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ABSTRACT. We develop the theory of the Fourier and Radon transforms of sections of equi-
variant vector bundles over symmetric spaces of the noncompact type. As an application, we
show that wave propagation governed by the Maxwell and massless Dirac equations on the
odd-dimensional hyperboloid is sharp. In particular, we prove Huygens’ principle for these
equations. . -

0. Introduction. Harmonic analysis, in its commutative and noncommutative forms, is
currently one of the most important and useful areas in Mathematics. Harmonic analysis
may be defined as the attempt to decompose function spaces over spaces with symmetry by
taking spectral decompositions of differential operators which respect the symmetry; or in
brief, as the spectral theory of invariant differential operators. The ability to find spectral
decompositions is the ability to solve differential equations, and so one is led inevitably
to the Fourier transform and its variants. Sufficient symmetry, i.e. the presence of a large
enough transformation group, is extremely useful both in finding the “right” differential
equations, and in solving them; it also seems to be the correct setting in which to define a
Fourier transform. A look at the long history of harmonic analysis and of Lie theory helps
explain why this happy convergence of goals and means is not entirely accidental. At the
same time, it allows us to state the purpose of the present paper.

After the early investigations of Gauss and Riemann into the geometry of surfaces and
of space, it became possible to put the study of the physical world and of symmetry on a -
geometric basis. When Sophus Lie began to work, the most sophisticated tools available
for theoretical studies of the physical world were partial differential equations, for example,
the Laplace, wave, Maxwell, and heat equations. Lie noticed that almost all properties
of differential equations that were useful in their solution had to do with behavior under
groups of transformations of the underlying space. He was led to the idea that one might be
able to do for partial differential equations what Galois had done for algebraic equations:
roughly speaking, to reduce their solution to group theory. This core idea has spread to
become ubiquitous in science, sometimes in ways that Lie could not have imagined. In
other ways, the ideas of Lie, Felix Klein, and others have succeeded, remarkably, much
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as planned. Lie groups permeate modern Physics; they operate not just on space or
spacetime, but on phase and configuration spaces, on fibers of bundles, and on a variety
of objects constructed from these. The parallel development of analysis on Lie groups
and homogeneous spaces has made it possible to mount ever better direct and formalized
attacks on differential equations, for example, the wave and Maxwell equations, through
the exploitation of symmetry. This development has also allowed a change of perspective
to take hold, not only in Mathematics, but also in the other sciences: the transformation
group of a space has come to be seen as, in a sense, more fundamental than the space
itsef. Within Lie theory, this thinking is implemented by viewing a homogeneous space
as a quotient G/H of a group G by a subgroup H; that is, by-noticing that the space is
already implicit in: the:group. In Physics, the study of -partial differential equations with
symmetry groups has led to the detailed study of representations of these groups. The
idea is not just to describe known physical particles and fields in terms of representations
(typically carried by the space of solutions of a differential equation, or by the quotient
of some larger function space by this solution space), but rather to construct predictive
theory based on classification results for representations. Slowly, the group representation
aspect of a particle has come to be seen as fundamental, to the point that one often sees
particles defined and labelled by group representations. This motivation has supplied much
of the impetus for the central problem of group representation theory, that of classifying
irreducible unitary representations of a given Lie group. First proposed by Bargmann and
Wigner for the Lorentz group, this problem was then developed in more generality by
Gelfand, Godement, Mackey, Mautner, Naimark, Segal, and others. For semisimple Lie
groups, the study of representations and the related problem of determining the Plancherel
formula was taken up by Harish-Chandra, and this brings us back to harmonic analysis.

On curved spaces, the notions of systems of fields and of differential equations give
way to those of vector bundles and of differential operators on vector bundle sections.
The Maxwell equations are an example of a system that, in the curved space setting,
can be properly understood only in bundle terms (in this case, bundles of differential
forms). The same is true of the Dirac equation, with the added restriction that now, Lie
theory is a prerequisite even for the construction of the bundle involved. In harmonic
analysis, the theory of bundle valued objects is somewhat underdeveloped relative to that
of scalar valued (i.e., trivial bundle valued) objects; the same is true to a lesser extent in
representation theory. For example, various classification problems for invariant differential
operators have long been completely understood in the scalar case, but remain elusive in
the bundle case.

Our purpose here is to develop the theory of the Fourier and Radon transform of vector
bundle sections over symmetric spaces of the noncompact type, to show how such tools
can be used to solve invariant differential equations, and to deduce important properties of
solutions. Specifically, we work with the Maxwell and (massless) Dirac equations, with a
special view toward properties that imply sharp propagation of information; that is, prop-
agation at characteristic speed (the “speed of light”), without dispersion. The best-known
such property is Huygens’ principle; this is also the most elementary in the sense of being
directly expressable in terms of support properties of solutions (as opposed to functional
analytic constructs or conservation laws). We also consider the somewhat weaker property
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of equipartition of energy or of charge. In earlier work, we considered similar questions in
the scalar case [3, 17]. The direct inspiration for those papers and for this one is Helgason’s
direct (i.e. non-transform) treatment [12] of Huygens’ principle for the wave equation on
a symmetric space. Our work can also be seen as a further development of fundamental
work of Harish-Chandra and of Helgason on the Fourier and Radon transforms.

The organization of our paper is as follows. Secs. 1 and 4 relate objects from differential
geometry, for example connections and Laplacians, to objects from Lie theory, for example
differentiation from the left and right, and the Casimir operator. These relations are almost
trivial in the case of scalar valued functions on homogeneous spaces, but require a certain
degree of care in the case of bundles. Qur central result here is Proposition 4.1, which
relates the geometer’s Bochner Laplacian to the Casimir operator of G acting in bundles
over a (suitably reductive) homogeneous space G/H. The Bochner Laplacian is easily
related to, for example, differential form and spin Laplacians, and it is straightforward to
follow the effect of the Casimir operator as Fourier and Radon transforms are applied, so
Proposition 4.1 is a “bridge” sufficient for our purposes. In Sec. 2, we develop the theory
of the bundle-valued Fourier transform on symmetric spaces G/K of the noncompact type,
for semisimple groups G with one conjugacy class of Cartan subgroup. The main result
is Theorem 2.2, which gives the Fourier inversion and Plancherel formulas in the bundle
setting. Here the analytic power derives from Harish-Chandra’s theory of the operator
valued Fourier transform.. The most convenient tool for the study of support properties
of solutions of differential equations is the Radon transform, which we develop in the
bundle setting in Sec. 3. The main result here is a support lemma of Paley-Wiener type,
Lemma 3.3, which relates the support of a vector bundle section, the support of its Radon
transform, and an exponential type estimate on its Founer transform. The analytic power
. is supplied by Delorme’s Paley-Wiener theorem for functions on G.

*In Sec. 5, we specialize some of our results to the case of the odd-dimensional hyperboloid
SOo(2k +1,1)/SO¢(2k + 1) = Spiny(2k + 1,1)/Spiny(2k + 1), the setting in which we
shall apply the Radon transform to questions about the Dirac and Maxwell equations. In
particular, we make contact with weight arithmetic for Spiny(2k + 1,1) and for the groups
Spin(m), and express our Laplacians in these terms. Sec. 6 treats the Dirac equation
and a spinor wave equation. The main results are Theorem 6.8 (Huygens’ principle and
-equipartition of charge for the Dirac equation), and Corollary 6.9 (equipartition of energy
for the spinor wave equation). In Sec. 7, we treat the Maxwell equations. The main
results are Theorem 7.6 (Huygens’ principle and equipartition of energy for Maxwell’s
equations), and Theorem 7.8 (equipartition of energy for a differential form wave equation
with side condition). Huygens’ principle for the Dirac and Maxwell systems on the odd-
dimensional hyperboloid H?**! can also be derived from @rsted’s results in [18], which are
obtained in the somewhat different setting of intrinsically Lorentzian, locally conformally
flat spaces. Huygens’ principle for Maxwell’s equations on H2?**! was also proved by
Strichartz [20] using different methods. Our approach to sharp wave propagation in the

bundle valued case seems to indicate, as indeed all other approaches do, that the first-

order Dirac and Maxwell systems are extremely natural: our arguments go through only
because of special characteristics of the representations defining the appropriate bundles,
and of the equations; it is not possible simply to constuct first-order systems in arbitrary
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equivariant vector bundles which behave in this way.

We would like thank Sigurdur Helgason and Bent Orsted for stimulating and help-
ful discussions. We also thank Sonderforschungsbereich 170: Geometrie und Analysis in
Gottingen, the Danish Research Council, and the NATO Collaborative Research Program
for financial support.

1. Preliminary remarks. In this section, we assume that M = G/H is a homogeneous
space of a connected, semisimple Lie group G with closed isotropy subgroup H. We adopt
the usual convention of denoting the Lie algebra of a Lie group by the corresponding
small German letter; in particular, we have h C g. We assume further that M is strongly
reductive in the sense that there is there is a vector subspace s of g with

(1.1) ' g = h @ s (as vector spaces),
(1.2) Ad(H)sCs, [s,;s]Ch.

For example, M could be a symmetric space like the hyperboloxd H™ = S04(n,1)/ SO(n)
or sphere SO(n + 1)/ SO(n).

Remark 1.1. Let Bg(X,Y) = trad X adY be the Killing form of g. Under the above
assumptions, the restriction of By to s is nondegenerate, and thus defines a nondegenerate
pseudo-Riemannian metric on M as follows. The splitting (1.1) nges rise to an identifica-
tion of s with the tangent space T, M at the identity coset, or origin 0o = eH of M, and
thus to a nondegenerate bilinear form g, on T, M. By the Ad(G) invariance of the Killing
form, g, can be pulled back to a nondegenerate bilinear form g, on T; M for each = € M;
the desired metric is then g : 2 — g, . In general, g is not positive or negative definite. In
special cases, we shall choose normalizations of the Killing form distinguished by the desire
for a certain normalized curvature (for example, constant sectional curvature F1 on the
hyperboloid and sphere respectively), or by the desire (when relevant and possible) to have
a restricted Killing form that agrees with an intrinsic Killing form. Such renormalizations
will, of course, have an effect on the computation of the Casimir operator of g or one of its
Lie subalgebras. Note that without an assumption of positive definiteness, when we speak
of “orthonormal” bases and local frames {X;} in this section and in Sec. 4, the sense is that
the inner product of X; and X; is £6;;. The definition of the Casimir operator of a Lie
subalgebra q of g can be given in these terms as follows: if b is some chosen nondegenerate
bilinear form on q (usually a normalization of the restriction of By), and if X;,...,X, is
a basis of q with (X, X;) = €65, €i = 1, then Casg = -3, €iX? € U(g). Since we
are mainly interested here in Riemannian symmetric spaces, indefinite inner products will
appear only in auxiliary propositions which we wish to prove in reasonable generality.

Remark 1.2. The splitting (1.1) defines a natural left-invariant connection V on the
principal bundle H# — G — M (take § to be vertical and s to be horizontal), and thus on
the vector bundle V, = G x; V; associated to a finite-dimensional representation (7, V;)
of H. We call this the canonical connectionon H —- G — M oron V,. By [15,X.3.3], V
agrees with the Levi-Civita (pseudo-Riemannian) connection V1€ on the tangent bundle
TM = G xaq 5 in our setting. We fix this choice of connection throughout this paper.
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Remark 1.3. There is a standard identification of the space C*°(M, V) of C* sections
f of V, with the space C®(G;7) of C* functions f1 : G — V, satisfying fi(gh) =
T(h™1)f%(g) for all g € G, h € H. (In fact, when it causes no difficulty, we shall sometimes
blur the distinction between f and f%.) We can use this identification to state the standard
relation between the connection and its covariant derivative: if g € G, X € C*(TM),

(1.3) - (Vx ) g) = (X*f*)g),

where X! is the horizontal lift of X to G via V. We would also like a formula for the
canonical connection that is more adapted to Lie-theoretic calculations. Since V is left-
invariant and the expression Vx f is C*(M)-linear in the X argument, all information
will be contained in a formula for (Vx f)¥(e) in terms of (X"), and f%. Let X € g be
the image of (X*), under the usual identification of T.G with g; since (X"). is horizontal,
~ X €s. Since X, = (X"),, it is immediate from (1.3) that :

(Vx i) = o

_ fHexp(tX)).

t

By the left invariance of V, if £ = gH is arbitrary in G/H, then

d
(Vxf)i(g) = ¥ fi(gexp(tX)),
1=0
where A’ € s is determined by
X, = (XY, .
Remark 1.4. Choose an orthonormal basis X; _,'. .. ;.X’,, for s in some normalization b, =

Bglsxs of the Killing form, b:(X;,X;) = €:6ij, €; = £1. Then it is immediate from the

last remark that .

(21, 2n) = exp()_ z:X)H
1=

gives a normal coordinate system at at o € M.

2. The bundle valued Fourier transform. Let G be a connected semisimple Lie group
and K a maximal compact subgroup. Then X = G/K is a Riemannian symmetric space
of the noncompact type. Suppose that G has one conjugacy class of Cartan subgroups
(occC). (See [22, Sec. 7.9] or {11, Theorem IX.6.1].) In this section, we would like to
define a Fourier transform ~ on sections of K-bundles V, = G x, V over X, (V,7) an
irreducible representation of K, and use Harish-Chandra’s theory of the operator-valued
Fourier transform F on the space C>°(G) to write down Fourier inversion and Plancherel
formulas for ~. Here and below, C2® means C* with compact support.

To introduce the Fourier transform, we shall need some basic definitions from semisimple
structure theory. Take a Cartan decomposition g = ¢ + p, choose a maximal abelian
subalgebra a of p, fix a positive open Weyl chamber a} ina*,andlet G = KAN, g = t+a+n
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be the corresponding Iwasawa decomposition. Let p be half the sum of the positive (g, a)
roots:

p(H) = jtr(adH)| , He€a.

