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Abstract

In the thesis the space of based holomorphic maps, between a Riemann surface
and a generalized flag manifold or a loop group, is compared with the correspond-
ing space of continuous maps.

Both spaces have connected components labeled by a (multi-) degree, and if
the Riemann surface is the sphere, then it is shown that the two spaces have the
same homology in the limit where the degree tends to infinity.

The main idea is a generalization of the concept of a principal part of a mero-
morphic functions to a principal part of a holomorphic map into a flag manifold
or a loop group. Then the space of holomorphic maps can be replaced with a
configuration space of principal parts, which makes it possible to apply standard
techniques in the proofs.

The space of holomorphic maps from CP! to a loop group N2G can be identi-
fied with a moduli space of holomorphic G c-bundles over CP! x CP!. When CP!
is replaced by a general Riemann surface X, then the space of holomorphic maps
from X to G is only a subset of the moduli space of bundles over X x CP!, but
the space of configurations of principal parts can be identified with the full moduli
space. Again it is shown that, when the degree tends to infinity, the homology of
the moduli space tends to the homology of the space of continuous maps from X
to N1G.
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1. Introduction

Let X and Y be two complex manifolds and form the two spaces Hol(X,Y)
of holomorphic maps X — Y and Map(X,Y) of continuous maps X — Y, both
equipped with the compact-open topology.

We will study the inclusion

Hol(X,Y) — Map(X,Y)

in the case, where X is a Riemann surface and Y is a generalized flag manifold or
a loop group. :

Let Hol},(X,Y) and Map,,(X,Y) denote the spaces of based maps of degree n.
In [18] G. Segal showed that the inclusion

Hol;, (X, CP™) — Map,,(X,CP™)
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in the University of Oxford.
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2 TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS

is a homology equivalence up to dimension (n — 2¢)(2m — 1), where g is the genus
of X. If X = CP!, it is even a homotopy equivalence up to dimension n(2m — 1).

Segal conjectured that a similar statement holds, if CP™ is replaced by a flag
manifold or a Grassmannian. By using Segal’s result and induction arguments
this was confirmed in the case of a flag manifold by M. A. Guest in [6] and in the
case of a Grassmannian by F. C. Kirwan in [8].

If G is a compact Lie group, then the loop group 1G of smooth based maps
S1 — G has many properties similar to a Grassmannian, see [13], [14] and [15].
So it is natural to try to extend Segal’s result to the inclusion

Hol} (X, QG) — Map,(X, NG),

and this is indeed the purpose of this work.

In [1] M. F. Atiyah describes how a holomorphic map X — QG gives rise to
a holomorphic Gg-bundle over X X CP1l, where G¢ is the complexification of
G. To be more precise, let M,(X x CP,Xv CPI,GC) be the space of based
isomorphism classes of holomorphic Gg-bundles over X x CP?, trivial over the
axis X V CP! and with characteristic class n. Then there is an imbedding

Hol’,(X,0G) — M.(X x CP!, X v CP!,Gg),

and if X = CP?!, then it is a diffeomorphism onto an open subset and it is
homotopic to a diffeomorphism onto all of M,,(CPI x CPl,CcP!v CP?, Gg).
The main result (theorem 7.8) is that

lim H.(Ma(X x CP?, X v CP,Gc)) = H.(Map}(X,0G)).

If X = CP!, then Hol}(CP!,01G) — M,(CP! x CP!,CP! v CP,Gg) is a
homotopy equivalence and as the methods work equally well for a generalized flag

manifold,
Jim H,(Hol:(CP',Y)) = H.(Map3(CP,Y))

with Y a generalized flag manifold or a loop group. The degree n might be a
multi-index n = (n1,...,n,) and then n — co means n; - 0 allt =1,...,r.
Segal’s results on projective spaces are stronger. In particular, in each dimension
g the limit nl-l—?éo H,(Hol%,(X,CP?')) is obtained after a finite number of steps. If
this result on projective spaces could be proved in the framework of this paper,
then the analogous result for loop groups would probably hold.
There is one result in this direction as the induced map

mo(Hol*(CP,Y)) — mo(Map(CP1,Y))

is an injection. By the connection with vector bundles this gives yet a proof of
the connectivety of certain moduli spaces in algebraic geometry, see [3] and it’s
references.
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If D is the open unit disk in C, then the inclusion Hol(D,Y) — Map(D,Y) is a
homotopy equivalence. In fact, if f:(z) = f(tz), then (¢,2) — fi, t € [0,1], defines
a contraction of both spaces onto Y considered as the space of constant maps. As
a surface X can be made by gluing disks together, one could hope to prove that
the inclusion Hol(X,Y) — Map(X,Y) is a homotopy equivalence by an induction
argument. The principle is very simple. If X is the union of two subsets X; and
X2, then the restrictions give cartesian diagrams

Hol(x, uXx,;,¥) ——  Hol(x,,v) Map(x, UXx;,Y) — Map(x,,Y)
! o= !
Hol(x,;,¥) ——— Hol{x,nNXx,,v) Map(X2,Y) ——— Map(X:NX,,Y).

Suppose the result is true for X;, X2 and X; N X>. If the diagrams are homotopy
cartesian, then we can conclude that the result is true for X; U X3. This is the
case if the vertical maps are fibrations. Unfortunately, the maps in the left-hand
diagram are not fibrations so we have to be more clever.

A based holomorphic map X — CP! is uniquely determined by its zeros and
poles and Segal uses this fact to replace the study of holomorphic maps with the
study of configurations of zeros and poles. Similarly, we will use that a based
holomorphic map X — CP! is uniquely determined by its principal parts, and
replace the study of holomorphic maps with the study of configurations of principal
parts.

As the diffeomorphism group does not act on such configurations, we have to
enlarge the space. The ‘configuration’ space we consider consists of pairs of a com-
plex structure on the underlying real manifold M and a configuration of principal
parts in this complex structure. Now the diffeomorphism group acts on the space,
but it is no longer a true configuration space, since a global quantity, namely the
complex structure, is introduced. '

In section 2 we study complex structures on two dimensional manifolds. Much
of the material is standard and is only included to establish the notation. For that
reason there will be statements without proof or specific references. The missing
details can be found in [4] , [5] and [19]. The main result is lemma 2.10, which
roughly states that a meromorphic function depends continuously on it’s principal
parts and the complex structure.

In section 3 and 4 the necessary features of flag manifolds and loop groups are
described. Once again most of the material is standard. The main results are
lemma 3.1 and 4.6, which are generalizations of lemma 2.10.

We need to vary the complex structure and we only want to consider maps
which have principal parts, so in section 5 we introduce the space X(M,Y) of
pairs (f,J) where J is a complex structure on M and f is a map M — Y, which
is holomorphic in this complex structure and do not map entirely into infinity. If
D is the closed unit disk, then we show that ¥(D,Y) is weak homotopy equivalent
to Map(D,Y).

In section 6, a principal part of a holomorphic map into Y is defined and the
space P(M,Y) of pairs (£,J), where J is a complex structure on M and ¢ is a
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configuration of principal parts in this structure, is introduced. There is a natural
map ¥(M,Y) — P(M,Y), and if dM # 0, then the map is surjective and a weak
homotopy equivalence. The most important property of the space P(M,Y) is that,
under certain conditions on an inclusion M; C M, the restriction map

P(MQ,Y) — P(M]_,Y)

is a quasifibration. It enables us to get the desired result for a union M; U M, if
it is known for My, M2 and M, N M. 7 7

This is used in section 7, where the results are proved. Starting with the result
for D, we follow the methods of [10] using induction on the number of handles in
2 handle decomposition of M. As long as M is not closed, the relevant restriction
maps are quasifibrations, so ¥ (M, Y) is weak homotopy equivalent to Map(M,Y),
if 3M # 0. When the manifold is closed, it is necessary to introduce a stabilized
space p. ,

By adding a principal part near infinity, we get a map P — P which increases
the degree and P is the telescope of the sequence P -+ P — P — ... Now the
relevant restriction maps become homology fibrations and we can conclude that
P and Map*(M,Y) have the same homology type. The next step is to show that
if P; is the space of configurations of principal parts in a fixed complex structure
J, then the inclusion Py < P is a homotopy equivalence. Finally we show that
Py can be identified with M, (X x CP!, X v CP?,Gc), where X is M equipped
with the complex structure J.

At the end is an appendix describing some topological concepts : homotopy
theoretical fiber product, quasifibration, homology fibration and the telescope con-
struction.

I would like to end the introduction by acknowledge my dept to M. F. Atiyah
for proposing the problem and giving valuable suggestions and above all to my
supervisor G. Segal for encouragement and for teaching me all I know about loop
groups and configuration spaces.

Finally, I would like to express my gratitude to my Danish supervisor V. Lunds-
gaard Hansen. He was the first teacher I met at the university and ever since his
enthusiasm, encouragement and support has been indispensable for me.

My stay at Oxford was made possible by a ‘kandidatstipendium’ from the Uni-
versity of Copenhagen, and the thesis has been completed in Denmark, while
working first at the Mathematical Institute, the Technical University of Denmark,
and now at IMFUFA, Roskilde University Center.

7. Complex Structures on Two Dimensional Manifolds

Lot W b2 a compact, connected, oriented two dimensional C°°-manifold without
omadagy. The topology of M is completely described by a single number, the
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figure 2.1

If ¢ > 1, then M is homeomorphic to the space obtained from a polygon with 4¢
edges labelled a1,b1,a7%,b7%,...;ag,b,a;%,b;1, by identifying a; with a;* and
b; with b7, ¢ =1,...,g, see figure 2.1.

After this identification, a,,by,...,a4,b; become closed curves on M and these
curves generate the fundamental group 7 (M). We have in fact that 71 (M) is the

free group generated by a,,by,...,a,,b; divided by the single relation
arbiaytey?t--- agbga;Ib;'l = 1.

The expression aybya7 67! --- agbgag‘lbg—1 is called the symbol of the surface. The
first homology group H,(M,Z) is a free Z-module with basis a1, b1,...,a4,b, and
the intersection form H,(M,Z) x H,(M,Z) — Z is determined by

aia; = bb; =0 and a;bj = —bja; = b;; 5,7=1,...,¢9.

So in the basis (aj,...,a4,b;...,b,) the intersection form has the matrix

(% ).

where 0 is the g X g zero matrix and I is the g x ¢ identity matrix. Any basis for
H,(M, Z) with such an intersection matrix is called a canonical homology basis .

A Riemann surface is a connected two-dimensional C°°-manifold M equipped
with an atlas (Ua, 24), where the chart z,: U, — C is a diffeomorphism onto an
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open subset of the complex plane, such that the transition function z, o z;l is

holomorphic for all o, 8.
A chart 2: U — C is also called a local parameter or a local coordinate. If M
is compact, then M is called a closed Riemann surface, otherwise it is called an

open Riemann surface.

A continuous map f: M — M’ between Riemann surfaces, or more general
" between complex manifolds, is called holomorphic, if for every local coordinate
(U,z) on M and every local coordinate (U’,z') on M’, with U n f~1(U’) # 0,
the map 2’ o f 0 271: 2(U N f~1(U')) — C is holomorphic. The map is called
conformal, if it also is bijective. In this case the inverse map f~1: M — M is
conformal too. A holomorphic map into C is called a holomorphic function: and
a holomorphic map into CP! = C U {00}, which is not identical co, is called a
meromorphic function.

The sheaf of holomorphic functions is denoted O, and the sheaf of meromorphic
functions is denoted M, i.e. if U C M is open, then

O(U) ={f: U — C| f is holomorphic }
and
M(U) ={f: U — CP | f is holomorphic and f(U) N C # 0}.

If 2 = z+1y and Z = T4y are local parameters on M, then the transition function
is holomorphic, so by the Cauchy-Riemann equations

% o "
dz Ady =det| 5, QZ d?:'/\di}':det(_gj Qg“)di/\d@'
8z &8y 8z oz

az\? [ay\? = ldzl? .
-((3) + () )ena-[3] =ra

~

and a Riemann surface is orientable. In the following it is assumed that the
orientation is compatible with the complex structure, i.e. if  is the volume form
on M, then 2 = fdz A dy with f > 0 for any local parameter z = z + 1y.

If 2: U — C is a local parameter on M, then multiplication by ¢ in C induces
a real isomorphism J,: T.M — T.M with Jz2 = —1 for all £ € U, defined by
Jz(v) = (dz) (¢ dz(v)) for v € T, M. As the transition functions are holomorphic,
the endomorphism J, is independent of the choice of parameter z. Hence there
is a well-defined smooth section J in the endomorphism bundle End(TM), which
satisfies J2 = —1.

The complexification of the tangent bundle is TM¢c = TM ®gr C and the
complexification of the cotangent bundle is T*Mg = T*M®xr C. We can obviously
identify T*M¢ with the complex dual bundle of TMg, i.e. T*M¢c = (TMc)*.
The bundle of complex valued forms on M is

AMc = A(T*Mc) = (A(T*M)) ®r C.
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We have
AMc = A\°Mc ® A Mc @ \* Mc,

where _ _ .
N Mo = N (T*Mo) = (\'(T*Mc)) @ € i=0,1,2

is the bundle of complex valued i-forms on M. In particular, /\0 Mg =MxC
and /\1 Mg = T*Mc. The real isomorphism J: TM — TM induces a complex
isomorphism J: TM¢c — TM¢ and the dual isomorphism J*: T*M¢c — T*Mc,
which both have eigenvalues +i. Let TM' and /\I’OM denote the two bun-
dles of (+1)-eigenspaces and TM%! and A>* M denote the two bundles of (—i)-
eigenspaces. They are smooth subbundles of TM¢ and /\1 Mg respectively. Fur-
thermore, /\1'0 M is the complex dual of TM1:° and /\o’1 M is the complex dual
of TM%1, ' , .

If z = z + ¢y is a local parameter on M, then (dz,dy) is a local basis for /\1M
and hence for A' M. We have

J*dz = —dy and J*dy = dz,

so if .
dz =dz +1dy and dz = dz — 1dy,

then (dz,dz) is a basis for \' Mg, dz is a basis for A" M and dZ is a basis for

/\0,1 M.

Note that —J* is the Hodge star-operator restricted to one-forms for any metric,
compatible with the complex structure, i.e. any metric, where J is a positive
rotation through n/2. Finally dz A dZ = —2idz A dy, so the volume form {1 is
pointwise a positive multiple of 1dz A dz for any local parameter z.

The conjugation Q: TM¢c — TMc is a conjugated complex linear isomorphism
defined by Q(V ® a) = v ® @. It satisfies Q = Q~! and gives a conjugated linear
isomorphism Q: TM'° — TM%!, Similarly, for i = 0,1,2, there are conjugations,
also denoted @, from A Mg to itself. Again @ = Q! and gives a conjugated
linear isomorphism Q: /\I’OM — /\0’1 M. We also use the notation Q(a) = @,
and if z is a local parameter, then Q(dz) = dz = dZ and Q(dz) = dz = d=.

- As M is a complex manifold, the tangent bundle TM is a holomorphic complex
vector bundle over M, and as such we will denote it TM;. If v € TM is a tangent
vector and a+ 18 is a complex number with &, € R, then (a+if)v = av+ fJv,
and if z = z + fy is a local parameter on M, then the vector field 3/9z gives a
local holomorphic trivialization of TM;. The complex vector bundles T1:° M and
AY° M are canonical isomorphic to TM and (TM;)* respectively, so they are, in
particular, holomorphic vector bundles. The isomorphism TM;-5TM10 is given
by v — m1,0(v ®1), where m; ; is the projection TM¢g = T'"°M @ T"'M — THIM
and the isomorphism A'® M5 (TM;)* is the complex dual.

The exterior differential

d

n°(M) = 2

oM -4 d

N:M =0,
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where 01*M is the space of smooth sections in /\i M, extends by complex linearity
to act on complex valued forms and we get the sequence

0°Mc -5 O*Mc -5 02Me =% 0,

where 1* M is the space of smooth sections in /\i Mc. Let 0%'M denote the
space of smooth sections in A"’ M and define

d=mpod: N°Mc — QYOMc and 3= mo,10d: 0°Mc — Q%M.

We also denote d|qi0p, = 9 and dlgonp = 0. Then d = 8 + 3 and using the
complex conjugation defined above, we have

d=Qod0Q and =Qo0doQ.

If 2 = z + 1y is a local parameter on M and f,g: C — C are smooth complex
functions then

d(foz)=a(foz)+5(foz)=g£dz+%dz
and
d((foz)dz+(go2)dz) =3(foz)Adz+d(g02) Adz
=%§dz/\dz+g%dz/\d2
(2-2) e
with

9 _1(8 .8 g 2_1(9 .9
3z 2\6z ‘'ay) "¢ &z " 2\6z "'ay/)-

A complex one-form w € N1 Mg is called

exact, if w = df for some f € N°Mg,
co-exact, if J*w is exact, i.e. if w = J*df for some f € N°M,
closed, if dw = 0,
co-closed, if J*w is closed, i.e. if dJ*w =0,
harmonic, if w is closed and co-closed,
holomorphic, if one and hence all of the following five equivalent conditions
are satisfied
i) w is a holomorphic section in A° M,
ii) locally w = df with f holomorphic,
iii) locally w = f dz with f holomorphic,
iv) w € QV°M and is closed, i.e. J*w = tw and dw = 0,
V) w = a — tJ*a for some harmonic a.
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We also call a harmonic one-form a harmonic differential and a holomorphic one-
form a holomorphic differential.
By deRham’s and Hodge’s theorems

H'(M, C) = {closed one-forms} /{exact one-forms} = {harmonic one-forms}
If ¢ is a one-cycle and w is a closed one-form, the pairing

Hy(M,C) x HY(M,C) — C: ([e],[w]) — (c,w)

(e,w) = /cw.

In particular, the space of harmonic one forms is a 2g-dimensional complex vector
space where g is the genus of M. If ¢; = a4,...,¢5 = ag,¢g41 = b1,...,629 = by
is a canonical homology basis, then we can determine a basis a;,...,azg for the
harmonic differentials by demanding that

is given by

(ci,,aj) = 5,']'.

If the space of holomorphic differentials is denoted ¥, and ¥ denotes the space of
anti-holomorphic differentials, i.e. differentials of the form @ with w holomorphic,
then there is a direct sum decomposition

{harmonic differentials} = ¥ & X.
So the space of holomorphic differentials is g-dimensional, and if
ws = a; —1J%ay, t=1,...,9,

then wy,...,w, is a basis for .

