annihilates

constants.

(c) There are universal expressions for Sp—; and Q, (and thus for P,) as polynomials in

(9,9% R, V) with coefficients that are real rational functions of m, regular at all positive

integral m satisfying (1.6). :

(d) Py, is formally self-adjoint.

The theorem does not assert uniqueness of the P, . In fact, it is easy to show nonunique-
- ness if n is a multiple of 4: if C is the Weyl conformal curvature tensor,

1.7 Cljii = Riju+ Vir6'1 — Vil + Vigje — Virgin,

scalar multiples of |C|"/? = (C*/*'C;;1)™/* can be added to P, without disturbing confor-
mal covariance. Less trivial instances of nonuniqueness are also known. In the next section,
- however, we shall show that the evaluation of P, on the sphere S™ with its standard metric
go , or with any conformal multlple of go , is unique.
~ Note that rationality in m is preserved upon changes of basis resulting when the gener-
ators R, p, T are replaced by C,V, J, and vice versa; we shall often use this fact implicitly.
" The operators Y and P fill the requirements set by the theorem for P; and Py, with J
and Q as the corresponding @, and Q. In fact, some elementary invariant theory shows
that P, is uniquely determined to be Y, and Py must have the form P+ a(m)|C|? for some
rational function a(m).

Remark 1.2. There is no formal difference in the above discussion between Riemannian
and pseudo-Riemannian conformal geometry: the formation of monomials (1.1) is the
same, and the finite dimensional representation theory of the structure group Spiny(p, ¢),
P+ ¢ = m, is the same as that of Spin,(m) by the Weyl unitary trick. In particular, the
operators of Theorem 1.1 exist in the pseudo-Riemannian regime, and are given by the
same formal polynomials as in the Riemannian case. :

Although it is not our intention to try to write an explicit formula for Q,, except in low
dimension, its conformal behavior can be described in arbitrary dimension:

Corollary 1.3. If w € C*(M),
(18) /(dev)w = /(dev)o , m even.
If (m,n) is as in (1.6), then

(1.9) (/)= [(@ndv)ew = (m = n) [ w(@ndvlo.
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Proof. The conformal covariance relation for P,, applied to the constant function 1, reads

(1_10) (Pg + n ; nQn) em.;mw = mz—n(Qn)we!’%u.
. . ~ ] A _ “Jo ]

Just as for the cases n = 2,4, we can analytically continue to compute the conformal

"behavior of Q. , which is not explicitly given by (1.10). Since P} = §S,-2d annihilates
. constants, ' ' , ' : o

1) (Bl = 1)+ B(Qn)oe™ = B(Qn)ue™ M, B=(m—n)/2
By Theorem 1.1(c), we can divide by 8 a;nd evaluate at 8 = 0:
(Pm)ow + (@m)o = (Qm)we™,  m even.
Since (dv),, = e™(dv)o |
(112)  ((Pm)ow + (@m)o)(dv)o = (Qmdv),,  m even.

But P,, = §Sm-2d, so Stokes’ Theorem gives (1.8). The infinitesimal form of (1.10) is

(1.13) (d/de)le=0(Qn)ew + 1w(Qn)o = (Pa)ow,

in all dimensions m described by (1.6), except m = n. But we can use analytic continuation,
or take the infinitesimal form of (1.12), to extend (1.13) to dimension m = n. Since
(d/de)|e=0(dv)ew = mw(dv)p , the result is (1.9). O

It is also possible to say something about the terms in @, with the most and least
derivatives. To make this precise, fix m and consider the space I, of local scalar O(m)
invariants A which have homogeneity n in the sense that a uniform scaling § = a?g,
0 < a € R, results in A = a"A. It is easy to see that the monomial (1.1) is in Z,, with

(1.14) - n=02+p)+...+(2+9g).
There is a natural vector space filtration

In,o c In,2 c...C In,n—2 =T,
of I, defined by declaring (1.1) to be in Z,, ; if (1.14) holds and p+ ... + ¢ < N. (Of
course, applications of the curvature identities to a quantity which appears only to be in
I, ,~ may show that that quantity is actually in more elite space I, nv, N' < N.) For

example, the m-dimensional Pfaffian Pff,, is an element of 7, 0. The terms in Q, with
the most derivatives are described by the following.
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Corollary 1.4. If Q, is as in Theorem 1.1, then Qn ~ A™~2/2J modulo T, n—4 .
Proof. Fix m and consider the following conformal variation operator Var, on Iy :

Varg(w, A) = (d/de)|e=0Acw + nwiy, w € C*(M).

An inductive argument [Bral, Sec. 1.b] shows that the target space for Var, i isa spa,ce
J»n of dw-augmented local invariants generated by formal monomials

C((Vay -+ Vo, Rijut) -+ (Vs, +.. Vo, Rotus)(Vey -+ Ve,w)),s

. where C is as described after (1.1), r > 0, and 2+p)+...4(2+4+¢g)+r=n. Herewis to
‘be viewed as an indeterminate element of C*°(M). Just as for the unaugmented invariants
above, the number p + ¢ + r of explicit derivatives defines a filtration

Jn,? - .711,4 c...C Jn,n =Jn,

and it is easily shown that
(1.15) * Vara(-,In,N) C Tn,N42.

(Again, see [Bral, Sec. 1.b].) Elementary invariant theory [BG@2, Sec. 1] shows that
In/ZIn n—4 and Jn/Tn n-2 are one dimensional, with generators given by the equivalence
classes of A(™=?/2] and A™/?w respectively. In particular, there is a constant a (which
may a priori depend on m and n) for which

(1.16) " ' Qn—alA 2] € Fpns.

The conformal covariance relation for ¥ and its consequence (1.5) show that
(1.17) Var,(w, A""2/2]) ~ A®2, modulo TIn,n-2-

By (1.13),

Varp(w,@Qr) = Pow ~ A", modulo Tn,n-2

in all dxmens:ons m satisfying (1 6). This and (1.17) identify the constant a in (1.16) as 1,
completing the proof. ]

We can also write down the term in [ Q,dv with the most derivatives. Note that ezact
divergences, i.e. local scalar invariants in the range of the formal adjoint § of the exterior
derivative d, integrate to zero, and that it is precisely the exact divergences that integrate
to zero universally.
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Corollary 1.5. If Q, is as in Theorem 1.1, then Q, ~ A("~2/2] 4 mzn|g(n-4/2]}2
modulo I n-6 + R(6).

Proof. Invariant theory and Corollary 1.4 show that Q, ~ AP=2/2] 4 p|V(n-9/272,
“where b is a constant depending on m and n. But integrating by parts, )

(d/de)lemo / (VB9 72 dy),., = 2 / W((AP-D/2] 4 B)dv)o

where B € I, n—4. That b = (m — n)/2 now follows from (1.15) and Corollary 1.3. O

Still more information about @, can be gleaned from (1.10); and this information is
crucial to an understanding of how a study of the functional determinant leads to the
_operators P, . The problem that arises is to compute a conformal primitive, or integral,
of a level m local invariant U; this is a functional quantity P on the conformal class [go)
for which

(1.18) ' (d/de)lemoPrten = j PWdv)y  all i,y € C=(M)

As usual, the convention is that a quantity subscripted with w is evaluated in the metric
go. Conformal primitives, when they exist, are unique up to constant functionals on
“[90], since they solve first-order initial value problems in ¢ when restricted to the curves
gew for a fixed w. @, enters because by Corollary 1.4, it is the “leading term” of any
such U up to a constant factor. (Of course, A(™=2)/2J could also be used as the leading
term, but the conformal behavior of @, is much nicer.) In practice, the leading term is
more difficult to estimate than “trailing terms”; an instance is the problem from [BCY]
in dimension 4 mentloned above: the leading term corresponds to an exponential class
imbedding L2 — el, while the (sole) trailing term is estimated by the ordinary borderline
imbedding L? — L. When we try to solve (1.18) with U = @, , all is straightforward for
m odd or m > n: by (1.9), we may take P to be ([ Qndv)/(m —n). When m = n, we get
a solution P by analytic continuation: after division by £ in (1.11), we have

(1.19) {20 (572) + @aae ol = @nroe? (@

In the proof of Corollary 1.3, we just evaluated this at m = n; to get higher-order (in )

information, we rewrite (1.19) as
-1 Bv _1
)+ - e (S572)

+ (¥ - 1)(cz..)o}(dv)o .

eﬂ
(@ndv)o — (Qndv)o = {(P::)o (
(1.20)

Upon integration, we lose the first term on the right by Stokes’ Theorem. Dividing (1.20)
by 28 = m — n, we have

/ (Qndv)u —(Q,.dv)o _ / { (eﬂc;ﬂ. 1 ) P, (eﬁ«;[.; 1) N (em _ )(Qn)o} (@,
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Evaluating at m = n, we get

/ (Q,.dv)‘., - (Qndv)o

“znl / w(Pp)ow(dv)o + / w(Qn)o(dv)o -

m=n

We have not defined the class of meromorphic-in-m local invariants appropnate to making
~ this precise, but this will not be necessary. What we shall need is the followmg, the proof
of which is immediate from (1.12) and the discussion above:

Corollary 1.6. If m is odd or n < m, the functional

Pimn) i @+ (Plm,m))w i= (m —n)~? / {(Qndv)w — (@ndv)o}

is a conformal primitive for Q, in the sense of (1.18), and vanishes at w = 0. If m is even,
the functional

(Pomm)o =} [[@(Pm)o)do)o + [ w(@mdo)
= % /w{(dev)w + (dev)o}

is a conformal primitive for Q,, which vanishes at w = 0. O
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2. CONFORMAL COVARIANCE ON THE SPHERE, AND
THE SPHERICAL PRINCIPAL SERIES OF SOp(m + 1,1)

Beckner [Bec] has pointed out that the meaning of Lieb’s best constant for the Hardy-
~ Littlewood-Sobolev inequality in R™ [Lle] is more apparent when this inequality is trans-
ferred to the setting of the sphere S™ via stereographic projection. The present author
pointed out that these constants, together with other constants which arise when the in-
equalities are written in terms of spherical harmomcs, are actually data from the theory of
spherical principal series representations of the semisimple Lie group G = SOp(m + 1,1)
(see [Bec, Secs. 2,4]). Here the word “spherical” just refers to the fact that these represen-
* tations live in spaces of ordinary functions, as opposed to vector bundle sections. (Properly
understood they live in spaces of line bundle sections, but it is not necessary to view them
in this light, and we intend to offer a totally elementary workout of the theory.)

The starting point is the realization of G as (the identity component of) the conformal
transformation group of the sphere with its standard metric g. In general, a confor-
mal transformation on a Riemannian manifold (M,g) is a diffeomorphism kh on M with
h-g = Q%g, where 0 < 2 € C>®(M). Here h- is the natural pushout of tensors by
a diffeomorphism; in particular, k- = (h™!)* on purely covariant tensors like g. The
group of conformal transformations will be called ctran(M, g). The map h +— Q; carrying
ctran(M, g) to C°(M)4 is a multiplier, or cocycle:

(2.1) Qniohy, = Dy (- Qh,).

The corresponding infinitesimal notion is that of conformal vector field. Let D'(M) be
the C*°(M)-module of smooth vector fields, and let £ denote the Lie derivative. X €
D'(M) is conformal if Lxg = 2wx g for some wx € C®(M); we denote the Lie algebra of
conformal vector fields by cvf(M, g). The map X — wx carrying cvf(M,g) to C°(M) is
an infinitesimal cocycle:

(22) w[xl X3) = Xlwx2 - szxl .
The connection between the finite and infinitesimal notion is made by integrating conformal
vector fields to local one-parameter groups of local conformal transformations. The relation

to conformal change of metric as treated in the last section is as follows: a conformal
transformation h can be thought of as a composition

(23) h:(M,g) = (M,Q%g) = (M, g)

of an isometry and a conformal change of metric. Thus a general conformal covariant D
of bidegree (a, b) will have the behavior

D(Q4h - ¢) = k- (DS),

@4) D(Lx +awx)p = (Lx + box)Dy

under the transformations above.
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On the sphere, all conformal vector fields integrate globally. Indeed, the conformal
action of G on S™ resolves the singularities in the action of the conformal group on
~R™: under stereographic projection, the action is transferred to S™, where the singular
generator, inversion in the unit sphere, becomes reflection across an equator. To see
the action concretely, we realize-S™ as the unit sphere S* in R™*!, with homogeneous
coordinate y = (yo - .. ,ym), and also as S* x {1} C R™*2; the “extra” component will
be called ym41. If A € G, we can take the linear action of A on (y,1) and then divide
by (A(y,1))m+1 >0 to get a new element A -y of S x {1}. This action deﬁnes an
isomorphism

t:GS ctran(S"',g)

From the Lie-theoretic viewpoint, G is the fundamental object, and the space S™ arises
85 G/ Prin , where Py;y is a minimal parabolic subgroup. As one does generally in semisim-
‘ple theory, take a Cartan decompos1t10n g = ¢+ 5 on the Lie algebra level, choose a
'maximal abelian Lie algebra g in s, and fix a positive open Weyl chamber a} in a*. Let
G = KAN be the corresponding Iwasawa decomposition, and let M be the centralizer

{m € K | (Adm)H = H, all H € a}. The minimal parabolic subgroup corresponding
to our choices is P = MAN. The Iwasawa decomposition gives an identification of the
homogeneous spaces G/M AN and K/M.

In our case, and in the notation above, K is the copy of SO(m 4 1) that acts in the
(vo --.. ,y,,.) variables, and M is the copy of SO(m) that acts in the (y; ... »Ym ) variables.
Here and in the rest of this section, we assume that m > 2. The smooth action of G
infinitesimalizes to a Lie algebra isomorphism "

t:g S evi(S™,9).

‘In homogeneous coordinates on R™%2, fei=1fori=0,...,m and epny1 = —1, ¢(g) is
spanned by the L;; = £,y;0; — ¢;y;0; for 0 < i,j < m + 1, and the commutation relations
are '

(2.5) (i Lir] = €5 Lies -
[Lij L) =0 if 4,j,k,1 are distinct.

¢(8) is spanned by the L;; with 0 < i,j < m. By (2.5), a is one-dimensional; we make the
choice a = RHy, where «(Hop) = Lo,m+1. As a result of this choice, ¢(m) = span{L;; | 1 <
i,j £ m}. We also need to pick a positive Weyl chamber a3 ; we do this by declaring the
dual element a € a*, i.e. the one with a(Ho) = 1, to be positive. To see the (g, a) root
structure, note that L; m41 + Loi (resp. L; m+1 — Lo;i) is a +1 (resp. —1) eigenvector of
[Lo,m+1,-] for 1 <i £ m. Thus there are two roots, +a, with root spaces

Gta = L_l(spa.n{L.-,mH + Lo,‘ | 1< < m})
The Iwasawa n is the sum of the positive root spaces, here g, ; its image n = # under the

Cartan involution 6 is just g—o. The multiplicity of a is dimg, = m, so the important
quantity p, half the sum of the positive (g, a) roots, is ma/2.
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A remark on normalizations is in order. From the Lie-theoretic point of view, natural

Riemannian metrics on homogeneous spaces of G, when they exist, are determined by the
Kllhng form BG(X Y) =~ tr(adX ad Y) The normalization

b= b“(p.q)" u(p,q)/ 2(p+q 2)

~ of Killing forms in the so(p, q) series has several convenient effects: (a) b(X,Y) = 7
—trf(X){(Y') for £ the defining representation of so(p,q); (b) for any standard (block
' sta.bxhzatlon) inclusion so(p',¢') > s0(p, g), the restricted and intrinsic forms b agree on the
smaller algebra. If g =so(m+1,1) as above, we also get: (c) Ja] =1 in the correspondmg
inner product on g*; (d) the manifold K/M with the normalized Killing form metric is
the standard m-sphere, which is distinguished by its scalar curvature m(m — 1). Indeed,
by [Bes, 7.39], the scalar curvature of K/M in the By metric is m/2. Our normalization
- divides the metric by 2(m —1), and thus multiplies the scalar curvature by 2(m —1), giving
m(m — 1) as desired.

At this point, we are ready to set up the spherical principal series representations, at first
in elementary differential geometric terms. It will be convenient to have at our disposal,
in addition to C°°(S™), the smaller space £(S™) of functions which are finite sums of

_spherical harmonics on S™. Like C°°(S™) functions, £(S™) is dense in any Sobolev space,
and so its use will not cause problems later, when we close in Sobolev norms determined
by the representation theory. In representation theoretic terms, £(S™) is the space of

- K-finite vectors.

By the cocycle conditions (2.1, 2.2), the maps

wh) =0 ¥ h, U (X)=X+@+2)wx
for v € C, are homomorphisms
(2:6) ctran(S™,g) 5 Aut C®(S™),  cvi(S™,9) B End C=(M),

in the group and Lie algebra senses respectively.

Remark 2.1. The extra summand of m/2 above is the customary “p-shift”: it follows
from the last paragraph that an isometric and positivity preserving identification of a* with
R identifies p with m/2. We put in the p-shift for ease of contact with the Lie theoretic
literature, but its use is just a convention.

Note that since +(K) and ¢(¢) consist of isometric transformations and vector fields
respectively,

2.7) Q=1 he(K) wx =0, X € #);

thus u,|x and U, | are independent of v. We shall now show that the infinitesimal maps
U,(X) stabilize £(S™).




THE FUNCTIONAL DETERMINANT 19

Lemma 2.2. Let E; be the space of ji2 -order spherical harmomcs on S™. (K) and «(%)
stabilize each Ej, and

wva,- y XE; CEj1 ® Ej41, X € i(s),

where by convention, E_; = 0. In particular, U, is a Lie algebra bomomorplusm from
cvi(S™,g) to End £(S™).

Proof. «(K) is the rotation group of S™, and thus stabilizes each E;. The assertions
about s are immediate once we note that in homogeneous coordmates (o --- y¥ym) On

S™ C R™, Lim41 = 9, ; and that WL; m41 18 the homogeneous coordinate functxon Vi,
for 0 < i < m. ]

Of course, the treatment just aboveis a very special case of a standard setup in semisim-
ple Lie theory. In the general semisimple setting, and in the notation above, we can view

C>(K /M) as the space of right-M-fixed vectors in C=(K),
C®(K/M) =~k {p € C=(K) | ¢(km) = p(k), all k € K,m € M}. |

Let P = Pnin = MAN. When we switch to the G/P realization of K /M, we can choose,
the effect of A in the corresponding right equivariance rule: ‘

C*®(G/P) ~x C*(IndS1® 1 ®1) ‘
= {¢ € C®(G) | Y(zman) = a=**y(z), all z € G,m € M,a € A,n € N}.

Here, for A € a*, we define a* as ¢*(1°8%) using the fact that the exponential map is a
diffeomorphism from a to A. The notation Ind€ 1® A ® 1 indicates that we induce, from P
to G, the representation that acts trivially on M and N, and by a— a~>"?on A. Gand g
act on these spaces of equivariant functions via left multiplication to give homomorphisms

7a: G = Aut C®(G/P), II):g — End C*(G/P),

the second of which is the infinitesimal form of the first. The point is that when everything
is unraveled, the homomorphisms u, of (2.6) are exactly the 7,4, and similarly with U, II
in place of u, n. To be more precise, if we use the letter j for the identification G/P — S™,
then

Tya(Z)(foi) = jou,(¢(z))f, z€G, feC®(S™). .

We shall now do our work entirely in the elementary differential geometric setting, and
suppress the identifications ¢ and j in the notation.

We shall need some results that imply the uniqueness of intertwining operators; these
are closely related to results on irreducibility, which we shall also state and prove. The
. driving result is the following. Let u be the v-independent K-representation u,.
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Lemma 2.3. (Cocycle irreducibility.) For all j € N,

(2.7) ] ProjEj*1 w(s)E_,- = E;41,

where w(s) := {wx | X €s}. As a result, the orbit O(f) of any nonzero f € E;j, for any

- j € N, under the joint action of u(K) and w(s), is £(S™). In particular, £(S™) has no
nontrivial invariant subspace under this joint action.

Proof. By the proof of Lemma 2.2, if {X ;};’;o is any orthonormal basis of s,
@) YW=l
=0

(This sum is independent of the choice of orthonormal basis, and is the sum of squares of
the homogeneous coordinate functions for the choice made above.) For each j € N, put

m

£ _ o ;

t¥ =) Projg, wx, Projg,,, wx|E; -
1=0

The sum on the right is a K-endomorphism of E;, and so is a scalar by Schur’s Lemma.
" By (2.8), t;-* +t; = 1. By the trace identity trab = trba,

(dimEj)tj = (dimEj+1)t;+l , J€EN
This allows us to compute the t;-h inductively: since t7 = 1 and

dim E; G+)m+2-1) °

we get ) ]
I T m+2j-1° I T m+2j-1°

In particular, all of these numbers except t; are nonzero. Thus Projg,, w(s)E; is nonzero
unless j = 0 and the minus sign is chosen. But X ® ¢ = Projg,,, wx¢ is an SO(m) map
$® E; — Ej4,, so Schur’s Lemma gives (2.7).

For the statements about O(f), first note that since SO(m) is transitive on E;, O(f) D
E;. By (2.7), O(f) D Ej-1 ® E; ® Ej4,; by induction O(f) = &(S™). The E; are
SO(m)-invariant, so any invariant subspace is of the form V = @ ;e pE; for some subset B

of the natural numbers N. If V # 0, it has a nonzero f in some E; as above, forcing it to
be £(S™). O

The results we need really amount to irreducibility under some of the (u(K),U,(s)).
The above lemma replaces a generic irreducibility theorem of Bruhat [Bru], which implies
irreducibility off a set of measure 0 in the af parameter. In our setting, all reducibility
questions are settled by the cocycle w, since in a certain sense all the representations U,
can be written in terms of w. We make this precise in the following.
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Lemma 2.4. If A is the Laplacian on S™, then

[A, u(wx)) = 2Uo(X), Xe€s.

Proof. We need only prove this for the basis elements X = Lim41, 0 < i £ m. By
symmetry (K-invariance and irreducibility of s under K ), we need only treat Z = Lo m+1 -
For this, introduce the azimuthal angular coordinate p, i.e. that mth

cosp=yp=wgzg.

Since Z = (sin p)d, , we have
dyo = -2,

where b is the metric identification TS™ — T*S™. But»

@9 (8w = Ay — 2(du)d = Ayo + 2(Z)d = Ayo +27,
where ¢ is interiqr multiplicgtion‘. Since yo EvEl and |

(2.10) Alg; = ki = j(m — 1+ ),

Ayo = myo, so [A.,‘p(yo)]'= 2Z + myo = 2U(Z), as desired. O
Corollary 2.5. If X € g,

. m+2j +2v .
1) Projr, , Uu(X)|g, = ———3—— Projg,,, x5, ,
11 .
. -m—-25+2+2v . ’
Projg,_, Uu(X)lE, = = Projg,_, wx|E; -

Ifm+2j+2v # 0, then Projg,  , Uy(S)E; = Ejy1. Fm+2j —2—2v # 0, then
' ].:'I‘OjEj_1 Uy(s)Ej = Ej..l .

Proof. If X € ¢, all terms in (2.11) vanish, so we may assume X € s. Then (2.11) follows
from Lemmas 2.3 and 2.4, together with the fact that x4 —kj=m+2;. O

Corollary 2.6. (Irreducibility) If +v ¢ m/2 + N, the assertions of Lemma 2.3 hold with
(u(K),U,(s)) in place of (u(K),w(s)).

Proof. The first statement is immediate from Corollary 2.5, once we note that the 0 coef-
ficient there when v = (m — 2)/2 describes a map from Ej to E_; . O

The u /=3, for A € R are called the unitary principal series, and the u, forv € R, |v| <
m]2 are the complementary series. In the course of computing the intertwining operators
for the principal series, we shall be able to explain how this terminology came about
(Remark 2.9 below). More importantly, we shall make contact with the S™ realizations
of the conformally covariant operators P,, and with Lieb’s best constant for the Hardy-
Littlewood-Sobolev inequality.
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. Definition 2.7. A Hnear operator T on £(S™) is intertwining of bidegree (v,0) € C? if
- T commutes with u(K), and TU,(X) = U,(X)T for all X € s.

Intertwining in this (g, K')-module sense is equivalent to intertwining in an appropriately
formulated group sense; for us, this will be easiest to see from the concrete form of the
intertwinors. Note that a conformally covariant differential operator in the sense of (1.2,
~ 1.3), when evaluated in the standard S™, is intertwining of bidegree (a— 2,b—2). Schur’s
Lemma, together with the fact that the E; are inequivalent irreducible K-modules, shows
~that each intertwinor T is diagonalized by. the decomposition £(S™) = @E;. That is, we
can identify T’ with a list of eigenvalues u; € C, T|g; = p;. Corollary 2.5 shows that we
- can-construct a T of bidegree (o, v) by ﬁndmg a list {u;} satxsfymg

(m+2j + 2v)pis1 = (m+ 25 + 20)u;,

2.12 . .
(2.12) (—m—-24+2+4+20)pj—1 =(—-m—2j +2 4+ 20)p;.

Apart from trivialities, there is no such list unless the consistency constraint ¢ = —v is
satisfied. When —v ¢ 2 + N, however, there is a unique such list (up to a constant factor)
giving an intertwinor of bidegree (—v,v), that being

, : , NZ+5+v)
2.13 V=i~ 2
@33) ERCETE)

If v € § + N, this formula is to be interpreted in the sense of analytic continuation; that
is, py = 0if v € 3 +j + N. By (2.10),

g DBtv+3)
J I‘(B—v+%)E’
£}

where

@19 p=yfas (752)"
Note that

(2.15) Blg, =j+ 2.

We can now state:

Theorem 2.8,
(a) Aside from multiples of the identity, all intertwinors have bidegree (—v,v) for some
veC. H-v¢ 2 +N, the operator

A2y :=T(B+v+3)/T(B-v+3)
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is the unique intertwinor of bidegree (—v,v), up to a constant factor. If v ¢ + N the
‘operator
« F(%—V)F(B+V+ D
A2v = r(m n 1
THV)II(B-v+3)

is the umque such intertwinor, up to a constant factor. -

(b)) E-ve 2 4N, then A,, is a finite rank operator on £(S™). For —v € R\(Z +N), 42,

extends'to a bounded operator of loss 2v between Sobolev classes; that is Az, : LE(S™) —
k_zy(S"‘) for all k € R. Denoting the space of operators with loss | by ¥;(S™), we have

that Ay, lies in the coset AY + \Ilg.,_l(S"') € W2, (S™)/¥2p-1(S™). :

(c) For —v € R\ ( + N), Az, is G intertwining:

(2.16) Asu_y(h) = uy(h)Az, on C®(S™) forall heG.

The same statement holds for A;, if v € R \ (% +N). , A

(d) For —v € R\ (F +N), A3, is symmetric: if p; is in the Sobolev class L} (S™), i = 1,2,
with ky + k2 = 2v, then (¢1,A2,92) = (A2,01,p2), wWhere (-,-) is the extension of the
(sesquilinear) L? inner product to a pairing of C* functions with distributions. The same
is true of Az, if v € R\ (2 +N).

() fv € R and |v| < m/2 then Ay, is a positive operator: if ¢ € L}(S™), then
(A2v, ) 2 0, with equality if and only if ¢ = 0.

- (f) If (m,n) and P, are as in Theorem 1.1, then on S™ with its standard metric go ,

n/2 ) m+tn
(Pa)o = 4n = [[{(B+a-})B-a+})}, (Qn)0=fl(‘£nf2n— 12)
. = .2

In particular, (Qm)o = I'(m). As a result, if w € C*°(S™), then in the metric g, = e2¥ g ,‘.
(Pa)w = €= 29 A p(e™57).

Ifn#m,
(M) Bw

Csu | T efv -1
Qe = agary 4 5
where 8 = (m —vn)/2; and

(Qmdv)y = (Amw + (Q@m )o)(dv)o -

Proof. (a) is immediate from (2.15) and the discussion above. Note that A,, and A;, agree
* (are nonzero constant multiples of one another) where both are defined. If —v € 2 + N,
- the factor I'(B + v + 3)/T(2 + v) in 4;, annihilates E; for j > —v - 241 thls proves
the finite rank assertion. By (2.10), any operator T with T|g; = A; ~ const -j%asj — o0

extends to a bounded operator L2 — L%_, for all k € R. But by Stirling’s formula,
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pY ~ 5+ ¢j%*~! for some constant c; this proves the rest of (b). (c) is proved formally,
on a dense set of h € G, by computing that

(d/de){uy(h-c)Azyu_s(he)} =0

as a consequence of the g intertwining relation, where A, is a local one-parameter group
_ in G. By part (b), this calculation makes sense in a space of bounded operators between
7 appropnate Sobolev spaces and gives (2.16) as an operator identity; by the Sobolev Lemma,
(2.16) is true in the elementary sense. The same argument works for the finite rank
_ operators in part (b). (d) is true formally because the eigenvalues of A3, and A, are real;
the orders of the Sobolev spaces involved are computed from (b). (e) is immediate from
the eigenvalue list (2.13).