The Weyl group of (g,a) is W = M' /M, where M and M’ are respectively the centralizer
and normalizer of a in K. Note that there are natural actions of W on the set M of
equivalence classes (0, Uy ) of irreducible representations of M, and on a*. The exponential
map is a diffeomorphism of a onto A. If a € A and v € ag, let

a’ = eu(log a)'

Consider the minimal parabolic subgroup MAN cox:respondingrto our choices. Principal
series representations are parameterized by (o,v) € M x ag. The representation 7, , acts
by left translation in the Hilbert space H, , obtained by completion of the space

{¢ € C(G,U,) | ¢(gman) = a=""Pa(m) ™ ¢(g), g € G}

in the norm
1) 18|17 = / l6(k)|2dk.
;

To,v 15 unitary for v purely imaginary on a. As a K-module, (74, |, He,, ) is independent
of v, because restriction to A is an isometry of H, , onto the K-module H, obtained by
completion of

{6 € C(K,Us) | ¢(km) = o(m)™'¢(k), k € K}

in the norm (2.1), for all v. In the following we identify H,, and H, whenever it is
convenient.

For 7 € K, 0 € M, we write 7 | 0 or o T 7 if the multiplicity m,(7) of o in the
restriction of 7 to M is nonzero. Frobenius reciprocity sets up a natural identification of
Hom g (H,, V) with Homa (U, V7).

The operator-valued Fourier transform of F € C(G) is

2.2) (FF)o,v) = /G F(g)o,(9)dg € HS(H,,),

where “HS” stands for “Hilbert-Schmidt”. The corresponding Plancherel decomposition is
as follows: let £ and R be the left and right regular representations of G in L?(G). Then

®

23) PO %oxc @ [ Hew@ s
N uE\/:Ta;_

where dv is a choice of Lebesgue measure on /—1a*, and the representation acting on the
left-hand side is L@ R.
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Remark 2 1. By a theorem of Bruhat [4, Theorem 7.2], the 7,, are. u'reducxble for
almost all v € /—1a* when G is semisimple. In our occC. setting, they are irreducible for
“all v € \/=1a* by [7, Theorem 41.1). Moreover, for v,v' € /=1a*, 7, is equivalent to
Mo, if and only if there is a w € W with (o',v') = (wo,wv) [4, Theorem 7.2].

To invert F, it suffices to recover F(e) from FF, since we can then apply the result
~to any left translate of F. By Harish-Chandra’s inversion formula, [22, Theorem 8.15.4],
there exists a positive normalization of dv such that

(2.4) F(e) = Z / o (GFF) oo, v)ds

where m(o,v) is the Plancherel density. A formula for —m(o,v) is given in [22, p. 294)
(see also [7, Theorem 24.1]). It follows from this formula that m(o,v) can be written as
- m(o,v) = |n(o,v)|?, where 5(0,-) is a complex polynomial on a? which is real on a*. (7 is
unique up to multiplication by £1.) When o is the trivial M-type then 5(o,v) is (plus or
minus) the inverse of Harish-Chandra’s c-function. The corresponding Plancherel formula
is '

(25) LiFora=3 [ G CRR

cEM vev-1

Let (7, V,.) be an irreducible representation of K, and consider the vector bundle V, =
G x, V; associated to 7 and the principal fibration K - G — G/K. We identify the
section space C*(G/K,V,) with C*°(G; 1) as in Remark 1.3. Because K is compact, this
also identifies C®(G/K,V,) with C®(G;7). Similarly, we denote by L?(G; ) the space
of V,-valued L2-functions on G satisfving the above transformation rule, and by £ the
- natural representation of G on this space.
The Plancherel decomposition of £ on L?(G;7) follows from (2.3) above. Indeed,

L2(G V ) =GxG @/ 7ra,u ® ﬂ’;'y ® V‘r dl/,
E\/_u+

so the right transformation rule defining L?(G; 1) gives .

L¥(G;7) G@/E\/_ Tow @ (7, ® V;)Fdy,
la3

where L is the representation acting on the left-hand side. But (w;’,,®V,-)K = Homp (H,, V)
is naturally identified with Hom(U,, V), so

(53]
L =g @/ Tow & 1H°mAI(U¢7|Vr)dV’

olr ve _“;—
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where 1 denotes the trivial representation.

This decomposition of £ is implemented by the following Fourier transform. If a €
Homg(Vy, H, ), we define

f(o,v)(a) = /G o0l 6)AGK) € Ho, 0 €M, v €t

for f € C*(G; 7). In this way, f(a, v) can be viewed as an element of
H, @ Homg (Vs Hs)* = He @ Homg (He, Vr) = H, ® Homps (Us, Vr).

Here we employ the natural identification of Homy (Mg, Vi) with Homy (Vy,H,)*, and use
Frobenius reciprocity to identify Homg(H,, V) with Homa(Us, V;). In partxcular only
finitely many o can contribute: f(o,v)(a) = 0 unless o T 7. Notice that f — f maps
C(G; 1) equivariantly into H,,, ® Homps(Uy, V).

We can now state:

Theorem 2.2. Suppose 7 is an irreducible representation of K, and let n = dimr. Let
f € CX(G;). 7 , , ,
(a) (Fourier inversion formula.) Let &, : H, ® Hompy(H,,V:) — V; be the contraction

®,(h ® ¢) = @(h). Then

@=2 [ eereste™) @ Do mmia.ian

UT"' € —lﬂ+

(b) (Plancherel formula.) We have

£ = = Z/ If (e, v)|m(a, v)dv.

oflr _l°+

Proof. It suffices to prove (a) for g = e, since we can then apply this result to left translates
of f. Thus the claim is that

(26) f L 23 [ &l mo, ).

(Here and in the rest of the proof, the sum is over o with o T 7, and the v-integral is over
v—1a% .) We apply (2.4) to the function F(g) = (f(g),v) where v € V,. It follows from
(2.2) that (FF)(o,v) = (FF)(o,v)Pr, where P is the orthogonal projection of H, onto
its T-isotypic component. (2.4) becomes

@2.7) Fle)=Y" / tx(P,(FF)(0,v)P, ym(o,v)dv.
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Now pick orthonormal bases v;,... ,v, and ¢1,... ,¢m for V; and Homg(V;,H,) re-

spectively, with respect to K-invariant inner products on V; and H,. The @jv; are an
orthonormal basis for P,H, , and we get from (2.7) that

Fo) = X [ SUFFNow)esm osmimio,v)d
By (2.2),

(FF)(o,v)p5v: = /G (F(9), ) a0 (g)e50:dg

(2.8)
=/G/K‘/I‘((T(k'l)f(g),v)ﬂa,.,(g)(pjr(k)v,-dkd(gI{)_

For any endomorphism A of V; we have f}\ T(k)AT(k~ 1)dk = (tr A)I/n by Schur’s Lemma.
With Au = (u,v)w, we get :

/;{(T(k'l)u,v)r(k)w dk = —l-(w,v)u

n

for any three vectors u,v,w € V. Applie'd to (2.8), this gives
1 . 1
(2.9)  (FF)o,v)p;vi = —(vi,v) /G/I’wa,u(g)saj(f(g))d(gh) ={viy v)f(o,v)(;)-

Inserting this into (2.7), we get

(f(e),v Z/Z Vi,V f(a,v)(c,o,) w;vi)m(o, v)dv.

Z(via v)(f(a, V)(‘Pj)a ‘Pjvi) = Z(f(aa V)(‘l’j)v ‘Pjv) = (QU(f(oa V))’ v>

) t

Since

and v was arbitrary, (2.6) and hence (a) is established.
By definition,

(2.10) T /G MICZOOESY /G [(£(g), ) 2ds.
=1

We want to apply the operator-valued Plancherel formula (2.5) to F(g) = (f(g),v). By
(2.9), ‘

211)  IFF)olEs = X NFF)o el = 2 3 o) P, w)e)I
)

iy
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Let Fi(g) = (f(g),v:) and apply (2.5) and (2.11) in (2.10):

=3y / |F Fi(o, v) s mlo, v)dv

=1 o

= 23 [ Sl e, v

1,i,g

=13 [ S m)eitmo, s
=2 ¥ [ Wi mime,v)d,

proving (b). DO

Remark 2.3. Notice that though the Hilbert space L?(G; 7) decomposes as a finite direct
sum over o 1 7 of invariant subspaces, this decomposition is in general not inherited by
the subspace C®(G; 7). Indeed, any continuous intertwining operator A from a 7, to a
Tgr + With complex valued v and v' will give rise to the relation

Afo)@) = [ | Ameslg)a(S(e)MeE)

- / ot (9)Aa(f(9))d(gK)
G/K
= f(a',v')(.4a').

Since f is holomorphic, it follows that the Fourier transforms f(o,:) and f(o',-) are not
independent.

3. The bundle valued Radon transform. For f € C°(G; 1) we define the Radon
transform as the V; valued function

fl9) = a(g)p/Nf(gn)dn.

on G. Here a(g) € A is defined by the Iwasawa decomposition: g € Ka(g)N, and again,
a’ =¢"198%) fora e A,v € ag. The defining integral of f converges locally uniformly in g
since N is closed and f has compact support. Hence f is smooth.

Let = = G/MN be the space of horocycles in G/K [9]. Since f(gmn) = r(m)~1f(g)
for g € G, m € M, and n € N, we may view f as a section of the vector bundle G x pn V5
over =, where M acts on V, by 7|y and N acts trivially.

Notice that if T is the trivial representation then f is the Radon transform of f in
the sense of [8], except for the factor a®. In this case there is a simple relation between
the Radon and Fourier transforms of functions on X: essentially f is obtained from f



BUNDLE VALUED RADON TRANSFORM, INVARIANT WAVE EQUATIONS 11

by a (Euchdea.n) Fourier transform on A [10, p. 458, equation 7). This relation can be
generalized to the present situation, where we work in bundles over X and Z, as follows.
For each 0 € M we define the o-Radon transform of f by

fo(B) = Bof, B € Homm(V:,Us).

f,(ﬂ) may be viewed as a section of the vector bundle G xpn U, over =, where N as
before acts trivially. For a € HomK(V,,'H,) let & denote the element of Hom(V;,Us)
given by a(v) = a(v)(e). Then a — & sets up the 1somorphxsm of Homg (V:, He) with
Homp(V,,U,) implied by Frobenius reciprocity.

Lemma 3.1. Let f € C>(G;1). Then
f(ov)(a)(k) = /A o f,(é)(ka)da

forallo € M, v € a, a € Homy(Vy, H,), k € K.

Proof. By definition of f and invariance of the measure on G /K we have
fe)@®) = [ maulgda(e)(RMK)
G/k
= [ mosl@alfka))e)dgK)
G/K

which by the Iwasawa decomposition G = ANK can be written as an integral over A x N:

=/A/Nwa,,(an)a(f(kan))(e)dnda

=/A/Na"+”a(f(kan))(e)dnda.

The latter identity follows f_rom the fact that by definition of the representation (74, ,Ho)
we have 7, ,(an)h(e) = a¥*?h(e) for any element h € H,.
The lemma now follows immediately from the definition of f,. O

Let (7, Vi), i = 1,2 be finite dimensional representations of Ii'. Notice that the elements
of Sq¢(a) ® Homps(V1, V2) naturally define invariant differential operators of order < d from
the vector bundle G X pn 71|p to the vector bundle G x prn T2|ar. Here Sq(a) denotes the
set of elements in the symmetric algebra S(a) of degree < d.

Lemma 3.2. Let D : C*(G;m) — C*(G;72) be an invariant differential operator of
orc!er d € N. Then there exists an element D € S4(a) ® Homa(V1,V,) such that (Df)"=
Df for all f € CX(G;my). ,

Proof. By 22, 5.4.11], D is given by an element u of (Us(@) ® Hom(V;, %)), (In general,
if V is a K-module, V¥ denotes the vector space of K-invariant elements of V'.) By
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the Poincare-Birkhoff-Witt Theorem, there exist finitely many elements v; € Uj(a),w; €
Uq(t),z; € Hom(V;,V;) such that u = ;v ® w; ® z; modulo nU(g) ® Hom(V1,V2).
Moreover, the K invariance of u implies that Y, vi ® wi ® z; is M-invariant, because M
~ normalizes n. Asin Sec. 2, we let R denote the right regular action of G, and use the same
notation for the corresponding action of g, and the extension of this latter action to U(g).

Then
(Df)(z) =) _a(z) / ziR(viwi)f(zn)dn =) _ a(z)? / zimy(w] )R(vi)f(zn)dn,
i N i N
where w — wV is the anti-automorphism of U(g) generated by X + —X for X € g, and
hence

(PN @) =T sa@) [ (R an)dn
with z! = z;7;(w)) € Hom(V;, V). By a change of variables it is easily seen that

| a(z)? /N (R(X)$)(zn)dn = R(X + p(X)) (a(-)" /N o(- n)dn) (2)
for X € a,¢ € C.(G). Hence we obtain
(DfY" =D =AR@)S, -

t

where v| is a p-shift of v;. Since we have
> v ® 2| € (Ua(a) ® Hom(V, V2))M = Ug(a) ® Homr(V1,12))
the lemma is proved. O
Let D be as above, let D = 3 vi ® 2z € Sq(a) @ Homps(Vi, V2), and let 0 € M. Then

(3.1) (Df)3(B) = 3 (R(v:)fo)(Boz)
for 8 € Hom(V1,U,), and hence by Lemma 3.1 we obtain that
(3.2) (Df)~(o,v)(a) = > vi(~v)f(0,v)(a:)

1
for « € Homp(Vi,H,). Here a; € Homp(V2,H,) is the element determined by a; =
dozi € Homp(Va,U,).