A meromorphic differential w on a Riemann surface M is a holomorphic differ-
ential on M \ {p1,...,Pn} such that for each local parameter z on M, w = fdz
with f a meromorphic function.

If w is a meromorphic differential, z is a local parameter vanishing at a point
pE M and w = f(2)dz with f(z) = Y 5o, ak2z® and a, # 0, then the order of w
at pis

ordpw = ordg f = n.

If ordyw < O, then p is called a pole and the residue of w at p is then

respw =a_; = /w
[+

with ¢ a small closed curve around p;
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If p is a point on a Riemann surface M, n > 2 and z is a local parameter vanish-

ing at p, then there exists a meromorphic differential T,Sn), which is holomorphic
on M \ {p} and has singularity 27" at p, i.e. locally around p we have

'rxs") =(z7"+ f(2)) d=

with f holomorphic. The order of T,Sn) at p is —n and can be arbitrarily low. The
order can not be arbitrarily high, in fact, if p is a point on M, then there are
precisely ¢ integers. .
O=p1 <pz<--<py<2-2

such that there exist holomorphic differentials £1,..., &, with
ordp & = p i1=1,...,9.

The numbers py + 1,42 + 1,...,49 + 1 are called the gaps at p. The differen-
tials £1,..., ¢y are necessarily linearly independent, why they form a basis for the

holomorphic differentials.

If 2 is a local parameter vanishing at p and the differentials above have the local
expression & = ¢i(z) dz with ¢;(2) = ¥ ro, aikz® and a;,; = 6; (which always
can be achieved), then §;,..., &, is called the basis adapted to the point p. It is
not uniquely determined by p, but depends on the choice of the parameter z.

The weight of p is the number

r(p) = > _(k; +1-4),

and as puj > j— 1,7 =1,...,9, the weight r(p) > 0, and 7(p) =0 iff u; =5 — 1,
7=1,...,9iff ug = g — 1. The points p € M with 7(p) > 1 are called Weierstrass
points and there are only finitely many of such points on M. In fact

> r(p) = (9 —1)g(g +1).

PEM

If z is a local parameter and wy,...,w, is a basis for the holomorphic differentials,
which locally is given by w; = ¢;(2) dz, then

7(p) = ord,(p) det[d1, @2, ..., P,
with
#1(2) $2(2) ... y(2)
1(2) $2(2) ... ¢y(2)
[61(2), $2(2), - - -, 84(2)] = : : :
69 V(z) o V(2) ... ¥ V(2
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so locally the Weierstrass points are given as the zeros of a holomorphic function.

Let p € M and let z be a local parameter vanishing at p. A principal partatpisa
rational function of z of the form f(2) = ,:=1_n ax2®. I pq,..., pm are m distinct
points on M, 2, is a local parameter vanishing at p; and f; (25) = E;;__n ajkzj’.‘ is
a principal part at p; then the collection {f1, f2,..., fm} will be called a system
or a configuration of principal parts. The points py,...,pm are called the poles of
the configuration.

As it stands, a configuration of principal parts depends on the choices of local
parameters. Instead we can consider an open covering (U;) of M and an assignment
of a meromorphic function f; on U; for each i, such that the difference f; — f; is
a holomorphic function on U; N Uj all #,7. Such a gadget is called a Mittag-Lefler
distribution, and if the sets U; are domains for local parameters z;: U; — C, then
we obviously have a one to one correspondence between Mittag-Lefler distributions
and configurations of principal parts.

As a third approach, we consider the quotient sheaf P = M/O called the sheaf
of principal parts, i.e. P is the sheaf generated by the presheaf U — M(U)/O(U),
where O is the sheaf of holomorphic functions and M is the sheaf of meromorphic
functions. A configuration of principal parts is now defined as an element of
P(M), i.e. as a global section of the sheaf P. This is by definition the same as a
Mittag-Lefler distribution on M.

The short exact sequence
0—0—M—P—0
of sheaves induces a long exact cohomology sequence
0 — O(M) — M(M) — P(M) - HY(M,0) — ... .
A configuration ¢ € P(M) comes from a globally defined meromorphic function iff

6¢ = 0. If £ is a configuration represented by meromorphic functions f;: U;,— P
and w is a holomorphic differential, then

resp(fiw) =res(fw)  allpe UinUj,

so we may define
resp(£) = resp(fiw), if p € U;.

By Dolbout’s theorem, H!(M, O) is the dual of the holomorphic differentials and
if w is a holomorphic differential, then

(w,66) = res(éw) = Y _ resy(éw).

PEM

This leads to
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(2.1) LEMMA. If ¢ € P is a configuration of principal parts on a closed Riemann
surface M of genus g, and p € M is a point, which is neither a pole of £ nor a
Weierstrass point, then there exists a meromorphic function f on M, which on
M \ {p} has ¢ as its principal parts and has ord, f > —g. - .

PROOF: Let z be a local parameter vanishing at p and let wq,... »Wg be a basis for
the holomorphic differentials adapted to the point p, i.e. w; = (2*~1 + 29)g;(2) dz
with g;(0) # 0. If we put

g
fo=—)_res(bwi)z™¥,
k=1

then the configuration £ U {fo} satisfies
res((£ U {fo})w:) = res(éw;) + resp(fowi;) =0  alli=1,...,g.

Hence 6(¢ U {fo}) = 0, and there exists a meromorphic function f: M — CPZ,
which has € U {fo} as its principal parts. This function clearly satisfies the condi-
tions in the lemma. J§

If p is a Weierstrass point, we still have the same kind of result, but we may
need a pole of higher order at p.

Earlier we saw that a complex structure induces a section J in End(TM) with
J? = —1. Such a section is called an almost complex structure and in the case
of two dimensional manifolds, all almost complex structures come from a complex
structure. So we may define the space of complex structures on an oriented two
dimensional manifold M with volume form 1 as

C(M) = {smooth sections J in End(TM) | J?> = —1 and
Q(v,Jv) >0allv e TM}

equipped with the C°-topology. This definition also makes sense, if M has bound-
ary and corners and in the following this may be the case.

If M is a two dimensional manifold and J € C(M), then M denotes M equipped
with the complex structure J. As the complex structure now can vary, we will
speak of J-holomorphic and J-harmonic functions, maps, forms ect.

Up to isomorphism, there is only one complex structure on S2. If J, € C(M)
denotes the standard complex structure on §%, i.e. 330 = CP!, and J € C(M)
is any complex structure, then there exists a diffeomorphism ¢s of S?, which is
holomorphic considered as a map from S3 to §%. If furthermore ¢;(0) = 0,
#5(1) = 1 and ¢(0c0) = oo, then ¢; is unique. We equip the group Diff(S2) of
diffeomorphisms of S2 with the C°°-topology and have

(2.2) PROPOSITION. The map C(S2) — Diff(S?): J = ¢ is continuous.

PROOF: Diff(S2) acts on C(52) from the left by ¢.J = ¢,J@ L. Let Diff¥(52) de-
note diffeomorphisms of Sobolev class k and let C¥(52) denote the space of complex
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structures of Sobolev class k, both equipped with the corresponding topologies.
These spaces are smooth Hilbert manifolds, and the action of Diff(S2) on C(S?)

extends to a smooth action
Diff**t1(5%) x C*¥(52) — C¥(5?).
We only have to show that the orbit map
O: Diff**1(8%) — C*(S2): ¢ — ¢.Jo = duJodi
is a submersion for all k. As right translation
Diff¥+1($2) — Diff*+1(S2): Y +— Yo ¢

is smooth for all ¢ € Diff k+1(S 2), it is enough to show that the differential at the

identity
D = dOyq: Tig Diff*+1(82) — T;,C*(S?)

induces an isomorphism
T;q Diff*+ (52) [ ker(D) =T, C*(S?).
We have that

T;q Diff*+1(52) = {vector fields on S? of Sobolev class k + 1},

and if
F = {A € End(TS?) | AJo + JoA = 0},

then
T;,C*(8?%) = {sections in F of Sobolev class k}.

The Riemann sphere 530 = CP! can be covered by two Jp-holomorphic charts
C — 52 with the transition function C* — C*: z — 2~ 1. The corresponding
transition function for the tangent bundle is the map

C*xC — C* xC: (z,u) —> (271, —27%u),
and for the cotangent bundle it is

C* xC — C* x C: (z,w) — (27}, —F*w),
where (z,w) acts on (z,u) by ((2,w), (2,u)) = Re(wu). The endomorphism bundle,
restricted to the two charts, is just Cx Mg (2, 2), where Mg (2, 2) is the space of real

two by two matrices. The standard complex structure Jg is in both trivializations
given by the constant map

Jo: C — Mg(2,2): z2+— ((1) —(1)>
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a b

Hence the bundle F is in both trivializations given by matrices of the form ( b —a )
a b

and the map a + tb— ( b —a ) identifies the space of such matrices with C. Then
 (2,f) € Factson (z,u) € CxC C TM by (2, f)(z,v) = (2, fu). So the transition
function for F is ' -
C*x C — C* x C: (2, f) — (271, (z27Y)2f).
A priori, F is just a real two-dimensional vector bundle, but the transition function
is complex linear in each fiber, so F can be considered as a complex line bundle

over S2, .
Now we want to calculate the local expression for the operator D = dO;q and its

symbol. Let v be a vector field on S? and let ¢;: S2 — S2% be the flow generated
by v. Locally ¢: = (&1¢, $2¢) and ¢o = id = (z,y), so

Op1r O¢1:
oz G}
Pts = Obas a;é—t- ’
oz dy ,
0da4 0d14
ool = (84)1, 02t 92 a¢1t> dy  dy
b dz 38y dz 9y _0¢2  Odut
oz oz

and

o+ = ¢(T*1 = ((1) 2) .

Differentiation with respect to ¢, letting ¢ = 0 and using ¢"o = v = (v1,v2) leads to

and finally

d _ ] _ .
Dy = Zt' (¢t* [o} Jo o) ¢t*1)|t=0 — ¢0* o JO ° ¢0*1 + ¢0* o JO o ¢°*1

-1
o) +

vy Oui
i _| oz 9y
Po- = | 3wy av, |
dr Oy

. dv
-1 _ 1

Ov
dy

)(

10
01

[ _ou
dy ox dvy  9v;
dva v |~ (Ta‘?*a—y

\ oy oz

( 8v1 + ng _8v1 3‘02

dy oz oz dy
vy Ovg dvy Ouy

\"%z T3y 9z ay

)+

)(

Ovz
dy
_0Ov2

oz

_9n

dy
vy

oz

6‘02

oz
v,

dy

b

_9u

oz
vy
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In complex notation

and the symbol is the map
0:CXCxC— CxCxC:(z,w,u) — (2,w, —twu).

So D is an elliptic operator and the proposition is proved as soon as we prove that
the cokernel of D is zero. As the space of conformal maps from CP! to itself is
three-dimensional, so is the kernel of D. Thus we need only prove that the index
(D) of D is three. By the Atiyah-Singer index theorem

i(D) = (ch(D) - T(S?))[S?],

where ch(D) is the Chern character of D and T ($2) is the Todd class of S? (which
is 1).

Considered as complex line bundles over S2, we have TS? = T*S? = E and
F = EQE = E? because, when restricted to S, —2%2 = —2~%2 and (zz71)? = 274

Let P be the orthonormal frame bundle of S% with the standard metric. Then
P is a principal SO(2)-bundle over S%, and as a real bundle E = P x 50(2) R2? with
the standard action of SO(2) on R2. There is a group isomorphism SO(2) = U(1)
by which the standard action of U(1) on C & R? corresponds to the standard
action of SO(2) on R2. As complex bundles E = P xy(1) C and F = P xy(1) Cz,
where Cz is C with the U(1)-action (e*f,2) + €22, If 7: T*S%? — S2 is the
projection, then

W*(E)=P><U(1) (CXC), 7I’*(F)=PXU(1) (CXCz)
and the symbol o: 7*(E) — #n*(F) is induced by the map
PxCxC— PxCxC;: (y,w,2) — (u,w, —twz).

Let Bg = CP be the classifying space for G = SO(2) = U(1), let Eg be the
universal G-bundle over Bg and let f: S2 — Bg be the classifying map for the
principal G-bundle P, i.e. P = f*(Eg). If

V*=V =EgxgR?, E=EgxgC and F=EgxgC,,

then - ~ -
T*S? = f*(v), E = f*(E) and F = f*(F),

and if #: V* — Bg is the projection, then

N

*(E) = E¢ xg (R?*x C) = E¢ x¢ (C x C)
*(F) = Eg xg (R? x C3) = Eg x (C x Cz).

N
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The symbol o is the pullback of the map &: #*(E) — #*(F) induced by the
map
EgxCxC— EgxCxC: (uw,2) — (u,w,twz).

iBy (12, chap. III theorem 1]

«_ch(E) — ch(F)

- { M)

ch(D) 7
‘and by (7, chap. V theq;em 3.15 and 3.23]

ch(E) = exp(x(E)) € H*(CP*)

and
ch(F) = ch(E?) = ch(E)? € H*(CP™).

Finally E = V as real vector bundles, so x(E) = x(‘N’) and
_ch(E) — ch(F)) s (_ exp(x(E)) 1- exp’(vx(E))>
x(E)

X(E)
v o 1-(1+x(E) + 3x(E)* +...)
—f( (1+x(E)+...) () )

= £ (L4 x(E)+...) (1 + 3x(E) +...)
= (1+3x(B) +..) =1+ §x(/"E)
=1+ 3x(E) =1+ $x(T5?),

ch(D) = f*(

hence
i(D) = (ch(D) - T(5%)) [%) = ((1 + 3x(5?)) - 1) [57]
=x(sY)=§-2=3.
and the proof is finished.

Similarly, up to isomorphism, there is only one complex structure orl__the closed
unit disk. To be precise, if Jo is the standard complex structure on D, then we
have

(2.3) PROPOSITION. Let J € C(D) be a complex structure on the closed unit
disk. Then there exists a homeomorphism ¢ ;: D — D, such that the restriction
to the open disk D is a holomorphic map Dy — Dj,. Furthermore ¢; can be
chosen such that, if J, — J in C(D), then ¢;.|, — ¢s|x in the C-topology
for all compact subsets K of D.

PROOF: By the results in [17] there exists a continuous map f: C(D) — C(S?)
such that f(J)|F = J. By proposition 2.2 there exists a holomorphic diffeomor-
phism

¢5(s): S}y — CP?,
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~which depends continuously on f(J). By the Riemann mapping theorem, the do-
main ¢ f(])(D) can be mapped conformally onto the unit disk D. As the boundary

of ¢ f(J)(D) is ¢ f(])(s ), which is a Jordan curve, this conformal map extends,
by (9, theorem 2.24], to a homeomorphism

vs: $5(D) — D.

If we choose % such that 1/JJ($,(J)(O)) = 0 and ¢f,($f(_y)(0)) > 0, then ¢y is
uniquely determined. Finally put

dg =190 $j(.l)|'5-

If J, — J in C(D), then  f(Jn) = f(J) in ¢(5?) and $5(5.) — Ss(s) in the
C°°-topology. Choose 2o € ¢ j(J)(D) Then 25 € ¢ f(]n)(D) for n sufficiently large
and we can define

Un: bsu)(D) —D and  ¢: (D) >D

to be the conformal map with ¢'n(20) $(20) = 0 and tl)n(zo) ¥'(z0) > 0. As
¢f(Jn)(D) converges to ¢f(J)(D) in the sense of [9, page 33|, ¢vn“1|D — P b
uniformly on compact subsets of D, see [9, theorem 2.1} (Caratheodory’s map-
ping theorem). As ¢n and 11; are holomorphic maps, all derivatives converge
uniformly on compact subsets of D.

Let 0,, = {Zn ) gb;nl and § = ;ﬁv o¢7!. Then 6,, and 6 are Mdbius transformations
of D with

0n(0) = ¥n(7(4a)(0)) — $(7(s)(0) = 6(0),  for n — oo,
0(0) = F(F109m (0)) /95, (B 15)(0)) > 0

and

0'(0) = ¥'(315(0)) /#5312 (0)) >0
For any compact subset K of D,
bnle — 8lx  and Y3l = (a0 bn)lx — (T o)k = ¥7 Ik

in the C®-topology. This implies that ¢, |, — @J|x in the C*°-topology. i

If J is a complex structure on a two dimensional manifold M, then we can define
an inner product (, )s on the bundle A* Mc by

(e, )50 = a A =T*B,
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where 0 is the fixed volume form on M. On A° Mc and A? Mc there are inner
products

(f,9)0 =(f,90); = f3,

which, despite the notation, are independent of J. If we define J*f = —f and
J*fQ = —f, then

(6,9)s0 =dA-T*% all g,y € A'Mc and i=0,1,2.

We define inner products on the space of sections N*Mc by

($,8)s = /M(¢,¢),n - [Mdm 7.

The complex structure J also gives rise to operators
d,8;,0;: ¥'Mc — Q' 'Me  i=0,1
and the adjoint operators
d5,8%,8%: Mg — Q0 'Mc i=1,2

defined by _
(Lo, )s = (¢, L3¢¥)s L=4d,0,;,0,

We have the following expressions for the adjoint operators
(2.4) LEMMA. If M is compact and without boundary, then
d} = -J*dJ*, 53 = —J"‘BJJ* and a’:, = —J*EJJ*.

PROOF: Let ¢ € N*Mc and ¢ € 0¥+ Mg. Then

(g, ¥)s = /M dp A ~J* = /M (d(6 A =T*P) — (-1)*8 A d(-T%))
= [ COMA 0= [ $n-rTaT
M M
= (¢, —T*dJ*P);

On Q° 8y =mp, 0d,s0on N :

Fy=dyomy, =—J"dT* w1 = =J*(8y + 8s)monJ* = —J*3sJ"
and on 1,35 =do 70,50 on N?:
5y =migody=mo(=J"dJ*) = ~J*3,J"

and similarly for 9.
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We inductively define Sobolev inner products on 2*Mc for i = 0,1,2 by

(6, ¥) 5,0 = (6,9}, ¢, % € Q' Mg,
(f,9) ok = (f,9)5 + (df,dg) k1, f,9 € 0°Mc,
(e, B) s = (@, B) 5 + (de, dB) g k1

+{dya,d3B) sk—1, B €N Mc

and
(W, = (W,p) g+ (diw,d5u)gk—1  w,u € N Mc.