For (f), first note that by (2.4) and Remark 2.1, (P,. )o must be intertwining of bidegree
(-n/2,n/2) on (8™, go). Indeed, by universality, P is K intertwining; by the infinitesimal
conformal covariance relation applied to the functions wx , X € cvf(S™,go), Pn must be
g intertwining. Since A, is the only intertwinor of bidegree (—n/2,n/2) with the correct
leading symbol (that of ‘A™/?), it follows that (P,)o = An. The formula for (P,)o = An
now follows from part (a), and the formula for (P,), follows from conformal covariance.
The formulas for Q) are derived by applying those for P, to the constant function 1, except
when n = m. The formula for Q,, follows from (1.12). O

Remark 2.9. It is easily seen that the u /=7, for A € R are unitary in the L? inner
product; these representations make up the unitary principal series mentioned before,
but will not be of direct interest to us. The inner product (:,Az,-) is invariant for u_,
whenever —v € R\ (§ + N), and is positive definite if and only if |v| < m/2. In fact,
Theorem 2.8 shows that if v € (—m/2,m/2), the norm corresponding to the inner product
(-, Az,+) defines the Sobolev class L2. The (L2(S™),u-,) for v € (—m/2,m/2) are the

complementary series mentioned above; they are directly involved in what follows.
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3. CONFORMAL COVARIANCE ON R™, AND THE INEQUALITIES OF LIEB AND BECKNER

In the last section, we established an intertwining property, equivalent to covariance
under multiplication of the metric by some special conformal factors, for the operators

Az € Agm + ¥2,1(S™), -—véFT+N,

where ¥4(S™) is the space of operators of loss d described in Theorem 2.8(b). The op-
‘erators P, of Theorem 1.1, when evaluated on S™, are special cases. In this section, we
shall use stereographic projection to view the intertwinors Az, on R™ with its standard
metric. Not surprisingly, they turn out to be exactly the operators Afm . For the comple-
mentary series range of v, viz. |v| < m/ 2, these operators are given by integral kernels; in
fact exactly those integral kernels estimated by the Lieb inequalities. This circumstance
allowed Beckner to give a simple expression for these inequalities on S™, using facts-about
sphenca.l harmonics and Gegenbauer polynomials. Here we shall glve an explanation that
does not depend on these technical devices, but only on group invariance.

For ease of comparison, we follow Beckner’s notation for the time being. Accordingly,
let d¢ be the normalized measure on the standard sphere, so.that fsm d€ = 1. We view
S™ as the unit sphere in a copy of R™*! with coordinate function £ = (u,s) € R™ x R.
Our convention for the stereographic projection will be as follows: we identify R™, whose
coordinate will be called z, with the complement S™ \ (0,—1) of the south pole via

u v 2z s_l-r2
148’ T 142 T 1412

:=cosp, a:=|ul=sinp.

Here r = |z|, and p is the azimuthal angle mentioned in the proof of Lemma 2.4. The
standard metrics are related by

1 m=¢2 m Q—_-l 2 = .
(3.1) 9B gsm , 2(1+7%) T+s

If d¢' is the usual, unnormalized Riemannian measure on S™, (3.1) implies that
| L2\ ™ 2\ ™
dx: (1';7" ) d€I= (1';7' ) vde’

2™ (4m)RI(D)
r(zf) T(m)

where

Um =

is the volume of (S™, d¢').

The stereographic projection, like the intertwining principle of the last section, is a
special case of a general setup in semisimple theory. Let N = exp#, and let o be. the
identity coset in G/MAN. There is a natural diffeomorphic injection N — G/MAN,
given by fi = #i - 0. In our situation, N is naturally identified with R™, and as shown in
the last section, G/M AN is naturally S™. We omit the details of this approach, noting



26 . THOMAS P. BRANSON

only its potential usefulness in future applications to, for example, CR geometry (replacing
SOo(m +1,1) by SU(m + 1,1)).

One of the convenient aspects of having both the S m and R™ pictures is that conformal
covariance of a pseudo-differential operator T is easy to check, given some explicit formula
for T. The full conformal group O(m+ 1,1) of the sphere, when realized in the R™ picture,
is generated by the group O(m) of origin-fixing xsometnes, the translation group R™, the
dilations é. : z +— cz for 0 < ¢ € R, and the inversion in the unit sphere, Q : z — z/r?.
The inversion is singular at z = 0; this is the reason why one must compactify to get an
“honest” group action. In the S™ picture, Q : (u 8) — (u,—s) is an 1sometry This gives

“rise to the following useful principle: ;

‘Proposition 3.1. Suppose S (resp. T') is a linear transformation on C>=(S™) (resp.
C>(R™), with
(3-2) : T =& Su(2*)

for some a,b € C, where ® is as in (3.1). If S is isometry invariant on S™, T is isometry
invariant on R™, and the dilational behavior of T is

(3.3) T f) = - (TS)
for all ¢ > 0 and f € C°°(R™), then S is intertwining of bidegree (a — m/2,b — m/2) on
S™, and
(3.9) T(r=*Q-f) =r"Q - (Tf)
for all f € C=(R™).
The proof is based on the following observation:

Lemma 3.2. Let g and § = $?g be conformally related metrics on a manifold M, 0 <
® € C°(M). If h € ctran(M,g), h-g = Q2g, then h € ctran(M,§) and h-§ = Zig
with @= = (h- ®)Q. Fix h € ctran(M,g) = ctran(M, §); suppose that S is a linear
transformation on C*°(M) with the intertwining property

Sk -¢) = Mh-(Sp),  allp € C®(M)
for some a,b € C; and let T = ®~%Syu(®°). Then T has the intertwining property

T(E4h-f) =E3h-(Tf),  all f € C2(M),

Proof. This is immediate from the identities h- (1) = (h-@)(h-¢) for all , 9 € C=(M),
and h-®°=(h- &) forall0< € C*(M)andaeC O

Proof of Proposition §.1. We apply the lemma in the case where g = gsm and § = ggm .
Because of the singularity of the inversion @ on R™, the manifold M can be taken to be
S™ minus at most two points, or conformally equivalently, R™ minus at most one point,
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_the puncture sets depending on the conforma.l transformation considered. ‘The proposition
follows from the fact that the conformal transformations are generated by the isometries
‘on R™ and S™, together with the dilations on R™, once we note that (3.3) is the conformal

covariance relatxon for dilations (Z5, = c), and (3.4) is the conformal covariance relation
forQ(Eg=r"2). O

Consider now the convolution operators r~(m=2")x on R™ for v € (0,m/2}; in detail,

T—('m—2”)* — )z — —(m—2y).z'
(= f)) = [ @l -y

r~(m=2¥) can be naturally viewed as a bounded operator from LP(R™) to its dual LY(R™),
where p = 2m/(m + 2v) and ¢ = 2m/(m — 2v). We would also like to view r—(m—2¥)4 as
an operator between L? Sobolev spaces, and make contact with the theory of the principal
_series. The phxlosophy is that up to a constant factor, r—(™=2")« is an inverse for A¥; we
shall not develop this’ thinking precisely, but rather move to the compact setting of the
* sphere, where all is straightforward. The numbers p,g, v are related by the commutative
diagram (3.5), in which the maps ¢ are b,or__derlme Sobolev imbeddings, and the map on
 the right is bounded as a consequence of the boundedness of the other three maps. The
norms on all spaces are conformally invariant; on the top line, in the representation u_, ,
and on the bottom line, in the representation u, . For the L? Sobolev spaces, this is a
consequence of Remark 2.9; for LP and LY, it follows upon a change of variable once we
notice that k- df = Qp*d¢ for h € ctran(S™, g).

Li(s™) —— L(S™)
a8 T Tacn
L2,(S™) «—— L*(S™)
Using hard analytic symmetrization arguments, Lieb showed that:

Theorem 3.3 [Lie]. If v € (0,m/2],

—(m-2v)
ol * £, 9)|
cee@m)  |Ifllpllls

is attained exactly at
(3.6) £ =lg] = [ER/***h - @=tm/20)),

where h is a conformal tra.nsformation on (R"‘, g) as above (i.e, h may have a point sin-
gularity), and h - § = Z3g. Here PLP(R"‘) is the projective space on LP(R™), [:] is the
projective equivalence class, and (-,) is the pairing of LY(R™,dz) and LP(R™,dz). O

In particular, the maximum is attained at

f=g=(1+rt) ),
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In the Q,= notation of Lemma 3.2, again taking ¢ = gsm , § = gam , we can rewrite (3.6)
as

ey A=E=M@/yme.
Consider the correspondences
' | - f &), o =0m/2vy L9, _ gmiz-vy,
between measurable functions f,k on R™ and ¢, & onVS"'. Since dz = d™d¢' = vmé"'df,
I fllze @m a2y = vELPllll Lo (s ae) »

[ @@ =vn [ s@oe)de
E™ sm

To transfer Lieb’s inequality, we need to write the operator r—(m=2v)4 in the spherical
setting. Now the distance between £,7 € S™ in the ambient R™*1 is

=) = {8()@(y)} "z - yl?,

where £ corresponds to z and 5 to y under the stereographic projection. To make contact
with Lemma 3.2, let T = r—(™~2)4; then -

(TH() = (T@ ™ ¢))n)
=vm [ 8O (EN@EOB) I € -l ae)mdg

= om(n)" " [ p(e)le - nlm g

i = 8(n) "2 (Sp)(n).

T and S are manifestly isometry invariant on R™ and S™ respectively. By translation
invariance, the dilational behavior of T can be detected at a single point:

(TG 1O = [ feaem e = [ gt emdy = T )(0)

so T(8; - f) = ¢**6. - (Tf). Thus by Proposition 3.1, S is intertwining of bidegree (v, —v).
By the uniqueness result Theorem 2.8(a), we must have
(2 +v)[(B-v+3)

S=bA_p, =b
T2 —)D(B+v+1)

for some nonzero constant b. In fact, since S and /i..g., are both nonnegative, b > 0.
Putting all this together, we get

|(fi—2u% d’)(sm,ds)‘ = p-1y2v/m |("—(m_2") * f, g)(mm ,4,)'

lellLs sy ll¥ll e (sm) ™ N fllzs e dzyllgllLe @ dz)

where f ) pand g ) ¥ as above. Thus we can conclude:
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Theorem 3.4 [Bec]. If v € (0,m/2],

I(A—2u¢,¢)(sm ag)l
max
PL? (S™,d6) [l Lr(sm, de) ¥l Le (s, )

is attained exactly for
[l =[¥] = [97/**"],  hectran(S™,g). O

In particular, one of the. extremal functions is 1, so the maximum value is 1. The
endpoint v = 0, missing in 'Lieb’s theorem, can be restored here: for v=0,p=2and Az
is the identity, so the functional is maximized whenever [p] = [¢]. This is a qualitative
difference from the situation for ¥ € (0,m/2], where there is a finite-parameter set of
minimizers.

It has turned out that an inequality dual to Theorem 3.4, as well as a generalized Moser-
. Trudinger inequality obtained by taking the dual of an endpoint derivative of Theorem 3.4,
are crucial to the éstimation of functional determinants of natural differential operators on
52 and S* [On, OPS1-2, BO3, BCY] The above inequalities were derived in detail to
show the power of the present group-invariance machinery, which replaces Beckner’s use
of technical devices like Gegenbauer polynomials and the Funk-Hecke formula. For the
following inequalities, we refer to Beckner's arguments deriving them from Theorem 3.4.
The geometric interpretations included in our statements of Corollanes 3.6 and 3.8 below
are partially indicated in [Bec].

Theorem 3.5. (The Sobolev imbedding L2 «— L2m/(m=2v) [Bec] ) If v € [0,m/2), with
notation as above,
|(A2,,n ’\)(sm d()l
2L (5m,d6) (IRl za(sm,dg) I ze(smde)

is attained exactly for

Kl=A=[Q7*"], hectran(S™,g). O
Corollary 3.6.
(a) If v < m/2 is a positive integer and n = 2v,

( m-—n

Il Zamrm-mrsm e < NED) _-_-:[;n)(A"K" K)L2(sm,de) = (B(Qn)o) ™ ((Pn)ok, £)L2(5m ae)

with equality if and only if [«] = [Q5), h € ctran(S™, g), where 8 = (m — n)/2.
(b) If (m,n) is as in part (a),

1(@n )l mrn(sm (ag).)
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is minimized exactly when [e“] = [], h € ctran(S™, g). Here (df). = (dv)w/vm , where
(dv),, is the Riemannian measure of the metric e2“g.

Proof of Corollary 3.6. The transition from Theorem 3.5 to part (a) is made via Theorem
2.8. Part (b) can then be proved by an argument of Paul Yang. Let ¢ = 8(Qn)o, ¢ = ~
“m/B=2m[/(m—n), f =e*, and T = (P?); then

AR < [ FT+afdE < 1P o

o
9/(9-2)

7 by Holder s mequal:ty Here I- ||,, is the norm in L’(S"‘ d{) Since || f||2 = ||/2[l¢/2 » this
~ is the desired result. O

Corollary 3.6 gives an interpretation of the Sobolev imbedding L? 22 = L2m/(m=n) in
" terms of local invariants which is similar to the interpretation of the Yamabe functional in
‘terms of the total scalar curvature.

Theorem 3.7. (The 1mbedd1ng L%, — e [Bec].) Let @ = [, wdf be the mean value
of w e C*°(S™). Then

7 : 7 . m u;& . m 7

(3.8) 108/m e™—¥de < W(me,w)m(smae) )
with equality if and only if
(3.9) [e¥] = [Q], h € ctran(S™,g). O

Corollary 3.8.

(3.10) (Qm)o log / emedg < 7 j A(QmdE)w + (Qmdb)o),

with equality if and only if (3.9) holds. Under the volume-preservation restriction
fsﬂ" (dE)U = 1’ )

(311) 0<% [ wl(@nde + (@mdehe),

with equality if and only if ¥ = Q, for some h € ctran(S™, g).

Note that the invariance of the right side of (3.8) under scaling (w — w + const) follows
from the fact that P,, is formally self adjoint and annihilates constants.

Proof of Corollary 3.8. We use (1.12) to write (3.8) in the form

(@no (t0g [ emde=mo) s 2{ [ w(Qndvude - @mld)
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with equa.hty if and only if (3.9) holds. This is equxva.lent to
@ndtog [ et < T [ wi(@nde)u + @niele),

with equality if and only if (3.9) holds. Since fg.(d€)w = [sn e™“dE, we get (3.11) for
" volume 1 conformal metrics. To see when equality holds in (3.11), we just have to note
that metrics corresponding to € = Q; have volume 1:

/mn,,"'de=/mh.de= Smde=1." o
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~ 4. THE CONFORMAL INDEX AND THE GENERALIZED POLYAKOV FORMULA

Return now to the setting of Sec. 1, where (M, g) is a Riemannian manifold of dimension
m, possibly with orientation (and thus a volume form E), and possibly with spin structure
(and thus a Clifford section 7). We would like to study the functional determinant of
some natural differential operators A. For convenience, we separate the different kinds of
assumptions needed for different parts of the theory.

Analytic assumptions 4.1. Let A be a differential operator of positive order on sections
of a tensor-spinor bundle V over M. Suppose that A is formally self-adjoint and has positive
definite leading symbol 01eaa(A); that is, dlead(A)(2;§) is positive definite in End 'V, for
alze Mand0# ¢ € To M. '

Remark 4.2. The assumptions on the leading symbol make sense because tensor-spinor
bundles over a Riemannian manifold come equipped with Riemannian vector bundle struc-
tures. A is, in particular, elliptic. Since g1ead(A)(z, —€) = (=1)"40y,q(4)(z, ), the
assumption of positive definite leading symbol forces the order of A to be even. We shall
fix the notation 2¢ = 2¢[A] > 0 for ord A.

Under the analytic assumptions 4.1, we can write down the heat kernel trace expansion,
and define the zeta function and functional determinant. Let f denote an indeterminate
element of C°(M); the heat ezpansion is

(4.1) Trpz fexp(—tA) ~ Y an(f, A)=™/24 ¢ 0.

n=0
(See, e.g., [G4].) Here
an(fi )= [ fU[Aldv,
M

where U,b[4] is locally computable from the symbol of A in local coordinates; U,[A] is
polynomial in the total symbol, with coefficients that are smooth in the leading symbol.
The invariants U,, vanish for n odd. The auxiliary function f is a useful device for holding
onto divergence terms in the heat coefficients; these disappear from view (by Stokes’ The-
orem) if we only consider an[A] := an(1,4) = [Un[A4]. We could also keep track of the
endomorphism-valued invariants in the heat kernel expansion by allowing f to be valued
in End V| but this will not be useful for our purposes.

The heat operator trace can also be written in terms of the spectrum of 4. Under the
analytic assumptions 4.1, A has real eigenvalue spectrum Ag < A; £... T 00. A may have
finitely many negative and zero eigenvalues. The zeta function associated to A is

a) = 3 I

A; #0

€a(s) is well-defined and holomorphic for large Res. Let g[A] denote the multiplicity of 0
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as an eigenvalue of A. Then by the heat expansion (4.1),

‘ N
Z e~ il = —g[A] + 2 E sinh(t);) + E an[AJt(nm™/2t 4 O((N-m+D)/28)
A;#0 Aj<0 n=0 . ’

N
— Z a'n[A]t(n-—m)/u + O(t(N-m+1)/21),

n=0 :

(4.2)

where
' an[A] - ¢l4], n=m,

k
dald) = { onlAl+ 2;(:0 MR, nem+20(1+2N),
an[A] otherwise.

(@n[A) might not vanish for some odd n, but this can only happen if m is odd.) Applying
the Mellin transform, we get a meromorphic continuation of {4(s) to C:

Cals) = %(i ( - "‘_,,_.‘e")_l anld]

n=0

1 _ oo
+/ ta—lo(t(N—m+1)/2l)dt_+/ ¢ E e".'\idt) ,
0 : 1

Aj >0

where O(t(N=m+1)/2¢) i5 the error term from (4.2). In particular, (4(s) is regular at s = 0,
~ and we can define the functional determinant of A by

det A := (=1)#{% <0 exp(—¢’,(0)).

Before going further, we need to restrict to natural operators.

Naturality assumptions 4.3. A is natural in the sense of Sec. 1, with coefficients that
depend rationally on the dimension m. (In particular, A might not exist for a finite
set Ca4 C Z% of dimensions.) With respect to uniform dilations of the metric, A has
homogeneity degree — ord A, in the sense that if0 < o € R and § = a?g, and (if orientation
and/or spin structure is'involved) E = a™E, ¥ = a~ !4, then A = a~*'A. Furthermore, A
satisfies the analytic assumptions 4.1 categorically: the realization of A on any Riemannian
manifold M for m ¢ C4 satisfies 4.1.

Remark 4.4. By Weyl’s invariant theory, the heat invariants U, of any A satisfying the
naturality assumptions 4.1 must be local scalar invariants in the sense of Sec. 1. Further-
more, under the above scaling, they must satisfy

(43) _ ) Ijn =a" "U,,
by the heat expansion and the formula

exp(-—t(a'“A.)) = exp(—(a~2‘t)A).
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We shall say that any local scalar invariant satisfying (4.3), or any natural differential
operator scaling as in (4.3), has level n. It is strmghtforwa.rd to show that we may also
measure the level via a “derivative count” as follows: If U is a level n monomial local
~ invariant or monomial natural differential operator, of degree (kr,kv) in (R, V), then

2kp+ kv =n.

(Occurrences of g, ¢!, E, v do not affect the level.) Our homogeneity assumption on A just
says that A has a consistent level, equal to its order 2. Thus 0)eaa(A4) is polynomial in
g,9%,7, E; thati is, no-higher jets-of these object are involved in the leading symbol. We also
get that the section Gjeaq Of (Symm(T‘M )82 @ EndV representing the leading symbol is
parallel (annihilated by V), since g, ¢!, 7, E are.

Remark 4.5. It is important to note that the functional determinant is not invariant
under uniform dilation (scaling) of the metric. Suppose, as above, that § = a?g for
0 < a € R, and if applicable, E = a™E, ¥ = a™!4. Then

(4.4) ¢4(0) = ¢4(0),
) det A = a—zt(,.(q) det A.

That is, the quantity 4(0) is scale-invariant, and the functional determinant has a scale
homogeneity that depends on {4(0). Thus the functional

D(A, g) = (vol g)*44®)/m det A

is a scale-invariant “version” of the determinant. An added advantage of D(A, g) is that,
like (4(0) and the determinant, it is a spectral snvariant, since ¢[A] and vol g are. (volg =
cao[A], where ¢ is a nonzero constant depending only on 0jead[A).) We emphasize, however,
that there is no reason to expect det A or D(A4, g) to be the integral of a local expression,
as is a,[A].

We shall now impose some additional conformal assumptions.

Conformal assumptions 4.6. A is a positive integral power of a natural differential
operator D, A = D*, with h independent of m, and D conformally covariant in the sense
of 1.2, with a conformal bidegree (a,b) = (a(m),b(m)) that is rational in m.

Remark 4.7. We do not assume that A itself is conformally covariant, or that D has
positive definite leading symbol. Working in this generality allows to handle, for example,
the square Wz of the Dirac operator. Under 4.6 and the scale homogeneity assumptions of
4.3, the conformal bidegree of D is forced to take the form (a,a + 2¢/h).

An extremely important property from our point of view is a generalization of the
scale-invariance property (4.4) to pointwise, or conformal scaling. This property is heavily
dependent on the conformal assumptions 4.6. Following [B@1], we call this a conformal
sndez property.
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- Conformal Index Theorem 4.8 [BO1]. Let M be an m-dimensional compact manifold,
and suppose that A satisfies 4.1, 4.3, and 4.6, with m ¢ C4. Then the quantities g[A],
#{)\; < 0}, am[A), and (4(0) are constant on each conformal class [go] = {€**go | w €
C>(M)} of Riemannian metrics on M.

Proof. Since 01ead(A) = 01e2a(D)*, D is elliptic, and thus has pure eigenvalue spectrum,
as a result, N'(4) = V(D). q[A] = dim M(D) is conformally invariant because p — e%“
is a bijection of N (Ds) onto (D). The conformal invariance of #{\; < 0} follows from,
e.g., [Bl, Proposition 1], using the just mentioned explicit knowledge of the motion of the
0 eigenspace under variation of w. Since (4(0) = a;n[A] — g[A], we just need to show that -
am[A] is conformally invariant. ‘ '
For this, choose w € C*°(M), and consider the conformal curve of metrics g.w = e2*“gq .
If we can show that the operator (d/de)|e=o annihilates the functional am[Aw] we are
~ done, since the result may then be applied with. g.,., in place of g9, and w is arbitrary.
The estimates of [BQI] justify the following formal computation:

Z(d/de)l,=oa,.[A]t("'”‘)/“ ~ (d/de)|e=0 Trexp(—tAc.)

n=0
=—t Tr{((d/de)|,=ko) exp(ftAo)} |
= -1 Tr{hDg"l ((d/de)|e=0Dew ) exp(—tAo)}
= —t Te{hD& 1 (—(2¢/R)wDy + a[Dy , p(w)]) exp(—tAo)}
= 2tL Trw{ D¢ exp(—tAo)}
= 2t0 Trw{ Ao exp(—tAo)}
= —20t(d/dt) Trwexp(—tAo)
~ Z(m —n)an(w, Ao)

~ S (m —n) /M w(Un[A)dv)o,

where, of course, the asymptotics are for ¢ l‘ 0. Here we have used the fact that functions
of D and A commute, and that e~*4° is a smoothing operator for ¢ > 0. Comparing
coeflicients for n = m, we get the desired result. 0O

As a corollary to the proof, we get a formula that will be useful below:

Corollary 4.9 [BO@2]. Under the assumptions of Theorem 4.8,
(d/de)|e=o0an[Acw] = (m — n)/ w(Un[A]dv)o .
M

Thus the functional (m — n)~'a,[A,] is a conformal primitive for U,[A] if n # m. O

If we wish, we can use the corollary to “reconstruct” the divergence terms in U,[A]
from the mtegrated invariant a,[A], as long as n # m. In fact, the rational dependence on
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dimension assumed in 4.3 allows us to analytically continue in m (with some additional
assumptions on 0jead(A); see 5.1(a) below), so the restriction n # m will not really be a
problem. ‘

We shall now show that the functional determinant is the “missing” conformal primitive
in the above, i.e., that of Um[A4]." This will complete a very strong analogy between the
local invariants Q, and the quadratic form (Pnw,w)z: studied in Sec. 1 on one hand;
and the local invariants Un[A] and the functional determinant on the other. This analogy
will have more than esthetic value to us; it will actually lead to an efficient procedure for
computing quotients of the form (det A, )/(det Ao).

Theorem 4.10 (Generalized Polyakov formula [B@2]). Suppose A satisfies 4.1, 4.3, and
4.6. Let (M, go) be a particular m-dimensional manifold, m ¢ Ca, on which N(4) = 0.

- Then

(d/de)le=0(a,,, (0) = 2am(w, Ao).

~ Proof. First assume that #{); < 0} = 0, so that each A, is a positive operator. The
estimates in [B@1, BO2] allow us to conclude that (d/de)|.=0(4,,.(s) is meromorphic in
s, and that we can interchange the order of conformal variation and analytic continuation,
of of conformal variation and s-differentiation. (Besides uniform estimates, this depends
on the conformal invariance of g[A] and of #{; < 0}, because of the way the nonpositive
spectrum was handled in the definition of the functional determinant.) For Re s large,

(d/de)|e=0C4,, (s) = (d/ds)(d/de)|e=0(a..(5)
(4.5) = (d/ds) {i"%;)- /o t*"1{(d/de)|e=0 Trexp(—tAw)}dt}

[~}
(4.6) = —(d/ds) {T-z(% -t*(d/dt) Tr(w exp(—tAo))dt}
0
= (d/ds) 2 cmt"’l Tr(w exp(—tAo))dt
B I(s) Jo S &
Analytically continuing this formula, the value at s = 0 is the same as that of
20 [*

O t°7" Tr(w exp(—tA4y))dt,
viz. 2am(w, Ao).

To dispense with the positivity assumption on A, note that we have proved the result
for the positive operator A%, But (42(s) = (a(2s), so ¢!2(0) = 2¢4(0); and by [FG],
Um[A?] = Un[A). O

Remark 4.11. The effect of zero eigensections on the above formula and argument is as
follows. Since g[A] is conformally invariant, formula (4.5) is still correct. Formula (4.6) is
also correct, and can be rewritten as

—(d/ds) {-1% ooo t*(d/dt) Tr(w(exp(—tAo) — ProjN(Ao))dt}
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It is now clear that the integral converges, and that the fl°° part does not affect the value
of the expression at s = 0. The kernel function of w{exp(—tAo) — Proja(4,)} is

w(z){ H(t,z,¥) - Y ¢i(@) @ ¢} ¢ »
A;j=0
where H(t,z,y) is the kernel function of exp(—tA,), and {y;} is an L? orthonorma.l basis
of the zero eigensections. The conclusion is that

(d/de)le=0(a,, (0) = 2¢ (am(w,Ao) - /Mw > Iw(z)lz(dv)o)
A;j=0

=2 /M w (Um[A] -y |so,-(z)|’) (dv)o

Aj=0

Thus we can compute with the generalized Polyakov formula if N (A4¢) = 0, or if we have
‘explicit knowledge of A(4o). For example, if (M, go) is a flat torus, any parallel section
" is annihilated by any natural differential operator, so zero exgenvalues are unavoidable.
On the other hand, N(Ay) consists ezactly of the parallel sections in this case, i.e. of the
sectxons that have constant components in the standard trivialization; thus we know these
 sections explicitly. The conformal covariance relation then gives us knowledge of the null
space in conformally related metrics, i.e., of N'(Ay).