For the Fourier and Radon transforms we have the following support theorem which
generalizes results of Helgason in the case where 7 is the trivial representation {10, Lemma
8.1].

Let B, denote the ball of radius r > 0 around the origin in X. Since G = NAK and
the distance function is K-invariant, we have

B,={kaK e X |ke N, a€ A, |loga|] <r}.
Similarly we define
Br={kaMN € =Z| k€ R, a€ A, |loga| <r}.
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Lemma 3.3. Let f€CX(G;7) and let r > 0. The following conditions are equivalent:

(1) supp f is contained in B,.
(2) supp f is contained in f;. )
(3) sup,gq(1+ lv||)Ne~rIRe¥ll|| f(o,v)]] < 00 forall N € R, 0 € M.

Proof. Let “dist” be the Riemannian distance function on G /K. From [11, p. 278, Exercise
B.2(iv)], we have that dist(anK,o0) > dist(aK,o0) for all a € A,n € N, where 0o = eK
is the origin. It follows from this and the K-invariance of the distance function that
dist(kanK,o0) > dist(aK,o0) for all k € K,a € A,n € N. Hence ||logal| > r implies
kanK ¢ B, for all n € N, and we get that (1) implies (2).

Notice that by the Paley-Wiener theorem for R", (3) is the condition for the map
v — f(o,v) to be the (Euclidean) Fourier transform of a function on A, supported on the
set where || logal| < r, for each 0. Hence (2) is equivalent to (3) by Lemma 3.1. It remains
to prove that (2) 1mp11es (1).

We shall use the left K-finite expansions f = 3 ;. fé and f = E&el\(f)6 of f

and f. f6e K, flis the component of f that transforms according to the represen-
tation 6 from the left. We have that f®(g) = (dim$é) f,. xs(k)f(k~'g)dk and feg) =
(dim ) [, xg(k)f(k ~1g)dk, where x; is the character of §, and hence we see that supp f C
‘B, (resp supp f C Br) if and only if supp f® C B, (resp. supp f¢ C 8,) for all §, and that
fé = f5 (the order of the integrals over i’ and N can be interchanged).

Assume that (2) holds. To obtain (1) we may (and hence do) assume f to be left
K -finite, by the remarks in the previous paragraph.

We now apply the Paley-Wiener theorem of Delorme [5], which shows that F € C>(G)
has support in B, if and only if for all u,u' € U(#) and all natural numbers N,

sup (14 |lof| + [[v])N e NRe N ||my (u)(FF)(0,v)mo (u')] < 0. )
oc€EM,vEag

Here the operator norm is used on the operator T = 7w, (u)(FF)(o,v)r(u'), which is
defined on H®, the space of smooth functions in H,:

(33) T = sup [Ty
veHs lvlisr

As in the proof of Theorem 2.2, we apply to F(g) = (f(g),v), v € V,. Since f is left K-
finite and transforms according to the trivial representation of i” on the right, F' is '-finite
from both sides. Hence the applications of 7,(u) and 7,(u') are superfluous. Furthermore,
as we know from before, only finitely many o (those for which ¢ 7 7) contribute. Hence
supp F C B, if and only if for each o T 7 and N € N,

(3.4) o sup(1+ |l )Ne IRV F R (0, )| < o0.

veag



14 7 BRANSON, 6LAFSSON, AND SCHLICHTKRULL

By (3.3) and (2.9),
|FF(o,v)|| = sup |\ FF(o,v)e;vil

= sup |(vi, )|l £ (o5 v)(25)ll

= Jloll £ (e ),

where “=” means equal up to equivalent ﬁorms with computable bounds that depend only
on o. Since we already saw that (2) implies (3), it follows that (3.4) holds for all v, and
hence supp f C B,.- Hence«(2) implies (1): B

In the proof above, we apphed Delorme’s Paley-Wiener theorem for F to prove the
equivalence of a support assumption on f (or f) and an exponential type assumption on
f, under the assumption that f € C>(G;7). In fact a much stronger result, a Paley-
Wiener theorem for the bundle valued Fourier transform (where in particular we do not
start with the assumption that f is compactly supported), can be obtained this way. We
omit the details.

It is convenient to work with a modified version of the Radon transform. Recall the
Plancherel density m(o,v) = |p(o,v)|? from Sec. 2. Since n(o,v) is a polynomial in v, we
can define a differential operator J, on A with constant real coefficients by

(3.5) /A & (Jop)(a)da = n(a,v) /A o ¢(a)da

for all ¢ € C>(A). Since A commutes with M and normalizes N, the operator J, acts
naturally on sections of the bundle G x pn U,. We define

maf = Jafa-

Mo f(B) is a section of G X prn U, for each B € Homps(Vr, U, ). It follows from Lemma 3.1
above that

10, ) f(0,v)(a)(k) = / a"R, f(&)(ka)da

A
for v € ag, a € Homp(Vr,H,) and k € K.
Since n(o,v) is a polynomial, f(o,v) will satisfy condition (3) of Lemma 3.3 if and

only if n(o,v) f(o,v) satisfies it. Hence we conclude from this lemma and the Euclidean
Paley-Wiener theorem that if f € C°(G;7) then

(3.6) supp f C B, <> Vo € M : suppR.f C B

From Theorem 2.2 and the Euclidean Plancherel theorem we easily obtain the following
Plancherel formula for the Radon transform. Assume that 7 is irreducible. Then

(3.7) @mr)[IfI2 =S IRAI?,  f€CEGim).

olr
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By polarization, it follows that

(3.8) (dim7)(f0) = S (Rof, Rog),  frg € C(GsT).

oflr
In analogy with [17, Proposition 1], the modified Radon transform has the following
property.
Lemma 3.4. Let f € C>(G;7) and let r > 0. Assume that

suppRef C {kaMN € =:k € K,a € A,||loga| > r}
for all 0 1 . Then

suppf C {kaK € X : k € K,a € A,| logal| > r}.

Proof. It suffices to prove that f(z¢) = 0 for any z9 € G/K with dist(z¢,0) < r. Fix such
an zo , and choose a cutoff function ¢ € C®(G/K) with ¢ > 0, ¢(z¢) > 0,and supp C B,
for some s < r. Regarding ¢ as a right-K-invariant function on G, multiplication by ¢ is
an operator that preserves C®(G; 7). By the Plancherel formula (3.8),

2 ) = o2 \') = cons of, [N).
Ji eI = /| P Dla) = const 3 L @Rl MdaMN)

parys /MN

By (3.6) the support of D‘{,‘(cpz f) is contained in B,, which is disjoint with the assumed
support of R, f, so the latter integral is zero. Hence ¢f vanishes identically, and we
conclude that f(zo) =0. O '

Finally, though we do not need it in-the sequel, we note that there is also an inversion
formula for the bundle valued Radon transform. For any smooth section ¢ of G xn Vi
we define

(3.9) $@)= [ algh) P r(k)p(gb)d(kM), g€G.
K/M
Then ¢ € C®(G; 7). It is easily seen that
(3.10) [ @netondemm) = [ (o) p(o)do)
G/MN G/K

for all f € C(G;7); for this reason ¢ +— ¢ is called the dual Radon transform. Notice
however that compact support for ¢ in general does not imply compact support for 3.
Let J; be the constant coefficient differential operator on A defined in analogy with (3.5),
but with n(o, —v) in place of n(o,v). Then J; is the formal adjoint of J, (as suggested
by the notation). Let C°°(G;o) denote the space of smooth sections of G X pn Up. For
@ € C*(G;0) and for v € Homp(U,, V) we now define

Ry0(7) = (veJ50)Y € CZ(G; 7).
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We view R% as an operator from C®(G;0) ® Hompy(U,,V;) to C®(G;7). For f €

C(G; 1), we may view R, f as an element of C*°(G;0) ® Homps(Us, V), and then it

follows from (3.10) that R} is the adjoint of R,, as suggested by the notation. We now

get from (3.8) that :
(dun'r)f Zm‘m,f

olr

for f € C®(G;7) and 7 irreducible. , -
Notice that an alternate proof of Lemma 3.4 is obtained from this formula: If ¢ vanishes
on Br then it follows from (3.9) that ¢ and hence also ;¢ vanishes on B;.

4. The Bochner Laplacian. We would now like to display the power and utility of
the bundle valued Radon transform by applying it to wave propagation problems that
are essentially bundle valued. Though we are mostly interested in the Dirac and Maxwell
equations, which live in spinor and form bundles, it costs nothing extra to work in a gen-
eral K-bundle setting for the time being. To make contact with various bundle-valued
differential operators from Geometry and Physics, it is necessary to understand the con-
nection between the group-theoretic Laplacian, i.e. the Casimir operator, and the various
Laplacians which are definable in a more general differential geometric setting, for exam-
ple, the form, spinor, Bochner, and Lichnerowicz Laplacians. These technical problems are
not present in the scalar valued setting, but confront us immediately in the bundle valued
case. For example, sharp propagative properties of wave motion are extremely sensitive
even to constant shifts in the appropriate wave equation; and in the L? index theory of
a symmetric space or a quotient of such, where null spaces of Laplacians contain all the
information, constant shifts have a highly nontrivial effect. Thus even in those cases where
it is possible to guarantee that two Laplacians differ by a constant multiple of the identity,
it is important to know the constant.

In this section, we return to the general setting and notation of Sec. 1. Suppose that
(7,V:) is a finite-dimensional representation of H, and consider the associated vector bun-
dle V.. Recall that the canonical connection V on the principal bundle H - G — M gives
rise to a canonical connection, also called V, on each such V,. "M@V, =G xpy(s®@V;)
is also an associated bundle; thus it carries the connection V. Let ¢* be the metric on
T* M determined by the metric ¢ on TM, which is in turn constructed from the Killing
form of g as in Remark 1.1. The Bochner Laplacian B = B, is obtained by (1) applying
~-VV:C®(V,) = C®(T*MQRT*M®V,), and (2) contracting ¢g* with the T*M ® T*M
argument to get a differential operator on V,. In detail, suppose Z;,...,2Z, is a local
frame for M and w,,... ,wy the dual coframe. If f € C>®(V,),

Vf=zwj ®Vzf,
J

(4-1) va - Zwi ® (wJ ® VZ;ijf + VZ.""-’j ® VZ,' f)

i)

Recall that the Levi-Civita connection V'C of g agrees with the canonical connection
on TM = G x,s. If T'j; are the Christoffel symbols of VL€ in the given frame, that
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is, Vz,Z; = Y, TijxZx, then Vzw; = —3 ,Tijwr. Choose an orthonormal basis
Xi1,...,Xnfors, —By(X;,X;) =¢€ibij, €; = £1, and let the Z; be partial derivatives with
respect to the corresponding normal coordinates of Remark 1.4. Then ¢*(w;,w;)(0) = &ij
and T';ji(0) = 0. Thus for these choices, (4.1) implies

(4.2) (Bf)o=—Y_€i(V%,flo-

The horizontal lift (Z;)! is invariant under left translations by the one-parameter group
exp(tX;) {15, X.2.4], and so agrees with X along this curve. Let £ and R be the left and
right regular actions of U(g) on C*®(G). Restriction of £ yields a left action on C*(G;7),
and thus on C®(V.), with which it is naturally identified (Remark 1.3). R does not leave
C*(G; 1) invariant. Nevertheless, working at the identity in G, we can make the following
computation. By (4.2) and Remark 1.3,

(43)  (BAHe) = =Y ei(R(X:) f*)(e) = (R(Casg — Casy)f*)(e), f € CX(Vy).

Here the inner product used to cbmpute Casy is the restriction of that used to compute
“Casy ; see Remark 1.1. If 7 is irreducible, R(Casy) takes a constant value 7(Casy) = C,
on C®(V.). f X,Y € g and F' € C*(G), then (R(X)F)(e) = —(L(X)F)(e); thus

(R(X)R(Y)F)(e) = —(L(X)R(Y)F)(e) = —(R(Y)L(X)F)(e) = (L(Y)L(X)F)(e).
(4.3) therefore implies that

(Bf)o = ((£(Casg) — C+)f)o -

Since B and L(Casy) are left invariant differential operators, Bf = L(Casy) — C,.- We
have proved:

Proposition 4.1. Let M = G/H be a strongly reductive homogeneous space of a con-
nected, semisimple Lie group with decomposition @ = ) @ s. Let V be the canonical
connection on the principal bundle H - G — M, and B the Bochner Laplacian de-
termined by V and the metric g on M. Let (7,V;) be an irreducible finite-dimensional
representation of H, and let V. be the associated vector bundle over M. Then

Ble(v,) = L(CaSB)ICoo(vr) -C.,

where C, is the constant 7(Casy). O

Remark 4.2. One sometimes sees the Bochner Laplacian defined as V*V, i.e. by a formal
adjoint construction. For this, we need a nondegenerate Hermitian structure h (not neces-
sarily positive definite) on the bundle V. ; this defines a nondegenerate Hermitian structure
honT*M @V, via h(w® f,w' @ f') = ¢*(w,w")R(f, f'), where w,w’ € C®(T*M) and
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£, f € C*®(V,). The formal adjoint V* : C®(T*M QV,;) = C®(V,) of V:C>(V,) —
C>®(T*M ®V,) is uniquely determined by the relation

/ h(f,V*p)dvoly = / h(V f,p)dvoly,
M JMm

where f and ¢ are C™ sections of V, and T* M@V, respectively, either f or ¢ has compact
support, and dvoly is the Riemannian measure. Note that & is a section of the associated
bundle VI ® V7, so the expression Vi makes sense. Under the assumption that VA = 0,
it is straightforward to prove that B and V*V agree; we omit the details. Note that the
condition Vh = 0 can-be enforced without any reference to connections, by assuming that
h is left invariant. Indeed, given any X € C*°(T M), we compute that

(4-4) (Vxh)(e) = (R(X)R)(e) = —(L(X)RM)(e),

where X € s has X, = (X").. If h is left-invariant, the expression in (4.4) vanishes, so
(Vh), = 0, but since V and & are left invariant, VA must vanish on all of M.