It is easily seen that J* is an isometry with respect to these inner products. As
usual the corresponding Sobolev norms are defined by

l¥llok = V (U, ¥) 0,k ¥ € N*Mc :+=0,1,2.

Fix a complex structure Jo-on M and define for T € End(T*Mg) = End(A\* Mq)
and k¥ € N a norm

IT|lie = sup {|ITallso,p | lell o, < 1and I < k}.

Then for all k :
1Tl < |1 Tk if I <k,
175l < IT|xllS e,

|ITallx < | Tllkllellx and
o lle = lI1]]x = 1.

If a,f € A\ Mg, then a A J* = a A —J3JEJ*B, s0 (a,8) 5 = —{a, JZJ*B),
and hence

(s 8) 5 = (e, B) 5, | = [{er, (1 + J5T*)B) 5, | < Nl g, (2 + T5T*)Bll 4,
<1+ J5 %o lell g 18115, = 196 (T = J5)lo lledll s 15115,
< Wsllo 19* = J5llo el s, 118115, = 9" = Jgllo llell s, 11515,

especially |[|al|? — |lal|l3 Il < II7* = J3llo |lei3,. This inequality generalizes to

(2.5) LEMMA. If||J* - Jg||, <1, then

15k = U5 ] < 452" = To ey NSNS ps 2l f € Q°Mc
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lleelt,ke = NleellZo el < 4% NT* = T lli 115 all o« € ' Mo

PROOF: By induction on k. The case k = 0 is trivial for f a.nd shown above for
a. If £ > 0 and the lemma is true for k = 1, then

NAIZ = 1705l = N dFl15 k=1 — NdF 1150 =1
< 4RI~ Tl ldf (13 e
< 44T = Blle=1 1 F113, 0

If k = 1, then

ey = el 1] < [lledl3 = ledl3,] + |ldyal® ~ ||ds, ]
< |1I* = I3l e, + (lldsell + lld5, all) || (@ — d5)el|.-

As.
|(d5 —a3,)e|| = lld(T* — J3)all < (I* = Ig)all,, 1 < I* = Tglallell g1
and
ld5eall + |ld5, el < 2||d5, all + ||d(J* — Jg)all
< 2fleflgo, +1(IT* = J3)ell 5, 1
<@+ I* = J5lh) el < 3llells,1s
we see that

32 = lladiZ,0f < 1T* = T llo lleelF, +307* = Jollo llell3, 1
<4llJ* = Fllo llaZ,,q-

If £ > 1 and the lemma is true for k — 1, then
ledlZk = llellZo el < [lellF =l | + [ldedl3e—1 — lldeell3, 1]
+ llldSaH‘J’,k-l (5 a”.fo,k—lf
< llel = lleZ, | + lidedZ s = el s
+ |yl s — Id5al, ooi]
+ |5 el 3 k-1 = a5, @ll 3, k-1 ] -
As J*da = Jjda, the first two terms gives
lledl3 = lledl3,| + [l dali—r — lidecl|, 1]

< I* = Fllollell3, + 457217 =I5 lle~2 lldeell 5, s
< 4F72T* - T |k lldall3, -
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The third term gives
lld5edl3 ks — ld5all3, k1| < 45721 = T k-2 ldTall 5, k-1,
and as )
ld5all3 k-1 = 4T3 I T all3, k-1 < 15Tl k
2
< TG IENITIE Hed3o,e < (1 = T5lle + 15 118) " el 5,
< 4flef|, k>

we get
ldyall3 -1 = ldseli3, 1| < 4*7HIT* = T3 lle—2 lledl 5 k-

We saw that [[d5 a3 x_; < 2||e||, & so the fourth term gives
[lld5 el k-1 — 456l 5 el
: 2
< (el vo k-1 + lld5oallsok—1) 1255 ) 5, s
< 3llalso,k 1A(T* = Ig)ell 5 k1

< 3llaflso,k (T* = I3)ell 5,
< 3% = T3l el 3o e

All in all

el = el ) < (4572 + 4571 43) 17* = T Ik N1l 5
< 4" = T llk lledl 5, s

which finishes the proof. §

Let ) be the first positive eigenvalue for the Laplacian
Ay =d5d=28%d;,
acting on functions. If f L ker Ay, i.e. fM fQ =0, then
(8£,85f)g = {£,8595f) s =L . 85F)a = 3{f, s
So [|f112 < £||8,f]|3. Furthermore

(df dfys = (f,d5df)s = (f,2050f)s =208, f,8sf),
ld5df ||sk = 2019504 fll ok = 21T*85 T3 fll ok = 2/|d58 55 || 5,

and hence
ldfl1 = Ndf Il + lld3df (13 k_y = 208 F115 + 41150 f 1|5 k1 < 4195 F115 k-

We can now show
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(2.6) PROPOSITION. Let fn, f € N°M¢ and let Jp, J € C(M). Suppose that
Sy fn= [, fR=0alneN,J,— J and 3,, fn — 9, f in the C>-topology.
Then f, — f in the C°°-topology.

PROOF: First observe that
1fn = £13k < (U+ Dlld(fn = NIF -2 <40+ D5 (Fn = Dl e
and
18s(f - fn)".l,kﬂ <|8sf - EJ.;fnllJ,kfl + 1@y, = 9) fall k=1

As 85, — 0 we only need to show that ||f,| sk is bounded. If we in lemma 2.5
replace Jo with J, then

"fnllg,k < (1 + %)”dfn”g,k—l
< (L+ 2) (1 + 45727 = 5311) lldfall3
- A n nilJ,,k—1
< (1+ 2) (1+ 457 = T3 119, Fnll3, k1
—_ * «IN2 1B
<(1+ %) (1 + 4% 1”-] - Jn”) ||aJnfn||3,k—1’

which is bounded, because J,, — J and 5,;“ fn—=90sf. 1

The J-harmonic one-forms are characterized by being closed and orthogonal to
the exact one-forms with respect to {, ). We fix a basis (a1(J),...,azy(J)) for
the J-harmonic one-forms by demanding that

/.aj(-f) =6, t,5=12,...,2g,

Cs

where (¢1,¢2,...,¢24) is a fixed canonical homology basis.

(2.7) PROPOSITION. Let (ay(J),...,a24(J)) be a basis for the J-harmonic one-
forms as above. If J, — J in the C*-topology, then a;(J,) — a;(J) in the
C*°-topology, all1 = 1,2,...,2g.

PROOF: Let i € {1,2,...,2¢} be given. To ease the notation put a, = a;(Jy,)
and o = a;(J). As a and a,, represent the same cohomology class, o, = a +d¢y,
where d¢,, is uniquely determined by

(ddn,d¥) s, = (a,dyp)y,  all d.

We shall show that d¢,, — 0. Given k € N, we may assume that ||J;; — J*||x < 1,
and then

ldéallFx < (1 +4°)denll3, k.
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so we only need to show that
|lddnlls,c — 0  all k.

First consider the case k = 0. As

l|d¢nl'3n = <d¢n’d¢n)ln = (a, d¢n>J,. - (aa d¢n)J
= —(a, (14 J*T2)dbn)s < ey 11+ T* T3] lldnll s
< lafjs |I* = Jall 2lldénll 5.,

we have
ldénlls. < 2llells||J* = Jall — O.

If k > 0, then we put
L, = ...df‘,nddf,n.
N, o’
k terms

The adjoint with respect to (, ), is

L,=ddjd....
N,
k terms
Similarly we put
L=...d%dd} and L*=ddjd....
N N, e’
k terms k terms

As denll3, & = 1ddnll3, k-1 + |Endénll3, , an induction argument gives that we
only need to consider the last term.

IILnd¢n||3,. = <d¢mL:;Lnd¢n>Jn
= (a’L;Lnd¢n)J,. - (aaL*Ld¢n)J
= (Lpa, Lndd,) s, — (La, Ldd,) s
= —(Lnpa,J*J, Lnddpn)y — (La, Lddy) s
= ((L - Lp)a,J*J Laddn) s — (Lo, (J*J Ly + L)d¢n) s
S IL = La)alls T I3 Ledénlls + (| Lefls |(* I3 Ln + L)dén|| -

As L, — L and J*J; — —1, we only need to show that ||d¢,|| s « is bounded, and
as [|dénl|3 x < (1+4%)||d@nll3, x» we can show instead that ||dénl|% i is bounded.
The case k = 0 is already shown, and if £ > 0, then as above we only need to
consider || L,ddn|ls,. We have

”Lnd‘ﬁn”i‘ = (d¢n’ L:;Lnd¢n)Jn = (aa L;Lnd¢n)J,.
= (Lnay LnD¢n> _<_ ”Lna”J,. ||Lnd¢n||.],.’
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SO
ILnddnlls, < |Lnells, < llellz e < (1+45) ol sk,

and the proof is complete. §
We get a basis (w1 (J),wz2(J),...,wy(J)) for the J -holomorphic differentials by

putting
- wi(J) =a;(J)—iJ*e;(J) - 7=1,2,...,9. -
Hence the holomorphic differentials depend continuously on the complex structure.

~Similarly we have

(28) PROPOSITION. The Weierstrass points depend continuously on the com-
plex structure. '

PROOF: It is a local question, so consider the Weierstrass points in some disk
D’ C M. Choose, continuously dependent on J, a J-holomorphic homeomorphism
$5: D — D'. Let (wi(J),w2(J),...,wq(J)) be a basis for the J-holomorphic
differentials as above and define holomorphic functions f;;: D — C by

fridz=¢5(w;(J)) J=12,...,9.

These functions depend continuously on J as does the matrix

fia frz .. fug
foa fhe oo [l
[wl(J),wz(J),...,wg(J)] = : . .
fgg;l) f§";" fgg—l)
» P s g

Now we only have to observe that the J-Weierstrass points in D’ is the image by
¢ of the zeros of det[w1(J),wz(J),...,wq(J)]. B

With the same notation as above, assume that ¢;(0) is the same point p for
all J € C(M) and that p is a non-Weierstrass point in the complex structure Jo.
For J in a neighbourhood of Jo, detw;(J),w2(J),...,wg(J)] # 0. So the inverse
matrix [wq(J),w2(J),...,wy(J)](0) ! exists, and it depends continuously on J. If

(fl(‘])’ 62('])7' vy fy(J)) =
@1(1)sw2( ), - wg (D) w1 (T)s w2 (), - ., wg(T)](0) 1,

then (€1(J), €2(J), ..., &;(J)) is a basis for the J-holomorphic differentials adapted
to the point p, and we have shown

(2.9) LEMMA. Ifp is a non Jo- Weierstrass point, then for J in a neighbourhood
of Jo, we can find a basis for the J-holomorphic differentials adapted to the point
p, which depends continuously on J.

If U is a domain in C and f: U — CP! is a meromorphic function with a finite
number of poles, then we can write f = g + h, where p and ¢ are polynomials and
h: U — C is holomorphic. The following lemma is a generalization of this result.
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(2.10) LEMMA. Let M be a closed surface and let Do, D1 and D2 be open disks
in M such that D1 N D, =0 and Dy C Dy. Put T = D, \ Dy, let J be a complex
structure on M and let @ € D, be a non J-Weierstrass point. If

f: T — C is J-holomorphic,
then there exist unique J-holomorphic functions
F,:D, —C and FzM\(Eon{Q})—*C,

such that if z is a J-parameter vanishing at Q, then

. [e o]
f=Fip+ Py and  Fy(z)= ) dn2" withdo=0.

n=—g

Furthermore, if z depends continuously on J (which we may assume), then Fy and
F> depend continuously on f and J in the compact-open topology, as long as Q
is a non- Weierstrass point.

PROOF: Uniqueness is clear. To prove the existence, we first consider the case
f(w) = f____n cnw™, where w is a parameter on D;, vanishing at P € Dg. From
lemma 2.1 we know that there exists a meromorphic function F; on M, which at
P has the same principal part as f, has no poles outside { P, @} and at Q has the
expression Fp(z) = Z;“;_g d,2". We may of course assume that dy = 0. If we
put Fy = f — F3|r, then F; extends to a holomorphic function D; — C.

The next step is to show that F; and F; depend continuously on f and J. For
that purpose we will determine the principal part of F» at Q.

Let ¢; be a circle in T' around P and let ¢z be a circle in D, around Q. Let
(€1,€2,...,&,) is a basis for the J-holomorphic differentials adapted to the point

Q, i.e. '
¢ = (27 + (order > g¢)) d=.

The principal part of F, at Q is
-1
f, = Z dnzn’
n=—g

and the coefficients d_;,d_5,...,d_; can be determined by

d_k=/czf'ek=/canek=i/szek=i/ﬂfek.

If we choose z to depend continuously on J, then (&3, &2, ..., é;) and the numbers
d_y,d_2,...,d_g depends continuously on J. Hence if we consider f’ as a function

D2\{Q} — C, then f’ depend continuously on J and f. If D; C D; and D, C D,
are closed disks containing Do and @ respectively in theirs interior, then we can
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extend flﬁ,\Do and f’|52\{Q} to one smooth function G: M \ (Do U {Q}) —» C
such that G depends continuously on f and f’ and hence on f and J.
We define a differential ¢ on M by

—EJG, on M\ (.51 U 52)
g = ~ ~
o, on DU D,

This complex one-form on M depends continuously on f and J. Consider the

equation
: dju=g¢g  and u(Q) =0

on M. As

(1) F, — G is a solution on M \ (D, U D),

(2) (F2 — G)|p = Fs|p — f = F1|p extends J-holomorphicly to D; and

3) (F2 —G)| D\{Q} = F| pa{o} — f ! extends J-holomorphicly to D5,
the equation does have a solution. By proposition 2.6 the solution depends con-
tinuously on J and g, and hence on J and f. This implies that Fy and F, depend

continuously on f and J.
If f: T — C is an arbitrarily J-holomorphic function, then we can write

f :nll»néofn with fn= Z Ck'wk.

As fp — (Fin,F2,) is linear and continuous, we can put F; = lim F;, and
n—o0

n—o0

3. Flagmanifolds

Let k = (k1,ks,...,k,) be an ordered set of positive integers and put n = Y_ k;.
The (generalized) flag manifold Fly is the space of subspaces (Ey, Ez,...,E,) of
C", such that dlm(E,,) =ki+ky+---+k;jand E;, CE;, C ... C E, = C".
Ifk=(1,1,...,1), then we have an ordinary flag manifold and write FI(C"™) for
Fly. If k = (k,n—k), then Fly is the Grassmannian Gri(C") of all k-dimensional
subspaces of C™, and if k = (1,n), then Fly = Gr;(C™*?) is the projective space
- CP".

The flag manifold Flj is a homogeneous space under the action of both the
unitary group U,, and the general linear group Gl,(C). The isotropy groups of
the natural basepoint (C*1,C*1+*2 _ C") are Uy = Uy, X Uy, X ... X U, C U,
respectively the group Py C Gl,(C) of upper echelon matrices of type k, i.e.
matrices of the form

A1 * N *

0 A

0o ... 0 A
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with A; € Gli,(C). Thus
Fly = U, /Uy = Gl,(C)/ P
The flag manifold Fly is a subspace of a product of Grassmanians
Fly C Gri,(C™) X Gri, +4,(C™) X ... X Grig, .k, _, (C™),

and, as the Grassmanian Gri(C") can be imbedded in a projective space of di-
mension (}) — 1 by the map C* D E A*E c AFCn, a flag manifold is a
complex projective variety.

An element (Ey, E,, ..., E,) of Fly can be represented by a (n x n)-matrix (a;;)
in Gl,(C), such that E; is the span of the first ky + k2 + - - - + k; columns, where
we regard the columns as elements of C™. The map

Fly — CP(k1+-'.‘.+k()"1: (Ev,Eay ..., Ey) — /\kl+m+k' B

is then given by
laij] — [det(aij)ij<io+this-- - ]s

where the determinant is taken of all possible (ky + --- + k) X (k1 + --- + kj)-
submatrices of the matrix formed by the first k; + - - - + k; columns.
The part of Fly, which lies in

cl@)-1x s clarda )1 c cp()-1 . x CPlrae-Tbe,2y) 2
is called the affine part of Fly and. is denoted (Fly),. Clearly
(Flix)a = {lai;] | det(ais)ijch, 4tk # 0 all 1},

and any element of (Fly), can uniquely be represented by an (n X n)-matrix of
the form

E, 0 ... O
L 3 E2 :
s . 0
* ... *x FE,

where E; is the identity (k; X k;)-matrix. So as an algebraic variety, (Fly), is a
vector space. Furthermore, such matrices form a subgroup Ny of G!,(C), which
acts on Fly from the left and acts transitively and freely on (Fli),.

The infinite part (Flyx)oo of Fly is defined as

(Flx)oo = Fly \ (Fly)a

and is a subvariety of Fly given by the equation

r—1

IT det(ais)ii<hit- -tk =0
=1
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Unless r = 2 and we are considering a Grassmanian, (Flix)oo is reducible with
irreducible components Y;,Y3,...,Y,_1, where Y is given by the equation

~det(aij)i i<k 44k = 0. - | : -

From the fibration Uy — U,, — Flj we see that 71 (Fly) = 0, my(Fly) = 27!
and hence
H,(Fl) =0, Hy(Fly) = zr—1!

and
Haim(rh)-3(Flx) = H*(Fly) = Hy(Fly)* = 27"

Fori=1,...,r — 1, there is an imbedding ¢;: CP' — Flj given by
¢,(E) = (Ckl N Ckittki-a , Ckittki—1 g E, Ckit ki ,..-,CM),
and we have the intersection indices
$:(CPY) - Y; = 6.

Thus (¢1(CP?),...,¢r—1(CP")) is a basis for H; and (Y3,...,Y,_1) is the dual
basis for Haim(Fi)—2 = Hz.

If X is a closed Riemann surface, then the space of maps f: X — Flj has
components labelled by a multi-degree (deg; f,...,deg,_, f) € Z"~! where

deg; f = f(X).Y;
is the intersection index between f(X) and Y;. We define a single degree by
deg f = deg, f +--- +deg,_; f = f(X).Yoo.

If U is an open subset of a Riemann surface and f: U — Flj is a holomorphic
map with f(U) N (Flk), # 0, then we can consider f as a meromorphic map into
(Flx)a & Ny = CUm(Nx)| The set of poles, f~1((Flx)oo), is discrete, and hence
each point @ € U has a neighbourhood V of a such that f~}((Flx)oo) NV C {a}.
Fort=1,...,r — 1, the #’th order of f at « is defined as

ord; o f = order of contact between f(V') and Y;
and the total order of f at « as

ord, f = ordl,a [+ 0rd2,a f+-+ ordr—l,a f
= order of contact between f(V) and (Flx)co.