Remark 4.12. Because Up,[A] vanishes for m odd, the functional determinant of an op-
erator satisfying our conformal assumptions is conformally rigid in odd dimensions in the
absence of a null space. If there is a null space, the conformal variation of the deter-
minant depends only on the conformal variation of this null space. For boundary value
problems, however, we do get an interesting functional in odd dimensions, since there is a
nonvanishing boundary contribution to a.4a(w, A) [BG1, BG2].

We would now like to compute the quotients (det A, )/(det Ag); what we shall actually
write down is the equivalent information

(4.7) — log((det A,)/(det Ag)) = —log | det A,| + log | det Ay|,
or the equivalent scale-invariant information

200A(0) 1o Ju (V)0 det Ay
vol(go) det 4¢

- log(D(Aa e2wgo)/(D(A, 90)) ==

(Note that sgndet A, = sgndet A since #{\; < 0} is conformally invariant, and that the
scale-invariant quantity makes sense as a functional on the conformal class [go] because
€a(0) is conformally invariant.) According to the generalized Polyakov formula, say for
N(A) = 0, we just need to compute a conformal primitive for U,,[A] that vanishes at
w = 0 in order to compute (4.7).
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5. THE FUNCTIONAL DETERMINANT IN DIMENSIONS 2 AND 4

To avoid having to compute the divergence terms in Uy, [A], replacing this information

by the knowledge of a,, [A] for each even dimension m ¢ C4 , we need the following technical
- assumption on (m,Un[A]). The assumption is satisfied in all situations where we are able
to compute Up [A4], s0 it is no impediment to our calculations. One might conjecture that
it true quite generally. : :

Technical assumptions 5.1. Fix n € 2Z%, and make the following assumptions on
(n, A):

- (a) There exists a universal function u(m), meromorphic on C and depending only on the
formal polynoxmal expression of 01ead(A), such that the coeffients in the formal polynomial
expression for u 4(m)U,[A] are rational in m form € 22+, m ¢ C4.

(b) There is a rational function a,(m) and a local scalar O(m) invariant B,(m) depending
rationally on m € 2Z%, both regular at m = n, such that

ua(m)Un[A] > an(m)Qn + (m — n)Bp(m) modulo R(6),

for all conformally flat compact Riemannian manifolds of even dimensionm ¢ C4 . Here §
is the formal adjoint of the exterior derivative d on functions, and R($) is its range.

Remark 5.2. Local scalar O(m) invariants with dimension-dependent coefficients should
be viewed in the light of Gilkey’s Theorem [G1, BFG, G4]: ifn € Nand m € Z%,let LT be
the space of level n local scalar O(m) invariants in Riemannian manifolds of dimension m.
Then L™ = 0if n is odd. For n even, there are natural surjections s,, : L™ — L™~! defined
by stabilization, i.e. evaluation on product Riemannian manifolds N x $?, dimN =m —1,
followed by restriction to the submanifold N x {1} ~ N. s, is bijective if m is odd, and

0—-RPff, 2L - L 10

is exact if m is even. Here Pff,, is the m-dimensional Pfaffian. Since we would like to
exploit dependence on dimension, we consider direct limit L, of the L7 as m — oo and
let

L, = Rat(m) ®g Ln,

where Rat(m) is the field of rational functions in m. Let £ be the ®-algebra ®,L,. We
can also consider £, the ®-algebra of local O(m) scalar invariants in the conformally flat
category, obtained by taking the quotient of £ by the ideal ¢ generated by the Weyl tensor
C. This cannot be done in ®,L, (i.e. with constant coefficients), since the formula (1.7,
1.4) for C depends (rationally) on the dimension m. Another way of seeing this problem
is to note that stabilization does not respect conformal flatness: N x S? is generically
conformally curved, even for conformally flat N, and vice versa. After taking the quotient,
we can reintroduce the grading by level, L = ®nL, , and restrict to a given dimension m
to get L™
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Remark 5.3. Suppose A satisfies the natura.hty assumptlons 4.3, acting on sections of a
tensor-spmor bundle V, that ord A = 2 and 03(A) is scalar, i.e. g2(A)(z,£) = [¢]*1dy, .
'Then examination of the algorithm that produces the heat invariants [G4] shows that
 the coefficients appéaring in the formal polynomial expression for (47)™/2(dim V)~1U, [A]
are rational in m, so we have no rationality problems so long as (47)™/2(dimV)~! is
meromorphxc This is one reason for restricting to even m in 5.1: the fiber dimension of
the spinor bundle is’ 2["‘/ 7, thxs is the holomorphic function 2™/2 when applied to even m,
but a different holomorphlc function, 2(m=1)/2 , when applied to odd m. The point is that
we have to keep track of the dependence of the ﬁber dimension dim V on m, and that for the
operators Y and V2, this dependence causes no problem. If ord A = 4 a.nd 04(A) is scalar
in the sense that 04(.4)(:1: €) = |€|* Idy, , the same can be said with a certain meromorphic
function in place of (41r)"‘/ 2. unlike the second order case, this function now depends
on n [G3, FG]. Eventually, we need to apply meromorphxc continuation to coefficients in
forma.l polynomials defining local invariants; the limit point involved is m = 0o, so we need
meromorphxcxty there. This is the reason for extracting the universal meromorphic factor -
in 5.1: so that we shall really only need to apply meromorphic continuation to rational
functions (whose sxngulantles at infinity, if any, are poles) The assumptions are certainly
not the weakest under which meromorphic continuation can be performed but suffice for
the present purposes.

Remark 5.4. Note that there are “new” identities in £L/Z¢ that do not appear, at first
glance, to involve C directly; the most basic example follows from the Bianchi identity: in
an orthonormal frame, summing over repeated indices,

Cijryi = (m = 3)(Viie — Vi),

so Vjj;x is symmetric in all three indices for m # 3; this is not true in dimension m > 4 in
the conformally curved case.

Remark 5.5. Some subclasses of LT f? ,Ln, and of £, will be important to us. First,
let F , be the space of level n — 1 local O(m) invariant one forms in dimension m,
and define the space Fn_; of such forms with Rat(m) coefficients. Let F™ ,, F,._; be
the corresponding spaces of invariants in the conformally flat category. Then 6 carries
Fm ., = L™, Fooq = Ln, F™, > L™ and F,_y — L. This gives rise to the spaces
6F™., 6Fn-1, 6F™,, and 6F, of ezact divergences. Another class of interest to us is
that of level n local invariants U satisfying

(5.1) - (d/de)|e=0 /M(Udv)w =(m —n) /M w(Udv)o

under variation along the conformal curve g, = e?¢“gy ; this condition makes sense within
Lr, L, Ln , or Ly, giving rise to classes CL™, CL,, CL"‘ and CL, of relative con-
formal snvariants. Q, satisfies (5.1) by Corollary 1.3; by Corollary 4.9, so does U,[A] for
A satisfying 4.1, 4.3, and 4.6. CL™ and CL™ consist of local invariants whose integrals
are conformal invariants, and §F™_, ¢ CL™, §F™_ - c CL™. Given 5. l(a), we could
conclude 5.1(b) if we just knew that the coset [Un] = Un + 6F -1 in CL?/6F™_, is a real



40 ' THOMAS P. BRANSON

multiple of the coset [@Qn]. (By Theorem 2.8(f), [@u] # 0.) It may in fact be the case
that CL?/6F™_; is one dimensional for each even n; this is a kind of “conformal Singer
conjecture.” In that case, 5.1(b) would be superfluous. For n = 2,4, 6, the cases in which
~ we shall do explicit calculations, the conjecture is true, as we shall see below. Beyond
“levels 2, 4, and 6, it can at least be said that by the time one sets up a computational
scheme powerful enough to compute U, [A] one has in partlcular explicit knowledge of the
‘space CLP/6FD_, . : »

We are now ready to write a very general formula for the functional determinant in the
conforma.lly ﬂat case.

f Theorem 5.6. Under the assumptlons 4. 1 4.3, a.nd 4 6 on: A, and 5. 1 on (m, A), wzth
m € 2Z% and m ¢ C4, the quantity A defined by

ua(m)A = Jan(m) [o{(@ndo)e + @ndvle} + [{(Bm(m)do), = (Bm(m)dv)o)
= an(m) {3 [w(Prlow)dolo + [w(@ndolo} + [{(Bm(m)do) = (Brtm)doe)

~ is a conformal primitive for Un,[A] on conformally flat conformal classes [go], and vanishes at
w = 0. As a result, given a particular m-dimensional conformally flat compact Riemannian
manifold (M, go) on which N(A) = 0 (and which has orientation and/or spin structure if
required to define A),

20A = —log det A,
(52) det Ao
-1 D(A,e** go) + 20¢4(0) log fM e™“(dv)o .
D(A, go) m vol(go)
Proof. Let
Val4] := Un[A] — an(m)@n;

then

/ Vado = (m — n) / Ba(m)dv

for m ¢ C4. Since V,[A] € CL™,

(m = n)(d/de)|e=0 /(Bn(m)dv)w = (d/de)|.=0 /(Vndv)w =(m— n)/w(V,.dv)o .

Thus [ By,(m)dv is a conformal primitive for V;, in dimension m, and [{(Bm(m)dv),, —
(Bm(m)dv)o} is a conformal primitive that vanishes at w = 0. By Corollary 1.6,

1 [w{(Qmdv)s + (@mdv)o} is a conformal primitive for Qm vanishing at w = 0. The
determinant formulas now follow from Theorem 4.10. O
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The functional ‘ |
[(Br(m)ds). = (B(m)dole}
is invariant under change of scale (w — w + const), so the “correction” term in (5.2) is a

- correction to the functional involving Qm (or Qm and Pp,). Indeed, the coefficients of the
‘correction term and the Q,, term are related by

CA(0) + glA] = am[A] = uA(m) ™~ am(m) / (Qmdv)o.

This allows us to write the scale invariant determinant functional in a way which is well
adapted to estimation techniques:

Corollary 5.7. Under the assumptmns of Theorem 5.6 (mc]udmg N(A) =0), if Qm is
constant on (M, go),

~(20) ua(m)1og 2o = o) -

(@m)o, Sy €™ (dv)o
m log = vol(go)

+3 [ w((Pn )owxdv)o}
/ {(Bm(m)dv) = (Bm(m)dv)o},

where @ is the (dv), -average of w. O

Note that the term involving P,, is scale invariant because P, a.nmhxlates constants i in
dimension m.

We shall illustrate the theory by computing the functional determinants of the conformal
Laplacian Y, and of the square Y? of the Dirac operator on conformally flat manifolds in
dimensions 2, 4, and 6. Since both operators have second order scalar leading symbol, we
may take u4(m) = (47)™/2 in both cases (Remark 5.3). The two dimensional theory has
been much studied; see, e.g. [On, OPS1-2]. The four dimensional theory was developed
in [BO3, BCY] and the six dimensional theory is presented for the first time here. The
Dirac operator is conformally covariant, :

o=€"g, Tu=e"Y, w€C®M)=Y, = (mtOu2y ,(e(m-Nw/2)

so the conformal assumption 4.6 is satisfied in both cases. Our formulas for the heat invari-
ants come from [G2]. These formulas can be applied in particular to natural operators of
the form V*V — £ on tensor-spinor bundles V, where £ is a smooth section of End V. For
Y, this is &y = —(m — 2)J/2, while for Y2, this is Eps =—1ldg /4 = —(m - 1)J 1dg /2
by the Lichnerowicz formula [Lic]. To evaluate a4[V'?] and ag[V'?], we shall need the spin
curvature [Ko),
3 Wij = — 3 Ruijvem

in an orthonormal frame.
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In studying 2-dimensional manifolds, we are especially interested in local scalar invari-
ants of level 2. The space £ of such is one-dimensional, and is generated by the scalar
~ curvature 7. We could (and shall) also use our normalized scalar curvature J as the gener-
ator of £2. All 2-dimensional manifolds are conformally flat, so our theory is completely -
general thus far. By, e.g., (G2},

6(4m)™2N"10,[V*V — £] = / {r + 6€}dv,

where N is the fiber dimension of the bundle V on whose sections A acts. Thus

G3) ©6(m) ey = (—m+4) / Jdv,

(5.4) 6(4m)™/22-Im/A g [9?] = (=m +1) / Jdv.

(Though we have written the spinor formula for arbitrary m, our rationality assumptions
are satisfied only when we restrict to even m, and it is only this part of the formula that
we actually use.) Since J = Q2,Y = P,, and Y is just A in dimension m = 2, J has has
the conformal primitive

/ {(Jdv), + (Jdv)o} = / w(Bow)(dv)o + / w(Jdv)o

in dimension 2. A always has a one-dimensional null space generated by the constant
function; in the metric g, the constant vol(g)~!/? is an L? orthonormal basis of A'(A). By
Remark 4.11, the quotient of functional determinants has an extra term coming from the
conformal primitive of

Jw(dv)w

f (dv)o ’
that primitive being (log [(dv).)/2. Note that Pff, = r/4r = J/2w, so the conformal
index of A is

a(0) = az[A] - 1 = gx(M) -1
by (5.3), where x(M) is the Euler characteristic. The upshot is:

Theorem 5.8. On a compact manifold M of dimension m = 2, in any Riemannian
conformal class [go],

det A, Jas €3“(dv)o 1
og G g = —log M S 4 o /Mw{(Jdv)w+(Jdv)o}

2w v
=-1lo Ju & (dv), + Tom / w(Agw)(dv)e + gl;/M w(Jdv)g .

—1lo

vol(go)
The scale invariant determinant functional is
D(A, e*¥go) 1 Jas €2“(dv)o 1
—log—ﬁ-(z——) (M)log vol(g ) + 12 /Mw{(.]dv)w + (Jd‘v)o}
f IM 2w(dv)o

= ——x(M)los

1
vol(go) + 127 /M w(Aow)(dv)o + G_W/M w(Jdv)e .
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In particular, if Jy is constant,

D(A,e?gy)

1 e2(w—@)(dy
DlA,g0) XMl - =

vol(go)

1
_log + 197 ‘/I‘lw(éow)(dv)o,
where & is the (dv)o -average of w. If (M,go) is S? with its staﬁdard metric go, and
df = (dv)o /47, (df)w = (dv), /47 are the normalized measures of Sec. 3, then .

2w .
(5.5) —log’—’i(ﬁA(’TeE;g)o—)- = -;- (— log ./si (=@ dg + /S: w(Aow)df) . D

. Note that by the Uniformization Theorem, we are entitled to assume that Jp, the

Gauss curvature of the background metric gy , is constant. Remarkably, the quantity in
‘ (5.5) is exactly that estimated by the Moser-Trudinger inequality, i.e. the m = 2 case of
* Theorem 3.7. This leads directly to Onofri’s result on the maximum value of the functional
determinant.

Corollary 5.9 [On]. Among all volume 47 metrics g on S?, det A, is maximized exactly
at those diffeomorphic to the standard metric go ; i.e. for which g = ¢*go , ¢ € Diffeo(S?).

Here we have used the fact that A has no negative eigenvalues to reduce to the extremal
problem for the quantity (5. 5) The fact that one can maximize over the space of all metrics
is specna.l to dimension 2: given any Riemannian metric g on.S?, there is a ¢ € Diffeo(S5?)
with ¢*g € [go] [OPS1]. Since the determinant and the scale-invariant determinant func-
tional are spectral invariants, they are diffeomorphism invariants, and this reduces us

to the conformal problem of the Moser inequality. For general compact 2-manifolds M,
- roughly speaking, there are only “finitely many degrees of freedom” remaining once cori-
formal change and diffeomorphism are “drained out” [OPS1). In its precise form, this is
a statement about the reduced space of metrics G/ Diffeo(M) x C$°(M), where G is the
space of Riemannian metrics and C{°(M) acts by conformal change of metric.

If N(V) = 0, the conformal index of V2 is
(p3(0) = —x(M)/12,

by (5.4), so we have:

Theorem 5.10. On a compact spin manifold of dimension m = 2, in any Riemannian
conformal class [go] where the conformally invariant condition N (Y ) = 0 holds,

det Y2 1
— log -(T;t_y_: = - 127 w{(Jdv)w + (Jdv)o}
1

= —— w(Aow)(dv)o - —/ w(Jdv)o

The scale invariant determinant functional is

2 2w 2w
—logD(W ,€ g°)=logD(A’e 90).

D(Y?, 90) D(A,90)
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As a result, on S?, det YZ, is minimized for g = g, = e?“go € [go] of volume 4r exactly
when g, = h - g for some h € ctran(S5?, go).

~ Again, the absence of negative eigenvalues allows us to reduce to the extremal problem
. for the scale invariant determinant functional. Note that though the construction of the
‘spinor bundle depends on the metric, spinor bundles constructed from conformally related
metrics can be identified.

For m > 4, the space L of level 4 local scalar O(m) invariants is four dimensional: A
~ basis which is especially adapted to dimension independent calculations is |R|?, |p|?, T2,
"Art. A convenient basis for calculations involving conformal change of metricis |C|?, |V?,
. J?,-AJ; this new basis can be written in terms of the old one using coefficients that are
~ rational in m; thus we have two different bases of £4 over Rat(m). In the conformally flat
category, |V|?, J? is a basis of £4/6F; over Rat(m). By, e.g., [Bral],

(d/de)|e=0(I?)ew = —4w(J?)o + 27 Aw,

(d/de)le=0(IV [*)ew = —4w(|V|*)o — 2(V, Hessg, w)

where for two-tensors ¢ and ¥, (p,%) = pi;¥i; in an orthonormal basis. By the Bianchi
identity Vij; = J|; and integration by parts, the space CL}/6F} in dimension 4 has
the single generator [J2 — |V|?] = J? — |V|? 4 6F, of which [Q] and [Pff,] must be scalar
multiples. (As in Sec. 1, we write @ = @4 .) On S* with its standard metric, J? - |V|2 = 3,
Pffy = 2/vy = 3/47?, and by Theorem 2.8(f), @ = 6; thus

(5.7 2[J? —|V|?] = [Q] = 8~2[Pfy] in CL3/6F%.

By Remark 5.5, the technical assumption 5.1(b) will automatically be satisfied for the pair
(4, A) provided A satisfies 4.1, 4.3, and 4.6, and (4, A) satisfies 5.1(a). In this case we can
write

(5.6)

ua(m)agA] = ] {ae(m)Q + (m — ) (kv (M)|V[? + ks(m)J?)}dov

for some rational functions kv(m) and kj(m) which are regular at m = 4. Here, as in
Sec. 1, @ = Q4. Now take a particular 4-manifold (M, go), and assume for simplicity that
N(A) = 0 there. The conformal index is

€a(0) = a4[A] = ua(4) ™" as(9) /M Qdv = 87%u(4) " ay(4)x(M);
specializing Theorem 5.6, we get:

Theorem 5.11 [B@3]. Suppose A = A(m) satisfies 4.1, 4.3, and 4.6, and is regular at
m = 4. Suppose that the pair (4, A) satisfies 5.1(a). Let (M, go) be a particular conformally

flat compact Riemannian four-manifold (with orientation and/or spin structure if required
to define A), and suppose that N(A) = 0 on (M, go). Then

- ) ua(@)log g = boal®) [ w{(@i). +(Qeo))

+ kv(4) / (IVIPdv) — (IV[Pdv)o} + 1(4) / {(F2dv), — (Pdv))
M M
= ay(4) {-;- /M w(Pow)(dv)o + ./M w(de)o} + (kv(4) + ks(4)) /M{(szv)w — (J2dv)e}.
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The scale invariant determinant functional is

det A,
det Ap )

D(A, e go)
D(4,g0)

dw(dy
~2x? 014(4)X(M )log -f—%ﬂ)o

If Q is constant on (M, g0), Qo = 8w%x(M)/ vol(go), and

—(20) " us(4)log —(20)"'u(4)log

vo 4(w—u) v

+3 / w(Pow)(dv)o} + (kv(4) + ks(4)) / {(J?dv). -(szv)o}

If in addition J is consta.nt on (M, go),

—(20)ua(4)log _DLD‘%ZE?_%"_) =
' vo e (w=2)(dy
) i {'Q%(go)‘ e ! “’(Pow)(dv)o}

+(kv(4)+k1(4)) / {(M) 13}(dv)o-

In particular, if go is the standard $* metric,

- : D(A, 32"’90) -
—(20)" u4(4)log DlAge) -
(59) 4"20;(4) {—10g L4 e4(w—0)d€ + % /s‘ w(AO(AO + 2)w)d§}
| 8n2(ky(4) + ks(4)) (Ao +2)ev\?
+ = 2 S‘{(-——-—ew ) 4}d§. O

Here we have used the conformal index property in the form (5.7) to eliminate the more
complicated invariant |V'|? from the formulas in favor of J2. For (5.8), we have used the
covariance relation for the conformal Laplacian Y, together with the fact that Y = A+ J
in dimension four. For (5.9), we have substituted the standard four-sphere values @ = 6,
J=2,and P=A(A +2).

Remark 5.12. In [B@3], where a somewhat different computational approach was taken,
. the numbers u4(4) ' a4(4) and u4(4)~'(kv(4) + ks(4)) were called 38, and 1 3; respec-

~ tively; this notation is also used in [BCY]. In [B@3], (3 arose as the coefficient of AJ
in Us[A]. Bs ends up attached to the J? term in the determinant formula because 3J? is
a conformal primitive for AJ. In the current approach, we do not need to compute such
divergence terms, but need instead knowledge of all the non-divergence terms as functions
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 of the dimension m, not just in dimension four. In essence, instead of computing diver-
_ gence terms via the “reconstruction principle” of Corollary 4.9, analytically continuing to
dimension 4, and then finding a conformal primitive, we Just ﬁnd a conformal pnrmtlve
- for m # 4 and analytically continue to m = 4. -

Just as in dimension two, we now have everything written in terms of functionals which

are sharply estlmated by Lieb-Beckner inequalities, at least on the sphere. The novelty
~ is that now we have a linear combination of two such functionals, that associated to the
: xmbeddmg L% — ek, and that associated to the ordma.ry borderline Sobolev inequality
L? — LA The best constants and extremals are given by Corollary 3.6.and Theorem
3. 7 However, we are not finished estimating unless the coefficients involved, as(4) and
* ky(4)+ks(4), have the same sign, or else one vanishes and the other does not. Fortunately,
the signs do agree in the cases A = Y and A = V2. (They also agree for A = P, but we
shall not work this out in detail here.)

To find these coefficients, recall from [G2, Theorem 4.3] that

(47)™/2360a,4[V*V — & =/ try {572 — 2|p|® + 2|R]?
(5.10) (4m) a[ ] Mrv{ |p] |R|

+607E + 180E2 + 30W;;Wi;}dv,

where W is the curvature of the bundle V in which V*V — £ acts. (Recall that our
convention on index placement in the Riemann tensor differs from that of the reference;
on standard 52, our Rjs;2 is positive.) An expression like W;;W;; does not, of course,
refer to any particular orthonormal frame, but is an abbreviation for that quantity that
equals W;;W;; in any local orthonormal frame; that is, it is invariant index notation. We
apply (5.10) to the Yamabe operator in the conformally flat category via Table 5.1, which
expresses all relevant invariants in terms of J2 and |V|2.

TERMS IN (47)™/2360a4]Y] (€ = —-1(m - 2)J, W = 0)

J? V|2 coef.
72 4(m —1)? 0 5A
lp)? 3m -4 (m —2)? -2
|R|? 4 4(m -2) 2
€ —(m —1)(m - 2) 0 60
£? H(m-2)? 0 180
TABLE 5.1

The meaning of, for example, the second row of the table, is that

lol? = (3m — 4)J% + (m - 2)*|V[?,
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and that the coefficient of |p|? on the right in (5.10) is —2. Thus, since
f Qdv = / {(3mJ? — 2]V }dv,
we bave |
(4m)™/?360a4[Y] = (m — 6) / {(5m — 16)7* — 2(m — 2)|V[*}dv
= 2(m — 6) / Qdv + (m — 4)(m — 6) / {4J% - 2|V|2_}dv.

We collect this information in:

Lemma 5.13. For(n,A) = (4,Y) and the choice uy(m) = (47)™/2, the function in 5;1(b)
is : .
ay(m) = (m — 6)/180,

and the local invariant can be taken to be
By(m) = (m - 6){4J? — 2|V|*}/360.

As a result, ay(4) = kv(4) + ks(4) = —1/90. O

Remark 5.14. The factor m — 6 in the formula for a4[Y] is expected. By a result that
appears to have originated in [Schi] (see also [BO1, BG1]), Um-2{Y] is a local conformal
invariant in the sense that '

§=0%, 0< Q€ C®(M)= UnsY] = B> "Un_s[Y).

(A similar result holds for any conformal covariant A of order 2¢ satisfying 4.1 and 4.3,
replacing each m — 2 above with m — 2¢. This is most clearly seen from [BG1, Lemma
3.1(c)).) But we are now working in the conformally flat category, where all such local
conformal invariants vanish. The same principle can be seen in the factor of m — 4 in (5.3)
above, and in the factor of m — 8 in Lemma 6.9 below.

To treat A = Wz, we need to adjust the above calculation for the change from £ =
—(m —2)J/2 to & = —7/4 = —(m — 1)J/2 (the Lichnerowicz formula), for the change in
fiber dimension, and for the spin curvature; these adjustments are detailed in Table 5.2.
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(VALUE AT £ = —3(m — 1)J) MINUS (VALUE AT € = —3(m — 2)J)

J? 4k coef.
€ —-(m-1) 0 60
e | lem=-3) | o | 180

NEW TERM IN (47)™/2360 - 2-[m/2)q,[Y’?] RESULTING FROM

SPINOR (L) BUNDLE CURVATURE W;; = —1 Ruijmam
1T PR e || coef
trg WiWi; | =1 | m—2 | | 30
TABLE 5.2

Collecting the information, we get:

Lemma 5.15. For (n,A) = (4,¥?), with the choice uyz(m) = (47)™/22-™/2 (m even),
the function in (5.1) can be taken to be

as(m) = 11/360,

and the local invariant can be taken to be

1(10m - 3)J2 — 2m + T)|V|?

By(m) = 360

As a result, as(4) = 11/360 and kv (4) + kj(4) = 7/720. In particular, these numbers have
the same sign.

Neither Y nor V¥ has negative eigenvalues on (5%, go); thus by Theorem 4.8, the same
is true with g, in place of go for any w € C*(S5*). As a result, the extremal problem
for detY,, is the same as that for log(D(Y,e2*g0))/(D(Y, g0)), and similarly for det Y.
(If there were an odd number of negative eigenvalues, the extremal problem would be the
same, but the roles of maxima and minima would be reversed.) In view of Theorem 5.11,
Corollary 3.6, and Theorem 3.7, we have proved:

Theorem 5.16. On S*, detY,, is minimized for g = g, = €®**go € [go] of volume 87%/3

exactly when g, = h - go for some h € ctran(S*, go). det W: is maximized at exactly the
same metrics.
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6. THE FUNCTIONAL DETERMINANT IN DIMENSION 6

One of the requirements for an apphcation of our method to dimension six is a formula
for [ Qedv in the conformally flat case. Actual computation of the operator Ps via the
algorithm implicit in [GIMS], or in [Wi), is a formidable undertaking. Instead of taking
this tack, we shall write down a trial formula, with undetermined coefficients, for Q¢ , then
evaluate the coefficients using some special computations.

Lemma 6.1. The four invariants |dJ|?, J3, J|V|?, and tr V3 := V;; Vi Vi give a basxs of
Le.