5. Vector bundles over the hyperboloid and sphere. Now let G = Spiny(n,1),
n > 1, and consider the symmetric space H" = G/K, where K = Spin(n) is the maximal
compact subgroup. H" can also be written as SO4(n,1)/SO(n). G is semisimple, and
H" is strongly reductive as a homogeneous space in the sense of Sec. 1. If n is odd, then
furthermore G has one conjugacy class of Cartan subgroup. M is a copy of Spin(n —1) (or
SO(n — 1) if G is taken to be SOp(n,1)), and the inclusions m — ¢ — g are standard; that
is, they arise from block stabilization in the defining representation of so(n,1). We shall
always use a normalization of the Killing form on any so(p, ¢) obtained from its defining
representation £ via b(X,Y) = tr {(X){(Y"); we shall sometimes call b the reduced Killing
form. This has the advantage that for any standard inclusion so(p',¢') C so(p,q), the
restricted and intrinsic forms b agree. The relation to the usual Killing form B = By,(p,q)
defined using the adjoint representation is b = B/2(p+¢—2). Note that our normalization
affects the computation of the metric on H", the Casimir operators of g, € and m, and
the Bochner Laplacian. To study the sphere S™ = Spin(n + 1)/ Spin(n), we reverse the
sign of the reduced Killing form to get a positive definite metric. An added advantage
of our normalizations is that we now have the standard sphere and hyperboloid; that
is, the sphere with constant sectional curvature and radius 1, and the hyperboloid with
constant sectional curvature —1. Indeed, according to a fairly general homogeneous space
computation [1, 7.39)], the scalar curvature of S™ or H" in the Killing form metric is —n/2;
for the sign-corrected metric on the sphere, n/2. By the above, our normalization divides
the Killing form of so(n,1) by 2(n — 1), thus divides the sphere and hyperboloid metrics
by 2(n — 1), and thus multiplies the scalar curvature by 2(n — 1). The result is scalar
curvature +n(n — 1) for S™ and H" respectively. On a space of constant curvature, the
scalar curvature is n(n — 1) times the sectional curvature, so we get the desired result.
We shall need to do some arithmetic with the highest weights of Spin(m)-modules for
m = n,n — 1. Assume first that n = 2k + 1 is odd. Recall that the dual Spin(2k + 1)~
of Spin(2k + 1), k > 1, is parameterized by k-tuples of integers or proper half-integers
T € Z¥U (] + Z)* with
Ty 2 T2 2

.

212 0.
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That is, each such 7 is the highest weight of a unique (up to equivariant isomorphism)
_irreducible Spin(2k + 1)-module V; . The irreducible representatlons which factor through
SO(2k + 1) are exactly those with T € Z*.

When dealing with connected compact groups H, we shall abuse notation by identifying
an irreducible representation and its highest weight. As before, we shall also use the same
notation for a representation, the corresponding representation of h, and the extension
of the latter to the universal enveloping algebra U(h). When writing weights, we omit
terminal strings of zeroes, and write, e.g., a string of p ones as 1,. For example, the
exterior representations of SO(2k + 1) are AP 50(2k4+1) AP Z500k4+1)= (1p) for
P < k; the spin representation of Spin(2k + 1) is ¥ Sgpin(2k+1) ((%)k)

The dual Spin(2k)™ of Spin(2k), k > 1, is parameterized by k-tuples o of integers or
proper half-integers satisfying -

0y 2022...2 0k 2 |ok];

the representations with ¢ € Z* are exactly those which factor through SO(2k). Let U,
be the irreducible SO(2k)-module with highest weight . We shall need the branching
rule describing the restriction of a Spin(2k + 1)-module to Spin(2k). The branching has
multiplicity one in the sense that m,(7) = dim Homgpin(zk)(Ue » Vr|spin(2k)) is either 0 or
1. As before, we say that 7 | ¢ if m,(7) # 0. The branching rule reads:

-(5.1) Tlo = n—-0€Zandn20,2m2...27 2 |ok.

The exterior fepresentations of SO(2k) are AP Sgpin(2r) A2¥7P = (1,) for p < k, and AF =
ALoAr AL = ——50(2L) (lk :1,£1), and the spin representation of Spm 2k)is ¥ = _4+ eE_,
Ei =Spin(2k) (( )k 1 ’:t )

- Remark 5.1. With our normalizations, The Casimir operator of the upper left so(n)
subalgebra of so(n,1) or so(n + 1) takes the value A(Casgo(n)) = =(A + 2p,A) in the
irreducible Spin(n)-module with highest weight A, where

2p=(n-2,n—-4,... ,n-2[n/2)])

is the sum of the positive roots of so(n), and (, ) is the standard inner product on R["/2],
Indeed, there is some A-independent constant a, for which A(Casgo(n)) = —an (A + 2p, A),
and the case of the defining representation (where A = (1) and A(Casgo(n)) = 1 — n)
identifies a, as 1. On the sphere S™ = Spin(n + 1)/ Spin(n), where we have reversed the
sign of the reduced Killing form to get a positive definite metric; this makes the conclusion
of Proposition 4.1

(5.2) R (B - Casso(n_‘.]))lc.w(s"’vl\) = —(A + ?-p, A).

On the hyperboloid H™ = Spiny(n,1)/ Spin(n), the reduced Killing form provides a posi-
tive definite metric, and Proposition 4.1 says.

(5.3) (B - Casso(,,,,))lcw(H,, vy = (A+20,).
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In differential form bundles, one has the exterior derivative d : C°(AP) — C°°(AP*!)
and its formal adjoint, the coderivative § : C*(AP*!) = C*(AP). The form Laplacian is
A = éd+dé. The difference W = A =B in general Riemannian manifolds is a much-studied
object called the Weitzenbock operator; on spaces of constant sectional curvature, it is just
a constant (depending on the order of form).

For the moment, let us work in the setting of an arbitrary n-dimensional smooth man-
- ifold with pseudo-Riemannian metric g. Choose an orthonormal frame Z, ... ,Z, and
dual coframe wy,... ,wn. Let u be a p-form and v a (p + 1)-form, and recall the classical
formulas ' - :

P
(5.4) (du)(Ziyy--- 1 Zi)) = D (1) (Vz,,u)Zig s+ 2 Ziy s+ + Ziy)s
(5.5) (80)(Ziy +--- 1 Zi)) = = Y _(VZ,00 25, Ziyse - 1 24,).
J=1

Here V is induced by the Levi-Civita connection, and the hat indicates absence. Of course,
d does not depend on the Levi-Civita connection or the Riemannian metric, and in fact
~ (5.4) holds in any symmetric connection on the tangent bundle. Let R be the Riemann
curvature tensor: if X,Y, Z are vector fields and w a one-form, then
Rw,Z,X,Y)=(R(X,Y)Z,w),
where
R(X,Y)=VxVy - VyVx -Vx,y],

and ( , ) is the dual pairing. It is almost immediate from (5.4, 5.5) that if ¢ denotes
exterior multiplication by a one-form and : interior multiplication by a vector field, then

W=- Y Rwi,Z;, 2, 21)e(wi)Z5)e(wi)u( Z0).
ij.k,1=1
Now suppose our manifold has constant sectional curvature s, so that
R(wi, Zj,Zx , Z1) = s(6irbj1 — b16:1).
By the identities
t(X)e(w) + e(w)u(X) = (X, w),

e(w)? =0,

Z (Z;)e(wi) =n—pon AP,

> e(w;)u(Z;) = p on A?,
we have
W|a» = sp(n - p).
We apply this now to H" and S™. Since {(1,) + 2p,(1,)) = p(n — p), and for n = 2k even,
((Qe=1,-1)+2p,(1k—1,—-1)) = k2%, (5.2) and (5.3) show:
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Lemma 5.2. On H" with the reduced Killing form metric of g = so(n, 1), or S™ with the
sign-reversed reduced Killing form metric of g = so(n+1), the form Laplacian A = §d+dé
agrees with L(Casg) on the differential form bundles. O

See [13] for a different proof of this fact in the case of S™.

Now let M be a smooth pseudo-Riemannian spin manifold of dimension m, with metric
tensor g and fundamental tensor-spinor 4. v is a section of TM ® End £M, where the
spinor bundle TM has fiber dimension 2™/2]. If w is a one-form, we contract in the first
argument to get a section y(w) of End ZM. This allows us to state the Clifford relations

Y(w)v(n) + v(n(w) = —2¢%(w,n) Idgm, w,n € C®(M,T*M).

- The Dirac operator on sections of EM is, in a local frame {X;} and dual coframe {7n;}
Y= vn)Vx,.

To see that this is invariantly defined, note that V carries C*(M,ZM) to C®(M,T*M®
TM). To get the Dirac operator, we just pair (contract) the T* M argument with the TM
argument from 7. The analogue of the Weitzenbock formula for spinors is the Lichnerowicz
formula [16, (7)], which says that ¥* = B+ 5/4 on spinors, where § is the scalar curvature.
In particular, ¥? is B+ n(n — 1)/4 on spinors over S, and B — n(n — 1)/4 on spinors over
H™. The quantity (A +2p, A) for A = ((3)[n/2)), or for n = 2k even and A = (()k-1,-3),
is n(n — 1)/8. Thus by (5.2, 5.3), we have:

Lemma 5.3. On H" with the reduced Killing form metric of g = sa(n, 1), on sections of
the spinor bundle,

Y? = L(Casy) — n(n — 1)/8, B = L(Cas,)+ n(n — 1)/8.
On S™ with the sign-reversed Killing form metric of g = so(n + 1),
V? = £(Casy) + n(n - 1)/8, B = L(Casy)—n(n—-1)/8. O

We can read off the effect of the center of U(g), and in particular,'the Casimir operator,
in the principal series representations from [14, 8.22 and 12.28]. In general this gives

Wﬂ,"(cass) = —(v,v) + (p, p) + 0(Casn).

(Note that this formula is stable under renormalization of the Killing form.) In our special
case, the positive (g,a) root, which we shall denote by v, has norm 1. Its multiplicity is
n — 1, so if we define a parameter A € C by v = /—-1Avg, we get

n:

2
To/=Taw, (Casy) = AT ( ; 1) + o(Casp ).

Since the Fourier transform is a G-map, we can see the effect of our G/ Laplacians in
the G/M AN picture. It follows from the above and Proposition 4.1 that:
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Lemma 5.4. Suppose f € C®(G; 7). Let vy € a* be the positive (g,a) root of so(n, 1),
and define A = A(v) € C by v = v/-1Avy. Then

' ' 2
(E(Cosp) )~ (0,0) = (A’+ (252) +otcsm) fo

(Bf) (o,v) = (Az + (n;l) —T(CaSt)+a(CaSm)) fe,v). O

This result points up the advantage of working with K-types for which Casy, is constant
on {o | o T 7}, or with systems of equations which imply the absence of certain “bad” M-
types, on which Casp, takes the “wrong” value. When we work with such special K-types
and systems of equations, there emerge reasonable analogues of the Fourier and Radon
transformation laws for the Laplacian of Euclidean space. This is exactly what happens in
our situations: the spinor bundle, like the scalar bundle, gives a constant value for o(Casm ),
while (two of the four) Maxwell equations will enforce the annihilation of non-conforming
M-types. In the following corollaries, we collect some of the above information in a form
that will be useful for us.

Corollary 5.5. Let n = 2k +1 > 3, and let 7 = ((%)L) Then o T 7 if and only if
o =04 = ((3)s-1,+3). With the above normalizations,

o4+ (Casm) = —k(2k - 1)/4.
Thus on smooth sections Y of the spinor bundle of H",

(W2¢)~ (0%, \/—_1/\1/0) = ’\212’(01 , \/:_1)\1/0).

Proof. The first statement follows from the branching rule (5.1). The remarks at the
beginning of the section about normalization of the so(p, ¢) Killing forms, together with
Remark 5.1, imply that for general ¢ € M,

o(Casp) = —(0 + 2pm ,0),
where 2pm = (2k —2,...,2,0). This gives the formula for 4+(Casp ). Lemmas 5.3 and 5.4
then give the formula for Y2 on the Fourier transformed side. O

Corollary 5.6. Let n=2k+12>3,andlet r=7,=(1,)forp<k—1. Theno T 1 if
and only if
oc=(0), p=0;

o=0p1=(1p)oro=0,0=(1p-1), 1<p<k-1;
0=04=(1k-1,21)oro =09 =(1x-1), p=rt.

With the above normalizations,

(14)(Casm) = —q(2k —¢q), ¢ <k
(lk—l ’ —1)(Casm) = -
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Thus on smooth p- or (n — p)-forms ¢ over H™ with p < k, if A = éd + db is the form
Laplacian,

(A@)™ (0p1, V=TArg) = (A2 4 (k — p)2)3((1,), V=1Awp),
(A@)™ (0p,0, V=TArg) = (A? + (k = p+ 1)1)@((1p-1), V=TAvo).
On smooth k- or (k + 1)-forms,
(Ap)~ (0%, mAVo) = /\295(03; s \/:1-/\1/0),
(Ap)~ (90, V=1A1p) = (A? + 1)@(00 , V=1Ap).