IfU = X, then
deg;f = ) ordiaf= ) ordiaf

acX a€f~ 1 (Fo)

and
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degf=S ordaf= 3. ord, f.

aEX a€f~(Fo)

Recall that the group Ny C GL,(C) consists of matrices of the form

E, 0 .. O

A= A-2,1 Bz A ‘ ’
: 0
Ar,l e Ar,r—l Er

where E; is the identity (k; x k;)-matrix and A; ; is an arbitrary (k; X k;)-matrix.
Forl=1,2,...,r — 1 we put

Ni={A|li—j#k => A;; =0}

and
N21=N1€B"'$Nr.

Let m; denote the projection Ny = Ny @ --- ® N,_; — N; and n<; denote the
projection Ny — N>;. The composition in Ny is given by

i—-1
(AB)ij; = Aiy+ > AuiBuij+ Bij,
I=j+1
and if Ny is considered as a vector space, then
(A + B)s,; = A; j + Bi,j,
so if A € N>, then
m(AB) = m(BA) = m(A + B) = m(A) + m(B).

On an open Riemann surface, any Mittag-Lefler distribution comes from a glo-
bally defined meromorphic function. If CP! is replaced by a flag manifold Fly,
this generalizes to :

(3.1) LEMMA. Let M be a compact surface with M # 0, and Iet_ﬁ_l, D, be
disjoint closed disks in M = M \ dM. Put ¢; = 8D; and let J € C(M). If, for
t=1,2,

fi: D; — Fly is J-holomorphic with fi(ei) € (Flx)a,

then there exist J-holomorphic maps

f:M——PFlk and gi:ﬁi—ka 1=1,2,
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such that
‘1((Flk)°°) C DU D, and fi=g f|D‘ 1=1,2.

Furtbermote, for small variations of J, the map f can be chosen such that it
depends continuously on f1, f2 and J.

PROOF: First choose a closed surface MwithM C M and a continuous extension
map C(M) — C(M). Then any complex structure J on M can be considered as
a complex structure on M. Next, choose a point'Q in M \ M, which is a non-
Weierstrass point in the given complex structure.

We can find open disks D, and D}, such that D) C D; and f;}((Flx)eo) C Di.
Let T; = D; \ D} and consider f;|;, as a map T; — Ni. By lemma 2.10 we can
write

filT‘- = Fi,llT‘. + F£,2IT‘. )

where F;1: D;i — Ny and F;: M \ (D! U {Q}) — Nx are J-holomorphic and
depend continuously on f;, f2 and J. If we put

1 == fd P~
F'=F 1v2|1vf\(ﬁ',uz‘7,u{o}> +F 2'2|M\(fr,u‘ﬁ;u{o}> ’
Gi= Fio|lp, —F1,1  and G} = Fpplp, — Fau,

3

then fily, = F1|T‘_ + GHT‘ We put

f =T>2 (G f‘l)lT Glfl)‘T — T (Glft)‘r
= (Gifi)lg =™ (Gl + fi)lq, = (GIf)| g, — mi (FY)|

The same procedure as above shows that there exist J-holomorphic maps

F*: M\ (D,uD,u{Q}) » N>; and G?:D;—> N> i=1,2,

which depend continuously on fi, f2 and J, such that fZ = F?|
put

T We

£} =733 (GIGLfi)| g, = (GEGIf)| g, — m1 (GIG fi) |y, — m2 (GIGifi)ly, -

As
11 (GIGi i)l g, = m1 (Gifi)| g = m1 (FY)]

and
72 (GIGifi)| gy, = 72 (G2 + GIfi)| g, = m2 (G])| g, + 722 (GIfi)| g, = 72 (FF)]

we have

12 = (GIGH)| g, — 1 (FY)| g, — 72 (F9)]




4. LoorP GROUPS 31

Continuing this way we end with

fI7V = (G *GI* ... GIGH )| —mi FY =+ = Mg 72|,

= FY . - Gi7Y,,

where F': M\ (DyuDyu{Q}) — N> and G!: D; — N>;. As

Fr—l —
T;
GI My + (GI2GI72 . GEGYf) | —m FM = oo =g FT2|
= (GIT'GI 2 ... GIGH )|, — (mFY + mpF? - 4 w2 F772)| 1
we have

(GI72GI™2...GIGH i) |y, = (MF + 1 F? oo b my o F7=2 4 F77Y)|

Soif weput f = mFl4+mF2+. -+ m_oF~2and §; = (G~ 1GT~2...G2G}) 1,
then fi|r. = Gilr, f|T' As f]T‘ = g; 1_.‘,1 f"lT." fextends, as a J-holomorphic map
into Fly, to the interior of D;. Likewise 5i|1} = f,-|7_~'_1 _ﬂT‘ , 5o we can extend §; to
the boundary of D;. We get J-holomorphic maps f: M — Fly and g;: D; — Ny,
such that f; = g; flﬁ‘_ and f~1((Flk)oo) € D; U D,. From the construction we
see that f, ¢g;, and g, depend continuously on f;, f» and J, as long as Q is a
non-Weierstrass point. I

REMARK. If X/I—_g S2 then we do not need the assumption M # 0, i.e. the
lemma holds for M = S2.

4. Loop Groups

Let G be a compact connected Lie group and consider the space of based loops
in G, i.e. the space of smooth maps v: S — G with 4(1) = 1. It is an infinite
dimensional Lie group, and we let the loop group QG be the identity componentt.
If we consider Sobelev maps of some degree instead of smooth maps, then we even
get a Hilbert Lie group.

The complexification of G is denoted G, and LG ¢ denotes the identity com-
ponent of all loops in Gg, i.e. all smooth maps v: S = G¢g. It is an infinite
dimensional Lie group too, and we may consider (G as a subgroup of LGc. We
define other subgroups of LG by

LtTGc =
{7 € LG¢ | v is the boundary value of a holomorphic map D — G¢}

tNormally all components is considered, but as we later will consider based maps into QG, we
will only need the identity component.
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and
L Gg =
{7 € LG | 7 is the boundary value of a holomorphic map Do, — Gc},
where D is the open unit disk in C and Do, = CP? \_ﬁ. Again we have Hilbert
Lie groups, if we consider Sobolev maps.
If LG denotes the identity component of all loops in G, then we may consider

G as the subgroup of constant loops in LG, and obviously G = LG/G. The loop
group is also a homogeneous space of LG, see [15] chapter 8. We state it as

(4.1) THEOREM. Any loop v € LG¢ can be factorized uniquely
Y= Yur+
with v, € QG and v, € LYG¢, and the multiplication map
QG x LYGc — LG¢

is a diffeomorphism.

In particular G = LGg/L*G¢. By Birkhoff’s theorem, loops in G¢ can be
factorized in an other way, see [15] chapter 8,

(4.2) THEOREM. Any loop ¥ € LG¢ can be factorized uniquely

v =7-A4
with v. € L=Gg, 7+ € LTGc and A\: S' - G a homeomorphism, which is
uniquely determined up to conjugation by a constant loop. Loops with A = 1
form a dense open subset of LG¢, and the multiplication map

L7Gc x LTGc — LGq,
with L7 Ge = {y € L~G¢ | y(o0) = 1}, is a diffeomorphism onto this subset.

In the case of G = S! the only homeomorphism A: S — S, which is homotopic
to the constant A = 1,is A = 1,50 LC* = LT C*xL*C* and 1G = LT C* = L5 C,
where L5C is the Lie algebra of L7 C*. In general, if § is the Lie algebra of G,
then o = § ®r C is the Lie algebra of G and

Lg Gc = {smooth maps v — ¢ | 7 is the boundary value of a
holomorphic map D, — §c with y(oo) = 0}

is the Lie algebra of L7 G¢.

It is easily seen that LG is a complex Lie group and that LT¥G¢ and L7 G¢
are complex subgroups. From the identification G = Gg/LtGc, we have that
1G is a complex manifold, but it is not a complex Lie group and the inclusion
G — LG is not holomorphic.

By the factorizations theorems (4.1) and (4.2), the group L7 G¢ can be con-
sidered as an open dense subset of )G, and the inclusion LT G¢c — G is holo-
morphic. Moreover, left-translation in LG¢ by an element v € L7 G ¢ induces a
holomorphic map of 1G to it self. We have in fact
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(4.3) PROPOSITION. The loopgroup Q1G is a complex manifold locally isomor-
phic to LT G ¢, and left multiplication by a fixed element is holomorphic.

The composition Ly Gc — LGc — LGg/LtGg = QG is holomorphic and
a diffeomorphism onto an open dense subset of 1G. Moreover the multiplication
LT Gcx LT Ge — Ly Gc extends to a holomorphic left action LT Gc x1G — 1G
of LTG¢ on NG.

The loop group {1G can be considered as a kind of infinite dimensional Grass-
mannian, see [15]. If P(£2(S)) is the projective space of the Hilbert space £2($),

where
§ ={S C Z|card(S\N) =card(N \ S) is finite },

then there is a holomorphic imbedding NG — P(¢2(S)) by Pliicker coordinates
v+ [7s(7)]ses, and the subset L7 G C QG is given by the equation mn(7) # 0.
So N1G is not only a complex manifold, but even a complex projective variety and
as such L7 G¢ is the affine part of §1G.

. This is very similar to the situation in the preceding section. The loop group
1G corresponds to the flag manifold: Flx, and LT G¢ corresponds to the group
Ny = (Fly)q. There is one difference between the groups Ny and Ly G ¢, namely
the exponential map. It is an isomorphism in the case of Ny, but this may not
be so in the case of LT G, hence as a complex manifold L7 G¢ need not be a
vector space, but it is contractible by the homomorphisms ~ — 4:, t € [0,1], with
7i(2) = (7 12).

We will need the description of elements in G as holomorphic bundles over
CP1, see [15], section 8.10. The idea is simple. A loop v € N1G is used to glue
the trivial Go-bundle over D and Do, together and thus obtain a G c-bundle over
CP!. The precise results are as follows

(4.4) PROPOSITION. An element of G is the same thing as an isomorphism
class of pairs (P, t), where P is a holomorphic principal Gc-bundle on CP! and 7
is a trivialization of P over Do,. The elements of LT Gc C QG correspond to pairs
(P,7), where P is the trivial bundle, and the action of LT G on QG corresponds
to the map (v, (P, 7)) — (P,~7).

A trivialization 7 of P over D, is a smooth section of P |5, » which is holomor-
phic over D,.

If we consider holomorphic maps into {1G, then we have the following general-
ization

(4.5) PROPOSITION. If X is a complex manifold, then a holomorphic map from
X to G is the same thing as an isomorphism class of pairs (P,7), where P is a

holomorphic principal G¢-bundle on X x CP1 and 7 is a trivialization of P over
X X Deo.

As a manifold G = (To x G1 X ... x Gy)/K, where Tj is the identity component
of the center of G, the G;’s are compact simple simply-connected Lie groups and
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K is a finite subgroup of the center of To X G1 X ... X Gy, see [16] theorem 6.4.5.

Hence
NG =0T, x NGy X ... X NG,

7F1(QG) = 7!'2(G)f =0

and
7I'2(QG) = 1!‘3(G1) X.ooo X ﬂ'3(Gn) =7Z".

The Abelian component is a product of S'’s, so Ty & L7 (C*)¢ = Lz (C9),
because in the case of Gg = C*, the exponential map E(T C — LyC*is an
isomorphism. As Ly C? is a vector space, we will in the following assume that G
is a simple group. Then

m(QG) = Hi(QG) =0 and  m,(NG) = H2(QG) = 2,

and as in the case of flag manifolds, the space of maps f: X — Q1G, where X is
a closed Riemann surface, has components labeled by a degree deg f € Z. The
degree can be determined as the intersection index between f(X) and the infinite
part of NG, which is (1G)e = UG\ LT Gc.

If U is an open subset of a Riemann surface X and f: U — QG is holomorphic
with f(U) N LTGc # 0, then f can be considered as a meromorphic map into
LTGg = (1G)a. The set of poles is f~1((2G)oo), which is a discrete subset
of U. If we use proposition 4.5 and identify f with a pair (P,7), where P is a
holomorphic Gc-bundle over U x CP?, then a point a € U is a pole if and only
if the line {a} x CP! is a jumping line, i.e. the bundle P| {a}xCP? is non-trivial.
To each point « exists a neighbourhood V of a, such that f1((11G)eo) NV C {a}
and we define the order of f at o as

ord, f = order of contact at f(a) between f(V) and (2G)co.
If U =X, then
deg f = Z ord, f = Z ord, f.

acX poles o
We end the chapter on loop groups with the equivalent of lemma 3.1
(4.6) LEMMA. Let M be a compact surface with non-empty boundary, and let
D,, D; be disjoint closed disks in M = M\ dM. Put c¢; = 8D, and let J € C(M).
If, for1 = 1,2,
fi: D; — QG is J-holomorphic with f;(¢;) € LT G,

then there exist J-holomorphic maps

f:M-—0G and g¢;:D;— L7Gc i=12,
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such that

1 ((0G)) SD1UD,  and  fi=g; i=1,2.

Furthermore, for small variations of f,,f; and J, the map f can be chosen such
that it depends continuously on fy,f2.and J.

PROOF: The two maps f1: D; — 01G and fo: D, — QG correspond to two
pairs (P;,7;), where P; is a J-holomorphic G¢-bundle over D; x CPlandrisa
trivialization of P; over D; X Doo. The bundle P; is trivial outside the jumping
lines f— 1((ﬂG)°°) x CP1, so, by gluing P; U P to the trivial bundle bundle over
(M\ (f{ ((ﬂG)oo) U f571((0G)w))) x CP, we get a J-holomorphic G c-bundle
P over M x CPL.

As OM # 0, there exists a trivialization 7 of P over M X Do. The pair (P,7)
corresponds to a J-holomorphic map f: M — €Q1G, and the difference between
the trivializations Tl_ﬁ.- xD,, and i is a J-holomorphic map g¢i: D; x Do — Gec.
We may assume that g;(z,00) = 1 for all z € D;, so g; is a J-holomorphic map
E,’ — L1_GC-

The maps f, g; and g, have all the required properties, and we only need to
show that this process can be made continuously.

Let yo = (2, £9,J°) be given. Put U = D; U D2 and choose an open subset
V C M, such that UUV = M and f?(V N D;) C (0G), for ¢ = 1,2. Finally,
choose a neighbourhood W of yq in

{(f1, f2,J) € Map(D1,QG) x Map(D,, 0G) x C(M) |
fi(V.n'Dy) C (RG), and f; is J-holomorphic ¢ = 1,2}.

The evaluation map F: W x U — QG, given by F((f1, f2, J),z) = fi(z) if
t € Dy, defines a pair (Pu,Tu), where Py is a G c-bundle over W xUxCP1, and ry
is a trivialization of Py over W x U x Do,. The bundle Py is J- holomorphxc when
restricted to {(f1, f2,J)} x U x CP?, and the trivialization 7y is J-holomorphic,
when restricted to {(f1, f2,J)} X U X Do. Furthermore, Py can be trivialized
over W x (U N V) x CP!, and the trivialization can be chosen such that it is
J-holomorphic, when restricted to {(fy, f2,J)} x (U NnV) x CPL

By gluing Py to the trivial bundle over W xV xCP!, we get a Gc-bundle P over
W x M x CP?!, which is J-holomorphic, when restricted to {(f1, fz,J)} x M x CP*
and is trivial over W x V x CP1. We only need to find a trivialization 7 of P over
W x M x Do, which is J-holomorphic, when restricted to {(f1, f2,J)} X M X Do,
and is equal to 7y on W x U x {o0}.

IfzeUNV,then F(y,z) € (2G)a = L7 G, and the transition function from
the trivialization over W x U x Dgo to the trivialization over W x V X Do, is
exactly Fly, . gnv), considered as a map W x (UNV) x Doo — Ge.

Let t: M — [0,1] be a smooth map, such that ¢(M \U) =0 and t(U \ V) = 1.
We define

Yv: W x V — LiGc
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by

v (4,2)(z) = { forze V\U
1 Z)\2 —_ —
Vi E F(y,z)(t(z)z) forzeUNYV,
and Yy: W xU = L7Gec by gy =1on U\V and ¢y = F~'y on UN V.

The map ¥y defines an isomorphism of the trivial bundle over W x V x D,
and ¢y defines an isomorphism of the trivial bundle over W x U x Do,. As
Yy = Fiy, when restricted to W x (U NV) x Do, we get a trivialization ¢ of
P over W x M x Dgo. The trivialization ¢ is holomorphic, when restricted to
{(f1,f2,J)} x M x {oo}, and is equal to 7yy, when restricted to W x U x {c0}.

For any map ¢»: W x M — LT Gg, the product ¢¢ is a new trivialization of
P over W x M x Do,. We want to find a 1, such that ¥¢ is J-holomorphic,
when restricted to {(f1, f2,J)} X M X Doo. As P is J%holomorphicly trivial over
{yo} X M X Do, we can find ¢: M — L7 Gg, such that ¥¢ is J%holomorphic,
when restricted to {yo} X M X Do,. To ease notation, we assume that ¢ is already
JO% holomorphic, when restricted to {y0} X M X Do This corresponds to assuming
that 1y and ¢y are J%-holomorphic, when restricted to {yo} x U x D, and
{yo} X V X Do respectively.

We shall find a map ¢p: W x M — L7 Gg, such that ¢¥yy and yYyy are J-
holomorphic, when restricted to {(f1, f2,J)} xU and {(f1, f2,J)} XV respectively.
We define

h:W — QY(M,Ly Gc),

where 21(M, Ly §c) = {one forms on M with values in Ly §c}, by
—(5J¢U)¢51 onU
—(gj‘il)v)‘lﬁ;l onV.

This is well-defined, because the difference between 1y and ¢v is J-holomorphic.
Our task is to find v, such that ¥y=13;¢ = h. If we put

(U, 2090 = {

Q%YW x M,L; Gc) =
{((f1,f2,d),h) €W x QY (M, L5 Gc) | h € Q3N (M, Ly §c)},

then (y, h(y)) € Q%1 (W x M, Ly §c) ally € W, and as ¢ is J°-holomorphic, when
restricted to {yo} X M X Do, h(yo) = 0. Now consider the map

H:W x C®(M,L{Gc) — Q"YW x M, L; §c)
((fl) fZ)J)1¢) — ((fl’f2,‘])s "I)—IEJ'I’)'

If there existed an inverse H~1, then : W x M — L7 G could be determined
by H™(y, h(y))(2) = (v, %(v, 2)).