Proof. A basis of such metric invariants in the not necessarily conforma.lly flat category
(i.e., of Lg) is given in [G2]. To get the above result, one just needs to show that each of
'these invariant is a linear combination of the four given above in the conformally flat case;
this follows from the formula (1.7) for R in terms of C and V. (Exact formulas are given
in Table 6.1 below.) 0O

Note that the “trace” in tr V3 is that of End TM (or EndT*M). We already know
that the |dJ|? coefficient in Qs is (m — 6)/2 by Corollary 1.5. We can more information
by evaluating on the standard sphere, and (recalling Remark 1.2) on the conformally flat
pseudo-Riemannian manifolds (S(¢?), 90) := (89 x SP,gs¢ — gs»), With p+¢q = n. Up
to covering, these are the conformal compactxﬁcatxons of the standard signature (g, p) flat
spaces; that is, they bear the same relation to these flat spaces as the sphere does to Eu-
clidean space. The group SOo(g+1,p+ 1) actson (S (9:7) ,90) by conformal transformations
[K1, Bra2], and one can study the representation theoretic problem analogous to that of
Sec. 2 above. We shall not need a full treatment of this theory, but just the analogue of
Theorem 2.8(f). Using (2.10) on S7 and 57 to interpret and rewrite results of Moléanov

[M], we get:

Theorem 6.2 [M]. Let B be the operator of (2.14) on standard $? (with gq in place ofm),
and let C be the similar operator on standard S? (with p in place of m). Then the unique
differential intertwinor of order n € 2Z% for the conformal action of SOg(¢+ 1,p+ 1) on
functxons over S(9P) s

ne2

P =P, J[{(B +C+20)(B - C-2a)(B +C - 2a)(B ~ C +2a)}

a=l]

if n/2 is odd, where P, = (B + C)(B - C), and

. | .
Po=[[{(B4+C+(2a~1))(B-C-(20-1))(B+C - (2a —1))(B - C + (22 — 1))}

a=1

if n/2 is even. O

Note that if p = 0, we are (up to covering) in the situation of Theorem 2.8(f), and we
recover that result by noting that the operator C is just the number 1/2.
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Corollary 6.3. In the setting of Theorem 6.2,
32Q¢ = (m+2)(m - 2)(g—p)g—p+4)(g—p—4),

Proof. We compute usihg (m - 6)Qs/2 = Psl. O
‘On (S(""),go), .

dJ=0, 81=(q—p)P, 8IVP=m(g—p), B8uV3i=q—-p.

As;a result, if
(6.1) / Qedv = / {"‘T‘SWP + a(m)J? + b(m)J|V? + c(m) tr v3} dv

(using the |dJ|? coefficient determined above), then equating coefficients of (¢ — p)® and
of ¢ — p gives '

(62) 4a(m) = (m +2)(m - 2)

~ (6.3) ' ~ mb(m)+c¢(m) =-4(m+2)(m-2).

Thus our consideration of mixed signature conformally flat spaces has given us two of the

three remaining (m dependent) undetermined coefficients; the sphere alone provides just
one. To find the remaining undetermined coefficient, we do a partial computation of the

integrals of Qs , |dJ|?, J3, J|V|?, and trV? on the Riemannian manifolds (T™,e?¥gy),
where (T'™, go) is the flat torus and w € C°°(T™). Direct computation gives
Jo=—e"2tr),

Vw = —A1
dJ, = e~ {dAw ~ 2(Aw)dw + %ﬁd|dw|2 +(m— 2)|dw|2dw}

where all natural differential operators are computed in the background metric go , and

A= Hessw—dw@dw-{-%ldwlzgo.

Now introduce “...” as an abbreviation for “differential monomials of fourth or higher

degree in w.” We have:

J2=e"((Aw) +...),
(JIV]})w = e7%((Aw)|Hess w|? +...),
(tr V3, = —e % (tr(Hessw)® +...),

(1d71})w = 7% (|dAw]? + 2(dAw, —2(Aw)dw + Z52d|dw|?) +...).

(6.4)
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~ Since (dv)., = e"‘“’(dv)o., the integrated form of this is

/ (Fdv). = / 289((AwY® +...)(dv)o

where § = (m — 6)/2, and similarly for the other invariants. Integration by parts gives
several relations among the integrals of invariants appearing in (6.4):

/ €289( Aw)(dAw, dw)(dv)o = / PP [ (Bw) + ... (o,
 (6.5) / €28 (d A, d|dw|?)(dv)o = / €209{9( Aw)| Hess w|? — (Aw)® + ... }(dv)o
/ €284 (tr(Hess w)?)(dv)o = / e (1(Aw)? — $(Aw)| Hessw? + ... }(dv)a .
As a result,
/ €269 (J3dy), = / 289 {(AwY + ... }(dv)o
/ e?Pe(JV|?dv), = / e?#{(Aw)|Hessw|? + ... }(dv)o,
[eretavian, = [ {-1(aw) + A Hessul? +...Y(d,
[eartan., = [ {doul - maw)®

+2(m — 2)(Aw)|Hessw]? + ... }(dv)o .

By (1.10), the fact that Ps = A3 on (T™, go), and integration by parts,

8 / (Qedo) = / eB9(A3eP)(dv)o = / (AP 3 (dv)s

But
dAeP = P(BdAw ~ F2d|dwl? + B (Aw)dw — B3|dw|*du.

Integrating by parts and using (6.5), we get
8 / (Qodv), = / 20w {F2|dAwf? — B3(Aw)® + 48%(Aw)| Hesswf? + ... }(dv)o.

Moreover, it is easily seen that the invariant integrals [ ¢2#“Sy(w)(dv)o, where Sj(w) =
|[dAw|?, S2(w) = (Aw)?, and S3(w) = (Aw)|Hessw|?, are linearly independent. In the
notation of (6.1), the result is that

b(m) = —4m, ¢(m) = 16.

Here we have used (6.2), but not our knowledge of the |dJ|? coefficient 3, nor (6.3); these
can be considered as checks on our calculations. We pause to collect the information:
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- Theorem 6.4. In the cénformaﬂy flat category,

/ Qedv = / {T_;_‘_‘wp +m 2?4("‘ =2) 13 _4mJ|V] + 164r V3} dv. O

" Another check on this result is the case m = 6, where it implies that Q¢ ~ 8(J® ~
~ 3J|V]? + 2tr V3) modulo exact divergences for conformally flat metrics. The following
lemma shows that up to a constant factor, this is the only possibility.

" Lemma 6.5. The class CLE/6F¢ of Remark 5.5 is generated by the coset [J3 — 3J|V|? 4

2tr V3. '

Proof. Suppose m = 6 and (M, g) is conformally flat. By [Bral, (2:9)], -

(d/de)|eo / (147 [2dv)ew = (d/de)]eo / JATdy = / ({20827 = 4TAT + 4/dI [P} dv)o
M M M

under the usual conformal variation. By (5.6), integration by parts, the Ricci identities,
and Remark 5.4,

(d/de)]eco /M(ﬁdv)w =6 /M W({TAT = |dI2}dv)e,
(d/de)]emo /M(J|V32du)w - /M W({27 AT — 4|dJ[? — 2(Hess J, V')
- +2(V*VV,V) = 2|VV[}dv)e,
(d/de) oo /M(tr V3du)e = -3 /Mw{(Hess LV) + I + [VVE = (V*OV, V}}dv)o.

It is easily verified that the local invariants
A1, JAJ, |dJ?, (HessJ, V), (V*VV,V), |VV|?
are linearly independent in the conformally flat category, and the result follows. D

In particular, the Pfaffian must have the form ¢(J? — 3J|V|? 4 2tr V?) on conformally
flat six-manifolds, where ¢ is a universal constant. Since x(Ss) =2andJ=3,V= -;- g on
S8, we have 15cvg = 2. Since vg = 1673/15,

Pffg = (J® - 3J|V|* +2tr V3)/8n3,
/Qsdv = 647 x(M)

in the conformally flat case.
By Remark 5.5, the technical assumption 5.1(b) will be satisfied for the pair (6, A)
provided A satisfies 4.1, 4.3, and 4.6, and (6, A) satisfies 5.1(a). In this case we can write

ua(m)ag[A] = /{as(m)Qs+(m—6)(ko(m)|dJ|2+k1(m)J3+k2(m)J|V|2+k4(m) tr V3)}dv

for rational functions k;(m), 1 = 0,... ,3 which are regular at m = 6. Taking a particular
conformally flat 6-manifold (M, go) on which N(A) = 0, the conformal index is

€4(0) = as[A] = u4(6) ™" as(6) /M Qedv = 647°u 4(6) " ae(6)x(M).
Specializing Theorem 5.6, we get:
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Theorem 6.6. Suppose A = A(m) satisfies 4.1, 4.3, and 4.6, and is regular at m = 6.
Suppose the pair (6, A) satisfies 5.1(a). Let (M, go) be a particular conformally flat compact

Riemannian six-manifold (with orientation and/or spin structure if required to define A),
and suppose that N(A) = 0 on (M, go). Then

- 0 ua(®)log T g2 = $06(6) [ w{(Qedv)a + (Qudo)o)

+ ko(6) /M{(W *dv)., - (|dJ[*dv)o} + k1(6) /M{(J Ydv)y — (J2dv)o}

+8(6) [ (V). = @IVPdole} + ka(6) [ {5 Vdo) = (15 Vo))

=as®) {4 [ c(@omeXanlo+ [ w(Qedl} +o®) [ {17 o) = (7P}
+((6) ~ 1hs(6)) [ (T v} = (Pd)o}

+ (ka(6) + $£5(6)) /M{<J|V|’dv)w — (JIVdv)o} .

The scale invariant determinant functional is

. e2w
— (20) u4(6)log D(szA_g)o) _
™ er dv 0 .
-= “G(G)X(M)‘°ngT,1(;(o)—)—(2e)" AO)log 52

If Qs is constant on (M, go),

e*“ go 6)o vol(go 8 @=®)(dv),
—(22)'1uA(6)log D(Dj:;l g)) (6){ _ (Q ) 3 l(g ) log fM v()l(go)(d )

+1 [ wlPws)an} +o6) [ (1T o). = (1dIP o)
+(ka(6) - $a(6) [ ((FPd)o = (Pdo)e)

+ (k2(6) + 2k3(6)) /M«levdv)u — (J|VPdv)o}.
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In particular, if go is the standard metric on S,

— (op\-1 D(4,e*90) _
77(28)77 uA(G)log——D(A,go) =
3
6437I' 06(6){ —log /Sc eﬁ(w-‘:’)df + '41—0 /se w(Ao(Ao +4)(Ao + 6)w)d£} -
1672 ' ' ' ' '

+

o {ka(0) [ 10aIPde). - (1477}
+ (k1(6) — 3£5(6)) /M{(ﬂds)u — (JdE)}
+(h2(6) + $12(6) [ (Ve (JIVPde)o}}. o

The remaining step in making the determinant functionals for Y and Y2 explicit in
dimension 6 is the determination of the constants ag(6) and k;(6) — 3 k3(6), k2(6) + 3 k3(6)
in each case. As in the two and four dimensional cases, these constants are implicit in an
integrated heat invariant, in this case ag . By [G2], in the notation of (5.10),

(47r)m/27!as[V'V - g] = ‘/trv{—ll'Vle + 6|Vpl2 - 28pjk|1pj1|k
- 3|VR|? — 420|VE|* — 168(VT, VE) — 84W,;); Wik

+ 373~ Urp? + L7 |R? — 1 p® + L piipriRikji

— 232pijRicipRjrtp + % RijtiRijpg Ritpg + B RijiiRipke Rjplg
+ 8403 + 4207E2 + T07%E — 28|p|*E + 28|R|*E

+ 56W;Wix Wi + 707Wi;W;; + 56pi i Wii Wi

+ 28R,’jk1W.'jWkl + 4208W,~,’W.-J-}dv

(6.6)

Conformal flatness is not assumed.

Remark 6.7. For arbitrary (V, V), the Bianchi identity and integration by parts give:

/tfv Wi Wijiedv = / {2try Wij); Wik — 2pij try Wi Wi
+ Rijki try Wi Wi — 4 try W55 ijWkg}dv.
Conformal flatness is not assumed here either. Because of this identity, the expression
W,-j“‘W.-j'k does not occur in (66)

Moving to the conformally flat case, we first write the purely metric terms (i.e., those
not involving £ or W) in terms of J and V. The results are in tables 6.2 and 6.3 below;
the intermediate calculations are contained in the following lemma:
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- Lemma 6.8. Suppose g is conformally flat. Then -

o> = (m ~ 2)*|V|? + (3m — 4)J?,
|R|Z = 4(m = 2)|V|? + 4J3,
Vijpik = (m — 2)ViiVie + I Vi,
Vijpjkpri = (m — 2)2tr V3 + 2(m - 2)J|V|? + J3,
VijRiktp = =Vjp Vit + ViiVip = VijVipgir + VijVagsp
VijRikipRjktp = 2(m — ) tr V3 4+ 6J|V|?,
RiijpRitkp = 3 RikipRjkip '
ViiVuRjeia = =2tr V3 + 2J|V|2,
VijpriRjkit = =2(m — 2) tr Vig 3(m - 2).7|V|2 + J3. O

QUADRATIC METRIC TERMS

f1dJI? JJ? JIIV|? Jev? coef.
[\ 44 4(m - 1)? 0 0 0 _ -1
[1Vol? m(m — 1) 0 (m=23? | -m(m-2) | 6
Jeswppiye | (m—1)2 0 | (m-22 | -m(m-2?® | | -28
[IVR]? 4m-1) | 0 | 4m=-2) |. -4m(m-2) -3
TABLE 6.2

CUBIC METRIC TERMS

IE TV tr V3 coef.
73 - g(m-—1)° 0 0 I
|p|? 2(m — 1)(3m — 4) 2(m — 1)(m — 2)? , 0 _%
7|R|? 8(m—1) 8(m—-1)(m-2) * 0 i
tr p3 2(2m - 3) 3(m — 2)? (m - 2)3 208
pijpriRikj;i 2(2m - 3) 4(m - 2)% —2(m —2)? &
pij RikipRjkip 4 10(m - 2) 2(m — 2)(m —4) - 18
RijkiRijpgRripg 0 | 24 8(m —4) 44
RijkiRipkgRjpig 2 6(m — 3) —2(3m - 8) i

TABLE 6.3
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Concentrating for the moment on the conformal Laplacian Y, we compute the £ terms:

A=Y:E=-22J W=0

i IS s
i “s(m =2 0 0 840
- r&? %(m —1)(m - 2)? 0 0 0
r2€ —2(m -1)}(m - 2) 0 0 =
oPE | -i(m-2)3m-4) | -3(m-2PF | o0 o
IR’ —2(m - 2) 1 —2(m-2)? 0 28
: f IdJ|2 f J? f J|V|2 ftr V3 coef,r
JIver i(m —2y° o | o 0 ~420
¥ f(V-r, A% ) 7 ~(m—1)(m —2) 0 5 - —
TABLE 6.4

We now add everything up to get:

Lemma 6.9.

(4m)™/27a4[Y] = (m - 8) / {-—3(m —6)|dJ)? - -;—(35m2 — 266m + 456)J°
+g(m —1)(Tm — 30)J|V|? - g(5m2 —2m —48)tr V3} dv

= ——(m 8)/Q5dv+(m 8)(m — 6)/{——[d]|2
’%(125"1 —314)J7° + 5(7m - 5)J|V|* - §(sm +28)tr V3} dv.

As a result, for (n,A) = (6,Y) and the choice uy(m) = (47)™/2, the function in 5.1(b)
can be taken to be
5(m — 8)

as(m) = —=g 1

and the local invariant can be taken to be

7!

In particular,

3 T (ae(6), ko(6), k1(6) — 3k3(6), k2(6) + 2ks(6)) = (10,13,34,-32). O

By(m)= "8 {-lﬁgwlz _ %(IZSm —314)7° + §(7m ~5)JV] - g(Sm +28)tr V3} .

To handle A = V?, we need to adjust the calculation for the change from £ = —(m —
2)J/2 to £ = —(m — 1)J/2, and take account of the spin curvature terms.
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(VALUE AT € = —221J) MINUS (VALUE AT € = —2527), UNTRACED
[1dJ)? [ | fIVE | [trve coef.
. fIVEPR 1(2m - 3) 0 0 —420
- [(Vr,VE) | —(m-1) 0 0 -168
J3 JIVI? trv3 coef.
X -1(3m? ~9m+17) 0 0 840
TE2 3(m —1)(2m - 3) 0 0 420
72€ —2(m — 1) 0 0 70
|p|2£ —%(31’71 - 4) —-%(m - 2)2 0 -28
|R|2€ -2 —-2(m —2) 0 28
NEW TERMS IN (47)™/2712- ['"/2]a6 [Y?] RESULTING FROM SPINOR
(Z) BUNDLE CURVATURE W;; = —1Ruijvem .
£ = ""IJ
[1dJJ? JIB | JIVE | Jteve coef.
ftr2 Wiy | —3(m=1) o | o 0 | -84
J?3 J|V|? trv3 coef.
trg Wi; Wix Wy, % %(m —.3) —%(3171. - 8) 56
T try W,’jW,’j —(m - 1) —(m - 1)(m -— 2) 0 70
pij trg WiiWi; —% —%(m -2) —%(m - 2)(m —4) 56
Rijritrg Wi; Wiy 0 -3 —(m - 4) 28 ,
trg EWi;i Wi i(m-1) H(m=-1)(m-2) 0 420

Summing up, we get

TABLE 6.5
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Lemma 6.10.

(@n)y™2 127t/ gg (92 = / {—3(m - 1)(m - 6)|VJ?
- %(35m3 —231m? + 316m + 6)J° + %(14m3 — 39m? — 83m + 24)J|V|*

—-—2-(5m3 + 21m? — 95m — 120) tr V"’} dv

—-5’1 / Qsdv + (m = 6) / { 54(72m = 263)|VJ|*

- m’(ssom — 909m — 398)J3 + §(14m2 +45m — 4)J|V|?

_§(5m2 +51m + 211) tr V3} dv.

As a result, for (n, A) (6,¥?) and the choice uga(m) = (4m)™/22™/2 (m even), the
function in 5.1(b) can be taken to be

191

and the local invariant can be taken so that

7\Be(m) = -—514—(72m — 263)[VJ[2 — — (560m? — 909m — 398)J°

144
+ -;—(14m2 +45m — 4)J|V|® - §(5m2 + 51m + 211)tr V3,

In particular,
72 - 7Y (ae(6), ko(6), ,1(6) — %k3(6), k2(6) + %ks(ﬁ)) = (-1146,-507,—-1578,1752). O

In the next section we shall show that on S®, the quantity detY,, is maximized at
those ¢ = g, = €*“go € [go] of volume 1673/15 for which g, = h - go for some h €
ctran(S%,go), and the quantity detW is minimized at exactly the same metrics. The
proof will make essential use of (1) Theorem 3.7 (the exponential class inequality describing
the imbedding L2 — e’); (2) Corollary 3.6(b) (controlling the imbedding L2 — L?); (3)
Obata’s Theorem, 4) 2 geometnc inequality describing the imbedding Lz(.‘io'6 TFS?) —
L3(S%, TFS?), where TFS? is the bundle of trace-free symmetric tensors; and (5) the
numerical data of Lemmas 6.9 and 6.10.
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7. GEOMETRIC INEQUALITIES IN DIMENSION 6

Recall from Theorgtn 6.6 and Lemma 6.9 that if go is the standard S® metric, then
the scale invariant determinant functional for the conformal Laplacian in the standard
conformal class on S is

D(Y,e*“go) _ 64m

3
= -10B
D(Y’ go) 3 °

~3.7!- 1(4m)’log

1?7: {13 /Se{(ldJl’df)w = (1dJf*d€)o} + 34 /s (7)o = (7d)o)

-32 /S 6{(J|V|2'de)‘., - (J|V|2df)o}},

(7.1) +

where B is the nonnegative quantity estimate by the Beckner-Moser-Trudinger inequality
(Theorem 3.7):

Bg := —log /se S =) (dE)o + & /se w(Ao(Ao + 4)(Ao + 6)w)(dE)o -

- By Lemma 6.10, the corresponding functional for the square of the Dirac operator is

D(YV?, e2go) _ 64n° .
D(WzaQO) 3

a2+ B2 s0r [ (@i - (a7Pdgn} - 1578 [ (7). - (Pded}

—72-70- 3(4m)*2 % log (—1146)B;

#1152 [ (VP - (aIVPde) |

In each case, we would like to know that the second group of terms on the right, i.e. that
with coefficient 1673/15, is sharply estimated in the same way (and with the same sign)
as the first (Bg) term. Remarkably, the coefficients that we have extracted from the heat
invariants are such that this is the case:

Theorem 7.1. On Sé, for g = g, = €*¥gy € {g0) in the conformal class of the standard
metric go and having the standard volume vg = 167315, the quantity detY,, is maximized
exactly when -

(7.3) ' go="h-go, some h € ctran(S®,go).

The quantity det Wi is minimized exactly at the same metrics.

Besides Theorem 3.7, the proof will require a clever use of Corollary 3.6, and some
further estimates based on Obata’s Theorem and the conformal geometry of the bundle
TFS? of trace-free symmetric two tensors; these are given in Lemmas 7.2, 7.3, and 7.4.
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Lemma 7.2. On S™ withm > 3, for g, = €2“gy, w € C=(S™),

/ (1aJ]?d¢)w 2 0,
svn - - -
with equality if and only if

(7.4) ' ',,g‘,, = a?h-go, B some h € ctran(S™, go), a € R*.

Proof. The inequality is obvious. Equality holds-if and only 1f J is constant; by Obata’s
“Theorem [ODb) this holds if and only if (7.4). O

Lemma 7.3. On S8, for g, = €?¥go , w € C*(S°),

/se({ldle +2J%}d¢)., = 6 (/SG(|,]|~"d£)‘,,)2/3 > 54,

with oo ({|dJ|? + 2J%}d€)., = 54 if and only if (7.4) (with m = 6).
_Proof. The Yamabe functional in the metric g,,, at a function u € C*°(S%), is

(A + 2J)wu, u)L3((de).)
lellZsqae.)

(7.5) V(w,u) =

]

where u € C°°(M) is not identically zero. By the solution of the Yamabe problem on the
sphere and the conformal covariance relation

V(w +n,u) = Y(w, e*"u)
for the Yamabe functional (valid for general m, (M, go), and w,n € C*°(M)), we have
V(w,u) > Y(0,1) =2Jy=6.

Applying this to u = J,,, we get the first > in (7.5). Corollary 3.6(b) withm =6,n =2
gives the second >, and shows that equality holds there if and only if (7.4). But any g.
satisfying (7.4) has J = 3a~2 and [(df). = a®; showing that [o({|dJ|*+2J3}d§). = 54
whenever (7.4) holds. DO

The third inequality is derived using a second order conformally covariant differential op-
erator D) on sections of TFS? first constructed by V. Wiinsch [Wii, Proposition 3.2]. We
shall give a construction of D) which is easier to generalize, and is based on the group the-
oretic machinery we have already put into place. The idea of the corresponding estimate is
similar to that of the proof of Lemma 7.3: we look at the quantity ((D(2)b, b)3(s¢,7Fs?))w
where b is the Einstein tensor. (As usual, the subscript w indicates that the quantity is
computed in the metric g, = €2“go.) Fortunately, a deep analysis of the analogue of the
Yamabe functional is not required.
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To explain the Wiinsch operator, we widen the discussion for the moment to oriented
Riemannian manifolds (M, g) of dimension m > 3. (Orientation is just a convenience,
" and is not really necessary) Each irreducible representation (V; o) of the structure group
SO(m) defines an associated vector bundle V, = F5o(m) X¢ V', where Fso(m) is the bundle
of oriented orthonormal frames. Because the defining representation § of SO(m) is faithful
- and gives rise to the cotangent (or tangent) bundle, each V, can be realized as a tensor
bundle, though this realization is not unique. The Levi-Civita covariant derivative V
carries sections of V, to sections of T*M @ V,: '

V:C®(M,V,) = C=(M,T*M@V,).

The bundle T*M ® V, is generally not irreducible under thé structure group SO(m) (i.e.,
6§ ® o is not an irreducible representatxon), in fact, it is irreducible if and only if o is the
trivial one dimensional representation. We decompose into irreducibles: -

. N’
(7.6) 6® 0 ~s0(m) P u;

u=1

on the level of bundles, |
T*M ® V, =~so(m) @ N,V,,“ .

u=1

By, e.g., [SW], the summands occur with multiplicity one, so it is legitimate to form the
gradients

(7.7) Gou, = Gu:=Projy, V:C%(M,V,) - C=(M,V,,).

It is immediate that on C*°(V,), with consistent choices of bundle inner product normal-
izations,

N, No
(7.8) V=) G., V'V=) GiG.
u=l ) u=1

Equivalence classes of irreducible representations o € Irr(SO(m)) are parameterized by
dominant weights, vectors o € Z*, £ = [m/2], with

012...20¢, m odd,

(7.9) 012 ...2 001 2 |oel, m even.

The dominant weight parameter is the highest weight in the representation; note the cus-
tomary abuse of notation in using o to denote both the representation and its highest
weight. When writing dominant weights, we shall sometimes omit terminal strings of ze-
roes. Examples are o = (0), the trivial representation; ¢ = (1), the defining representation,
-and ¢ = (2), the trace free symmetric two tensor representation.
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To determine the target bundles for the gradients in (7.7), we just need to perform the
decomposition (7.6). By, e.g., [F, Theorem 3.4], 4 € {u.} if and only if x is dominant
'((7.9) holds) and esther

(7.10) i 7 . p=a£l:e,,

for some aEA {1,...,£}, where ¢, is the a th unit vector in Z‘ or
(7.11) | 7 misodd, o¢ #0, p=o0.

In partxcula.r,

(1)@ (2) =som (1) ©(B)B(2,1), m25.

Now fix ¢ = (2), so that V, = TFS?, suppose that m > 5, and that (M, g) is conformally
flat. We are especially interested in computing the effect of the gradients G(3) , G(s), and
G(2,1) on the (normalized) Einstein tensor b = V — (J/m)g. Because of the identity in

‘Remark 5.4, Vijip = Vigyj, so ,
- 1 -
(7.12) bijte = birt; = ——(Jjagi; = Jijgir)-
Note also that
bijts = ——Jji -
Some elementary tensor calculus shows that the (3) part of any three tensor (y;j:) which
is trace free and symmetric in the j and k arguments is

) 1 2
(Proj(3) ¥)ijk = §(‘Pijk + @jki + Prij) — §(m—+2—)(gu¢nk + grivuj + gikeui),

and that the (1) part is

2 m
T m A 2)(m - )P + T 2 m = 1)(gij‘Pllk + girpu;)-

As a result of these formulas and the identity (7.12),

. 2 1
(Projzy Vb)ijk = Vibjx + m—(m+_2)-]|z'9jk - m(*’ljgik + J|x9ij),
(7.13) ~
. 2
(Proj(;) Vb)ijk = "I Jiigix + s 2(J|,y.k + Jikgij)-
Adding up, we get

(7.14) Vb= G(g)b + G(l)b; 80 G(g,l)b =0
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. by (7.8). The interpretation of what has just happened is as follows: if R is the (reducible)

. 80(m) representation carried by tensors of Riemann type, then the multiplicity of (2,1) in
§®R is 2. (See, e.g., [St].) One copy comes from the VC part, and the other from the Vp
pa.rt of VR. The second Bianchi identity implies that these two are linearly dependent;
i.e., that actual Riemann tensors R have their VR living in a bundle with only one V3 ,)
summa.nd But conformal flatriess implies that the expression in VC associated to the first
copy vanishes; hence all (2,1) information vanishes. ~
For the time being, we once again drop the conformal flatness assumption. ‘In [F],
Fegan shows that each gradlent is conformally covariant, and computes the corresponding
~ conformal bidegrees. Since there may be many different tensor realizations of a V,, each
with its own internal conformal wetght it is important to set all internal conformal weights
to zéro (or some other chosen value) in order to state the result cleanly. The structure group
of m dimensional oriented Riemannian conformal geometry is CO(m) := R+ x SO(m); the
irreducible representations of CO(m) are the

o?(a,h) = a?o(k), a€R*, heSO(m),

where p € C; p is the internal conformal weight. We let V2 be the corresponding CO(m)
bundle. The tangent bundle naturally carries the defining representation of SO(m) with
internal conformal weight —1; while the cotangent bundle has internal conformal weight

" * 41. When we realize TFS? as a bundle of covariant tensors (i.e., in the tensor square of

T*M), we give it internal conformal weight +2; similarly, we have been computing with a
realization of V(3 that has conformal weight +3. Because Vg = 0, the construction of V,’
of the Proj,, , and of natural differential operators is insensitive to the internal conformal
weight. The conformal bidegree of a conformally covariant operator, however, is definitely
affected by the choice of internal conformal weights. In fact, a chase through the formalism-
shows that if

D :C*®(M,V8) = C=(M,V1),
is conformally covariant of bidegree (a, b), then |
D:C%®(M,VE) - C®(M,VY)
is conformally covariant of bidegree (a — p' + p,b — ¢’ + ¢); in particular,
| D : C(M,VE+e) o C=(M, VI+)

is conformally invariant.