.Proof. We refer to the branching rule (5.1), together with Lemmas 5.2 and 5.4. O

6. The Dirac equation and a spinor wave equation. Let M be a smooth oriented
manifold of even dimension n + 1 = 2k 4+ 2, equipped with a pseudo-Riemannian metric
g. Assume that M is a spin manifold, and let £ be the spinor bundle and D the Dirac
operator. (Recall the definition of the Dirac operator from the last section.) The Dirac
equation on M is the first order equation DS = 0 on a spinor field . € C®(M, ).

We are interested in the case in which (M, g) is a factored Lorentz manifold; that is,

M=R xS and
.(6.1) g=—dt’ +gs,

where (S, gs) is an n = (2k + 1)-dimensional Riemannian manifold, and ¢ is the standard
parameter on R. (6.1) is an abuse of notation; what it really means is that g(8/0t,d/0t) =
—1, and that gg is the pullback of g under the inclusion § = {t =t,} — M.

Assume that S has spin structure, and let v be the fundamental tensor-spiner of S. By
[16, paragraph 2], we may (and do) assume that y(w) is fiberwise skew-adjoint on LS for
each one-form w on S. As a consequence of S having spin structure, the Lorentz manifold -
M also has spin structure, and there is a standard “concrete” construction of the spinor
bundle £M and fundamental tensor-spinor a of M, starting with the analogous objects :
IS and v on S: the fiber £(; ;)M is identified with £, 5 & Z. S,

0 Ids
“(a‘)=“°=<ldvs 65)

in block form, and a(n) = v(n) @ v(—n) if n is a one-form on M which is tangent to S
(i.e., is annihilated by pairing with J;). o satisfies the Clifford relations because 4 does,
and is annihilated by the Levi-Civita spin connection of M because v enjoys the analogous
property on S. Since n is odd, the bundle over M so obtained is an isomorphic copy of its
spinor bundle. Let D and Y be the Dirac operators on M and S respectively. A spinor
over M is then a pair (¢, ) of smooth t-dependent spinors over S, and the action of D is
given by

D(p,9¥) = —aodi(p,¥) + (Y, =V9) = (=0 + Vo, —0rp — V).

Hence the Dirac equation becomes the pair of first order equations

(6.2) dp+V¢=0, op-Vp=0.
We shall call a pair (¢, ) satisfying (6.2) a Dirac field on M.
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Remark 6.1. The notation of the above construction is somewhat different from that

customary in Physics: our 4 endomorphisms are analogous to the physicist’s o (Pauli)

matrices, our a endomorphisms to the physicist’s 4 matrices, and our apa(X) to the
physicist’s a matrices.

Remark 6.2. Let V be a vector bundle over a factored Lorentz manifold (M =R x S,g =
—dt? + gs), and let P : C®(M,V) — C®(M,V) be a differential operator with metric
leading symbol: o2(P)(€) = g(¢,€)Idy for all covector fields €. Then the hyperbolic equa-
tion Py = 0 is called a wave equation and has finite propagation speed: if ¢ € C°(M,V),
let CDy,(¢) be the Cauchy data (p, 8i¢))¢=¢, - Then if Py = 0 and supp CDy(¢) is con-
tained in the closed metric ball B,(z) of radius r about z € S,

supp CD¢(¢) C By4g(2)

for all t € R.

The spinor wave equation is the second order equation
(63) (B2 +Y%)p =0

on a smooth ¢-dependent section ¢ of £S. Being a wave equation, (6.3) has finite propa-
gation speed. Notice that if (¢,%) is a Dirac field, then both ¢ and ¥ satisfy the spinor
wave equation. In particular their Cauchy data propagate at finite speed.

Remark 6.3. Remaining in the general setting above, Dirac fields with compactly sup-
ported Cauchy data have a conserved charge. To explain this, we first claim that ¥ is
formally self-adjoint. Indeed, given ¢,y € C*(S,TS), with either ¢ or ¥ compactly sup-
ported, consider the vector field X determined by ¢, ¥, v, and the fiber metric h = (-, )
via

(X,w) = (p,7(W)), w e C=(S,TS),

where (-,-) is the dual pairing. It is immediate from Vy =0, Vh = 0, (5.5), and the fact
that «(w) is skew-adjoint that

6-Yb = —(‘foa W¢) + (WSQ’ d))s
where X, is the one-form associated to X by the metric gs. Since X, is compactly

supported, Stokes’ Theorem gives [¢éX, dvoly, = 0; the formal self-adjointness of ¥
follows.

Now if ¢, € C°(S,ZS) and D(p,) =0, then
Be(lel* + [¥1?) = 2Re(~ (0, Y ¥) + (Y0, %))

It follows from the above that the charge

Q=3 [ (el +1uP)ivoly,
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is independent of . Similarly, it is easily seen that if gp solves the spinor wave equation,
then the energy
€= (Iaupl2 + Wvlz)dvolgs

tto

is independent of to. For the reasoning behmd the terms charge and energy, see [23,
IV.B.6.1].

. A Riemannian symmetric space X = G/K of the noncompact type is always a spin
manifold, since the spinorial obstruction is topological, and X is diffeomorphic to a Eu-
clidean space, the Cartan complement p of &. There arises a question, however, of whether
the spinor bundle is covered by our theory; that is, whether the spinor bundle £X is an as-
sociated bundle G x, V for some K-module (V, 7). Slebarski [19] gives a criterion for this:
X is an associated bundle if and only if the adjoint representation ad,: &€ — so(p) lifts to a
homomorphism from K to Spin(p). To take the most elementary example, it is important
to view the hyperboloid H" as Sping(n, 1)/ Spin(n) rather than as SOg(n,1)/ SO(n) if we
want to realize TH™ as an associated bundle.

~ We now specialize to the case of the hyperbolmd S = H"™ = Spiny(n,1)/Spin(n),
n =2k +1 > 3 odd. The spinor bundle ¥ = ((§)i) is similar to the scalar bundle in a
sense that is very useful for us: recall from Corollary 5.5 that the N-module 7 = ((1)x)
- restricts under M to o4 @ o_ , where 61+ = ((3)k-1,%3), and that

(6.4) | (7299)'“(01 V=1low) = A23(04, \/;—louo).

We shall show that as a result, the Dirac equation on the Lorentz manifold R x H2t+!
enjoys properties of equipartition of charge and Huygens’ prmc:ple and the spinor wave
equation has an equipartitioned energy.

Lemma 6.4. Let ¢ be a CZ° section of LH", n = 2k +1 2> 3, and let v be the positive
(@,a) root of so(n,1). Then

(V)™ (01, V=1Avg) = uxA3(0x, V=1\1p),

- where uy is either 1 or -1, independently of ¢ (but as indicated, uy may depend on o4 ).

Proof. Because of (6.4) and the fact that o1+ have multiplicity one, it follows from (3.2)
that

(Vo)™ (02, V=TAve) = px(N)@(02, V=TAvo)

for some first degree polynomials p4+ in A. By (6.4) the square of each of these polynomials
is A2, and the lemma follows. O

Let Hy € a be the element determined by vo(Hy) = 1, and put a, = exp(yH,) € A for
y € R. Let p be as in the preceding lemma. Then it follows from Lemma 3.1 that we have

(6.5) (YV)oy (kay) = usV—18y$0, (kay)
for k € K.
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Remark 6.5. A computation similar to the proof of Lemma 7.2 given in the next section
.shows that, more precisely, we have

(W‘P)at(kay)(ﬂ) OyPas (kay)(Bv(Ho))

where v(Hp) € Hompm(V,,V;) is Clifford rnultiplication by Hp.

_ For a smooth t-dependent section ¢ of £S5 which for each fixed ¢ has compact support
on S, we denote by ¢ = ¢(t,g) its Radon transform in the S variable.

Lemma 6.6. Let (¢,v) be a smooth Dirac fieldon R x H", n = 2k + 1 2 3, and assume
that (¢,%)}i=0 has compact support. Then (y,) has compact support on S for each fixed
t, and

at@at (¢, kay) = -ui\/:iay‘z’a* (t, kay)
atlf;a* (t,kay) = ugV-18,@s4 (t, kay),

for k € K, where uy is as in Lemma 6.4.
Proof. The proof is immediate from finite propagation speed, (6.2), and (6.5). O

-Obviously, the same relations also hold for the modified Radon transforms of ¢ and :

O Ro, o(t, kay) = —usV/=18,R,, ¥(t, kay)

For fixed k these are essentially the so-called para-Cauchy-Riemann. or pare-CR, equa-
tions

(6.6) Ov = Gyw, 0w = Oyv

on functions v(t,y) and w(t,y) on R x R. For these equations we have the following result.

Lemma 6.7. Let v(t,y) and w(t,y) be C! functions on R x R with values in a finite
dimensional Hilbert space V, and satisfying the para-CR equations (6.6). Assume moreover
that v(0,-) and w(0,-) are supported in [—r,r]. Then for each t € R we have

(6-7) suppv C [—r—t,r—t]U[—T-f-t,r«}-t],

and similarly for w. Moreover, for |t| > r,
(6.8) / lo(t,y)|?dy = / lw(t,y)|? = constant.
R R

Proof. 1t is easy to see that we may assume the functions are valued in R.
Let z=v+w and { = v — w. Then z and ( satisfy the first order system

Bz = 8,2, O =—0,C,
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with the following explicit solution:

z(t,y) = 2(0,y + t), ((t,y) = ¢(0,y—1).

Hence supp z(t,+) C [-r —t,r —t] and supp((t,-) C [-r +t,r +t]. From this (6.7) follows
immediately.

To prove (6.8), we first notice that the sum of the two integrals in question is independent
of t: using (6.6) we get

. O /(02 + w?)dy = 2/(vé,v + whw)dy = 2/6y(vw)dy = 0.

" It now suffices to prove the equality of the two integrals for |t| > r. This follows from

[ - uty = / (dy =0,

since the supports of z and ( are disjoint for |t| >r. DO

Let (¢,) be a smooth Dirac field on R x H®, n = 2k 4+ 1 > 3, and assume that (@, )
- has Cauchy data at t = 0 which are supported in the ball B,(0), where o is the origin.
Applying Lemma 6.7 to v = Ry, and w = —'J—_luim,id), pointwise in k € K, we
obtain that R,, v and R,, ¢ at a given time ¢ are supported in the set

{kayMN €= | ke K, |t|+r 2 |y| 2 |t| - r}
and that
1Res @t Nz/mn = 1Rox¥(t, )5 /mn = constant
for |t| > r. We now obtain:

Theorem 6.8. Let (¢, %) be a smooth solution of the Dirac equation on the hyperboloid
H"™ = Spiny(n,1)/Spin(n), n = 2k + 1 > 3, with supp(v,¥)|t=0 C Br(0). Then
(a) (Huygens’ principle.)

supp(p, ¥)(t,7) C {z € G/K | |t| + r 2 dist(z,0) 2 [t| - 7},

for all t, where dist(-,-) is the Riemannian distance function in H".
(b) (Equipartition of charge.)

et N = Flw (e I? = 39,

for |t| > r, where Q is the t-independent total charge of (,v) described in Remark 6.3,
and the norms are in L*(S,LS).

Proof. Apply Lemma 3.4 and the Plancherel formula (3.7). O

For the spinor wave equation we obtain:
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Corollary 6.9. (Equipartition of energy.) Suppose that ¢ is a smooth time-dependent
section of TH™, n = 2k + 1 > 3, satisfying the spinor wave equation (6.3), and with
supp(@|e=o ,(3t<p)|¢-o) C B,(0). Then for |t| 2 r, , :

@)t I = 3T )8 = 3€.
Proof. 1t is easily seen that (0,0, Y ¢) is a Dirac field. O

Remark 6.10. For the spinor wave equation, the above argument does not give Huygens’
principle. - From the proof above we find only that J;p and Yy vanish in the lacuna
{z € G/K | dist(z,0) < |t| — r}, whereas Huygens’ principle would imply that ¢ itself
vanishes there. This is in contrast to the scalar wave equatlon on G/K, for which it was
shown in [17] that reduction via the Radon transform does give Huygens’ principle. The
difference results from the fact that the ordinary differential operator J in the modified
Radon transform supplies at least one derivative (has no constant term) in the scalar case
[17, Corollary 2], whereas this is not the case for the spinor bundle.

7. Maxwell’s equations. Let M be a manifold of even dimension n +1 = 2k + 2,
equipped with a pseudo-Riemannian metric g. Mazwell’s equations are the conditions

dw=0, éw=0

on a differential form w € C>°(M,A™) of the middle order k + 1.

As before, we assume that (M,g) is a factored Lorentz manifold: M = R x § with
(S,g9s) an n = 2k + 1-dimensional Riemannian manifold. We may then decompose any
differential form ¢ € C®(M,AP) as ¢ = dt A o + 1, where ¢; and o are t-dependent
forms on S of orders p and p — 1 respectively. If we write d, é for the exterior derivative
and coderivative in (S, gs), and d, § for the similar objects in M, the graded Leibniz rule
for d and integration by parts give

d(.p = dt A (6159] - d‘PO) + d‘P] ’
S = dt A bépg — (Orpo + 1)

If w is a middle-form as above, and we use the notation F = wy, H = w; of electromagnetic
theory, Maxwell’s equations become the first order system

(7.1) &HE+6H =0, OH-dE=0, 6E=0, dH =0

on t-dependent differential forms E € C*®(S,A*) and H € C*=(S,A**!). A pair (E, H)
satisfying (7.1) is called a Mazwell field on M.