We will soon need the inverse function theorem, so we must complete our differ-
ent spaces, such that they become Hilbert or Banach manifolds. We do it without
changes of notation, and such that H extends to a smooth map. In the following
we will drop the Jo subscript so 1%(M, Ly §c) = Qg;l (M,Ly Gc), 8 = 3, etc.
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The first step is to find the differential of H at (yo,1). We have
TgoiyW x C(M, L7 Go)) = TyoW x 0°(H, Ly 6c)
and
T(yo,000° (W x M, L5 §c) = Ty, W x Q%}(M, Ly §c)
Let B€ Ty, ,W and A € 0°(M,L5 Gc)- As 351 =0 all J € C(M), we get
d(yo,1)H(B, A) = (B,84).

The kernel of 8 is Hol(M, Ly §c), which is a closed subspace of N°(M, Ly Gc).
Let Hol" denote the orthogonal complement of Hol(M, Ly §c) in N°(M, Ly §c)
and consider the restriction 5|H°l .. It is injective, and we want to show that it is
an isomorphism.

Let M be a closed surface containing M. We extend Jj to a complex structure
on M and thereby get an extension of @ to an operator

3: N°(M, Ly Gc) — QOYM, L5 Gc).

It is an isomorphism considered as an operator from (ker 3)* to Imd = (ker 3*)~L.
As 0* = —JgaJ;

(ker8*)+ = {h € 0% Y(M, L5 6c) | [z (R A ~J*$) =0 all ¢ € kerd*}
={hen® I(M,Lo §c) | fg(h/\d:) =0 all ¢€ker6}.

__The kernel of 9 acting on Ql’°(M ,Lg Gc) is the holomorphic differentials on
M with values in Ly Gc. If X denotes the space of complex valued holomorphic

differentials on M , then kerd = ¥ ® Ly §c, so if (w1,...,w,) is an orthonormal
basis for X, then

(kerd*)L = {h € QO}(M, LyGc) | fgyhAwi=0 i=1,...,9}.

There exists a continuous extension ext: 1%(M, Ly Gc) — Q% (M, L5 Gc),
and we want to show that there exists a continuous extension

ext: Q®Y(M, Ly Gc) — (kerd*)*.

Choose fi,...,f; € N°1(M), such that supp f; "M =0 and [ fi Aw; = 6:j. The
required extension can now be defined by

ext(h) -—ext Zf, /ext A ws.
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The following composition
Q0L L7 ) =% (kerd*): 2 (kerd): — QO(F, Ly §o) B3 Hol,

where r is the restriction from M to M, and proj is the orthogonal projection, is
an inverse to 8: Hol™ — 0%Y(M, Ly §c).

We have proved that H is a submersion in a neighbourhood of (yo,1). Hence
there exists a neighbourhood W of (0,0) in N®*(W x M, L5 §c), and a map
H 1. WSWx C°°(M L7 Gg), suchithat Ho H™ Y= id. As h(yp) =0, we may-
assume that (y,h(y)) € W for all y e W.

Now ¢: W — C°(M, L7 Gc) is defined by (y,%(y)) = H(y,h(y)). A priori
we only know that 3(y) is in some ‘Sobolev-completion’ of C'°°(A_7f X Eoo,G’c),
but as the preceding arguments go through for all completions, ¥ (y) must be a
smooth map. §

5. Spaces of Holomorphic Maps

In the following Y denotes either a flag manifold Fli or a loop group 1G. It is
a complex manifold and even a complex projective variety. We let Y, denote the
affine part of ¥ and let Y, = Y \ Y, denote the infinite part of Y. The affine
part is isomorphic to a contractible complex Lie group N, and the composition
N X N — N extends to a holomorphic left action N xY — Y of N on Y. The
infinite part is the union Yoo, = Y; U:--UY, of finitely many irreducible algebraic
varieties Y3,...,Y,.

If X is a Riemann surface and f: X — Y is a holomorphic map with f(X) € Y.,
then the set of poles, i.e. f~1(¥,), is a discrete subset of X. To each point a € X
and 1 = 1,...,r, the ©’th order of f at a is defined as

ord; o f = order of contact between f(U) and Yo, at f(a),

where U is a neighbourhood of «, such that f~1(Y,,) NU C {a}. The total order
of fat ais
ord, f = ordl,a f+-+ ordr,a 5

and « is a pole if and only if ord, f > 0. The t’th degree of f is

deg;f= ) ordinf= Y ordiaf,

a€EX aEf~1(X:)

and the total degree is

degf=deg, f+--+deg, f=) ordof= ), 6 ordaf

aEX a€f~1(Ye)
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The degrees may be infinite, but if X is closed, then the degree is finite, and the
r-tubel (deg, f,...,deg, f) determines the component of Map(X,Y'), which f lies
in.

Let M be a compact two-dimensional manifold, possibly with boundary and
corners, and put M = M \ dM. Equip the space Map(M,Y) of continuous maps
from M to Y with the compact-open topology.

In section 2 the space C(M) of complex structures on M was introduced. It can -
be considered as a space of smooth sections in a bundle over M and is equipped
with the C™-topology. Given a complex structure J € C(M), then M can be
considered as a Riemann surface M;. A map f: M — Y is called J-holomorphic,
if it is holomorphic considered as a map f: M; — Y. The space

Hol;(M,Y) = {f € Map(M,Y) | f is J-holomorphic}

is a closed subspace of Map(M,Y). If f € Hol;(M,Y) and f(M)NY, # 0, then
we have the concepts of poles, orders and degrees of f. If M’ is any subset of M,
then we define

Hn(M,M') = {(f,J) € Map(M,Y) x C(M) | f is J-holomorphic,
f(M) € Yoo,deg f = n and f(M') CY,},

H<n(M,M') = U)(kMM)

k=0
and
)((A_J,M') = '}er;o}ISn(—M,M').
We put
Hn (—M_) )(n(ﬁ,ﬂ),
X<n(ﬁ) = )(Sn(ﬁ, 0)
and
X (M) = %(M,0).

If the complex structure is fixed, then we have the spaces

Hyn(M,M') = {f € Map(M,Y) | (f,J) € ¥n(M,M")},
)IJ,S,.(M,M’) = {f € Map(M,Y) | (f,J) € Nsn(H,M’)}

and
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}(J(M, M') = nl_l_’rréo }(J,Sn(ﬂ, M').

As 7before

)(J,n(M) = )‘(J,n(Ma@)a
Xy <n(M) = Xj<n(M,0)

and
(M) = ¥5(M,0).

The restriction of the projection Map(M,Y) x C(M) — Map(M,Y) to X (M)
fits into the commutative diagram

Hy(M) N }((M)

l |

Hol;(M,Y) —— Map(M,Y).

In this section we consider the case M = D = {z € C | |z| < 1} and show that the
maps in the diagram are homotopy equivalences.

(5 _1) LEMMA. Let Jo be any complex structure on D. Thge exists a map i from
X(D) to ¥j,(D), such that ¥(f,Jo) = f, and the map X (D) — ¥;,(D) x C(M)
given by (f,J) — (¥(f,J),J) is a homeomorphism.

PROOF: Let ¢;: Dy, — Dy be a holomorphic homeomorphism, continuously
depending on J and with ¢, = id. We define ¢ by ¥(f,J) = fods. B

(5.2) LEMMA. The inclusion Hol;(D,Y) < Map(D,Y) is a homotopy equiva-
lence.

PROOF: Let Jp be the standard complex structure on D and let ¢: —5]0 — Dy
be a holomorphic homeomorphism with ¢(0) = 0. Define for t € [0,1], ¥;: D—-D
by ¥:(2) = ¢(t¢~1(2)). Then ¢, is J-holomorphic for all t € [0,1], and ¥ = 0
and i¥; = 1d.

We define a homotopy inverse F': Map(D,Y) — Hol;(D,Y) to the inclusion by
F(f)(z) = f(0), and only have to observe that F is homotopic to the identity on
both Hol;(M,Y) and Map(D,Y) by the homotopy (t, f) — fo ;. B

(5.3) LEMMA. The map ¥;(D) — Hol;(D,Y) \ Hol;(D,Y.) is a homotopy
equivalence.

PROOF: Let t;: D — D be the map defined in the proof above. We define a
homotopy inverse to the map in the lemma by f +— fo¢y/2. |
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The next step is to show that the inclusion
Hol;(D,Y) \ Hol;(D, Ys) < Hol,(D,Y)

is a homotopy equivalence, but first we need to show that the spaces we are
considering contract onto manifolds. Put '

ﬁmJ(ﬁ,Y) = {f € Map(D,Y) | f|p is J-holomorphic
and f(D) is contained in a chart}.

Then we have

(5,4) LEMMA. ﬁ?;l;(ﬁ,Y) is a complex manifold modelled on Hol;{(D,LN),
where LN is the Lie algebra of N.

PROOF: Let f € ﬁ;/l.,(ﬁ, Y). Choose a neighbourhood U of L(E) inY and a
chart ¢: U — LN. For v in a neighbourhood V of 0 in Hol;(D,LN), the map

¥: V — Holy(D,Y) given by ¢(v) = ¢~1o (do f + v) is a chart around f. 1

(5.5) LEMMA. The inclusion Hol;(D,Y) \ Hol;(D,Y.,) — Holy(D,Y) is a
homotopy equivalence.

PROOF: Choose a metric on Y and .a k > 0, such that any subset of Y with
diameter less than k is contained in a chart. Let t; be the J-holomorphic map
defined in the proof of lemma 5.2. For f € Hol;(D,Y), we put

t(f) = max{t € [0,1/2] | diam(f o ¥+(D)) < k}.
The number t(f) depends continuously on f, so we can define a map
¢: Holy(D,Y) — Hols(D,Y) by  ¢(f) = f o thuy).

This is a homotopy inverse to the restriction r: fIBL(D,Y) — Hol;(D,Y), be-
cause

rog(f)=Fotyp~fopp=f and Gor(f)=foyypn~fopp=f

by obvious homotopies.
Moreover, the subspaces Hol;(D,Y) \ Hol;(D,Ys) and Hol;(D,Ys,) are pre-
served by the homotopies. So it is enough to show that the inclusion

Hol,(D,Y) \ Hol (D, Yoo) — Holy(D,Y)

is a homotopy equivalence.
This is the case because Hol (D, Y) is a manifold and Hol;(D,Y)nHol ;(D, Yoo)
has infinite codimension in the sense of the following lemma. §



42 TOPOLQGY OF SPACES OF HOLOMORPHIC MAPS

(5.6) LEMMA. Iff g_ﬁBL(E,Y) NHols(D, Yoo), then there exists a neighbour-
hood W of 0 in Hol;(D, C), such that the imbedding

W —»ﬁaJ(E,Y): h+— f+ hg
maps W \ {0} into Hol;(D,Y) \ Hols(D, Yeo).

PROOF: We can consider f as a map D — LN and as Y, has codimension two
in Y, there exists g € Hol (D, LN), such that f(0) + 2¢(0) € Y,, if 0 < z < 1.
Then the map 2z — f(z) + zg(z) only belongs to Hol;(D, Yoo) for z in a discrete
subset of D, hence

zo = min ({|z| | f(z) + 29(z) € Yo all ze D} U {1}) > 0.

Suppose h,, € Hol;(D,C) is a sequence such that

(1) hp — O,

(2) |hn(z)| < 1/2 and

(3) f(z) + hn(z)g(z) € Yoo all z and n.
If |z| < zo, then {hn(z) | » € N} is a finite set, and as h,(z) — O, there
exists a number n(z) € N, such that h,(z) =0, if n > n(z). As {z | |z]| < zo} is
uncountable, there must exists a number ng € N, such that the set {z | n(z) = no}
is infinite. If n > ng, then hy,(z) = 0 for infinitely many points in {z | |z| < 1/2},
and hence A, = 0. §

We finally state

(5.7) LEMIV_I:\. Let D be the closed unit disk in C and let J be any complex
structure on D. Then the maps in the commutative diagram

;D) —— H(D)

l |

Hol;(D,Y) —— Map(D,Y)
are homotopy equivalences.

PROOF: The two horizontal maps are homotopy equivalences by lemma 5.1 and
lemma 5.6, and the lefthand vertical map is a homotopy equivalence by lemma 5.3
and lemma 5.5. But then the last map is a homotopy equivalence too. §

6. Spaces of Principal Parts

Let J € C(M) be a complex structure. In analogy with the definition of ordinary
principal parts on the Riemann surface M;, we let Oy and M denote the sheaves
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of respectively J-holomorphic and J-meromorphic maps into N. More precisely,
for an open subset U € M, we let

04(U) = Hol,(U, N) and My (U) = Hol;(U,Y) \ Holy(U, Yoo).
The action of N on Y induces an action of Hol; (U, N) on Hol ;(U, Y)\Hol (U, Yoo),
which clearly preserves poles and their orders. So we can define the quotient sheave
Py = Mj/0y called the sheave of J-principal parts. A configuration of J-principal
parts is a global section of Pj.
As noted above a pole, the order of a point and the degree of a configuration

€ of principal parts are well defined concepts. We are only interested in finite
configurations, so we put

Ps(M) = {global sections & of P; | deg¢ < oo},
Prgnl M) (€€ Pi(M) | deg & <n}

and
Pin(M) = {f € P;(M) | deg € = n}
If M' and M both are subset of a surface M. , then we put

Pi(M,M") = {¢te PJ(M) | élpane =0} s
Pr<n(M,M') = Pj<n(M) N Py (M,M')

and
Pj,n(M, M') = PJ,y';(M) N PJ(M, M').
Finally the complex structure varies, and we get the spaces

PM)= |J PsM)x{J},
Jec(M) :
P<n(M) = {(¢,J) € P(M [deg£<n}
Po(M) ={(¢,J) € P(M) | degé =n},
P(M,M') ={(¢£,J) € P(M) | &l prrrr =0},
Pen(M, M) = Pen(M) 0 P (M, M)

and

Pa(M, M') = Po(M) 1 P(M, M").



44 TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS

Let A (M, M) be the quotient of the free Abelian monoid, generated by points of
M \ M' by the relation, which identifies points on M with zero, see [18, page
7745], and define the pole map

P(M,M') — AM,M') by (£&J)— D ordaé.cx
aEM

A J-holomorphic map f: M — Y with f(M)NY, # 0 and deg f < oo defines
a configuration [f] of J-principal parts with deg,|f] = dega f alla € M, i.e. we
have a degree preservmg map

¥(M,M') — P(M,M"): (f,J) — ([f],J).

(6.1) LEMMA. Let f,f' € X;(M). Then [f] = [f'] if and only if there exists a
J-holomorphic map g: M — N, such that f' = gf.

PROOF: The ‘if’ part is clear, so assume [f] = [f’]. Let ai,...,an be the poles
of f and f' and put V = M\ {a4,...,an}. There exist neighbourhoods U; of e
and J-holomorphic maps g;: U; — N, such that f'|; = g fly, alli=1,...n
On V we can cons1der f and f’ as maps into N. So on V N U; we must have
Au; and hence g: M — N can be defined by

_ f'(z)fY=z), forzeV
g(x) B { gi(z)y forz € U;. 1

91|Vnu. = f |VnU. fl

The lemma says that the fiber at ([f], J) of the map ¥ (M) — P(M) is Hol ;(M, N).
In the case of Y = NG, proposition 4.4 and proposition 4.5 imply that P;(M) is
the set of holomorphic Gc-bundles on My x CP?! with only finitely many jumping
lines.
Before we equip P (M) with a topology, we will study the action of Hol (M, N)
on ¥j(M) a little closer

(6.2) LEMMA. Hol;(M, N) acts freely on X;(M).

PROOF: Let g € Holy(M,N) and f € ¥;(M) and assume that gf = f. As N
acts freely on Yy, g(z) = 1 for z € f~1(Y,), but f~1(Y,) is dense in M, and thus

g=1L1

(6.3) LEMMA. LetU C M, let ay,...,an € U\OU andputV = U\{ay,...,an}.
Let there be given a sequence of compIex structures J, € C(M) and a sequence
of maps gn: U — N, such that g,, is Jn-holomorphic. If J, — J € C(M) and
gnly — 9, where g: V — N is J-holomorphic, then g extends to a J-holomorphic
map g: U — N, and g,, — g.

PROOF: Let a € U \ V and choose a disk Dy in (V \ 8U) U {a} around a.
Choose, continuously depending on J’ € (M), a J'-holomorphic homeomorphism
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¢s1: Do — D, such that ¢(a) = 0. Let ¢ = {z € C | |2| = 2}. We can imbed
N as a closed subset of a complex topological vector space E. In the case of a
loop group E is not a Banach space, but there do exist norms || ||, on E, and
a sequence in E converges if and only if it converges in all these norms. We can

write
oo

9(z) = Z axds(z)* for z € D, \ {a}
k=—o00
with 451(2)
_ 1 [9°¢,12)
ak_Zm'/c o dz€ E.

As g, — gand ¢j"1 ~ ¢7! uniformly on c, we have a,, = 0if n < 0. Thus g extends
to a J-holomorphic map g: VU{a} - N. Let K = ¢71({z€ C | |2| < 3}). Itisa
compact neighbourhood of a, and dist(¢s(K),c) = 3, hence dist(¢,, (K),c) > i
if n is sufficiently large. For such an n, an zo € K and a norm || || as above on F

(z = $4(20)) (9n 0 $31(2) — 9o ¢7'(2)) + (8. (z0) — $(20)) g ° 87 (2) J
(z = ¢4.(20)) (2 ~ $(20))

lgn(z0) — g(zo)ll =

<i/
~2n /.

<5 [ (lan o #32(6) = 90 836} + 41, (s0) = #s(a0)| g 652

As gno¢31(z) — god71(2) uniformly on ¢, ¢, (z0) — ¢s(z0) and |[|g o ¢71(2)||
~ is bounded on ¢, we have ||g,, — g|| — O uniformly on K. Hence g,, — g uniformly
on compact subsets of V U {a} and induction on the number of points in U \ V
finishes the proof. J

(6.4) LEMMA. Let J, be a sequence of complex structures on M, let g,, be a
sequence of maps M — N and let f,, be a sequence of maps M — Y, such that
gn € Holy,(M,N) and f, € ¥y, (M). If J, — J € C(M), fn — f € X5(M) and
gnfn — f € H;(M), then there exists a g € Hol;(M, N), such that g, — g and

f=gqf.