Theorem 7.5 [F]. If the gradient G,, exists, i.e. if (7.10) or (7.11) holds, then
Gou : C®(M,VE) = C=(M, Vi)
is conformally invariant for

P =Poy = 3(m — 14 (2ps(m) + 0 + p,0 — 1)),
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where 2p5o(m) = (m—2,m—4,... ,m—2¢{). All first order conformally covariant operators
between SO(m) irreducible tensor bundles arise in this way. O

For many values of o, Fegan’s Theorem leads to a natural construction of a second

order conformally invariant operator from V(m a1z, V("'+2)/ 2, we shall present this
construction here. Note that the formal adjoint of a gradient, being conformally covariant,
is, up to normalization, another gradient by Theorem 7.5. In the notation of (7.7), consxder
the compositions .

(M, Vim-2/1) G oo ,Vm/2) f& C®(M, Vim+D)/2),

(To normalize the’ formal adjoint construction, take the.product metric on the bundle
T*M@®V,.) Fegan’s Theorem shows that, with these choices of internal conformal weights,
G, is conformally covariant of bidegree (c.. ,€u), and G* is conformally covariant of bidegree
(—cu,- —cy), where
Cu = %(1 + (2plo(m) +0 + pu,0 — “"))'
Thus we have the conformal variational formula
(d/de)le=0(GyGu)ew = cu(Gy[Gu s n(w)] — [GL , p(w)]Gu)
= ¢y(GL[Gu, p(w)] + [Gu , #(w)]* Gu).

Since

D [Gup(@)le = [V, p(w)lp = dw @ ¢ =: t(w)p

for any smooth section ¢, we find that

. N,
(d/de)le=0 D €2 (GiGu)ew = V*H(dw) + t(dw)*V,

u=l

where the right side is evaluated in the background metric ¢ = go , provided no ¢, vanishes.
But computing in a local orthonormal frame,

(V*H(dw) + t(dw)" V) = =Vi((Viw)p) + (Viw)Vip = ~(ViViw)p = (Aw)e.
On the other hand, multiplication by J, viewed as an operator from V{m=2/2 4o yim+)/ 2
has the conformal variation u(Aw). We have proved:

Theorem 7.6. In the notation above, if no ¢, vanishes, then

N,
D,:=J- Zc;lG:Gu
u=1

is conformally invariant as an operator from vi{m=2/2 4o vt 2, O

Of course, there is no guarantee that D, is not zero, or zeroth order. Our immediate
interest is the behavior of D(3) in the conformally flat case, and especially on S°. What
we shall use is the following weak consequence of conformal covariance:
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Lemma 7.7. The condition

(7’15) (DU‘Pa ‘P)L’(M Vo) 2 o, allp € COO(M’VU)

is conformally invariant: if satisfied in the metric g, it is satxsﬁed at all metrics e?“gy,
w € C*(M).

Note that the L?(M,V,) inner product is naturally associated to the SO(m) bundle
V. ; that is, it is independent of the internal conformal weight.

Proof of Lemma 7.7. Computing with intérnal conformal weight 0, i.e. in V2, we have

((Da)u‘Pa ‘P)L’(M,g,v,‘;) = /M((Da)u‘Ps ‘P)(dv)w
= / e—(m+2)w/2 ((Da )o(e(rp—2)w/2¢)’ ‘p)emw(dv)o
M \

= [ (@eo(etm=212g), =212y

The fact that the bundle inner product {+,} is conformally invariant is a consequence of
having set the internal conformal weight to 0; if we set it to another value, all terms in the

_calculation change, but of course the result is the same. Since p(e(m=2)/2) is bijective on
C*(M,V,), we have the Lemma. O |

We would now like to establish that (§%, go) has property (7.15) with ¢ = (2). For this,
we return to the thinking of Sec. 2, and set up the principal series Ind$ c @ A® 1. That is,
we replace the trivial representation of (0) of SO(m), which we called 1 in Sec. 2, by the
representation 0. Vectors in this representation can be viewed as sections of the bundle V,
over S™, or as functions ¥ on G which are equwanant in the sense that, in the notation

" of Sectxon 2,

t,b(zman) = a™*"*o(m) ™ ¢(z)

forallz € G,m € M, a € A, n € N. (In particular, p is half the sum of the positive

(g,a) roots as in Sec. 2, as opposed to pso(m) above, which is half the sum of the m roots.)
The K decomposition of the space £(S™,V,) of K-finite sections is given by Frobenius

‘reciprocity, which gives a natural identification of Homs (), 8) and Homg(E(S™,V,), 8)

. for any B € Irr(K) ~ Irr(SO(m + 1)). In particular, the multiplicity of a K-type 8 in

E(S™,V,) is the same as the multiplicity of the M-type o in 8|pr. This latter multiplicity

m(B,0) is given by the following branching rule. First note that the g € Irr(K) are

- parameterized by dominant weights as in (7.9), with m + 1 in place of m. By [Bo, p. 143],

m(p, o) is either O or 1, and is 1 if and only if

Pr2012p022022...2002|Bes1ly m odd,

7.16
(7.16) Pr2012P22022...200-12 P2 oy, m even.

- We say that 8 | o (or o 1 8) if (7.16) holds. By the multiplicity one property, the splitting
E(S™, Vo) =k P 8.

Ble
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diagonalizes every K invariant differential operator, including D) and the Bochner Lapla-
cian V*V. (K acts by isometries, and all operators which are natural in the sense of
Sec. 1 are isometry invariant.) By [Bra3, Theorem 1.1}, the eigenvalue of V*V on the
summand is '

~ P(Cast) — o(Casn),

where Cas is the Casimir operator;

B(Case) = (2pe + B,B)pr  0(Casm) = (2pm + 0, 0)pe

where L = [(m + 1)/2} and pr = (m —1,m ~3,...,m 41— 2L). Note that o(Casp) is
just multiplication by a constant on £(S™,V,).
Looking just at o = (2), :

) 2 oo
ES™ Vo) =P D Fotrin, m24

=0 j"—’O

where
Fio4j,9 =k (2+73,9),

and V*V acts by - ' , - : -
(7.17) 20+)+ij(m+14+35)+(m-3+4q)g

on F4jq) - This allows us to run a “spectrum generating” argument as in Sec. 2 to
determine the eigenvalues of D).

The action of (g, K) on £(S™,V(3)) is by (U,(,z) ,ul?) =: (U, ,u), where u(h) = h- for h
an isometry of (S™, go), and U, (X)) = Lx +(v+ B )wx , where Lx is the Lie derivative, wx
is as in Sec. 2, and A = va for a the positive (g, a) root as in Sec. 2. (In particular, wy, ..,
is the homogeneous coordinate function y;.) The effect of the Lie derivative (unlike the
covariant derivative) depends on the internal conformal weight p; in the expression for U,
in terms of £ immediately above, we have chosen p = 0.

Lemma 7.8. If X € s and f =(2+ j,q) € Nx {0,1,2}, then

(7.18) wxFpg, LxFg C Fg-(1,00® Fg41,00® Fg—(0,1) ® Fp+(0,1) »

where by convention, F(_, ) = F; _1) = F(;3) =0.

Proof. The maps
X ®¢— wxe, XQp— U (X)p

are K equivariant from 5 ® F(24;q) to £(S™,V(z), the K module structure on s being
given by the adjoint representation. Since (s,ad) is a copy of the defining represention of
SO(m+1), s® F24j,q) is K isomorphic to the space on the right in (7.18), by the selection
rule (7.10, 7.11) with m + 1 in place of m, and the result follows. O

The analogue of Lemma 2.4 is:
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Lemma 7.9. For X € 5, [V*V, p(wx)] = 2Uo(X).

Proof The proof is the same as that of Lemma 2.4 until we reach (2.9), which is replaced
by
[V*V, u(yo)] = #(Byo) +2V 2.

But if X is a conformal vector field, an easy calculation (based on the relations V xg9g=0
and Lxg = 2wxg) shows that for a conformal vector field X,

Lx =Vx+pwx on C°°(M,V£)
in general. This and the fact that Ayo = myo give '
[V*V,p(yo)] = 2Lz + mp(yo)  on 5(5"‘ Viz)

as desired. O

Let us say that 8 « « if and only if v is a summand in the K decomposition of s ® 5;
Lemma 7.8 describes the v satisfying 8 « « for fixed 8 | (2). Since s is self-contragredient
as a K module, the relation § « 7 is symmetric. (The symmetry of « can also be read
off from (7.10,7.11) with m + 1 in place of m.) The analogue of Lemma 2.3 is:

Lemma 7.10. (Cocycle irreducibility.) If 8 « v and 8,4 | (2), then
Proj, w(s)Fp = F,

As a result, the orbit O(y) of any nonzero ¢ € Fg, for any 8 | (2), under the joint action
of u(K) and w(s), is £(S™, V(2)). In particular, £(S™,V(2)) has no nontrivial mva.nant
subspace under this action. ,

Proof. In analogy with the proof 6f Lemma 2.3, let
(7.19) t] =Y Projswx, Proj, wx;|s
1=0

for all 8,4 | (2), where {X;} is an orthonormal ba_.ﬁs of s. Here we abuse notation by
writing | and Projg instead of |, and Projr,. The sum on the right in (7.19) is a
K-endomorphism of F{24;,q), and thus t} is a scalar by Schur’s Lemma. By (2.8),

(7.20) > =1
' {7lv~8}
By the trace identity tr ab = tr ba,
(7.21) (dim B)t} = (dim~)t5

whenever 4 | (2). Unlike their analogues in the scalar case, (7.20) and (7.21) are not
~ strong enough to compute the t; . But we can get the rest of the information we need by
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“squaring” Lemma 7.9. Specifically, let ks = (2p¢ + B, B)az be the eigenvalue of S(Cas)
on the # summand of £(S™,V(3)). If 8,7 | 0, Lemma 7.9 shows that if X € s, then

(7.22) (54 — k8) Proj wx|s = 2Proj, Us(X)|s .

Switching the roles of § and 4 in (7.22), composing with the original form of (7.22),
summing over X in an orthonormal basis {X .} for 5, and summing over all 7 « B for fixed
B, we get

— Y (et = ¢S VX'l = (Uo(Casy) — A(Cast)).
{7l7~ﬂ}

By, e.g., [Kn, 8.22 and 12.28], taking account of our normalizations, Uy(Casy) is multipli-
cation by the constant ¢(Casy ) — m?/4, where here ¢ = (2), so 0(Casn) = 2m. Thus -

(7.23) Z (ky — Kg)*th =m? —8m + 4xp.
{vlv—£}

fa=(2+j9),

kg=(m+j+1)j+2)+g(m+g-3),
(7.24) Kg4+(1,0) — kg =m+ 25 + 4,
Kg+(0,1) — Kg =m+2¢ -2,

and by Weyl’s dimension formula (see, e.g. [War, Theorem 2.4.1.6]),

dim(8 + (1,0)) _ (m+j+¢+1)(j —g+4)(m+4)(m +2j +5)
dim B (m+j+¢(0-9¢+3)G+4)(m+2j+3) ’

dim(8+(0,1)) _ (m+j+¢+1)(—g+2)(m+qg-3)(m+2¢-1)
dim g (m+7+9)(7—g+3)g+1)(m+2¢-3)
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This data and (7.20,7.21,7.23) allows us to compute the t} inductively. The result is:

g0 _ (+1)(m+7+3))
B T (G+3)(m+2j+3)
B~(1,0) _ Jm+j+2) _ .
t Y B=(2+3,0),
s T mrmig+y (- ETH0
B+(0,1) _ 2m |
| g (G +3)(m +7),
p+10) _ _ (G+D(m+5)m+j+3) )
p G+2)(m+j+1)(m+25+3)
(A=(1,0) _ JG+3)m+j5+2)
A (j+2)(m'+j+1)(m'+2j+3)} C@4+i)
A (m+]+1)(] +2)(m —-1)
A-01) _ 2m
p T (m+j+1)(§ +2)m-1) ]
(AH10) _ (m+j)m+3+3) )
A (m+,7+2)(m+2_7+3)
B-(1,0) _ i +3) -
t =(2+3,2).
4 TG +1)(m+2+3) A=0+12)
-(0,3) _ ___ 2
s (J+1)(m+J +2))

(Recall that we assumed m > 5.) In particular, none of these numbers vanishes, except
those giving t; when it is not the case that 4 | 0. This establishes the lemma. ]

Corollary 7.11. If 3 =(2 + j,q) as above, B « v ] (2), and X € g,
(7.25) ' Proj, U,(X)|g = c(B,7,v) Proj,wxls,

where ¢(8,7,v) = 3(ky — £ +2v). If || < (m —2)/2, then Proj, U,(X)|s = F., , and the
assertions of Lemma 7.10 hold with (u(K),U,(s)) in place of (u(K),w(s)).

Proof. For X € ¢, both sides of (7.25) vanish, so we are reduced to X € s, for which (7.25)
follows from (7.22) and the fact that U, = Uy + vw. For the rest of the statement, we just
have to know that ¢(8,7,v) # 0 for |v| < (m — 2)/2; this follows from (7.24). O

With this irreducibility result in place, we can follow the arguments of Sec. 2 to generate
the spectrum of an intertwining operator A of bidegree (—1, 1); this operator will be unique
up to a constant factor. Since the Wiinsch operator D(3), being conformally covariant of
bidegree ((m — 2)/2,(m + 2)/2), must in particular be intertwining with bidegree ((m —
2)/2,(m + 2)/2) - (m/2,m/2) = (-1,1), it will have to coincide with A up to a constant
factor C. Since we are interested in positivity properties of D(;) , we shall need to determine
(at least the sign of) C.
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Lemma 7.12. Form 2 b, the eigenvalue of D(3y on F(34j,q) is

(7.26) Hatia) = (m +4+2)(m ;:n ++2; ;gr(nm+ 2:) 2)(m+2~4)

In particular, D) satzsﬁes condition (7.15) on (S™, o), and thus on (S™,e?¥g,) for each
w € C=(S™). ,

Proof. By Lemma 7.10 and Corollary 7.11, an intertwinor of bidegree (—1,1) has
(ky = kg = 2)pty = (ky — K5+ 2)pp

whenever # < v and §,v | (2). By the proof of Corollary 7.11, all coefficients in this
relation are nonzero, so the list {¢g} is uniquely determined up to a constant factor.
Computing inductively, we get

. C(m+4+23)(m+2+2j)(m+2q 2)(m + 29 — 4)
Hatia = (m +4)(m + 2)(m — 2)(m — 4) ’

where C' = p3,0) is a constant which may depend on m. By Theorem 7.6,

2 = 2 L
(7.27) Day=J+— G(s)G(a) e AL OV R ey ECRNCERVE

(Note that (7.27) and the conformal covariance relation for D(,) are completely general,
and in particular do not depend on conformal flatness of the metric.) By the branching
rule (7.16) and Frobenius reciprocity, the multiplicity of (2,0) in the K decomposition
of £(S™,V(3)) is 0, and similarly for £(S™,V(2,1)). Since gradients are K equivariant
operators, Schur’s Lemma implies that G(3)¢ = 0 and G(3,1)¢ = 0, so computing in the
standard sphere metric go , we get

2 . 2 o
D(z)go = (J - m—+§G(1)G(1)) (J - _ﬁv V) ®s pE F(2,0) :

But with go as the metric, J = m/2, and V*Vp = 2¢ by (7.17). Thus

(m+4)(m—-2)
2(m+2) °

C=pa0n=

as desired for (7.26). The statement about condition (7.15) follows from Lemma 7.7. O

Theorem 7.13. Suppose m > 5, and let go be the standard metric on S™. Then on
(8™, 9.) with g, = e2¥g, w € C®(S™),

2(m - 1)(m - 2) m+4 2m
/m({ 4+ ) |dJ |2 — J3+ JIV|E - m+2trV3}df)w20,
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with equa.lzty dand onIy if (7.4) holds. If m = 6,

/ ({|<1J|2 B, 4—58J|V|2}d£) > 108,
S6 w

with equality if and only if (7.4) holds (with m = 6).
Proof. By (7.14) and (7.27), on any Riemannian manifold (M, g),

' 2 2
Dmb=(J+m+QGmGwr'm+2GmG00b

2 eo_ 4

Thus

| 2 4
(7.28) (Db, b)P,(M,g,Tps,, = /M Tbldv + —— IV = —= 6B,

. where the norms are those of the L? section spaces of the appropriate bundles. But
(7.29) 19|12 = |[VV — LdJ @ g|I* = |VVI? - 2lld7]>2.

At this point we restrict to the conformally flat case. Using Remark 5.4 and mtegratmg
by parts, we get

”VV“2 / :)IszJIkdv—/V:J]lekbdv— /V:JII:; Virdv.

By the Ricci and Bianchi identities,

Vijik; = Vijiix + Rpik; Vi — Rjpk;Vip
= Jjik — RijxiVii + ppiVip .

But
ppkVip = (m = 2)Vpr Vip + J Vi,

and (using conformal flatness again),
—RijuiVii = VaVu — IV + VirVji — VI2gik .

Furthermore, integrating by parts again and using the Bianchi identity,

/JlikV.-kdv= —/JliViﬂkdv: —/ld]lzdv.
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Collecting calculations, we get that
Ivv|? =/IdJ|2dv+/J|V|2dv—m/trV3dv

in the conformally flat case. By (7.29),

(130) Vb= -"-‘mll / |dJ2dv + / IIViPdo - m / tr V3dv.
"By (7.13),
(7.31) : ||G(l)b||2'= 2Am =1) |d72dv.
m(m + 2)
Finally, -
(7.32) T = JIVP = 172,

Collecting the information from (7.28), (7.30), (7.31), and (7.32), we get that

(D(2)b,b)L2(M,9,TFs?) =
/{ g IR = P+ TSIV - Z oV s

in the conformally flat case. This and Lemma 7.12 imply the first (general m) inequality
in the theorem. Furthermore, by Lemma 7.12 and the conformal covariance relation for
D3y, equality holds in this inequality if and only if e(m=2w/2p  vanishes, if and only if b,
vanishes, if and only if g,, is Einstein. Since Einstein metrics have constant scalar curvature
for m > 2, Obata’s Theorem finishes the general m part of the theorem.

Specializing to m = 6 and multiplying both sides of the inequality by 48/5, we get that

/ ({ld]|2 - §J3 +12J|V|? - 353 tr V3} d{) >0,
S6 w

with equality if and only if (7.4) holds. We now use the conformal invariance of [ Qe¢dv to
eliminate the tr V3 term from this inequality: by Theorem 6.4,

/Qsdv=8/{J3—3JlV|2+2trV3}dv, m = 6.

Adding 0 to both sides of our inequality in the form & [, {(Qsdv). — (Qsdv)o}, we get
the second (m = 6) part of the theorem. O

We are now ready to prove the main theorem of this section.
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Proof of Theorem 7.1. Neither Y nor Yg has negative eigenw;lues, so the same holds for
Y, and 7: by Theorem 4.8. (Alternatively, the fact that ¥ is formally self-adjoint implies
that Y2 will never have negative eigenvalues.) Thus maximizing detY,, is the same as
" maximizing log(D(Y; €2“¢9))/(D(Y, g0)), and similarly for minimizing det Yi . Collecting
the information from (7.1), (7.2), Lemmas 7.2 and 7.3, and Theorem 7.13, and representing
the quantity

/ {(14Td€) - (14T 12dE )0} +b / {(J3d)0 — (FPdE)o} +¢ / ((JIVIdE)w - (JIVIPdEY}
S Se Se

by the triple (a,b,c) € R3, we just have to show that the vectors
wy =:(13,34,-32),  —wya := (507,1578, ~1752)

have positive coefficients when expressed as linear combinations of

a

u; := (1,0,0), uz :=(1,2,0), u3 := Q, % ’_4_)'

But

(7.33) 3wy = 6u; + 23uz + 10us,

and | )
(7.34) ~2wgs = 93u; + 556uz +365u;. O

Remark 7.14. It is remarkable, and somewhat mysterious, that the vectors (7.33) and
(7.34) representing the “trailing terms” of the functional determinants of Y and V2 fall
into the rather narrow positive cone K generated by u;, uz, and uz. The coefficients
involved are simply buried somewhere in the heat invariants, and thus are determined
“purely algebraically.” There would seem to be no a priori reason that these coefficients
should satisfy inequality constraints, but they do. Such “luck” was also present in the four
dimensional case; for each operator, the sign of one constant had to be correct to get an
extremal result. Specifically, the quantity asserted to be positive by the norm computation
for the Sobolev imbedding L? « L* had to have a coefficient sign “matching” that of the
L% < ¢! quantity. In six dimensions, our proof demanded that three signs fall into place.
(The true maximal positive cone is actually larger than the one we have constructed; see
the next remark.) The inequalities we have used can be thought of as (at least consequences
of) two imbeddings L? — L3, that for scalar functions and that for trace free symmetric
two-tensors, and of course L2 «— el. One of the challenges for future work is to explain
why these sign miracles occur.
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Remark 7.15. It would save quite a .bit of delicate conformal geometry, as well as the
" introduction of the principal series Ind$; , y(2)®v ®1, if we could replace the posxtxve quan-

tity (D(2)b, b)L2(ss,g, ,TFs2) Of Theorem 7.13 with the simpler quantity |G3)bl1* , which we
have not yet used. By (7.8), (7.14), (7.30), and (7.31), _

IG@)bl* = / {—g—_—:—gldﬂ’ +J[V2 = mtr V3} dv, m>5.

Thus 48
/{ldJ|2+ J|V|2 t V3}dv20, m=6.

Adding 0 in the form 2 [ {(Qsdv)w — (Qs dv)o}, we eliminate the tr V3 term as usual; the

result is ) 24 64
/ {wP ?JIVP} dv>0, m=6.

Even on S°, this is new information, since the vector
b . b

)

representing this quantity is not in the positive cone K described in the last remark:

U4 = (1) '%4"—

ol

3U4 = 311-1 - 4“2 + 4‘l.t3 ,

and of course u; , uy , and uj are linearly independent. However, we cannot prove positivity
of wy or of Wy ? using only v, , uz, and uy4, since

2wy = —uy + 22uz + Suy, —Swye = —T723u; + 3684us + 1095u, ,

and u;, uz, and u4 are linearly independent.

While signs of trailing terms must miraculously fall into place in order to produce the
extremal behavior summarized in Table 0.1, the sign of the leading term’s coefficient is
predictable in arbitrary even dimension m. Indeed, by [BG@1, Theorem 1.5], any natural
operator of the form A = V*V — c4J, c4 constant, has

(47)™/?(leading term)(Un [4]) =
(7.35) (-1)™/2(m/2)!
2(m+1)!

(=2m(m — 1) + 4(m + 1)en)A(m-D/2],

To be precise about what is meant by “leading term”, recall the notation of Corollary 1.4:
the right side of (7.35) agrees with (47)™/2U,,[A] modulo Z;n m—4. By Corollary 1.4, it
also agrees with Q,, modulo Z,; ;m—4 . This explains the sign pattern in Table 0.1: Y and
¥? both have the form V*V — ¢J, with ¢y = (m — 2)/2, cpr = (m —1)/2. But the sign
of the quantity —2m(m — 1) + 4(m + 1)c4 changes as ¢4 moves between these two values:

—2m(m — 1)+ 4(m + l)cy = —4, =-2m(m—1)+4(m+ l)cyz =2(m -1).
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Thus
(leading term)(Unm[Y]) = —=(~1)™/?kyQm, (leading term)(Um[V?]) = (=1)™*kp31Qm,

where ky and kyz are positive constants. If Up[A] consisted only of its leading term, the
consequence would be the obvious extension of Table 0.1. Guessing that the signs of the

trailing terms’ coefficients will continue to fall into place as we go up in dimension, we
offer:

Conjecture 7.16. On S™ for m even, for g = g, = €¥¥gq € [go] in the conformal class of -
the standard metric go and having the standard volume vy = (47)™/?T(m/2)/T(m), the
quantities —(=1)™/2 detY,, and (—1)™/2 det V> are maximized exactly when

gu="h-go,  someh € ctran(S™, go).

It remains to treat other operators A satisfying our assumptions 4.1, 4.3, and 4.6. For
example, limiting ourselves just to operators that we have discussed here, we. could treat the
P, when (1.6) is satisfied, or the Wiinsch operator D(,) of Section 7 when m > 5. Certainly
computations with P = Py in dimension m = 4 are feasible; the relevant information about
the heat invariants is contained in [G3]. Perhaps some analogue of Conjecture 7.16 is
more tractable for the operator P, , which is in some ways more like the two dxmensmnal
Laplacian than is the conformal Laplacian in dimension m.

Another exciting challenge is that of determinants of elliptic boundary value problems.
There has been much recent progress in developing computation schemes for ‘boundary
contributions to the heat invariants [BG1], and in deriving sharp boundary value Sobolev
inequalities [E1-2]. A rich supply of conformally covariant boundary value problems cer-
tainly exists; for example, if the basic operator (acting in the interior of our manifold with
boundary) is the conformal Laplacian Y, one can choose either a pure Dirichlet condition,
or a generalized Neumann condition known to physicists as the Robin condition, and have
conformal covariance as well as ellipticity. See [E1, Sec. 1] for a description of the Robin
condition, and [BG2] for determinant computations in dimension four based on these con-
ditions, as well as for a discussion of the “correct” boundary conditions for a higher order
conformal covariant like Py .

In another direction, it should be possible to attack all of these problems (covariant op-
erators, sharp inequalities, functional determinants) in geometries other than Riemannian
conformal geometry; specifically, a target of interest and opportunity is CR (tangential
Cauchy-Riemann) geometry. Indeed, just as our considerations here are intimately related
to the complementary series of representations of SOg¢(m + 1,1), so are those for CR ge-
ometry to the complementary series of SU(m + 1,1). The necessary programs in these
other geometries are certainly at a much more primitive state of development than their
Riemannian conformal analogues, but the requisite hard analysis and heat operator theory
are in progress.

We have concentrated here on finding a (one sided) bound for the functional determi-
nant. The other side of the coin is the prospect of using the functional determinant to
bound other quantities, notably the metric. This brings us into the realm of isospectral
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problems; specifically, problems of determining the “size” of a set of metrics which are
isospectral for some given operator, for example A or Y. In this context, “compact in
the C* topology modulo diffeomorphisms” is the usually conjectured size; if it is possible
to show that nsospectral classes are smgletons (modulo diffeomorphisms), one is “hearing
the shape of a drum.” The point is that the functional determinant has been crucial in
some such investigations, in particular [OPS2] in dimension two, and [BCY] in dimension
four. The exponential class inequality needed, again the description of the norm of the
imbedding L? mf2 < eL, is provided by a transplantation to “bumpy” manifolds of an ex-
ponential class inequality of Adams [Ad], originally proved for domains in R™; see [BCY,
Proposition 2.2] for such a transplantation. . ' ,

- Finally, because of our interest in extremal problems on the sphere, we have up to now
on the conformally flat case, obtaining general formulas for the functional determinant
that involve the Euler characteristic x(M). Beyond conformal flatness, x(M) tends to
get replaced by linear combinations of x(M) and various invariants of conformal, but
not of topological, structure [B@3, BCY]; see Sec. 9 below. Since many manifolds with
conformally curved background metrics exhibit a high degree of symmetry (see, e.g. [BCY,
Sec. 3]), there are new frontiers for the present techiques even within Riemannian conformal
geometry.
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8. THE VALUE OF THE FUNCTIONAL DETERMINANT AT THE EXTREMALS

Now that we know the metrics on -S?, and in the standard conformal classes [go] on
5% and S, on which det Y and det v2is extremal it is possible to actually calculate the
extreme values. So far we have formulas for quotients like (det Y,,)/(det Yo), knowing the
~ extremal value (wluch is taken on at go), we will then know detY,,. It is not at all clear
‘whether there are any real applications of this further knowledge. We shall show:

Theorem 8.1. The extreme values of detY and det Y* referred to in Table 0.1 are given
~ in terms of the Riemann zeta function (r(s) by the following table.

—logdetY,, ' —log det Yi
S? -3 +4(Rp(-1) o 8Cr(-1)
s l{4‘8+2’c;z( ~3) + Cr(-1)} ${CR(-3) — ¢h(-1)}
S° Ak + Ch(=58) = Ch(-1)} | £{Ch(~5)—5Ck(~3)+4¢h(-1)}

TABLE 8.1

In this section, the index j will always run over the natural numbers N. The Hurwitz
zeta functions are '

C(s) =) (i +a)™" a>0,
_ J
and the Riemann zeta function is (r(s) = (1(s). Note that

(d/da)a(s) = =sCals + 1),

1) (a(8) = Can1(s) = .