In the classical setting § = R3, A3 is identified with the trivial scalar bundle, and both
Al and A? are identified with the tangent bundle; under these identifications, the § in 6 H
and the d in dE are both —Vx, thed in dH is V-, and the § in 6E is —V-,

Let A = 6d + dé be the form Laplacian. We shall call the equation

(7.2) Otu = —Au

on a differential form u € C*°(S, A?) the p-form wave equation. Its solutions have finite
propagation speed (cf. Remark 6.2). If (E, H) is a Maxwell field, E and H in particular
satisfy the k- and (k + 1)-form wave equations respectively. The Maxwell system, however,
is strictly stronger than the system (87 + A)E =0, (0? + A)H = 0.
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Remark 7.1. The energy density of a Maxwell field at 't = ¢, is the function € = —(|E|2
|H}®)lt=t, on S, where the pointwise norms |- | are mduced by gs. The Maxwell equations
unply that

0ie = Re(—(E,6H) + (dE, H)). {

Since ¢ is the formal adjoint of d with respect to g, we have that

/(E,éH) dvoly, =/(dE,H) dvoly;,
s S

and hence the (total) energy
£ = [[(BF + HP)dvol,

is independent of t. The manipulations areé justified by finite propagation speed if (E,H)
has Cauchy data of bounded support at some ¢, it has such at all ¢.
Similarly, for a solution u to the p-form wave equation (7.2), the energy

£ = %/S(|61u|2 + |du|? + |6u|?)dvol,,

L g

is independent of t.

Now specialize to the case § = H" = G/K = SOo(n 1)/ SO(n), n=2+13>3. Let
p be the orthogonal complement of ¢in g and let 7p be the pll exterior representation of
K on APp. Then the form bundle AP over S is exactly the vector bundle V. over G/K
associated with 7,. For p < k we have 7, = (1,), and for p > k& we have 7, = (1,-;).

To find the equations satisfied by the Radon transform of a Maxwell field, we first
need to determine the effects of d and § on the Radon transformed side, By definition, if
¢ € C®(G;7p), then $, vanishes unless 0 7 7,. Recall the M-decomposition of 7, from
Corollary 5.6.

Since 0p) = 0pt1,0 for p < k and 0p0 = Opy1,1 for k+1 < p < n, we see that
Hom p(AP(p), AP*1(p)) is one dimensional for all p # k, p < n. An explicit generator of
this Hom space is obtained as follows: Denote by ¢(X') and t(X), respectively, the exterior
product by X € p in A*p and its adjoint, the interior multiplication. Let Hy € a be the
element determined by vo(Hp) = 1, where v as béfore is the positive root. Then e(Hy)
and «(Hp) intertwine the M-actions because M centralizes Hy. For p # k,n we conclude
that Homp (AP, AP*1) = Ce(Hy) and Homps (AP, AP) = Cu(Hy).

For p = k, the kernel of e(Hp) : A¥ — A**+1 equals the image of e(Hp) : A¥~! — A%,
hence it is isomorphic to ox—1,1 = 09. Thus e(Hy) is a nonzero M-intertwinor between the
o+ subspaces in A¥ and A¥*!. Similarly, «(Hp) : A**Y 5 A* intertwines these M-actions,
but the arrow goes in the other direction. In fact, by the general identity «(X)e(Y") +
e(Y)(X) = (X,Y), it must hold that (Hy) and «(Hp) are inverse to each other when
restricted to the o4 or o modules.

For y € R let a, = exp(yHop) € A.
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Lemma 7.2. Let p be a C® section of AXH™ (withn =2k +1 > 3). Then

(dp)5(kay)(B) = 8y Po(kay)(Be(Ho))
for all B € Homp(A¥*1,U,), ¢ 1 Te41. In particular

(dgp):o = 0'

Moreover, let ¢ be a C2 section of A¥+1H™, then

(69)7(kay)(B) = —Byo(kay)(Be(Ho))
for all B € Hom s (AF, Us), o T 7. In particular

(6¢)7, =0.

Proof. In order to be as general as possible, assume for the moment that ¢ and 3 are forms
of order p and p + 1, respectively, with no restriction on p. ! is a A?(p)-valued function
on G satisfying ¢(gk) = 7,(k~)¢(g), and we have by (5.4, 5.5) and remark 1.3:

C(de)t =) (V)R

where {Y;} is any basis of p. Similarly,

(69) = = Yy R(Yi)ut.

Note that the Y; do not push down to vector fields on G/K (such a pushdown would have
to be left invariant, and the only such thing is 0). But given any point z = gk € G/, we
can move the computation to g € G by picking an orthonormal basis of the tangent space
to r and canonically identifying it with an orthonormal basis of p. The right-hand sides
in each formula above are well-defined and have the correct right K covariance because of
the sums; the individual terms enjoy no such properties.

A particularly useful basis for p is obtained as follows. Let X; be a basis for n, the Lie
algebra of the Iwasawa component N, which is orthonormal in the inner product (X, §Y"),
where b is the reduced Killing form and 6 is the Cartan involution. Put ¥; = (X;-6X;)/ V2.
Then Hj together with the Y; gives an orthonormal basis for p.

From the definition of the Radon transform we now obtain

(49)(g) = alo)*e(Ho) [ (R(HO)p)amdn + T alg)e(¥:) [ (RO )(gn)dn.

As in the proof of Lemma 3.2 we may compute the first integral by a change of varables (an
interchange of the order of integration and differentiation is justified by compact support)
and obtain

a(g)e(Ho) /N (R(Ho)¢)(gn)dn = e(Ho)\(R(Ho) + p(Ho))3(s).
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For the second term we notice that since X i € n, we have

/ (R(Y:)¢)(gn)dn = / (RQY: - VBX:)¢)(gn)dn,
N N

and since Y; — vV2X; = —(X; + 6X; )/ V2 € ¢, the transformation rule satisfied by ¢ shows
that this integral equals

—dry(Y; - V2X:) / ¢ (gn)dn.
: N
We conclude that
(dp)"= (R(Ho)e(Ho) + 7)é, |
where v = p(Ho)e(Ho) — 3, €(Yi)drp(Y; — _\/§X,-) € Hom(AP,AP*?) is easily seen to be
independent of the chosen basis X; for n. It follows that v € Homa(A?, AP*1) ‘and hence

(dp)s(kay)(B) = 8yPo(kay)(Be(Ho)) + o(kay)(B7)

for 8 € Homp (AP, U,).
The analogous computation for 1 shows that

(7.3) (69)7(kay)(B') = —0Byba(kay)(B'«(Ho)) + Po(kay)(B'7")

for #’ € Hompm(A?,U,), where v* € Homp (AP*!, AP) is the adjoint of 7.

To prove the theorem we need to establish that 4 = 0 in the middle order p = k. This
can be done by an explicit computation, but we prefer the following shortcut.

- Consider first (dp);, . By multiplicity one, v is a constant multiple of ¢(Hp) on the

o4-subspace in A*, say v= v+e(Hp), v+ € C. Thus

(do)s, (kay)(B) = (B, + 74)Bos (Kay ) Be(Ho)),

(8¥)7, (kay)(B') = (=8, + TZ)Poy (kay)(8'(Ho)),

where § and ' are as above with p = k. Combiﬁing these equations we get
(8dp)7y (kay) = (=0] — 2(Im v2)0y + |7+ " )@y (kay).

Since 0+ do not occur in the target bundle 7x—; for § we have by (3.1) that (6p);, =0,
and hence also |
(dép)g, =0.

By Corollary 5.6,
(A(P)~ (Ui 'V _1)‘1’0) = A2‘,‘5(03; y V —1A1/0),

and we obtain from Lemma 3.1 that

(Bp)s, (kay) = —0234, (kay).
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Now compare with the formulas for édy and dép. Using the Iwasawa decomposition
G = ANK; it is easily seen that the range of the map ¢ — (., is large enough to infer
that v4 = 0.

It remains to prove that v va.mshes on 0y. Since E(Ho) vanishes on oy, we have

(7.4) | (dp)g,(kay)(B) = @oo(kay)(B7)

Let f € C®(A*~1) with df # 0. Since the o4 do not occur in A¥~? we have (df);, =0,
hence (df),, must be non-zero. Since dd = 0, we get from (7.4) that

0 = (ddf)3, (kay )(B) = ()3, (kay)(B7),
and hence "y 0. DO
Remark 7.3. For forms ¢ and ¢ of order p and p + 1 respectively, we have similarly
(dp)o(kay)(B) = (8y + k — p)po(kay)(Be(Ho)),
(69)5(kay)(B) = (=0y + k — P)I/;o(kay)(ﬂt(ﬂo))-
Except for an ambiguity in the sign of the constant shift k — p, this can be obtained from

Corollary 5.6 by an argument similar to that above. In their precise form the formulas are
obtained by explicit computation of the operator 4. We omit the details.

Corollary 7.4. Let ¢ be as in the previous lemma, and assume that ép = 0. Then
Yoo = 0. ,

Proof. This follows immediately from (7.3) with p = k — 1 and ¥ = ¢, since «(Hp) is
non-zero on the oo subspace in Ak, D

Similarly, if ¢ is as above and dy) = 0, then ¥ has vanishing o part. It follows that the
Fourier transforms of Maxwell fields have vanishing o¢ part as a result of the equations

6E =dH = 0.

Corollary 7.5. Let (E,H) be a Maxwell field with compact support in H" at some t.
Then E and H have compact support in H™ for all t, and their Radon transforms satisfv
the equations

and
B Eqy (t,kay)(B) = 8y Hoy (t,kay)(Bu(Ho)),
8iHoy (t,kay)(B') = =8y E, (t, kay)(B'e(Ho)),
for all B € Homp(A*,U,, ), B’ € Hompy(A¥,U,,). O

Arguing as for the Dirac equation, we can now reduce the Huygens’ principle and energy
equipartition problems for Maxwell fields on H" to the same problems for the para-CR
equations (6.6) on /—1a® = R, and we obtain the theorem below. Notice that the para-CR
equations are in fact the Maxwell equations on R (that is, with R x R as the spacetime).
Indeed, a Maxwell field on R consists of an electric field v and a magnetic field wdz,
where v,w € C®(A°R) and dz is the standard volume form on R. The static (divergence)
Maxwell equations év = 0 and d(wdz) = 0 are vacuous (A™'R = A?R = 0), and the other
two Maxwell equations are just (6.6).
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Theorem 7.6. Let (E,H) be a- smooth solution of the Maxwell equations on H™ = |

SO0o(n,1)/SO(n), n =2k + 1 > 3, with supp(E, H)lg._o C B,(0). Then
(a) (Huygens principle.)

supp(E, H)(t,-) C {z € H" | |t| + r 2 dist(z,0) 2 |t| - r},

for all t.
(b) (Equipartition of energy.)

SUEN? = FNH|? = 3¢,
for |t| > r, where £ is the t-independent total energy of (E,H). O

Remark 7.7. Both R and H" are homogeneous with invariant metrics, so the analogous
statement can be made with an arbitrary (tp,z) € R x H" in place of (0,0). .

For the k-form wave equation on H?**! we get equipartition and Huygens’ principle
only if we impose the extra condition that the solution u is a cycle, that is 6u = 0. Note
that for solutions of the equatxon, the cyclicity condition is equivalent to the fixed-time
contraint

(7.5) 6(ult=0) = 8((Beu)lt=0) = 0

Indeed, if u satisfies the k-form wave equation, éu satisfies the (k — 1)-form wave equation.
The Plancherel formula shows that solutions of the Cauchy problem are umque so (7.5)
implies that du = 0 for all t. Our result is:

Theorem 7.8. Let u be a smooth t- dependent k-form on H™ satisfying the k-form wave
equatzon (7.2), and having Cauchy data satisfying the constraint (7.5). If supp duli=o C
B, (o) and supp(d;u)|i=0 C Br(0), then for |t| > r,

210w (t, )II* = lldu(t, )| = 3€
where £ is the total energy. If suppuli=o C Br(0) and supp(&,u)|t=0 C B,(0) then
suppu C {(z,t) | [t]| = r < dist(o,z) < |t| + 7}
for all t. |

Proof. The equipartition result is an immediate corollary of Theorem 7.6, since (9yu, du) is
easily seen to be a Maxwell field. However, as with the spinor wave equation, this argument
only gives that du and J,u, but not u itself, vanish in the lacuna {(t,z) | z € Byy-,}.

Since the Radon transforms R, u(t, ka,) both satisfy the wave equation d2v = 821’
and since R,,u = 0, the vanishing of u in the lacuna will follow from {17, Lemma 1] and
Lemma 3.4 once we prove that the second Cauchy datum 8,R,, u(0, ka,) is a derivative
in y of a compactly supported function. Now, since G/K = p as a manifold, the homology
of the de Rham complex with compact support vanishes in all degrees except p = 0 [2,
Corollary 4.7.1]. Hence the cycle condition on u implies that there exists a compactly
supported smooth (k + 1)-form v such that u(0,-) = év. From this the desired property of
Ro, u follows. O

A similar result holds in degree k + 1 with the side condition du = 0.
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‘Remark 7.9. Instead of employing algebraic topology in the proof above, we could also
have employed representation theory: The principal series representation 7, 0 is equiv-
_. alent to a quotient of 7,y —,,, cf. [21], hence there are surjective intertwining operators
Ty from Hey,—s, onto Moy 0. In fact, it follows from [6] that the intertwining opera-
tors in question are exactly the two components of the exterior derivative d on sections
of A*~1(K/M). To explain this, note that K/M = S§?F is even-dimensional, and so the
" .middle-form bundle A*(K /M) splits under the structure group M = SO(2k) into two ir-
reducible summands, namely the bundles associated to o4 under the principal fibration
M — K — K/M. Projection onto these after an application of d results in two differential
intertwining operators d.., which are identical with T4 up to constant factors. (The sur-
Jectivity of dy is actually equivalent, via Hodge theory, to a topological property of K /M,
that being the vanishing of the k de Rham cohomology.)

If u satisfies the cycle condition éu = 0, we have that @(og,v) = 0 for all v, in particular
for v = —vy. It follows that @(04+,0) = 0 (see Remark 2.3 and Corollary 7.4). Hence
i, (ka) has a vanishing integral over a € A.