PROOF: PutV = f~1(¥;)n F~YY,). Then M\ V is finite, and we can consider
fly and fIV as maps into N. Define g: V — N by g = f|v f| . Let K be a
compact subset of V.. As Y, is open and f(K) C Y,, we have that fo(K) C Yo = N

if n is sufficiently large. Then gn|; = gnl|gx fnlg fn|K — fn|K f,,]K1 = gn|k-
By lemma 6.3, g extends to a J-holomorphic map g: M — N and g,, — g, which

. in turn implies that g, f, — gf, and thus f =gf. }

(6.5) COROLLARY. Hol;(M,N) acts properly on ¥;(M).

There is the following generalization of lemma 3.1 and lemma 4.6
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(6.6) LEMMA. Let M be a two dimensional compact connected manifold with
non-empty boundary and let D,,...,D,, be disjoint closed disks in M. Suppose
we have J-holomorphic maps

fi:D; —Y with fi(@D;) CY, i=1,...,n,
then there exist J fhoIomorp}u'c maps
ftM—Y and g:D;i— N i=1,...,n,
such that |
FT U ¥0) = f1 (Yeo) U~ U [ (Yoo) and  fi=gi flp, i=1,...,n.

Furthermore, for small variations of f1,...,fn and J, the choices can be made,
such that f and g¢i,...,9n depend continuously on f1,...,f, and J.

PROOF: The case of n = 2 is lemma 3.1 or lemma 4.6, except for the last
statement about ¢; and g2, and n = 1 follows trivially from n = 2 because, if
fi: D1 — Y is a J-holomorphic map with f,(dD,) C Y, then we just choose any
disk D, C M \ D; and let f; be a constant map from D, to Y,. The general case
is shown by induction on n. . _

Assume the lemma is true for n — 1( > 2). Choose a closed disk D, C M\ Dy,
such that Dy U---U Dy, € D3 and use the lemma with D’ instead of M. We get
maps f3: D' =Y and g{: D; — N for ¢ = 2,...,n, such that

(1) f27 (Yoo) = f37 (Yoo) U -+ U 7} (Yoo),

(2) fi =g; f2lp, and

(3) f3 depends continuously on fs,...,f, and J.
Using the lemma on f,, f}, weget maps f: M —» Y,g;: D; —» Nandg': D), — N,
such that

(1) F7(Yoo) = f1 (Yoo) U f37 (Vo) = fT (Yoo) U+ - U £ (Yeo),

(2) =0 f,—D_l’

(3) f2=¢" flp, and

(4) f depends continuously on f;, f; and J and hence on fi,..., f, and J.
Finally, let ¢g; = ¢} g']B‘, for ¢ = 2,...,n. Then f; = g} fél-ﬁ‘, = g g’|-5., and
f !3‘_ = ¢; f|p,- Outside the poles g; = f; f |5} so by lemma 6.3, g; depends
continuously on fi,...,f, and J. I

We immediately get

(6.7) COROLLARY. If M is a compact connected surface with 8M # @, then the
map ¥(M) — P(M) is surjective, and as sets Py(M) = Xjy(M)/ Hol;(M,N).

We are now ready to define the topology on P(M) in the case, where M has
a boundary. If K is a compact subset of M, then we let ¥(K) denote the space
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of pairs (f,J) € Map(K,Y) x C(M), where f extends to an element of ¥;(U) for
some neighbourhood U of K. We define an equivalence relation ~ on ¥(K) by
letting (f1,J1) ~ (f2,J2), if J1 = J, and there exist a neighbourhood U of K and
a map g € Holy, (U, N), such that f; = g|, f2. Let P(K) = ¥(K)/~, equipped
with the quotient topology. Put the weakest topology on P<,(M), which makes
the restriction map P<,(M) — P(K) continuous for all compact subsets K of M.
Finally let P(M) = Jim P<n(M). Then we have

(6.8) LEMMA. The maps ¥ (M) — P(M) — A(M) are continuous.

If Dy,..., D) are disjoint disks in M, and, for i = 1,...,k, fi: D; » Y is a J-
holomorphic map with f;(D;)NY, # 0 and deg f; < oo, then we get a configuration
of J-principal parts in M denoted [f;]U- - -U|fi], and no matter what the boundary
of M is, every configuration of J-principal parts is of this form.

We will study P,(M) a little closer. If 3M # @, then P,(M) is an open dense
subset of P<,,(M), which is a closed subset of P(M). We equip D with the standard
complex structure and put

H, = {f € Map(D,Y) | f(S') CY,, flp is J-holomorphic and deg f|, = n}.

Choose, for i = 1,...,k and J € C(M), imbeddings ¢;5: D — M, such that
(1) ¢:4|p isJ-holomorphic,
(2) ¢ig depends continuously on Jiand
(3) ¢:s(D) N ¢iy(D) =0, if ¢ # 5.

If n =nq + .-+ + ng, then there is a map
Hp, X ... X Hp, % C (M) — Po (M)

defined by
(f]."",fk)J) — ([f10¢1_}]UU[fk0¢,:}],J)

Two sets of maps (f1,..., fk) and (f1,..., fi) give the same configuration if and
only if there for each ¢ = 1,...,k exists a map g; € Hol(D, N), such that f] = g;f;.
If we put H,/~ = H,/Hol(D, N), then we have

(6.9) LEMMA. IfOM # 0, then the map above induces a local homeomorphism
(Hny/~) X ... % (Hn,[~) x C (M) — Pn (M),

and every element of P, (H) has a neighbourhood, which is the image of such a
homeomorphism. ‘

PROOF: Let (f1,-.-,fk,J) € Hpn, X ... X Hp x C(M). Choose closed disks
Dy,...,Di in M, such that D; C ¢;5(D) and ¢:5(f7(Yoo)) C D;. These condi-
tions are then satisfied for small variations of (fi,..., fx,J). Consider the maps
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fiodf: D; - Y, fori=1,...,k. They are J-holomorphic and, by lemma 6.6,
the top map in the commutative diagram

Hp, X ...x Hp, % C (M) ——— Hn (M)

! |

(Hoy /=) X ... X (Hny [~) % € (M) —— Pa (F1)

is defined locally. This implies that the bottom map is continuous. Let, on the
other hand, [f;] U -+ U [fk] be a configuration of J-principal parts in M, where
fi:D;i =Y isa J-holomorphlc map with f;(D;)NY, # 0, deg f; = n; and D;
and D disjoint if ¢ # 7. Choose a compact set K C D; U -+ N Di with interior

[¢] —_ [

K and imbeddings ¢;5r: D — K, such that ¢;;» depends continuously on J’,
¢:5:(D) C D; and f7}(Yoo) C éiye(D). Theses conditions are satlsﬁed for small
variations of (fy,..., fk,J), so locally there are maps

X(K) —— Hp, X ...x Hp x C (M)
Pu(M) —— P(K) — (Hn,/~) X ... X (Hp,[~) X C (M)

and this finishes the proof. §

In particular, the transition functions between spaces of the form

(Hpy/~) X ... X (Hp,[~) x C (M)

are homeomorphisms. This is even the case if IM = 0, because we can always
remove a disk from M without disturbing a given configuration of principal parts.
If M = 0, then the topology on P(M) is defined by declaring the inclusions

(Hp,/~) X ... X (Hp, [~) x C(M) — P(M)

to be local homeomorphisms. The subspace P,(M) is then open and closed in
P (M), and we still have

(6.10) LEMMA. The maps ¥ (M) — P (M) — A (M) are continuous.

Let H, = {f € H, | f(D) is contained in a chart}. Then H, is an open subset

of Hol(D, Y) and hence a complex manifold modelled on Hol(D, LN), c.f. lemma
5.4. The following result is obvious

(6.11) LEMMA. The restriction of the action F: Hol (D,Y) x H, — H, to
F~1(H,,) is holomorphic.

As a corollary we have
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(6.12) LEMMA. H,/~ is a manifold, and the projection H, — H,/~ has local
sections.

PROOF: I':IBII(.E, Y) acts freely and properly on H,,, and a neighbourhood of the
identity acts smoothly on H,. 1

In lemma 6.9 we may replace H,, with fIn, i.e. we have

(6,13) LEMMA. The maps
(I~Im/~) X ... X (ﬁnk/~) x C (M) — P (M)

are local homeomorphisms and covers. P, (m

PROOF: As I~I,., is an open subset of H,, the first part of the lemma is trivial,
and we only have to show that any configuration is hit by such a map. Let £ be
a configuration of J-principal parts in M with poles a1,...,ax. Choose disjoint
closed disks Dy,...,Dx in M and J-holomorphic maps f;: D; — Y, such that
a; € Dy, and € = [f1]U- - -U[fk]. By restricting f; to a smaller disk, we may assume
that f;(D;) is contained in a chart. Choose, for any complex structure J' on M,
a J'-holomorphic imbedding ¢;y: D — D;, such that ¢+ depends continuously
on J', and ¢;5(0) = a;. Then f; 0 ¢;y» € Hy, with n; = deg f; = ord,, €, and
clearly (¢,J) is the image of (f1 o d1r,..., fk © dkJr,J) by the map

(Boa/~) % oo x (B /~) x € (M) — Po (M)
given by
(f{"“’fl’c"]’) = ([fioqsl_.ll’]u"'u[fi°¢]—.—Jl’]"],)’

and the proof is complete. §

As the fiber of ¥(M) — P(M) is Hol;(M, N), which is contractible, it is not
surprising that the map is a weak homotopy equivalence, but before we prove it,
we need to show that it is a quasifibration.

(6.14) LEMMA. IfOM # 0, then the map 7: X, (m — Pn (H) is a quasifibra-
tion over any open subset of P, (H)

PROOF: By [2, Satz 2.2], it is enough to show that 7 is a quasifibration over
arbitrarily small open subsets. Locally: we have a commutative diagram

Hp, X ...x Hp, x C (M) —— ¥, (M)

l 5

(Bna/~) % oo (B /~) x € (M) —— Pa (B).
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As there are local sections of I?,-.'. — ﬁn‘/ ~, there are local sections of 7. Let
o: W — ¥p(M) be a section of m over an open subset W C P,(M). We only need
to show that 7|, () : 771 (W) — W is a quasifibration. Let

W = {(¢,(¢,J)) € Map(M,N) x W | g is J-holomorphic},

and consider the map

~

W — 1 Y (W): (g, (€,J)) — 9o (£, J).

It is a homeomorphism, so we only have to show that the projection W Wis
a quasifibration. This is trivial, as a contraction of N induces a fiber preserving

deformation of W onto {0} x W.

We can now show

(6.15) LEMMA. If dM'# @, then the map w: ) (M—) — P (ﬁ) is a quasifibra-
tion.

PROOF: As P(M) = lim P<,(M), it is enough to show that 7 is a quasifibra-
n-—o0

tion, when restricted to ¥<,(M), see [2,Satz 2.15], which we do by induction
on n. Assume that the restriction to ¥<,—1(M) is a quasifibration. Choose a
neighbourhood B(e) of dM in M, homeomorphic to 8M X [0,¢€) and put

W= {(f,J) € PSn(M—) I deg €|M\B(e) <n-— 1}-

Then W is a neighbourhood of P<,—1(M) in P<n(M), and it is enough to show that
7 is a quasifibration, when restricted to 7#=1(W), ¥,(M) and X<n(M) N7~} (W)
respectively. By lemma 6.14 , the last two restrictions are quasifibrations, so we
need only consider m|,_, ) : 7~1(W) — W. As the fibers of  are contractible,
it is by [2,Hilfsatz 2.10] enough to find a deformation ¢,: W — W, t € [0,1], such
that

(1) ¢0 = "d’

(2) 1 (Pencs (PD)) € Pns (W) all

(8) $1(W) = Penes (M) and

(4) ¥ lifts to a deformation of 7~ 1(W).
Choose a vector field on M, such that the corresponding flow ¢; preserves M\ B(e)
and has ¢1(_1\Z) C M\ B(e). We put ¢:((f,J)) = (f o ¢¢, ¢¢(J)). This defines a

deformation t; of #~}(W), which clearly descends to the wanted deformation
of W. i

We have already noted that the fibers of ¥ (M) — P (M) are contractible, so we
get
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(6.16) LEMMA. If8M # 0, then the map X (m — P (H) is a weak homotopy
equivalence.

Two configurations &; and &2 of J-principal parts without common poles give
rise to a new configuration &, U &2 of J-principal parts called the union or the sum

of f]_ and Eg.
(6.17) LEMMA. Addition of principal parts is a continuous map :
{((¢1,J),(€2,J)) € P(M) x P(M) | pole &; Npole {2 = 0} — P(M).

PROOF: Let ((é1n,Jn), (€2nyJIn)) — ((£1,J),(€2,J)) be a convergent sequence
in the space above. Let ay,...,ak, be the poles of ¢; and let ak,+1,...,ar be
the poles of ¢;. Choose disjoint closed disks Dy,..., D in M, with o; € D; all
t=1,...,k Let, for y =1,2, E},. be the part of {;n, which lies in Dy U -+ U Dy.
Then (E,,,,J,,) — (&;,J) and, for n sufficiently large, deg g,-,, =deg{; = n;. We
obviously have that (Em U &, Jn) — (£1U €2,J), and if K is any compact subset
of M, then &jn|x = &jnlk, if n is large. Hence (€10 U €2n, Jn) — (€1 U €2,J). §

(6.18) LEMMA. The fiber of the pole map Py(M) — A1(M), restricted to confi-
gurations with one simple pole, has r connected components, one for each irre-
ducible component Y; of Yoo = Y1 U---UY,.

PROOF: Let @ € M = A;(M) be given. Choose for J € C(M), a J-holomorphic
imbedding ¢;: D — M, such that ¢;(0) = @ and ¢, depends continuously on J. .
The fiber over a of the pole map is homeomorphic to

{([f1,9) € (Hi/~) x C(M) | £(0) € Yoo}
As C(M) is contractible, it is enough to consider the space
{[f]€ Hi/~ | £(0) € Yeo}.

Let (f] be an element of this space. Then f(D) N Yo = {f(0)}, and the order of
contact is one. Thus f(0) is a simple point of Yo, and as the sets Y; N Y; consist
of singular points for ¢ # j, the fiber has at least r connected components. On
the other hand, the set of singular points in Y, is a proper subvariety of Yo and
has at least complex codimension one. Hence the set Y? of points in Y;, which
is simple in Y, is connected. Around each point y € Y, exist local coordinates
(u,v) on Y, such that Y; is given by the equation u = 0. In these coordinates, f
is given by a pair of maps

f(2) = (u(2),v(2))  with  u(z) =) wun2™
We put =
fe(2) = (ue(2), ve(2))
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with oo
ue(2) = 2 Z un(tz)® ! and  w(z) = v(t2).
n=1
This gives us a curve f; from f = f; to fo. The map f; has only one simple
pole at O for all t, and fo(z) = (u12,v(0)). By covering a curve in Y from

fo(0) = (0,v(0)) to a base point y; € Y;? with a finite number of local coordinates,
fo can be deformed such that the new fo has f,(0) = y; and in local coordinates
fo(2) = (v12,0). Finally we just have to deform u; into a base point. §

Higher order poles can be split continuously in the following sense

(6.19) LEMMA. Given a J-principal part ¢ at a € M and a neighbourhood U
of a. Then € can be deformed continuously into a configuration of principal parts
in U, all with simple poles.

PROOF: We use induction on the order ord,, £ of the principal part. If ord, € = 1,
there is nothing to show. So we need only to show that we continuously can split
a principal part of order m > 2 into a configuration of two or more principal parts
in U, which then necessarily have strictly lower orders.

We may assume that U = D, a =0 and f: D — Y is a representative for ¢,
which maps D into a chart. If f(0) € Yo is a simple point, then there exist local
coordinates (u,v) on Y, such that Y, is given by the equation u = 0. The map f
is given by a pair of maps f(z) = (u(z),v(2)). Put v; = v and u(2) = tz + u(2).
Then fi(2) = (u¢(2), vs(2)) defines a curve f; startingat f = fo. Fort #0, fi hasa
simple pole at 0 and hence some other pole in the vicinity of 0. If f(0) is a singular
point on Y, then it is obviously enough to find a curve f; with fo = f such that
J:(0) is a simple point on Y, for ¢ # 0. Let u be a local coordinate on Y around
f(0), such that f is given by f(z) = u(2), with »(0) = 0. The singular points have
at least complex codimension one in Y, so there exists a curve %(t) such that
%(0) = 0, which corresponds to the singular point f(0), and #%(t) corresponds to
simple point on Y, for t # 0. We define the curve f; by fi(z) = u(t) + u(z). &

REMARK. If Yo is irreducible, then the last two results shows that the space
P(M) is connected

If M’ is another compact surface and M’ C M, then the restriction from M to
M’ is a continuous map r: P(M) — P(M’) and the fiber r~1(¢’,J') is homeo-
morphic to {(¢,J) € P(M,M’) | Jl5z = J'} by the map (¢,J) — (§U €', J). We
shall show that r is a quasifibration under certain conditions, but first we need a
couple of lemmas.

We say that M’ C M is nicely imbedded, if &M’ N M only have finitely many
connected components 8y, . . ., 9k, and the closure 8; of each of these intersects M
transversally and has a neighbourhood B;(e) in M homeomorphic to 8; x (—e,€),
such that Bi(e) N Bj(e) = 0, if ¢ # 5. We put B(e) = By(€) U --- U Bi(e). Then
B(€) is a neighbourhood of dM’ N M homeomorphic to IM' N M x (—¢,¢€).
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(6.20) LEMMA. Let M’ C M be nicely imbedded and let B(e) be a neigh-
bourhood of 3M' N M as above. If K C C(M) is compact, then we can find a
map

v: K — {vector fields on M},

such that

(1) v(J) intersects 9M' N M transversally and points into M,
(2) v(J) do not point out of M and
(3) there exists a € > 0, such that v(J)|gy is J-holomorphic.