Consider the double zeta functions
ha(s) =) [+ )i +a+1)]",
J

fa(s) =3 (27 +2a+ 1[G +a)(i +a+ 1)),

In analogy with (8.1), we have

(8.2) (d/da)he(s) = —sfa(s + 1), |
(8.3) ' (d/da)fa(s) = (2 — 4s)hqa(8) — she(s + 1),
(8.4) ha(s) = has1(s) = [a(a +1)]7*,

(8.5) fa(8) = fa41(s) = (2a + 1)[a(a + 1)) "
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All these zeta functions have isolated simple poles. All identities are valid in their elemen-
tary form for large Res, and for all s in the sense of analytic continuation. In particular,
a quantity expressed as a sum or product of terms, some of which are singular at a given
value of s, might still be regular at that s.

The Riemann zeta function satisfies

(86)  CR(~2m)=0, (a(1-2m)=(=1)"Bn/2m (m€Z*); (r(0)=-1},

where the B,, are the Bernoulli numbers: B, = 1/6, B; = 1/30, B; = 1/42, B, = 1/30,
Bs = 5/66, ... [WW, 13.15]. Further [WW, 13.21],

Ca'(o) = % -

A strmghtforwa.rd generalization of a calculation in [We] gives, for the double zeta func-
tions,

. m ()2 m
(8.7) ho(-m) = (2(;) _(*_1))2 + E( l)k( )<a+1( 2m+k), meN

Differentiating using (8.2), we get
(8.8) fo(1—-m)= Z( 1)"( )(Zm k) at1(—2m+k+1), mezZt.

(If is tedious, but possible, to check the derivative of this formula against (8.3); the values
given in (8.6) are necessary for this.) In particular,

ha(0) = —a, hq(-1)= __ + Ca+1(—=2) = Ca41(-1),
fa(0) =3 —d® fa(-1)= 2Ca+1( 3) — 3Ca+1(—2) + Ca41(-1).

If a is a natural number in the above formulas,

ha(-1) = —da(a® = 1), fa(1)=—% — Ja%(a® - 1).

Now consider s-derivatives, denoted by a prime. In analogy with

(r(0) = —3 log 2,

and again generalizing computations in [We], we have:

ha(0) = 2(;4,(0) — loga,
hi(~1) = 2¢.,1(~2) - (a® + a)loga,
fa(0) =4¢14(-1) = 3 — (2a +1)loga,
fa(=1) = 4(111(=3) + 241 (1) — a(a + 1)(2a + 1) loga + ;.

(8.9)
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Vardi {Va, Propositién 3.1] has made related calculations with the functions

H}(s) = d,neZt

Z k’(k+ ny’

Extending the domain of the d parameter to run through N, these.can clearly be related
to our double zeta functions; for example,

hy=Hg, fi=2H{+ Hy, hyj(s)=4"Hi(s) - Hy(s),

(8.10) fia(s) = 4°(H3(s) + H2(s)) — 2H}(s) — HY(s).

In fact, we shall only really be interested in h, and faforae lZ‘*, so by (8.4) and (8 5),
the HJ are sufficient for our ‘purposes. Furthermore, since

(8.11) H,?(s = 1) = Hj, ,(s) + nHg,,(s),

knowledge of the behavior of the H} at s = 0 will give us knowledge of the behavior the
H}, and thus the h, and f, fora € %N, at all nonpositive integers. More specifically, let
d range through N, n through {1,2}, and a through IN. If we know H7(0) and (H})'(0),
then we also know h,(—m), hl,(—-m), fo(—m), fi(=m). Vardi shows:

Theorem 8.2 [Va). Ifd,n € Z%,

(2 = 3k o e Z"‘HR( d)+(-n)"20(,. ey

In particular,

d+1
3y = -5 07 ZJ_I'*'CR( B+ (043 () vreen

r=0

The results of our computations, based on Weisberger's method via (8.7), (8.8), and
(8.9), check with Vardi’s where applicable. A slight gap remains in our knowledge, in that
we have no formula for (H§)'(0), but this does not keep us from getting the data needed
for Theorem 8.1.

Consider first the conformal Laplacian Y, which is the constant shift
Y=A+im(m-2)

of the Laplacian on (5™, go). By (2.10), Y takes the value

s = (5425 6+ 5)
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on the space Ep,j of j*& order spherical harmonics. But

m+2)—1

Npm,j = dimEp,j = —(-m_—l)!—(m +5i=2)...0+1),

so the zeta function is

C(S"‘,go )Y)(s) =

(m_l). Z(m+21 -1){(m+1 ~2). ‘(j+1)} {(J+T—2——'2') (j+-'721)}—‘, |

m2> 3

=0

Now note that the factors of both Ap,; and Ny, ; exhibit a certain symmetry about the
value j +ﬂ,}l; this allows us to perform the following trick. If m is even, define a polynomial
& (z) and integers by,m by

m-4 m-=2
==

LEL
m(z)= [[z-pl0+1)) = ) bamz®.
p=0 o=1
Then
(8.12) C(sm,g0,¥)(8) = -(Tni_l)i E ba,mf_vp;_z (s — a), m even.
' a=1

But recall that this really expresses {(sm g4, ,v) in terms of f; , since

m m-=4

fmza(s) = fuls) - Z (2¢ + 1){q(g + 1)} *.

q_

In fact, the situation is even simpler than this: we can actually replace fim_2)/2 by fi in
(8.12), since

m;?
z ba,m{g(g+1)}* = ¥m(q(g+1))=0
a=1
forg=1,2,..., 1"—;—4- . The result is:
. .
1
(8.13) C(sm,90.Y)(8) = R ; bo,m fi(s — a), m even.

The case m = 2 is exceptional in that the zero eigenvalue must be thrown out before the
construction of the zeta function; the result is

(8.14) ((52,90,0)(8) = f1(s).
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Specié.l cases of (8.13) are

8.15) ((st0.)(8) = i(s — 1),
-~ (8.16) (50,90, 7)(8) = 135 {fi(s — 2) = 2fi(s — 1)}.

If m is odd, define a polynomial ¥,,(z) and rational numbers co,m by

. mes mol
()= [Je -G+ DE-3) =D cams™.
=0 a=0 .
Then
; _ \ o
C(sm.90,¥)(8) = m—1) 2 ‘ca,mh_";’-_z (s —a), modd.
a=0

This is a formula in-terms of hy/,, since

. me3 |
haga(s) = hy(s) = D_{(a+ e I

g=1
In fact, since
m=1 .
=
Y cam{(@+3)g— 31" =¥m((@a+3)e-3) =0
a=0 :
forg=1,2,... ,L"—;-'—%, we may simply-replace h%—_z by hy/s:
m=1 .
2 2
C(S'",go ,Y)(S) = (m——l)' Z Ca,mhg(s —a), modd.
' a=0

As special cases, we get

(53,00, ¥)(8) = hy(s = 1) + 3hy(s),
U(s8,90,7)(8) = F5{hy(s = 2) = Jhy(s — 1) = Fhy(s)}.

The square of the Dirac operator is easier in a sense, because only the single (Hurwitz)
zeta functions enter. (In general, n-fold zeta functions, i.e. those involving expressions of
the form [(j+a)(j+a+1)...(j+a+n)]~*, seem to be needed to treat n'k order operators.)
By [Bra3, Sec. 4], ¥? on (5™, go) has eigenvalue

(8.17) pmi = (i + %)2
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on a space of dimension

2l+1
(m—1)1"

where £ = [m/2] as in the last section. First assume that m is even; then

- T (650 6301 6

Tmji= ——y(m+i=1...G+1),  jEN,

y=0 | p=1
‘We write
Zm(@) = [[(-p*) = ) dame®.
=1 a=0

Proceeding for the most part as in the case of the conformal Laplacian, we compute that

2(m+2)/2 o 252 A
smae v () Zo Z w(i+3)
2(m+2)/2 =2
(m -1)! ; a,mCm/z(ZS -1-2a).
But by (8.1),
Cm/2(s) = Cr(s) = Y q~°,
g=1
and so
2(m+2)/2 =52
Cism.g0.,7%)(8) = Z da,mCr(2s — 1 —2a) — Z =221 Z domg®®
' a=0 =
But

m=—2
-z
Z dnr,mqmr = E(qz) =0

a=0

forg=1,... ,"'—2'?—. As a result,

9(m+2)/2 9_5—_2
C(S'“:yo ‘YQ)(S) = (m — 1)! da’mCR(zs - 1 - 20)’ m even.

a=0
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In particular,

((sz 90,V )(s) 4Cr(2s — 1),
(8.18) C(s4,g° ¥ )(3) = §{CR(28 - 3) - (r(2s - 1)},
C(s%.90,97)(8) = T {CR(28 = 5) = 5(R(2s — 3) + 4(R(2s — 1)}-

- If mis odd,

m=1

= 2
; . .. m
(m+j-1)...(74+1) = H [(] +_2_) —(p- %)2] :
r=1
so we write
np1 met
Om(z) := H (z—-(p- %)2) = Z €a,m%,
- p=1 : a=0
and compute that
2(m+1)/2
C(S"',go ,73)(8) 1)' ;} €a mCm/2(28 - 20)

However, by (8.1),

m=1
2

Cmy2(s) = C;/z(s)." Z q°.
g=1

As above, the sum over ¢ makes no contribution, and

=1

o(m+1)/2 2.
Csma0 () = oy 2 CemCiya(2s —20),  m odd.

a=0

For example,

C(Saygo ,72)(8) = 2{C1/2(28 -2)- %Cl/'é’(zs)}s
(58 ,90,9%(8) = 3{C1/2(25 — 4) = §C1/2(25 = 2) + F5¢1/2(29)}-
The information we have collected is sufficient for computation of the determinants of

a wide variety of elliptic operators and boundary value problems on the sphere; however,
we shall content ourselves just with the computations needed for Theorem 8.1.

- Proof of Theorem 8.1. By (8.1), (3 = {1 = (g, so by (8.9), (8.14), and (8.15),

{(s,50,0)(0) = £1(0) = 44;1(_1) -1
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and
(lst.90 (0 = §£i(=1) = 5{35 +2R(=3) + (R(-1)}.
By (8 16), we e need to know fl( -2). By (8.10) a.nd (8. 11),

fi(-2) = (2H! + H})'(-2) = (2H} + 3H} + H})'(-1) = (21:!l +5H; +4H} + H, )'(0)

‘By Theorem 8.2,
(H3)'(0)= 1 + 2(R(~2) — 2¢R(-1) + CR(0),
_‘(H3) 0)= ot 2Ck(—3) - 3¢k(=2) + 3CR( 1) - CR(O)a

(H)'(0) =5 + 2(R(—4) — 4CR(-3) + 6(r(—2) — 4¢r(-1) + (R(0),
(H3)'(0) = 335 + 2(R(=5) — 5CR(~4) + 10¢R(~3) = 10¢k(~2) + 5¢x(~1) — (R (0).
Thus 7
fi(=2) = — 135 + 4CR(=5) + 8¢R(-3)-
Finally,

Cise.00 11(0) = T 11(=2) = 2£(~1)} = F5{~3 + (R(=5) = Cr(-1)}-
For the values of — log det ¥, it is immediate from (8.18) that

Cz.S’,go ,yﬁ)(o) = 8(&(-1)?
ey, 5o (®) = ${Ch(=3) = CR(-D)},
o s, y(©) = {C(-5) = 5Ch(-3) +4CR(-D). O

Though it is not at all clear whether the relative size of the numbers in Theorem 8.1 has
any significance, we include here a computation of their numerical values to three decimal
places; Table 8.2 gives e~ for a the corresponding entry in Table 8.1. The numbers are
based on a table of values for ((k/(r)(s) given in [Wal].

EXTREMAL VALUES

detY,, det V2
$? | 3195... | 3.756...
S¢ | 1.046... | 0.634...
§¢ | 0.995... | 1.202...

TABLE 8.2
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9. BEYOND CONFORMAL FLATNESS IN THE FOUR DIMENSIONAL CASE

It this section we recount results of Branson, Chang, and Yang [BCY] on the question
of using the functional determinant to bound the metric. The idea is to show that a set of
isospectral conformal metrics is compact (modulo the effect of. dxﬁ'eomorphxsms) in the C*
. topology, this problem is still unsolved in dimension four, but our results give boundedness
in the Sobolev L2 topology. If it were possible to improve this to L%, or L2*¢ for any
€ > 0, one could use the heat invariants to carry out an inductive estimation scheme that
would replace LZ by L2 for any n € N; this would give compactness in the C* topology. -
So far the requisite improvement has remained elusive.

As in [B@3, BCY], we wish to work without the assumption of conformal flatness.
Accordingly, we work in the category of compact Riemannian manifolds (M, g) (without
. specifying the dimension m just yet), and suppose that we have an operator A satisfying
4.1, 4.3, 4.6. We shall be concerned about the heat invariant Us[A], so we assume that
the pair (4, A) satisfies part (a) of the technical assumptions 5.1. Recall the discussion
preceding (5.6), where it was established that the four invariants

ICP2, VP2, J2, AT

form a basis of the space L4 of O(m) scalar invariants over Rat(m). If we wish to deal
~with orientation sensitive operators A in dimension four, we need to consider instead the
space of level four SO(4) invariants, of which a basis is [C4+ |2, |C_[?, |V[?, J?, AJ, where
Cy are the self- and anti-self-dual parts of the Weyl tensor C. (The bundle of which C is
a section is a subbundle of the symmetric tensor square of the middle exterior bundle AZ;
thus the Hodge x acts.) Though it is not much of a problem to make the modifications
to deal with orientation'sensitive A (especially with the approach of [B@3]), we shall not
"do so here. Recall that part (b) of 5.1 was automatic in the conformally flat category
for n = 4; by the same reasoning, the following is true without the conformal flatness
assumption: there is a rational function #(m), regular at m = 4, with

ua(m)Un[A4] ~ as(m)Q + B(m)|C|?* + (m — 4)By(m) modulo R(6),

where all other quantities are as in Sec. 5. In dimension four, (|C |2dv)., is independent of
W, SO W fw(|C|2dv)w is a conformal primitive for [C|* which vanishes at w = 0. In our
notation, the Pfaffian is

PR, = (327%)") / (ICJ? = 8|V]? + 8J2)dv
by [BCY, (2.14)], so the analogue of (5.7) is

(9.1) 8n?[Pfl) = [LICP + 272 -2V} = }[IC|*] +[Q] in CL}/6F}.

These considerations lead in a straightforward way to the following generalization of
Theorem 5.11:
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Theorem 9.1 [BA3). Suppose A = A(m) satisfies 4.1, 4.3, and 4.6, and is regular and
orientation insensitive at m = 4. Suppose that the pair (4 A) satisfies 5.1. Let (M, go) be
- a particular compact Riemannian four-manifold (with spin structure if required to define
A), and suppose that N(A) =0 on (M, 90)- Then

~ (20 ua(4)log j“j = Jou) [ wd(@a)o+ (Qae} + 58 / (P o)
+ kV(4)/ {(IVIPdv)e — (IV2dv)o} + kJ(4)/ {(FPdv)y, ~ (I2dv)o)
M M
- 04(4){% /M w(Pow)(dv)o + /Mw(de)o} +(4) /M (ICPdv)o

+ (kv(4) + kJ(4)) /M{(szv)w - (sz‘v)o}

where a4, kv , and k; are as in Theorem 5.11. The scale invariant determinant functional
1S

e2w
—(20)" u4(4)log %;g.)(’_) =
) {2”2“‘(4)X(M )+ 3(68) — fou(®) /M(|C|2dv)0} log ——-fM,,ZIfof :
det A,

—(20)"u4(4)log O

det Ao

Recalling Remark 5.12, we adopt the following notation to harmonize with [B@3,
BCY}:

ua(4) " ae(4) =: 162(4], wa(4)7(kv(4) + ks(4)) =: 3Bs[A4), ua(4)7'B(4) =: Ai[A).

Furthermore, we shall usually denote ;[A] simply by 8. If Qo, (|C|*)o, and J, are
constants, say (|C|?)o = ¢?, Theorem 9.1 gives

D(A, ez“"go) _
D(A, 90)

~ {m?B2x(M) + {(B1 — §B2) vol(go)c? } log =M ————

—(20)7log
fM “(dv)o

vel(go)
+16:{Qo [ wl@odo+} [ (Pl + 51 [ wlaoe
+ 380 { =72 vol(an) + [ wran.}

= {476 x(M) + (1 = §B2) vol(g0)c") {f““”io‘:((;v))o' - gloe —va;:;j ) ” }

#3162 [ wlBdolo + 46 { - volan) + [ 177},

(9.2)

in view of (9.1).
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Remark 9.2. By Schoen’s solution of the Yamabe conjecture [Scho], the Jo = const
assumption is “gratis”; we can always take such a background metric go if M is connected.
This and the other constancy assumptions are certainly satisfied for a locally symmetric
(VR = 0) background. [B@3] assumed that go was Einstein in addition; here we have
_removed that assumption, which really only serves to guarantee that Py is a polynomial
in Ag with real coefficients:

go Einstein = P, =‘(A2 + JA), Qo = %J& .

A normal coordinate argument shows that if gq is locally symmetric and M is connected,
then the eigenvalues of Vj are constant over M, and thus there are constants hy and h,,
depending on (M, go), such that

o3 | /M W(AZw)(dv)o + ho /M \do[2(d0)o < /A’lw(Pow)(idv)o
9.3 -

< /M w(A3w)(dv)o + hy /M |dw[5(dv)o -

We shall use (9.3) to eliminate the need for the Einstein assumption in Theorem 9.10
“ below. If we freeze out scale changes by demanding that vol(g.) agree with vol(go), we
can simply drop the log term in (9.2), and replace the D functional by the “det” functional.

Remark 9.3. As remarked in [BD3, Sec. 4], we can use (5.10) to compute that
(47?)2 * 180(ﬂ1 ’ ﬂ2 ’ ﬂ3)[Y] = (1, —4, —4),
(4)% - 360(B1 , B2, B3)[V?] = (~7,88,28).

(In fact, except for the f, values, we have already computed this in Lemmas 5.13 and:
5.15.)

In the following, we use the notation f u for normalized integration; that is,

][M, dv, = ( /M . dv,) / vol(g).

In this notation, f = f,,fdv, for f € C*°(M), and (9.2) reads

D(A,Czugo) _
D(A’ 90) B

(94) -2 {472 Box (M) + (b1 - %ﬂé)vol(go)g} log fMe4(””°)(dv)o

—(20)" ' log

+36 [ w(Puo)anlo + 363 { -T2 wolton) + [ (7700}

To get an estimate of this, our first pressing need is a generalization of the Beckner-Moser-
Trudinger inequality Theorem 3.7 to handle the part not involving f; ; this is gotten by
transplanting to manifolds a Moser type inequality of D. Adams, originally proved for
domains in R™.
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Theorem 9.4. [Ad, Theorem 1] Let n < m be positive integers, and let Q be a bounded
domain in R™. There are constants ¢ = co(n,m) and By = Bo(n,m) such that for all
u€ C"(R"‘) with support contained in ! and ||V"u||, <l,p= m/n

(0.5) * / exp(Blu(z)l’ )z < alft]

for all B < Bo, where p' = p/(p — 1) and || is the measure of ). Furthermore, if 8-> fo,
then there exists a smooth function u supported in @ with ||V"u|, < 1 for which the

integral in (9.5) can be made as Ia.rge as we pIease Hm= 4 and n = p= p= 2 then
ﬂo = ﬁo(z 4) = 321&’ 0

Note that for n even, ||V"u||? = ||A™/?u||?, while for n odd, ||V"u||? = ||VA(""1)/2u||2
The elliptic operators A? could be replaced here by others with suitably uniform coefficients
without changing the general form of the statement of the theorem; the constants, of course,
would change. For the special case m =4, n = p = p' = 2, the transplanted theorem takes
the following form.

Theorem 9.5. Let (M,g) be a 4-dimensional compact Riemannian manifold without
boundary. There is a constant ¢y such that for all u € C*(M) with ||Aul2 <1,

- / exp(327% |ju — @|*)dv, < co vol(g).
M

Furthermore, the exponent 3272 is the best possible in the sense that if § > 3272, there
exists a smooth function u on M with ||Aul|; £ 1 and [, exp(Blu — @|*)dv, arbitrarily
large.

This theorem implies that if u is not constant,

327r2|u—-ﬁ|2)
9.6 ][ ex (——————- dv, < ¢p.
.9) w P\ Ty e S

Before giving the proof, we indicate the connection to Beckner’s Moser type inequality.
giving YpP

Lemma 9.6. Given m € 2Z%, 8 > 0 and an inequality

Blu — a)?
J[ ‘”‘p(uvm/z [g) e = e

on an m dimensional compact Riemannian manifold (M, g), valid for all nonconstant u €
C*>°(M), we may conclude an inequality
. . 2
(9.7) logf e"'(""-‘)dvg < logco + B||V™/%u2, B=—
M 43’
for all u € C®°(M). (The quantity ||[V™/?u||3 is computed using [, as opposed to f.) In
particular, if m = 4 and 8 = 32x%, then f = 1/8x2.

Proof. If a and « are constants, the inequality
(a(u — @) + 7]V 2u|3)? 2 0

3
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implies that '
2ay(u — 2)[|V™/?ul} < o®(u — @)* + 4| V™ 2u|l3,

80

- 2 (u-—u)? 2 2, 112
2ey(u = 8) < oy + IVl

and, if we choose a? =8,

°— (u - ﬁ)z m |
log ][Me’“"‘ Vdv, < log ][M exp (02W + 7?1V ullf ) dv,
< logeo + 7*([V™/2ulf}.

Choosing v so that 2ay =-m, we have the result for nonconstant u. Since neither side of

(9.7) depends on the constant component in the expansion of u into eigenfunctions of the
" Laplacian, (9.7) is valid for allu. O :

Since the proof of Theorem 9.5 is a modified version of Adams’ proof of Theorem 9.4, we
shall only sketch it, with special attention to the necessary modifications. The.following
lemma of Aubin replaces the fractional integral representation of compactly supported
functions on R™ with a Green’s function representation formula valid for functions on
compact manifolds. '

Lemma 9.7. [Au, Theorem 4.13] Let (M, g) be a compact, m dimensional Riemannian_
manifold. There exists a Green’s function G(z,y) of the Laplacian A with the following™
properties: ' I
(a) For all C? functions u on M,

) u(@) == [ (Bu)G( 1)y W)

(b) G(z,y) = G(y,z) is C*™ on the complement of the diagonal in M x M;
(c) If2k > m > 2,

k .
Gay) = Haw)+ Y. [ Tie,)H(0)dvg(w) + Flaw),

where H(z,y) = ((m — 2)vm-1)"1r2"™ f(r) for m > 2; r = d(z,y) is the distance from z
t0 y; Um—1 is the volume of the unit sphere in R™; f(r) is a positive decreasing function;
f(r) = 1 in a neighborhood of r = 0; and f(r) = 0 forr > §, § = §(M,g) being the
injectivity radius of (M, g); I'(z,y) := T'1(z,y) = =A, H(z,y);

Titi(z,y) = /M Ti(z,2)I(2,y)dvg(y), t=1,...k=1;

-and F(z,y) is continuouson M x M. O

In the case of a compact Riemannian 4-manifold (M, g), in the expression for the Green’s
function, we have a uniform estimate |['(z,y)| < ar~?, valid when r is less than the
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injectivity radius § [Au, 4.10]. Here the constant a = a(M, g) depends on uniform bounds
. for the sectional curvature of g [Au, 4.9 and Theorem 1.53]; like the injectivity radius, such
uniform bounds always exist for compact M. Thus if Zi(z,y) := f m i (x 2)H(z,y)dv,(y),

121(z,y)| < const(1 + | log d(z, y)),

and Z(z,y) is contmuous on M x M. This implies that in the 4—d1mensxonal case, we
have ,

(99)  Glay)=H (z, y) +2Z(z,y) + R(z,y),

where |H(z,y)| < (4n2)~1p- |Z(:c,,y)| < const(1+|log d(z,y))), and,R(:c,y) is continuous
on M x M.

Another basic lemma used in the proof of Theorem 9.5 is the following result of O’Neil.
Suppose f is a locally integrable function on R™, and denote by f* the symmetric decreas-
ing rearrangement of f; that is, for each s > 0, define A(s) = |{z € R™ | |f(z)] > s}|, and
define f* on R by f*(t) = inf{s > 0| A(s) < t}. Let f**(t) =¢"! fot f*(s)ds.

Lemma 9.8. [O’N, Lemma 1.5) Let h = T(f,g) = f *g. Then

W) < @) + [ S s O

To apply Lemma 9.8 in our setting, we just need to note that the proof of [O’N, Lemma
1.5] goes through if we replace the Euclidean convolution f * g by

h(z) = /M fWe(@v)dvyy),  zeM,

for a one-point function f and a two-point function g which is actually a function of r, i.e.
g9(z,y) = g(r) = g(d(z,y)). Here the functions f* and A are defined exactly as for R™,
just replacing R™ by M in the definition of A.

Proof of Theorem 9.5. Given u € C*(M), apply (9.8) and (9.9) to write

u(z) — @ = h(z) + 2(z) + r(z),
where h(z) = [,,(Au)(y)H(z,y)dve(y), 2(z) = [,,(Au)(y)Z(z,y)dv,(y), and r(z) =
Sy (Au)(y)R(z,y)dvg(y). Applying Hélder’s inequality, we have

1/2
|z(z)] < l|Au|l2 1Z(z,y)Pdvy(y) ) < a(M,g)
M

for all z € M. Hence ||z||oc £ a(M,g). One can also make a pointwise estimate of r(z) to
obtain ||r|]|e £ a(M,g). Thus

lu(z) — | < / (Aw)(W) |1 H (2, v)ldv, (3) + a(M, g)

< g7 [ G0, 1) P dvg(s) + oM )
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We now apply our adaptation of Lemma 9.8 with f = |Au| and g(z,y) = d(z,y) "2 /4n?
" to obtain
|u = |™(t) < a(M, g) + h™(2)

< (M, g) +tf*g*(t) + / £*(s)g" (s)ds,

where again h(z) = [}, f(y)9(z,y)dvy(y). From this point on, the argument of [Ad, Sec.
2] carries through to establish that '

/ exp(327%|u — @|?)dv,(z) < const-vol(g). O
M

Remark 9.9. The analysis below is sensitive to the co;ista.nts Bi[A], to the Euler char-
acteristic, and (assuming & locally symmetric background metric) the constant value c? of
|C|2. Specifically, it requires that 8,8; > 0; recall from Remark 9.3 that we have this for

A=Y and A =Y>. The value of f /B2 also matters when (M, go) is not conformally flat.
With notation and assumptions as above, let

JAlAl 1y
ZalAl 2) vol(go)c? + 16m2x(M).

If go is conformally flat, k(M, go, A) = k(M) = 167%x(M) is independent of g¢ and 4; in
the conformally curved case,

M, 00, 4) = (4

k(M,go,Y) = —3 3 vol(go)c® + 16w x (M), k(M, go,Vz) =-3 vol(go)c + 1672 x(M)

For simplicity, when it is clear which background data (M, go,A) are intended, we write
k for k(M, go, A), and F4(w) for ’

D(A, e?¥go)

O s )

Theorem 9.10. Suppose (M, go) is a compact connected Riemannian 4-manifold with go
locally symmetric, and that A is as in Theorem 9.1. Suppose N(A) = 0 on (M, go), that
k(M,go,A) < 3272, and that (,[A)Bs[A4] > 0. If c; € R and c3 > 0, then

Xey e |A] 1= {w € CP(M) | (sgn B2[A])Fa(w) £ e1, vol(e’“go)/ vol(go) = c2}
is uniformly bounded in the L% norm, with

”‘*’”Lg < conSt(cl y¢2,M, g0 aA)a allwe Xcl ,C2 [A]

Proof. Throughout the proof, all integrals are with respect to (dv)e. First assume that
B2|A] < 0. By Theorem 9.5 and Lemma 9.6,

(9.10) logf et (“=9) < logcy + 8_1"’_/ (Aow)?.
: M ™ JM
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Thus (9.4), (9.3), the four dimensional Yamabe equation

(A4 T)oe? = Jue,

(Ae¥)/e¥ = Aw — |dw|?

and the calculation

give - :
ﬂzk 1 2
K —— —
Fp(w) < 16 {1°gco+8"2/ (Aow)

+1B, { /M(Aow)2+ ho /M |dw|§}
A5 o)
= —f—; {log co + (-8% - 4) /M(Aow)z}

W\ 2
+ (§B2ho - ﬂ3J°)/M ldulg + 35 /M (A:: ) .