By similar methods one can obtain from Remark 7.3 that p-forms satisfying the shifted
wave equation

0fu = (A + (k= p))u

with the side condition 6'&7 = 0 has an eciﬁipartitioned’ 7energy and satisfies Huygeng’ prin-
ciple for p # k (cf. [3] and [12] for p = 0, where the side condition is vacuous).
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- en test i 1l.g med kaommentarer.

Af: Albert C. Paulsen.

nm’gmm—osmmm.mmxm
PA VORSENUNDERVISNINCSNIVEAL" .
Projektrapport af: Hanne Lisbet Andersen, Tor-
ben J. Andreasen, Svend Age Houmann, Helle Gle-
rup Jensen, Keld Fl. Nielsen, lene Vagn Ras-
mussen.
¥ejleder: Klaus Grinbaum og Anders Hede mdsen

MB'PICER&HSIK
"~ et problem og en wdfordring for skolen?
Af:; Karin Beyer, Sussanng Blegaa, Birthe Olsen,
Jette Reich og Mette Vedelshy.

"VERDEN IFAGE PEIRE" ~ touetafysiskeasays
am og af C.S Peirce.
M.Pedar%emczristimsm

'WWMIAM

- ¢gkologisk contra traditionelt,

ENERGY SERIES No. 9

Specialecpgave i fysik af: Bent Hove Jensen,
Vejleder: Bent Sgrensen.

72/83

73/83

‘83/84 "ON THE QUANTIFICATION (F SECURITY":
VEACE RESEARCH SERIES NO. I
Af: Bent Sgrensen -
nr. 83 er p.t. wiglet

84/84 "NOGLE ARTIKLER OM MATEMATIK, FYSIX OG ALMENDANNELSE".
Af: Jens Hpjgaard Jensen, Mogens Niss m. fl.

35/84 ' CENTRIFUGALRECULATORER OG MATEMATIK".
af: Per Hedegird Ande:sen Carsten Holst~
Jensen, Else Marie Pedersen og Erling Mgller Pedersen.
Vejleder: Stig Arﬂur'Pedersen.

86/84 "SEQURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OP!’IQJS
FOP. WHESTERN EX'ROPE",
pmm:smn:ﬂ SERIES NO. 2
Af: Bent Sgrensen.

87/84 “A SDMPLE MOIEL OF AC HOPPING CONDUCTIVITY IN DISORDERED
SALIDS". ]
Af: Jeppe C. Dyre.

88/84 "RISE, FALL AND RESURRECTION OF INFINITESIMALS".
Af: Detlef Laugwitz.

89/84 "FOERNVARMECPTIMERING” .
Af: Bjarne Lillethorup og Jacob Mprch Pedersen.

*MINIATURISERING AF MIKROELEKTRONIK" = am vi~
denskabeliggiort teknologi og nytten af at lare
fysik.
P:ojektrapportaf.nodil!m'derogm\dasm
tak Jensen

74/84

Vejledere: Ja\s Hojgaard Jensen og Bent C. Je¢rgensen,

“MATEMATIKINIERVISNINGEN I FREMTIDENS GYMNASTUM"

- Case: Line®r programmering.

Projektrapport af: Morten Elamhgj, Klavs Frisdahl
og Frank Mplgaard Olsen.

Vejledere: Mogens Brun Heefelt og Jens Bjgmmeboe.

~75/84

76/84 “KEREKFAFT I DANMARK?" - Et hgringssvar indkaldt
af miljeministeriet, med kritik af miljgstyrelsens
rapporter af 15. marts 1984.

ENERGY SERIES No. lo

Af: Niels Boye Olsen og Bent Sgrensen.

“POLITISKE INIEKS - FUP ELIER FAKTA?"
Opinionsundersggelser belyst ved statistiske
modeller,

Projektrapport af: Svend Age Hounarnn, Keld Nielsen
og Susamne Stender.

Vejledere: Jgrgen Larsen og Jens Bjgrneboe.

" IEVNSTRIMSLEININGSEVNE OG GITTERSTRUKTUT 1
AMDFFT GERMANTUM".

Specialrapport af: Hans Hedal, Frank C. Ludvigsen
og Finn C. Physant.

Vejleder: Niels Boye Olsen.

*MATEMATIK OC ALMENDANNEISE".

Projektrapport af: Henrik Coster, Mikael Wemner-

berg Johansen, Povl Kattler, Birgitte Lydholm
Nielsen

77/84

78/84

79784

80/84 "KURSUSMATERIALE TIL MATEMATIK B".
Af: Mogens Brun Heefelt.

81/84 "FREXVENSAFHANGIG LEDNINGSEWE I AMORFT GERMANTOM".

Specnlera;portaf- Jazgenmndpetereenogam
Vejle&r N:helscheOlsen

82/84 "MATEMATIK - OC FYSIKINTERVISNINGN I TET AUTO =
MATISEFRETE SAMFIND",
k;portfmetseninaraﬂnldtimidovre
25-27 april 1983.

Red.: Jens Hejgaard Jensen, Bent C. Jrgensen
Og Mogens Niss.

90/84 “ENERGI I 1.G ~ EN TEORI FOR TILRETTELAGGELSE".
Af: Albert Chr. Paulsen.

91/85 "KVANTETEORI FOR GYMWASIET".

1. Larervejledning
Projektrapport af: Biger lamdgren, Hemning Sten Hansen
og John Johansson.

Vejle&r Torsten Meyer.

92/85 "KVANTETEORI FOR GYMNASIET".
2. Materiale
Projektrapport af: Biger Lundgren, Henning Sten Hansen
og John Johansson.
Vejleder: Torsten Meyer.

93/85 "THE SEMIOTICS OF QUANTUM ~ NON - LOCALITY".
Af: Peder Voetmann Christiansen.

94/85 "TREENIGHELEN BOURBAKI -~ generalen, metematikeren
og &nden".
Projektrapport af: Morten Blomhgj, Klavs Frisdahl
og Frank M. Olsen.
Vejleder: Mogens Niss.

95/85 "AN ALTERRATIV [EFENSE PLAN FOR WESTERN EURFE".
PEACE RESEARCH SERIES NO. 3
Af: Bent Sorensen

96/85"ASPEKTER VED KRAFTVARMEFORSYNING".
Af: Bjarme lLilletonup.
Vejleder: Bent Sg¢rensen.

97/85 "N THE PHYSICS OF A.C. HOPPING OXNDUCTIVITY".
Af: Jeppe C. Dyre.

98/85 "VALGMULIGHELER I INFORMATIONSALIEREN".
Af: Bent S¢rensen.

95/85 "per er langt fra Q til R".
Projektrapport af: Niels Jorgensen og Mikael Klintorp.
Vejleder: Stig Andur Pedersen.

100/85 "TALSYSTEMETS OPBYQNING".
Af: Mogens Niss.

101/85 “EXTENDED MOMENTUM THMEORY FOR WINDMILLS IN
PERTURBATIVE FORM".
Af: Ganesh Sengqupta.

102/85 OPSTILLING OG ANALYSE AF MATEMATISKE MXIELIER, BELYST
VED MODELIFR CWER KZERS FOCEROPTACELSE OG - OMSETNING".
ProYjektrapport af: Lis Eileftzen, Kirsten Habekost, Lill Ren
©og Susanne Stender. .
Vejleder: Klaus Griinbaum.




103/85 "@0SIE KOLDKRIGERE OG VITENSKABENS LYSE ITEER".
Projektraprort af: Niels Ole Dam og RKurt Jensen.
Vejleder: Bent Sgrensen.

104/85 “ANALOGREGNEMASKINEN OG LORENZLIGNINGER".
Af: Jens Jxger.

-105/85'mmmmorwmcmmm
GLASS REANSITI
Af.hgemns:msen.

*A SIMPLE MOTEL AF AC HOPPING CONDUCTIVITY".

Af: Jeppe C. Dyre.

Contributions to the Third Intemational Conference
on the Structure of Non - Crystalline Materials held
in Grencble July 1985.

106/85 “QXANTIM THEORY OF EXTENTED PARTICIES".
Af: Bent Sgrensen.

-107/85 *EN MYG GIR INGEN EPIIIMI",
= flodblindhed sam eksempel pd matematisk modelle-
ring af et epidemiologisk problem.
Projektrapport af: Per Hedegird Andersen, lars Boye,
CarstenHolst Jensen, Else Marie Pedersen og Erling
Mgller Pedersen.
Vejleder: Jesper larsen.

108/85 "APPLICATIONS AND MOLELLING IN THE MATEMATICS GJR-
RICULIM" - state and trends -

Af: Mogens Niss.

109785 "COX I -STUDIETIDEN® - Cox's regressionsmodel anvendt
studenteroplysninger fra RX.

. 120/86

mmmmsmmmm"
Af.Jm:gmLarsen

IZUBG"SDI.HATI(N 1 xmrmtm TID".

122/86

123/86

124/86

125/86

126/86

127/86

-~

128/86

Af: Peder Voetmann Christisansen.

“ON THE MECHANISM OF GLASS IONIC CONDUCTIVITY".
Af: Jeppe C. Dyre

“GYMNASIEFYSIKKEN OG [EN STORE VERCEN".
Fysiklererforeningen, IMFUFA, RXC

"OPGAVESAMLING I MATEMATIK".
Samtlige opgaver stillet i udm 1974-jan. 1986.

'WB__\(’_&;_sy_s___tanet; - en effektiv fotametrisk spektral-
Klassifikation af B-,A- og F-stjemer"”.
Projektrapport af: Birger Lundgren.

"OM UDVIKLINGEN AF DEN SPECIELLE RELATIVITETSTECRI"
Projektrapport af: Lise Odgaard & Linda Szkotak Jensen
Vejledere Karin Beyer & Stig Andur Pedersen.

"GALOIS' BIDRAG TIL UDVIILINGEN AF DEN ABSTRANTE
ALGEBRA" .

Projektrasport af: Pernille Sand, Heine Larsen &
Lars Frandsen.

~ Vejleder: Mogens Niss.

"SMAKRYB" - an-ikke-standa.rd analyse.

Projektrapport af: Niels Jorgensen & Mikael Klintorp.
Vejleder: Jeppe Dyre.

pa

129/86

Projektrapport af: Mikael Wennerberg Johansen, Poul Kat-

ler og Torben J. Andreasen.
Vejleder: Jgrgen Larsen.

110/85"PLANNING FOR SECURITY".
Af: Bent Sgrensen

11.1/85 JORIEN RINDT PA FIALE KORT".
Projektrapport af: Birgit Andream, Beatriz Quinones
og Jimmy Staal.
Vejleder: Mogens Niss.

112/85 "VIIENSKAERELYGGORELSE AF DANSK TEKNOLOGISK INNOVATION

‘ FREM TIL 1950 - BELYST VED EXSEMPLER". -

Projektravoort af: Erik Odgaard Gade, Hans Hedal,

* Frank C. Ludvigsen, Annette Post Nielsen og Finn

: t.
Vejleder: Claus Bryld og Bent C. Jgrgensen.

113/85 "DESUSPENSICN OF SPLITTING ELLIPTIC SYMBCLS 11",
Af: Bernhelm Booss og Krzysztof Wojciechowski.

114/85 "AA;?VE\HEISE AF GRAFISKE METODER TIL ANALYSE
KONTIGENSTABELLER"

Projektrapoort af: lone Biilmarm, Ole R. Jensen
og Arme-Lise von Moos.
Vejleder: Jorgen larsen.

115/85 “"MATEMATTKKENS UDVIKLING CP TIL RENESSANCEN".
Af: Mogens Niss.

*A PHENOMENCLOGICAL MOCEL FOR THE MEYER-
NELDEL RULE".
Af: Jeppe C. Dyre.

117/85 “KRAFT 8 FJIERNVARMECPTIMERING"

Af: Jacob Mprch Pedersen.
Vejleder: Bent Sgrensen

116/85

118/85 'I'IIMDIGMN oG mnmam IFCLGE

130/86

131/86

132/86

133/86

"PHYSICS IN SOCIETY"
Lecture Notes 1983 (1986) .
Af: Bent Sgrensen

"Studies in Wind Power"
Af: Bent Serensen

"FYSIK OG SAMFUND"” - Et integreret fysik/historie-
projekt om naturanskuelsens historiske udvikling
og dens samfundsmassige betingethed.

Projektrapport af: Jakob Heckscher, Seren Brend,
Andy Wiered.

Vejledere: Jens Heyrup,
Jens Hejgaard Jensen.

Jorgen Vogelius,

"FYSIK OG DANNELSE"
Projektrapport af: Seren Brend, Andy Wiered.
Vejledere: Karin Beyer, Jorgen Vogelius.

"CHERNOBYL ACCIDENT: ASSESSING THE DATA.
ENERGY SERIES NO. 15.
AF: Bent Serensen.

134/87

135/87

136/87

137/87

"THE D.C. AND THE A.C. ELECTRICAL TRANSPCRT IN AsSeTe SYSTEM'
Authors: M.B.El-Den, N.B.Olsen, Ib Host Pedersen,
Petr Vistor

"INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES-
TEORETISKE FORUDSETNINGER"

MASTEMATIKSPECIALE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

"Mystisk og naturlig filosofi: En skitse af kristendammens
forste og andet mode med grask filosofi"

Projektrapport af Frank Colding Ludvigsen

Vejledere: Histarie: Ib Thiersen
Fysik: Jens Hejgaard Jensen

"HOPMODELLER FOR ELEKTRISK LEDNING 1 UORDNEDE
FASTE STOFFER" - Resume af licentiatafhandling
Af: Jeppe Dyre

Niels Boye Olsen og

Vejledere:
Peder Voetmann Christiansen.