PROOF: First we define v(J) in a neighbourhood of each component of dM’' N M,
and then we just extend this family of vector fields to a family of vector fields on
all of M. So consider a component 3 of M’ N M and let B(e) be a neighbourhood
of 3 as above. Choose for J € K, a J-holomorphic diffeomorphism ¢ : B(e) — C,
continuously depending on J, in the C°-topology. Given J € K, then we can
choose a vector field v on C, such that

(1) v is holomorphic in a neighbourhood U of ¢ (),

(2) v intersects ¢s(8) transversally and points into ¢ ;(B(€e) N M) and

(3) v points into ¢;(B(€)) at ¢5(8M N B(e)). -
There exists a neighbourhood W of J in K, such that if J’ € W, then

(1) ¢(9) €U,

(2) v intersects ¢y(d) transversally and points into ¢ (B(€e) N M) and

(3) v does not point out of ¢;:(B(e)) at (M N B(e)).
As K is compact, we can find finitely many vector fields v; on C, open sets U; C C,
and open sets W; C K (as above), such that K C [JW;. Let (p;) be a partition of
unity on K, subordinated the cover (W;), and put v(J) = ¢71(3 ps(J)v;). This
is clearly a vector field with the desired properties. i

(6.21) LEMMA. Let M/ C M be nicely imbedded and let r: P(M) — P (M)
be the restriction map. If W C P,(M’) is open, then rlr_l(w) crTY (W) o Wisa
quasifibration. ‘

PROOF: It is enough to show that r has the following weak form of the homotopy
lifting property:

If P is compact, and h: P — r~1(W) and H: P x [0,1] - W are maps, such
that H(z,t) = roh(z) all z, if ¢t € [0,1/2], then there exists a lift of H, i.e. a map
H: P x|(0,1) » r~}(W), such that r o H = H and H(z,0) = h(z) all z.

Let h and H be as above. If

H(z,t) = (€'(z,t),J'(z,1)),

then
h(z) = (€'(z,0) U &(z), I (z)).
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Choose an open set U, such that the poles of £(z,t)) is contained in U for all
(z,t), and U C M’. Let v(J(z)) be the vector field in lemma 6.20, let t — ¢(z,?)
be the flow restricted to ‘M \ M’, let B(e) be the neighbourhood of M’ N M in
M and put V = M\ B(e) U M’. We may assume that B(e) N U = 0, ¢(z,0) = id"
allz€ P, M\ M' C ¢(z,1)(V) all z € P and that ¢(z,t) is J(z)-holomorphic in
a neighbourhood of dM' N M, see figure 6.1.
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figure 6.1

As ¢(z,t) is J (:c_)_:fxolomorphic near M’ N M, we can choose a continuous map
J: P x[0,1] = C(M), such that

(1) J(=z,t)|zm = J'(=,1), all t € [0,1],

(2) J(x,t)lﬁ\w = ¢(x,2t)(.](z))|ﬁ\m, fort € [0, 1/2] and

(3) J(=z, )7 = o(z,1)(J(z,t)) |y, for t € [1/2,1].
As the poles of £(z)o¢p(z,1) lie in V, we can regard §(z) o ¢(z, 1) as a configuration
of J(z,t)-principal parts for ¢t € [1/2,1]. Hence it is possible to define the homotopy
H:Px|[0,1] - r~}(W) by

H(z,t) = { (¢'(z,t) U €(z) o ¢(z,2t),J(z,t)), forO0<t<1/2
L (€= t) U €(z) 0 #(2,1), I (2,t)), for1/2<t< 1.

Obviously r o H = H and H(z,0) = h(z) all z. 1

We can now show

(6.22) PROPOSITION. Let M’ C M be nicely imbedded and assume that every
component of M’ intersects 8M. Then the restriction map r: P(M) — P(M')
is a quasifibration.

PROOF: As P(M') = lim P<,(M"), it is enough to show that r is a quasifibration
n—oo

over P<n(M"), which we do by induction on n. By lemma 6.21, r is a quasifibration
over P<o(M') = Po(M'), i.e. the start of the induction is secured. Assume that r

is a quasifibration over P<n_1 (_II_J_’)
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Let B’(e) be a neighbourhood of dM' in M’, homeomorphic to M’ x [0, €), and

put L
W = {(£,J) € P<n(M') | deg €| ppn gy < m — 1}

It is a neighbourhood of P<,,—; (M’) in P<n(M’), and by lemma 6.21, r is a quasi-
fibration over P,(M') and W n P,(M’). Thus, it is enough to show that r is a
quasifibration over W, see [2,Satz 2.2]. '

Choose a vector field on M, such that the induced flow ¢; satisfies

(1) ¢e(M') C M allt,
(2) ¢¢(M'\ B'(c)) S M'\ B'(c) all t and
(3) ¢1(M') C M'\ B'(e).

See figure 6.2.
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We define deformations d; of W and D, of r~1(W) by
di(€',J") = (€' 0 ¢, ¢:(J)) and Dy(&,J) = (€0 dt,¢:(T)).

AsroD, =d,or, dt(PSn__l(W)) - PSn_l(—I\T) and d,(W) C Psn_1(—M—’), we
only have to show that Dyl -y (e yiyy: 771 (€, 7)) — r7(d1(¢', ")) is a weak
homotopy equivalence, c.f. [2,Satz 2.10]. We have

P (€)= {(€,7) € P(M, M) | Jlzzr=J'} = Fo,
rHdi(€,07) = {(€,7) € P(M, M) | gz = 61(0")} = Fy,

and D;: Fo — F, is given by D,(¢,J) = (EU Eodi1,$1(J)), where gis a (possible
empty) configuration of principal parts in B’(¢) N M’, which by the flow ¢, is
moved to M \ M'. The configuration £ o ¢, is pushed away from dM’, and it is
possible to move E along M’ to @M. Hence D, is homotopy equivalent to the
map D: Fo — Fy, given by D(§,J) = (0¢1,61(J)). We want to find a homotopy
inverse D: F; — Fy.

Let B(e) be a neighbourhood of dM’ N M in M, which is homeomorphic to
OM'NM x (—¢,¢€), and let s — 1(t,s) be the flow of a vector field on M, such
that

(1) #(t,s) depends continuously on (¢, s),
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(2) ¥(t,s) is #:(J’)-holomorphic on B(e) N M’ all (t,s),
(3) M\ (B(e) UMY) C $(t,8)(M \ (B(e) UM)) all (t,5),
(4) M\ M' C4(t,1)(M \ (B(e) U M')) all ¢,
(5) there exists a n € N such that
() Buym(M\ M) C $(t,5) 0 du/n(M\ M) all (t,5),
(i) Su/n(M\ M) C $(t,1)(M \ M) all £

If J € C(M) and J|3 = ¢1(J’), then we can define 8(J) € C(M’) by

,,(J)z{(Jl/n $(2,1) 0 bk 0 %(2,1) 0 -+ 0 ST, 0 $(1,1))(J) :Z—Z—:\M,

Now D: F; — Fy is defined by
(¢, J) = (€0 87k o w(1/n,1) 0 $ik 0 $(2/n,1) 00§k 0 $(1,1),0(J) ) -

We shall show that Do D and Do D are homotopic to the identity. First we define
6;: M — M for t € [0,1] by

6, = ¢k/nol,b("T_k,nt—~k)o¢i'/lno¢(";ff'—l,1)0---o¢;'/1no¢(1,l), if '—’i <t< L'nﬂ
For a J € C(M) with J|gz7 = J/, we define 8.(J) € C(M) by

0, =J 8, = 6,(J).
t(J)|z=J  and t(J)ﬁ\M' t(J)

Finally Hy: Fo — Fo is defined by Ht(f, J)=(¢o 0t,5¢(J)). Clearly Hy = id and |
Hy = Do D. Next we define 6,: M — M for t € [0,1] by

0 = dif o p(2,1) 0 0 dihop(Eint —k+1) o duym, i ED << E

=Ia~

For a J € C(M) with J|5z = ¢1(J'), we define 5;(.]) eC(M) b
6.(J) . é1(J') and 6;(J) = 6,(J).
Finally Ht F, — F, is defined by H{(&,J) = (foﬂ{,@l(J)). Clearly, H) = td and
Hi=Do D.&
7. The Results
In this section we will show that the topology of the space of holomorphic maps

resembles the topology of the space of continuous maps. First a non closed surface
is considered.
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(7.1) PROPOSITION. Let M be a compact surface, and assume that every com-
ponent of M has non empty boundary. Then the map X (M) — Map(M,Y) is a
weak homotopy equivalence.

PROOF: We use induction on the number of handles in a handle decompOS1t10n of
M. The start of the induction is secured by lemma 5.7. So assume M =M,UM,,
and that the proposition is true for Ml, M2 and M; N M,. We may assume that

the inclusions M; N M2 C M, and M, C M satisfy the conditions of proposition
6.22. Consider the diagram

PM) —  P(M,) M) —  H(Mm,) Map(M,Y) —  Map(M,,v)

| =1 Lo~ !

P(M3) — P(M,NMa) (M) — N(M, NM;) Map(M,,¥) — Map(M; NM,,Y)

where the maps in the squares are restrictions. The maps between the squares
are weak homotopy equivalences, except possibly, the map ¥ (M ( ) = Map(M,Y).
The right-hand square is homotopy .cartesian, and if the middle square is weak
homotopy cartesian, the proof is complete. The left-hand square is weak homotopy
cartesian, because the vertical maps are quasifibrations, but then the middle square
is weak homotopy cartesian too. J

If M is an open surface, then by [15,Proposition 8.11.6], it can be shown that
the inclusion ¥;(M) — Map(M,Y) is a homotopy equivalence, but the result
above is needed, when we close the surface.

It is unfortunately impossible to apply the proof of proposition 7.1 in the case,
where M = ), because the relevant restrictions are not quasifibrations. In order
to overcome this difficulty, a new stabilized space is introduced.

Mlan

TN
/ M2

figure 7.1

Let M be a closed surface. Choose open subsets M, M, C M, such that M,
and M, are manifolds with boundaries, and M and M\ M, are closed disks with
M\ M; C Ml Then M = M, U M3, and M; N M, is an annulus, see figure 7.1.

Choose a sequence of disks D;,D,,... in M; such that Dk+1 C Dy all k,
and Do = Dy is a disk with OMz N Doy # 0. Choose for all k, a point
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o € Dk\ék-}-l, such that {ax | k € N}NM, = 0. Choose continuously depending
on J € C(M,), a J-holomorphic imbedding

¢k D — D\ (Di41U M2),

such that ¢ x(0) = ak. If Y3,...,Y, are the irreducible components of Y, then,
for eacht =1,...,r, we choose a holomorphic map f;: D — Y, such that 0 is the
only pole and ord; f; = 6;;, see figure 7.2. '

figure 7.2

We define a J-principal part sk at o, with ord; €75 = 6;; where k = ¢ (mod 7),
by sk = [fi 0 ¢F}]. Define imbeddings

P(M,Di) — P(M, Diya): (€9) — (€U €uig; %0 )
and
P(My,Dy) — P(My,Dy11): (€,J) — (€U €k, JI),
and form the telescopes
P(M,Do) = Tel (P(M,D;) — P(M, D) — ...)
and
P(M1,Doo) = Tel (P(M1,D1) — P(M1,D2) — ...).

The imbeddings, defining the telescopes, fit in as the horizontal maps in the fol-
lowing commutative diagrams,

P(M,Bk) — P(M,Ek+1)

l !

P(M3,Doo) ——— P(M2, Doo),
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P(M 1, Di) ——  P(M1,Di41)

l l

P(Hlﬂﬂz,ﬁw) p————— P(Hl OHZ,EOO)

and

. —— P(M,Dy) —— P(M,Dry1) —— ...

! |

. T P(—Ml,ﬁk) I— P(Ml,ﬁk.*.l) — ...,

where the vertical maps are the restrictions. Thus we obtain a commutative dia-
gram ’

PM,Do) ——  P(M1, Do)

l l

P(M2,Doo) —— P(Mllﬂ M2,Do),

which we will show is homology cartesian. By lemma 3 in the appendix, it is
enough to show

(7.2) PROPOSITION. The restriction maps
r: P(M,Doo) — P(M2,Doc) and  r: P(M1,Do0) — P(M1N M2, Do)
aré homology fibrations.

PROOF: Let M’ denote either M or M, and put My = M, N M'. Let (&, Jo)
belong to P(M', Do), let Bi,..., Bk be the poles of &, and let vq,...,u; be their
orders. Let B(e) be a neighbourhood of dMj in M, which is homeomorphic to
OM; X (—e¢, €), and choose € > 0 such that

(1) e, B; ¢ B(2¢) foralli=1,2,... and j =1,...,k,
(2) Doo C B(2¢) U My, and
(3) Doon (M2 \ B(2¢)) # 0,
see figure 7.3. Choose for ¢+ = 1,...,k an open disk U; around f3;, such that
(1) g,- C M\ (B(2€) U Do) for all i and
(2 UinU;=0ifi#7.
The set

{(¢,J) € P (M%, Do) | deg &y, = vi and pole(§) CU; U---UUL U B(e)}

is a neighbourhood of (£y,Jo) in P(M',Do,). So by lemma 6.13, (£o,Jo) has a
neighbourhood homeomorphic to

(Eryl/fv) X .ol (ﬁuk/~) x {(&,J) € P (M}, Doo) | pole(£) C B(e)} -
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As fI,,l/~ is a manifold, (&0, Jo) has a neighbourhood W in P(_’z,_l_)_oo), homeo-
morphic to By X ... X By x B, where B; is an open contractible subset of H, /~,

and
B ={(¢J) € P (M}, Do) | pole(€) C B(e)} -

From the diagram
r~}(W) —— By X...x By x r}(B)
Jvr‘,—l(w):t ) lidx 'Ir-!(a)
W ——5 ByX...XxBkxB,

it is seen that we only have to show that B is contractible, and that the inclusions

of the fibers of r in r~1(B) are homology equivalences.
Choose a vector field on M, which vanishes outside B(2¢), is tangent to dD; all

7, is transversal to dM} and points into M}, see figure 7.3.
-~
7 Do 1y, [
L _//_L_L_L\\L_Lg
T | N S L oMy
_L_L&\KL_L_L/Z/L_L:
\—-’aj/

figure 7.3

Let ¢; be the flow on M, induced by this vector field. We may assume that the
following conditions are satisfied.

(1) ¢¢ = id outside B(2¢) for all ¢,

(2) ¢¢(Dx) = Dy for all t

(3) ¢+(M3 U B(e)) C M, U B(e) for all t, and

(4) ¢1(MzU B(e)) S M3\ B(e).
The flow ¢; induces a deformation h: of B, given by h:(&,J) = (€ o ¢, d:(J)).
As hy(B) = C(M}%), B is contractible. Let (¢/,J') € B. We shall show that the
inclusion r~1(¢',J') — r~1(B) is a homology equivalence. Define a deformation

H; of r~Y(B) by H;(¢,J,5) = (€0 ¢, 6:(J),5)- Then
H, (r~Y(B)) = {(e,J, s) € P (', Do) | pole(¢) C M\ Mz UB(e) } -

Put
Fi={(6.0,6) € B (r71(B) | TIzgy = ulsgy (U},
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and consider the diagram

—l(fl’JI) —— T—I(B)

[ [

F —— H,(r~1(B)).

We will show that the two vertical maps and the lower horizontal map are homology
equivalences, and hence that the top horizontal map is a homology equivalence.

First consider H;: r~1(B) — Hy(r~}(B)). If :: H(r~}(B)) — r“l(B) is the
inclusion, then 10 Hy = Hy ~ Hy = id, and as Hy(H,(r~*(B))) C H1(r~1(B)) for
all t, we also have Hy o1 = HIIH1 (r-1(B)) ~ H0|H1(r-1(3)) = 1d. Next consider
the inclusion Fy < H;(r~*(B)). Choose a deformation D; of C(M') such that :

( ) Do = ld

(2) De(J)|a(aauB(e)) = JIm(mzub(ey for all J,

— A —
(3) Du(J )|M,2—J lfJ|M,2—J for all ¢, and
(4) Dy(J)lzg, = J' for all J.

Define a deformation D; of H,(r~Y(B)) by ﬁt(f, J,8) = (&, D¢(J),s). This defor-
mation contracts Hy(r~1(B)) onto Fy, hence the inclusion Fy — H;(r~1(B)) is a
homotopy equivalence.

Only the map H;: r~1(¢',J') — F; remains. Let

Fo= {(f,J,t) € P (M, Do) | pole(¢) € M\ M3 and Jlz; = J,}.

This space is homeomorphic to. r~1(¢/,J') by the map Fo — r~1(¢,J’), which
maps (,J,t) to (£ U ¢’,J,t). By this identification, H; corresponds to the map
H: Fy — F; given by

(&, J,t) — ((¢ U.f') 0 d1,01(J),t) = (0P U € 0¢1,6:1(J),1t).

By lemma 6.19 and 6.18, we can split /0@, into simple principal parts, move these
principal parts along ¢71(8M;) to the points ak, and finally deform them into
the standard form £x;. The spaces Fy and F; are the telescopes of the sequences
F} - F¢ — ... and F} — F? — ... respectively, where

Fo= {(f,J) € P (M, D) | pole(§) € M\ M and Jiz, = J'}

and

F? = {(€,J) € P (', D) | pole(¢) C M\ Mz UB(e) and Jlz, = 1l }-

We define H : F} — F by IZ(E,J) = (£o¢1,¢1(J)). By lemma 5 in the appendix,
we only have to show that H is a homotopy equivalence, and this can be proved
by the same method as in the proof of proposition 6.22. i
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We can now show that P(M, Do) and
Mapr(M, DY, Y,) = {fE Map(M,Y) I f(ﬁog) CY,}
have the same homology type. Let H; be the homotopy theoretical fiber product
o $ (¥1,Do0)

l

P (Hz,ﬁm) — P (H1 nH2;Em):,,
let H, be the homotopy theoretical fiber product of

¥ (M,,D,)

|

X (H2»El) — X (M1 ﬂh—’fz,_ﬁﬂ )
- and let Hg be the homotopy theoretical fiber product of

Map (Ml’ D-oo; Y, Ya)

|

Map (M2,Do0;Y,Y,) —— Map (M1 NM2,Do0;Y,Ya) .
The inclusion Map(M, DY, Y,) < Hj is a homotopy equivalence, and by propo-
sition 7.2, the inclusion P(M, Do) <+ H, is a homology equivalence. All in all we
have

(7.3) THEOREM. In the commutative diagram

ﬁ(M,_D-oo) — }((M,ﬁl) _— Map(M,_Ijoo;Y,Ya)

| ! !