Let a := k/3272, and recall that a < 1 is one of our assumptions. Then rewrite the above

as
Age* \?
- %ﬂz(l o) /M(Aow)2 akis ./M ( :: ) <

(9.11) (1B3ho — BsJo) /M ldwf2 — By log co — Fa(w) <

(1B2ho — Ba o) / |dw|2 + ¢1 + const(M, go , A).
M

We expand the exponential term as

I (A:fw)z = [ (@ — s = [ (Sowf -2 [ (Sow)tdly+ [ 1,

and estimate the cross term in this by

o[ o) " ([w)”

<A / (Bow)? + A~ / deof 3
M M

2| [ (Bl

for any A > 0. By the sign assumptions on f3;, 3, we may choose A > 1 so that

bi= —182(1 - a) — 1Bs(1 = 1) > 0;
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this leaves us with |
b /M(Aow)2 — 1651 271) /M (dwold < (3B2ho — BaJo) / ldw[2 + ¢; + const(M, g , A).
. M

The first term on the right of this can be estimated via

1/2
2 [ ashs2( [ 1ult) volan” s [ 1duld+ e volloo)
M . M M
for any € > 0. We can now choose € = £(M, go , A) so that

/M(Aow)2+ /M |dw|$ < const(c: , M, go , A).

]

To achieve an L2 bound, we still need an estimate on w itself to combine with our bounds
on ||Agw||2 and ||dw|l4. This comes from the fact that the normalized volume f, e*“ is
fixed at c,. Indeed, by (9.10), —@ + ¢ < const(c1 , M, go,A); this is a bound below on
@. On the other hand, ¢*% < f, €% = ¢; is a bound above. The upshot is that |©] is
bounded by a constant depending on ¢; , ¢z, M, go, and A.

. The case ;[A] > 0 is entirely similar. O

Corollary 9.11. Suppose that (M, go) is as in Theorem 9.10. If 16m%x(M) < 3272 +
vol(go)cz, then

Xer oY) = {w € C¥(M) | -Fy(w) < e, j[Me““"(dv)o = C2}

is uniformly bounded in the L2 norm by a cohsta.nt depending on ¢;, ¢z, and (M, go). If
"M has spin structure and 1672 x(M) < 327% + L vol(go)c?, the same conclusion holds for

Kol = {we =D | Fp@) s, f @ =a}. O

Though our background metric go need not be Einstein, a convenient set of examples is
provided by the compact connected homogeneous Einstein manifolds of dimension 4. These
are classified in [J]; it turns out that homogeneous implies symmetric in this context, a
situation that does not persist in higher dimensions. The list of p0551ble universal covers
for these spaces, grouped according to sgn Jy, is:

Jo>0: (a)S*, (b)CP?%, (c) S? x §%
Jo=0: (d)R4;
Jo<0: (e)HY, (f)CH?, (g) H? x H?.

In each case there is an unambiguous choice of “standard” metric, up to normalization.
Here H™ is the m dimensional hyperbolic space, CH? is the complex hyperbolic space
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of complex dimension 2, and in cases (c) and (g), we use the same metric normalization
‘on each factor. The compact, connected, locally symmetric Einstein 4-manifolds, being
"quotients of simply connected symmetric spaces by cocompact deck transformation groups
of isometries, are compact quotients of spaces from the above list, inheriting the stan-
~ dard metrics. We shall treat each example, with a particular view toward identifying
k(M,go , A), and determining whether the null space A(A) vanishes, as required for Theo-
rem 9.10. In case (d), this null space never vanishes, but we show that our analysis applies
nonetheless. Note that by (9.1), a compact Einstein 4-manifold (M, g) has )

(9.12) . : | 3272x(M) = /M(IC'I2 +6J%)dv, ,

and thus has x(M) > 0, with equality if and only if go is flat (has vanishing Riemann
tensor).

Example 9.12. S* has Euler characteristic 2, and its standard metric go is conformally
* flat, so that k(5% go,A4) = k(S*) = 3272, Thus (S%,g0) is just outside the reach of
Theorem 9.10. By making use of the large conformal transformation group, however, we -
shall be able to prove an analogous theorem (Theorem 9.19 below). The extremal problem
for the functional determinant was treated in detail in Sec. 5. By Synge’s Theorem, the
" only metric quotient of S§* is the real projective space RP%. This has Euler characteristic
1, so that k(RP%,go,A) = k(RP*) = 1672 < 3272%. On (S%,90), the bottom eigenvalue
of Y is Jo = 2, and by the Lichnerowicz formula Y2 — V*V = r/4 = 3J/2, the bottom
eigenvalue of Wg is at least 3. (By (8.17), it is 4.) As a result, (RP%,go) with A=Y or
¥? satisfies the hypotheses of Theorem 9.10.

Example 9.13. Consider CP?, and let go be the Fubini-Study metric, normalized so that
the (constant) holomorphic sectional curvature is h = 4; this is the usual normalization on
any CP" [Bes, 2.59]. By [Bes, 11.5 and 11.12], the volume and scalar curvature of (any
normalization of) go are related by

vol(go)7Z = 288n2.

Since 19 = 6h, Jo = 4, and vol(go) = 7?/2. Since x(CP?) = 3, (9.12) gives c¢?* = 96. Thus

k(CP2,go,A)=481r2( g:w 1),

so that the hypotheses of Theorem 9.10 are satisfied provided £;[A]/B2[A4] < 5/12 and
N(A) = 0. By Remark 9.3, the constraint on $8;/8; is no problem for Y. Since CP? does
not have spin structure [Bes, 6.72], there is no Dirac operator. (Being a complex manifold,
CP? is orientable, so there is no Pin(4) structure either.) The bottom eigenvalue of Y} is
Jo = 4, so that the null space constraint is no problem. By Synge’s Theorem, CP? is a
double cover of any metric quotient (M, go) it might have, but since x(CP?) is odd, there
is no such quotient.
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Example 9.14. Let M = S? x S%, and let go be the product of standard 32 metrics.
Then x(M) = x(5%)* =4, Jo = 2/3, and vol(go) = 167%. As a consequence, c? =16/3 by
‘(9 12). (That this space is conformally curved is perhaps contrary to naive expectation;
we recall from Sec. 6 that the standard pseudo-Riemannian metric of signature (g, p) on
59 % SP is conformally flat.) As'a consquence of the conformal curvature, 5, /f; comes into
play, and p [A]
’ 2 2 AN — 2 2 P14

k(S xS ,go,A)—321r ( + 3ﬂ2[A]) |
Thus Theorem 9.10 applies as long as Ay has no zero eigenvalues and 320;[A]/42[4] < 1.

" For A=Y and A = Y B1/B2 < 0; the bottom eigenvalue of Yy is Jo = 2/3, and the
bottom eigenvalue of ¥? is at least 1 by the Lichnerowicz formula. Thus the hypotheses
-of Theorem 9.10 are satisfied. If M is a compact quotient of S§2? x S2, then x(M) < 4.
The bottom eigenvalue of a natural differential operator with positive definite leading
- symbol can only increase upon passage from the covering to the covered space (depending
‘on whether or not some of the bottom eigenfunctions or eigensections descend to the
quotient). Thus any A satisfying the the hypotheses of Theorem 9.10 on S? x S? satisfies
them on M also; in particular, this is true for Y and Y

Example 9.15. Suppose (M, go) is covered by R*, with the standard R* metric as the
pullback of go. Here x(M) = ¢ = Jy = 0, so k(M,g0,4) = k(M) = 0 < 3272 A
complication arises from the fact that all natural differential operators A on R* have
0 as an eigenvalue, so that one of the hypotheses of Theorem 9.10 may be violated if
eigensections descend to M. The zero eigenfunctions or eigensections on R*, however, can
be written down explicitly: each tensor-spinor bundle over R™ has a standard trivialization.

A tensor-spinor is annihilated by an elliptic natural differential operator A exactly when it
has constant components in this trivialization. Let A(A)p be the space of such constant
sections that descend to M, and let ¢ = dimN(A)p . By an argument in [B@3, Sec. 3.b},

the effect on the scale invariant log-determinant functional is to change F4(w) to

1/4, -1/r
v1/ r/4/

Fp(w) = Fa(w)+ 7 108 Y=y
Yo

where v, = vol(e2*“go) f,, €*“*(dv)o, and r is the order of the conformal covariant of which
A is a power; in the notation of 4.6, r = 2¢/h. (For example, if A =Y, then r = 2; if
A =Y?% thenr = 1.) If r = 4, then F4(w) = Fa(w), and all is well. If r < 4, the
convexity of the exponential function gives

vll" < vyy4 < max(vo ,v1).

Thus the proof of Theorem 9.10 (without the assumption A (A) = 0, and replacing F4 by
F4) proceeds as before, until we get to (9.11), where we need only replace “const(M, go , A)”
on the right with “const(M, go, A,c2)”. The conclusion of the theorem is valid without
modification. : :
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Example 9.16. Let M be a compact quotient of H*, inheriting the standard metric go
of constant sectional curvature —1. Then (M, go) is a conformally flat Einstein manifold;
by (9. 12), x(M) = 3vol(go)/47? > 0. Thus k(M,go,A) = k(M) = 16n%x(M), and the
. constraint k(M) < 3272 becomes x(M) < 2; as a result, we need x(M) = 1 (and thus
- wol(go) = 47%/3). 1t is apparently very difficult to say anything elementary about the
constraint A(A) = 0, so in working with this example, we add it as a side condition.

Example 9.17. The usual Bergmann metric gop on any CH" has constant holomorphic
sectxona.l curvature h = —4 [Bes 2.61); this corresponds to Jo = —4. By dualxty, the value
" of ¢Z on CH™ is the same as that on CP"; in the case n = 2, that value is c? = 96 by the
above. If M is a compact quotient with volume vg , then x(M ) =6vg/x% >0 by (9.12); in
particular, vo > 72/6. This yields

- 4 1
k(M,go,A) = 1672 x(M (4—ﬁL+—).
( 9o ) X( ) ﬂ2[A] 9
Thus we need x(M)(1 + 861[A4)/B2[A4]) < 4 to have k(M,go,A) < 32x%. In particu-
lar, by Remark 9.3, k(M,g0,Y) < 32n? regardless of the value of x(M), but to have
k(M,go,V?) < 3272, we need x(M) < 11. Again, it is very difficult to treat the con-
straint N'(A) = 0, so we regard it as a side condition.

Example 9.18. A compact quotient M of H? x H?, endowed with the product go of
Fubini-Study metrics of constant sectional curvature —1, has Jp = —2/3. Duality with the
S? x §? situation gives c? = 16/3, and (9.12) gives x(M) = vol(go)/4n?. Therefore

k(M, g0, A) = 3272 (M){ 1 gg‘{i}}
Thus the constraint k(M, go,A) < 3272 reads x(M)(1 + 1681[A]/B52[A]) < 6. In view of

Remark 9.3, this always holds for L and, when M has spin structure, Y72 (regardless of
the value of x(M)). Again we view the constraint A (4) = 0 as a side condition.

Our final goal will be to show that an L2 boundedness result on the conformal factor
w holds in the conformal class [go] of the standard metric on S*, even though k(M, go, A)
is exactly equal to the borderline value 3272 in this case. Since the statement as it stands
would imply compactness in L2_, for any € > 0 and the conformal group ctran(S%, go) is
not compact, the conclusion has to be modified to “deflate” by the action of ctran(S*, go).
We do this by specifying a “centeredness” property that is enjoyed by at least one conformal
transform of any g, € [go], and then showing that the set of centered metrics with the
appropriate spectral invariants bounded as in Theorem 9.10 is bounded in the L2 norm.

If h € ctran(S*, go) and g, = €2“go, then

h- g = e2h"”h cgo = eZh""Q%go ,

in the notation of Sec. 2. If we set up an equivalence relation ~ in [go] by taking orbits
under ctran(S4, go)-, then

Jo~ g <> W =h -w+logQ, some h € ctran(S*, go).
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We use this to set up an equivalence relation in L2(S4): let Thw := h-w +log s ; then
w~w <= w=Thw, someh € ctra.n(S‘,go).

Our result is: -

Theorem 9.19. Let ¢; € R and 0 < c; € R. On (8%, g0), with A as in Theorem 9.10, let
W=W, := {w € C™(SY) | Fa(w) =1, f ‘e“’(dv)o = Cg} .
s

Then W is bounded in L3/ ~, in the sense that for each w € W, there is 8 & ~ w such
that {& | w € W} is uniformly bounded in the L norm, with

&Lz < const(ey,c2, A).

The proof is based on the strategy used in [On, CY, OPS1-2] to prove the correspond-
ing result for S2. Let

So = {w € C°°(S_4) |][ zje“"(dv)o =0, j= 1,2,3,4,5} ,
S }

where the z; are homogeneous coordinates on S*. A basic fact we shall use is:
- Lemma 9.20. Given w € C*®(S5*), there is an h € ctran(S*, go) with Thw € Sp.

Proof. Recall from Sec. 2 that the identity component of ctran(S*,go) is a copy of G =
SO¢(5,1), of which the maximal compact subgroup is K = SO(5). The symmetric space
G/K can be naturally identified with the ball B®; in fact, this is a standard realization of
H®. The lemma is a simple consequence of the fixed point theorem (applied to the obvious
map on B%); a complete proof can be found in [CY). m]

The following is an analogue of the Adams inequality (which involves |A™/2w|| in di-
mension m) with a proof analogous to that of a result of Aubin- [Au] involving | Vw||m on

Sm

Lemma 9.21. Ifw € Sy, then for any € > 0, there exist constants C(¢) and Cz(e) with

tog f 9 i)+ (g +e) LGP +0ue) f_ ol
a0+ (3+5¢) fL@ra f .

(Here all integrals are with respect to (dv)o .)

(9.13)
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Remark 9.22. (9.13) should be compared to (9.10) and (3.8). By Theorem 3.7, the
coefficient 1/872 in (9.10) cannot be improved.

Proof of Lemma 9.21. We may assume that vol(g,) = vo := 8n%/3, since each term in

 (9.13) is insensitive to constant shifts of w, and these constant shifts keep us within So .

With this assumption, (9.13) is now equivalent to

1

(0.14)  0<40+Cy(e) + (Té?f + e) /S (aw)? +b,(e) ][s‘|dw|g.

Here and below, all integrals are with respect to (dv)o . To establish (9.14), cover S* by ten
cap shaped congruent-domains, each centered at one of the poles (points at which |zi| = 1
for some i, and z; = 0 for j # i). Rotating axes if necessary, we may assume that

— 10’
for some 6; € (0,1) which is independent of w. (In fact, we are guaranteed this for any

8 > 1/V/5.) Since [ g4 €*“z5 = 0, an elementary computation shows that if we choose
62 < 6;/19, then

/ et > 20 Qs, = {z€8*|6 <z5 <1},
sy

/— €' 2> 6200, 5, = {z€8*|-1< 25 < -6}
2, 7 .

We now choose a cutoff function ¢; , where ¢; =1 on 0511 0<¢; <1,and p; =0 off
Q5,72 - Let o be the similarly defined cutoff function for (Qs, ,s,/2). Note that the pi

can be taken to be independent of w, since the §; are. Applying (9.10) to the functions
(w — @)y , we obtain '

22 S/ e4w S 640/ e4(w-5))¢1
10 = Jo, s

(9.15) < HPuyepexp {4][54 (w — @)p1 + (872)"! /34(A[(w - U_))‘PI])Z} ,

and similarly,

(52 Vo S [ e4“"
s,

< e upcqexp {4 fo=a)pr+ 67 [ (Al -@hea)?}.
sS4 S4
‘We now observe that

/S (Bl -2)pil)? = /S (Buet +4 /s (do,dg1)? + /S (B (w~ 5
-4 /;(Aw)gol (dw,dp1) + Z[S‘(Aw)cpl(w - @)Ap,
- 4/5‘ (dw,dp1)(w — @)Apy

< / (Bw) +e / (Bw)? + Cle,6) / dwol?,
Q5,42 s 54

(9.16)

(9.17)
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for some suitable constant C(e, é;). Similarly,
019 [ (@lw-apdrs [ @ore [ (@0 +00ne) [l
st @15, /2 s St

" Because the bottom nonzero eigenvalue of the Laplacian on $* is 4, we also have

]1 @-a)pr < f_po- w|<(][ (- w)’)m
s(][ |dw|o)m_'m + f_ ok

Inserting estimates (9.17) and (9.19) into (9.15), we obtain

>

(9.20) Ilﬁ <t coexp{1+(81r2)"1 /ﬂ (Aw)? + ¢ /s ‘(Aw)2{C(e,61) /s ‘ |dw|§}.
61/2 .

(9.19)

Similarly, from (9.18) and 9.19),

' (9.21) 62 < e*¥co exp {1 + (87%)"? /_ (Aw)2 + e/ (Aw)2 + C(e, 52)/ |dw|0}

962/2

We now mult1ply (9.20) and (9.21) and take the square root on both sides, noting that
Qs, /2 and Qg, /2 are disjoint regions in 54, to obtain:

VaTD s ccaen {1+ (g +e) [@ur+cea .o [ k).
S sS4

~ Since we can make concrete choices of the 6; (any 6, > 1/+/5, and then any §; < 6,/19),
(9.14) follows. ~ O :

Proof of Theorem 9.19. Given w € C*=(S5*), we may apply Lemma 9.20 to transform to
w € Sy with & ~ w. Assuming without loss of generality that w € Sy, the strategy used in
~ the proof of Theorem 9.10 works if we use Lemma 9.21 in place of (9.10). 0O
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VIRKLING"., ~ Motiver til Kepler's: "Nova Stere-
ometria Dolioxum Vinariom",

Projektrapport af: Lasse Rasmussen .
Vejleder: Anders Madsen,

10/79 "TERMODYNAMIK I GYMNASIET".

. Projektrapport af: Jan Christensen og Jeanne
Mortensen,

Vejledere: Karin Beyer og Peder Voetmann
Christiansen.
11/79 “STATISTISKE MATERIALER".
_ Af: Jergen Larsen.

12/79 "LINEERE DIFFERENTIALLIGNINGER OG DIFFEREN-
TIALLIGNINGSSYSTEMER".

Af: Mogens Brun Heefelt,
Nr. 12 er udglet.

13/79 "CAVENDISH'S FORSPG I GYMNASIET".
Projektrapport af: Gert Kreinge.

Vejleder: Albert Chr. Paulsen.

14/79 *BOOKS ABOUT MATHEMATICS: History, philosophy,
Education, Models, System Theory, and Works of™.
Af: Else Heyrup.

Nr. 14 er p.t. udgdet.

15/79 "STRUKTUREL STABILITET OG KATASTROFER i systemer
i og udenfor termodynamisk ligevagt".
Specialeopgave af: Leif S, Striegler.
Vejleder: Peder Voetmann Ckristiansen.

1€/79 "STATISTIK I KREFTFORSKNINGEN".
Projektrapport af: Michael Olsen og¢ J¢rn Jensen.
Vejleder: Jergen Larsen,

17/79 "AT SPZRGE OG AT SVARE i fysikundervisningen".

Af: Albert Christian Paulsen.

18/79

19/79

20/79

21/79
22/19

23/19

"MATHEMATICS AND THE REAL WORLD", Procee-
dings af an International Workshop, Ros=
kilde University Centre, Denmark, 1978.
Preprint.

Af: Bernhelm Booss ©g Mogens Niss (eds.)

“"GEOMETRI, SKOLE OG VIRKELIGHED".
Projektrapport df: Tom J. Andersen,Tommy
R. Andersen og Per H.H. Larsen.

YVejleder: Mogens Niss.

"STATISTISKE MOLELIER TIL EESTEMMELSE AF SIKRE
DOSER FOR CARCINOGENE STCFFER".

Projektrapport af: Michael Olsen og J¢m Jensen.
vejleder Jergen larsen

*KONTROL I GYMNASIET-FOPMAL OG RDNSDGENSER" )
Projektrapport af: Crilles Bacher, Per S.Jensen,
Pteben Jensen og Torben Nysteen.

"SEMIOTIK OG SYSTRMEGENSKAEER (1)*:
1-port linexrt respomse og stgj i fysikken.
Af: Peder Voetmann Christiansen.

"N THE HISTORY AF EARLY WAVE MECHANICS - with
special emphasis on the role af realitivity"
Af: Helge Kragh.

24/80

25/80
26/80

27/80

28/80

29/80

30/80

31/80

32/80

33/80

34/80

“MATEMATIKOPFATTELSER HOS 2.C'ERE".

1. En analyse. 2. Interviewmateriale.
Projektrapport af: Jan Christensen og Knud
Lindhardt Rasmussen.

Vejleder: Mogens Niss.

Dybdemodulet/fysik 1974-79.

" MATEMATISKE MOTELLER".
En projektrapport og to artikler.
Af: Jens Hgjgaard Jensen m.fl.

"EKSAMENSOPGAVER",

*METHODOLOGY AND PHILOSOPHY AF SCIENCE IN PALL
DIRAC's PHYSICS".
Af: Helge Kragh.

"DIZLEITRISK PELAYATION -.&t.forslag til en ny
model bygget pd vaskemmes viscoelastiske egen-
skaber".

Projektrapport af: Gert Kreinge.

Vejleder: Niels Boye Olsen.

"ODIN - undervisningsmateriale til et kursus i
differentialligningsmodeller”.

Projektrapport af: Tommy R. Andersen, Per H.H.
Larsen og Peter H. lassen.

Vejleder: Mogens Brun Heefelt.

"FUSIONSENERGIEN - = = ATOMSAMFUNLETS ENCESTATI-~
",

Af: Oluf Danielsen.

Nr. 30 er udglet.

"ITENSKABSTEORETISKE PRCBLEMER VED UNDERVISNINGS -
SYSTEMER BASERET PA MENGDELZRE".
Projektrapport af: Troels lLange og Jo¢rgen Kar-

VEjleéer: Stig Andur Pedersen.
Nr. 31 er p.t. udgdet.

"POLYMERE STOFFERS VISOUELASTISKE EGENSKABER =
BELYST VED HJELP AF MEKANISKE IMPEDANSMALIN -
GER MOSSBAUEREFFEKTMALINGER".

Projektrapport af: Crilles Bacher og Preben
Jensen.

Vejledere: Niels Boye Olsen og Peder Voet-
mann Christiansen.

"KONSTTTUERING AF FAG INIEN FOR TEXNISK - NATUR-
VIDENSKABRELIGE UDDANNELSER. I-II".
Af: Ame Jakobsen.

"ENVIRONMENTAL IMPACT AF WIND ENERGY UTILIZA~
TIN".

ENERZY SERIES NO. I.

Af: Bent Sgrensen

Nr. 34 er udglet.
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SSIBO’MSRJDIERIENNEEEMDGW
Af: Helge Kragh.

36/80 "HVAD ER MENINGCEN MED MATEMATIKUNDERVISNINGEN?".
Fire artikler.
Af: Mogens Niss.

37/80 "RENEWAELE ENERCY AND ENERGY STORAGE".
ENERGY SERIES NO. 2.
Af: Bent Sgrensen.

38/81 mmmmm;m
OG SAMFIRND",
Projektrapport af: Erik Gade, Hans Hedal, Henrik Lau

og Fimn Physant,

Vejledere: Stig Andur Pedersen, Helge Kragh og Ib
Thiersen.

Nr. 38 er p.t. udglet.

¢»39/81 "TIL KRITIKKEN AF VERSTZAONOMIEN".
. Af: Jens Hgjgaard Jensen.

40/81 “TELEROMMNIKATION I DANMARK - oplzg til en tekno-
logivurdering”.
Projektrapport af: Arne Jg¢rgensen, Bruno Petersen og
Jan Vedde.
Vejleder: Per Nergaard. '

“PLANNING AND POLICY CONSIDERATIONS RELATED TO THE
INTRODUCTION OF RENEWARLE ENERGY SOURCES INTO ENER-
GY SUPPLY SYSTEMS".

ENERGY SERIES NO. 3.

Af: Bent Sgremsen.

41/81

42/B1 “VIDENSKAB TECRI SAMFUND - En introduktion til materialis-
tiske videnskabsopfattelser”.
Af: Helge Kragh og Stig Andur Pedersen.

1."COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS".
2."ADVANTACES AND DISADVANTAGES OF DECENTRALIZATION".
ENERGY SERIES NO. 4. '

Af: Bent Sgrensen.

43/81

"HISTORISKE UNDERSQCELSER AF DE EXSPERIMENTELLE FOR-
UDSETNINGER FOR RUTHERFORDS ATOMMODEL",
Projektrapport af: Niels Thor Nielsen.

Vejleder: Bent C. Jorgensen,

45/82 Er aldrig udkommet.

46/82
141

"EKSEMPLARISK UNDERVISNING OG FYSISK ERKENDESE~
TLLUSTRERET VED TO EKSEMPLER".

Projektrapport af: Torben 0.0Olsen, lasse Rasmussen og
Niels Dreyer Sgrensen.

Vejleder: Fent C. Jgrgensen.

47/82 "BARSEBACK OG DET VERST CFFICIELT-TARNKELIGE UHELD".
ENERGY SERIES NO. 5.

Af: Bent Sgrensen.

48/82 "EN UNDERSPCELSE AF MATEMATIKUNDERVISNINGEN PA ADGANCS~
KURSUS TIL KZBENHAVNS TEKNIKUM".

Projektrapport af: Lis Eilertzen, Jgruen Karrebek, Troels
lange, Preben Nerregaard, Lissi Pedesen, laust Rishgj,

e 1411 Ren og Isac Showiki.
Vejleder: Mogens Niss.
. 49/82 "ANALYSE AF MULTISPEKTRALE SATELLYTBILIECER".
w Projektrapport af: Preben Ng

rregaard.
Vejledere: Jprgen lLarsen og Rasmus Ole Rasmussen.

50/82 *HERSLEV -~ MILICHEIER FOR VEDVARENLE ENERGI I EN
LANDSBY".
. ENERGY SERIES NO. 6.
Rapport af: Bent (hristensen, Bent Hove Jensen, Dernnis
B. Mpller, Bjame Laursen, Bjarme Lillethorup og Jacob-
Mgrch Pedersen.
Vejleder: Bent Sgrensen.

"HVAD KAN DER GZRES FOR AT AFHIELPE PICERS BLOKERING
OVERFOR MATEMATIK ?"

Projektrapport af: Lis Eilertzen, Lissi Pedersen, Lill
Rern og Susamne Sterder.

51/82

52/82 'mspmsxm [o 3 SPLITI‘M ELLIPTIC SYMBOLS"
: Bernhelm Booss og Krzysztof Wojciechowski.

53/82"m:cmsrmmmwsmmmmmc
EDUCATION".
Af: Arne Jacobsen og Stig Andur Pedersen.

54/82 “FUIURES RESEARCH" ~ A Philo:tphical Analysis
of Its Subject-Matter and Methods
‘Af: Stig Andur Pedersen og Johama vitt-Hansen.

55/82 *MATEMATISKE MODELLER" - Litteratur P2 Roskilde
Universitetsbibliotek.
En biografi.
Af: Else Hoyrup.

Vedr. tekst nr. 55/82 se ogsd tekst nr. 62/83.

56/82 "EN = TO - MANGE" -

En underspgelse af matematisk ¢hkologi.
Projektrapport af: '.l‘mels Lange.
Vejleder: Anders Madsen

] 57/83 ®ASPECT EXSPERIMENTET"-

Skjulte variable i kvantemekanikken?
Projektrapport af: Tam Juul Andersen.
Vejleder: Peder Voetmamn Christiansen.
Nr. 57 er udgdet.’

58/83 "MATEMATISKE VANDRINGER" rbdelbetragmin—
ger over spredning af dyr mellem smibiotoper
i ager.
onjektrapport af: Per Hammershej Jensen og
Lene Vagn Ragmussen.
Vejleder: Jorgen lLarsen.

$9/83"THE METHODOLOGY OF ENERGY PLANNING".
INERGY SERIES NO. 7.
Af: Bent S¢rensen.

60/83 "MATEMATISK MODEKSPERTISE"- et eksempel.
Projektrapoort af: Exrik O. Gade, Jgrgen Kar-
rehxk og Preben Norregaard.

Vejleder: Anders Madsen. -

"FYSIKS ITEQLOGISKE FUNKTION, SOM ET EKSEMPEL
PA EN NATURVIDENSKAB - HISTORISK SET".
Projektrapport af: Annette Post Nielsen.
Vejledere: Jens Hgyrup, Jens Hgjgaard Jensen
og Jg¢rgen Vogelius. -

"MATEMATISKE MODELLER" - Litteratur pd Roskilde
Universitetsbibliotek.