138/87 ®"JOSEPHSON EFFECT AND CIRCLE MAP.”

Paper presented at The International
Workshop on Teaching Nonlinear Phenomena
.at Universities and Schools, "Chaos in

Education". Balaton, Hungary, 26 April-2 May 1987.

By: Peder Voetmann Christiansen

13987 “Machbarkeit nichtbeherrschbarer Technik
durch Fortschritte in der Erkennbarkeit
der Natur”

Af: Bernhelm Booss-Bavnbek
“Martin Bohle-Carbonell

140/87 'Qj THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"

-By:. Jene Gravesen

141/87 “RADIGMETERS UDVIKLING AF ELCDGASAPPARAJUR -
ET TERNCQLOGTHISTORISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: Ib Thiersen

142/87 "The Calderdn Projektor for Operators With
Splitting Elliptic Symbols"

by: Bernhelm Booss-Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik pd NAT-BAS"

af: Mogens Brun Heefelt

144/87 "Context and Non-Locality - A Peircean Approach

Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camwo lecture.
Joensuu, Finland, 6 - 8 august 1987.

By: Peder Voetmann Christiansen

145/87 "AIMS AND SOOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscript of a plenary lecture delivered at
ICMTA 3, Kassel, FRG 8.-11.9.1987

By: Mogens Niss

146/87 “BESTEMMELSE AF BULKRESISTIVITETEN 1 SILICIUM"
~ en ny frekvensbaseret milemetode.
Fysikspeciale af Jan Vedde
Vejledere: Niels Boye Olsen & Petr ViSSer

147/87 "Rapport am BIS pd NAT-BAS"
redigeret af: Mogens Brun Heefelt

148/87 "Naturvidenskabsundervisning med
Samfundsperspektiv"

8f: Peter Colding-Jorgensen DLH
Albert Chr. Paulsen

149/87 "In-Situ Measurements of the density of amorphous

germanium prepared in ultra high vacuum"
by: Petr Viglor
150/87 "Structure and the Existence of the first sharp

diffraction peak in amorphous germanium
prepared in UHV and measured in-situ"

by: Petr Vik&or

151/87 "DYNAMISK PROGRAMMERING"

Matematikprojekt af:
Birgit Andresen, Keld Nielsen og Jimmy Staal

Vejleder: Mogens Niss

152/87

“"PSEUDO-DIFFERENTIAL PROJECTIONS AND -THE TOPOLOGY
OF CERTAIN SPACES OF ELLIPTIC BOUNDARY VALUE
PROBLEMS" '

by: Bernhelm Booss-Bawmbek
Krzysztof P. Wojciechowski

153/88

154/88

155/88

156/88

157/88

158/88

159/88

160/88

161/88

l62/88

163/88

164/88

165/88

"HALVLEDERTEKNOLOGIENS UDVIKLING MELLEM MILITERE
0G CIVILE KREFTER"

Et eksempel pd humanistisk teknologihistorie
Historiespeciale

Af: "Hans Hedal
Vejleder: Ib Thiersen

“"MASTER EQUATION APPROACH TO VISCOUS.LIQUIDS AND
THE “GLASS TRANSITION"

By: Jeppe Dyre

"A NOTE ON THE ACTION OF THE POISSON SOLUTION
OPERATOR TO THE DIRICHLET PROBLEM FOR A FORMALLY
SELFADJOINT DIFFERENTIAL OPERATOR"

by: Michael Pedersen

“THE RANDOM FREE ENERGY BARRIER MODEL FOR AC
CONDUCTION IN DISORDERED SOLIDS'

by: Jeppe C. Dyre

" STABILIZATION OF PARTIAL DIFFERENTIAL EQUATIONS
By FINITE DIMENSIONAL BOUNDARY FEEDBACK CONTROL:
A pseudo-differential approach.”

by: Michael Pedersen
"UNIFIED FORMALISM FOR EXCESS CURRENT NOISE IN

RANDOM WALK MODELS"
by: Jeppe Dyre

"STUDIES IN SOLAR ENERGY"

by: Bent Serensen

“"LOOP GROUPS AND INSTANTONS IN DIMENSION TWO"

by: Jens Gravesen

"PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
OF DISTRIBUTED PARAMETER SYSTEMS:

Dirichlet feedback control problems"
by: Michael Pedersen

“PIGER & FYSIK - OG MEGET MERE"
AF: Karin Beyer, Sussanne Blegaa, Birthe Olsen,
Jette Reich , Mette Vedelsby

"EN MATEMATISK MODEL TIL BESTEMMELSE AF
PERMEABILITETEN FOR BLOD-NETHINDE-BARRIEREN"

Af: Finn Langberg, Michael Jarden, Lars Frellesen
Vejleder: Jesper Larsen

“"Vurdering af matematisk teknologi
Technology Assessment
Technikfolgenabschatzung"

Af: Bernhelm Booss~Bavnbek, Glen Pate med
Martin Bohle-Carbonell og Jens Hejgaard Jensen

“COMPLEX STRUCTURES IN THE NASH-MOSER CATEGORY"

by: Jens Gravesen




€y

166/88 "Grundbegreber i Sandsynligheds-.
: ‘regningen"”

Af: Jergen Larsen

167a/88 "BASISSTATISTIK 1. Diskrete modeller"
Af: Jorgen Larsen

167b/88 “BASISSTATISTIK 2. Kontinuerte
modeller"

Af: Jergen Larsen

168/88 “OVERFLADEN AF PLANETEN MARS"
Laboratorie-simulering og MARS-analoger
undersegt ved Mossbauerspektroskopi.

Fysikspeciale af:
Birger Lundgren

Vejleder: Jens Martin Knudsen
Fye.lab./HC®

169/88 “CHARLES S. PEIRCE: MURSTEN OG MPZRTEL
TIL EN METAFYSIK."

Fem artikler fra tidsskriftet “The Monist"
1891-93.

Introduktion og oversettelse:

Peder Voetmann Christéansen

170/88 "OPGAVESAMLING I MATEMATIK"

Samtlige opgaver stillet i tiden
1974 - juni 1988

>

171/88 "The Dirac Equation with Light-Cone Data"
af: Johnny Tom Ottesen

172/88 "FYSIK OG VIRKELIGHED"

Kvantemekanikkens grundlagsproblem
i gymnasiet.

Fysikprojekt af:
_Erik Lund og Kurt Jensen

Vejledere: Albert Chr. Paulsen og
Peder Voetmann Christiansen

173/89 “NUMERISKE ALGORITMER"
af: Mogens Brun Heefelt

174/89 " GRAFISK FREMSTILLING AF
FRAKTALER OG KAOS"

af: Peder Voetmann Christiansen

175/89 * AN ELEMENTARY ANALYSIS OF THE TIME
DEPENDENT SPECTRUM OF THE NON-STATONARY
SOLUTION TO THE OPERATOR RICCATI EQUATION

af: Michael Pedersen

176/89 " A MAXIUM ENTROPY ANSATZ FOR NONLINEAR
RESPONSE THEORY"

af : Jeppe Dyre

177/89 "HVAD SKAL ADAM STA MODEL TIL"

af: Morten Andersen, Ulla Engstrom,
Thomas Gravesen, Nanna Lund, Pia
Madsen, Dina Rawat, Peter Torstensen

Vejleder: Mogens Brun Heefelt

178/89 "BIOSYNTESEN AF PENICILLIN - en matematisk model"

af: Ulla Egha?e Rasmussen, Hans Oxvang Mortensen,
Michael Jarden

vejleder i matematik: Jesper Larsen
biologi: Erling Lauridsen

179a/89 "LERERVEJLEDNING M.M. til et eksperimentelt forleb
om kaos"

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

179b/89 "ELEVHEFTE: Noter til et eksperimentelt kursus om
kaos"

af: Andy Wiered, Seren Brend og Jimmy Staal

Vejledere: Peder Voetmann Christiansen
Karin Beyer

180/89 "KAOS 1 FYSISKE SYSTEMER eksemplificeret ved
torsions- og dobbeltpendul".

af: Andy Wiered, Seren Brend og Jimmy Staal
Vejleder: Peder Voetmann Christiansen

181/89 “A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE
SHEAR VISCOELASTICITY"

by: Jeppe Dyre

183/89 "MATEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS
AND LINKS TO OTHER SUBJECTS - State. trends and
issues in mathematics instruction

by: WERNER BLUM, Kassel (FRG) og
WOGENS NISS, Roskilde (Denmark) .

184/89 "En metode til bestemmelse .f den frekvensafhengige
varsefylde af en underafkelet veske ved glasovergangen”

af: Tage Emil Christensen

185/90 “EN NESTEN PERIODISK HISTORIE"
Et matematisk projekt
af: Steen Grode og Thomas Jessen
Vejleder: Jacod Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
" redigeret af Arne Jakobsen og Stig Andur Pedersen

187/90 “RSA - et kryptografisk systea”
af: Annemette Sofie Olufsen, Lars Frellesen
og Ole Moller Nielsen

Vejledere: Michael Pedersen og Finn Munk

168/90 “FERMICONDENSATION - AN ALMOST IDEAL GLASS TRANSITION'
by: Jeppe Dyre

189/90 "DATAMATER I MRTEMATIKUNDERVISNINGEN PA
GYMNASIET OG HOJERE LAREANSTALTER

af: Finn Langberg



1920/90

191/%0

192/90

183/90

194a/90

194b/90

19%/90

196/90

197/90

198/30

*FIVE REQUIREMENTS FOR AN
APPROXIMATE NONLINEAR RESPONSE
THEORY"

by: Jeppe Dyre

"KOORE COHOMOLOGY, PRINCIPAL
BUNDLES AND ACTIONS OF GROUPS
OR C*-ALGEBRAS"

bv: lain Raeburn-and Dana P. Williams

“Age-dependent host mortality in the
dynamics of endemic infectious diseases
and

SIR-models of the:-epidemioclogy and natural
selection of co-circulating influenza virus
with partial cross-=immunity"

by: Viggo Andreasen

*Causal and Diagnostic Reasoning"

py: Stig Andur Pedersen

*DETERMINISTISK KAOS"
Projektrapport af : Frank Olsen

*DETERMINISTISK KAOS"
Korselsrapport

Projektrapport af: Frank Olsen

“STADIER PA PARADIGMETS VEJ"
Et projekt om den videnskabelige udvikling
der ferte til dennelse af kvantemekanikken.

Projektrapport for 1. modul pd fysikuddan-
nelsen, skrevet af:

Anja Boisen, Thomas Houglrd, Anders Gorm
larsen, Nicolai Ryge.

Vejleder: Peder Voetmann Christiansen

“ER KAOS NZDVENDIGT?"

- en projektrapport om kaos' paradigmatiske
status i fysikken. ’

af: Johannes K. Nielsen, Jimmy Staal og
Peter Beggild

Vejleder: Peder Voetmann Christiansen

*Kontrafaktiske konditionaler i HOL

af: Jesper Voetmann, Hans Oxvang Mortensen og

Aleksander Hest-Madsen

Vejleder: Stig Andur Pedersen

*"Metal-Isoclator-Metel systemer”
Speciale

af: Frank Olsen

199/90 “SPREDT FAEGTNING" Artikelsamling

af: Jens Hejgaard Jensen

200/90 "LINEAR ALGEBRA OG ANALYSE"

Noter til den naturvidenskabelige basis-

uddannelse.
at: Mogens Niss

201/90 "Undersegelse af atomare korrelstioner i
smorfe stoffer ved rentgendiffraktion”

af: Karen Birkelund og Klaus Dahl Jensen
Vejledere: Petr Viidor, Ole Bakander

202/90 *“TEGN OG KVANTER"
___ PForedrag og artikler, 1971-90.

af: Peder Voetmann Christiansen

203/90 ®“OPGAVESAMLING 1 MATENATIK" 1974-1990
afleser tekst 170/88

204/91 "ERKENDELSE 0OG KVANTEMERKANIK"
et Breddemodul Fysik Projekt
af: Thomas Jessen
Vejleder: Petr Viscor

205/91 "PEIRCE'S LOGIC OF VAGUENESS®

by: Claudine Engel-Tiercelin
Department of Philosophy
Université de Paris-l
(Panthéon-Sorbonne)

206a+b/91 “GERMANIUMBEAMARALYSE SAMT
A - GE TYNDFILMS ELEKTRISKE
EGENSKABER"

Eksperimentelt Pysikspeciale
af: Jeanne Linda Mortensen
og Annette Post Nielsen
Vejleder: Petr Visdor

207/91 "SOME REMARKS ON AC CONDUCTION
IN DISORDERED SOLIDS"

by: Jeppe C. Dyre

208/91 "LANGEVIN MODELS FOR SHEAR STRESS
FLUCTUATIONS IN FLOWS OF VISCO-
ELASTIC LIOUIDS"

by: Jeppe C. Dyre

209/91 “LORENZ GUIDE" Kompendium til den
danske fysiker Ludvig Lorenz,
1829-91.

af: Helge Kragh

210/91 "Global Dimension, Tower of Algebras,
and Jones Index of Split Seperable
Subalgebras with Unitality Condition.

by: Lars Kadison

211/81 "'J SANDHEDENS TJENESTE"
- historien bag teorien for de komplekse zal.

af: Liee Arleth, Charlotte Gjerrild.
Jane Hansen. Linda Kymdlev, Anne
Charlotte Nilsson. Kamma Tulinius.

Vejledere: Jesper Larsen og Bernhelm
Boose-Bavnbek

212/91 "Cyelic Homology of Iriangular Mairiz
Algebras"

by: Lars Kadison

213/91 '"Disease-induced natural selection in a
diploid host
by Viggo Andreasen and Freddy B.Chrigtiansen



214}91
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