H, — H, — Ha,

the bottom horizontal maps are weak homotopy equivalences, the left-hand vertical
map is a homology equivalence and the right-hand vertical map is a homotopy
equivalence.
PROOF: We only have to show that

X(Hl,_ﬁl) - ﬁ(M,_D-oo) and X(Hl,-ﬁl) — Map(M,Eoo;Y, Ys)

are equivalences, but this is trivial, as all three spaces are contractible.
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The same conclusion holds, if the complex structure is fixed, but before we can
show that, some terminology is needed.

Imbed M in R3, and choose a tubular neighbourhood U of M. The imbedding
and U can be chosen, such that any subset of M with diameter less than 10, is con-
tained in a disk in M and has it’s convex hull contained in U. Let a3,...,a, € M
be points with weights v4,...,v,. If diam({ai,...,an}) < 10, then the ordinary
center of mass lies in U and can be projected down to a point on M, which we
will call the center of mass, and which depends continuously on the configuration
(a*,...,a%") of points in M.

Choose a point o, € M, and put M’ = M \ {z.c}. Blow the metric up at zoo,
such that any subset of M’ with diameter less than 10 is contained in a disk in
M’, and any configuration of points in M \ {z} with diameter less than 10 has a
well defined center of mass.

Let r € R4. A configuration of points § € A<n(M') is called r-small, if

diam(§) < r - 4de€én,
(7.4) LEMMA. If &) and & are r-small and €, N €2 # 0, then &, U €2 is r-small.

PROOF: If &£ C &2 or &2 C £, there is nothing to show, so we may assume that
deg(¢; U €2) > max{deg £;,deg &2} + 1. Then
diarn(£1 U fg) < diamé; + diaméy; <r- 4deg &1—n +r- 4desfz—n
<2r. 4max{deg &1,deg €2} —n <r. 4deg(£1U£2)—-n,

i.e. £ U &2 is r-small. §

Two configurations £; and £, are called r-independent, if any r-small subcon-
figuration of &; U £2 is contained in either £; or &,.

(7.5) LEMMA. If £ is not r-small, then we can write £ = £;U &, with §1N&2 =0
and £1,&2 # 0, such that any proper 2r-small subconfiguration is contained in
either £ or €.

REMARK. Then the configurations £, and §2 are r-independent, but they need
not be 2r-independent, because ¢ may be 2r-small.

PROOF: Choose z,y € £, such that dist(z,y) = diam¢ > rdeg{+n Tet £, be a
maximal 2r-small proper subconfiguration of ¢ containing z, and let é; = £\ &;.
Then diam ¢; < 2r - 49¢8¢—1-" and hence

dist(y, £) > dist(z,y) — diam &, > r . 49e8&+n _ 2, . gdeg{—1-n _ 5, gdeg{—1-n

Assume &' C £ is 2r-small, ¢'N&; # 0 and €' N ¢ # 0. We shall show that ¢’ = €.
As £/ N & # 0, lemma 7.4 implies that ¢’ U £; is 2r-small, and as ¢; is maximal,
we must have &' U ¢; = €. Especially y € ¢/, and hence

diam ¢’ > dist(y, &) > 2r - 4degé—1-n
As ¢’ is 2r-small, we have deg ¢/ > deg ¢ — 1 and thus ¢’ = €. §

We can now show
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(7.6) LEMMA. Let M be a closed surface with base point To and let J be any
complex structure on M. Then the inclusion Py(M,{zs0}) — P(M,{Zco}) is a
homotopy equivalence.

PROOF: Itis clea;rly enough to show that the inclusion
Pin (M, {xoo}) — P (M, {zo})

is a homotopy equivalence for all n.

We want to define a map P<n(M, {Too}) X C(M) — P<n(M,{zco}) of the form
(¢,J,J") — (Y(&;d,J'), J'), which preserves degree and satisfies

(1) ¢(€’ Ja J) =£ and

(2) B(61U €2, 0, 77) = $(£1, 4, ") U (€2, J, J') if pole(é1) and pole(és) are

2-independent, considered as elements of A<,(M’).
The map ¢ turns J-principal parts into J/-principal parts. We define ¢ inductively,
but first we choose a vector field v on M, which only vanishes at z.

If (¢,J,J') € Pi(M,{zc0}) X C(M) and a € M’, then we let D, be the disk in M
with center o and radius one. Let ¢y j: Doy — Doy be the unique holomorphic
homeomorphism such that ¢ j(e) = a and déy j(v(a)) = ¢-v(a) with ¢ > 0.
Define ¢ by 9(¢,J,J') = £ 0 é. As ¢ depends continuously on e, J and J', the
map 1 depends continuously on (£,J) and J’'. Condition 2 is empty in this case,
and as ¢ = id, if J = J', condition 1 is satisfied.

Assume that ¢ is defined on P<(r—1)(M,{Zoo}) X C(M) with 2 < k < n, and
put

P= {(¢,J) € P<k (M, {z0}) | pole() is 1-small => degé <k - 1}
= P<(k—1) (M, {Zo0}) U {(¢,7) € P (M, {zc0}) I diam pole(¢) > 4"_"} .
If deg & = k, and diampgle(f) > 4k—"_ then we write £ = ¢; U £, according to
lemma 7.5. Define ¢ on P x C(M) by
it ? ¢(£’Jy‘]l)’ if dengk—l,
’JsJ = .
d)(f ) { ¢(£1’J1 J,) U ¢(£2’J’ J’)s lf degf = k.

As ¢ satisfies condition 2, 1'/;’ is well-defined, and clearly ;jzv is continuous and satisfies
condition 1 and 2.
We now let

P = {(f,J) € P<i (M, {z0}) I pole(¢) is 2-small = deg{ <k — 1}
= P<(k—1) (M,{Zc0}) U {(&J) € Pr (M, {zoo}) | diam pole(¢) > 2 - 4"'"} CP

If deg ¢ = k, and diampole(¢) < 2-4F", ie. if £ ¢ P, then we let o be the
center of mass of pole(¢) and put D, = {z € M | dist(z,a) < 5}. As D, is a disk
in M containing pole(¢), we can define ¢+ j: Doy — Doy as above. Choose a
homotopy H: C(M) x C(M) x [0,1] — C(M), such that

(1) H(J,J',0) = J for all J and J',

(2) H(J,J',1) = J' for all J and J’ and

(3) H(J,J,t) = J for all J and t.
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Put ¢(¢) = 4" % . diam pole(¢) — 1 and define 9 on P<k(M, {zoo}) by

$(€,J,7"), if (¢,J) € P,
¥ (&,J,H (J,J',t(€))) 0 b H(su 1(e)), if deg é =k and
(eI = ( ( (€))) o, H(I1 1(8) o<t <1
Eody,, if deg ¢ = k and
t(¢) <o.

It is easily checked that 1 is well-defined, continuous and satisfies condition 1 and

condition 2.
We define

0: Pp(M,{zoo}) — Py (M,{Zo0}) by  0(¢,J) = ¢(¢,T,J).
If
i: Py (M, {Zoo}) = Pn(M,{zc0})

is the inclusion € +— (€, J'), then
8oi(€) =y(¢,J,J)=¢

and

i00(€,J) = (¥(&,J,7"),J).

The first composition is the identity and the last composition is homotopic to the
identity by the homotopy (&,J,t) — (v(¢,J,H(J,J',t),H(J,J',t)), ie. O isa
homotopy inverse to t. §i

Put P*(M) = P(M,{zc}) and P;(M) = Pj(M,{z0}). Let D' be any disk in
M containing zoo. By choosing a vector field, which pushes principal parts away
from z.., we see that the inclusion P(M, D') — P*(M) is a homotopy equivalence.
We put

Po (M, Do) = Tel (Po(M, Dy) — Po(M,D3) — ...) C P (M, Do) -
If 2o € Doy, then by the remarks above and lemma 7.6 :

H. (% (M, D)) = lim H. (Pa(M,Dns1)) = lim_ H. (P;(M))

n—oo

= lim H, (Pin(M)),
for all J € C(M). Similarly we let

Mapg (M,Y) =
{f M>Y | f(zeo) =1€ N =Y, and deg, f = --- = degy f = 0}
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and

Ma'po (Ma_ﬁoo;Ya Ya) =
{f: M >Y | f(Doo) CY, and deg; f =--- = deg, f =0}.

As Map$(M,Y) is homotopy equivalent to Mapy(M, Doo; Y, Ya),
H, (Map3(M,Y)) = Ho (P(M,Dex)) = lim H. (P5a(M)),

for all J € C(M).
Fix the complex structure J € C(M), let X denote the Riemann surface M,

and put P;(X) = Pj,(M). If G is a compact Lie group, then

Mn(X x CPLX v CPI,GC) = the space of based isomorphism
classes of holomorphic G¢-bundles over X X CP!,
trivial over X vV CP!, based at (Zo0,00) and with
characteristic class n,

see [1].
(7.7) PROPOSITION. IfY =G, then
P(X) = Ma(X x CPL, XV CP,Gg).

ProoF: If X' = X\ {zoo}, then a configuration of principal parts in X without
a pole at T, can be represented by a holomorphic map f: X' — G, which by
Proposition 4.5 is the same as an isomorphism class of a pair (P’,7), where P’ is a
holomorphic G¢-bundle on X' x CP1, and r is a trivialization of P’ over X’ X Doo.
The different choices of f correspond to different trivializations 7, but they all agree
on X’ x {o0}, i.e. a configuration of principal parts gives a pair (P’,7’), where 7’
is a trivialization of P’ over X’ x {o0}. We can find a neighbourhood U of zo,
such that P’ is trivial over (X’ N U) x CP! and 7' determines the trivialization
uniquely. By gluing P’ to the trivial bundle over U x CP!, we get a bundle P
over X x CP!, and 7' extends uniquely to a trivialization over X V CP!. Thus
we obtain an element of M,(X x CP!, X v CP!,G¢).

Assume we on the other hand have a bundle P over X x CP!, which is trivial
over X V CPL. Then the restriction to X’ x Do, is trivial, and by extending the
trivialization over X’ x {00} to X’ x Do, the transition functions to sets of the
form U x D, give us a holomorphic map f: X’ — QG. Different choices of the
trivialization correspond to a multiplication of f with a map g: X' — L7 Gg, i.e.
we get a well-defined configuration of principal parts in X’ and hence an element

of PX(X). N

From [1] we have that M,,(CP*xCP?,CPvCP?,G¢) and Hol},(CP*,0G) are
diffeomorphic, and by the remark following lemma 3.1, P,*(CP?') = Hol},(CP!,Y),
if Y is a generalized flag manifold. All in all we have
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(7.8) THEOREM. Let X be Riemann surface and Y a generalized flag manifold
or a loop group. Then

H, (Map(CP',Y)) = lim H, (Hol;(CP,Y)),

and if Y = NG, then

H. (Mapy(X,0G)) = lim H. (Mn(X x CPY, X v CP,Gg)).

The connected components of Map*(CP*,Y) are the spaces Map;,(CP',Y) of
based maps CP! — Y with multidegree k € Z". By lemma 6.18 and 6.19, the
connected components of Hol*(CP',Y) = P*(CP?) are the spaces

Holj, (CP',Y) = Hol* (CP',Y) N Map;, (CP1,Y),
with k = (k1,...,k,) and k; >0fori=1,...,r. Heng‘ze we have

(7.9) THEOREM. IfY is a generalized flag manifold or a loop group, then the
inclusion Hol*(CP!,Y) — Map*(CP',Y) induces an injection

- mo (Hol*(cfl,y)) < mo (Map*(CP',Y)).

Appendix

If B is a space, then F(B) = {maps: [0,1] — B} denotes the space of paths in B.
There is a standard way of replacing a map f: X — B with a fibration, see [20].
If 17 = {(z,7) € X x F(B) | f(z) = 4(0)} and p’(z,7) = (1), then p/: I = B
is a fibration, and the inclusion X — I, given by z — (X, constant path f(z)),
is a homotopy equivalence. The fiber of p/ is denoted T/.

If g: Y — B is another map, then Igf denotes the pullback of p/: If — B over

g, l.e.

I ={(v,(z,7) €Y x I' | g(y) = p’(z,7)}
= {(v,2,7) €Y x X x F(B) | g(y) = (1) and f(z) = v(0)} .

We see that Ié’ is symmetrical in f and g, i.e. Igf = If;. The space Igf is called the
homotopy theoretical fiber product of the diagram

X

/)

Y —— B.
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A commutative diagram

g f

Y — B —— X

¢Yl ¢>Bl ¢xl
YI - g’4> B' « r XI

o
induces a map ¢: If — I/, given by (y,2,7) — (dv(y),$x(z),ép ©). The
homotopy theoretical fiber product is weak homotopy invariant in the following
sense :

LEMMA 1. If¢x, ¢y and ¢p in the diagram above are weak homotopy equiva-
lences, then ¢ is a weak homotopy equivalence.

PROOF: From the diagram
X — It

o

~

X —— I

it is seen that the map I/ — I/ " is a weak homotopy equivalence. So from the
diagram

Tf s IS » B
l . ll ¢slz
Tf > It - B,

the long exact homotopy sequence and the five lemma, the map T/ — T/ "is a
weak homotopy equivalence. Finally, the diagram

T » Igf » Y
ll ¢l ¢Y12
Tf' y Ig,' > Y’,

the long exact homotopy sequence and the five lemma imply that ¢: Ig — I g,' is
a weak homotopy equivalence. §

The fiber product of the diagram
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is the pullback g*(X) of X over g, i.e. ¢*(X) = {(y,z) €Y x X | f(z) = 9(v)}.
There is an inclusion ¢*(X) < If given by (y,z) — (y,z,constant path g(y)).
Any commutative diagram

~

7z . x

1

induces a map ¢: Z — ¢*(X) given by z — (f(z),?j(z)) and the diagram is called
cartesian, if the map ¢ is a homeomorphism. We can compose ¢ with the inclusion
g*(X) — Igf above,andgetamap Z — I gf . The diagram is called homotopy carte-
. sian, if this composition is a homotopy equivalence. It is called weak homotopy
cartesian, if the map is a weak homotopy equivalence, and it is called homology
cartesian, if the map is a homology equivalence.

A map f: X — B is called a quasifibration, if

form (X, f7H(f(2)), 2) — 7. (B, f(2))

is an isomorphism for all z € X. Then, just as in the case of fibrations, there is a
long exact homotopy sequence

o = ma (B, f(z)) = m(FHf(2), 2) = m(X, z) — 1r,-(B,f(:z:)) — .,

see [2]. From this we have

LEMMA 2. Let

be a cartesian diagram. If f and f are quasifibrations, then the diagram is weak
homotopy cartesian.

PROOF: Let F be a fiber of f: X — B, and consider the diagram

F » X » B
| o
T y IS » B.

The long exact homotopy sequence and the five lemma give that F — T/ is a
weak homotopy equivalence. As the diagram is cartesian, the fibers of Z — Y and
X — B are homeomorphic, hence we have the diagram -

F A » Y
ool
T/ » IS > Y,

9
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and again the long exact homotopy sequence and the five lemma imply that Z — I s{
is a weak homotopy equivalence. §

As in [11], a map f: X — B is called a homology equivalence, if each b € B
has arbitrarily small contractible neighbourhoods U, such that the inclusion
f~Y(b') — f~1(U) is a2 homology equivalence for all ¥’ € U.

LEMMA 3. Let

~

7 — . x

1

y —2 . B

be a cartesian diagram. If f and f are homology fibrations, then the diagram is
homology cartesian.

PROOF: Let b € B and put F = f~1(b). Choose a contractible neighbourhood
U of b, such that the inclusion F < f~1(U) is a homology equivalence. Consider
the diagram

F —— ffY{U) — U

! L H

T —— pf-Y(U) —— U.

We see that F — T/ is a homology equivalence. Now consider the diagram

F y 7 + Y
K | ”
T/ > Igf > Y.

Just as a fibration, a homology fibration gives a convergent spectral sequence.

Thus we have )
Bq = (Y, Hy(F)) = H.(2)

I !
EZ, = H,(Y, H(T") — H.(I)),
and hence H.(Z) — H.(I]) is an isomorphism.
Suppose we have a sequence of maps

B

The telescope of the sequence is the space
-~ ¢ ¢2 ¢
X =Tel(X: 25 X, 2 X =)= U Xaxln-1,n] /~,
neEN

where (z,n) ~ (¢n(z),n). If we regard X,, as a subset of X,, 11, by the map ¢y,
then we have the following picture :
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1\’ 1 J\’2 /\'3 X 4

1 d

T T ¥ T T

0 1 2 3 R

It looks like an infinite telescope, and as it is possible to slide a finite part of
the telescope together, we have

LEMMA 4. The inclusions i,,: X — X:izm (z,n — 1) induces an isomorphism
f: lim H.(Xn)=SH.(X),
1—r00

where lim H,(X,) is the direct limit of

n—oo

é1. ¢2.  ¢a.
Ho(X1) — Ho(X3) — Ho(Xs) — ....

Assume that the diagram

Pn
Xn ——— Xn+1

¢nl ¢n+ll

¢n+1
Xn+1 —_— Xn+2

is homotopy commutative for all n € N. Then we get a commutative diagram

(
H.(X;) —— H,(X3) —— H,(X;) —— ...,

which induces an isomorphism ¢.: lim H.(X,)= lim H.(X,).
n—oo n—oo

LEMMA 5. Let X be the telescope of a sequence as above and let X' be the

¢I ¢I ¢I
telescope of the sequence X AR X} - X3 — ... . Assume we have homotopy
equivalences ¥y : X], — Xy, such the diagram
, Yn
X, —— Xa
& | o
¢n+l

Xr,1.+1 —— An41
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commutes for all n € N. R R
If¢: X' — X is a map, such that Y o4/, and tp4y10¢pny109¢p: X, — X are
homotopy equivalent for infinitely many n € N, then 1 is a homology equivalence.

PROOF: There is a commutative diagram

, -- d’na ¢("+1)"
H.(X}) — H.(Xn) — Hi(Xn41)

i:u-l i(gil)'l

-~ "/’- B} ~
H.(X') »  Ho(X)

for infinitely many n € N, and by taking the direct limit, we get the commutative
diagram

e b
n—>00 ~ n—o0 ~ n—oo
i lz : i.lz
H#(fl) - * H* (‘?)’

and we see that 'az is a homology equivalence. i
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