En biografi 2. rev. udgave.

Af: Else Hgyrup.

*GREATING ENERGY FUTURES:A SHORT GUILE TO ENER-
GY PLANNING".

ENERGY SERIES No. 8.

Af: David Crossley og Bent Sgrensen.

61/83

62/83

63/83

64/83 "VON MATEMATIK UND KRIEG".

Af: Berhelm Booss og Jens Hpyrup.
65/83 "ANVENDT MATEMATIK - TEORI ELLER PRAKSIS".
Projektrapport af: Per Hedegird Andersen, Kir-
sten Habekost, Carsten Holst-Jensen, Annelise
wvon Moos, Else Marie Pedersen og Erling Mgller
Pedersen.

Vejledere: Bernhelm Booss og Klaus Grinbaum.
66/83 "MATEMATISKE MOTELLER FOR PERIODISK SELEKTION
I ESCHERICHIA OOLI".

Projektrapport af: Harne Lisbet Andersen, Ole
Richard Jensen og Klavs Frisdahl.

Vejledere: Jorgen Larsen og Anders Hede Madsen.
67/83 "ELEPSOIDE METOLEN - EN NY METODE TIL LINEAR
PROGRAMMERING? "

Projektrapport af: I.oneBi.umamogIarsBoye
Vejleder: Mogens Brun Heefelt.

"STOKASTISKE MOCELLER I POPULATIONSGENETIK"
= tiP kritikken af teoriladede modeller.
Projektrapport af: Lise Odgird Gade, Susanne
Hansep, Michael Hviid og Frank Mplgird Olsen.
Vejleder: Jgrgen Larsen.

68/83



*ELEVFORUDSETNINGER I FYSIK™
- en test 1 1.g med kamuentarer.

Af: Albert C. Paulsen.

70/83'nmm-ocmmmm1m
PA VOKSENUNDERVISNINCSNIVEAD® .,
Projektrapport af: Hamne Lisbet Andersen, Tor-
ben J. Andreasen, Svend Age Houmann, Helle Gle-
rup Jensen, Keld Fl. Nielsen, lene Nagn Ras-
ssen.
Yejleder: mm&'ﬁ:mamognﬂersﬂedethdsm

£69/83

71]83 *PIGER OG FYSIK®
- et problem og en udfordring for skolen?
Af: Rarin Beyer, Sussanng Blegaa, Birthe Olsen,
Jette Reich og Mette Vedelsby.

72/83 "VERDEN IFVLGE PEIRCE" - tontafysiskeessays
om og af C.S Peirce.
Af: Peder Voetmarn Christiansen.

73/83 ""EN ENERGIANALYSE AF LANDEROG"
- ¢gkologisk contra traditionelt.
ENERGY SERIES No. 9
Specialecpgave 1 fysik af: Bmtlbvesmsm
Vejleder: Bent S¢irensen.

74/84 'MSBUNGAFMMD( - am vi-
denskabeliggjort teknologi og nytten af at lare

fysik.
Projektrapport af: Bodil Harder og Linda Szko-
tak Jensen.

Vejledere: Jens Hejgaard Jensen og Bent C. Jgrgensen,

75/84 “MATEMATIKUNIERVISNINGEN I FREMITDENS GYMNASTUM"
- Case: Line®r programmering.
Projektrapport af: Morten Blamhgj, Klavs Frisdahl
og Frank Mglgaard Olsen.
Vejledere: Mogens Brun Heefelt og Jens Bjgrneboe.

76/84 "FEREXKRAFT I DANMARK?" - Bt hgringssvar indkaldt
af miljeministeriet, med kritik af miljestyrelsens
rapporter af 15. marts 1984.

ENERGY SERIES No. lo
Af: Niels Boye Olsen og Bent Sgrensen.

77/84 *POLITISKE INIEKS - FUP ELLER FAKTA?"
Opinionsunderspgelser belyst ved statistiske
modeller.

Projektrapport af: Svend Age Houmann, Keld Nielsen
og Susanne Stender.
Vejledere: Jgrgen larsen og Jens Bigrneboe.

78/84 *JEVNSTRAMSLEININGSEVNE OG GITTERSTRUKTUT I
AMORFT GERVANTUM".
Specialrapport af: Hans Hedal, Frank C. Ladvigsen
og Finn C. Physant.
Vejleder: Niels Boye Olsen.

79784 “MATEMATIK OC ALMENDANNELSE".
Projektrapport af: Henrik Coster, Mikael Wenner-
berg Johansen, Povl Kattler, Birgitte Lydholm
og Morten Overgaard Nielsen.
Vejleder: Bemhelm Booss.

80/84 "KURSUSMATERIALE TIL MATEMATIK B".
Af: Mogens Brun Heefelt.

B1/84 "FREKVENSAFHANCIG LEDNINGSEWE I AMORFT GERMANIUM".

Specialerapport af: Jgrgen Wind Petersen og Jan
Christensen.
Vejleder: Niels Boye Olsen.

82/84 "MATEMATIK ~ OC FYSIKUNDERVISNINGEN I [ET AUIO'
MATISERETE SAMFUND".
Rapport fra et seminar afholdt i Hvidovre
25-27 april 1983.
Red.: Jens Hpjgaard Jensen, Bent C. Jprgensen
©g Mogens Niss.

83/84 “ON THE QUANTIFICATION OF SBCURITY":
"E’ACE RESEARCH SERIES NO. T
Af: Bent Sgrensen
nr. 83 er p.t. udglet

84/84 "NOGLE ARTIKLER OM MATEMATIK, FYSIK OG ALMENDANNELSE".
Af: Jens Hpjgaard Jensen, Mogens Niss m. fl.

85/84 "CENTRIFUGALRECQULATORER OG MATEMATIK".
af: Per Hedegidrd Andersen, Carsten Holst-
Jensen, Else Marie Pedersen og Erling Mgpller Pedersen.
Vejleder: Stig Andur Pedersen.

86/84 "SBCURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS
FOR. WESTERN EXRCPE".,
PEACE RESEARCH SERIES NO. 2
Af: Bent S¢rensen.

87/84 'Asmzmmacmmcmmmmmsomm
SOLIDS".
Af: Jeppe C. Dyre.

88/84 "RISE, FALL AND RESURRECTION OF INFINITESIMALS".
Af: Detlef Laugwitz.

89/84 “FIERNVARMECPTIMERING".
Af: Bjarne Lillethorup og Jacch Msrch Pedersen.

90/84 "ENERGI I 1.G - EN TEORI FOR TILRETTELAGGELSE".
Af: Albert Chr. Paulsen.

91/85 "KVANTETEORI FOR GYMNASIET",

1. Lerervejledning

Projektrapport af: Biger Lundgren, Herming Sten Hansen
og John Johansson.

Vejleder: Torsten Meyer.

92/85 "KVANTETEORI FOR GYMNASIET".
2. Materiale
Projektrapport af: Biger Lundgren, Henning Sten Hansen
og John Johansson.
Vejleder: Torsten Meyer.

93/85 "THE SEMIOTICS OF QUANTUM - NON - LOCALITY".
Af: Peder Woetmann Christiansen.

94/85 "TREENIGHEDEN BOURBAKI - generalen, matématikeren
w Ar‘ ll.
Projektrapport af: Morten Blamhg]j, Klavs Frisdahl
og Frank M. Olsen.
Vejleder: Mogens Niss.

95/85 "AN ALTERVATIV LETENSE PLAN FOR WESTERN EURCPE".
PEACE RESEARCH SERIES NO. 3
Af: Bent Sgrensen

96/85"ASPEKTER VED KRAFTVARMEFORSYNING".
Af: Bjarme Lilletonup.
Vejleder: Bent Sgrensen.

97/85 "CN THE PHYSICS OF A.C. HOPPING CONDUCTIVITY".
Af: Jeppe C. Dyre.

98/85 "VALGMILIGHEDER I INFORMATIONSALDEREN".
Af: Bent Sgrensen.

99/85 "Der er langt fra Q til R".
Projektrapport af: Niels Jgrgensen og Mikael Klintorp.
Vejleder: Stig Andur Pedersen.

100/85 "TALSYSTEMETS OPBYGNING™.
Af: Mogens Niss.

101/85 "EXTENTED MOMENTUM THEORY FOR WINDMILIS IN
PERTURBATIVE FORM".
Af: Ganesh Sengupta.

102/85 OPSTILLING OG ANALYSE AF MATEMATISKE MIELLFR, BELYST
VED MXELLER OVER KZERS FOUEROPTACELSE OG - (MSETNING".
ProYjektrapport af: Lis Eilettzen, Kirsten Habekost, Lill Rgn
og Susanne Stender.
Vejleder: Klaus Griinbaum.




103/85 *“@S1E KOLIKRIGERE OG VIDENSKREENS LYSE IDEER".
- Pro; apport af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sgrensen.

mmmmmmamm
Af: Jens Jzger.

mmsmmmwmmcmmm
" (XASS REANSITIAT.
Af: Tace Chriscensen.

A SDPLE MOIEL AF AC HOPPING CONDUCTIVITY".

'304/85

‘on the Structure of Non - Crystalline Materials held
@‘ in Grenochle July 1985.

106/85 *CUANTUM THEORY OF EXTENIED PARTICIES".
Af: Bent Sgrensen.

“EN MYG GUR INGEN EPIIFMI”

-~ flodblindhed sam pd matematisk modelle—

Ting af et epidemiologisk problem.
Per Hedegdrd Andersen, lLars Boye,

(,} 167/85

108/85 'Amzmmsmummcmmmmmcsam-
RICULIM" - state and trends -
Af: Mogens Niss.

111/85 SORIEN RUNDT PA FIADE KORT".
Projektrapport af: Birgit Andresen, Beatriz Quinones
og Jimmy Staal.
Vejleder: Mogens Niss.

“VICENSKAEELYGGZREISE AF DANSK TEKNOLOGISK INNOVATION
FREM TIL 1950 - BELYST VED EKSEMPLER".

Projektranoort af: Erik Odgaard Gade, Hans Hedal,
Frank C. Ludvigsen, Annette Post Nielsen og Finn
Physant.

Vejleder: Claus Bryld og Bent C. Jgrgensen.

m/BS *TESUSPENSION OF SPLITTING ELLIPTIC SYMBOLS 11".
- Af: Bernhelm Booss og Krzysztof Wojciechowski.

112/85

1.14/85 zI\KIFWEI‘IIELSEZ AF GRAFISKE METODER TIL ANALYSE
KONTIGENSTAEELLER",
‘Projektrapport af: Lone Biilmann, Ole R. Jensen
©o¢ Anne-Lise von Moos.
Vejlede.r Jergen larsen.

115/85 “MATEMATTIRKENS UDVIKLING OP TIL RENZSSANCEN".
Af: Mogens Niss.

116/85 “a WG\L MXCEL FOR THE MEYER-
o Af: Jeppe C. Dyre.
117/85 *KRAFT & FIERNVARMEOPTIMERING”
Af: Jaccb Mprch Pedersen.
g'/ Vejleder: Bent Sgrensen
118/85 "rnmmemm OG NOVENDIGHEDEN IFVILGE

PEIRCE OG FYSIRKKEN".
Af.Pede.rVoemexristiansen

119/86 "TET ER GANSKE VIST - - EUKLIDS FEMIE POSTULAT

amaidtp;é,

- 120/86 “ET ANTAL STATISTISKE STANDARDMOCELLER".

~ Af: Jgrgen Larsen

121/86"SIMULATION I KONTINUERT TID".
Af: Peder Voetmann Christiansen.

122/86 'mmmmmwmmcmmm
"~ Af: Jeppe C. Dyre.

123/86 "GYMNASIEFYSIKKEN OG DEN STORE VERIEN".
Fysiklererforeningen, DFUFA, RI.

124/86 "OPGAVESAMLING I MATEMATIK".
Samtlige opgaver stillet i tiden 1974-jan. 1986.

125/86 mif = _systemet - en effektiv fotametrisk spektral-
ssifikation af B~-,A- og F-stjemer”.

Projektrapport af: Birger Lundgren.

126/86 "QM UDVIKLINGEN AF DEN SPECIELLE RELATIVITETSTEORI".
' Pro;ekt_rapaort af: Lise Odgaard & Linda Szkotak Jensen
‘Vejledere: Karin Beyer & Stig Andur Pedersen.

127/86 “GALOIS' BIDRAG TIL UDVINLINGEN AF DEN ABSTRAKTE
ALGEBRA" .
Projektrasport af: Pernille Sand, Heine Larsen &
Lars Frandsen.
. Vejleder: Mogens Niss.
bl

128/86 "SMAKRYB" - am ikke-standard analyse.

Projektrapport af: Niels Jergensen & Mikael Klintorp.
Vejleder: Jeppe Dy;e. )
129/86 "PHYSICS IN SOCIETY"

Lecture Notes 1983 (1986)
Af: Bent Sgrensen

"Studies in wind Power"
Af: Bent Serensen

130/86

131/86 "FYSIK OG SAMFUND" - Et integreret fysik/historie-
projekt om naturanskuelsens historiske udvikling
og dens samfundsm®ssige betingethed.
Projektrapport af: Jakob Heckscher, Seren Brongd,
Andy Wiered. ’

Vejledere: Jens H¢yrup, Jergen Vogelius,
Jens Hojgaard Jensen.

132/86 "FYSIK OG DANNELSE" -

’ Projektrapport af: Seren Brend, Andy Wierod.
Vejledere: Karin Beyer, Jorgen Vogelius.

133/86 "CHERNOBYL ACCIDENT: ASSESSING THE DATA.

ENERGY SERIES NO. 15.
AF: Bent Sorensen.
134/87 "“THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AsSeTe SYSTEM"
Authors: M.B.El-Den, N.B.Olsen, Ib Hest Pedersen,
Petr VisZor
135/87 "INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES-
. TEQRETISKE FORUDSEININGER"
MASTEMATIKSPECIALE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

136/87 "Mystisk og naturlig filosofi: En skitse af kristendammens
forste og andet mode med gresk filosofi"
Projektrapport af Frank Colding Ludvigsen
Vejledere: Historie: Ib Thiersen

Fysik: Jens Hojgaard Jensen
137/87 "HOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE

FASTE STOFFER" - Resume af licentiatafhandling

Af: Jeppe Dyre

Niels Boye Olsen og

Vejledere:
Peder Voetmann Christiansen.
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138/87 *“JOSEPHSON EFFECT AND CIRCLE MAP."

Paper presented at The International

Workshop on Teaching Nonlinear Phenomena

.at Universities and Schools, “Chaos in
£ducation®. Balaton, Hungary, 26 April-2 May 1987.

8y: Peder Voetmann Christiansen

13 987 "Machbarkeit nichtbeherrschbarer Technik
durch Fortschritte in der Erkennbarkeit
der Natur"

Af: Bernhelm Booss-Bavnbek
’ Martin Bohie-Carbonell

140/57 “ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"
By: Jens Gravesen

141/87 *RADIOMETERS UDVIKLING AF BLODGASAPPARATUR -
ET TEXNQLOGIHISTCRISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen
142/87 *The Caldertn Projektor for Operators With
Splitting Elliptic Symbols"

by: Bernhelm Booss-Bavnbek og
Krzysztof P. Wojciechowski

143/87 “Kursusmateriale til Matematik pd NAT-BAS"

af: Mogens Brun Heefelt

144/87 *Context and Non-locality - A Peircean Approach

Paper presented at the Symposium an the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camo Lecture.

Joensuu, Finland, 6 - 8 august 1987.
By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscript of a plenary lecture delivered at
ICMIA 3, Kassel, FRG 8.-11.9.1987

By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM"
- en ny frekvensbaseret milemetode.
Fysikspeciale af Jan vedde
Vejledere: Niels Boye Olsen & Petr ViSSor

147/87 *Rapport om BIS pA NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 “'Naturvidenskabsundervisning med
Samfundsperspektiv"

8f: Peter Colding-Jorgensen DLH
Albert Chr. Paulsen
143/87 "In-Situ Measurements of the density of amorphous
germanium prepared in ultra high vacuum"
by: Petr Vigcor
150/87 "Structure and the Existence of the first sharp

diffraction peak in amorphous germanium
prepared in UHV and measured in-situ"

by: Petr vik¥or

151/87 "DYNAMISK PROGRAMMERING"

Matematikprojekt af:
Birgit Andresen, Keld Nielsen og Jimmy Staal

Vojlodnr:_ln;cnu Niss

152/87 "PSEUDO=DIFFERENTIAL PROJECTIONS AND THE TOPOLOGY

PROBLEMS"

by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechowski

163/88 "HALVLEDERTEKNOLOGIENS UDVIKLING MELLEM MILITERE
0G CIVILE KREFTER" - -

Et eksempel pd humanistisk teknologihistorie
Historiespeciale

Af: Hans Hedal
Vejledéf: Ib Thiersen

154/88 “MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AND )
THE GLASS TRANSITION" - . b

By: Jep;e Dyre

155/88 "A NOTE ON THE ACTION OF THE POISSON SOLUTION
OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY
SELFADJOINT DIFFERENTIAL OPERATOR"

by: Michael Pedersen
156/88 "THE RANDOM FREE ENERGY BEARRIER MODEL FOR AC

CONDUCTION IN DISORDERED SOLIDS"
by: Jeppe C. Dyre

157/88 " STABILIZATION OF PARTIAL-DIFFERENTIAL EQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-differential approach.”

by: Michael Pedersen

158/88 "UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN
RANDOM WALK MODELS"

by: Jeppe Dyre

159/88 "STUDIES IN SOLAR ENERGY"

by: Bent Serensen

160/88 "LOOP GROUPS AND INSTANTONS IN DIMENSION TwO"

by: Jens Gravesen

161/88 “PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
OF DISTRIBUTED PARAMETER SYSTEMS:

Dirichlet feedback control problems"
by: Michael Pedersen

162/88 "PIGER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Sussanne Blegaa, Birthe Olsen, P
Jette Reich , Mette Vedelsby

163/88 "EN MATEMATISK MODEL TIL BESTEMMELSE AF e
PERMEABILITETEN FOR BLOD-NETHINDE-BARRIEREN"

Af: Finn Langberg, Michael Jarden, Lars Frellesen
Vejleder: Jesper Larsen

164/88 "Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"

Af: Bernhelm Booss-Bavnbek, Glen Pate med
Martin Bohle-Carbonell og Jens Hejgaard Jensen

165/88 "COMPLEX STRUCTURES IN THE NASH-MOSER CATEGORY"
by: Jens Gravesen




166/88 "Grundbegreber i Sandsynligheds-.
regningen"

Af: Jergen Larsen

167a/88 *'BASISSTATISTIK 1. Diskrete modeller"
Af: Jergen Larsen

167b/88 "BASISSTATISTIK 2. Kontinuerte
modeller"

Af: Jergen Larsen

. 168/88 "OVERFLADEN AF PLANETEN MARS"

Laboratorie-simulering og MARS-analoger
_undersegt ved Mossbauerspektroskopi.

Fysikspeciale af:
Birger Lundgren

Vejleder: Jens Martin Knudsen
Fys.Lab./HC®

169/88 “CHARLES S. PEIRCE: MURSTEN OG MERTEL
TIL EN METAFYSIK."

Fem artikler fra tidsskriftet "The Monist"
1891-93.

Introduktion og oversasttelse:

Peder Voetmann Christeéansen

170/88 "OPGAVESAMLING I MATEMATIK"

Samtlige opgaver stillet i tiden
1974 - juni 1988

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"

Kvantemekanikkens grundlagsproblem
i gymnesiet.

Fysikprojekt af:
Erik Lund og Kurt Jensen

Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen

173/89 “"NUMERISKE ALGORITMER"
af: Mogens Brun Heefelt

174/89 * GRAFISK FREMSTILLING AF
FRAKTALER 0G KAO0S"

af: Peder Voetmann Christiansen

175/89 " AN ELEMENTARY ANALYSIS OF THE TIME
DEPENDENT SPECTRUM OF THE NON-STATONARY
SOLUTION TO THE OPERATOR RICCATI EQUATION

af: Michael Pedersen

176/88 * A MAXIUM ENTROPY ANSATZ FOR NONLINEAR
RESPONSE THEORY"

af : Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"

af: Morten Andersen, Ulla Engstrom,
Thomas Gravesen, Nanna Lund, Pia
Madsen, Dina Rawat, Peter Torstensen

Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTESEN AF PENICILLIN - en matematisk model"

af: Ulla Eghave Rasmussen, Hans Oxvang Mortensen,
Michael Jarden

vejleder i matematik: Jesper Larsen
biologi: Erling Lauridsen

179a/89 "LERERVEJLEDNING M.M. til et eksperimentelt forleb
om kaos"

af: Andy Wiered, Seren Brond og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

179b/89 "ELEVHEFTE: Noter til et eksperimentelt kursus om
kaos"

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen.
Karin Beyer

.

180/89 "KAOS I FYSISKE SYSTEMER eksemplificeret ved
torsions- og dobbeltpendul".

af: Andy Hierod, Seren Brend og Jimmy Staal
Vejleder: Peder Voetmann Christiansen

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE
SHEAR VISCOELASTICITY"

by: Jeppe Dyre
1
183/89 "MATEMATICAL PROBLEN SOLVING, MODELLING. APPLICATIONS
AND LINKS TO OTHER SUBJECTS - State. trends and
issues in mathematics instruction

by: WERNER BLUM, Kassel (FRG) og -
MOGENS NISS, Roskilde (Denzark) .

184/89 “En metode til bestemmelse af den frekvensafhengige
varmefylde af en underafkelet vaske ved glasovergangen”

af: Tage Emil Christensen

185/90 "EN HESTEN PERIODISK HISTORIE"
Et nntenatiek projekt
af: Steen Grode og Thomas Jessen
Vejleder: Jaqob Jacobgen

18§/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
redigeret af Arne Jakobgen og Stig Andur Pedersen

187/90 "RSA - et kryptografisk system"
af: Annemette Sofie Olufsen, Lars Frellesen
og Ole Maller Nielsen

Vejledere: Michael Pedersen og Finn Munk

188/90 "FERMICONDENSATION ~ AN ALMOST IDEAL GLASS TRANSITION"
by: Jeppe Dyre

189/90 "DATAMATER I MRATRMATIKUNDERVISNINGEN PA
GYMNASIET OG HOJERE LAREANSTALTER

af: Finn Langberg



190/90

191/90

192/90

193/%0

194a/90

194b/90

195/90

196/90

197/90

198/90

“FIVE REQUIREMENTS FOR AN
APPROXIMATE NONLINEAR RESPONSE
THEORY" -

by: Jeppe Dyre

*MOORE COHOMOLOGY, PRINCIPAL
BUNDLES AND ACTIONS OF GROUPS
ON C*-ALGEBRAS"

bv: lain Raeburn and Dane P. Williams

“Agé-dependent host mortality in the
dynamics of endemic infectious diseases
and -

SIR-models of the epidemiology and natural
selection of co-circulating influenza virus
with vartial cross-immunity"

by: Viggo Andreasen

“Causal and Diagnostic Reasoning"

by: Stig Andur Pédersen

“DETERMINISTISK KAOS"
Projektrapport af : Frank Olsen

"DETERMINISTISK KAOS"
Korselsrapport

Projektrapport af: Frank Olsen

“STADIER PA PARADIGMETS VEJ"
Et projekt om den videnskabelige udvikling
der ferte til dannelse af kvantemekanikken.

Projektrapport for 1. modul p& fysikuddan-
nelsen, skrevet af:

Anja Boisen. Thomas Houghrd. Anders Gorm
larsen, Nicolai Ryge.

Vejleder: Peder Voetmann Christiansen

“ER KAOS NODVENDIGT?"

~ en projektrapport om kaos' paradigmatiske
status i fysikken. '

af: Johannes K. Nielsen, Jimmy Staal og
Peter Beggild

Vejleder: Peder Voetmann Christiansen

“Kontrafaktiske konditionaler i HOL

af: Jesper Voetmann, Hans Oxvang Mortensen og

Aleksander Host-Madsen

Vejleder: Stig Andur Pedersen

“Metal-Isolator-Metal systemer"
Speciale
af: Frank Olsen

199/90 "SPREDT FEGTNING” Artikelsamling

af: Jens Hojgaard Jensen

200/90 "LINEER ALGEBRA OG ANALYSE"

Noter til den naturvidenskabelige basis-

uddannelse.
af: Mogens Niss

]

201/90 "Underssgelse af atomare korrelationer i
amorfe stoffer ved rentgendiffraktion™

af: Karen Birkelund og Klaus Dahl Jenaen
Vejledere: Petr Visdor, Ole Bakander

202/90 "TEGN OG KVANTER"
FPoredrag og artikler, 1971-90.

af: Peder Voetmann Christiansen

203/90 “OPGAVESAMLING I MATEMATIK® 1974-1980
afleser tekst 170/88

204/91 "ERKENDELSE OG KVANTEMEKANIK®
et Breddemodul Fysik Projekt
af: Thomas Jessen
Vejleder: Petr Viscor

205/91 "PEIRCRE'S LOGIC OF VAGUENESS*"
by: Claudine Engel-Tiercelin

Department of Philosophy
Université& de Paris-1
(Panthéon-Sorbonne)

206a+b/91 “GERMANIUMBEAMANALYSE SAMT

207/91

208791

209/91

210/91

211/81

212/81

213/81

A -~ GE TYNDFILMS ELEKTRISKE
EGENSKABER"

Bksperimentelt Pysikspeciale
af: Jeanne Linda Mortensen
og Annette Post Nielsen
Vejleder: Petr Visdor

"SOME REMARKS ON AC CONDUCTION
IN DI1SORDERED SOL1IDS"

by: Jeppe C. Dyre

"LANGEVIN MODELS FOR SHEAR STRESS
FLUCTUATIONS IN FLOWS OF V15CO-
ELASTIC L1OUIDS™

by: Jeppe C. Dyre

"LORENZ GUIDE" Kompendium til den

danske fysiker Ludvig Lorenz,
1829-91.

af: Helge Kragh

"Global Dimension, Tower of Algebras,
and Jones Index of Split Seperable
Subalgebras with Unitality Condition.

by: Lars Kadison

"I SANDHEDENS TJENESTE"

- historien bag teorien for de komplekse +al.
af: Lise Arleth, Charlotte Gjerrild, '

Jane Hansen. Linda Kyndlev, Anne
Charlotte Nilggon. Kamma Tulinius.

Vejledere: Jesper Larsen og Bernhelm
Boogs~Bavnbek

"Cyclic Homology of Triangular Matriz

Algebras"
by: Lars Kadison

"Disease~induced natural selection in a

diploid host

by: Viggo Andreasen and Freddy B.Christiansen




21491

'215]91

21691

*"Hallej i =mteren" - om
elektromagnetisme. Oplag
til undervisningsmateriale
i gymnasiet. :

Af: Nils Kruse, Peter Gastrup,
Kristian Hoppe, Jeppe Guldager

Vejledere: Petr Viscor, Hans Hedal

“Physics and Technology of Metal-
Insulator-Metal thin film structures
used as planar electron emitters

by: A.Delong, M.Drsticka, K.Hladil,
V.Kolarik, F.Olsen, P.Pavelka and '
Petr Viscor. .

“Kvantemekanik p& PC'eren"

af: Thomas Jessen

217/92

218/92

219/92

220/92

221/92

222/92

:223/82

%24/82

*Two papers on APPLICATIONS AND MODELLING
IN THE MATHEMATICS CURRICULUM"

by: Mogens Niss

“A Three-Square Theorem"

by: Lars Kadison

"RUPNOK -~ stationer stremning i elastiske ror"
af: Anja Boisen, Karen Birkelund, Mette Olufsen
Vejleder: Jesper Larsen

"Automatisk diagnosticering i digitale kredsleb"
af: Bjern Christensen, Ole Moller Nielsen

Vejleder: Stig Andur Pedersen

"A BUNDLE VALUED RADON TRANSFORM, WITH
APPLICATIONS TO INVARIANT WAVE EQUATIONS"

by: Thomas P. Branson, Gestur Olafsson and
Henrik Schlichtkrull

On the Representations of some Infinite Dimensional

Groups and Algebras Related to Quantum Physics
by: Johnny T. Ottesen

THE FUNCTIONAL DETERMINANT

- by: Thomas P. Branson

UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT
LOW TEMPERATURES

by: Jeppe C. Dyre



